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ABSTRACT 

 

Social Sharing Platforms, a great source of free and diverse information, have been center 

of attraction to many people. Users post their opinions, thoughts, life events, news and all other 

information. This data flowed into these systems has increased to such a limit making nearly 

impossible for a user to read all or even most of it, analyzing and utilize it. As a solution to this 

problem, we here are proposing an approach, which makes use of not only the tweets themselves 

but also their properties to re-rank the tweets given a user query. The proposed approach was 

implemented in a prototype system and test results were generated. A set of feedback data 

collected via online survey for those test results provides a good evaluation score, with an 

average improvement of around 10% on precision values after removing the outliers. It shows 

that our approach can generate improved results over the original ones.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background on Twitter and Twitter Search 

 

          Social networking platforms, a great source of free and diverse information, have been the 

centre of attention for many people. Users post their opinions, thoughts, life events, news and all 

sorts of information on the social network.       

         Twitter is one of the most popular social networks people are using every day. The idea 

behind Twitter is that you broadcast information to anyone who chooses to follow you, and 

similarly, you can choose to follow people and receive their messages. 

           If a user wishes to find some tweets, the procedure is to search for tweets that include a 

particular word. For instance, if you type “neuroscience” into the search box in Twitter, you’ll 

see all the relevant tweets that include that word. Twitter search also provides a variety of 

operators and filtering options using which users can limit the type of tweets displayed in the 

results. 

1.2 Problem Statement 

          With the growing popularity of such social networking platforms, the amount of 

information has increased to a level that it is nearly impossible for a user to read all or most of it. 

In Twitter, one will notice that hundreds and thousands of tweets are posted on an event within a 

matter of minutes.  
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          There are inbuilt search features in Twitter. However, sometimes the results may not be 

very helpful. Twitter considers how similar the tweet is to the query in terms of its textual 

content. It also considers the recency of the tweet, the popularity of the user who posts the tweet, 

and possibly other factors. According to Busch et al. [1], the force behind Twitter's real time 

search service is Earlybird. Like all other modern retrieval engines, Earlybird also builds and 

maintains inverted indexes but its index structure is different from those built to support the 

traditional web search.  Because Twitter search is considered as the real-time search, EarlyBird 

has the capability to consume content speedily and make it searchable instantly. The detail of 

their searching algorithm is not available to the public. The paper on their searching platform 

EarlyBird also does not give the details of the ranking algorithm. Therefore in this study, we 

would like to explore possible ways to re-rank the tweets for a given user query, and then 

compare the results with the original Twitter ranking. By considering different factors, we would 

like to achieve goals for a better ranking result for the Twitter search, which will be tested by the 

experiments on a real dataset. 

1.3 Objectives 

          In this thesis, we intend to perform a set of calculations considering various factors to 

check whether the proposed approach could achieve better ranking results. This study believes 

that the ranking of a tweet for a query not only depends on its content or its popularity, but also 

on the author who posts it. Not only should the tweet be relevant, but it should also come from a 

trusted source. The main factors consider in this study are categorized into two groups: 

 Tweet Quality: This includes how recent the tweet is, how many times it has been retweeted, 

how similar its content is to the query, uniqueness of the content, and the availability and 

richness of the media information. 
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 Author Authority and Popularity: This includes how active the author is, how many friends 

and followers the author has, whether the author is easily reachable and whether the author is 

a source of information. 

          The main intention behind having an extensive approach and covering all aspects is to 

explore all possible factors that can influence the overall rank of a tweet. By covering important 

aspects, we have the option of trimming less influential tweets. 

1.4 The Proposed Methodology 

          The proposed approach aims to utilize various properties of tweets to define the ranking 

function. Nine different ranks are calculated based on different factors that are later combined to 

generate the overall rank of tweets.  

         A tweet is as good as its content, and its author. Suppose a user searches for a keyword 

such as “Social Computing”. In the first step, we will obtain the 200 latest tweets from Twitter, 

which will be used for later processing. The values of the properties such as the tweet posting 

time, retweet count, and presence of the media information will be collected. A set of ranking 

scores will then be calculated. Among them, some of the important ones include the following: 

the impact rank, which denotes how popular the tweet is, and how many users have retweeted it; 

the relevancy rank that measures the similarity between the tweet and the query; the uniqueness 

rank which denotes the uniqueness of content of a particular tweet compared to other tweets in 

the result set; the author popularity rank, which helps us to understand the popularity of the 

author in the network; the author connectivity rank which calculates how many exclusive 

followers an author has, that is, who follows the author, but is not followed back by the author; 

and the author authority rank which illustrates how desirable the author is within the network, 
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how many users follow him, whether he is a source of information, or how much he seeks 

information from others. 

          In this study we use data sources and ranking factors extensively to make sure we obtain a 

highly related set of high quality results. This proposed approach not only checks the content of 

tweets, but also has a major emphasis on who posted it, the status of its author, whether he is 

active enough, whether he is well connected, and whether he is a source of information. 

          The first few ranks focus on the content and properties of the tweet, the latter ones focus 

on the quality of author. The last few ranks are not calculated based on values directly from the 

tweet content itself. However, they are important as they ensure that the source of tweet is 

worthwhile. 

 There are two major contributions of this work: 1) to the best of our knowledge, there are 

very few research efforts on re-ranking of the Twitter search results, although various data 

properties in Twitter have been studied for different purposes such as recommender systems, our 

focus on Twitter search is unique; 2) the proposed method considers a combination of multiple 

factors including tweet related properties and user related properties, although some of the 

factors have been studied in other work, putting them all together is new, and among them, a few 

factors are novel, including content uniqueness and media richness of the tweet. 

1.5 Thesis Outline 

          The rest of the thesis is organized as follows.  

          Chapter 2 provides the literature review on the background and the closely related work. 

          In Chapter 3, we define the Twitter related terms along with the system architecture of our 

proposed re-ranking algorithm. We also explain the re-ranking algorithm based on individual 

factors and the way to combine them.  
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          Chapter 4, present our implementation and experimental results on Twitter data, which 

illustrates the effectiveness of our method.  

          Finally in Chapter 5, we conclude our thesis and discuss future directions we may work 

on. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

In this chapter, we will first review some technologies that we have used in our approach. 

Then, we will review some most closely related literatures to our work. 

2.1 Background 

2.1.1 Vector Space Model 

According to Yates and Neto in [2], Vector Space Model (VSM) is an algebraic model 

that represents text documents as vectors. In this model a document is represented as a vector 𝑑𝑗 

with weights associated with them for each term. A query is represented as a vector q. The 

presence of a term in the vector is identified by its non-zero value and the zero value identifies 

the absence of a term. The definition of terms is depending on the application. A term can be a 

single word or a phrase. 

The most popular way to compute weight values is the tf-idf weighting method. We use 

this method in our proposed algorithm to calculate the content relevancy of tweets to a given 

query and to calculate the uniqueness factor of tweets. Cosine similarity formula is used to 

calculate the similarity between two vectors 𝑑𝑗 and q as listed below: 

𝑠𝑖𝑚(𝑑𝑗 , 𝑞) =   
𝑑𝑗.𝑞

‖𝑑𝑗‖.‖𝑞‖
= 

∑ 𝑤𝑖,𝑗∙𝑤𝑖,𝑞
𝑁
𝑖=1

√∑ 𝑤𝑖,𝑗
2𝑁

𝑖=1   √∑ 𝑤𝑖,𝑞
2𝑁

𝑖=1    
                                                              (2.1) 

where N represents the number of terms in the vocabulary, 𝑤𝑖,𝑗 is the ith word of document j, 

𝑤𝑖,𝑞 is the ith word of query q. 
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2.1.2 PageRank  

PageRank [3, 4] is a measure of reachability of a web page. It indicates what are the 

chances of a user will end up on that page while surfing the web. That is, how well the page is 

connected by other pages or how well other pages points or links to it.  

PageRank of a page is dependent on the PageRank of pages linking to it. For a page E, its 

PageRank is defined as PR(E). If a page has links from pages with high PageRank, its own 

PageRank will be high too [3, 4]. 

The original PageRank algorithm was proposed to deal with a linked web graph 

consisting of web pages. It can be used to process any kind of graphs. In our proposed algorithm, 

users are linked through their following relationships. By calculating PageRank of users in this 

graph, their importance levels can be ranked, which will affect the importance levels of their 

tweets. The formula for calculating PageRank is listed below, 

    ( ) =
𝑞

 
 (  𝑞)∑

  ( 𝑖)

 ( 𝑖)

 
𝑖                                                                                             (2.2)           

where, a is a page for which PageRank is calculating, 

q is a damping factor, 

t represents the total number of pages, 

n represents the number of pages pointing to a, 

pi represents a page which is pointing to a,  

L represents the number of links from page pi. 
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2.1.3 Hub and Authority Ranking 

 

          A link analysis algorithm was developed by Jon Kleinberg [5] to rate web pages; it was 

known as Hyperlink-Induced Topic Search (HITS) (also known as hubs and authorities). It was 

proposed at almost the same time as PageRank.  

 Hubs are large web directories that do not own the information but lead users to other 

valuable information authorities. To be a good hub the page should lead you to good 

authoritative pages and to be a good authority the page should be linked to by several hubs. Two 

scores are calculated for each page, one based on the quality of content known as its authority, 

and the other based on the number of links to other pages known as its hub value. The HITS 

algorithm aims at delivering the most relevant page to what is asked for in the search query. 

            We consider two types of updates: Authority Update Rule and Hub Update Rule. In order 

to calculate the hub/authority scores of each node, the Authority Update Rule and the Hub 

Update Rule are applied iteratively. A k-step application of the Hub-Authority algorithm entails 

applying for k times first the Authority Update Rule and then the Hub Update Rule. 

Based on Authority Update Rule, 

 ( ) = ∑  (𝑞)𝑞  ,𝑞                                                                                                               (2.3) 

Based on Hub Update Rule, 

 ( ) = ∑  (𝑞)𝑞  ,  𝑞                                                                                                              (2.4) 

where, B is the base set, 

q and p are web pages in B, 

A(p) is the authority score for p, 

H(p) is the hub score for p. 
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            The final hub-authority scores of nodes are determined after infinite repetitions of the 

algorithm. As directly and iteratively applying the Hub Update Rule and Authority Update Rule 

leads to diverging values, it is necessary to normalize the matrix after every iteration. Thus the 

values obtained from this process will eventually converge to final non-fluctuating values. [5].  

2.2 Related Work 

2.2.1 Measuring Various User or Tweet Attributes in Twitter 

 

            In this section we are reviewing the papers which talk about various attributes in Twitter 

such as analyzing the microblog postings, various users and posts. 

Pal and Count [6] have proposed the features and methods which can be used to make an 

ordered list of top authors for finding topical authorities in microblogging environments. They 

suggested a number of features of authors and observe that topical signal and mention impact are 

marginally more important than other features. They also presented that the cluster probability is 

an effective method to screen a large mass of outliners in the feature space and select best 

specialized users on which the ordering can be applied more strongly. Finally, they showed that 

Gaussian based ranking is more efficient method to order users. Results revealed that their 

method is more efficient in near real time scenarios and is better than the baseline models. 

Castillo et al. [7] analyzed the microblog postings related to the trending issues and 

categorized them as reliable and not reliable, based on the features collected from them. They 

used the features from users’ postings, repostings and from the content to external sources. They 

assessed their methods using a good number of human assessments about the reliability of 

content in the given sample of Twitter postings. The emphasis of their experiments was the 

reliability of content spread through social media network. They have demonstrated that the 
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time-sensitive issues can be differentiated spontaneously as newsworthy or informal. Also they 

observed that the newsworthy topics often include URLs and have propagation trees. The 

trustworthy news is generally broadcasted through authors who already posted many messages 

and have many re-tweets. Finally they found that there are calculable variances in the path the 

messages are broadcasted and can be classified as newsworthy or informal with accuracy in the 

range of 70%-80%. 

Bakshy et al. [8] dealt with the aspects and effects of 1.6M Twitter users on the follower 

graph during a two month period in the year 2009. The investigation was done by tracing the 74 

million diffusion events over the follower graph during this duration.  The research reveals that 

the largest flows are made by the users who were leading in the past. Also they found that URLs 

which were rated more by users were more likely to flow. In spite of such results, they found the 

flows that particular user or URL makes are unpredictable. Thus they saw that word of mouth 

diffusion can only be captured reliably by focusing on the great number of influencers who are 

the users more influenced by other users’ posts. This provided the average effects of the 

influencers. It is considered that sometimes the most influential users are cost effective and their 

performance can be felt by using “ordinary influencers”, who are the users who exerting less or 

average influences. 

Yang et al. [9] dealt with the issue of automatically knowing the most appreciated posts 

to a large audience. Stress is laid over the automatic ways to know the tweets which not only are 

of great concern to the writers of the post on Twitter and their friends but a large audience too. 

The social networking site, Twitter is modelled as a user’s graph and tweet nodes linked by the 

retweet edges. The model presents different HITS algorithm which relates to the retweet graph 

for generating a stable order of tweets. Basis of this method is that the retweet relationship in the 
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graph can be used to find the tweet which not only draws the attention of the writers’ network 

but beyond that and impels others to retweet.  

Meeyoung et al. [10] showed that many influential users can affect on various topics. The 

power law distribution indicated that the top users have unequal type of influence. The temporal 

analysis indicated the various influential networks with users. Top news firms have a high level 

of retweets over various topics whereas celebrities are good at getting mentions on different 

topics. Finally, they found concentrated efforts of users are required to gain the influence. In 

order to achieve and keep influence, users need to possess great personal involvement. 

2.2.2 Twitter Ranking or Re-Ranking 

 

            In this section we are reviewing papers that deal with different procedures and methods 

which help in ranking or re-ranking of tweets. 

Duan et al. [11] proposed three types of tweet features that have been studied and a 

proposition to rank tweets by using learning to rank algorithms has been discussed. The most 

effective tweet features are first identified. Research suggests that the system could use some 

tweet features like number of follower, presence of URL, list of friends etc., to see which 

features performs the best for providing good ranks. Among all of the above, whether a tweet 

contains a URL is the most important feature. According to their research, the number of times 

an account is mentioned by other users is far more effective to determine the account authority 

than the number of followers of a specific account. 

Zhang et al. [12] proposed a combined learning to rank framework that uses both general 

and query specific proof of relevance for real time Twitter search. In other words the 

characteristics of queries are better tapped with the help of query biased ranking model which is 



 12 

 

 

learned by a semi-supervised transductive learning algorithm. Finally this approach is integrated 

with the traditional approach of ranking in order to display tweets according to user preferences. 

A wide variety of studies on the standard Tweets11 dataset [13] suggest that the query biased 

approach is far better than the traditional ranking system. There is also a probability of 

duplicating training data without using human labels on given new queries. Studies reveal that 

the number of interactions in the process in transductive learning algorithm is the main reason of 

its efficiency. 

Sarma et al. [14] proposed a solution for developing ranking models for forums.  It 

mainly dealt with thumb and star ratings based and comparison based review of items in the 

forum. The advantages of comparison based ranking model are its correctness and ability to 

rapid convergence with minimal user’s feedback. An online forum called Shout Velocity [15] 

has been discussed in detail based on comparison based ranking model. According to 

experiments based on artificially extracted data and real data from Shout Velocity, it is clear that 

the comparison based ranking model is far superior than the thumb based ranking on certain 

selected properties like ranking accuracy, review feedback bandwidth, low latency and fairness. 

Teevan et al. [16] showed how users search Twitter content and how their Twitter search 

is different from web search. A detailed scrutiny of large query logs was undertaken to find out 

and distinguish the search behavior of users who issue queries to both Twitter and web search 

engines. The main reason for searching Twitter stems from the fact that users need timely 

information (related to news or events), and they also need social information (related to other 

users and popular trends). There is a great difference between the queries submitted to Twitter 

and web search engines and this can be understood by studying the queries. Queries submitted to 

Twitter are shorter with longer words, and more references to people. The frequency of queries 
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was also quite different for both (Twitter and web) search engines. Twitter is used mainly for 

viewing new content while web is used for studying and learning a topic. Queries in Twitter are 

more popular, repeated frequently and are less dynamic than web queries. Queries in Twitter are 

more social and event based while web queries are factual and navigational. 

Shen et al. [17] presented a supervised learning method that will rank tweets based on 

their efficiency on the user’s interest. It implies that good quality tweets will appear on the top 

while low quality at the bottom. A system known as topic model is created to assess the topics in 

a tweet structure and determine the user's interest in each topic. The system is built on the basis 

of the aggregate tweet generated or consumed by the user. These aggregate tweets are identified 

for a particular user as a single document. All the tweets are aggregated because the word 

repetition makes the topic model more accurate than using a single tweet as a document. 

 According to Feng and Wang [18], a new problem was identified called personalized 

tweet ranking so that users could access valuable information amidst enormous amount of 

tweets. A general graph model was created to interpret retweet behaviour. Feature vectors of 

nodes and edges were used to depict various sources of information. Based on the graph, they 

proposed a feature-aware factorization model to re-rank the tweets, which combines the linear 

discriminative model and the low-rank factorization model effortlessly. 

2.2.3 Recommender Systems for Twitter  

 

            In this section we are reviewing papers which build the recommendation systems for 

Twitter. 

Chen et al. [19] suggested a collective tweet ranking model for suggesting useful tweets 

to users on Twitter. Their method benefits by the collective filtering based recommendation by 
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gathering important information from many users. Extra related content helpful for knowing 

personal interests is combined in their collective ranking model by cautious plan of features. 

Their final method used three major elements: tweet content, user social relations and explicit 

features such as authority of the publisher and quality of the tweet. The experiments on the real-

world data showed all the data can help in improving the recommendation performance for the 

users.  

Chaoji et al. [20] presented the difficulty of recommending connections in Twitter with 

the clear objective of increasing data spread in the network. They suggested novel algorithms for 

recommending connections that acknowledges the submodular criteria taking to computationally 

possible approximation procedure in the presence of the above limits. Results on the real graphs 

showed the dominance of their method in comparison with the common heuristics.  

Phelan et al. [21] proposed that large amount of data from the real-time networks like 

Twitter can be collected as a useful source of recommending knowledge. Buzzer is a news 

recommendation system that is able to collect the conversations that are posted on Twitter. 

Buzzer is capable to order RSS news by extracting trending data from both the public Twitter 

timeline and from the timeline of tweets generated by a user’s network. The method Buzzer used 

is the content based approach. 

Chen et al. [22] said that all of the social media platforms have one thing in common that 

is interaction between various users. Twitter and Facebook is known for being mediums of 

communication across the world.  Due to this, finding an interesting conversation to read poses a 

user with a challenge mainly because there is enormous amount of data and what is interesting 

differs from one person to another. In this paper they have detailed 5 algorithms that will suggest 

influential conversations to the Twitter users based on the chain of tweets, issue being discussed 
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and the tie-strength. An online user study was conducted to compare the algorithms and feedback 

was sought from the real users of Twitter. This study helped in analysing how the different 

purposes of using Twitter affected the user's choice of conversations and performance of the 

algorithms.  

2.2.4 Twitter’s Own Search Function 

 

            This category of papers deals with different Twitter’s own search options like Earlybird 

[1] as describe in chapter one. 

Lin and Efron [23] presented the notion of a temporal relevance profile, that user can 

openly include with keyword search query. They introduce temporal relevance profiles and show 

that how their advantage can be taken by present retrieval models. Data tracked from TREC 

2011 and 2012 by oracle experiments [24] on microblog empirically proves that their approach 

has the possibility to meaningfully increase the quality of retrieved results. 

Asadi and Lin [25] used machine-learned modules considering a multi-stage retrieval 

design which contains three stages. First stage is of a fast, “cheap” candidate generation stage; 

Second stage is extraction of feature stage and the last is “expensive” re-ranking stage. The 

second stage can be achieved by document vector index that is a mapping from document ids to 

document representations. For better feature extraction they deliberate other organizations of 

data structure which includes design choice, document organization, complex term proximity 

features and how compression of structures can be achieved. In brief, for efficiently encoding 

term ids they introduced a new document-adaptive hashing scheme. By experiments on memory 

footprint and feature extraction speed they assessed the effect of their design. Overall, their 
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results show that their system design has extra advantages in terms of elasticity and also needs 

less memory overall as compared in speed to using an old positional inverted index.  

Because Twitter search is considered as the real-time search, EarlyBird has the capability 

to consume content speedily and make it searchable instantly. Much of the focus was put on the 

indexing component of EarlyBird in [1], and the detail of their searching algorithm is not 

available to the public. Therefore in this study, we would like to explore possible ways to re-rank 

the tweets for a given user query, and then compare the results with the original Twitter ranking. 

There are other approaches in this area too, but their approach is different. For instance, Chen et 

al. [19] proposed a collective filtering based tweet ranking model by gathering important 

information from many users. Asadi and Lin [25] used machine-learned modules considering a 

multi-stage retrieval design. Duan et al. [11] used three types of tweet features and learning to 

rank algorithm to learn the ranking model. This work is different in that we divide ranking 

features into two types – tweet-related and user-related, and each type include multiple features, 

and the combination of all these features is used to generate the final ranking order. 

2.3 Summary 

In this chapter we first described the methods such as VSM, PageRank and 

Hub/Authority calculation, which we are going to use in our proposed algorithm. Then we 

reviewed work on various Twitter related topics such as Measuring Twitter user’s influence, 

Twitter ranking or re-ranking, Twitter recommender and Twitter’s own search. In our proposed 

algorithm we are re-ranking tweets based on different aspects. This is going to be described in 

the next chapter. 
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CHAPTER 3 

 

METHODOLOGY 

 

 
           Based on the discussions of previous chapters, we propose an algorithm for the re-ranking 

of tweets based on two major concerns: tweets and users. We re-ranked the tweet based on 

individual factors related to the tweet itself and the user who posted the tweet. In the following 

sections, first we will define some Twitter related terms that we use in our discussion, then we 

will describe the current search process in Twitter, and after that, we will explain our system 

architecture and our proposed re-ranking algorithm in details. 

3.1 Definition of Twitter-Related Terms 

             Below we give definitions and explanations on some Twitter related terms.  

 User can be anyone or anything. They tweet, follow others, create lists, have a home timeline, 

can be mentioned, and can be looked up. There are various properties [26] associated with the 

User object that uniquely define and identify a user. Among these numerous properties 

associated with the User object, we have used the following in our algorithm: 

o ID is an integer representation of the unique identifier for a user. This number is greater 

than 53 bits, and some programming languages may have difficulty in interpreting it. Using a 

signed 64 bit integer for storing this identifier is safe. An example could be: "id":6253282. 

o Screen_name is the handle, or alias, that this user is identified with. Screen_name is 

unique but subject to change. Typically, the screen name is a maximum of 15 characters long, 

but some older accounts may exist with longer names. An example could be: 

"screen_name":"twitterapi". 
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o Name refers to the name of the user, as they have defined it. And it is not necessarily a 

person's real name. This name is typically capped 20 characters, but subject to change. An 

example could be: "name":"twitterapi". 

o Friends_count refers to the number of users this account is following (that is, their 

"followings"). An example could be: "friends_count": 32. 

o Followers_count is the number of followers this account currently has.  An example 

could be: "followers_count": 21. 

 Tweet is the basic atomic building block of all things in Twitter. Users post tweets, also 

known more generically as "status updates." Tweets can be embedded, replied to, liked, 

unliked and deleted. Users can amplify the broadcast of tweets authored by other users by 

retweeting. Retweets can be distinguished from typical tweets by the existence of a 

“retweeted_status” attribute. This attribute contains a representation of the original tweet that 

was retweeted. Users can also unretweet a retweet they created by deleting their retweet. 

There are various properties [27] associated with the Tweet object which uniquely define and 

identify a tweet. Among these numerous properties associated with the Tweet object, we have 

used the following in our algorithm: 

o Tweet_id is the integer representation of the unique identifier for a tweet. Similar to 

User_id, it is recommended to use a signed 64 bit integer for storing this identifier. An 

example could be: "id":114749583439036416. 

o Text is the actual UTF-8 text of the status update. An example could be: "text”: “Quebec 

values charter: is it a political game changer for the PQ? Bit.ly/189j36o”.  

o Created_on refers to the UTC time when this tweet was created. An example is: 

"created_on":"Wed Aug 27 13:08:45 +0000 2008".  
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o Retweet_count is the number of times this tweet has been retweeted. An example is: 

"retweet_count":1585. 

o Entities provide metadata and the additional contextual information about content 

posted on Twitter. There are four types of tweet entities, namely: hashtag, media, URLs, 

user_mentions [28]. 

 Hashtag refers to the topics or keywords marked by a “#” symbol in a tweet, and 

it can be used to categorize messages by Twitter users. For Example, 

“hashtags":[{"indices": [32, 36],"text":"lol"}].  

 Media refers to the media elements uploaded with the tweet. For example, 

"media":[{"type":"photo","sizes":{"thumb":{"h":150,"resize":"crop","w":150}, 

"large":{"h":238,"resize":"fit","w":226}, 

"medium":{"h":238,"resize":"fit","w":226}, 

"small":{"h":238,"resize":"fit","w":226}}, 

"indices":[15,35],"url":"http:\/\/t.co\/rJC5Pxsu", 

"media_url":"http:\/\/p.twimg.com\/AZVLmp-CIAAbkyy.jpg", 

"display_url":"pic.twitter.com\/rJC5Pxsu","id":114080493040967680, 

"id_str":"114080493040967680","expanded_url": 

"http:\/\/twitter.com\/yunorno\/status\/114080493036773378\/photo\/1", 

"media_url_https":"https:\/\/p.twimg.com\/AZVLmp-CIAAbkyy.jpg"}]. 

 URLs refer to the URLs included in the text of a tweet or within the textual fields of 

a User object. For example,       

"urls":[{"indices":[32,52],"url":"http:\/\/t.co\/IOwBrTZR",     
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"display_url":"youtube.com\/watch?v=oHg5SJ\u2026",                         

"expanded_url":"http:\/\/www.youtube.com\/watch?v=oHg5SJYRHA0"}]. 

 User_mentions represents other Twitter users mentioned in the text of the tweet. For 

Example,       

"user_mentions":[{"name":"TwitterAPI","indices":[4,15], 

"screen_name":"twitterapi", "id":6253282, "id_str":"6253282"}]. 

              These are the most common concepts related to Twitter and its various data properties, 

and they are described here to give an understanding on the ranking factors we use in this work. 

These terms are also helpful to understand the Twitter API, which is essential for collecting the 

data for the later experiment. 

3.2 System Architecture     

 

             Figure 3.1 shows the architecture model we use to implement our tweet re-ranking 

algorithm. A sleek multithreaded WPF-based GUI enables the user to input the query and 

provides results in the form of tweets listed in a ranked manner determined by the ranking 

algorithm. The Fetching module plays the most critical part in providing the fresh dataset 

available for processing. On runtime it collects data from Twitter based on user-keyword in a 

request-response manner with the help of Twitter API and the integration library. With Twitter 

imposing certain limits such as the number of requests per hour per account and the amount of 

data per request, a time lag was encountered towards the overall operation time. 

             A round-robin multi-account system was developed, which switches to the next available 

account as soon as the limit of the current account is reached; thus, we could always have an 

active account to perform further request-response operation with Twitter API. These limits are 
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imposed based on the time interval and are refreshed after a specific unit of time has elapsed. 

Thus, an exhausted account, after a certain period of time, becomes available. By making use of 

20 authentication tokens from different accounts, we were able to create a system which always 

had an available account for operations.  

              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Figure 3.1. System Architecture 

 Although the problem of the operation limit has been tackled eliminating any waiting lag, there 

is still a considerable amount of time required to collect a complete dataset for one query. 

Hundreds of request-response operations are performed to complete one collection operation. 
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Each operation involves sending and receiving data over the internet and is affected by the 

network congestion and Twitter server load lag.  

             Having a static local dataset would completely eliminate any fetching time and would 

largely improve the rank computation time for a query; however, it would handicap the system to 

allow only those queries/keywords which have already been pre-fetched into static dataset to be 

processed and the tweets are not always fresh. 

 The Ranking module has two phases. Phase I, or the fetching phase, is responsible for 

collecting all the related information from Twitter. We are using the live data, not a pre-collected 

set of tweets. Live data is slow and restricted by limits set by Twitter but gives a wide range of 

keywords and data to test our algorithm.  

             In this step, multi-threading is done for background processing, for which we have to 

make an app on Twitter that provides a token and gives authentication for a JSON request. It 

interacts with the Twitter API library for authentication and data collection. It also performs 

internal cleaning and data filtering before storing the data into the database. 

          In general, Phase I performs the following tasks: 

 Account authentication for API connectivity. 

 Collection of tweets returned from Twitter based on the given query. 

 Collection of list of friends and followers of users who are authors of the returned tweets. 

 Collection of recent tweets of these users. 

       Data is freely available, but can be accessed only through authentication by using Twitter 

API and account tokens. The process is slow because data access has hourly limits and the rate of 

retrieval is also slow. When using application-only authentication, rate limits are determined 

globally for the entire application. If a method allows for 15 requests per limit window, then it 
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can make 15 requests per window on behalf of the application. More details can refer to [40]. 

Additionally, it depends on the network speed. So in general, phase I is slow. It could have taken 

hours, but we are using multiple account tokens and account switching, therefore, no waiting 

time is wasted. All the time taken in phase I is for the retrieval of the matching result. 

            Phase II, or the calculation phase, operates on the collected data, calculating nine ranking 

scores based on different factors, which are later normalized and aggregated to produce the final 

ranking score. This final rank is used to order the results presented to the user.  

            At each step of this phase data is read and written into a database. A number of re-

ranking algorithms are used. Phase II performs the following tasks: 

 Calculation of Tweet Impact Rank. 

 Calculation of Tweet Recency Rank. 

 Calculation of Tweet Content Relevancy Rank. 

 Calculation of Tweet Content Uniqueness Rank. 

 Calculation of Tweet Media Rank. 

 Calculation of User Connectivity Rank. 

 Calculation of User Activeness Rank. 

 Calculation of User PageRank. 

 Calculation of User Hub Authority Rank. 

 Normalization of all above ranking scores. 

 Aggregating the calculated ranking scores to produce the final rank. 

      Screenshots for interfaces to collect Twitter data and calculate the ranks are included in 

Appendix A. 
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3.3 Our Proposed Re-Ranking Algorithm 

           Twitter shows a user’s tweets in a reversed sequential order, which is not always the best 

way. Twitter is crowded with different types of messages. Informative tweets might be displayed 

at the bottom and some irrelevant tweets might be at the top. 

           This study proposes a re-ranking approach based on various tweet and user related 

properties. The proposed approach calculates ranking scores for individual properties, which are 

then normalized and added up to calculate the overall ranking score. Then the tweets are ordered 

on the basis of their calculated overall scores and presented as results.  

3.3.1 Algorithm Overview 

             When a user searches for some keywords, he hopes to see the most relevant results 

returned, which can put an end to his information seeking process. For real time systems like 

Twitter, time is an important factor to evaluate the recency of the information, which, in a way, 

is necessary to determine the relevancy of the information too. 

          The aim in developing this algorithm is to integrate the information quality and relevancy 

into the search results and in the meantime keep the recency information. 

          The overall rank of a tweet in the result list is determined by the combination of different 

values. The main intention here is to provide results as relevant as possible, as recent as possible, 

and as authoritative as possible, to a user from the set of available data. 

          In the algorithm we mainly consider factors from two aspects, one is tweet, and the other is 

user. Tweet related factors include: 

 Time - Is the tweet recent? 

 Popularity – Has the tweet been retweeted and, if so, how many times? 
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 Content – Is the tweet relevant to the query, unique and does it contain information 

sources? 

User related factors include: 

 Activeness – Is the author active over a given time period? 

 Connectivity – Is the author well connected to other users? 

 PageRank/Hub Authority - Is the author a source of authoritative information? 

          In this approach, we believe a tweet should be ranked on the basis of its own quality, or the 

quality of its source, that is, the author who has posted it. 

The following are the main factors we consider for ordering the tweets. 

Tweet-based factors 

i) Impact of tweet, which is measured by the retweet count.      

ii) Recency, which is measured by the posting time of the tweet.                                     

iii) Content relevancy, which is the relevancy of the content of the tweet to the query.       

iv) Uniqueness, which is to measure how unique the tweet is compared with other tweets.        

v) Media richness, which is measured by the count of media, URL, and video embedded in a 

tweet.  

 User-based factors 

i) Number of followers who are not mutually followed. 

ii) Activeness, which is measured by the number of tweets posted by the user in a given time 

period.                                                                                             

iii) PageRank score calculated on the link graph of the user following relationship. 

iv) Hub/authority score calculated on the link graph of the user following relationship.   

Tweets are then rearranged on the basis of the calculated scores of the above nine factors. 
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3.3.2 Details of the Factors Considered in the Algorithm 

                                 

There are nine calculation steps based on different factors; below, we will discuss each of 

them. 

i) Tweet Impact Rank (TIR) 
 

            In this step we count the number of times a particular tweet is retweeted among the users 

on Twitter. We give the most retweeted tweet the highest ranking score as it is considered as the 

most popular one. For instance, if a tweet is retweeted 5 times, its Impact Rank value will be 

proportional to 5. If it is not retweeted at all its Impact Rank value will be 0. This formula is 

applicable only on tweets having retweet count > 0. The formula to measure TIR of the current 

tweet  𝑤𝑖 is given below, 

 

   𝑖 =
         𝑖 

(        𝑖)  
                                                                                                                (3.1) 

                                                                                       

 

where       is the maximum retweet count,    𝑖  is the minimum retweet count and   𝑖 is the 

retweet count for the current tweet  𝑤𝑖.  

 

  ii) Tweet Recency Rank (TRR)       

            In this step, we are checking the time the tweet was posted; the most recently posted 

tweet will have the highest-ranking score. This increases the probability that the tweets ranked 

high by the algorithm must be fresh and recent on Twitter. Below we list the formula to calculate 

TRR,    

   𝑖 =
 𝑖          

(                )  
                                                                                                          (3.2) 
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where  𝑖  is the posting time of the current tweet  𝑤𝑖,         is the posting time of the latest 

tweet,    𝑑    is the posting time of the oldest tweet. 

 

iii) Tweet Content Relevancy Rank (TCRR)    

            This refers to the relevancy of the tweet to the given query, that is, the similarity between 

the tweet and the query keywords using the vector space model [2]. Tweets having a high 

similarity score to the query will have high TCRR values. The following steps have been used to 

calculate the TCRR value: 

 Each tweet is considered as a document. 

 The Vector Space Model is then applied to calculate the similarity between each tweet 

and the query. 

 Tweets with high similarity values will have high TCRR values and are considered more 

relevant. 

The formula for Tweet Content relevancy rank (TCRR) is as follows, 

    𝑖 =  𝑖𝑚( 𝑤𝑖, 𝑞) =
∑  𝑗𝑖  𝑗𝑞
𝑁
𝑗=1

√∑  2
𝑗𝑖

𝑁
𝑗=1 √∑  2

𝑗𝑞
𝑁
𝑗=1

                                                                          (3.3) 

where  𝑤𝑖 is the current tweet, q is the user query, N is the total number of terms,  𝑗𝑖 is the 

weight of term j in  𝑤𝑖,  𝑗𝑞 is the weight of term j in query q. 

 

iv) Tweet Content Uniqueness Rank (TCUR) 

            In this step we consider the uniqueness of the tweet compared to other related tweets on 

the query keyword. The uniqueness of the tweet is measured by how rarely its terms appear in 
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other tweets on the given query keyword. Below is the formula to calculate Tweet Content 

Uniqueness Rank (TCUR): 

    𝑖 = ∑    
 

𝑑 𝑗

 𝑖
𝑗                                                                                                                (3.4) 

where  𝑖 is the number of unique terms in tweet  𝑤𝑖, K is the total number of tweets returned 

from Twitter on the given query, 𝑑 𝑗 is the number of tweets that contain term j. 

 

v) Tweet Media Entity Rank (TMER) 

            In this step, we check if the tweet is containing any media file, URL, any video, or any 

other media content. Tweets having any of those types of media contents will have a high TMER 

score as they can be more informative than others. TMER measures how many media entities are 

present in the tweet. Below is the formula to calculate TMER, 

    𝑖 = 𝑚 𝑑𝑖       𝑖            𝑖                                                                               (3.5)  

where 𝑚 𝑑𝑖       𝑖 measures the number of media entities in  𝑤𝑖 and          𝑖 measures 

the number of URLs in  𝑤𝑖. 

 

vi) User Connectivity Rank (UCR) 

            In this step we look for the number of followers of the user whom are not mutually 

followed. These users are considered more informative because they are sources of information, 

not just friends.                  

The internal friendships and connections of a user denote his connectivity strength. The 

more people who follow a user, the more his tweets will be accessed, and the greater his 

popularity will be. However, a trend of mutual following prevails on Twitter; people follow a 

user just because that user is following them, not for the sake of information. Thus, we count the 
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number of mutually exclusive followers who follow an individual, but the individual does not 

follow back. The UCR is calculated using the formula below: 

   𝑖 = |  𝑖  (  𝑖    𝑖)|                                                                                                   (3.6) 

where UCR is the count of users which follow the current user, but the user doesn’t follows them 

back.   𝑖 is the set of friends of current user who posts  𝑤𝑖  i.e. whom the user follows,   𝑖 is the 

set of followers of current user, i.e. who follow the user. And (  𝑖    𝑖) gives a set of users 

who are both friends and followers. 

 

vii) User Activeness Rank (UAR) 

           In this step, we check whether the user is active on the topic, as the user might have not 

tweeted about the topic in the last few days. The users who are more active have a high UAR 

score. Using this method preference is not given to those users who are not active on the topic. 

The activeness rank of a user denotes his activeness in posting tweets on a specified 

keyword over a time period. This factor is very useful in measuring the overall contribution of a 

user on a particular keyword during a time period. The formula below shows the calculation 

steps,  

   𝑖 = ∑  𝑤         (𝑤)𝑤 𝑞                                                                                              (3.7) 

where, w is a keyword in query q, tweet_count(w) measures the number of tweets posted on 

keyword w by the author of tweet  𝑤𝑖. 

 Twitter API has a feature using which we can specify user id for which tweets are needed 

to be retrieved on given keyword.  
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viii) User PageRank (UPR) 

            In this step, we calculate the PageRank of the user by considering the followers and 

friends of the user. The PageRank of a user is a measure of reachability of the user in the user’s 

following relationship graph. That is, it indicates what the chances are that a visitor will end up 

on that user while following through other users. To calculate the PageRank a numerical weight 

is assigned to it. The user is then ranked on the basis of that weight. The formula for User 

PageRank (UPR) [3, 4] is shown below, 

   𝑖 =
   

 
 
∑    𝑗  𝑗, 𝑗  𝑖

     𝑖  𝑗
                                                                                                   (3.8)                                            

where D is the damping factor which is set to 0.85, M is the number of all users in the following 

graph,  𝑗 is following  𝑖, the author of  𝑤𝑖,      𝑖  𝑗 is the number of users  𝑗follows. 

 

ix) User Hub Authority Rank (UHAR) 

            Here, we calculate the hub and authority scores [2] for a user. The UHAR rank of a user 

specifies whether the user is a hub following many users and is considered an information 

source; or is an authority linking with many users following them. 

Below is the formula to calculate User hub authority rank (UHAR): 

    =  .     𝑖   .   𝑖                                                                                                   (3.9) 

where,  ,   is the weight on authority score of user who posted  𝑤𝑖     𝑖 , and hub score 

   𝑖.     𝑖 and    𝑖 are calculated on the user following graph, and the formulas for 

    𝑖and    𝑖 can refer to section 2.1.3 in chapter 2. 
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3.3.3 Final Ranking Function 

Before we combine all the ranking scores together, we need to normalize them. 

Normalization is a process of rescaling numbers so that they fit into 0 to 1 scale. In order to 

achieve this scale, every number is divided by the highest number available.  

 ( ,  ) =       ( )                                                                                                              (3.10) 

where V represents the set of all possible values for a certain variable, v represents a value from 

V, max is to get maximum value from the set. 

After normalization, the final ranking score of a tweet is calculated as,  

   𝑖 = (   𝑖     𝑖      𝑖      𝑖      𝑖)    𝑖  (   𝑖     𝑖     𝑖  

   𝑖 )                                                                                                                                            ( .  )             

where  𝑖  = Weight value for Tweet Ranks  

   = Weight value for User Ranks  

 𝑖    =    

           Having weights on user related and tweet related scores gives the approach a flexibility of 

shifting/balancing importance between tweet factors and user factors by adjusting weight values. 

In the current implementation equal weights are assigned to user scores and tweet scores for the 

simplicity reason.  

 The algorithm and the actual code of one ranking score calculation – Tweet Impact Rank, 

is listed in Appendix B. 
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3.4 Summary 

In this chapter, we have explained the Twitter related terms, the architecture of our 

system, as well as our proposed re-ranking algorithm. We also discussed, in detail, each factor 

considered in our proposed algorithm. We described all the formulas that are used in our 

proposed method. In the next chapter, we will discuss the system implementation and its results, 

as well as the user evaluation results. 
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CHAPTER 4 

 

EXPERIMENTS  

 

The main objective of our implementation and experiments is to test the working of the 

proposed approach and verify the accuracy of the results generated through a user evaluation. 

4.1 Dataset 

There is no standard benchmark dataset available to test ranking algorithms performed on 

Twitter data. So in this study, we decided to choose some queries and use Twitter API to fetch 

the relevant results returned from Twitter on each query, and then apply our proposed ranking 

algorithm to re-rank them and compare with the original ranked results through the user 

evaluation.  

The sample test dataset contains tweet and user values for 20 general keywords/queries. 

These keywords were randomly chosen based on suggestions from various people. The dataset 

was collected by performing fetch operations for all specified queries. This required the use of 

Twitter API, C# API library and multiple twitter access accounts. 

A list of 20 search queries were submitted to Twitter, and 200 tweets returned from 

Twitter on each query were collected; furthermore, all other tweet and user related data required 

by our algorithm were collected and stored into a local database for later processing and 

calculation. We chose these queries by asking some users to randomly give some topics they are 

interested in or have some knowledge of. The list of queries is: 

1) Amitabh Bachchan 

2) Apple 
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3) Barack Obama 

4) Bank Of Canada 

5) Blackberry 

6) Boston Marathon 

7) Cloud Computing 

8) Cyber Security 

9) FIFA World Cup 

10)  Global Warming 

11)  Health Canada 

12)  Human Rights 

13)  Immigration Canada 

14)  National Hockey League 

15)  Ryerson University 

16)  Russell Peters 

17)  Sachin Tendulkar 

18)  Solar Energy 

19) Toronto Maple Leafs 

20) US Tornadoes 

4.2 Implementation  

 

The discussed approach was implemented as a Windows based application, using C# 

WPF .Net technology. The configuration of the machine used to run the experiment is: Windows 

7 Home premium, RAM 4GB, Hard Disk 596GB with a 64 bit operating system. 
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            As illustrated in the system architecture shown in Figure 3.1, the application is divided 

logically and operationally into two modules, that is, a data fetching module and a re-ranking 

module. The data fetching module is responsible for communication with the Twitter service, 

account authentication, API request-response operation, and collecting the dataset for the 

specified query. And the following values are collected during the fetch operation: 

 200 tweets for each specified query. 

 Related information for each tweet. 

 Information of all authors of the listed tweets.  

The re-ranking module is responsible for performing ranking calculations based on 9 

tweet or user related factors, combining the ranking scores, and finally ordering the results in a 

ranked manner. 

 

4.3 Experimental Results and Analysis 

Running our program for 20 different queries presented us with 20 datasets, with tweets 

being calculated with ranking scores. In order to compare the re-ranking results with the original 

results, following the standard evaluation approach for the information retrieval research, when 

the benchmark dataset is not available, we need to have human evaluators to help us evaluate the 

relevancy of the results so as to measure the accuracy of each algorithm.  

An online evaluation system was developed in C# ASP.net and SQL server. For each 

query, the top 20 tweets based on the original Twitter results and our algorithm results were 

mixed together without labeling their sources and then transferred to the user evaluation database 

and were linked to respective queries. A total of 20 different queries were loaded into the system, 
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with each having up to 40 linked tweets, which are classified as Twitter only, algorithm only, or 

common result. The classification is only known to us, but not to the evaluators. Also the 

duplicates are checked, so if there are overlapping tweets from the two result sets, only one copy 

is kept.  

A total of 40 volunteer users from different locations and professions were invited to take 

our online user evaluation. They were requested to choose the ten tweets they considered the 

most relevant for a query. Each user was requested to perform the task for five queries out of the 

twenty queries. The selection of the query was left to the users based on whether they are 

familiar and comfortable with the query topic. In our evaluation system, we have implemented 

an adaptive ordering of queries so that the least selected queries are displayed on a higher 

position on the list in the hope that they have higher chance to be selected in the future. 

A total of 40*5 = 200 unit user evaluation data was collected, with each unit containing 

evaluation results on 10 tweets. Based on these evaluations, points were allotted to either the 

original Twitter ranking or our algorithm. Twitter gets a point if a twitter only tweet is selected, 

algorithm gets a point if an algorithm only tweet is selected, and both get 1 point if a common 

tweet is selected. And the winner is decided based on the number of points earned. Suppose if a 

user selects 3 Twitter only tweets, 5 algorithm only tweets, and 2 common tweets, the score for 

this result will be Twitter Points = 3+2=5, Algorithm Points = 5+2=7.  In this case, our algorithm 

wins because it has more points. 

After taking all the user evaluation units into account, the final overall score was 1023 

points for Twitter and 1205 points for our algorithm. This score indicates our approach as the 

winner based on our user evaluation results. Since this measurement is rather intuitive, we use 

other common ranking evaluation approaches for the comparison in the following sections. 
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4.3.1 Kendal Tau Comparison 

Kendall tau correlation coefficient can be used to measure the difference between the two 

ranking results on the same dataset and is represented as “τ” in our later discussion. Its value 

varies from -1 to 1. This coefficient helps us calculate the similarity between the ranked datasets. 

The higher the value of “τ”, the greater relationship is between the ranked datasets, whereas a 

smaller value represents a bigger difference between ranked datasets. 

The formula to calculate the Kendall Tau is: 

 =
     

     
                                                                                                                               (4.1) 

where #C represents the number of concordant pairs and #D represents the number of discordant 

pairs. If there are two pairs  𝑖,  𝑖 and  𝑗,  𝑗, concordant pairs are defined as:   

 𝑖 >  𝑗 and  𝑖 >  𝑗    OR    𝑖 <  𝑗 and  𝑖 <  𝑗 

The same relation must exist between each pair of elements; otherwise, the pair is the discordant 

pair. 

In our proposed approach, we have Twitter ranked datasets and our proposed algorithm 

ranked datasets. The Kendall tau algorithm helps us check the similarity or dissimilarity between 

the two ranked datasets. 

A sample query - cloud computing, was chosen and 20 tweets were obtained, giving two 

ranks for each tweet: - Twitter rank and algorithm rank. Their ranks are shown in Table 4.1. 
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Table 4.1. Ranking results from two algorithms for the sample query “Cloud Computing” 

Tweets Twitter Rank Algorithm Rank 

Tweet 1 1 3 

Tweet 2 2 9 

Tweet 3 3 5 

Tweet 4 4 6 

Tweet 5 5 8 

Tweet 6 6 14 

Tweet 7 7 4 

Tweet 8 8 20 

Tweet 9 9 18 

Tweet 10 10 12 

Tweet 11 11 11 

Tweet 12 12 15 

Tweet 13 13 19 

Tweet 14 14 7 

Tweet 15 15 1 

Tweet 16 16 16 

Tweet 17 17 10 

Tweet 18 18 13 

Tweet 19 19 17 

Tweet 20 20 2 

 

Using those ranks, we calculate the degree of similarity between the two ranked result 

sets using the Kendall tau algorithm. Based on Formula 4.1, for this example, we can get the 

following results: 

#C = total number of concordant pairs = 110 

#D = total number of discordant pairs = 80 

τ = 110-80/110+80 = 30/190 = 0.157 

Here, the τ is a positive value, which means the two ranking orders are somehow related, 

however, its small value indicates the similarity between the two is low. 

We also did a significance test [29] to check whether both variables are statistically 

dependent. The formula is shown below, 
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 =    √ (   ) √ (    )                                                                                           (4.2) 

 

According to this formula, the value of Z is 0.973. Since the higher the value of Z, the 

more significant is the association between the two rankings, and here the value of Z is small, 

there is a less significant association between the two rankings. To check whether two variables 

are statistically dependent, we know that if Z >1.96 the dependency is more significant and if 

Z<1.96 it is less significant. Since, Z=0.973, it is two values are less significantly dependent and 

hence different. Table 4.2 shows the Kendall Tau values for all 20 queries. 
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Table 4.2. Kendall Tau values for 20 queries 

Sr. No Query 
Kendall Tau 

Coefficient. 

1.  Health Canada 0.147 

2.  Solar Energy 0.031 

3.  National Hockey League 0.073 

4.  FIFA World Cup 0.178 

5.  Sachin Tendulkar 0.063 

6.  Russell Peters 0.252 

7.  Apple 0.042 

8.  Cloud Computing 0.157 

9.  Cyber Security 0.189 

10.  Toronto Maple Leafs 0.221 

11.  Barack Obama 0.178 

12.  Amitabh Bachchan 0.084 

13.  Blackberry 0.031 

14.  US Tornadoes 0.226 

15.  Boston Marathon 0.105 

16.  Immigration Canada 0.147 

17.  Ryerson University 0.105 

18.  Global Warming 0.147 

19.  Human Rights 0.094 

20.  Bank Of Canada 0.252 

 

This table concludes that for all queries τ is positive but small hence values are somehow 

related but the similarity is low. 



 41 

 

 

4.3.2 Precision of User Evaluation Results 

Precision is the fraction of retrieved instances that are relevant, while recall is the fraction 

of relevant instances that are retrieved [2]. Both precision and recall are therefore based on an 

understanding and measure of relevance. Since for the Twitter search, for each query, we don’t 

have the ground truth of the complete relevant document set, in this experiment, we only 

consider the precision value. The formula below shows the definition of precision for a 

document retrieval problem. 

    𝑖𝑠𝑖  =
|{         𝑑        } {    𝑖   𝑑 𝑑        }|

|{    𝑖   𝑑 𝑑        }|
                         (4.3) 

In our case, Equation 4.3 can measure the ratio of the most relevant tweets over all the 

returned tweets for a given query. The relevancy judgment is given by the user who goes through 

the returned tweet list to find the ones which are considered most relevant to the query. And 

whether a tweet is relevant to a query or not is depending on the average opinion of all evaluators 

who are evaluating the query.  

Based on this formula, we calculate the average precision value for 20 queries in our 

dataset with considering of all 40 users’ evaluation. The average precision for Twitter is 0.274 

and the average for our algorithm is 0.286. Our algorithm has a better precision value, however, 

the difference is very small. Therefore, we tried to remove some queries, or users, or both from 

our evaluation results if the evaluation results from those users or on those queries were largely 

different from the average values. They could be considered as outliers. After removing them, 

we got the following results. 

 

 



 42 

 

 

For 30 users and 20 queries: Twitter: 0.254, algorithm: 0.310 

For 40 users and 15 queries: Twitter: 0.253, algorithm: 0.317 

For 30 users and 15 queries: Twitter: 0.244, algorithm: 0.331 

Therefore, after removing outliers, the improvement from our algorithm over the original 

Twitter ranking is more obvious. Since in our experiment, there is no control on the quality of 

the user evaluation. Some users may not understand the query topic well so that they do not have 

good judgment on result relevancy, some users may not spend time on reading result tweets 

carefully to judge their relevancy, and some may accidentally pick some wrong options. By 

removing those evaluation data that are largely different from the rest, the remaining data could 

provide a better evaluation on the algorithm.  

            Figure 4.1-4.3 show more detailed comparison results on individual queries. 

 

 

 

Figure 4.1 Graph Comparison for 30 users and 15 queries 
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Figure 4.2 Graph Comparison for 30 users and 20 queries 

 

 

 
 

Figure 4.3 Graph Comparison for 40 users and 15 queries 
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             These comparison charts are between precision values scored by the proposed algorithm 

and twitter results for each keyword/query. Blue colored (dark) bars represent algorithm values 

and red colored (light) bars represent twitter values. Three charts are drawn for results by varying 

the contribution count of users and queries. We could see that for the majority of the queries, the 

proposed algorithm achieves a higher precision than the original result. Among those queries that 

achieve a better result, the degree of improvement varies depending on the queries, some queries 

have a high percentage of precision increase, and the others have only a small increase. 

 Table 4.3 shows the comparison between the precision values from the original Twitter 

rank and the proposed algorithm and the percentage of the difference. It shows the average 

precision on all considered queries. It also shows the difference before and after we remove 

outliers. We could see that after outliers are removed, the precision increase is more obvious. 

Table 4.3. Precision results  

 PAA PAT Diff% 

40u 20q 0.286 0.274 2.18% 

30u 20q 0.310 0.254 9.98% 

40u 15q 0.317 0.253 11.23% 

30u 15q 0.331 0.244 15.12% 

 

PAA = Average precision for algorithm 

PAT = Average precision for Twitter 

SUM = PAA+PAT 

Difference % = ((PAA-PAT) / SUM)*100  

The complete precision results are included in Appendix C. 
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4.4 SUMMARY 

 

In this chapter, we explained our experiment design, the datasets we used, the user 

evaluation process, as well as some of the implementation details. We have evaluated and 

analyzed our algorithm and proved that our algorithm worked better than the original Twitter 

ranking results. We also performed Kendall tau comparison between the two ranked lists from 

our algorithm and from Twitter, and the result value is small, which shows a small degree of 

similarity between two ranking algorithms.  
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORK 

 

5.1 Conclusions 

 

          Social feed search engines, such as twitter, respond to users’ search queries by providing 

or displaying a collection of result-objects (tweets in this case) in a sorted or ranked manner 

mainly based on the content and recency of the objects. In this study, we looked at this problem 

from a broader perspective and consider a few important factors that play an important role in 

calculating the rank of the tweet, that is, the position in which it is displayed in the results. 

          The focus of this thesis is to enhance the result accuracy, relevancy and uniqueness by 

making use of a set of information available via tweets’ properties. Our approach use both 

tweets' and authors’ information and properties to generate a different set of ranks. This set of 

ranks for each tweet results in an overall rank, which is used as a deciding factor for the ordering 

of tweets in the result set. 

           In this study, we have not only taken a tweet and its properties into account but have also 

made use of characteristics and properties of its author. In other words, for us, not only is what is 

posted (the tweet) important, but also who has posted it (the author) is equally important. We 

have tried to cover all the important factors such as when the tweet was posted, how many times 

it has been retweeted, how relevant its content is to the query, how unique its content is among 

the tweet dataset, whether it contains any embedded links or media. Furthermore, many 

properties related to the author such as how many posts the author posted in the past few days 

(e.g., last month); how many users follow him without being followed back; how well he is 



 47 

 

 

connected to other users; whether he is a good source of information; and whether he is someone 

who can lead us to a source of information. All of these are taken into account and included as 

part of our algorithm. The algorithm’s accuracy has been proven by the user evaluation results. 

          Our algorithm not only covers a wide range of mentioned factors, but its structure also 

provides a flexible platform so that other factors and processing algorithms when and as 

available can be integrated into it and existing ones can be removed, replaced or updated. 

 There are mainly two contributions of this work:  

 We proposed a re-ranking algorithm for Twitter search based on multiple features, including 

a few novel ones;  

 Our re-ranking algorithm consider many different tweet related properties and user related 

properties, and the final ranking is a combination of all features. 

5.2 Limitations of our proposed algorithm 

 

There are some limitations in our proposed algorithm as listed below.  

 

 

a. Individual factors are not tested separately. 

b. Implementation is highly dependent on twitter API to fetch data. If twitter API does not 

work or when there is any problem, then our algorithm may not work. 

c. Our result is highly depending on the original twitter result. If the original search result 

from Twitter is not good, ours may also not be good. 

d. Efficiency could be a concern, because the re-ranking is performed on top of the twitter 

results, and all the data is collected on-the-fly, which could be time consuming. 
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5.3 Possible future directions 

 

A few directions we would like to work on in the future include:  

            Firstly, for fast calculation we can analyse contribution of each algorithm involved and 

then accordingly remove or replace weakly performing ones. Also, we would like to make 

changes in slower algorithms to improve the speed but still keep the original logic intact.  

            We can also implement a cache mechanism to store frequently used data and possible 

implementation of step ranking and elimination so as to taper off the amount of data passed on to 

next part can also speed up the calculation. 

            Secondly, dividing calculations in part by implementing precognition to allot a base rank    

as soon as tweet is posted can also give another factor to search on. Precognition base rank will 

be based on time. User activeness at that point and tweet content will help in this. And also direct 

access to data repository for unlimited time and faster access will help a lot. That is, it will 

reduce data fetch time, remove limit on number of tweets and values available, more data to be 

analyzed, so faster and improved ranks. 

Thirdly, we can build the user following graph off-line, update it regularly, and save time 

for on-the-fly data collection. 

Fourthly, we can apply the rank aggregation technique on the rankings so there is no need 

to calculate the content-based scores. 

Finally, adding a learning module will be helpful to improve result accuracy and find the 

most effective factors for individual users.  
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APPENDIX A- Screenshot for user interface 
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APPENDIX B – CODE FOR INDIVIDUAL RANK 

CALCULATION 
 

Tweet Impact Rank 

   ObjectSet<tStatus> tTweets = oTwitterEntity.tStatus; 

   decimal maxRC = tTweets.Max(t => t.retweetcount).Value; // get max retweet count 

   int? iMinRetweetCount = tTweets.Where(t => t.retweetcount > 0).Min(t => t.retweetcount); 

   decimal minRC = iMinRetweetCount.HasValue ? iMinRetweetCount.Value : 0; // get minimum retweet      

count non zero 

   foreach (tStatus tTs in tTweets) 

{ 

    if (maxRC > minRC) 

    tTs.impactrank = (maxRC - minRC) / ((maxRC - tTs.retweetcount) + 1); // calculate impact rank for 

each tweet 

   else 

       tTs.impactrank = 0; 

} 

      oTwitterEntity.SaveChanges(); 

 

 

Tweet Recency Rank 

 

ObjectSet<tStatus> tTweets = oTwitterEntity.tStatus; 

            DateTime dtNow = DateTime.Now.ToUniversalTime(); 

            decimal minME = (decimal)(dtNow - tTweets.Max(t => t.createdon).Value).TotalMinutes; // get 

minimum minutes elapsed from most recent tweet 

            decimal maxME = (decimal)(dtNow - tTweets.Min(t => t.createdon).Value).TotalMinutes; // get 

maximum minutes elapsed from least recent tweet 

            foreach (tStatus tTs in tTweets) 

            { 

              decimal iMinElapsed = (dtNow - tTs.createdon.Value).Minutes; // get minutes elapsed for 

current tweet 

                         tTs.recencyrank = (maxME - iMinElapsed) / (maxME - minME) + 1; // calculate recency 

rank. 

                         } 

            oTwitterEntity.SaveChanges(); 
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Tweet Content Relevancy Rank 

 

ObjectSet<tStatus> tTweets = oTwitterEntity.tStatus; 

            Dictionary<string, string> docs = new Dictionary<string, string>(); 

            foreach (tStatus tTs in tTweets) 

            { 

                docs.Add(tTs.tweetid, tTs.text); // add each tweet as document to document dictionary 

            } 

 

            Dictionary<string, double> vResult = VectorSpaceModel.Calculate(docs, sKeyword); // run VSM 

algorithm on docs n keyword, calculate vsm value for each tweet 

 

            foreach (tStatus tTs in tTweets) 

            { 

                if (vResult.Keys.Contains(tTs.tweetid)) 

                { 

                    tTs.relevancyrank = (decimal)vResult[tTs.tweetid]; // update relevancy rank for each tweet 

                } 

            } 

            oTwitterEntity.SaveChanges(); 

 

 

Tweet Uniqueness Rank 

 

ObjectSet<tStatus> tTweets = oTwitterEntity.tStatus; 

 

            Dictionary<string, string> docs = new Dictionary<string, string>(); 

            foreach (tStatus tTs in tTweets) 

            { 

                docs.Add(tTs.tweetid, tTs.text); // add each tweet as document to document dictionary 

            } 

 

            Dictionary<string, double> vResult = Uniqueness.Calculate(docs); // run Uniqueness 

algorithm on docs, calculate uniqueness value for each tweet 

 

            foreach (tStatus tTs in tTweets) 

            { 

                if (vResult.Keys.Contains(tTs.tweetid)) 

                { 

                    tTs.uniquenessrank = (decimal)vResult[tTs.tweetid]; // update relevancy rank for 

each tweet 

                } 

            } 

            oTwitterEntity.SaveChanges(); 
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Tweet Media Entity Rank 

 

ObjectSet<tStatus> tTweets = oTwitterEntity.tStatus; 

            foreach (tStatus tTs in tTweets) 

            { 

                tTs.entityrank = int.Parse(tTs.entitycount.Split('-')[1]) + int.Parse(tTs.entitycount.Split('-')[3]);  

//0-hash,1-media,2-mention,3-url 

            } 

            oTwitterEntity.SaveChanges(); 

 

 

User Connectivity Rank 

 

ObjectSet<tUser> tUsers = oTwitterEntity.tUser; 

            foreach (tUser tTu in tUsers) 

            { 

                try 

                { 

 

                    // list followers 

                    ListFollowerIdsOfOptions oFolOp = new ListFollowerIdsOfOptions() { UserId =     

Convert.ToInt64(tTu.userid) }; 

                    List<long> uFollowers = new List<long>(); 

                    TwitterCursorList<long> uFollowerIds; 

                    do 

                    { 

                        uFollowerIds = oTwitterService.ListFollowerIdsOf(oFolOp); 

                        uFollowers.AddRange(uFollowerIds); 

                        oFolOp.Cursor = uFollowerIds.NextCursor; 

                        CheckLimit(); 

                    } 

                    while (uFollowerIds.NextCursor != 0 && uFollowers.Count < 5000); 

                    tTu.followers = string.Join(",", uFollowers); 

 

                    //list friends 

                    ListFriendIdsOfOptions oFriOp = new ListFriendIdsOfOptions() { UserId = 

Convert.ToInt64(tTu.userid) }; 

                    List<long> uFriends = new List<long>(); 

                    TwitterCursorList<long> uFriendIds; 

                    do 

                    { 

                        uFriendIds = oTwitterService.ListFriendIdsOf(oFriOp); 

                        uFriends.AddRange(uFriendIds); 
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                        oFriOp.Cursor = uFriendIds.NextCursor; 

                        CheckLimit(); 

                    } 

                    while (uFriendIds.NextCursor != 0 && uFriends.Count < 5000); 

                    tTu.friends = string.Join(",", uFriends); 

 

                    tTu.connectivityrank = uFollowers.Where(u => !uFriends.Contains(u)).Count(); 

 

                    oTwitterEntity.SaveChanges(); 

                } 

                catch { } 

            } 

 

 

User Activeness Rank 

 

string sKeywordTemplate = sKeyword + " from:{0} +exclude:retweets"; 

            ObjectSet<tUser> tUsers = oTwitterEntity.tUser; 

            foreach (tUser tTu in tUsers) 

            { 

                try 

                { 

                    sKeyword = string.Format(sKeywordTemplate, tTu.screenname); 

                    SearchOptions oSO = new SearchOptions() { Q = sKeyword, Count = 100, Resulttype = 

TwitterSearchResultType.Recent, Lang = "en" }; 

                    IEnumerable<TwitterStatus> tResults = oTwitterService.Search(oSO).Statuses; 

                    tTu.activenessrank = tResults.Count(); 

                    oTwitterEntity.SaveChanges(); 

                    CheckLimit(); 

                } 

                catch { } 

            } 

 

 

User Page Rank 

 

ObjectSet<tUser> tUsers = oTwitterEntity.tUser; 

            int iUserCount = tUsers.Count(); 

           

            foreach (tUser tp in tUsers) 

            { 

                tp.pagerank = (decimal)1 / iUserCount; 

            } 

            oTwitterEntity.SaveChanges(); 
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            decimal dDampingFactor = new decimal(0.85); 

 

            for (int iIteration = 0; iIteration < 10; iIteration++) 

            { 

                foreach (tUser tp in tUsers) 

                { 

                    decimal dLinkedPr = 0; 

 

                    IEnumerable<tUser> myFollowers = tUsers.Where(u => u.listedfriends.Contains(tp.userid)); 

                    foreach (tUser myFollower in myFollowers) 

                    { 

                        int iLinksto = myFollower.listedfriends.Split(new char[] { ',' }, 

StringSplitOptions.RemoveEmptyEntries).Count(); 

                        iLinksto = iLinksto <= 0 ? 1 : iLinksto; 

                        dLinkedPr += myFollower.pagerank.Value / iLinksto; 

                    } 

                    tp.pagerank = (1 - dDampingFactor) / iUserCount + dDampingFactor * dLinkedPr; 

                } 

            } 

 

            oTwitterEntity.SaveChanges(); 

 

 

User Hub Authority Rank 

 
ObjectSet<tUser> tUsers = oTwitterEntity.tUser; 

 

            foreach (tUser tu in tUsers) 

            { 

                tu.hubrank = 1; 

                tu.authorityrank = 1; 

            } 

 

            for (int iIteration = 0; iIteration < 10; iIteration++) 

            { 

                double dNorm = 0; 

 

                // authority rank 

                foreach (tUser tTu in tUsers) 

                { 

                    tTu.authorityrank = 0; 

                    tUser[] myFollowers = tUsers.Where(u => u.listedfriends.Contains(tTu.userid)).ToArray(); 

 

                    foreach (tUser tu in myFollowers) 

                    { 

                        tTu.authorityrank += tu.hubrank; 

                    } 

                    dNorm += (double)(tTu.authorityrank * tTu.authorityrank); 

                } 

                dNorm = Math.Sqrt(dNorm); 
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                if (dNorm > 0) 

                    foreach (tUser tTu in tUsers) 

                    { 

                        tTu.authorityrank /= (decimal)dNorm; 

                    } 

 

 

                //hub rank 

                dNorm = 0; 

                foreach (tUser tTu in tUsers) 

                { 

                    tTu.hubrank = 0; 

                    tUser[] myFriends = tUsers.Where(u => tTu.listedfriends.Contains(u.userid)).ToArray(); 

                    Array.ForEach(myFriends, delegate(tUser tu) 

                    { 

                        tTu.hubrank += tu.authorityrank; 

                    }); 

                    dNorm += (double)(tTu.hubrank * tTu.hubrank); 

                } 

                dNorm = Math.Sqrt(dNorm); 

                if (dNorm > 0) 

                    foreach (tUser tTu in tUsers) 

                    { 

                        tTu.hubrank /= (decimal)dNorm; 

                    } 

            } 

 

            oTwitterEntity.SaveChanges(); 

 

 

 

Normalization 

 
ObjectSet<tStatus> tTweets = oTwitterEntity.tStatus; 

            decimal dMaxEntityRank = tTweets.Max(d => d.entityrank).Value; 

            decimal dMaxImpactRank = tTweets.Max(d => d.impactrank).Value; 

            decimal dMaxRecencyRank = tTweets.Max(d => d.recencyrank).Value; 

            decimal dMaxRelevancyRank = tTweets.Max(d => d.relevancyrank).Value; 

            decimal dMaxUniquenessRank = tTweets.Max(d => d.uniquenessrank).Value; 

            foreach (tStatus ts in tTweets) 

            { 

                if (dMaxImpactRank > 0) 

                    ts.impactrank /= dMaxImpactRank; 

 

                if (dMaxRecencyRank > 0) 

                    ts.recencyrank /= dMaxRecencyRank; 

 

                if (dMaxRelevancyRank > 0) 

                    ts.relevancyrank /= dMaxRelevancyRank; 
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                if (dMaxUniquenessRank > 0) 

                    ts.uniquenessrank /= dMaxUniquenessRank; 

 

                if (dMaxEntityRank > 0) 

                    ts.entityrank /= dMaxEntityRank; 

            } 

            oTwitterEntity.SaveChanges(); 

 

            ObjectSet<tUser> tUsers = oTwitterEntity.tUser; 

            decimal dMaxActivenessRank = tUsers.Max(d => d.activenessrank).Value; 

            decimal dMaxAuthorityRank = tUsers.Max(d => d.authorityrank).Value; 

            decimal dMaxHubRank = tUsers.Max(d => d.hubrank).Value; 

            decimal dMaxConnectivityRank = tUsers.Max(d => d.connectivityrank).Value; 

            decimal dMaxPageRank = tUsers.Max(d => d.pagerank).Value; 

 

            foreach (tUser tu in tUsers) 

            { 

                if (dMaxConnectivityRank > 0) 

                    tu.connectivityrank /= dMaxConnectivityRank; 

 

                if (dMaxActivenessRank > 0) 

                    tu.activenessrank /= dMaxActivenessRank; 

 

                if (dMaxPageRank > 0) 

                    tu.pagerank /= dMaxPageRank; 

 

                if (dMaxAuthorityRank > 0) 

                    tu.authorityrank /= dMaxAuthorityRank; 

 

                if (dMaxHubRank > 0) 

                    tu.hubrank /= dMaxHubRank; 

            } 

 

            oTwitterEntity.SaveChanges(); 
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APPENDIX C - FOR SURVEY DATA 
 

 

FOR 40 USERS AND 15 QUERIES: 

 

 

 

Query Algorithm  Precision Twitter Precision 

cloud computing 0.3273 0.2273 

solar energy 0.3083 0.2083 

cyber security 0.28 0.235 

Toronto maple leafs 0.3375 0.1938 

FIFA world cup 0.2727 0.2818 

Sachin Tendulkar 0.3192 0.2615 

Amitabh Bachchan 0.3433 0.22 

apple 0.28 0.335 

bank of canada 0.3333 0.2444 

US tornadoes 0.335 0.28 

global warming 0.3727 0.1682 

immigration canada 0.3056 0.3111 

human rights 0.3778 0.3333 

Boston marathon 0.2786 0.2643 

Ryerson 0.2643 0.2857 
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FOR 30 USERS 20 QUERIES: 

 

 

 

Query Algorithm Precision Twitter Precision 

health canada 0.2364 0.2909 

cloud computing 0.35 0.28 

solar energy 0.3091 0.28 

cyber security 0.2917 0.28 

national hockey league 0.2333 0.28 

Toronto maple leafs 0.35 0.28 

FIFA world cup 0.2714 0.28 

Barack Obama 0.25 0.28 

Sachin Tendulkar 0.335 0.28 

Amitabh Bachchan 0.36 0.28 

Russell peters 0.2583 0.28 

blackberry 0.25 0.28 

apple 0.3 0.28 

bank of canada 0.3438 0.28 

US tornadoes 0.3357 0.28 

global warming 0.3875 0.28 

immigration canada 0.3286 0.28 

human rights 0.3778 0.28 

Boston marathon 0.3125 0.28 

Ryerson 0.27 0.28 
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FOR 30 USERS AND 15 QUERIES: 

 

 

 

Query Algorithm  Precision Twitter Precision 

cloud computing 0.35 0.2125 

solar energy 0.3091 0.2091 

cyber security 0.2917 0.2333 

Toronto maple leafs 0.35 0.175 

FIFA world cup 0.2714 0.2929 

Sachin Tendulkar 0.335 0.24 

Amitabh Bachchan 0.36 0.21 

apple 0.3 0.3214 

bank of canada 0.3438 0.2313 

US tornadoes 0.3357 0.2714 

global warming 0.3875 0.1438 

immigration canada 0.3286 0.3071 

human rights 0.3778 0.3333 

Boston marathon 0.3125 0.2375 

Ryerson 0.27 0.28 
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