

RE-RANKING THE TWITTER SEARCH RESULT

By

Prerna Pathak

B.Sc. in Computer Science, Maharishi Dayanand University, India, 2008

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the program of

Computer Science

Toronto, Ontario, Canada, 2014

©Prerna Pathak 2014

 ii

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

I understand that my thesis may be made electronically available to the public.

 iii

Re-Ranking the Twitter Search Result

Prerna Pathak

Master of Science, Computer Science, 2014

Ryerson University

ABSTRACT

Social Sharing Platforms, a great source of free and diverse information, have been center

of attraction to many people. Users post their opinions, thoughts, life events, news and all other

information. This data flowed into these systems has increased to such a limit making nearly

impossible for a user to read all or even most of it, analyzing and utilize it. As a solution to this

problem, we here are proposing an approach, which makes use of not only the tweets themselves

but also their properties to re-rank the tweets given a user query. The proposed approach was

implemented in a prototype system and test results were generated. A set of feedback data

collected via online survey for those test results provides a good evaluation score, with an

average improvement of around 10% on precision values after removing the outliers. It shows

that our approach can generate improved results over the original ones.

 iv

ACKNOWLEDGEMENTS

I am indebted to the kind people around me. Without their help and support, it would not

have been possible to write this thesis.

It gives me great pleasure in acknowledging the support of my supervisor Dr. Cherie Ding,

for her valuable advice and great patience, whose effort made this thesis possible. I would like to

thank her for the time and effort she has put in our weekly meetings and reviewing my thesis

many times.

I am very thankful to Dr. Isaac Woungang, Dr. Abdolreza Abhari, and Dr. Alex Ferworn

who have reviewed my thesis and given me insightful feedbacks, which enabled me to improve

my thesis.

I would like to express my deep appreciations to my family, for their great patience and

motivation at all times and inspiring me to follow my dreams. I owe my deepest gratitude to my

parents who supported me emotionally, financially and provided comfort to me at all times.

Last, but by no means least, I share the credit of my work with my well-wishers, who

encouraged me, fueled me confidence, provided me with the required resources for this work and

helped me to achieve my dreams.

 v

TABLE OF CONTENTS

AUTHOR’S DECLARATION ... ii

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1 Background on Twitter and Twitter Search .. 1

1.2 Problem Statement .. 1

1.3 Objectives ... 2

1.4 The Proposed Methodology .. 3

1.5 Thesis Outline ... 4

CHAPTER 2 ... 6

LITERATURE REVIEW ... 6

2.1 Background ... 6

2.1.1 Vector Space Model ... 6

2.1.2 PageRank ... 7

2.1.3 Hub and Authority Ranking ... 8

2.2 Related Work .. 9

2.2.1 Measuring Various User or Tweet Attributes in Twitter ... 9

2.2.2 Twitter Ranking or Re-Ranking ... 11

2.2.3 Recommender Systems for Twitter .. 13

2.2.4 Twitter’s Own Search Function ... 15

2.3 Summary ... 16

CHAPTER 3 ... 17

METHODOLOGY ... 17

3.1 Definition of Twitter-Related Terms .. 17

3.2 System Architecture .. 20

3.3 Our Proposed Re-Ranking Algorithm ... 24

3.3.1 Algorithm Overview .. 24

3.3.2 Details of the Factors Considered in the Algorithm ... 26

3.3.3 Final Ranking Function .. 31

3.4 Summary ... 32

 vi

CHAPTER 4 ... 33

EXPERIMENTS ... 33

4.1 Dataset... 33

4.2 Implementation ... 34

4.3 Experimental Results and Analysis ... 35

4.3.1 Kendal Tau Comparison .. 37

4.3.2 Precision of User Evaluation Results ... 41

4.4 SUMMARY .. 45

CHAPTER 5 ... 46

CONCLUSIONS AND FUTURE WORK ... 46

5.1 Conclusions ... 46

5.2 Limitations of our proposed algorithm ... 47

5.3 Possible future directions .. 48

APPENDIX A- SCREENSHOTS FOR USER INTERFACE .. 49

APPENDIX B- CODE FO R INDIVIDUALRANK CALCULATION ... 51

APPENDIX C- TABLES FOR SURVEY DATA .. 58

REFERENCES ... 61

 vii

LIST OF FIGURES

Figure 3.1- System Architecture ... 21

Figure 4.1- Graph Comparison for 30 users and 15 queries ... 42

Figure 4.2- Graph Comparison for 30 users and 20 queries ... 43

Figure 4.3- Graph Comparison for 40 users and 15 queries ... 43

file:///C:/Users/delnavaz/Desktop/thesis/writing/thesis-V3.docx%23_Toc270000011

 viii

LIST OF TABLES

Table 4.1- Ranking results from two algorithms for the sample query .. 38

Table 4.2- Kendall Tau values for 20 queries ... 40

Table 4.3- Precision Results ... 44

file:///C:/Users/delnavaz/Desktop/thesis/writing/thesis-V3.docx%23_Toc270000011
file:///C:/Users/delnavaz/Desktop/thesis/writing/thesis-V3.docx%23_Toc270000011

 1

CHAPTER 1

INTRODUCTION

1.1 Background on Twitter and Twitter Search

 Social networking platforms, a great source of free and diverse information, have been the

centre of attention for many people. Users post their opinions, thoughts, life events, news and all

sorts of information on the social network.

 Twitter is one of the most popular social networks people are using every day. The idea

behind Twitter is that you broadcast information to anyone who chooses to follow you, and

similarly, you can choose to follow people and receive their messages.

 If a user wishes to find some tweets, the procedure is to search for tweets that include a

particular word. For instance, if you type “neuroscience” into the search box in Twitter, you’ll

see all the relevant tweets that include that word. Twitter search also provides a variety of

operators and filtering options using which users can limit the type of tweets displayed in the

results.

1.2 Problem Statement

 With the growing popularity of such social networking platforms, the amount of

information has increased to a level that it is nearly impossible for a user to read all or most of it.

In Twitter, one will notice that hundreds and thousands of tweets are posted on an event within a

matter of minutes.

 2

 There are inbuilt search features in Twitter. However, sometimes the results may not be

very helpful. Twitter considers how similar the tweet is to the query in terms of its textual

content. It also considers the recency of the tweet, the popularity of the user who posts the tweet,

and possibly other factors. According to Busch et al. [1], the force behind Twitter's real time

search service is Earlybird. Like all other modern retrieval engines, Earlybird also builds and

maintains inverted indexes but its index structure is different from those built to support the

traditional web search. Because Twitter search is considered as the real-time search, EarlyBird

has the capability to consume content speedily and make it searchable instantly. The detail of

their searching algorithm is not available to the public. The paper on their searching platform

EarlyBird also does not give the details of the ranking algorithm. Therefore in this study, we

would like to explore possible ways to re-rank the tweets for a given user query, and then

compare the results with the original Twitter ranking. By considering different factors, we would

like to achieve goals for a better ranking result for the Twitter search, which will be tested by the

experiments on a real dataset.

1.3 Objectives

 In this thesis, we intend to perform a set of calculations considering various factors to

check whether the proposed approach could achieve better ranking results. This study believes

that the ranking of a tweet for a query not only depends on its content or its popularity, but also

on the author who posts it. Not only should the tweet be relevant, but it should also come from a

trusted source. The main factors consider in this study are categorized into two groups:

 Tweet Quality: This includes how recent the tweet is, how many times it has been retweeted,

how similar its content is to the query, uniqueness of the content, and the availability and

richness of the media information.

 3

 Author Authority and Popularity: This includes how active the author is, how many friends

and followers the author has, whether the author is easily reachable and whether the author is

a source of information.

 The main intention behind having an extensive approach and covering all aspects is to

explore all possible factors that can influence the overall rank of a tweet. By covering important

aspects, we have the option of trimming less influential tweets.

1.4 The Proposed Methodology

 The proposed approach aims to utilize various properties of tweets to define the ranking

function. Nine different ranks are calculated based on different factors that are later combined to

generate the overall rank of tweets.

 A tweet is as good as its content, and its author. Suppose a user searches for a keyword

such as “Social Computing”. In the first step, we will obtain the 200 latest tweets from Twitter,

which will be used for later processing. The values of the properties such as the tweet posting

time, retweet count, and presence of the media information will be collected. A set of ranking

scores will then be calculated. Among them, some of the important ones include the following:

the impact rank, which denotes how popular the tweet is, and how many users have retweeted it;

the relevancy rank that measures the similarity between the tweet and the query; the uniqueness

rank which denotes the uniqueness of content of a particular tweet compared to other tweets in

the result set; the author popularity rank, which helps us to understand the popularity of the

author in the network; the author connectivity rank which calculates how many exclusive

followers an author has, that is, who follows the author, but is not followed back by the author;

and the author authority rank which illustrates how desirable the author is within the network,

 4

how many users follow him, whether he is a source of information, or how much he seeks

information from others.

 In this study we use data sources and ranking factors extensively to make sure we obtain a

highly related set of high quality results. This proposed approach not only checks the content of

tweets, but also has a major emphasis on who posted it, the status of its author, whether he is

active enough, whether he is well connected, and whether he is a source of information.

 The first few ranks focus on the content and properties of the tweet, the latter ones focus

on the quality of author. The last few ranks are not calculated based on values directly from the

tweet content itself. However, they are important as they ensure that the source of tweet is

worthwhile.

 There are two major contributions of this work: 1) to the best of our knowledge, there are

very few research efforts on re-ranking of the Twitter search results, although various data

properties in Twitter have been studied for different purposes such as recommender systems, our

focus on Twitter search is unique; 2) the proposed method considers a combination of multiple

factors including tweet related properties and user related properties, although some of the

factors have been studied in other work, putting them all together is new, and among them, a few

factors are novel, including content uniqueness and media richness of the tweet.

1.5 Thesis Outline

 The rest of the thesis is organized as follows.

 Chapter 2 provides the literature review on the background and the closely related work.

 In Chapter 3, we define the Twitter related terms along with the system architecture of our

proposed re-ranking algorithm. We also explain the re-ranking algorithm based on individual

factors and the way to combine them.

 5

 Chapter 4, present our implementation and experimental results on Twitter data, which

illustrates the effectiveness of our method.

 Finally in Chapter 5, we conclude our thesis and discuss future directions we may work

on.

 6

CHAPTER 2

LITERATURE REVIEW

In this chapter, we will first review some technologies that we have used in our approach.

Then, we will review some most closely related literatures to our work.

2.1 Background

2.1.1 Vector Space Model

According to Yates and Neto in [2], Vector Space Model (VSM) is an algebraic model

that represents text documents as vectors. In this model a document is represented as a vector 𝑑𝑗

with weights associated with them for each term. A query is represented as a vector q. The

presence of a term in the vector is identified by its non-zero value and the zero value identifies

the absence of a term. The definition of terms is depending on the application. A term can be a

single word or a phrase.

The most popular way to compute weight values is the tf-idf weighting method. We use

this method in our proposed algorithm to calculate the content relevancy of tweets to a given

query and to calculate the uniqueness factor of tweets. Cosine similarity formula is used to

calculate the similarity between two vectors 𝑑𝑗 and q as listed below:

𝑠𝑖𝑚(𝑑𝑗 , 𝑞) =
𝑑𝑗.𝑞

‖𝑑𝑗‖.‖𝑞‖
=

∑ 𝑤𝑖,𝑗∙𝑤𝑖,𝑞
𝑁
𝑖=1

√∑ 𝑤𝑖,𝑗
2𝑁

𝑖=1 √∑ 𝑤𝑖,𝑞
2𝑁

𝑖=1
 (2.1)

where N represents the number of terms in the vocabulary, 𝑤𝑖,𝑗 is the ith word of document j,

𝑤𝑖,𝑞 is the ith word of query q.

 7

2.1.2 PageRank

PageRank [3, 4] is a measure of reachability of a web page. It indicates what are the

chances of a user will end up on that page while surfing the web. That is, how well the page is

connected by other pages or how well other pages points or links to it.

PageRank of a page is dependent on the PageRank of pages linking to it. For a page E, its

PageRank is defined as PR(E). If a page has links from pages with high PageRank, its own

PageRank will be high too [3, 4].

The original PageRank algorithm was proposed to deal with a linked web graph

consisting of web pages. It can be used to process any kind of graphs. In our proposed algorithm,

users are linked through their following relationships. By calculating PageRank of users in this

graph, their importance levels can be ranked, which will affect the importance levels of their

tweets. The formula for calculating PageRank is listed below,

 () =
𝑞

 (𝑞)∑

 (𝑖)

 (𝑖)

𝑖 (2.2)

where, a is a page for which PageRank is calculating,

q is a damping factor,

t represents the total number of pages,

n represents the number of pages pointing to a,

pi represents a page which is pointing to a,

L represents the number of links from page pi.

 8

2.1.3 Hub and Authority Ranking

 A link analysis algorithm was developed by Jon Kleinberg [5] to rate web pages; it was

known as Hyperlink-Induced Topic Search (HITS) (also known as hubs and authorities). It was

proposed at almost the same time as PageRank.

 Hubs are large web directories that do not own the information but lead users to other

valuable information authorities. To be a good hub the page should lead you to good

authoritative pages and to be a good authority the page should be linked to by several hubs. Two

scores are calculated for each page, one based on the quality of content known as its authority,

and the other based on the number of links to other pages known as its hub value. The HITS

algorithm aims at delivering the most relevant page to what is asked for in the search query.

 We consider two types of updates: Authority Update Rule and Hub Update Rule. In order

to calculate the hub/authority scores of each node, the Authority Update Rule and the Hub

Update Rule are applied iteratively. A k-step application of the Hub-Authority algorithm entails

applying for k times first the Authority Update Rule and then the Hub Update Rule.

Based on Authority Update Rule,

 () = ∑ (𝑞)𝑞 ,𝑞 (2.3)

Based on Hub Update Rule,

 () = ∑ (𝑞)𝑞 , 𝑞 (2.4)

where, B is the base set,

q and p are web pages in B,

A(p) is the authority score for p,

H(p) is the hub score for p.

 9

 The final hub-authority scores of nodes are determined after infinite repetitions of the

algorithm. As directly and iteratively applying the Hub Update Rule and Authority Update Rule

leads to diverging values, it is necessary to normalize the matrix after every iteration. Thus the

values obtained from this process will eventually converge to final non-fluctuating values. [5].

2.2 Related Work

2.2.1 Measuring Various User or Tweet Attributes in Twitter

 In this section we are reviewing the papers which talk about various attributes in Twitter

such as analyzing the microblog postings, various users and posts.

Pal and Count [6] have proposed the features and methods which can be used to make an

ordered list of top authors for finding topical authorities in microblogging environments. They

suggested a number of features of authors and observe that topical signal and mention impact are

marginally more important than other features. They also presented that the cluster probability is

an effective method to screen a large mass of outliners in the feature space and select best

specialized users on which the ordering can be applied more strongly. Finally, they showed that

Gaussian based ranking is more efficient method to order users. Results revealed that their

method is more efficient in near real time scenarios and is better than the baseline models.

Castillo et al. [7] analyzed the microblog postings related to the trending issues and

categorized them as reliable and not reliable, based on the features collected from them. They

used the features from users’ postings, repostings and from the content to external sources. They

assessed their methods using a good number of human assessments about the reliability of

content in the given sample of Twitter postings. The emphasis of their experiments was the

reliability of content spread through social media network. They have demonstrated that the

 10

time-sensitive issues can be differentiated spontaneously as newsworthy or informal. Also they

observed that the newsworthy topics often include URLs and have propagation trees. The

trustworthy news is generally broadcasted through authors who already posted many messages

and have many re-tweets. Finally they found that there are calculable variances in the path the

messages are broadcasted and can be classified as newsworthy or informal with accuracy in the

range of 70%-80%.

Bakshy et al. [8] dealt with the aspects and effects of 1.6M Twitter users on the follower

graph during a two month period in the year 2009. The investigation was done by tracing the 74

million diffusion events over the follower graph during this duration. The research reveals that

the largest flows are made by the users who were leading in the past. Also they found that URLs

which were rated more by users were more likely to flow. In spite of such results, they found the

flows that particular user or URL makes are unpredictable. Thus they saw that word of mouth

diffusion can only be captured reliably by focusing on the great number of influencers who are

the users more influenced by other users’ posts. This provided the average effects of the

influencers. It is considered that sometimes the most influential users are cost effective and their

performance can be felt by using “ordinary influencers”, who are the users who exerting less or

average influences.

Yang et al. [9] dealt with the issue of automatically knowing the most appreciated posts

to a large audience. Stress is laid over the automatic ways to know the tweets which not only are

of great concern to the writers of the post on Twitter and their friends but a large audience too.

The social networking site, Twitter is modelled as a user’s graph and tweet nodes linked by the

retweet edges. The model presents different HITS algorithm which relates to the retweet graph

for generating a stable order of tweets. Basis of this method is that the retweet relationship in the

 11

graph can be used to find the tweet which not only draws the attention of the writers’ network

but beyond that and impels others to retweet.

Meeyoung et al. [10] showed that many influential users can affect on various topics. The

power law distribution indicated that the top users have unequal type of influence. The temporal

analysis indicated the various influential networks with users. Top news firms have a high level

of retweets over various topics whereas celebrities are good at getting mentions on different

topics. Finally, they found concentrated efforts of users are required to gain the influence. In

order to achieve and keep influence, users need to possess great personal involvement.

2.2.2 Twitter Ranking or Re-Ranking

 In this section we are reviewing papers that deal with different procedures and methods

which help in ranking or re-ranking of tweets.

Duan et al. [11] proposed three types of tweet features that have been studied and a

proposition to rank tweets by using learning to rank algorithms has been discussed. The most

effective tweet features are first identified. Research suggests that the system could use some

tweet features like number of follower, presence of URL, list of friends etc., to see which

features performs the best for providing good ranks. Among all of the above, whether a tweet

contains a URL is the most important feature. According to their research, the number of times

an account is mentioned by other users is far more effective to determine the account authority

than the number of followers of a specific account.

Zhang et al. [12] proposed a combined learning to rank framework that uses both general

and query specific proof of relevance for real time Twitter search. In other words the

characteristics of queries are better tapped with the help of query biased ranking model which is

 12

learned by a semi-supervised transductive learning algorithm. Finally this approach is integrated

with the traditional approach of ranking in order to display tweets according to user preferences.

A wide variety of studies on the standard Tweets11 dataset [13] suggest that the query biased

approach is far better than the traditional ranking system. There is also a probability of

duplicating training data without using human labels on given new queries. Studies reveal that

the number of interactions in the process in transductive learning algorithm is the main reason of

its efficiency.

Sarma et al. [14] proposed a solution for developing ranking models for forums. It

mainly dealt with thumb and star ratings based and comparison based review of items in the

forum. The advantages of comparison based ranking model are its correctness and ability to

rapid convergence with minimal user’s feedback. An online forum called Shout Velocity [15]

has been discussed in detail based on comparison based ranking model. According to

experiments based on artificially extracted data and real data from Shout Velocity, it is clear that

the comparison based ranking model is far superior than the thumb based ranking on certain

selected properties like ranking accuracy, review feedback bandwidth, low latency and fairness.

Teevan et al. [16] showed how users search Twitter content and how their Twitter search

is different from web search. A detailed scrutiny of large query logs was undertaken to find out

and distinguish the search behavior of users who issue queries to both Twitter and web search

engines. The main reason for searching Twitter stems from the fact that users need timely

information (related to news or events), and they also need social information (related to other

users and popular trends). There is a great difference between the queries submitted to Twitter

and web search engines and this can be understood by studying the queries. Queries submitted to

Twitter are shorter with longer words, and more references to people. The frequency of queries

 13

was also quite different for both (Twitter and web) search engines. Twitter is used mainly for

viewing new content while web is used for studying and learning a topic. Queries in Twitter are

more popular, repeated frequently and are less dynamic than web queries. Queries in Twitter are

more social and event based while web queries are factual and navigational.

Shen et al. [17] presented a supervised learning method that will rank tweets based on

their efficiency on the user’s interest. It implies that good quality tweets will appear on the top

while low quality at the bottom. A system known as topic model is created to assess the topics in

a tweet structure and determine the user's interest in each topic. The system is built on the basis

of the aggregate tweet generated or consumed by the user. These aggregate tweets are identified

for a particular user as a single document. All the tweets are aggregated because the word

repetition makes the topic model more accurate than using a single tweet as a document.

 According to Feng and Wang [18], a new problem was identified called personalized

tweet ranking so that users could access valuable information amidst enormous amount of

tweets. A general graph model was created to interpret retweet behaviour. Feature vectors of

nodes and edges were used to depict various sources of information. Based on the graph, they

proposed a feature-aware factorization model to re-rank the tweets, which combines the linear

discriminative model and the low-rank factorization model effortlessly.

2.2.3 Recommender Systems for Twitter

 In this section we are reviewing papers which build the recommendation systems for

Twitter.

Chen et al. [19] suggested a collective tweet ranking model for suggesting useful tweets

to users on Twitter. Their method benefits by the collective filtering based recommendation by

 14

gathering important information from many users. Extra related content helpful for knowing

personal interests is combined in their collective ranking model by cautious plan of features.

Their final method used three major elements: tweet content, user social relations and explicit

features such as authority of the publisher and quality of the tweet. The experiments on the real-

world data showed all the data can help in improving the recommendation performance for the

users.

Chaoji et al. [20] presented the difficulty of recommending connections in Twitter with

the clear objective of increasing data spread in the network. They suggested novel algorithms for

recommending connections that acknowledges the submodular criteria taking to computationally

possible approximation procedure in the presence of the above limits. Results on the real graphs

showed the dominance of their method in comparison with the common heuristics.

Phelan et al. [21] proposed that large amount of data from the real-time networks like

Twitter can be collected as a useful source of recommending knowledge. Buzzer is a news

recommendation system that is able to collect the conversations that are posted on Twitter.

Buzzer is capable to order RSS news by extracting trending data from both the public Twitter

timeline and from the timeline of tweets generated by a user’s network. The method Buzzer used

is the content based approach.

Chen et al. [22] said that all of the social media platforms have one thing in common that

is interaction between various users. Twitter and Facebook is known for being mediums of

communication across the world. Due to this, finding an interesting conversation to read poses a

user with a challenge mainly because there is enormous amount of data and what is interesting

differs from one person to another. In this paper they have detailed 5 algorithms that will suggest

influential conversations to the Twitter users based on the chain of tweets, issue being discussed

 15

and the tie-strength. An online user study was conducted to compare the algorithms and feedback

was sought from the real users of Twitter. This study helped in analysing how the different

purposes of using Twitter affected the user's choice of conversations and performance of the

algorithms.

2.2.4 Twitter’s Own Search Function

 This category of papers deals with different Twitter’s own search options like Earlybird

[1] as describe in chapter one.

Lin and Efron [23] presented the notion of a temporal relevance profile, that user can

openly include with keyword search query. They introduce temporal relevance profiles and show

that how their advantage can be taken by present retrieval models. Data tracked from TREC

2011 and 2012 by oracle experiments [24] on microblog empirically proves that their approach

has the possibility to meaningfully increase the quality of retrieved results.

Asadi and Lin [25] used machine-learned modules considering a multi-stage retrieval

design which contains three stages. First stage is of a fast, “cheap” candidate generation stage;

Second stage is extraction of feature stage and the last is “expensive” re-ranking stage. The

second stage can be achieved by document vector index that is a mapping from document ids to

document representations. For better feature extraction they deliberate other organizations of

data structure which includes design choice, document organization, complex term proximity

features and how compression of structures can be achieved. In brief, for efficiently encoding

term ids they introduced a new document-adaptive hashing scheme. By experiments on memory

footprint and feature extraction speed they assessed the effect of their design. Overall, their

 16

results show that their system design has extra advantages in terms of elasticity and also needs

less memory overall as compared in speed to using an old positional inverted index.

Because Twitter search is considered as the real-time search, EarlyBird has the capability

to consume content speedily and make it searchable instantly. Much of the focus was put on the

indexing component of EarlyBird in [1], and the detail of their searching algorithm is not

available to the public. Therefore in this study, we would like to explore possible ways to re-rank

the tweets for a given user query, and then compare the results with the original Twitter ranking.

There are other approaches in this area too, but their approach is different. For instance, Chen et

al. [19] proposed a collective filtering based tweet ranking model by gathering important

information from many users. Asadi and Lin [25] used machine-learned modules considering a

multi-stage retrieval design. Duan et al. [11] used three types of tweet features and learning to

rank algorithm to learn the ranking model. This work is different in that we divide ranking

features into two types – tweet-related and user-related, and each type include multiple features,

and the combination of all these features is used to generate the final ranking order.

2.3 Summary

In this chapter we first described the methods such as VSM, PageRank and

Hub/Authority calculation, which we are going to use in our proposed algorithm. Then we

reviewed work on various Twitter related topics such as Measuring Twitter user’s influence,

Twitter ranking or re-ranking, Twitter recommender and Twitter’s own search. In our proposed

algorithm we are re-ranking tweets based on different aspects. This is going to be described in

the next chapter.

 17

CHAPTER 3

METHODOLOGY

 Based on the discussions of previous chapters, we propose an algorithm for the re-ranking

of tweets based on two major concerns: tweets and users. We re-ranked the tweet based on

individual factors related to the tweet itself and the user who posted the tweet. In the following

sections, first we will define some Twitter related terms that we use in our discussion, then we

will describe the current search process in Twitter, and after that, we will explain our system

architecture and our proposed re-ranking algorithm in details.

3.1 Definition of Twitter-Related Terms

 Below we give definitions and explanations on some Twitter related terms.

 User can be anyone or anything. They tweet, follow others, create lists, have a home timeline,

can be mentioned, and can be looked up. There are various properties [26] associated with the

User object that uniquely define and identify a user. Among these numerous properties

associated with the User object, we have used the following in our algorithm:

o ID is an integer representation of the unique identifier for a user. This number is greater

than 53 bits, and some programming languages may have difficulty in interpreting it. Using a

signed 64 bit integer for storing this identifier is safe. An example could be: "id":6253282.

o Screen_name is the handle, or alias, that this user is identified with. Screen_name is

unique but subject to change. Typically, the screen name is a maximum of 15 characters long,

but some older accounts may exist with longer names. An example could be:

"screen_name":"twitterapi".

 18

o Name refers to the name of the user, as they have defined it. And it is not necessarily a

person's real name. This name is typically capped 20 characters, but subject to change. An

example could be: "name":"twitterapi".

o Friends_count refers to the number of users this account is following (that is, their

"followings"). An example could be: "friends_count": 32.

o Followers_count is the number of followers this account currently has. An example

could be: "followers_count": 21.

 Tweet is the basic atomic building block of all things in Twitter. Users post tweets, also

known more generically as "status updates." Tweets can be embedded, replied to, liked,

unliked and deleted. Users can amplify the broadcast of tweets authored by other users by

retweeting. Retweets can be distinguished from typical tweets by the existence of a

“retweeted_status” attribute. This attribute contains a representation of the original tweet that

was retweeted. Users can also unretweet a retweet they created by deleting their retweet.

There are various properties [27] associated with the Tweet object which uniquely define and

identify a tweet. Among these numerous properties associated with the Tweet object, we have

used the following in our algorithm:

o Tweet_id is the integer representation of the unique identifier for a tweet. Similar to

User_id, it is recommended to use a signed 64 bit integer for storing this identifier. An

example could be: "id":114749583439036416.

o Text is the actual UTF-8 text of the status update. An example could be: "text”: “Quebec

values charter: is it a political game changer for the PQ? Bit.ly/189j36o”.

o Created_on refers to the UTC time when this tweet was created. An example is:

"created_on":"Wed Aug 27 13:08:45 +0000 2008".

 19

o Retweet_count is the number of times this tweet has been retweeted. An example is:

"retweet_count":1585.

o Entities provide metadata and the additional contextual information about content

posted on Twitter. There are four types of tweet entities, namely: hashtag, media, URLs,

user_mentions [28].

 Hashtag refers to the topics or keywords marked by a “#” symbol in a tweet, and

it can be used to categorize messages by Twitter users. For Example,

“hashtags":[{"indices": [32, 36],"text":"lol"}].

 Media refers to the media elements uploaded with the tweet. For example,

"media":[{"type":"photo","sizes":{"thumb":{"h":150,"resize":"crop","w":150},

"large":{"h":238,"resize":"fit","w":226},

"medium":{"h":238,"resize":"fit","w":226},

"small":{"h":238,"resize":"fit","w":226}},

"indices":[15,35],"url":"http:\/\/t.co\/rJC5Pxsu",

"media_url":"http:\/\/p.twimg.com\/AZVLmp-CIAAbkyy.jpg",

"display_url":"pic.twitter.com\/rJC5Pxsu","id":114080493040967680,

"id_str":"114080493040967680","expanded_url":

"http:\/\/twitter.com\/yunorno\/status\/114080493036773378\/photo\/1",

"media_url_https":"https:\/\/p.twimg.com\/AZVLmp-CIAAbkyy.jpg"}].

 URLs refer to the URLs included in the text of a tweet or within the textual fields of

a User object. For example,

"urls":[{"indices":[32,52],"url":"http:\/\/t.co\/IOwBrTZR",

 20

"display_url":"youtube.com\/watch?v=oHg5SJ\u2026",

"expanded_url":"http:\/\/www.youtube.com\/watch?v=oHg5SJYRHA0"}].

 User_mentions represents other Twitter users mentioned in the text of the tweet. For

Example,

"user_mentions":[{"name":"TwitterAPI","indices":[4,15],

"screen_name":"twitterapi", "id":6253282, "id_str":"6253282"}].

 These are the most common concepts related to Twitter and its various data properties,

and they are described here to give an understanding on the ranking factors we use in this work.

These terms are also helpful to understand the Twitter API, which is essential for collecting the

data for the later experiment.

3.2 System Architecture

 Figure 3.1 shows the architecture model we use to implement our tweet re-ranking

algorithm. A sleek multithreaded WPF-based GUI enables the user to input the query and

provides results in the form of tweets listed in a ranked manner determined by the ranking

algorithm. The Fetching module plays the most critical part in providing the fresh dataset

available for processing. On runtime it collects data from Twitter based on user-keyword in a

request-response manner with the help of Twitter API and the integration library. With Twitter

imposing certain limits such as the number of requests per hour per account and the amount of

data per request, a time lag was encountered towards the overall operation time.

 A round-robin multi-account system was developed, which switches to the next available

account as soon as the limit of the current account is reached; thus, we could always have an

active account to perform further request-response operation with Twitter API. These limits are

 21

imposed based on the time interval and are refreshed after a specific unit of time has elapsed.

Thus, an exhausted account, after a certain period of time, becomes available. By making use of

20 authentication tokens from different accounts, we were able to create a system which always

had an available account for operations.

Figure 3.1. System Architecture

 Although the problem of the operation limit has been tackled eliminating any waiting lag, there

is still a considerable amount of time required to collect a complete dataset for one query.

Hundreds of request-response operations are performed to complete one collection operation.

User Interface (UI)

Query Results

Multi-value Ranking Module

Aggregate

Rank
Normalization

Local

Storage

Data Collection Module

Twitter API

Tweets Author

Activities

Author

Links

Twitter

DB
Twitter

Individual

ranking

modules

 22

Each operation involves sending and receiving data over the internet and is affected by the

network congestion and Twitter server load lag.

 Having a static local dataset would completely eliminate any fetching time and would

largely improve the rank computation time for a query; however, it would handicap the system to

allow only those queries/keywords which have already been pre-fetched into static dataset to be

processed and the tweets are not always fresh.

 The Ranking module has two phases. Phase I, or the fetching phase, is responsible for

collecting all the related information from Twitter. We are using the live data, not a pre-collected

set of tweets. Live data is slow and restricted by limits set by Twitter but gives a wide range of

keywords and data to test our algorithm.

 In this step, multi-threading is done for background processing, for which we have to

make an app on Twitter that provides a token and gives authentication for a JSON request. It

interacts with the Twitter API library for authentication and data collection. It also performs

internal cleaning and data filtering before storing the data into the database.

 In general, Phase I performs the following tasks:

 Account authentication for API connectivity.

 Collection of tweets returned from Twitter based on the given query.

 Collection of list of friends and followers of users who are authors of the returned tweets.

 Collection of recent tweets of these users.

 Data is freely available, but can be accessed only through authentication by using Twitter

API and account tokens. The process is slow because data access has hourly limits and the rate of

retrieval is also slow. When using application-only authentication, rate limits are determined

globally for the entire application. If a method allows for 15 requests per limit window, then it

 23

can make 15 requests per window on behalf of the application. More details can refer to [40].

Additionally, it depends on the network speed. So in general, phase I is slow. It could have taken

hours, but we are using multiple account tokens and account switching, therefore, no waiting

time is wasted. All the time taken in phase I is for the retrieval of the matching result.

 Phase II, or the calculation phase, operates on the collected data, calculating nine ranking

scores based on different factors, which are later normalized and aggregated to produce the final

ranking score. This final rank is used to order the results presented to the user.

 At each step of this phase data is read and written into a database. A number of re-

ranking algorithms are used. Phase II performs the following tasks:

 Calculation of Tweet Impact Rank.

 Calculation of Tweet Recency Rank.

 Calculation of Tweet Content Relevancy Rank.

 Calculation of Tweet Content Uniqueness Rank.

 Calculation of Tweet Media Rank.

 Calculation of User Connectivity Rank.

 Calculation of User Activeness Rank.

 Calculation of User PageRank.

 Calculation of User Hub Authority Rank.

 Normalization of all above ranking scores.

 Aggregating the calculated ranking scores to produce the final rank.

 Screenshots for interfaces to collect Twitter data and calculate the ranks are included in

Appendix A.

 24

3.3 Our Proposed Re-Ranking Algorithm

 Twitter shows a user’s tweets in a reversed sequential order, which is not always the best

way. Twitter is crowded with different types of messages. Informative tweets might be displayed

at the bottom and some irrelevant tweets might be at the top.

 This study proposes a re-ranking approach based on various tweet and user related

properties. The proposed approach calculates ranking scores for individual properties, which are

then normalized and added up to calculate the overall ranking score. Then the tweets are ordered

on the basis of their calculated overall scores and presented as results.

3.3.1 Algorithm Overview

 When a user searches for some keywords, he hopes to see the most relevant results

returned, which can put an end to his information seeking process. For real time systems like

Twitter, time is an important factor to evaluate the recency of the information, which, in a way,

is necessary to determine the relevancy of the information too.

 The aim in developing this algorithm is to integrate the information quality and relevancy

into the search results and in the meantime keep the recency information.

 The overall rank of a tweet in the result list is determined by the combination of different

values. The main intention here is to provide results as relevant as possible, as recent as possible,

and as authoritative as possible, to a user from the set of available data.

 In the algorithm we mainly consider factors from two aspects, one is tweet, and the other is

user. Tweet related factors include:

 Time - Is the tweet recent?

 Popularity – Has the tweet been retweeted and, if so, how many times?

 25

 Content – Is the tweet relevant to the query, unique and does it contain information

sources?

User related factors include:

 Activeness – Is the author active over a given time period?

 Connectivity – Is the author well connected to other users?

 PageRank/Hub Authority - Is the author a source of authoritative information?

 In this approach, we believe a tweet should be ranked on the basis of its own quality, or the

quality of its source, that is, the author who has posted it.

The following are the main factors we consider for ordering the tweets.

Tweet-based factors

i) Impact of tweet, which is measured by the retweet count.

ii) Recency, which is measured by the posting time of the tweet.

iii) Content relevancy, which is the relevancy of the content of the tweet to the query.

iv) Uniqueness, which is to measure how unique the tweet is compared with other tweets.

v) Media richness, which is measured by the count of media, URL, and video embedded in a

tweet.

 User-based factors

i) Number of followers who are not mutually followed.

ii) Activeness, which is measured by the number of tweets posted by the user in a given time

period.

iii) PageRank score calculated on the link graph of the user following relationship.

iv) Hub/authority score calculated on the link graph of the user following relationship.

Tweets are then rearranged on the basis of the calculated scores of the above nine factors.

 26

3.3.2 Details of the Factors Considered in the Algorithm

There are nine calculation steps based on different factors; below, we will discuss each of

them.

i) Tweet Impact Rank (TIR)

 In this step we count the number of times a particular tweet is retweeted among the users

on Twitter. We give the most retweeted tweet the highest ranking score as it is considered as the

most popular one. For instance, if a tweet is retweeted 5 times, its Impact Rank value will be

proportional to 5. If it is not retweeted at all its Impact Rank value will be 0. This formula is

applicable only on tweets having retweet count > 0. The formula to measure TIR of the current

tweet 𝑤𝑖 is given below,

 𝑖 =
 𝑖

(𝑖)
 (3.1)

where is the maximum retweet count, 𝑖 is the minimum retweet count and 𝑖 is the

retweet count for the current tweet 𝑤𝑖.

 ii) Tweet Recency Rank (TRR)

 In this step, we are checking the time the tweet was posted; the most recently posted

tweet will have the highest-ranking score. This increases the probability that the tweets ranked

high by the algorithm must be fresh and recent on Twitter. Below we list the formula to calculate

TRR,

 𝑖 =
 𝑖

()
 (3.2)

 27

where 𝑖 is the posting time of the current tweet 𝑤𝑖, is the posting time of the latest

tweet, 𝑑 is the posting time of the oldest tweet.

iii) Tweet Content Relevancy Rank (TCRR)

 This refers to the relevancy of the tweet to the given query, that is, the similarity between

the tweet and the query keywords using the vector space model [2]. Tweets having a high

similarity score to the query will have high TCRR values. The following steps have been used to

calculate the TCRR value:

 Each tweet is considered as a document.

 The Vector Space Model is then applied to calculate the similarity between each tweet

and the query.

 Tweets with high similarity values will have high TCRR values and are considered more

relevant.

The formula for Tweet Content relevancy rank (TCRR) is as follows,

 𝑖 = 𝑖𝑚(𝑤𝑖, 𝑞) =
∑ 𝑗𝑖 𝑗𝑞
𝑁
𝑗=1

√∑ 2
𝑗𝑖

𝑁
𝑗=1 √∑ 2

𝑗𝑞
𝑁
𝑗=1

 (3.3)

where 𝑤𝑖 is the current tweet, q is the user query, N is the total number of terms, 𝑗𝑖 is the

weight of term j in 𝑤𝑖, 𝑗𝑞 is the weight of term j in query q.

iv) Tweet Content Uniqueness Rank (TCUR)

 In this step we consider the uniqueness of the tweet compared to other related tweets on

the query keyword. The uniqueness of the tweet is measured by how rarely its terms appear in

 28

other tweets on the given query keyword. Below is the formula to calculate Tweet Content

Uniqueness Rank (TCUR):

 𝑖 = ∑

𝑑 𝑗

 𝑖
𝑗 (3.4)

where 𝑖 is the number of unique terms in tweet 𝑤𝑖, K is the total number of tweets returned

from Twitter on the given query, 𝑑 𝑗 is the number of tweets that contain term j.

v) Tweet Media Entity Rank (TMER)

 In this step, we check if the tweet is containing any media file, URL, any video, or any

other media content. Tweets having any of those types of media contents will have a high TMER

score as they can be more informative than others. TMER measures how many media entities are

present in the tweet. Below is the formula to calculate TMER,

 𝑖 = 𝑚 𝑑𝑖 𝑖 𝑖 (3.5)

where 𝑚 𝑑𝑖 𝑖 measures the number of media entities in 𝑤𝑖 and 𝑖 measures

the number of URLs in 𝑤𝑖.

vi) User Connectivity Rank (UCR)

 In this step we look for the number of followers of the user whom are not mutually

followed. These users are considered more informative because they are sources of information,

not just friends.

The internal friendships and connections of a user denote his connectivity strength. The

more people who follow a user, the more his tweets will be accessed, and the greater his

popularity will be. However, a trend of mutual following prevails on Twitter; people follow a

user just because that user is following them, not for the sake of information. Thus, we count the

 29

number of mutually exclusive followers who follow an individual, but the individual does not

follow back. The UCR is calculated using the formula below:

 𝑖 = | 𝑖 (𝑖 𝑖)| (3.6)

where UCR is the count of users which follow the current user, but the user doesn’t follows them

back. 𝑖 is the set of friends of current user who posts 𝑤𝑖 i.e. whom the user follows, 𝑖 is the

set of followers of current user, i.e. who follow the user. And (𝑖 𝑖) gives a set of users

who are both friends and followers.

vii) User Activeness Rank (UAR)

 In this step, we check whether the user is active on the topic, as the user might have not

tweeted about the topic in the last few days. The users who are more active have a high UAR

score. Using this method preference is not given to those users who are not active on the topic.

The activeness rank of a user denotes his activeness in posting tweets on a specified

keyword over a time period. This factor is very useful in measuring the overall contribution of a

user on a particular keyword during a time period. The formula below shows the calculation

steps,

 𝑖 = ∑ 𝑤 (𝑤)𝑤 𝑞 (3.7)

where, w is a keyword in query q, tweet_count(w) measures the number of tweets posted on

keyword w by the author of tweet 𝑤𝑖.

 Twitter API has a feature using which we can specify user id for which tweets are needed

to be retrieved on given keyword.

 30

viii) User PageRank (UPR)

 In this step, we calculate the PageRank of the user by considering the followers and

friends of the user. The PageRank of a user is a measure of reachability of the user in the user’s

following relationship graph. That is, it indicates what the chances are that a visitor will end up

on that user while following through other users. To calculate the PageRank a numerical weight

is assigned to it. The user is then ranked on the basis of that weight. The formula for User

PageRank (UPR) [3, 4] is shown below,

 𝑖 =

∑ 𝑗 𝑗, 𝑗 𝑖

 𝑖 𝑗
 (3.8)

where D is the damping factor which is set to 0.85, M is the number of all users in the following

graph, 𝑗 is following 𝑖, the author of 𝑤𝑖, 𝑖 𝑗 is the number of users 𝑗follows.

ix) User Hub Authority Rank (UHAR)

 Here, we calculate the hub and authority scores [2] for a user. The UHAR rank of a user

specifies whether the user is a hub following many users and is considered an information

source; or is an authority linking with many users following them.

Below is the formula to calculate User hub authority rank (UHAR):

 = . 𝑖 . 𝑖 (3.9)

where, , is the weight on authority score of user who posted 𝑤𝑖 𝑖 , and hub score

 𝑖. 𝑖 and 𝑖 are calculated on the user following graph, and the formulas for

 𝑖and 𝑖 can refer to section 2.1.3 in chapter 2.

 31

3.3.3 Final Ranking Function

Before we combine all the ranking scores together, we need to normalize them.

Normalization is a process of rescaling numbers so that they fit into 0 to 1 scale. In order to

achieve this scale, every number is divided by the highest number available.

 (,) = () (3.10)

where V represents the set of all possible values for a certain variable, v represents a value from

V, max is to get maximum value from the set.

After normalization, the final ranking score of a tweet is calculated as,

 𝑖 = (𝑖 𝑖 𝑖 𝑖 𝑖) 𝑖 (𝑖 𝑖 𝑖

 𝑖) (.)

where 𝑖 = Weight value for Tweet Ranks

 = Weight value for User Ranks

 𝑖 =

 Having weights on user related and tweet related scores gives the approach a flexibility of

shifting/balancing importance between tweet factors and user factors by adjusting weight values.

In the current implementation equal weights are assigned to user scores and tweet scores for the

simplicity reason.

 The algorithm and the actual code of one ranking score calculation – Tweet Impact Rank,

is listed in Appendix B.

 32

3.4 Summary

In this chapter, we have explained the Twitter related terms, the architecture of our

system, as well as our proposed re-ranking algorithm. We also discussed, in detail, each factor

considered in our proposed algorithm. We described all the formulas that are used in our

proposed method. In the next chapter, we will discuss the system implementation and its results,

as well as the user evaluation results.

 33

CHAPTER 4

EXPERIMENTS

The main objective of our implementation and experiments is to test the working of the

proposed approach and verify the accuracy of the results generated through a user evaluation.

4.1 Dataset

There is no standard benchmark dataset available to test ranking algorithms performed on

Twitter data. So in this study, we decided to choose some queries and use Twitter API to fetch

the relevant results returned from Twitter on each query, and then apply our proposed ranking

algorithm to re-rank them and compare with the original ranked results through the user

evaluation.

The sample test dataset contains tweet and user values for 20 general keywords/queries.

These keywords were randomly chosen based on suggestions from various people. The dataset

was collected by performing fetch operations for all specified queries. This required the use of

Twitter API, C# API library and multiple twitter access accounts.

A list of 20 search queries were submitted to Twitter, and 200 tweets returned from

Twitter on each query were collected; furthermore, all other tweet and user related data required

by our algorithm were collected and stored into a local database for later processing and

calculation. We chose these queries by asking some users to randomly give some topics they are

interested in or have some knowledge of. The list of queries is:

1) Amitabh Bachchan

2) Apple

 34

3) Barack Obama

4) Bank Of Canada

5) Blackberry

6) Boston Marathon

7) Cloud Computing

8) Cyber Security

9) FIFA World Cup

10) Global Warming

11) Health Canada

12) Human Rights

13) Immigration Canada

14) National Hockey League

15) Ryerson University

16) Russell Peters

17) Sachin Tendulkar

18) Solar Energy

19) Toronto Maple Leafs

20) US Tornadoes

4.2 Implementation

The discussed approach was implemented as a Windows based application, using C#

WPF .Net technology. The configuration of the machine used to run the experiment is: Windows

7 Home premium, RAM 4GB, Hard Disk 596GB with a 64 bit operating system.

 35

 As illustrated in the system architecture shown in Figure 3.1, the application is divided

logically and operationally into two modules, that is, a data fetching module and a re-ranking

module. The data fetching module is responsible for communication with the Twitter service,

account authentication, API request-response operation, and collecting the dataset for the

specified query. And the following values are collected during the fetch operation:

 200 tweets for each specified query.

 Related information for each tweet.

 Information of all authors of the listed tweets.

The re-ranking module is responsible for performing ranking calculations based on 9

tweet or user related factors, combining the ranking scores, and finally ordering the results in a

ranked manner.

4.3 Experimental Results and Analysis

Running our program for 20 different queries presented us with 20 datasets, with tweets

being calculated with ranking scores. In order to compare the re-ranking results with the original

results, following the standard evaluation approach for the information retrieval research, when

the benchmark dataset is not available, we need to have human evaluators to help us evaluate the

relevancy of the results so as to measure the accuracy of each algorithm.

An online evaluation system was developed in C# ASP.net and SQL server. For each

query, the top 20 tweets based on the original Twitter results and our algorithm results were

mixed together without labeling their sources and then transferred to the user evaluation database

and were linked to respective queries. A total of 20 different queries were loaded into the system,

 36

with each having up to 40 linked tweets, which are classified as Twitter only, algorithm only, or

common result. The classification is only known to us, but not to the evaluators. Also the

duplicates are checked, so if there are overlapping tweets from the two result sets, only one copy

is kept.

A total of 40 volunteer users from different locations and professions were invited to take

our online user evaluation. They were requested to choose the ten tweets they considered the

most relevant for a query. Each user was requested to perform the task for five queries out of the

twenty queries. The selection of the query was left to the users based on whether they are

familiar and comfortable with the query topic. In our evaluation system, we have implemented

an adaptive ordering of queries so that the least selected queries are displayed on a higher

position on the list in the hope that they have higher chance to be selected in the future.

A total of 40*5 = 200 unit user evaluation data was collected, with each unit containing

evaluation results on 10 tweets. Based on these evaluations, points were allotted to either the

original Twitter ranking or our algorithm. Twitter gets a point if a twitter only tweet is selected,

algorithm gets a point if an algorithm only tweet is selected, and both get 1 point if a common

tweet is selected. And the winner is decided based on the number of points earned. Suppose if a

user selects 3 Twitter only tweets, 5 algorithm only tweets, and 2 common tweets, the score for

this result will be Twitter Points = 3+2=5, Algorithm Points = 5+2=7. In this case, our algorithm

wins because it has more points.

After taking all the user evaluation units into account, the final overall score was 1023

points for Twitter and 1205 points for our algorithm. This score indicates our approach as the

winner based on our user evaluation results. Since this measurement is rather intuitive, we use

other common ranking evaluation approaches for the comparison in the following sections.

 37

4.3.1 Kendal Tau Comparison

Kendall tau correlation coefficient can be used to measure the difference between the two

ranking results on the same dataset and is represented as “τ” in our later discussion. Its value

varies from -1 to 1. This coefficient helps us calculate the similarity between the ranked datasets.

The higher the value of “τ”, the greater relationship is between the ranked datasets, whereas a

smaller value represents a bigger difference between ranked datasets.

The formula to calculate the Kendall Tau is:

 =

 (4.1)

where #C represents the number of concordant pairs and #D represents the number of discordant

pairs. If there are two pairs 𝑖, 𝑖 and 𝑗, 𝑗, concordant pairs are defined as:

 𝑖 > 𝑗 and 𝑖 > 𝑗 OR 𝑖 < 𝑗 and 𝑖 < 𝑗

The same relation must exist between each pair of elements; otherwise, the pair is the discordant

pair.

In our proposed approach, we have Twitter ranked datasets and our proposed algorithm

ranked datasets. The Kendall tau algorithm helps us check the similarity or dissimilarity between

the two ranked datasets.

A sample query - cloud computing, was chosen and 20 tweets were obtained, giving two

ranks for each tweet: - Twitter rank and algorithm rank. Their ranks are shown in Table 4.1.

 38

Table 4.1. Ranking results from two algorithms for the sample query “Cloud Computing”

Tweets Twitter Rank Algorithm Rank

Tweet 1 1 3

Tweet 2 2 9

Tweet 3 3 5

Tweet 4 4 6

Tweet 5 5 8

Tweet 6 6 14

Tweet 7 7 4

Tweet 8 8 20

Tweet 9 9 18

Tweet 10 10 12

Tweet 11 11 11

Tweet 12 12 15

Tweet 13 13 19

Tweet 14 14 7

Tweet 15 15 1

Tweet 16 16 16

Tweet 17 17 10

Tweet 18 18 13

Tweet 19 19 17

Tweet 20 20 2

Using those ranks, we calculate the degree of similarity between the two ranked result

sets using the Kendall tau algorithm. Based on Formula 4.1, for this example, we can get the

following results:

#C = total number of concordant pairs = 110

#D = total number of discordant pairs = 80

τ = 110-80/110+80 = 30/190 = 0.157

Here, the τ is a positive value, which means the two ranking orders are somehow related,

however, its small value indicates the similarity between the two is low.

We also did a significance test [29] to check whether both variables are statistically

dependent. The formula is shown below,

 39

 = √ () √ () (4.2)

According to this formula, the value of Z is 0.973. Since the higher the value of Z, the

more significant is the association between the two rankings, and here the value of Z is small,

there is a less significant association between the two rankings. To check whether two variables

are statistically dependent, we know that if Z >1.96 the dependency is more significant and if

Z<1.96 it is less significant. Since, Z=0.973, it is two values are less significantly dependent and

hence different. Table 4.2 shows the Kendall Tau values for all 20 queries.

 40

Table 4.2. Kendall Tau values for 20 queries

Sr. No Query
Kendall Tau

Coefficient.

1. Health Canada 0.147

2. Solar Energy 0.031

3. National Hockey League 0.073

4. FIFA World Cup 0.178

5. Sachin Tendulkar 0.063

6. Russell Peters 0.252

7. Apple 0.042

8. Cloud Computing 0.157

9. Cyber Security 0.189

10. Toronto Maple Leafs 0.221

11. Barack Obama 0.178

12. Amitabh Bachchan 0.084

13. Blackberry 0.031

14. US Tornadoes 0.226

15. Boston Marathon 0.105

16. Immigration Canada 0.147

17. Ryerson University 0.105

18. Global Warming 0.147

19. Human Rights 0.094

20. Bank Of Canada 0.252

This table concludes that for all queries τ is positive but small hence values are somehow

related but the similarity is low.

 41

4.3.2 Precision of User Evaluation Results

Precision is the fraction of retrieved instances that are relevant, while recall is the fraction

of relevant instances that are retrieved [2]. Both precision and recall are therefore based on an

understanding and measure of relevance. Since for the Twitter search, for each query, we don’t

have the ground truth of the complete relevant document set, in this experiment, we only

consider the precision value. The formula below shows the definition of precision for a

document retrieval problem.

 𝑖𝑠𝑖 =
|{ 𝑑 } { 𝑖 𝑑 𝑑 }|

|{ 𝑖 𝑑 𝑑 }|
 (4.3)

In our case, Equation 4.3 can measure the ratio of the most relevant tweets over all the

returned tweets for a given query. The relevancy judgment is given by the user who goes through

the returned tweet list to find the ones which are considered most relevant to the query. And

whether a tweet is relevant to a query or not is depending on the average opinion of all evaluators

who are evaluating the query.

Based on this formula, we calculate the average precision value for 20 queries in our

dataset with considering of all 40 users’ evaluation. The average precision for Twitter is 0.274

and the average for our algorithm is 0.286. Our algorithm has a better precision value, however,

the difference is very small. Therefore, we tried to remove some queries, or users, or both from

our evaluation results if the evaluation results from those users or on those queries were largely

different from the average values. They could be considered as outliers. After removing them,

we got the following results.

 42

For 30 users and 20 queries: Twitter: 0.254, algorithm: 0.310

For 40 users and 15 queries: Twitter: 0.253, algorithm: 0.317

For 30 users and 15 queries: Twitter: 0.244, algorithm: 0.331

Therefore, after removing outliers, the improvement from our algorithm over the original

Twitter ranking is more obvious. Since in our experiment, there is no control on the quality of

the user evaluation. Some users may not understand the query topic well so that they do not have

good judgment on result relevancy, some users may not spend time on reading result tweets

carefully to judge their relevancy, and some may accidentally pick some wrong options. By

removing those evaluation data that are largely different from the rest, the remaining data could

provide a better evaluation on the algorithm.

 Figure 4.1-4.3 show more detailed comparison results on individual queries.

Figure 4.1 Graph Comparison for 30 users and 15 queries

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Algorithm Precision Twitter Precision

 43

Figure 4.2 Graph Comparison for 30 users and 20 queries

Figure 4.3 Graph Comparison for 40 users and 15 queries

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Algorithm Precision Twitter Precision

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Algorithm Precision Twitter Precision

 44

 These comparison charts are between precision values scored by the proposed algorithm

and twitter results for each keyword/query. Blue colored (dark) bars represent algorithm values

and red colored (light) bars represent twitter values. Three charts are drawn for results by varying

the contribution count of users and queries. We could see that for the majority of the queries, the

proposed algorithm achieves a higher precision than the original result. Among those queries that

achieve a better result, the degree of improvement varies depending on the queries, some queries

have a high percentage of precision increase, and the others have only a small increase.

 Table 4.3 shows the comparison between the precision values from the original Twitter

rank and the proposed algorithm and the percentage of the difference. It shows the average

precision on all considered queries. It also shows the difference before and after we remove

outliers. We could see that after outliers are removed, the precision increase is more obvious.

Table 4.3. Precision results

 PAA PAT Diff%

40u 20q 0.286 0.274 2.18%

30u 20q 0.310 0.254 9.98%

40u 15q 0.317 0.253 11.23%

30u 15q 0.331 0.244 15.12%

PAA = Average precision for algorithm

PAT = Average precision for Twitter

SUM = PAA+PAT

Difference % = ((PAA-PAT) / SUM)*100

The complete precision results are included in Appendix C.

 45

4.4 SUMMARY

In this chapter, we explained our experiment design, the datasets we used, the user

evaluation process, as well as some of the implementation details. We have evaluated and

analyzed our algorithm and proved that our algorithm worked better than the original Twitter

ranking results. We also performed Kendall tau comparison between the two ranked lists from

our algorithm and from Twitter, and the result value is small, which shows a small degree of

similarity between two ranking algorithms.

 46

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

 Social feed search engines, such as twitter, respond to users’ search queries by providing

or displaying a collection of result-objects (tweets in this case) in a sorted or ranked manner

mainly based on the content and recency of the objects. In this study, we looked at this problem

from a broader perspective and consider a few important factors that play an important role in

calculating the rank of the tweet, that is, the position in which it is displayed in the results.

 The focus of this thesis is to enhance the result accuracy, relevancy and uniqueness by

making use of a set of information available via tweets’ properties. Our approach use both

tweets' and authors’ information and properties to generate a different set of ranks. This set of

ranks for each tweet results in an overall rank, which is used as a deciding factor for the ordering

of tweets in the result set.

 In this study, we have not only taken a tweet and its properties into account but have also

made use of characteristics and properties of its author. In other words, for us, not only is what is

posted (the tweet) important, but also who has posted it (the author) is equally important. We

have tried to cover all the important factors such as when the tweet was posted, how many times

it has been retweeted, how relevant its content is to the query, how unique its content is among

the tweet dataset, whether it contains any embedded links or media. Furthermore, many

properties related to the author such as how many posts the author posted in the past few days

(e.g., last month); how many users follow him without being followed back; how well he is

 47

connected to other users; whether he is a good source of information; and whether he is someone

who can lead us to a source of information. All of these are taken into account and included as

part of our algorithm. The algorithm’s accuracy has been proven by the user evaluation results.

 Our algorithm not only covers a wide range of mentioned factors, but its structure also

provides a flexible platform so that other factors and processing algorithms when and as

available can be integrated into it and existing ones can be removed, replaced or updated.

 There are mainly two contributions of this work:

 We proposed a re-ranking algorithm for Twitter search based on multiple features, including

a few novel ones;

 Our re-ranking algorithm consider many different tweet related properties and user related

properties, and the final ranking is a combination of all features.

5.2 Limitations of our proposed algorithm

There are some limitations in our proposed algorithm as listed below.

a. Individual factors are not tested separately.

b. Implementation is highly dependent on twitter API to fetch data. If twitter API does not

work or when there is any problem, then our algorithm may not work.

c. Our result is highly depending on the original twitter result. If the original search result

from Twitter is not good, ours may also not be good.

d. Efficiency could be a concern, because the re-ranking is performed on top of the twitter

results, and all the data is collected on-the-fly, which could be time consuming.

 48

5.3 Possible future directions

A few directions we would like to work on in the future include:

 Firstly, for fast calculation we can analyse contribution of each algorithm involved and

then accordingly remove or replace weakly performing ones. Also, we would like to make

changes in slower algorithms to improve the speed but still keep the original logic intact.

 We can also implement a cache mechanism to store frequently used data and possible

implementation of step ranking and elimination so as to taper off the amount of data passed on to

next part can also speed up the calculation.

 Secondly, dividing calculations in part by implementing precognition to allot a base rank

as soon as tweet is posted can also give another factor to search on. Precognition base rank will

be based on time. User activeness at that point and tweet content will help in this. And also direct

access to data repository for unlimited time and faster access will help a lot. That is, it will

reduce data fetch time, remove limit on number of tweets and values available, more data to be

analyzed, so faster and improved ranks.

Thirdly, we can build the user following graph off-line, update it regularly, and save time

for on-the-fly data collection.

Fourthly, we can apply the rank aggregation technique on the rankings so there is no need

to calculate the content-based scores.

Finally, adding a learning module will be helpful to improve result accuracy and find the

most effective factors for individual users.

 49

APPENDIX A- Screenshot for user interface

 50

 51

APPENDIX B – CODE FOR INDIVIDUAL RANK

CALCULATION

Tweet Impact Rank

 ObjectSet<tStatus> tTweets = oTwitterEntity.tStatus;

 decimal maxRC = tTweets.Max(t => t.retweetcount).Value; // get max retweet count

 int? iMinRetweetCount = tTweets.Where(t => t.retweetcount > 0).Min(t => t.retweetcount);

 decimal minRC = iMinRetweetCount.HasValue ? iMinRetweetCount.Value : 0; // get minimum retweet

count non zero

 foreach (tStatus tTs in tTweets)

{

 if (maxRC > minRC)

 tTs.impactrank = (maxRC - minRC) / ((maxRC - tTs.retweetcount) + 1); // calculate impact rank for

each tweet

 else

 tTs.impactrank = 0;

}

 oTwitterEntity.SaveChanges();

Tweet Recency Rank

ObjectSet<tStatus> tTweets = oTwitterEntity.tStatus;

 DateTime dtNow = DateTime.Now.ToUniversalTime();

 decimal minME = (decimal)(dtNow - tTweets.Max(t => t.createdon).Value).TotalMinutes; // get

minimum minutes elapsed from most recent tweet

 decimal maxME = (decimal)(dtNow - tTweets.Min(t => t.createdon).Value).TotalMinutes; // get

maximum minutes elapsed from least recent tweet

 foreach (tStatus tTs in tTweets)

 {

 decimal iMinElapsed = (dtNow - tTs.createdon.Value).Minutes; // get minutes elapsed for

current tweet

 tTs.recencyrank = (maxME - iMinElapsed) / (maxME - minME) + 1; // calculate recency

rank.

 }

 oTwitterEntity.SaveChanges();

 52

Tweet Content Relevancy Rank

ObjectSet<tStatus> tTweets = oTwitterEntity.tStatus;

 Dictionary<string, string> docs = new Dictionary<string, string>();

 foreach (tStatus tTs in tTweets)

 {

 docs.Add(tTs.tweetid, tTs.text); // add each tweet as document to document dictionary

 }

 Dictionary<string, double> vResult = VectorSpaceModel.Calculate(docs, sKeyword); // run VSM

algorithm on docs n keyword, calculate vsm value for each tweet

 foreach (tStatus tTs in tTweets)

 {

 if (vResult.Keys.Contains(tTs.tweetid))

 {

 tTs.relevancyrank = (decimal)vResult[tTs.tweetid]; // update relevancy rank for each tweet

 }

 }

 oTwitterEntity.SaveChanges();

Tweet Uniqueness Rank

ObjectSet<tStatus> tTweets = oTwitterEntity.tStatus;

 Dictionary<string, string> docs = new Dictionary<string, string>();

 foreach (tStatus tTs in tTweets)

 {

 docs.Add(tTs.tweetid, tTs.text); // add each tweet as document to document dictionary

 }

 Dictionary<string, double> vResult = Uniqueness.Calculate(docs); // run Uniqueness

algorithm on docs, calculate uniqueness value for each tweet

 foreach (tStatus tTs in tTweets)

 {

 if (vResult.Keys.Contains(tTs.tweetid))

 {

 tTs.uniquenessrank = (decimal)vResult[tTs.tweetid]; // update relevancy rank for

each tweet

 }

 }

 oTwitterEntity.SaveChanges();

 53

Tweet Media Entity Rank

ObjectSet<tStatus> tTweets = oTwitterEntity.tStatus;

 foreach (tStatus tTs in tTweets)

 {

 tTs.entityrank = int.Parse(tTs.entitycount.Split('-')[1]) + int.Parse(tTs.entitycount.Split('-')[3]);

//0-hash,1-media,2-mention,3-url

 }

 oTwitterEntity.SaveChanges();

User Connectivity Rank

ObjectSet<tUser> tUsers = oTwitterEntity.tUser;

 foreach (tUser tTu in tUsers)

 {

 try

 {

 // list followers

 ListFollowerIdsOfOptions oFolOp = new ListFollowerIdsOfOptions() { UserId =

Convert.ToInt64(tTu.userid) };

 List<long> uFollowers = new List<long>();

 TwitterCursorList<long> uFollowerIds;

 do

 {

 uFollowerIds = oTwitterService.ListFollowerIdsOf(oFolOp);

 uFollowers.AddRange(uFollowerIds);

 oFolOp.Cursor = uFollowerIds.NextCursor;

 CheckLimit();

 }

 while (uFollowerIds.NextCursor != 0 && uFollowers.Count < 5000);

 tTu.followers = string.Join(",", uFollowers);

 //list friends

 ListFriendIdsOfOptions oFriOp = new ListFriendIdsOfOptions() { UserId =

Convert.ToInt64(tTu.userid) };

 List<long> uFriends = new List<long>();

 TwitterCursorList<long> uFriendIds;

 do

 {

 uFriendIds = oTwitterService.ListFriendIdsOf(oFriOp);

 uFriends.AddRange(uFriendIds);

 54

 oFriOp.Cursor = uFriendIds.NextCursor;

 CheckLimit();

 }

 while (uFriendIds.NextCursor != 0 && uFriends.Count < 5000);

 tTu.friends = string.Join(",", uFriends);

 tTu.connectivityrank = uFollowers.Where(u => !uFriends.Contains(u)).Count();

 oTwitterEntity.SaveChanges();

 }

 catch { }

 }

User Activeness Rank

string sKeywordTemplate = sKeyword + " from:{0} +exclude:retweets";

 ObjectSet<tUser> tUsers = oTwitterEntity.tUser;

 foreach (tUser tTu in tUsers)

 {

 try

 {

 sKeyword = string.Format(sKeywordTemplate, tTu.screenname);

 SearchOptions oSO = new SearchOptions() { Q = sKeyword, Count = 100, Resulttype =

TwitterSearchResultType.Recent, Lang = "en" };

 IEnumerable<TwitterStatus> tResults = oTwitterService.Search(oSO).Statuses;

 tTu.activenessrank = tResults.Count();

 oTwitterEntity.SaveChanges();

 CheckLimit();

 }

 catch { }

 }

User Page Rank

ObjectSet<tUser> tUsers = oTwitterEntity.tUser;

 int iUserCount = tUsers.Count();

 foreach (tUser tp in tUsers)

 {

 tp.pagerank = (decimal)1 / iUserCount;

 }

 oTwitterEntity.SaveChanges();

 55

 decimal dDampingFactor = new decimal(0.85);

 for (int iIteration = 0; iIteration < 10; iIteration++)

 {

 foreach (tUser tp in tUsers)

 {

 decimal dLinkedPr = 0;

 IEnumerable<tUser> myFollowers = tUsers.Where(u => u.listedfriends.Contains(tp.userid));

 foreach (tUser myFollower in myFollowers)

 {

 int iLinksto = myFollower.listedfriends.Split(new char[] { ',' },

StringSplitOptions.RemoveEmptyEntries).Count();

 iLinksto = iLinksto <= 0 ? 1 : iLinksto;

 dLinkedPr += myFollower.pagerank.Value / iLinksto;

 }

 tp.pagerank = (1 - dDampingFactor) / iUserCount + dDampingFactor * dLinkedPr;

 }

 }

 oTwitterEntity.SaveChanges();

User Hub Authority Rank

ObjectSet<tUser> tUsers = oTwitterEntity.tUser;

 foreach (tUser tu in tUsers)

 {

 tu.hubrank = 1;

 tu.authorityrank = 1;

 }

 for (int iIteration = 0; iIteration < 10; iIteration++)

 {

 double dNorm = 0;

 // authority rank

 foreach (tUser tTu in tUsers)

 {

 tTu.authorityrank = 0;

 tUser[] myFollowers = tUsers.Where(u => u.listedfriends.Contains(tTu.userid)).ToArray();

 foreach (tUser tu in myFollowers)

 {

 tTu.authorityrank += tu.hubrank;

 }

 dNorm += (double)(tTu.authorityrank * tTu.authorityrank);

 }

 dNorm = Math.Sqrt(dNorm);

 56

 if (dNorm > 0)

 foreach (tUser tTu in tUsers)

 {

 tTu.authorityrank /= (decimal)dNorm;

 }

 //hub rank

 dNorm = 0;

 foreach (tUser tTu in tUsers)

 {

 tTu.hubrank = 0;

 tUser[] myFriends = tUsers.Where(u => tTu.listedfriends.Contains(u.userid)).ToArray();

 Array.ForEach(myFriends, delegate(tUser tu)

 {

 tTu.hubrank += tu.authorityrank;

 });

 dNorm += (double)(tTu.hubrank * tTu.hubrank);

 }

 dNorm = Math.Sqrt(dNorm);

 if (dNorm > 0)

 foreach (tUser tTu in tUsers)

 {

 tTu.hubrank /= (decimal)dNorm;

 }

 }

 oTwitterEntity.SaveChanges();

Normalization

ObjectSet<tStatus> tTweets = oTwitterEntity.tStatus;

 decimal dMaxEntityRank = tTweets.Max(d => d.entityrank).Value;

 decimal dMaxImpactRank = tTweets.Max(d => d.impactrank).Value;

 decimal dMaxRecencyRank = tTweets.Max(d => d.recencyrank).Value;

 decimal dMaxRelevancyRank = tTweets.Max(d => d.relevancyrank).Value;

 decimal dMaxUniquenessRank = tTweets.Max(d => d.uniquenessrank).Value;

 foreach (tStatus ts in tTweets)

 {

 if (dMaxImpactRank > 0)

 ts.impactrank /= dMaxImpactRank;

 if (dMaxRecencyRank > 0)

 ts.recencyrank /= dMaxRecencyRank;

 if (dMaxRelevancyRank > 0)

 ts.relevancyrank /= dMaxRelevancyRank;

 57

 if (dMaxUniquenessRank > 0)

 ts.uniquenessrank /= dMaxUniquenessRank;

 if (dMaxEntityRank > 0)

 ts.entityrank /= dMaxEntityRank;

 }

 oTwitterEntity.SaveChanges();

 ObjectSet<tUser> tUsers = oTwitterEntity.tUser;

 decimal dMaxActivenessRank = tUsers.Max(d => d.activenessrank).Value;

 decimal dMaxAuthorityRank = tUsers.Max(d => d.authorityrank).Value;

 decimal dMaxHubRank = tUsers.Max(d => d.hubrank).Value;

 decimal dMaxConnectivityRank = tUsers.Max(d => d.connectivityrank).Value;

 decimal dMaxPageRank = tUsers.Max(d => d.pagerank).Value;

 foreach (tUser tu in tUsers)

 {

 if (dMaxConnectivityRank > 0)

 tu.connectivityrank /= dMaxConnectivityRank;

 if (dMaxActivenessRank > 0)

 tu.activenessrank /= dMaxActivenessRank;

 if (dMaxPageRank > 0)

 tu.pagerank /= dMaxPageRank;

 if (dMaxAuthorityRank > 0)

 tu.authorityrank /= dMaxAuthorityRank;

 if (dMaxHubRank > 0)

 tu.hubrank /= dMaxHubRank;

 }

 oTwitterEntity.SaveChanges();

 58

APPENDIX C - FOR SURVEY DATA

FOR 40 USERS AND 15 QUERIES:

Query Algorithm Precision Twitter Precision

cloud computing 0.3273 0.2273

solar energy 0.3083 0.2083

cyber security 0.28 0.235

Toronto maple leafs 0.3375 0.1938

FIFA world cup 0.2727 0.2818

Sachin Tendulkar 0.3192 0.2615

Amitabh Bachchan 0.3433 0.22

apple 0.28 0.335

bank of canada 0.3333 0.2444

US tornadoes 0.335 0.28

global warming 0.3727 0.1682

immigration canada 0.3056 0.3111

human rights 0.3778 0.3333

Boston marathon 0.2786 0.2643

Ryerson 0.2643 0.2857

 59

FOR 30 USERS 20 QUERIES:

Query Algorithm Precision Twitter Precision

health canada 0.2364 0.2909

cloud computing 0.35 0.28

solar energy 0.3091 0.28

cyber security 0.2917 0.28

national hockey league 0.2333 0.28

Toronto maple leafs 0.35 0.28

FIFA world cup 0.2714 0.28

Barack Obama 0.25 0.28

Sachin Tendulkar 0.335 0.28

Amitabh Bachchan 0.36 0.28

Russell peters 0.2583 0.28

blackberry 0.25 0.28

apple 0.3 0.28

bank of canada 0.3438 0.28

US tornadoes 0.3357 0.28

global warming 0.3875 0.28

immigration canada 0.3286 0.28

human rights 0.3778 0.28

Boston marathon 0.3125 0.28

Ryerson 0.27 0.28

 60

FOR 30 USERS AND 15 QUERIES:

Query Algorithm Precision Twitter Precision

cloud computing 0.35 0.2125

solar energy 0.3091 0.2091

cyber security 0.2917 0.2333

Toronto maple leafs 0.35 0.175

FIFA world cup 0.2714 0.2929

Sachin Tendulkar 0.335 0.24

Amitabh Bachchan 0.36 0.21

apple 0.3 0.3214

bank of canada 0.3438 0.2313

US tornadoes 0.3357 0.2714

global warming 0.3875 0.1438

immigration canada 0.3286 0.3071

human rights 0.3778 0.3333

Boston marathon 0.3125 0.2375

Ryerson 0.27 0.28

 61

REFERENCES

[1] Busch, M., Gade, K., Larson, B., Lok, P., Luckenbill, S., and Lin, J.: Earlybird: Real- Time

Search at Twitter. In: Proceedings of the 2012 IEEE 28th International Conference on Data

Engineering, pp. 1360-1369 (2012)

[2] Yates, R.B., and Neto, B.R.: Modern Information Retrieval (the concepts and technology

behind search) (2011)

[3] Brin, S., and Page, L.: The anatomy of a large-scale hypertextual Web search engine. In:

Journal of the Computer Networks and ISDN Systems, Vol. 30 Issue 1-7, pp. 107-117 (1998)

[4] L. Page, S. Brin, R. Motwani, and T. Winograd.: The PageRank Citation Ranking: Bringing

Order to the Web, Technical Report 1999-66, Stanford University (1998)

[5] Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. In: Journal of the ACM,

Vol. 46 Issue 5, pp. 604-632 (1999)

[6] Pal, A., and Counts, S.: Identifying Topical Authorities in Microblogs. In: Web Services

Distributed Management, pp. 45-54 (2011)

[7] Castillo, C., Mendoza, M., and Poblete, B.: Information Credibility on Twitter. In: World

Wide Web – Session: Information Credibility, pp. 675-684 (2011)

[8] Bakshy, E., Hofman, J.M., Mason, W.A., and Watts, D.J.: Everyone’s an Influencer:

Quantifying Influence on Twitter. In: Web Services Distributed Management, pp. 65-74 (2011)

[9] Yang, M.C., Lee, J.T., Lee, S.W., and Rim, H.C.: Finding Interesting Posts in Twitter Based

on Retweet Graph Analysis. In: Proceedings of the 35th international conference on Research

and development in information retrieval. pp. 1073-1074 (2012)

 62

[10] Meeyoung, C., Haddadi, H., Benevenuto, F., and Gummadi, K.P.: Measuring User Influence

in Twitter: The Million Follower Fallacy. In: Proceedings of 4th International Conference on

Weblogs and Social Media (2010)

[11] Duan, Y., Jiang, L., Qin, T., Zhou, M., and Y.Shum, H.: An Empirical Study on Learning to

Rank of Tweets. In: Proceedings of the 23
rd

 International Conference on Computational

Linguistics pp. 295-303 (2010)

[12] Zhang, X., He, B., Luo, T., and Li, B.: Query-biased learning to Rank for Real-time Twitter

Search. In: Proceedings of the 21st ACM international conference on Information and

knowledge management, pp. 1915-1919 (2012)

[13] I. Ounis, C. Macdonald, J. Lin, and I. Soboroff. Overview of the TREC 2011 microblog

track. In TREC, 2011.

[14] Sarma, A.D., Sarma, A.D., Gollapudi, S., and Panigrahy, R.: Ranking Mechanisms in

Twitter-like Forums: In: Proceedings of the third ACM international conference on Web search

and data mining, pp. 21-30 (2010)

[15] Shoutvelocity. http://shoutvelocity.com.

[16] Teevan, J., Ramage, D., and Morris, M.R.: #TwitterSearch: A Comparison of Microblog

Search and Web Search. In: Proceedings of the fourth ACM international conference on Web

search and data mining, pp 35-44 (2011)

[17] Shen, k., Wu, J., Zhang, Y., Han, Y., Yang, X., Song, L., and Gu, X.: Reorder’s User’s

Tweets. In ACM Transactions on Intelligent Systems and Technology, Vol. 4, No. 1, Article 6

(January 2013)

 63

[18] Feng, W., and Wang, J.: Retweet or not? Personalized Tweet Re-ranking. In: Proceedings

of the sixth ACM international conference on Web search and data mining, pp. 577-586 (2013)

[19] Chen, K., Chen, T., Zheng, G., Jin, O., Yao, E., and Yu, Y.: Collaborative Personalized

Tweet Recommendation. In: Proceedings of the 35th international Special Interest Group of

Information Retrieval conference on Research and development in information retrieval, pp.

661-670 (2012)

[20] Chaoji, V., Ranu, S., Rastogi, R., and Bhatt, R.: Recommendations to Boost Content Spread

in Social Networks. In: Session: Information Diffusion in Social Networks, Proceedings of the

21st international conference on World Wide Web, pp. 529-538 (2012)

[21] Phelan, O., McCarthy, K., Bennett, M., and Smyth, B.: On using the Real-time Web for

News Recommendation & Discovery. In: Proceedings of the 20th international conference

companion on World Wide Web, pp. 103-104 (2011)

[22] Chen, J., Nairn, R., and Chi, Ed H.: Speak Little and Well: Recommending Conversations in

Online Social Streams. In: Proceedings of the Special Interest Group on Computer Human

Interaction Conference on Human Factors in Computing Systems, Session: Twitter Systems, pp.

217-226 (2011)

[23] Lin, J., and Efron, M.: Temporal Relevance Profiles for Tweet Search. In: SIGIR Workshop

of Time Aware Information Access (2013)

[24] I. Ounis, C. Macdonald, J. Lin, and I. Soboroff. Overview of the TREC-2011 Microblog

Track. In: Proceedings of the Twentieth Text Retrieval Conference, (2011)

 64

[25] Asadi, N., and Lin, J.: Document Vector Representation for Feature Extraction in Multi-

Stage Document Ranking. In: Information Retrieval, Vol. 16, Issue 6, pp. 747-768 (December

2013)

[26] https://dev.twitter.com/docs/platform-objects/users, last accessed on 15 Aug 2013

[27] https://dev.twitter.com/docs/platform-objects/tweets, last accessed on 15 Aug 2013

[28] https://dev.twitter.com/docs/platform-objects/entities, last accessed on 15 Aug 2013

[29] Helsel, D. R., and Hirsch, R. M.: Statistical Methods in Water Resources. Chapter-

12(12.4.1), pp. 338-340, (2002)

[30] Kwak, H., Lee, C., Park, H., and Moon, S.: What is Twitter, a Social Network or a News

Media? In: Proceedings of the 19
th

 international conference on World Wide Web, pp. 591-600

(2010)

[31] Tinati, R., Carr, L., Hall, W., and Bentwood, J.: Identifying Communicator Roles in Twitter.

In: Proceedings of the 21
st
 international conference companion on World Wide Web, pp. 1161-

1168 (2012)

[32] Bourke, S., O’Mahony, M.P., Rafter, R., and Smyth, B: Ranking in Information Streams. In:

Proceedings of the International Conference on Intelligent User Interfaces companion, pp. 99-

100 (2013)

[33] Asadi, N., and Lin, J.: Fast Candidate Generation for Real-Time Tweet Search with Bloom

Filter Chains. In: ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13 (July

2013)

[34] Safar, M., Farahat, H., and Mahdi, K.: Analysis of Dynamic Social Network: E-mail

Messages Exchange Network. In: Information Integration and Web-based Applications &

 65

Services, In: Proceedings of the 11th International Conference on Information Integration and

Web-based Applications & Services, pp. 41-48 (2009)

 [35] Besmer, A., Lipford, H.R., Shehab, M., and Cheek, G.: Social Applications: Exploring A

More Secure Framework. In: Proceedings of the 5th Symposium on Usable Privacy and Security

Article No. 2, (2009)

[36] Schneider. F., Feldmann, A., Krishnamurthy, B., and Willinger, W.: Understanding Online

Social Network Usage from a Network Perspective. In: Proceedings of the 9th ACM Special

Interest Group on Data Communications conference on Internet measurement conference, pp.

35-48 (2009)

[37] Oskouei, R.J.: The Role of Social Networks on Female Students Activities. Proceedings of

the 1st Amrita ACM-W Celebration on Women in Computing in India, Article No. 26 (2010)

[38] Morris, M.R., Teevan, J., and Panovich, K.: What Do People Ask Their Social Networks,

and Why? A Survey Study of Status Message Q&A Behavior. In: Proceedings of the Special

Interest Group on Computer Human Interaction Conference on Human Factors in Computing

Systems, pp. 1739-1748 (2010)

[39] Lee, D.H., and Brusilovsky, P.: Improving Recommendations Using WatchingNetworks a

Social Tagging System. In: Proceedings of the iConference, pp 33-39 (2011)

[40] https://dev.twitter.com/docs/rate-limiting/1.1, last accessed on 15 Aug 2013

