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HARVESTING

Christopher Chow

Master of Science, 2018
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ABSTRACT

We propose a predator-prey model by incorporating a constant harvesting

rate into a Lotka-Volterra predator-prey model with prey refuge which was

studied recently. All the positive equilibria and the local stability of the

proposed model are studied and analyzed by sorting out the intervals of

the parameters involved in the model. These intervals of the parameters

exhibit the effects on the dynamical behaviors of prey and predators. The

emphasis is put on the ranges of the prey refuge constant and harvesting

rate. We show that the model has two positive boundary equilibria and one

equilibrium. By using the qualitative theory for planar systems, we show that

the two positive boundary equilibria can be saddles, saddle-nodes, topological

saddles or stable or unstable nodes, and the interior positive equilibrium is

locally asymptotically stable. Under suitable restrictions on the parameters,

we prove that the positive interior equilibrium is a stable node.
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Chapter 1

Introduction

1.1 Definitions and Notation

Consider the following autonomous dynamical system
ẋ(t) := f(x(t), y(t)),

ẏ(t) := g(x(t), y(t)).

(1.1.1)

For t ≥ 0, with initial values (x(0), y(0)) = (x0, y0)

We use the standard notation for a derivative with respect to time, where

ẋ(t) =
dx(t)

dt

Definition 1.1.1. (x(t), y(t)) is said to be a solution of (1.1.1) if x, y ∈ C1

and satisfies both equations of (1.1.1). A solution (x(t), y(t)) is said to be

positive if for all t ≥ 0, x(t), y(t) ≥ 0; a boundary if x(t) ≡ 0 or y(t) ≡ 0;

positive interior if x(t), y(t) > 0 .
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Definition 1.1.2. (x∗, y∗) ∈ R2 is said to be an equilibrium of (1.1.1) if it

satisfies f(x∗, y∗) = 0 and g(x∗, y∗) = 0. An equilibrium point (x∗, y∗) is said

to be positive if x∗, y∗ ≥ 0; a boundary if x∗ = 0 or y∗ = 0; positive interior

if x∗, y∗ > 0.

Definition 1.1.3. A map T : R2 → R2 defined by T (x, y) = (h1(x, y), h2(x, y))

is said to be regular if T is one to one and onto, T and T−1 are continuous

and |A(x, y)| 6= 0 on R2.

Definition 1.1.4. If T is regular, then the following transformation
x1 = h1(x, y),

y1 = h2(x, y)

(1.1.2)

is said to be a regular transformation.

If (1.2.1) is changed into another system under suitable regular transfor-

mations, then the two systems are said to be equivalent.

1.2 Local Stability Analysis

In order to analyze the local asymptotic stability near an equilibrium of a

system of first order autonomous non-linear scalar differential equations, we

can use the method of linearization [2], which is described below.

Consider the autonomous dynamical system of non-linear equations with

two variables, x and y: 
ẋ(t) = f(x, y),

ẏ(t) = g(x, y),

(1.2.1)
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Assume the system (1.2.1) has an equilibrium (x∗, y∗).

We may expand the functions f and g using the Taylor series centered at

(x∗, y∗) where u = x− x∗ and v = y − y∗:

du

dt
= f(x∗, y∗) + fx(x

∗, y∗)u+ fy(x
∗, y∗)v + fxx(x

∗, y∗)
u2

2
+ fxy(x

∗, y∗)uv + ...

dv

dt
= g(x∗, y∗) + gx(x

∗, y∗)u+ gy(x
∗, y∗)v + gxx(x

∗, y∗)
u2

2
+ gxy(x

∗, y∗)uv + ...

Definition 1.2.1. The following system is said to be linearized about the

equilibrium (x∗, y∗):

d ~X

dt
= A ~X

where ~X = (uv)T and A is the Jacobian matrix evaluated at the equilibrium

(x∗, y∗).

We denote by A(x, y) the Jacobian matrix of f and g at (x, y), that is,

A(x, y) =


∂f

∂x

∂f

∂y
∂g

∂x

∂g

∂y

 (1.2.2)

and by |A(x, y)| and tr(A(x, y)) its determinant and trace, respectively.
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The eigenvalues of A(x, y) are determined by the roots of the character-

istic polynomial:

P (λ) = λ2 − tr (x, y) + |A(x, y)|

The solutions of a linear system can be studied near the equilibrium (x∗, y∗)

by the eigenvalues, λ1, λ2, of A(x∗, y∗)

Definition 1.2.2. An equilibrium of system (1.2.1) is said to be:

(a) a saddle when the eigenvalues of (1.2.2) are real numbers such that

λ1 < 0 < λ2.

(b) a node when the eigenvalues are real numbers with the same sign. A

node is called a stable when λ1,2 < 0. It is called an unstable node when it is

not stable; in this case λ1,2 > 0 .

(c) locally asymptotically stable when eigenvalues are negative or have

negative real part.

The following results apply to non-linear planar systems of first order

differential equations. The results require that the system may be linearized

about an equilibrium, in this case the non-linear system behaves similiarly

to a linear system, with some exceptions. The results have been commonly

used to study the local stability of biological models based on non-linear

systems, for example, in [11, 23, 22, 13, 21, 20, 16, 36]. We later will use

these qualitative theories when discussing local stabilities.

Lemma 1.2.1. [27] Let (u∗, v∗) be an equilibrium of (1.2.1). Then the

following assertions hold.
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(i) If |A(u∗, v∗)| < 0, then (u∗, v∗) is a saddle.

(ii) If |A(u∗, v∗)| > 0 and (tr(A(u∗, v∗)))2− 4|A(u∗, v∗)| ≥ 0, then (u∗, v∗)

is a node. It is stable if tr(A(u∗, v∗)) < 0 and unstable if tr(A(u∗, v∗)) > 0.

(iii) Assume that |A(u∗, v∗)| > 0. If tr(A(u∗, v∗)) < 0, then (u∗, v∗) is

locally asymptotically stable; if tr(A(u∗, v∗)) = 0, then it is stable and if

tr(A(u∗, v∗)) > 0, then it is unstable.

Lemma 1.2.2. [20] Let (u∗, v∗) be an equilibrium of (1.2.1). Assume that

|A(u∗, v∗)| = 0, tr(A(u∗, v∗)) 6= 0 and (1.2.1) is equivalent to the following

system 
u̇1 = p(u1, v1),

v̇1 = %v1 + q(u1, v1)

(1.2.3)

with an isolated equilibrium (0, 0), where p(u1, v1) =
∑∞

i+j=2,i,j≥0 aiju
i
1v
j
1 and

q(u1, v1) =
∑∞

i+j=2,i,j≥0 biju
i
1v
j
1 are convergent power series. If % 6= 0 and

a20 6= 0, then (u∗, v∗) is a saddle-node.

A function f : Ω ⊂ R2 → R is said to be analytic in an open set Ω if it

has a convergent Taylor series in some neighborhood of each point in Ω (see

[27, p.69]).

When |A(u∗, v∗)| = tr(A(u∗, v∗)) = 0 and A(u∗, v∗) 6= 0, under suitable

regular transformations, (1.2.1) is equivalent to the following form
u̇ = v,

v̇ = aku
k[1 + h(u)] + bnu

nv[1 + g(u)] + v2R(u, v)

(1.2.4)
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with equilibrium (0, 0), where h, g and R are analytic in a neighborhood of

(0, 0), h(0) = g(0) = 0, k ≥ 2, ak 6= 0 and n ∈ N.

Lemma 1.2.3 ([1, 27]). Let (u∗, v∗) be an equilibrium of (1.2.1) and |A(u∗, v∗)| =

tr(A(u∗, v∗)) = 0 and A(u∗, v∗) 6= 0. If (1.2.1) is equivalent to (1.2.4),

k = 2m+ 1 ∈ N and ak > 0, then (u∗, v∗) is a topological saddle.

1.3 Lotka-Volterra Predator-Prey Models

Systems of two suitable first order ordinary differential equations can be used

to model the interaction between predators and their prey. The dynamical

behaviors of the predators and prey can be described by studying the local

stability of the planar systems. These dynamical properties provide insight

into whether the prey and predators will coexist or suffer from mutual ex-

tinction.

One of the classical predator-prey models is the Lotka-Volterra predator-

prey model, which is often used to describe the dynamics of biological systems

in which two species interact. Since 1925, a variety of predator-prey models

have been proposed by introducing functional responses such as Holling-

Tanner predator responses [4, 15, 14, 21, 22, 26, 28, 30, 31, 32, 33, 34],

Beddington-DeAngelis functional responses [3, 5, 10, 20], ratio-dependent

functional responses [17, 19, 35], and harvesting rates [13, 18, 20, 22, 35, 36].

The dynamical behaviors of these models have been widely investigated and

analyzed.
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1.4 The Proposed Model

In 2010, Ma [24] proposed and studied a Lotka-Volterra predator-prey model

with a constant prey refuge, which is governed by the following system
ẋ = rx(1− x

K
)− c(x−R)y,

ẏ = e(x−R)y − dy,
(1.4.1)

where x(t) and y(t) denote the density of prey and predator populations

at time t, respectively, r is the growth rate of the prey, K is the carrying

capacity of the prey, c is the per capita rate of predation of the predator

(fraction of the prey population eaten per predator), e is a conversion rate of

eaten prey into new predator abundance, d is the per capita death rate of the

predator and R is the constant prey refuge. The model was further studied

and analyzed in [6, 7]. It was showed in [6, 24] that the positive interior

equilibrium is globally asymptotically stable and it was proved in [7] that

the positive boundary equilibria are saddles for arbitrary prey refuge. Other

predator-prey models with constant prey refuges can be found for example,

in [8, 12, 18, 25, 29].

Harvesting strategies play important roles in the study of optimal man-

agement and exploitation renewable resources [9]. A variety of constant

or nonconstant harvesting rates have been incorporated into predator-prey

models, for example in [13, 18, 20, 22, 35, 36]

In this paper, we incorporate a constant prey harvesting rate, denoted

by h, into the Lotka-Volterra predator-prey model with prey refuge (1.4.1).

This means that prey are being removed from the environment due to some

7



external factor, most likely due to humans hunting or poaching the prey

population. The proposed model is governed by the following planar system
ẋ = rx(1− x

K
)− c(x−R)y − h,

ẏ = e(x−R)y − dy.
(1.4.2)

Following [7], we consider solutions (x, y) of (1.4.2) satisfying x(t) ≥ 0 and

y(t) ≥ 0 for t ≥ 0, but unlike the study in [6, 7, 24], where the authors

directly study (1.4.1) without simplification, we use a suitable transformation

to change (1.4.2) into an equivalent system and reduce the 7 parameters in

(1.4.2) to 4 parameters in the following new system
u̇ = u(1− u)− (u− α)v − η := f(u, v),

v̇ = β(u− α)v − γv := g(u, v).

(1.4.3)

This model we will be refered to frequently in the following chapters. It will

be the main focus of the work done, however all results found for system

(1.4.3) will also pertain to the equivalent system (1.4.2) on which the model

is based.
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Chapter 2

Qualitative Behaviour of The

Equilibrium Points

2.1 Equivalent System

In this section we provide a method for constructing system (1.4.3), which

is equivalent to system (1.4.2). The number of parameters are reduced from

7 to 4, while at the same time preserving the biological meanings of each

parameter. For this reason, we choose to discuss system(1.4.3) instead of

system (1.4.2). The method of using suitable transformations to reduce

the number of parameters in biological models has been widely used in

[11, 13, 16, 19, 20, 21, 22, 23, 36]. We will use system (1.4.3) to study

the model using the qualitative theory discussed in the previous chapter, but

first we would like to detail the construction of system (1.4.3).
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Theorem 2.1.1. system (1.4.2):
ẋ = rx(1− x

K
)− c(x−R)y − h,

ẏ = e(x−R)y − dy,

is equivalent to system (1.4.3):


u̇ = u(1− u)− (u− α)v − η

v̇ = β(u− α)v − γv

by t̄ = rt, u = x/K and v = cy/r, where α = R/K, β = eK/r, γ = d/r and

η = h/(Kr)

Proof. Let t̄ = rt, u = x/K and v = cy/r,

du

dt̄
=
du

dt
· dt
dt̄

=

(
du

dx
· dx
dt

)
dt

dt̄
=

(
1

K
· dx
dt

)
1

r

=
1

Kr

[
rx(1− x

K
)− c(x−R)y − h

]
=

1

Kr

[
rKu

(
1− Ku

K

)
− c(Ku−R)

rv

c
− h
]

= u(1− u)−
(
u− R

K

)
v − h

Kr

= u(1− u)− (u− α)v − η

10



dv

dt̄
=
dv

dt
· dt
dt̄

=

(
dv

dy
· dy
dt

)
dt

dt̄
=

(
c

r
· dy
dt

)
1

r

=
c

r2
[e(x−R)y − dy]

=
c

r2

[
e(Ku−R)

rv

c
− dvr

c

]
=

e

rK

(
u− R

K

)
v − d

r
v

= β(u− α)v − γv

Let T : R2 → R2 be the mapping such that T is defined by the corre-

spondence T (x) = Ax, where x ∈ R2,

A =

 1/K 0

0 c/r

 and |A| = c

rK
6= 0,

and T−1(x) = A−1xT

A−1 =

 K 0

0 r/c

 and |A| = rK

c
6= 0

For any p, q ∈ R2, where p = (p1 p2)
T and q = (q1 q2)

T and any scalar

s ∈ R we have that

T (p+q) = T (p)+T (q) since A ·(p+q) = Ap+Aq =
(
p1+q1
K

c(p2+q2)
r

)T

We will show that T is continuous. Let ε > 0 be given, choose δ = ε/||A||.

Let x ∈ R2 and a ∈ R2 such that ||x− a|| < δ then

||T (x)− T (a)|| = ||T (x− a)|| = ||A · (x− a)|| ≤ ||A|| · ||(x− a)|| < ||A||δ = ε

11



Hence, ||T (x) − T (a)|| < ε when ||x − a|| < δ. Thus T is continuous at

a for any a ∈ R2. Therefore T is continuous on R2. Similarly, T−1 can be

shown to be continuous. Furthermore, Ax = 0 has only the trivial solution,

therefore T is one-to-one. The columns of A span R2, therefore T is onto.

By Definition 1.1.3, T is a regular mapping and system (1.4.3) is a regular

transformation by Definition 1.1.4, then it is an equivalent to system (1.4.2)

with t̄ = rt.

Corollary 2.1.2. System (1.4.1) is equivalent to the following system
u̇ = u(1− u)− (u− α)v,

v̇ = β(u− α)v − γv,
(2.1.1)

Proof. This is a special case of Theorem (2.1.1), where h = η = 0

Remark 2.1.1. Note that α = R/K, β = eK/r, γ = d/r and η = h/(Kr)

have same biological meanings as R, e, d and h. From (1.4.3).

2.2 Positive Equilibria

In this chapter we justify the existence of the equilibria of the model. We

find the values of the equilibria with respect to the values of the parameters.

Further, we provide the number of equilibria with respect to the values of

the parameters.

Following the transformation detailed in the previous chapter, we show

that the model can be expressed as system (1.4.3), which are both equiva-

12



lent. The latter having less parameters than the former. It is known that

under regular transformations, the topological structures of solutions of a

planar system near equilibria, including a variety of dynamics like saddles,

topological saddles, nodes, saddle-nodes, foci, centers, or cusps, remain un-

changed [1]. For these reasons, we consider system (1.4.3) when discussing

the equilibria.

Lemma 2.2.1. (u, v) is an equilibrium of system (1.4.3) if and only if (u, v)

satisfies 
u(1− u)− η = 0

v = 0

(2.2.1)

or


u(1− u)− (u− α)v − η = 0

v 6= 0 and u = α + γ/β.

(2.2.2)

Proof. Consider the system (1.4.3), namely:
u̇ = u(1− u)− (u− α)v − η

v̇ = β(u− α)v − γv

By Definition (1.1.2), an equilibrium of system (1.4.3) must satisfy:
u(1− u)− (u− α)v − η = 0

β(u− α)v − γv = 0

(2.2.3)
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Suppose v = 0, then the system (2.2.3) becomes:
u(1− u)− η = 0

v = 0

Suppose v 6= 0, then from the second equation of system (2.2.3) we have:

β(u− α)v − γv = 0

=⇒ β(u− α)− γ = 0

=⇒ u = α + γ/β

Therefore, the system (2.2.3) becomes:
u(1− u)− (u− α)v − η = 0

v 6= 0 and u = α + γ/β.

14



The following results provide the solutions of system (2.2.1) as well as the

conditions for which they are positive solutions. It is shown that in order for

the system to have positive solutions, the condition 0 ≤ η ≤ 1/4 is required.

Lemma 2.2.2. Let β > 0, γ > 0 and α ≥ 0. Then the following assertions

hold.

(1) If η > 1/4, then (2.2.1) has no real solutions.

(2) If η = 1/4, then (2.2.1) has a unique positive solution (1/2, 0).

(3) If 0 ≤ η < 1/4, then (2.2.1) has two positive solutions (u1(η), 0) and

(u2(η), 0), where

u1(η) = 1/2−
√

1/4− η and u2(η) = 1/2 +
√

1/4− η (2.2.4)

Proof. From the first equation of system (2.2.1) we have:

−u2 + u− η = 0

by solving the quadratic equation we find the solutions:

u1(η) = 1/2−
√

1/4− η and u2(η) = 1/2 +
√

1/4− η

system (2.2.1) has two solutions (u1(η), 0) and (u2(η), 0), where η ≥ 0.

(1) Under the condition η > 1/4, we find that
√

1/4− η is not a real

number. In this case, u1(η) and u2(η) are not real numbers, therefore system

(2.2.1) has no real solutions.

(2) Under the condition η = 1/4, we have (u1(η), 0) = (u2(η), 0) = (1/2, 0)

is a unique solution of system (2.2.1).
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(3) Under the condition 0 ≤ η < 1/4, we have 1/2 ≥
√

1/4− η > 0, then

u1(η) = 1/2−
√

1/4− η ≥ 0 and u2(η) = 1/2 +
√

1/4− η > 0

Therefore, (u1(η), 0) and (u2(η), 0) are positive solutions of system (2.2.1).

The following result gives the number of positive solutions of system

(2.2.2). The range of parameters are determined for which the system has no

real solution or a unique solution. We show that in order to ensure existence

of the positive interior solution of system (2.2.2), one must restrict the prey

refuge and harvesting rate to suitable intervals (0, α1) and [0, η0), respectively.

Notation: Let α0 = 1/2− γ/β, α1 = 1/2 + α0 and

η0 := η0(α, β, γ) =
(γ + αβ)(β − γ − αβ)

β2
.

For γ > 0, β > 0 and α ≥ 0,

η0 = (α + γ/β)(α1 − α) (2.2.5)

and

η0 = 1/4− (α− α0)
2. (2.2.6)

In fact, since γ/β = 1/2− α0, we have:

η0 =
(
γ/β + α

)[
1−

(
γ/β + α

)]
=
[
1/2 + (α− α0)

][
1/2− (α− α0)

]
= 1/4− (α− α0)

2.
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Lemma 2.2.3. (1) Assume that one of the following conditions holds.

(i) β > 0, γ > 0, α ≥ 0 and η > 1/4.

(ii) 0 < β < γ and α ≥ 0 and 0 ≤ η < 1/4.

(iii) 0 < γ ≤ β, α > α1 and 0 ≤ η < 1/4.

(iv) 0 < γ ≤ β, 0 ≤ α ≤ α1, α 6= α0 if α0 > 0, and η0 < η < 1/4.

Then (2.2.2) has no positive solutions.

(2) If 0 < γ < β, 0 ≤ α < α1 and 0 ≤ η < η0, then (2.2.2) has a positive

interior solution (u∗, v∗), where

u∗ = α + γ/β and v∗ = (β/γ)(η0 − η). (2.2.7)

Proof. Substituting u = α + γ/β = 1/2 + α − α0 into the first equation of

(2.2.2), we have

v =
u(1− u)− η

u− α
=

(1/2 + α− α0)(1/2− α + α0)− η
1/2− α0

= (β/γ)(η0 − η)

(2.2.8)

and η 6= η0.

(1) It is sufficient to prove v < 0 under each of the conditions (i)-(iv).

If (i) holds, then η > 1/4 and by (2.2.6), η0 ≤ 1/4 < η. By (2.2.8) that

v < 0. If (ii) or (iii) holds, then α > α1. It follows from (2.2.5) that η0 < 0.

By (2.2.8), we have v < 0. If (iv) holds, by (2.2.5) and (2.2.6), we have

0 < η0 < 1/4. Since η0 < η < 1/4, by (2.2.8) we have v < 0.

(2) Since γ < β, 0 ≤ α < α1 and 0 ≤ η < α0, by (2.2.5) and (2.2.6), we

have 0 < η0 < 1/4. Since 0 ≤ η < η0, by (2.2.8) we have v > 0.
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Now we present the main result of existence of the equilibria. Below,

Theorem 2.2.4 gives the number of equilibria for the entire range of parame-

ters α, β, γ and η. We find that there are indeed three potential equilibrium

points; two boundary and one interior. The results of this section will be

used in the following chapter when discussing the local stability of each equi-

librium. Combining Lemmas 2.2.2 and 2.2.3 along with definition 1.1.2, we

obtain our main result on the number of positive equilibria of system (1.4.3).

Theorem 2.2.4. (1) If β > 0, γ > 0, α ≥ 0 and η > 1/4, then system (1.4.3)

has no positive equilibria.

(2) If β > 0, γ > 0, α ≥ 0 and η = 1/4, then system (1.4.3) has a unique

equilibrium (1/2, 0).

(3) If one of the following conditions hold:

(i) 0 < β < γ and α ≥ 0 and 0 ≤ η < 1/4.

(ii) 0 < γ ≤ β, α > α1 and 0 ≤ η < 1/4.

(iii) 0 < γ ≤ β, 0 ≤ α ≤ α1, α 6= α0 if α0 > 0, and η0 < η < 1/4.

then system (1.4.3) has two positive equilibria (u1(η), 0) and (u2(η), 0).

(4) If 0 < γ < β, 0 ≤ α < α1 and 0 ≤ η < η0, then system (1.4.3) has three

equilibria: (u1(η), 0), (u2(η), 0) and (u∗, v∗).

Proof. For (u, v) to be an equilibrium of system (1.4.3), by Lemma 2.2.1,

it is required to be a solution to either system (2.2.1) or system (2.2.2).

Considering this, we prove the claims of the theorem:

(1) Under the conditions β > 0, γ > 0, α ≥ 0 and η > 1/4, by Lemma

2.2.2 (1) and Lemma 2.2.3 (1)−(i) we see that system (2.2.3) has no positive
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solutions, therefore system (1.4.3) has no positive equilibria.

(2) Under the conditions β > 0, γ > 0, α ≥ 0 and η = 1/4, by Lemma

2.2.2 (2) and Lemma 2.2.3 (1) − (i), system (2.2.3) has a unique positive

solution (1/2, 0), therefore, system (2.2.2) has a unique equilibrium (1/2, 0)

(3) Under either condition (i), (ii) and (iii), by Lemma 2.2.2 (3) and

Lemma 2.2.3(1) − (ii), (1) − (iii) and (1) − (iv), system (2.2.3) has two

positive solutions (u1(η), 0) and (u2(η), 0), therefore system (1.4.3) has two

positive equilibria (u1(η), 0) and (u2(η), 0).

(4) Under the conditions 0 < γ < β, 0 ≤ α < α1 and 0 ≤ η < η0,

by Lemma 2.2.2 (3) and Lemma 2.2.3(2), system (2.2.3) has three positive

solutions (u1(η), 0) and (u2(η), 0) and (u∗, v∗), therefore system (1.4.3) has

three positive equilibria (u1(η), 0) and (u2(η), 0) and (u∗, v∗).

Remark 2.2.1. Theorem 2.2.4 is new and provides the conditions under

which the number of positive equilibria of (1.4.3) can be justified. Also,

Theorem 2.2.4 (i) and the proof of Lemma 2.2.3 (i) show that if η > 1/4,

then the predator population becomes extinct. Hence, the harvesting rate

η must be required to be less than or equal to 1/4 to ensure co-existence of

prey and predator populations.

As a special case of Theorem 2.2.4, we obtain the following new result on

the number of positive equilibria of (2.1.1).

Corollary 2.2.5. (1) If either 0 < β < γ and α ≥ 0 or 0 < γ ≤ β and

α > α1, then (2.1.1) has two positive solutions (0, 0) and (1, 0).
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(2) If 0 < γ < β and 0 ≤ α < α1, then (2.1.1) has three equilibria: (0, 0),

(1, 0) and (u∗, v∗) = (α + γ/β, βη0/γ) =
(
α + γ/β, (1 + αβ/γ)(α1 − α)

)
.

Proof. The result (1) follows from Theorem 2.2.4 (3) with the conditions (ii)

and (iii), and the result (2) follows from Theorem 2.2.4 (4).

Remark 2.2.2. The equilibrium (u∗, v∗) of (2.1.1) was obtained in [24], also

see [6, Thoerem B]. The number of positive equilibria of (2.1.1) was not

discussed in [6, 24].
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2.3 Local Stability Analysis

In this chapter, we analyze the local stability of each positive equilibrium of

(1.4.3) in order to understand the long term behaviour of the model. Recall

the methods discussed in Section 1.2 of Chapter 1, namely from [1, 2, 27].

Now, we use the theoretical results to study phase portraits near each of the

positive equilibria of (1.4.3).

For later use within this chapter, we will refer to the following equations

which are determined by system (1.4.3) and the Jacobian matrix (1.2.2):

A(u, v) =

 1− 2u− v −(u− α)

βv βu− αβ − γ

 , (2.3.1)

|A(u, v)| = (1− 2u− v)(βu− αβ − γ) + βv(u− α), (2.3.2)

tr(A(u, v)) = 1− 2u+ βu− v − αβ − γ. (2.3.3)

We study now the stability of the boundary equilibria found in the previ-

ous chapter, (u1(η), 0) and (1/2, 0). The three theorems within this section
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analyze each case of boundary equilibrium (1/2, 0), (u1(η), 0) and (u2(η), 0),

respectively.

For convenience, we reiterate the notation introduced in the previous chapter:

α0 := 1/2− γ/β, α1 := 1/2 + α0 and η0 := 1/4− (α− α0)
2.

The following theorem contains the results pertaining to the equilibrium

(1/2, 0), which proves the equilibrium to be a saddle-node or a topological

saddle under suitable conditions.

Theorem 2.3.1. (1) Assume that one of the following conditions holds,

(i) 0 < β < 2γ, and α ≥ 0.

(ii) 0 < 2γ ≤ β, α ≥ 0 and α 6= α0.

Then (1/2, 0) is a saddle-node of (1.4.3) with η = 1/4.

(2) If 0 < 2γ ≤ β < ∞ and α = α0, then (1/2, 0) is a topological saddle

of (1.4.3) with η = 1/4.

Proof. By (2.3.2), and (2.3.3), we have |A(1/2, 0)| = 0 and

tr(A(1/2, 0)) = β/2− αβ − γ = β(α0 − α).

(1) If 0 < β < 2γ, then α0 < 0, so (i) implies tr(A(1/2, 0)) < 0 and (ii)

implies tr(A(1/2, 0)) 6= 0. To apply Lemma 1.2.2, we change the equilibrium

(1/2, 0) to the origin (0, 0) by using the change of variables u1 = u− 1/2 and
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v1 = v. Noting that η = 1/4, the system (1.4.3) becomes
u̇1 = u̇ = (u1 + 1/2)[1− (u1 + 1/2)]− [(u1 + 1/2)− α]v1 − 1/4

= −u21 − u1v1 + δ1v1,

v̇1 = v̇ = β(u1 + 1/2− α)v1 − γv1 = βu1v1 + δv1,

(2.3.4)

where δ = β(α0 − α) and δ1 = α − 1/2. Let u2 = δu1 − δ1v1 and v2 = v1,

Then the system (2.3.4) becomes

u̇2 = δu̇1 − δ1v̇1 = δ(−u21 − u1v1 + δ1v1)− δ1(βu1v1 + δv1)

= −δu21 − (δ + δ1β)u1v1 = −δ
(u2 + δ1v2

δ

)2
− (δ + δ1β)

(u2 + δ1v2
δ

)
v2

= −(1/δ)u22 − (1/δ)(δ + 2δ1 + δ1β)u2v2 + δ1(δ + δ1 + δ1β)v22
]
,

v̇2 = v̇1 = βu1v1 + δv1 = β
(u2 + δ1v2

δ

)
v2 + δv2 = δv2 + (β/δ)u2v2 + (βδ1/δ)v

2
2.

Since % := δ 6= 0 and a20 := −1/δ 6= 0, by Lemma 1.2.2, (1/2, 0) is a

saddle-node.

(2) If 0 < 2γ ≤ β < ∞ and α = α0, then |A(1
2
, 0)| = 0, tr(A(1

2
, 0)) = 0

and

A(u, v) =

 0 −γ/β

0 0

 6=
 0 0

0 0

 .

Since α = α0, δ = 0 and by (2.3.4), we have
u̇1 = −u21 − u1v1 + δ1v1,

v̇1 = βv1u1

(2.3.5)

Let u2 = u1, v2 = u̇1 = −u21 − u1v1 + δ1v1 and δ∗ = 1/δ1. Then

v1 =
v2 + u21
δ1 − u1

= δ∗
( v2 + u22

1− δ∗u2

)
= δ∗(v2 + u22)

[
1 + δ∗u2 +

∞∑
n=2

(δ∗u2)
n
]
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and the system (2.3.5) becomes u̇2 = u̇1 = v2,

v̇2 = −2u1u̇1 − u̇1v1 − u1v̇1 + δ1v̇1 = −2u2v2 − v2v1 − (u2 − δ1)v̇1

= −2u2v2 − v2v1 − (u2 − δ1)(βv1u1) = −2u2v2 − (βu22 − βδ1u2 + v2)v1

= −2u2v2 − (βu22 − βδ1u2 + v2)δ
∗(v2 + u22)

[
1 + δ∗u2 +

∞∑
n=2

(δ∗u2)
n
]

= −2u2v2 − δ∗(βu22 − βδ1u2 + v2)(v2 + u22)(1 + δ∗u2) +O4(u2, v2)

= −2u2v2 − δ∗(βu22 − βδ1u2 + v2)(v2 + δ∗u2v2 + u22 + δ∗u32) +O4(u2, v2)

= −2u2v2 − δ∗
(
βu22v2 + βδ∗u32v2 + βu42 + βδ∗u52 − βδ1u2v2 − βδ1δ∗u22v2

− βδ1u32 − βδ1u42 + v22 + δ∗u2v
2
2 + u22v2 + δ∗u32v2

)
+O4(u2, v2)

= −2u2v2 − δ∗
[
(β − βδ1δ∗ + 1)u22v2 + (1 + β)δ∗u32v2 + β(1− δ1)u42 + βδ∗u52

− βδ1u2v2 − βδ1u32 + v22 + δ∗u2v
2
2

]
+O4(u2, v2)

= −2u2v2 + δ∗u22v2 − (1 + β)(δ∗)2u32v2 − β(δ∗ − 1)u42 − β(δ∗)2u52 + βu2v2

+ βu32 − δ∗v22 − (δ∗)2u2v
2
2 +O4(u2, v2)

= βu32 + (β − 2)u2v2 − δ∗v22 + δ∗u22v2 − (1 + β)(δ∗)2u32v2 − (δ∗)2u2v
2
2

− β(δ∗)2u52 − β(δ∗ − 1)u42 +O4(u2, v2)

= [βu32 − β(δ∗)2u52] + [(β − 2)u2v2 + δ∗u22v2 − (1 + β)(δ∗)2u32v2]

− [δ∗v22 + (δ∗)2u2v
2
2]− β(δ∗ − 1)u42 +O4(u2, v2)

= βu32
[
1− (δ∗ − 1)u2 − (δ∗)2u22

]
+ u2v2

[
(β − 2) + δ∗u2 − (1 + β)(δ∗)2u22

]
− δ∗v22(1 + δ∗u2) +O4(u2, v2), (2.3.6)
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where

O4(u2, v2) = −(βu22 − βδ1u2 + v2)δ
∗(v2 + u22)

∞∑
n=2

(δ∗u2)
n

= −δ∗
(
βu22v2 + βu42 − βδ1u2v2 − βδ1u32 + v22 + u22v2

) ∞∑
n=2

(δ∗u2)
n

= −δ∗
{
u2v2[(1 + β)u2 − βδ1] + βu32(u2 − δ1) + v22

} ∞∑
n=2

(δ∗u2)
n

=
{
u2v2[β − (1 + β)δ∗u2] + βu32(1− δ∗u2)− δ∗v22

} ∞∑
n=2

(δ∗u2)
n

(2.3.7)

Hence, by (2.3.6) and (2.3.7), we have

v̇2 = βu32

[
1− (δ∗ − 1)u2 − (δ∗)2u22 + (1− δ∗u2)

∞∑
n=2

(δ∗u2)
n
]

+ u2v2

[
(β − 2) + δ∗u2 − (1 + β)(δ∗)2u22 + [β − (1 + β)δ∗u2]

∞∑
n=2

(δ∗u2)
n
]

− δ∗v22[1 + δ∗u2 +
∞∑
n=2

(δ∗u2)
n]

= βu32[1 + h(u2)] + (β − 2)u2v2[1 + g(u2)] + v22R(u2, v2),

where

h(u2) = −(δ∗ − 1)u2 − (δ∗)2u22 + (1− δ∗u2)
∞∑
n=2

(δ∗u2)
n,

g(u2) =
1

β − 2

[
δ∗u2 − (1 + β)(δ∗)2u22 + [β − (1 + β)δ∗u2]

∞∑
n=2

(δ∗u2)
n
]

and

R(u2, v2) = −δ∗ − (δ∗)2u2 −
∞∑
n=2

((δ∗)2u2)
n.

The result follows from Lemma 1.2.3 with k = 3 and n = 1.
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The following theorem contains the results pertaining to the equilibrium

(u2(η), 0), which proves the equilibrium to be a saddle, unstable node or a

saddle-node under suitable conditions.

Theorem 2.3.2. (1) If one of the following conditions holds,

(i) 0 < β/2 ≤ γ, α ≥ 0 and 0 ≤ η < 1
4
;

(ii) 0 < γ < β/2 and α ≥ α0 and 0 ≤ η < 1
4
;

(iii) 0 < γ < β/2, 0 ≤ α < α0 and 0 ≤ η < η0;

then (u1(η), 0) is a saddle of (1.4.3).

(2) If 0 < γ < β/2, 0 ≤ α < α0 and η0 < η < 1/4, then (u1(η), 0) is an

unstable node of (1.4.3).

(3) If 0 < γ < β/2, 0 ≤ α < α0 and η = η0, then (u1(η), 0) is a saddle-node

of (1.4.3).

Proof. By (2.3.2) with (u, v) = (u1(η), 0) and u1(η) = 1/2 −
√

1/4− η, we

have,

|A(u1(η), 0)| = (1− 2u1(η))(βu1(η)− αβ − γ)

= 2
√

1/4− η
[
(β/2− αβ − γ)− β

√
1/4− η

]
= 2β

√
1/4− η

[
(α0 − α)−

√
1/4− η

]
. (2.3.8)

(1) If (i) or (ii) holds, then α0−α ≤ 0. By (2.3.8), we have |A(u1(η), 0)| <

0. If (iii) holds, then by η < η0, we have (α0 − α)2 < 1/4− η and

0 ≤ α0 − α <
√

1/4− η.

This, together with (2.3.8), implies |A(u1(η), 0)| < 0.
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(2) Since 0 ≤ α < α0 and η0 < η < 1/4, we have (α0−α)2 > 1/4− η > 0

and

α0 − α >
√

1/4− η. (2.3.9)

This, together with (2.3.8), implies |A(u1(η), 0)| > 0.

Let

∆(u, 0) = [tr(A(u, 0))]2 − 4|A(u, 0))| for u ≥ 0.

Then by (2.3.2) and (2.3.3) with (u, v) = (u, 0)), we have:

∆(u, 0) =
[
(1− 2u) + (βu− (βα + γ))

]2 − 4(1− 2u)[βu− (βα + γ)]

= (1− 2u)2 − 2(1− 2u)[βu− (βα + γ)] + (βα + γ)2

= [(1− 2u)− 2(βu− (βα + γ))]2 ≥ 0. (2.3.10)

It follows that ∆(u1(η), 0) ≥ 0.

By (2.3.3) with (u, v) = (u1(η), 0), we have

tr(A(u1(η), 0)) = 1− 2u1(η) + βu1(η)− αβ − γ

= 2
√

1/4− η + β
(

1/2−
√

1/4− η
)
− αβ − γ

= 2
√

1/4− η + β
(
α0 − α)−

√
1/4− η

)
. (2.3.11)

This, together with (2.3.9), implies tr(A(u1(η), 0)) > 0. The result follows

from Lemma 1.2.1 (ii).

(3) Since 0 ≤ α < α0 and η = η0, we have (α0 − α)−
√

1/4− η = 0. By

(2.3.8) and (2.3.11), |A(u1(η), 0)| = 0 and tr(A(u1(η), 0)) > 0.

Let u2 = u − u1(η) and v2 = v. Note that 1 − 2u1(η) =
√

1− 4η and

27



u1(η)[1− u1(η)] = η. Then the first equation of (1.4.3) becomes

u̇2 = (u2 + u1(η))[1− (u2 + u1(η))]− [(u2 + u1(η))− α]v2 − η

= −u22 − u2v2 + [1− 2u1(η)]u2 + [α− u1(η)]v2 + u1(η)[1− u1(η)]− η

= −u22 − u2v2 +
√

1− 4ηu2 + [α− u1(η)]v2

= −u22 − u2v2 + δu2 + δ1v2, (2.3.12)

where δ =
√

1− 4η and δ1 = α− u1(η). By (2.2.6) with α0 > α, we have

u1(η) = u1(η0) = 1/2−
√

1/4− η0 = 1/2− (α0 − α) = α + γ/β

and βu1(η)−αβ−γ = 0. This, together with the second equation of (1.4.3),

implies

v̇2 = β(u2 + u1(η)− α)v2 − γv2 = βu2v2 + [βu1(η)− βα− γ]v2 = βu2v2.

(2.3.13)

Let u3 = δu2+δ1v2 and v3 = v2. Then u2 = (u3−δ1v3)/δ and (2.3.12)-(2.3.13)

becomes

u̇3 = δu̇2 + δ1v̇2 = δ(−u22 − u2v3 + u3) + δ1βu2v3

= −δu22 + (βδ1 − δ)u2v3 + δu3

= −1

δ
[u3 − δ1v3]2 +

1

δ

[
(βδ1 − δ)(u3 − δ1v3)v3

]
+ δu3

= −1

δ
u23 +

2δ1 + βδ1 − δ
δ

u3v3 −
δ21 + βδ21 − δδ1

δ
v23 + δu3,

v̇3 = v̇2 =
β

δ
[u3 − δ1v3]v3 = −βδ1

δ
v23 +

β

δ
u3v3.
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Let u4 = v3 and v4 = u3. Then the above system becomes

u̇4 = −βδ1
δ
u24 +

β

δ
u4v4,

v̇4 = δv4 −
1

δ
v24 +

2δ1 + βδ1 − δ
δ

u4v4 −
δ21 + βδ21 − δδ1

δ
u24.

Since % := δ 6= 0 and a20 := −βδ1/δ 6= 0, it follows from Lemma 1.2.2 that

(u1(η), 0) is a saddle-node.

Corollary 2.3.3. If β > 0, γ > 0 and α ≥ 0, then (0, 0) is a saddle of

(2.1.1).

Proof. By Theorem 2.3.2 (1) with η = 0, we see that the conditions (i), (ii)

and (iii) on β, γ and α are equivalent to the condition: β > 0, γ > 0, α ≥ 0.

The result follows from Theorem 2.3.2 (1) with η = 0.

Remark 2.3.1. Corollary 2.3.3 was proved in [7, Theorem 2.3] by using a

different method. By Theorem 2.3.2, we see that the harvesting rate η > 0

affects the dynamical behavior of the model (1.4.3) near the equilibrium

(0, 0). In particular, when η0 ≤ η < 1/4, then Theorem 2.3.2 (2) and (3) are

new.

The following theorem contains the results pertaining to the equilibrium

(u2(η), 0), which proves the equilibrium to be a saddle, stable node or a

saddle-node under suitable conditions.

Theorem 2.3.4. (1) Assume that one of the following conditions holds.

(i) 0 < γ ≤ β/2, 0 ≤ α ≤ α0 and 0 ≤ η < 1/4.

(ii) 0 < β/2 < γ < β, 0 ≤ α < α1 and 0 ≤ η < η0.
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(iii) 0 < γ < β/2, α0 < α < α1 and 0 ≤ η < η0.

Then (u2(η), 0) is a saddle of (1.4.3).

(2) Assume that one of the following conditions holds.

(i) 0 < β < γ, α ≥ 0 and 0 ≤ η < 1/4.

(ii) 0 < β/2 < γ ≤ β, 0 ≤ α ≤ α1 and η0 < η < 1/4.

(iii) 0 < γ ≤ β, α > α1 and 0 ≤ η < 1/4.

(iv) 0 < γ ≤ β/2, α0 < α ≤ α1 and η0 < η < 1/4.

Then (u2(η), 0) is a stable node of (1.4.3).

(3) Assume that one of the following conditions holds.

(i) If 0 < β/2 < γ ≤ β, 0 ≤ α ≤ α1 and η = η0.

(ii) 0 < γ ≤ β/2, α0 < α ≤ α1 and η = η0.

Then (u2(η), 0) is a saddle-node of (1.4.3).

Proof. By (2.3.2) with (u, v) = (u2(η), 0) and u2(η) = 1/2 +
√

1/4− η, we

have

|A(u2(η), 0)| = (1− 2u2(η))(βu2(η)− αβ − γ)

= −2
√

1/4− η
[
β/2 + β

√
1/4− η − αβ − γ

]
= 2β

√
1/4− η

[
(α− α0)−

√
1/4− η

]
. (2.3.14)

(1) If (i) holds, then α−α0 ≤ 0 and
√

1/4− η > 0. It follows from (2.3.14)

that |A(u2(η), 0)| < 0. If (ii) or (iii), then α− α0 > 0. Since 0 ≤ η < η0, by

(2.2.6) we have 0 ≤ η < η0 = 1/4− (α− α0)
2 and (α− α0)

2 < 1/4− η. This

implies 0 < α − α0 <
√

1/4− η. By (2.3.14), we have |A(u2(η), 0)| < 0. By

Lemma 1.2.1 (1), (u2(η), 0) is a saddle of (1.4.3).
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(2) We first prove |A(u2(η), 0)| > 0. By (2.3.14), we see that |A(u2(η), 0)| >

0 if and only if

α > α0 and η > η0. (2.3.15)

Hence, it is sufficient to show that under each of the conditions (i)-(iv),

(2.3.15) holds. In fact, (i) implies α0 < α1 < 0 ≤ α and η0 < 0 ≤ η; (ii)

implies α0 < 0 ≤ α and 0 ≤ η0 < η; (iii) implies α0 < 0 < α1 < α and

η0 < 0 ≤ η and (iv) implies 0 ≤ α0 < α < α1 and 0 ≤ η0 < η. Hence, we

have proved |A(u2(η), 0)| > 0. By (2.3.10), ∆(u2(η), 0) ≥ 0. By (2.3.3) with

(u, v) = (u2(η), 0) and (2.3.14), we have

tr(A(u2(η), 0)) = 1− 2u2(η) + βu2(η)− αβ − γ

= −2
√

1/4− η + β/2 + β
√

1/4− η − αβ − γ

= −2
√

1/4− η − β
(
α− α0 −

√
1/4− η

)
= −2

√
1/4− η − |A(u2(η), 0)|

2
√

1/4− η
< 0. (2.3.16)

The result follows from Lemma 1.2.1 (ii).

(3) Since η0 = 1/4 − (α − α0)
2, under each of the condition (i) and

(ii), by (2.3.14) and (2.3.16) with η = η0, we have |A(u2(η), 0)| = 0 and

tr(A(u2(η), 0)) < 0.

Let u3 = u − u2(η) and v3 = v. Note that 2u2(η) − 1 =
√

1− 4η and
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u2(η)[1− u2(η)] = η. Then the first equation of (1.4.3) becomes

u̇3 = (u3 + u2(η))[1− (u3 + u2(η))]− [(u3 + u2(η))− α]v3 − η

= −u23 − u3v3 + [1− 2u2(η)]u3 + [α− u2(η)]v3 + u2(η)[1− u2(η)]− η

= −u23 − u3v3 +
√

1− 4ηu3 + [α− u2(η)]v3

= −u23 − u3v3 + δu3 + δ1v3, (2.3.17)

where δ =
√

1− 4η and δ1 = α−u2(η). Under each of the conditions (i) and

(ii), we have α− α0 > 0. By (2.2.6) with η = η0, we have

u2(η) = u2(η0) = 1/2 +
√

1/4− η0 = 1/2 + α− α0 = α + γ/β.

This implies βu2(η) = βu2(η0)−αβ − γ = 0. This, together with the second

equation of (1.4.3), implies

v̇3 = β(u3 + u2(η)− α)v3 − γv3 = βu3v3 + [βu2(η)− αβ − γ]v3 = βu3v3.

(2.3.18)

Let u4 = δu3 + δ1v3, and v4 = v3. Then u3 = (u4 − δ1v4)/δ and (2.3.17)-

(2.3.18) becomes

u̇4 = δu̇3 + δ1v̇3 = δ(−u23 − u3v3 + δu3 + δ1v3) + δ1βu3v4

= δ(−u23 − u3v4 + u4) + δ1βu3v4 = −δu23 + (βδ1 − δ)u3v4 + δu4

= −1

δ
[u4 − δ1v4]2 +

1

δ

[
(βδ1 − δ)(u4 − δ1v4)v4

]
+ δu4

= −1

δ
u24 +

2δ1 + βδ1 − δ
δ

u4v4 −
δ1[(1 + β)δ1 − δ]

δ
v24 + δu4,

v̇4 = v̇3 =
β

δ
[u4 − δ1v4]v4 = −βδ1

δ
v24 +

β

δ
u4v4.
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Let u5 = v4 and v5 = u4. Then the above system becomes

u̇5 = −βδ1
δ
u25 +

β

δ
u5v5,

v̇5 = δv5 −
1

δ
v25 +

2δ1 + βδ1 − δ
δ

u5v5 −
δ1[(1 + β)δ1 − δ]

δ
u25.

Since % := δ 6= 0 and a20 := −βδ1/δ 6= 0, it follows from Lemma 1.2.2 that

(u2(η), 0) is a saddle-node of (1.4.3).

Corollary 2.3.5. (1) If either 0 < γ < β with γ 6= β/2 and 0 ≤ α < α1 or

0 < γ = β/2 and α = 0, then (1, 0) is a saddle of (2.1.1).

(2) If either 0 < β < γ and α ≥ 0 or 0 < γ ≤ β and α > α1, then (1, 0)

is a stable node of (2.1.1).

(3) If 0 < γ ≤ β and α = α1, then (1, 0) is a saddle-node of (2.1.1).

Proof. (1) The conditions in (1) are equivalent to the conditions (i), (ii) and

(iii) in Theorem 2.3.4 (1) with η = 0. The result (1) follows from Theorem

2.3.4 (1) with η = 0. The result (2) follows from (i) and (iii) of Theorem

2.3.4 (2) with η = 0 and the result (3) follows from Theorem 2.3.4 (2).

Remark 2.3.2. Corollary 2.3.5 shows that the equilibrium (1, 0) can be

a saddle, a stable node or a saddle-node for suitable choice of the refuge

constant α. However, [7, Theorem 2.3] shows that (1, 0) only is a saddle

for all refuge values, α ≥ 0, by using a different method. Figure 1 given in

section 4 shows that (1, 0) can be a stable node or a saddle-node.

We now study the phase portraits near the positive interior equilibrium

(u∗, v∗) of system (1.4.3).
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For convenience, we provide a summary of the the notation used in this

section:

α0 := 1/2− γ/β, α1 := 1/2 + α0, α2(β, γ) :=
1

2
−
√
ω(β, γ)√

12β
,

α3(β, γ) :=
1

2
+

√
ω(β, γ)√

12β
, η0 := 1/4− (α− α0)

2

η1 := γ2/β2 + 1/4− (α− 1/2)2, ∆(α, η) := [tr(A(u∗, v∗))]2 − 4|A(u∗, v∗)|

ω(β, γ) := β2 − 8βγ2 + 4γ2, % := max{ β√
2(1 + β)

,
4β2

1 + 4β
}

The following theorem proves that (u∗, v∗) is stable, unstable or locally symp-

totically stable.

Theorem 2.3.6. (1) Assume that one of the following conditions holds.

(i) 0 < γ < β/2, 0 ≤ α < α0 and 0 ≤ η < η1, where η1 = γ2/β2+α(1−α).

(ii) 0 < γ < β, max{0, α0} ≤ α < α1 and 0 ≤ η < η0.

Then (u∗, v∗) is a locally asymptotically stable.

(2) Assume that 0 < γ < β/2 and 0 ≤ α < α0. If η = η1, then (u∗, v∗) is

stable, and if η1 < η < η0, then (u∗, v∗) is unstable.

Proof. By (2.2.7) we have βu∗ − αβ − γ = 0 and (2.3.1) becomes

A(u∗, v∗) =

 1− 2u∗ − v∗ −(u∗ − α)

βv∗ 0

 . (2.3.19)

We first prove that if 0 < γ < β, 0 ≤ α < α1 and 0 ≤ η < η0, then

|A(u∗, v∗)| = β(η0 − η) > 0. (2.3.20)
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Indeed,

|A(u∗, v∗)| = βv∗(u∗ − α) = β(β/γ)(η0 − η)(γ/β)

= β(η0 − η) = β(η0 − η) > 0.

(1) If 0 ≤ α < α0, then η1 > 0 since

η1 = γ2/β2+1/4−(α−1/2)2 =
(√β2 + 4γ2 + β

2β
−α
)(√β2 + 4γ2 − β

2β
+α
)
.

By (2.2.6), we have

η0 − η1 = 1/4− (α− α0)
2 − γ2/β2 − α(1− α) = (α0 − α)(1− 2α0)

= (2γ/β)(α0 − α). (2.3.21)

By (2.3.19) and Lemma 2.2.3 (2) we have

tr(A(u∗, v∗)) = 1− 2u∗ − v∗

= 1− 2(α + γ/β)− (β/γ)
[(
α + γ/β

)(
1− γ/β − α

)
− η
]

= (β/γ)
[
γ/β − 2(γ/β)(α + γ/β)− (α + γ/β)(1− α− γ/β) + η

]
= (β/γ)

[
γ/β − 2αγ/β − 2γ2/β2 + (γ/β)(α + γ/β)− α(1− α)

−(γ/β)(1− α) + η
]

= (β/γ)
[
η − γ2/β2 − α(1− α)

]
= (β/γ)(η − η1). (2.3.22)

If max{0, α0} ≤ α < α1, then α0 − α ≤ 0 and by (2.3.21), we have η0 ≤ η1.

It follows from 0 ≤ η < η0 that η − η1 < 0. By (2.3.22), tr(A(u∗, v∗)) < 0. If

0 ≤ α < α0, then

γ2/β2 < η1 < γ2/β2 + α0(1− α0) = 1/4.

35



By (2.3.21), η1 < η0 and by (2.3.22), tr(A(u∗, v∗)) < 0. It follows from

Lemma 1.2.1 (iv) that (u∗, v∗) is locally asymptotically stable.

The result (2) follow from (2.3.22) and Lemma 1.2.1 (iv).

Corollary 2.3.7. If 0 < γ < β and 0 ≤ α < α1, then (u∗, v∗) is a locally

asymptotically stable equilibrium of (2.1.1).

Proof. The conditions (i) and (ii) with η = 0 of Theorem 2.3.6 (1) are

equivalent to (i) 0 < β/2 < γ < β and 0 ≤ α < α1; (ii) 0 < γ ≤ β/2,

α0 ≤ α < α1 and (iii) 0 < γ < β/2, 0 ≤ α < α0, which are equivalent to

0 < γ < β and 0 ≤ α < α1. The result follows from Theorem 2.3.6 (1) with

η = 0.

Remark 2.3.3. Theorem 2.3.6 (1) provides the conditions on the prey refuge

and harvesting rates under which the interior equilibrium (u∗, v∗) of (1.4.3)

is locally asymptotically stable. Theorem 2.3.6 (1) with η = 0, that is, Corol-

lary 2.3.7 improves [7, Lemma 2.2 and Theorem 2.5] with m = 1, where it is

proved that (u∗, v∗) is locally asymptotically stable and globally asymptoti-

cally stable, respectively. Theorem 2.3.6 (2) and (3) are new results.

In the following, we show that under suitable conditions on the parame-

ters, (u∗, v∗) is a stable node of (1.4.3).

Let

∆(α, η) := [tr(A(u∗, v∗))]2 − 4|A(u∗, v∗)| (2.3.23)

and for 0 < γ < β, let

ω(β, γ) = β2 − 8βγ2 + 4γ2. (2.3.24)
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Lemma 2.3.8. (1) If 4β2

1+4β
≤ γ < β, then ∆(0, 0) ≥ 0.

(2) If β > 0 and γ > max{0, (2β − 1)/4}, then ∆′α(0, 0) > 0.

(3) If 0 < γ < β and 0 ≤ α < α1, then

∆′′α(α, 0) =
12β2

γ2

[
(α− 1

2
)2 − ω(β, γ)

12β2

]
. (2.3.25)

Proof. By (2.3.20) and (2.3.22), we have

∆(α, η) =
β2

γ2
(η − η1)2 − 4β(η0 − η). (2.3.26)

(1) Since ∆(0, 0) = γ2/β2 − 4β[1/4− α2
0] and α0 = 1/2− γ/β, we have

∆(0, 0) = γ2/β2 − β + 4β
(
1/2− γ/β

)2
= γ2/β2 − 4γ + 4γ2/β2

=
γ

β2
(γ − 4β2 + 4βγ) =

γ(1 + 4β))

β2

(
γ − 4β2

1 + 4β

)
,

from which we see that the result holds.

(2) By (2.3.26) with η = 0 and (2.2.6), we have for α ≥ 0,

∆(α, 0) =
β2

γ2
η21−4βη0 =

β2

γ2

[γ2
β2
−α(α−1)

]2
−4β

[
1/4−(α−α0)

2
]

(2.3.27)

and

∆′α(α, 0) =
2β2

γ2

[γ2
β2
− α(α− 1)

]
(1− 2α) + 8β(α− α0). (2.3.28)

It follows that

∆′α(0, 0) =
2β2

γ2

[γ2
β2
− 0
]
(1− 0) + 8β(0− α0) = 2− 8βα0 = 2− 8β(1/2− γ/β)

= 8
[
γ − 2β − 1

4

]
> 0.
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(3) By (2.3.28), we have for α ≥ 0,

∆′′(α, 0) =
2β2

γ2
(2α− 1)2 − 4

γ2
[
γ2 − β2α(α− 1)

]
+ 8β

=
12β2

γ2
[
(α− 1

2
)2 − β2 − 8βγ2 + 4γ2

12β2

]
=

12β2

γ2

[
(α− 1

2
)2 − ω(β, γ)

12β2

]
.

The result (3) holds.

Lemma 2.3.9. (1) If either 0 < β ≤ 5/8 and 0 < γ < β or β > 5/8 and

0 < γ < β
2
√
2β−1 , then ω(β, γ) > 0.

(2) If β > 5/8 and β
2
√
2β−1 ≤ γ < β, then ω(β, γ) ≤ 0.

Proof. (1) If 0 < γ < β ≤ 1/2, then by (2.3.24), ω(β, γ) = β2+4γ2(1−2β) >

0. If β > 1/2, then

ω(β, γ) = 4(2β − 1)

(
β

2
√

2β − 1
+ γ

)(
β

2
√

2β − 1
− γ
)
. (2.3.29)

It is easy to verify that if 1/2 < β ≤ 5/8, then β ≤ β
2
√
2β−1 . If 1/2 < β ≤ 5/8

and 0 < γ < β or β > 5/8 and 0 < γ < β
2
√
2β−1 , then by(2.3.29), ω(β, γ) > 0.

(2) Since β > 5/8 and β
2
√
2β−1 ≤ γ < β, by (2.3.29) we have ω(β, γ) ≤

0.

Theorem 2.3.10. (1) If β > 5/8, max{ 4β2

1+4β
, β
2
√
2β−1} ≤ γ < β and max{0, α0} ≤

α < α1, then there exists η∗1 ∈ (0, η0) such that (u∗, v∗) is a stable node of

(1.4.3) for η ∈ [0, η∗1].

(2) If β ≥ 1, β
2
√
2β−1 ≤ γ ≤ β

2
and 0 ≤ α < α0, then there exists

η∗2 ∈ (0, η1) such that (u∗, v∗) is a stable node of (1.4.3) for η ∈ [0, η∗2].

Proof. (1) Since β > 5/8, max{ 4β2

1+4β
, β
2
√
2β−1} ≤ γ < β, by Lemma 2.3.9 (2),

ω(β, γ) ≤ 0. Since max{0, α0} ≤ α < α1, by Lemma 2.3.8 (3), ∆′′α(α, 0) ≥ 0.

38



By Lemma 2.3.8 (2),

∆′α(α, 0) ≥ ∆′α(0, 0) > 0 for α ∈ [max{0, α0}, α1).

This, together with Lemma 2.3.8 (1), implies

∆(α, 0) > ∆(0, 0) ≥ 0 for α ∈ [max{0, α0}, α1). (2.3.30)

By the continuity of u∗, v∗ and ∆α(α, η) at η and (2.3.30), for β > 5/8,

max{ 4β2

1 + 4β
,

β

2
√

2β − 1
} ≤ γ < β and max{0, α0} ≤ α < α1,

there exists η∗1 ∈ (0, η0) such that

∆(α, 0) > 0 for η ∈ [0, η∗1].

By (2.3.20) and (2.3.22), |A(u∗, v∗)| > 0 and tr(A(u∗, v∗)) < 0. The result

follows from Lemma 1.2.1 (ii).

(2) If β ≥ 1, β
2
√
2β−1 ≤ γ ≤ β

2
and 0 ≤ α < α0, then by (2.3.30), there

exists η∗ ∈ (0, η1) ⊂ (0, η0) such that

∆(α, 0) > 0 for η ∈ [0, η∗2].

By (2.3.20) and (2.3.22), |A(u∗, v∗)| > 0 and tr(A(u∗, v∗)) < 0. The result

follows from Lemma 1.2.1 (ii).

Lemma 2.3.11. (1) β
2
√
2β−1 ≤

β
2
< 4β2

1+4β
for β ≥ 1.

(2) If β ≥ 5/8, then there exists a unique β∗ ∈ (5/8, 1) such that 4β2

1+4β
≤

β
2
√
2β−1 for β ∈ (5/8, β∗) and 4β2

1+4β
> β

2
√
2β−1 for β > β∗.
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Proof. The proof of (1) is straightforward. We prove (2). For β ≥ 5/8, let

ξ = β
2
√
2β−1 −

4β2

1+4β
. Then we have

ξ =
β(1 + 4β − 8β

√
2β − 1)

2(1 + 4β)
√

2β − 1
=

β[(1 + 4β)2 − [8β
√

2β − 1)]2

2(1 + 4β)[1 + 4β + 8β
√

2β − 1)]
√

2β − 1

=
βh(β)

2(1 + 4β)[1 + 4β + 8β
√

2β − 1)]
√

2β − 1
, (2.3.31)

where

h(β) = 128β3 − 80β2 − 8β − 1 for β > 5/8.

Since

h′(β) = 8(48β2−20β−1) = 384
(
β+

2
√

33− 5

24

)(
β−2
√

33 + 5

24

)
> 0 for β > 5/8,

h is strictly increasing on (5/8,∞). Since h(5/8) < 0 and h(1) >, it follows

that there exists a unique β∗ ∈ (5/8, 1) such that h(β∗) = 0, h(β) < 0 for

β ∈ (5/8, β∗) and h(β) > 0 for β ∈ (β∗,∞). This, together with (2.3.31),

shows that the result (2) holds.

It is easy to verify that

max
{ 4β2

1 + 4β
,

β

2
√

2β − 1

}
< β for β > 5/8

and

2β − 1

4
<

4β2

1 + 4β
for β > 0. (2.3.32)

Let

α2(β, γ) =
1

2
−
√
ω(β, γ)√

12β
and α3(β, γ) =

1

2
+

√
ω(β, γ)√

12β
.
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Lemma 2.3.12. Assume that one of the following conditions holds.

(i) 0 < β ≤ 1/4 and β√
2(1+β)

≤ γ < β√
2(1−2β)

.

(ii) 1/4 < β ≤ 5/8 and β√
2(1+β)

≤ γ < β.

(iii) β > 5/8 and β√
2(1+β)

≤ γ < β
2
√
2β−1 .

Then α0 ≤ α2(β, γ).

Proof. By Lemma 2.3.9 (1) we see that under each of conditions (i), (ii) and

(iii) we have ω(β, γ) > 0. If either 1/2 ≤ β ≤ 5/8 and 0 < γ < β or (iii)

holds, then

α2(β, γ) =
1

2
−
√
ω(β, γ)

2
√

3β
=

√
3β −

√
ω(β, γ)

2
√

3β
=

3β2 − (β2 − 8βγ2 + 4γ2)

2
√

3β(
√

3β +
√
ω(β, γ))

=
β2 + 2(2β − 1)γ2√

3β(
√

3β +
√
ω(β, γ))

. (2.3.33)

and α2(β, γ) > 0. If either (i) or 1/4 < β < 1/2 and 0 < γ < β holds, then

by (2.3.33), we obtain

α2(β, γ) =
(1− 2β)

[
β2

2(1−2β) − γ
2
]

√
3β(
√

3β +
√
ω(β, γ))

. (2.3.34)

Note that if 1/4 < β < 1/2, then β < β√
2(1−2β)

. Hence, by (2.3.34) we see

that under either (i) or 1/4 < β < 1/2 and 0 < γ < β, we have α2(β, γ) > 0.

41



Since γ ≥ β

2
√

2(β+1)
, we have

α2(β, γ)− α0 =
γ

β
−
√
ω(β, γ)

2
√

3β
=

2
√

3γ −
√
ω(β, γ)

2
√

3β
=

12γ2 − ω(β, γ)

2
√

3β(2
√

3γ +
√
ω(β, γ))

=
8(β + 1)γ2 − β2

2
√

3β(2
√

3γ +
√
ω(β, γ))

=
8(β + 1)

2
√

3β(2
√

3γ +
√
ω(β, γ))

(
γ2 − β2

8(β + 1)

)
=

8(β + 1)

2
√

3β(2
√

3γ +
√
ω(β, γ))

(
γ +

β

2
√

2(β + 1)

)(
γ − β

2
√

2(β + 1)

)
≥ 0.

It follows that α0 ≤ α2(β, γ).

Notation: Let % = max{ β√
2(1+β)

, 4β2

1+4β
}. It is easy to verify that 0 <

β < 1/2, then 4β2

1+4β
< β√

2(1−2β)
and by Lemma 2.3.11, 4β2

1+4β
< β

2
√
2β−1 for

β ∈ (5/8, β∗).

Theorem 2.3.13. Assume that one of the following conditions holds.

(1) 0 < β ≤ 1/4 and % ≤ γ < β√
2(1−2β)

.

(2) 1/4 < β ≤ 5/8 and % ≤ γ < β.

(3) 5/8 < β < β∗ and % ≤ γ < β
2
√
2β−1 .

Then for each α ∈ [max{0, α0},min{α1, α2}], there exists η∗ ∈ (0, η0) such

that (u∗, v∗) is a stable node of (1.4.3) for each η ∈ [0, η∗).

Proof. Let α∗ = min{α1, α2}. By Lemma 2.3.12, we see that max{0, α0} ≤

α∗ and it makes sense to choose α to satisfy max{0, α0} ≤ α ≤ α∗. By

Lemma 2.3.8 (1), (2), (2.3.32) and Lemma 2.3.9 (1), we see that under each

of the conditions (i), (ii) and (iii), ∆(0, 0) ≥ 0, ∆′α(0, 0) > 0 and ω(β, γ) > 0.
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Note that each of the conditions (i), (ii) and (iii) implies γ < β. Hence, we

have for 0 ≤ α ≤ α∗,

∆′′(α, 0) =
12β2

γ2
[
(α− 1

2
)2− ω(β, γ)

12β2

]
=

12β2

γ2
(α−α2)(α−α3) ≥ 0. (2.3.35)

This implies that the function ∆′(·, 0) is increasing on [0, α∗] and

∆′α(α, 0) ≥ ∆′α(0, 0) > 0 for α ∈ [0, α∗].

and by Lemma 2.3.8 (1), we have

∆(α, 0) > ∆(0, 0) ≥ 0 for α ∈ [0, α∗].

Hence, for each α ∈ [max{0, α0}, α∗], we have ∆(α, 0) > 0. By the continuity

of u∗, v∗ and ∆(α, η) at η, there exists η∗1 ∈ (0, η0) such that

∆(α, 0) > 0 for η ∈ [0, η∗1].

By Theorem 2.3.6 (1) and (2) (i), |A(u∗, v∗)| > 0 and tr(A(u∗, v∗)) < 0. The

result follows from Lemma 1.2.1 (ii).

2.4 Discussion

We exhibit that both prey refuge α and the harvesting rate η heavily affect the

positive equilibria and the local stability of the model (1.4.3). For example,

if the harvesting rate η is strictly greater than 1/4, (1.4.3) has no positive

equilibria, which implies that the mutual extinction of prey and predators

occurs and the necessary condition for the two species to coexist is 0 ≤ η ≤
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1/4. We give all the ranges of the parameters under which (1.4.3) has a

unique positive boundary equilibrium, two positive boundary equilibria, and

a positive interior equilibrium. In particular, to ensure that positive interior

equilibrium exists, both prey refuge α and harvesting rate η can not be too

large, that is, they must satisfy α ∈ [0, α1) and η ∈ [0, η0). We prove that

when η = 1/4, (1.4.3) has a unique positive equilibrium (1/2, 0), which is

justified to be a saddle-node or topological saddle. When 0 ≤ η < 1/4, (1.4.3)

has two positive boundary equilibria, which may be saddle, unstable node,

stable node or saddle-node, depending on the choices of prey refuge α and

the harvesting rate η. In particular, when η = 0, we show that the boundary

equilibria (0, 0) is a saddle, which is same as the result obtained in [7] by

a different approach, while another equilibria (1, 0) could be saddle, stable

node or saddle-node depending on the choices of prey refuge α. However,

the equilibria (1, 0) was proved in [7] only to be a saddle for arbitrary prey

refuge α. Our result shows that the result in [7] is not true in some cases,

see Corollary 2.3.5. We show that the positive interior equilibrium is locally

asymptotically stable and could be a stable node under suitable restrictions

on the prey refuge and sufficiently small harvesting rate. The last results of

Section 2.3, Theorem 2.3.6 and Theorem 2.3.13, are new.
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Chapter 3

Numerical Simulations

In this chapter we provide numerical simulations for the main results ob-

tained in Chapter 2. In particular, we provide evidence that the boundary

equilibrium (1, 0) can be a stable node or a saddle-node respectively, de-

pending on the values of the parameters. Also, we provide evidence that

the interior equilibrium (u∗, v∗) can be locally asymptotically stable or a sta-

ble node depending on the values of the parameters. In all the examples in

this chapter, we consider system (1.4.3) with the parameter η = 0, which

corresponds to the following system:
u̇ = u(1− u)− (u− α)v,

v̇ = β(u− α)v − γv.
(3.0.1)

In the following examples, we examine system (3.0.1) under specific param-

eter values for β, γ and α. The parameters are determined by following the

Theorems and Corollaries in Section 2.3, in order to demonstrate the results.
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3.1 Example 1

When γ = 1
3
, β = 1 and α = 1

2
, system (3.0.1) becomes:


u̇ = u(1− u)− (u− 1/2)v,

v̇ = (u− 1/2)v − v/3.
(3.1.1)

By Corollary 2.3.5 (1) under the conditions γ = 1
3
, β = 1 and α = 1

2
, we

have (1, 0) is a saddle of system (3.1.1). Below, Figure 3.1 shows numerical

solutions of system (3.1.1). The equilibrium (1, 0) is a saddle of (3.1.1) since

γ = 1
3
, β = 1 and α = 1

2
.

Figure 3.1: Saddle Boundary Equilibrium (Ex. 1)
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3.2 Example 2

When γ = 2, β = 1 and α = 1
2
, system (3.0.1) becomes:


u̇ = u(1− u)− (u− 1/2)v,

v̇ = (u− 1/2)v − 2v.

(3.2.1)

By Corollary 2.3.5 (2) under the conditions γ = 2, β = 1 and α = 1
2
, we have

(1, 0) is a stable node of system (3.2.1). Below, Figure 3.2 shows numerical

solutions of system (3.2.1). The equilibrium (1, 0) is a stable node of (3.1.1)

with γ = 2, β = 1 and α = 1
2
.

Figure 3.2: Stable Node Boundary Equilibrium (Ex. 2)
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3.3 Example 3

When γ = 1
2
, β = 1 and α = 1

2
, system (3.0.1) becomes:


u̇ = u(1− u)− (u− 1/2)v,

v̇ = (u− 1/2)v − v/2.
(3.3.1)

By Corollary 2.3.5 (3) under the conditions γ = 2, β = 1 and α = 1
2
, we have

(1, 0) is a saddle-node of system (3.3.1). Below, Figure 3.3 shows numerical

solutions of system (3.3.1). The equilibrium (1, 0) is a saddle-node of (3.3.1)

with γ = 1
2
, β = 1 and α = 1

2
.

Figure 3.3: Saddle-node Boundary Equilibrium (Ex 3)
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3.4 Example 4

When γ = 1
2
, β = 2 and α = 1

8
, system (3.0.1) becomes:


u̇ = u(1− u)− (u− 1/8)v,

v̇ = 2(u− 1/8)v − v/2.
(3.4.1)

By Theorem 2.3.6 (1)− (i) under the conditions γ = 1
2
, β = 2 and α = 1

8
, we

have (u∗, v∗) = (3
8
, 15
16

) is a locally asymptotically stable equilibrium of system

(3.4.1). Below, Figure 3.4 shows numerical solutions of system (3.4.1). The

equilibrium (u∗, v∗) = (3
8
, 15
16

) is a locally asymptotically stable equilibrium of

(3.4.1) with γ = 1
2
, β = 2 and α = 1

8
.

Figure 3.4: Locally Asymptotically Stable Positive Interior Equilibrium (Ex.

4)
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3.5 Example 5

When γ = 1, β = 2 and α = 1
4
, system (3.0.1) becomes:


u̇ = u(1− u)− (u− 1/4)v,

v̇ = 2(u− 1/4)v − v.
(3.5.1)

By Theorem 2.3.6 (1), (ii) under the conditions γ = 1, β = 2 and α = 1
4
, we

have (u∗, v∗) = (3
4
, 3
8
) is a locally asymptotically stable equilibrium of system

(3.5.1). Below, Figure 3.5 shows numerical solutions of system (3.5.1). The

equilibrium (u∗, v∗) = (3
4
, 3
8
) is a locally asymptotically stable equilibrium of

(3.0.1) with γ = 1, β = 2 and α = 1
4
. with γ = 1

2
, β = 2 and α = 1

8
.

Figure 3.5: Locally Asymptotically Stable Positive Interior Equilibrium (Ex.

5)
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3.6 Example 6

When γ = 1
8
, β = 1

4
and α = 1

10
, system (3.0.1) becomes:


u̇ = u(1− u)− (u− 1/10)v,

v̇ = 1
4
(u− 1/10)v − v/8.

(3.6.1)

By Theorem 2.3.13 (1) under the conditions γ = 1
8
, β = 1

4
and α = 1

10
,

we have (u∗, v∗) = (3
5
, 12
25

) is a stable node of system (3.6.1). Below, Figure

3.6 shows numerical solutions of system (3.6.1). The equilibrium (u∗, v∗) =

(3
5
, 12
25

) is a stable node of (3.6.1) with γ = 1
8
, β = 1

4
and α = 1

10

Figure 3.6: Stable Node Positive Interior Equilibrium (Ex. 6)
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3.7 Example 7

When γ = 7
18

, β = 1
2

and α = 0, sy stem (3.0.1) becomes:


u̇ = u(1− u)− uv,

v̇ = 1
2
uv − 7

18
v.

(3.7.1)

By Theorem 2.3.13 (2) under the conditions γ = 7
18

, β = 1
2

and α = 0, we have

(u∗, v∗) = (7
9
, 54
343

) is a stable node of system (3.7.1). Below, Figure 3.7 shows

numerical solutions of system (3.6.1). The equilibrium (u∗, v∗) = (7
9
, 54
343

) is

a stable node of (3.7.1) with γ = 7
18

, β = 1
2

and α = 0.

Figure 3.7: Stable Node Positive Interior Equilibrium (Ex. 7)
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