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Modeling and simulation of biochemical systems are some of the important research areas in the rapid

rise of Systems Biology. Often biochemical kinetic models represent cellular processes as systems of

chemical reactions. The dynamics of these systems is typically described by using stochastic models.

We introduce a method for an accurate sensitivity analysis of continuous such models of well-stirred

biochemical systems. Sensitivity analysis plays a central role in the study of biochemical systems, being

an important tool in their model construction, investigation and validation. In particular, it enables the

identification of the key reaction rate parameters and it gives insight on how to effectively reduce the

system while maintaining its overall behavior. The efficiency and accuracy of the method discussed are

tested on several examples of practical interest.
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Chapter 1

Introduction

In recent years, modeling and simulation of biochemical systems have been widely used to study im-

portant biological processes [29]. The experimental data is enormous in Molecular and Cellular Biology

and these data require to be simulated and analyzed. Therefore, the need for finding accurate mod-

els of these biological processes and efficient tools for simulating and studying them is essential. The

traditional mathematical modeling of the biochemical systems uses the continuous deterministic model

of the reaction rate equations. However, often key biological processes involve some species with low

population numbers. Then the deterministic model fails to accurately describe the system dynamics.

For example, in a single cell only few regulatory molecules are available, so a continuous model fails to

correctly describe the system dynamics and the random fluctuations which are inherent to such a system

[26; 48; 51]. In this case, stochastic systems are required to accurately capture the system behaviour

rather than deterministic models [33; 3; 34; 6; 11; 12; 13; 39; 45].

In deterministic models, concentrations of biochemical species are continuous variables and the stan-

dard theory of chemical kinetics uses the reaction rate equations, which is a set of ordinary differential

equations, to model the dynamics of a chemical system. In stochastic models, species may have an

integer or a real number of molecules and the reactions are treated as discrete and random events.

Biological processes taking place at the level of a single cell can be analyzed by studying systems of

biochemical reactions which exhibit random fluctuations. Some of these fluctuations are not negligible. In

such cases, it is very important to use the stochastic models for an accurate description. The most refined

model of biochemical reactions is that of Molecular Dynamics. This model is very complex and expensive

to simulate as it keeps track of all positions and velocities of the molecules in the system. However,

under a mild assumption that the system is well-stirred, a great simplification of the model is obtained.

The simplified stochastic chemical kinetics model is the Chemical Master Equation (CME) which was

introduced by Gillespie [18]. Also, Gillespie developed an exact method to numerically simulate the

CME. The CME has been successfully applied to model many biochemical systems, also when the

system is not well mixed, such as systems in the cell. The first remarkable application of Gillespie’s

algorithm for biological systems was described by McAdams and Arkin [33]. They demonstrated that

the noise arising in the stochastic system affects the lysis decision of the bacteria λ-phage.
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CHAPTER 1. INTRODUCTION

Stochastic modeling approaches are more difficult to analyze than their deterministic counterparts.

Cellular processes are one important application of stochastic modeling. The simulation of stochastic

models is expensive. When cellular processes include large numbers of species and large number of

chemical reactions, the exact method developed by Gillespie becomes extremely expensive. In addition to

their computational cost, stochastic models are complicated and difficult to analyze. Tools for decreasing

the computational cost, for an easier understanding of the models are highly desirable. Generally,

stochasticity divides into two groups: intrinsic and extrinsic noise. Intrinsic noise is a property of the

system. Extrinsic noise is external to the system, for example environmental factors constitute extrinsic

noise. Determining the boundary between intrinsic and extrinsic effects is related to the size of the

modeled system [10; 45].

Gibson and Bruck [16] proposed an improved exact algorithm. In Gibson and Bruck’s algorithm, the

computational cost has been reduced by avoiding the repetition of the iteration. Several algorithms have

been developed for obtaining improved speed with reduced loss of accuracy [29]. Gillespie proposed the

tau-leaping method in 2001 [20]. This strategy reduces the computational cost of Gillespie’s algorithm

but it is an approximate method. Several studies were done for further developing the tau-leaping method

by Rathinam et al . [41], Cao et al . [8], Tian and Burrage [46], Chatterjee et al . [9]. Li developed higher-

order tau-leaping methods [32], Anderson proposed an adaptive time-stepping [1] in tau-leaping methods.

However, all these methods are expensive on many realistic applications, which include a large number

of molecular species and many reactions.

A simplification of the CME model can be obtained when the biochemical species have relatively

large molecular populations. Under this assumption, the continuous stochastic model of biochemical

kinetics, the Chemical Langevin Equation, (CLE) is valid. Langevin Equations in biochemical kinetics

are systems of stochastic differential equations (SDE) of dimension equal to the number of reacting

species. In recent years, several studies have been conducted on the numerical solution of stochastic

differential equations [28; 31]. The CLE constitute a set of SDEs among the most difficult: they are

non-linear, of relatively large dimension, typically stiff and with non-commutative noise. Therefore,

there are many open problems regarding their numerical solution. A further simplification of the CLE

can be obtained when all molecular species are very abundant. Then, the deterministic model of the

reaction rate equations applies.

In [50; 2] other modeling approaches are being developed with consideration of spatial information

in cells. Also many approaches have been proposed for simplifying the deterministic models of the

chemical reactions but there are limitations for applying these approaches to the reduction of stochastic

biochemical models.

Sensitivity analysis is a critical tool for studying the dependence of a system on its external param-

eters. Sensitivity shows how a change in the solution depends on a change in the parameter. If a small

change in the parameter leads to a large change in the solution, then the system is sensitive with respect

to that parameter. Then, that parameter should be very accurately estimated. Otherwise, the system

is robust with respect to the parameter, and thus the parameter is not important for the dynamics. Its

accurate estimation is not essential.

Sensitivity analysis is thus a key tool for model construction, model analysis and model reduction.

2



CHAPTER 1. INTRODUCTION

In particular, if a biochemical system is not sensitive with respect to one parameter, that parameter

may be set constant or even eliminated, and thus the model is reduced without changing its dynamics.

A reduced model which maintains the correct dynamics is easier to analyze and simulate. Sensitivity

analysis of the reaction rate equation model has been studied in great detail [27]. However, much less

is known regarding the sensitivity analysis of stochastic biochemical models. For the CME model, a

weak approach to sensitivity analysis was developed in [4; 24]. This technique gives the sensitivity of

the mean trajectory, that is a sensitivity with respect to a parameter of the expected value.

In this thesis, we develop a pathwise sensitivity for the Chemical Langevin Equation. Our method

gives a sensitivity in a strong sense, that is a sensitivity of each path of the solution for the CLE. This

result gives, in particular, the sensitivity of the expectation, if that is desired. In addition, it gives the

possibility of studying individual trajectories, rather than averages of trajectories.

This thesis is organized as follows. In Chapter 2, we give an introduction to the existing mathematical

models and simulation tools of well-stirred biochemical systems and Chapter 3 discusses the sensitivity

analysis of biochemical systems and proposes a pathwise sensitivity method of the Chemical Langevin

Equation. In Chapter 4, we present numerical methods for stochastic differential equations. Finally, in

Chapter 5, we test our proposed sensitivity technique on several key models of biochemical systems. We

show that a sensitivity analysis of the deterministic models of biochemical systems is not accurate in

estimating the sensitivities of the more general, stochastic models. Our method accomplishes this goal,

that is, gives accurate estimates for a sensitivity analysis.

3



Chapter 2

Background

Recently, stochastic models have been used in biology to study many important biological processes,

such as the cellular dynamics. Scientists are interested in understanding the effect of the noise on the

dynamics of a biochemical system. For example, due to their intrinsic noise some biochemical systems

change their qualitative behaviour compared to when the noise is absent. In such cases, a deterministic

approach to modeling gives an inaccurate description of the system dynamics [14; 37; 49; 18].

2.1 Deterministic vs stochastic approaches

Deterministic models have been widely used for analyzing biological processes. These models are typ-

ically systems of ordinary differential equations (ODE). In deterministic modeling, the evolution of a

biochemically reacting system is obtained in a predictable manner. Probabilistic views are considered

in stochastic models. Because of that, the behavior of the model is not predictable. However, in bio-

chemical reaction systems where large numbers of molecules are present the deterministic model has

been successfully applied, as the average of fluctuations are considered. On the other hand, stochastic

influences become important in cellular systems where only few molecules of DNA or RNA are available

[38].

We note that, while in deterministic models it is convenient to work with concentrations, in stochastic

models it is suitable to keep track of the number of molecules of each species.

An important tool in stochastic modeling is a Markov process, which is described below.

The set of {X(t), t = 0, 1, 2, ...} is a discrete time stochastic process. S is a state space such that X(t) ∈ S
for all t. The state space may be discrete or continuous.

Definition: A Markov process is a stochastic process for which if the present state is known, the

future states don’t have any dependence on the past states. Mathematically, if A is a subset of S and

n = 0, 1, 2, 3, ... we have for a discrete time Markov process

P
(
X(n+ 1) ∈ A|X(n) = x,X(n− 1) = xn−1, ...,X(0) = x0

)
= P (X(n+ 1) ∈ A|X(n) = x), ∀x, xn−1, , ..., x0 ∈ S

4



CHAPTER 2. BACKGROUND 2.1. DETERMINISTIC VS STOCHASTIC APPROACHES

Figure 2.1: Deterministic plot in contrast to stochastic plot
(A,B) Evolution in time for steady state.(C,D) Stable oscillation [23]
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2.2. STOCHASTIC MODELS CHAPTER 2. BACKGROUND

In other words, the past states don’t give any information about the future state, given the present

state. P (X(n+ 1) ∈ A|X(n) = x) defines the operation of the chain. If it doesn’t have any dependence

to n, then we have

P (X(n+ 1) ∈ A|X(n) = x) = p(x,A), ∀n

Consider now that {X(t), t ∈ [0,∞)} is a continuous time stochastic process with the state space S

discrete or continuous. Then X is a Markov process if P
(
X(t+ dt) = y|X(τ) = x(τ) for all τ ∈ [0, t]

)
=

P (X(t+dt) = y|X(t) = x(t)) and y ∈ S. A continuous time Markov process is called a diffusion process.

2.2 Stochastic Models

Molecular Dynamics (MD) is the most general model of biochemical systems. However, this model is

often too expensive to solve as it keeps track of all velocities and all positions. Instead, we assume that

the system is well-stirred, at thermal equilibrium and its volume is constant. Suppose that S1, ..., SN are

the molecular species in the system, participating in M types of reaction, R1, ..., RM . Then dynamical

state, X(t) = (X1(t), X2(t), ..., XN (t)), where Xi(t) is the number of Si molecules at time t, describes

the system. We note that X(t) is a Markov process with a discrete space.

In well-stirred systems, a reaction channel Rj is described by two characterizing quantities. One is

its state change vector, defined by νj = (ν1j , ..., νNj)
T where νij = change in number of Si molecules

caused by one Rj . The array {νij} is known as the stoichiometric matrix. The other quantity for Rj is

its propensity function aj which is defined as:

Given X(t) = x, then aj(x)dt is the probability that one Rj event will occur in the next time interval

[t, t+ dt].

The propensity functions are obtained from kinetic theory principles. The propensity function is

related to the size of the system. If a system has more molecules, their probability of reacting becomes

higher [23].

If Rj is a unimolecular reaction

Sn−→something,

based on kinetic theory arguments, the propensity function is aj(x) = cjxn where cj for a unimolecular

reaction is equal to the reaction rate constant kj .

If Rj is a bimolecular reaction

Sn + Sm−→something,

kinetic theory arguments and the well-stirred condition give the propensity function aj(x) = cjxnxm

if n 6= m, or aj(x) = 1
2cjxn(xn − 1) if n = m. Here cj , the corresponding reaction rate constant for

bimolecular reactions, is equal to
kj

nAvol
if the reactants are different, or

2kj
nAvol

if they are the same,

where nA is the Avogadro number and vol is the volume of the system. We assume that the reactions

are instantaneous, thus no more than one reaction occurs in an infinitesimal time interval.

Below we explain the foundations of the stochastic chemical kinetic modeling.

—————-

6



CHAPTER 2. BACKGROUND 2.2. STOCHASTIC MODELS

2.2.1 Chemical Master Equation (CME)

The Chemical Master Equation is the finest model of well-stirred biochemical systems, and it gives the

variation of the probability with time for all the possible states of the system. This equation describes

the system dynamics, being a system of ordinary differential equations in probabilities to be in certain

states. This equation is applied in many areas such as physics, chemistry, biology, population dynamics

and economy. Application to genetics and molecular networks has been studied in [35; 48; 47].

When the well-stirred assumption applies, the state of the system, X(t), is a stochastic (Markov)

process. We define the following probability

P (x, t|x0, t0) = Prob{X(t) = x, given X(t0) = x0} (2.1)

We wish to derive a time-evolution equation for the probability function (2.1) of the system’s state,

using the laws of probability. If we know the probability of the system being in any possible state at

time t, we can find the probability of being at state x at time t+ dt as:

P (x, t0 + dt|x0, t0) = P (x, t|x0, t0)P (no change over dt)

+

M∑
j=1

P (x− νj, t|x0, t0)P (one reaction Rj over dt)
(2.2)

where νj is a stoichiometric vector. Obviously, we can say that

P (no change over dt) = P (no reaction occurs over dt)

= 1−
M∑
j=1

(aj(x)dt)
(2.3)

P (one reaction Rj over dt) = (aj(x− νj)dt) (2.4)

where aj is the propensity function. Using (2.3,2.4), we can write the equation (2.2) as

P (x, t+ dt|x0, t0) = P (x, t|x0, t0)× {1−
M∑
j=1

(aj(x)dt)}

+

M∑
j=1

P (x− νj , t|x0, t0)× (aj(x− νj)dt)

By rearranging the equation, dividing by dt and taking the limit as dt→ 0, we obtain

∂P (x, t|x0, t0)

∂t
=

M∑
j=1

{aj(x− νj)P (x− νj , t|x0, t0)− aj(x)P (x, t|x0, t0)} (2.5)

The equation (2.5) is known as the Chemical Master Equation (CME) or the forward Kolmogorov

Equation. The CME is a set of coupled ordinary differential equations (ODE) and there is one ODE

7



2.2. STOCHASTIC MODELS CHAPTER 2. BACKGROUND

for each possible state. As the number of state values can be very large, the CME is often a very large

system of ODEs. Then, its solution is very difficult to compute except for some simple problems. The

Chemical Master Equation is the most general model of well-stirred biochemical systems. This model is

particularly useful when some species have small molecular numbers.

2.2.2 Gillespie Algorithm

Since the CME can only rarely be solved directly, other methods to approximate its solution are impor-

tant. Such a method is a Monte-Carlo type scheme which was propsed by Gillespie in [17; 18]. To derive

Gillespie’s algorithm, we consider a new probability function P (τ, j|x, t) which is defined as follows:

Given x(t) = x , P (τ, j|x, t)dτ is the probability that the next reaction

1. will occur in the time interval [t+ τ, t+ τ + dτ) and

2. will be an Rj reaction

Also, we make the notation

P0(τ |x, t) is the probability that no reaction takes place in [t, t+ τ) given x(t) = x0.

The event that no reaction occurs in [t, t + τ) is independent of the event that one reaction Rj takes

place in [t + τ, t + τ + dτ). The probability density function of the former is P0(τ |x, t) and that of the

latter is aj(x)dτ . Therefore, their joint probability density function is

P (τ, j|x, t)dτ = P0(τ |x, t)× aj(x)dτ

We need to determine P0(τ |x, t), let us find P0(τ + dτ |x, t) which is the probability that no reaction

occurs in [t, t+ τ + dτ). This means that

1. there is no reaction in [t, t+ τ) and

2. no reaction occurs in [t+ τ, t+ τ + dτ).

The above two events are independent, thus their joint probability is the product of the two probabilities.

The probability of the former event is P0(τ |x, t) while of the latter is
(

1 −
∑M
l=1 al(x)dτ

)
. Thus,

P0(τ + dτ |x, t) = P0(τ |x, t)×
(

1−
∑M
l=1 al(x)dτ

)
.

Taking dτ → 0 we get

dP0(τ |x, t)
dτ

= −
M∑
l=1

al(x)

and thus

P0(τ |x, t) = exp(−
M∑
l=1

al(x)τ).

Since
P (τ, j|x, t) = P0(τ |x, t)× aj(x)

= exp(−a0(x)τ)× aj(x)

8



CHAPTER 2. BACKGROUND 2.2. STOCHASTIC MODELS

where a0(x) =
∑M
l=1 al(x).

Consequently, we can write

P (τ, j|x, t) =
[
a0(x)exp(−a0(x)τ)

]
× aj(x)

a0(x)
.

We can express this joint density function as the product of two density functions.

1. The density function of, τ , the time to the next reaction, given by [a0(x)exp(−a0(x)τ)].

2. The density function of j, the index of the next reaction, given by
aj(x)
a0(x) .

This theoretical justification of this Monte Carlo method was given by Gillespie in [18].

Gillespie’s algorithm is also known as the Stochastic Simulation Algorithm (SSA) [17]. The algorithm

is based on a Monte Carlo approach and indirectly simulates the CME by producing many trajectories.

Provided that many trajectories are computed, the statistics on these trajectories are in agreement with

the statistics given by the CME.

The algorithm can be summarized as follows:.

1. With the system in state x at time t, evaluate a0(x) =
∑M
j′=1(aj

′(x))

2. Draw two unit-interval uniform random numbers r1 and r2, and compute the time to the next

reaction, τ , and the index of the next reaction, j, according to

(i). τ = 1
a0(x) ln 1

r1

(ii). j =the smallest integer satisfying
∑j
j′=1 aj

′(x) > r2a0(x)

3. Replace t+ τ instead of t and x + νj instead of x.

4. Record (x, t). Return to Step 1, or else stop.

In fact, the algorithm simulates one reaction at a time so it’s prohibitively expensive for large population

numbers. Gillespie algorithm is statistically in exact accordance with the CME.

2.2.3 Improvements: Next Reaction Method and Tau-Leaping Method

In 2000, Gibson and Bruck proposed the Next Reaction Method which is an improvement of Gillespie

algorithm. In Gibson and Bruck’s algorithm, the computational cost has been reduced by avoiding the

repetition of the iteration. In fact they improve the time-complexity of the algorithm [16]. Gibson and

Bruck’s algorithm is an exact method for the CME.

Gillespie proposed the tau-leaping method in 2001 [20]. This strategy reduces the computational

cost of Gillespie’s algorithm and obtains a higher speed without significant loss of accuracy. Gillespie’s

algorithm simulates the CME exactly. But often this is too expensive, and thus not useful in practice.

Instead, in some cases, it is sufficient to know how many reactions happen in a certain time interval.

9



2.2. STOCHASTIC MODELS CHAPTER 2. BACKGROUND

Algorithm Accuracy Computational Cost Speed
Gillespie very high very high slow
Tau-leap medium low medium

Gibson & Bruck very high high moderate

Table 2.1: Comparison of the performance of different stochastic algorithms
[35]

tau-leaping provides this property.

In this method the length of the time interval is fixed and the algorithm advances with the given

time step, τ , so it often steps over more than one reaction. However, τ is limited by the Leap Condition:

τ should be small enough such that the propensity functions change very little during one step. Also, τ

should be large enough to step over many reactions, to make this algorithm faster than the SSA. In the

literature, there were reported 100 times speed-ups of the tau-leaping method over Gillespie’s algorithm

for systems arising in applications. Note that the tau-leaping method is not as generally applicable as

the Gillespie Algorithm, since it is an approximate algorithm.

We recall that the Poisson random variable P(a, τ) is the number of events that will occur in the

time τ given that the probability of an event occurring in any dt is adt. Given X(t) = x, if τ is such

that aj(x) is constant in [t, t+ τ ], then the number of reactions Rj that fire in the interval [t, t+ τ ] has a

Poisson distribution with parameter aj(X(t))τ . Under the Leap Condition assumption, we approximate

X(t+ τ) = x +

M∑
j=1

Pj(aj(x), τ)νj (2.6)

It requires M Poisson random numbers for each leap, one for each different type of reaction. Equation

(2.6) is the basic tau-leaping formula.

Below, we discuss how it can be used to create a faster simulation algorithm under some assumptions.

As we know, the Poisson distribution P(a, τ) has mean and variance aτ . When the mean and variance

aτ � 1, the Poisson distribution can be approximated by a normal distribution with the same mean

and variance:

P(a, τ) ≈ N (aτ, aτ) ≡ aτ +
√
aτN (0, 1),

where N (0, 1) is a real valued normal random variable with mean 0 and variance 1.

Given X(t) = x, suppose we can choose τ to satisfy the Leap Condition and the conditions aj(x)τ �
1,∀j. Then we can further approximate the equation (2.6) as

X(t+ τ) = x +

M∑
j=1

νjNj(aj(x)τ, aj(x)τ)

= x +

M∑
j=1

νjaj(x)τ +

M∑
j=1

νj

√
aj(x)τNj(0, 1)

(2.7)

10
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This equation is valid if τ is chosen small enough to satisfy the Leap Condition, and large enough such

that every reaction fires many more than once in τ (aτ � 1) . Such τ exists if all the reactant populations

are sufficiently large. The further reduction of tau-leaping is faster than tau-leaping [29].

2.2.4 Chemical Langevin Equation (CLE)

Before presenting another stochastic model of well-stirred biochemical systems, we need to introduce the

concept of a Wiener process, which is an important modeling tool.

Definition: A Wiener process W (t) is a random variable that depends on t ∈ [0, T ] and has the

following properties:

• W(0)=0 with probability 1.

• If 0 ≤ s < t ≤ T , then the Wiener increments, generated by W (t)−W (s) are normally distributed

with mean zero and variance t− s; Correspondingly, we can write W (t)−W (s) ∼
√
t− sN(0, 1),

where N(0, 1) is normal distribution with mean zero and variance 1.

• If 0 ≤ s < t <u <v ≤ T , then the increments W (t)−W (s) and W (v)−W (u) are independent.

Now we introduce an alternative stochastic model of well-stirred biochemical systems. While the

CME is the most refined model of well-stirred biochemical systems, often it is very expensive to simulate

and very hard to analyze. In a large class of applications, the reacting species have large molecular

populations. Then, some propensities become very large, and thus the time-step in Gillespie’s algorithm

is extremely small. Fortunately, under these circumstances, the CME model can be reduced further,

leading to the model of the Chemical Langevin Equation (CLE). While the CME had a very large

dimension, the CLE has dimension equal to the number of species in the system. In Figure 2.2 we show

the differences between the Gillespie and the Langevin simulation for a simple model [23].

Langevin Equation model has received considerable attention, not only in Systems Biology, but also

in physics, chemistry and biology [30; 15; 49]. In the biochemical kinetic theory, it is known as the

Chemical Langevin Equation (CLE) and it is a stochastic differential equation system of the form:

dX(t)

dt
=

M∑
j=1

νjaj(X(t)) +

M∑
j=1

νj

√
aj(X(t))Γj(t) (2.8)

where Γj ’s are “Gaussian white noises”. The system can be written, equivalently, as

dX(t) =

M∑
j=1

νjaj(X(t))dt+

M∑
j=1

νj

√
aj(X(t))dWj(t) (2.9)

where Wj , 1 ≤ j ≤ M are independent Wiener processes. This equation can be obtained from (2.7)

by taking the limit τ → 0. We note that (2.7) is, in fact, the Euler-Maruyama method for stochastic

differential equations and applies for approximating the solution of the CLE. We remark that the discrete

space Markov process satisfying the CME (2.5) is approximated by a continuous space Markov process

in the CLE (2.9).

11
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The CLE model is continuous and stochastic and it is valid if all the molecular populations are suffi-

ciently large. The model was introduced by Gillespie in [19]. We mention that many biochemical systems

in applications can be accurately modeled with the Chemical Langevin Equation. In the literature, it

was reported that biochemical systems with molecular populations as low as 10 molecules for a species

are well modeled by the CLE.

In the next section, we present a further reduction of the Chemical Master Equation, via the Chem-

ical Langevin Equation.

Figure 2.2: Gillespie in comparison to Langevin approaches

In the plots we remark that the noise becomes significant when the number of molecules decreases.
The level of noise is similar in the Gillespie and Langevin approaches.

12
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2.2.5 Reaction Rate Equation (RRE)

The thermodynamic limit is defined as the limit in which the population numbers and the system volume

are very large, or all approach infinity, but the concentrations of species remain constant. Therefore, as

the thermodynamic limit is approached, the stochastic model of the CLE often reduces to the determin-

istic model of the reaction rate equation [21].

For systems with all molecular populations in very large numbers, the noise becomes negligible,

therefore the CLE (2.9) can be reduced to a system of ordinary differential equations, called the reaction

rate equations (RRE):

dX(t)

dt
=

M∑
j=1

νjaj(X(t)) (2.10)

The RRE model is valid under the assumption of very large molecular populations. The RRE model

has dimension equal to the number of biochemical species in the system. This system of equations has

been successfully used to model the behaviour of chemical reactions for decades. However, noise may be

significant if some populations have small molecular numbers, and then stochastic models are required.

More precisely, the reduction of the CLE to the RRE is obtained as follows. Let us apply the expectation

to the Chemical Langevin Equation (2.9). We obtain

d(E(X)) =

M∑
j=1

νjE(aj(X(t)))dt+ E
( M∑
j=1

νj

√
aj(X(t))dWj(t)

)
=

M∑
j=1

νjE(aj(X(t)))dt+

M∑
j=1

νjE
(√

aj(X(t))dWj(t)
)

=

M∑
j=1

νjE(aj(X(t)))dt

Dividing by dt we derive

d

dt
(E(X)) =

M∑
j=1

νjE(aj(X(t)))

If a reaction is at most of first order, that is its propensity aj(X) = cjXk or aj(X) = cj then E(aj(X)) =

aj(E(X)).

However, if a reaction is of second order, that is its propensity is either aj(X) = cjXkXc or aj(X) =
cjXk(Xk−1)

2 , then, in general E(aj(X)) 6= aj(E(X)).

Thus, the reaction rate equation can be exactly derived from the Chemical Langevin Equations, by

averaging over each species, in the case when the reactions are of first or zero-order.
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Chapter 3

Sensitivity Analysis

3.1 Background

The development of experiment design and the need for complicated simulation techniques for studying

different subjects such as industrial engineering, operation research, economics and biological and health

sciences have led to the creation of advanced computational methodologies. One important tool in the

development of refined models is sensitivity analysis, that is the study of the sensitivity of models to

variation or uncertainty in model parameters. If a small change in a parameter causes large changes in

the outcomes, it is said that the model is sensitive with respect to that parameter. This implies that the

corresponding parameter has to be measured very accurately. Parameters which have small sensitivity

don’t need to be measured very accurately. Also, they are not good control parameters of the system

behavior. On the other hand, the parameters with large sensitivity are good control points in the system

behavior.

Chemical reaction models depend on many parameters such as kinetic parameters, initial amounts

for each species and an uncertain environment. Some small changes in the parameters may significantly

affect the output of the system, so it is important to determine the influences of such changes. The

sensitivity analysis studies the change of system outputs with respect to kinetic parameters or initial

conditions and it is an essential analysis technique in kinetic modeling. Describing the sensitivity with

respect to small perturbations in parameters is a powerful device for the analysis, modeling, and design

of chemical reaction networks. Also, the sensitivity is used to help make decisions on which parts of

the model are actively contributing. Therefore, it plays an important role in a number of situations,

assessing the accuracy of a model, in model development and in model reduction.

The effect of uncertainty or variability in the values of input parameters can be explored by using

sensitivity analysis.

The methods used for estimating sensitivities can be divided into two categories: finite perturbation

and infinitesimal perturbation. In finite perturbation the parameter is changed a small amount but not

vanishingly, has finite perturbation. In the other category of sensitivity, the parameter is perturbed

14
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infinitesimally, by a vanishingly small amount. Thus, the partial derivative with respect to a given

parameter is the main concern. In fact, the infinitesimal sensitivity is a limit of the finite sensitivity [4].

3.2 Methods

1. Finite Difference approximations

This is a wide class of numerical methods, to estimate the derivative dy/dx. This method consists of:

increase x by a very small quantity to x1, re-calculate the function value y1 for x1, and then estimate the

sensitivity as (y− y1)/(x− x1). Thus this method needs to evaluate the function at least twice and also

requires the calculations three times for the central difference method, and therefore it is challenging

when we have to do many simulations [25]. Finite difference approximations have the disadvantage that

sometimes they produce biased estimates.

A simple example of a finite-difference approximation of sensitivities is the following. If θ is a param-

eter and Y (θ) is a random variable depending on θ then one can compute the independent simulations

Y1(θ), Y2(θ),..., Yk(θ) as well as Y1(θ + ∆θ), Y2(θ + ∆θ),..., Yk(θ + ∆θ) for a small perturbation ∆θ of

θ. If Ȳk(θ) is the mean of the first set of values and Ȳk(θ + ∆θ) is the mean of the second set of values,

then the forward-difference estimator is

F (k,∆θ) =
Ȳk(θ + ∆θ)− Ȳk(θ)

∆θ
.

2. Pathwise derivative estimate

In the context of stochastic systems, there are two main approaches for calculating the Monte Carlo

infinitesimal sensitivity. The first one is known as the Likelihood Ratios. The second one is the pathwise

differentiation, also known as the infinitesimal perturbation analysis.

Suppose that a model, with θ as a parameter, is defined on a time interval [0, T ]. Also consider a

random variable Y (θ) which is generated by a method, depending on θ. Indeed Y (θ) is the output of

the method. We wish to compute, if possible,

Y ′(θ) = lim
∆θ→0

Y (θ + ∆θ)− Y (θ)

∆θ
(3.1)

For obtaining our goal, we need a collection of random variables: let {Y (θ), θ ∈ Θ} be a set of random

variables in the probability space (Ω,F , P ) (see also Appendix A). Thus Y (θ) is a stochastic process

with parameter θ ∈ Θ. Assume that Θ is a subset of real numbers (Θ ⊆ R) and ω ∈ Ω is a random

number held fixed. We consider the mapping θ 7→ Y (θ, ω) as a random function which shows the output

of a simulation algorithm at a parameter θ when the random number is fixed. Therefore, we can explain
∂
∂θY (θ) = ∂

∂θY (θ, ω) as the derivative of the random function with respect to θ while ω is fixed. We

assume that the derivative exists with probability 1 at each θ ∈ Θ. The quantity ∂
∂θY (θ) is known as

15
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the pathwise derivative of Y at θ. We now interpret equation (3.1) as follows: the computation of Y (θ)

and Y (θ + ∆θ) is done using common random numbers.

If ∂Y
∂θ exists then a natural question is when the following exists

lim
∆θ→0

E(
Y (θ + ∆θ)− Y (θ)

∆θ
) = E( lim

∆θ→0
(
Y (θ + ∆θ)− Y (θ)

∆θ
)), (3.2)

that is, when the pathwise derivative estimator is unbiased.

The equation (3.2) is true if and only if the sequence Y (θ+∆θ)−Y (θ)
∆θ is uniformly integrable. Indeed we

obtain this if we apply the theorem below. We denote Yn
p−→ Y the convergence in probability of the

sequence of random variables Yn to a random variable Y . (see also Appendix A).

Theorem(Vitali):

Let (Ω,F , P ) be a probability space. Assume Yn
p−→ Y . Then, the sequence {Yn}n is uniformly

integrable if and only if Yn is integrable for all n and

lim
n→∞

E(Yn) = E(Y ).

As opposed to the finite difference approximation, in pathwise derivative (PD), the derivation is esti-

mated directly, without simulating multiple times. By using this method, we obtain additional informa-

tion about the dynamics of the system. The pathwise derivative method differentiates each simulation

outcome with respect to the parameter to produce sensitivity estimates. The pathwise derivative method

estimates the first order sensitivities [25], and produces unbiased estimates.

Numerical methods are, in general, tailored to classes of problems. This is valid also for the PD

method. There are some restrictions on using the pathwise derivative method, when studying stochastic

chemical and biochemical networks. In this thesis, we employed the PD method for the continuous

stochastic models of biochemical systems. This method applies to a large class of biochemical networks,

and has important practical applications. Sheppard, Rathinam and Khammash [43] very recently pre-

sented a regularized pathwise derivative (RPD) method which estimates parameters sensitivities for

discrete stochastic chemical reaction networks based on a modified form of the PD.

3. The Likelihood Ratio Method

The likelihood ratio method (LRM) combines both the sensitivity and the specificity, which are

statistical measurements.

This technique allows to calculate all the sensitivities simultaneously in a single Monte Carlo simulation.

In addition, the variance properties of LRM estimators are not affected by discontinuities in the system.

In fact, the likelihood ratio method is an approach for estimating a derivative which requires no smooth-

ness. By contrast, for the pathwise method the continuity in the function of the parameter of interest is

an essential factor. A disadvantage of the likelihood ratio compared to the pathwise derivative, is that

it has a significantly large variance [22].

The main drawback is that the statistical uncertainties of LRM estimators are difficult to predict,

and can be sometimes large. In some cases such uncertainties cause divergence thus making the Monte

Carlo simulation very time consuming [40].
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Plyasunov and Arkin [4] developed a likelihood ratio by using the Girsanov measure transformation

for the sensitivity analysis of discrete stochastic chemical reaction networks. They applied their method

using stochastic weights and the Girsanov measure transformation [4].

In the next section, we define the sensitivity of the state vector with respect to a parameter. If p is

a parameter of the system and x = (x1, x2, ..., xN )T is the state vector, then the sensitivity of x with

respect to the parameter p is
∂x

∂p
= (

∂X1

∂p
, ...,

∂XN

∂p
)T

17
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Monte Carlo Sensitivity Approaches
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Figure 3.1: Monte Carlo approaches for sensitivity analysis of stochastic models of chemical kinetics
[43]18
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3.3 Sensitivity Analysis of CME

As we know, the discrete stochastic model of well-stirred biochemical systems is the Chemical Master

Equation [18]. The sensitivity of CME can be obtained by taking the derivative of the equation of CME

(2.5) with respect to the parameters

d

dt
(
∂P (x, t)

∂p
) =

M∑
k=1

ak(x− νk)
∂P (x− νk, t|x0, t0)

∂p

−
M∑
k=1

{∂P (x, t|x0, t0)

∂p
+
∂ak(x− νk)

∂p
}

×
M∑
k=1

{P (x− νk, t|x0, t0)− ∂ak(x)

∂p
P (x, t|x0, t0)}

(3.3)

where P (x, t|x0, t0) is the conditional probability of the system to be at state x at time t, given the initial

condition x0 at time t0. We denoted by νk the stoichiometric change produced by one k−th reaction.

M is the total number of reactions and ak(x) is the propensity function of the k−th reaction.

To obtain the sensitivity, the equation (3.3) should be solved together with the CME (2.5). As the CME

has a very large dimension, then the sensitivity together with the CME system consists of a differential

equation system which is very large and thus very expensive to solve. As the SSA cannot be applied to

solve the sensitivity equation, the stochastic sensitivity can be estimated by using the finite difference

method. Thus, the density function sensitivity can be computed with

∂P

∂p
=
P (x, p+ ∆p)− P (x, p−∆p)

2∆p

The ∆p should be small enough to minimize error, but it should be large enough to avoiding the simu-

lation error [24]. We remark that this method is very expensive for most models arising in applications.
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3.4 Sensitivity Analysis of RRE

Consider a dynamical system described by a system of ordinary differential equations of the form

dz

dt
= g(t, z, p) (3.4)

z(0) = c

where dz/dt denotes the time derivative of the state z, with z(0) being the given initial condition. After

differentiating (3.4) with respect to the parameter p, we obtain [5]:

∂(dz/dt)

∂p
=

d

dt

∂z

∂p
=
∂g

∂z

∂z

∂p
+
∂g

∂p
(3.5)

∂z

∂p
(0) = 0

This is the sensitivity system which depends on z. In order to estimate the solution z and ∂z
∂p , we

solve the system (3.5) together with (3.4). The combined system can be solved efficiently provided that

the dimension of the system (3.4) is not too large.

In a similar way, the sensitivity for the RRE is obtained by taking derivative of the reaction equation

rate (2.10) with respect to one of the kinetic parameters, p:

d

dt

∂x

∂p
=

M∑
k=1

νk

(∂ak(x(t))

∂x

∂x

∂p
+
∂ak(x(t))

∂p

)
(3.6)

The vector change νk is independent of the parameter p, therefore we need to take a derivative only from

the density function ak(x(t)) with respect to p. The system (3.6) and (2.10) is known as the forward

sensitivity analysis (FSA). It works for any RRE model.

In order to estimate the sensitivity, we solve the equation (3.6) together with the RRE (2.10) for

finding (x, ∂x∂p ). Therefore, we have a system with M +M = 2M equations. Typically, the biochemical

systems arising in applications are stiff, and therefore stiff ode solvers are required.
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3.5 Sensitivity Analysis of CLE

As discussed before, many biochemical systems arising in applications can be modeled by the continuous

stochastic model of the Chemical Langevin equations. Below we propose a numerical method for estimat-

ing pathwise sensitivities with respect to kinetic parameters for the Chemical Langevin Equation model.

Our proposed method is applicable to a wide class of biochemical networks arising in applications. Our

method is a Monte Carlo-type scheme and typically it requires 10,000 trajectories.

Let us employ the pathwise differentiation of the Chemical Langevin Equation to obtain the sensi-

tivities. If x is differentiable with respect to p (kinetic parameter) then we can estimate (∂x∂p ) using the

following formula obtained by differentiating the equation (2.9) with respect to p

d(
∂X

∂p
) =

M∑
k=1

νk

[∂ak(X(t))

∂(X)

∂(X)

∂p
+
∂ak(X)(t)

∂p

]
dt

+

M∑
k=1

νk

[ 1

2
√
ak(X(t))

(∂ak(X(t))

∂X

∂X

∂p
+
∂ak(X(t))

∂p

)]
dWk

(3.7)

where Wk are independent Wiener processes. Hence νk is the stoichiometric change in state vector x

when one kth reaction occurs. The dimension of the stoichiometric matrix is N ×M where N is number

of state vectors and M is the total number of reactions.

The initial conditions for sensitivities are
∂x

∂p
(0) = 0

since p is a kinetic parameter and the initial amount of molecules does not depend on a kinetic constant.

In order to estimate the sensitivities, we solve the equation (3.7) together with the Chemical Langevin

Equations (2.9) with respect to (x, ∂x∂p ). Thus, we have a system with 2M equations and 2M unknowns.

We note that the combined system (2.9) and (3.7), having double numbers of equations compared to

the Chemical Langevin Equation, it is generally almost twice as expensive to solve numerically as the

CLE. We note that the pathwise sensitivity analysis uses the exact derivative with respect to a parameter

instead of numerical differentiation, as does the finite-difference method. The pathwise sensitivity gives

unbiased estimates of sensitivities. While this method has been successfully used in finance, it was not

available in the literature for biochemical system modeling. One very important observation is that often

in applications, and in particular in cellular dynamics, some kinetic parameters are not available. Then,

it is quite important to know their influence on the system. If the system is robust with respect to that

parameter, then its accurate estimation is not critical.

In the next section, we discuss the numerical method to simulate the solution of the system in

sensitivities described above.
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Numerical Methods

Stochastic differential equations (SDE) constitute an important class of models in sciences and engi-

neering. However, the exact solution of SDEs can seldom be computed directly. For most stochastic

systems, the numerical solution is the only tool available to study the problem. We give below a brief

introduction to the numerical solution of SDEs.

Given functions f , gj and initial value X0, the stochastic process X(t) is a solution of the integral

equation:

X(t) = X0 +

∫ t

0

f(X(s))ds+

M∑
j=1

∫ t

0

gj(X(s))dWj(s), 0 < t < T (4.1)

The integral on the right hand side is to be taken with respect to the Wiener process Wj . Here Wj

are independent Wiener processes for 1 ≤ j ≤M .

The solution X(t) is a random variable for each t. We can rewrite (4.1) in differential equation form as

dX = f(t,X)dt+

M∑
j=1

gj(t,X)dWj (4.2)

where X(0) = X0, 0 ≤ t ≤ T .

We consider the SDE form (4.2) instead of the integral form (4.1). If g ≡ 0 and X0 is constant, the

problem is deterministic, that is (4.2) becomes the ordinary differential equation

dX

dt
= f(t,X)

X(0) = X0

In order to approximate the exact solution of (4.2) over the time-interval [0, T ], we choose a discretization

grid. Suppose ∆t = T/L for some positive integer L, and denote by τj = j∆t for 0 ≤ j ≤ L. The

numerical approximation of the exact solution X(τj) is Xj .

Among the many numerical methods to approximate the solution of SDEs, we discuss below one of the
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most popular due to its easy implementation, the Euler-Maruyama (EM) method. The Euler-Maruyama

method applied to the SDE (4.2) can be written as:

Xj = Xj−1 + f(Xj−1)∆t+

M∑
j=1

gj(Xj−1)(W (τj)−W (τj−1))

or

X(t+ ∆t) ' X(t) + f(t,X(t))∆t+

M∑
j=1

gj(t,X(t))∆Wj

Depending on the goal of the numerical simulation, numerical methods for SDEs can be classified

in two categories: strong methods and weak methods. We are interested in using strongly convergent

methods when we require the numerical solution to follow accurately the exact solution on each indi-

vidual path. By contrast, we employ weakly convergent methods when we only require an accurate

approximation of the moments of the exact solution.

Definition: Let X be the solution of (4.2) on the interval [0, T ] and τj = j∆t with ∆t = T
L for

some integer L and 0 ≤ j ≤ L be some discretization grid. The numerical method is said to have strong

numerical order of approximation γ > 0 if there exists a constant C such that for any discretization (τj)

0 ≤ j ≤ L, with ∆t < (∆t)0, the numerical solution Xj of X(τj) satisfies

E|XL −X(T )| ≤ C∆tγ (4.3)

The inequality (4.3) holds for γ = 1
2 for the Euler-Maruyama method thus this method has strong

order of approximation 1
2 [28].

In the above definition E(.) denotes the expectation of the random variable.

Definition: Let X be the solution of (4.2) on the interval [0, T ] and τj = j∆t with ∆t = T
L for

some integer L and 0 ≤ j ≤ L be some discretization grid. The numerical method is said to have weak

numerical order of approximation γ > 0 if there exists a constant C > 0 such that for any discretization

(τj) 0 ≤ j ≤ L, with ∆t < (∆t)0, the numerical solution Xj of X(τj) satisfies

|Ep(XL)− Ep(X(T ))| ≤ C∆tγ , for any polynomial p. (4.4)

The inequality (4.4) holds for γ = 1 for the Euler-Maruyama Method, thus this method has weak

order of approximation 1 [28].

We remark that numerical methods of strong order 1 or higher exist (see [28] and references thesis).

One such example is the Milstein method, which has strong order of convergence 1. However, for SDEs

with non-commutative noise, as is the case of the Chemical Langevin Equation, numerical methods of

strong order higher or equal to 1 require the simulation of the double Itô integrals

Iij =

∫ t+∆t

t

∫ s1

t

dWi(s2)dWj(s1) for 1 ≤ i, j ≤M . (4.5)

These integrals are computationally very expensive, as they can not be generated in terms of only
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Wiener increments. They are simulated using truncated Fourier series.

Thus we employ the Euler-Maruyama method for the CLE (2.9) and we obtain

X(t+ ∆t) ' X(t) +

M∑
j=1

νjaj(X)∆t+

M∑
j=1

νj

√
aj(x)

√
∆t.Nj(0, 1) (4.6)

where νj denotes the state change vector when the j−th reaction occurs, aj(X) denotes the propensity

functions of the j−th reaction, Nj(0, 1) is a normal distribution of mean 0 and variance 1 and M is the

total number of reactions.

By applying the Euler-Maruyama method to the stochastic differential equation for sensitivities (3.7)

we obtain

( ∂
∂p

X
)

(t+ ∆t) =
∂

∂p
X(t) +

M∑
k=1

νk

[∂ak(X)(t))

∂(X)

∂(X)

∂p
+
∂ak(X)(t))

∂p

]
∆t

+

M∑
k=1

νk
1

2
√
ak(X)(t)

[∂ak(X)(t)

∂X

∂X

∂p
+
∂ak(X)(t))

∂p

]√
∆t.Nk(0, 1)

(4.7)

The equations (4.6) and (4.7) generate the numerical solution of the system of the CLE (2.9) and of

the pathwise sensitivities (3.7). The numerical results on several applications, for estimating sensitivities,

are presented in the next chapter.
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Numerical Results

In this section we apply the sensitivity analysis discussed above to some relevant models in applications.

The models we consider are the Lotka-Volterra model, the Michaelis-Menten model and a system of stiff,

nonlinear CLE. The numerical results are also presented. We shall notice that the sensitivity analysis of

the RRE doesn’t give accurate results for the models under conditions, and thus a stochastic sensitivity

analysis is required for an accurate estimate of the sensitivities. Our method has the advantage that it

computes the sensitivity of each individual trajectory. To achieve this, we use common random numbers

for estimating the dependence on a parameter of one trajectory. This common number procedure is

critical for the accurate computation of sensitivities.

5.1 Lotka-Volterra Model

The Lotka-Volterra model describes the interaction between two species in any ecosystem. The model

was developed independently by Alfred Lotka, an American biophysicist (1925), and Vito Volterra,

an Italian mathematician (1926), see also [42]. The Lotka-Volterra model is the simplest model of

predator-prey interactions.

The interacting species are:

• a prey Y1

• a predator Y2

The reactions are given in Table 5.1, where we also give the propensities corresponding to each reaction

and the values of the reaction rate parameters.

The reaction R1 represents the prey reproduction, the reaction R2 is the predator-prey interaction

and the reaction R3 is the predator death.
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Reaction channel Reaction propensity Reaction rate

R1 Y1
k1−→ 2Y1 a1 = k1Y1 k1 = 1

R2 Y1 + Y2
k2−→ 2Y2 a2 = k2Y1Y2 k2 = 0.005

R3 Y2
k3−→ ∅ a3 = k3Y2 k3 =0.6

Table 5.1: Lotka-Volterra chemical reaction model

We use the initial conditions for the species Y1(0) = Y2(0) = 100 and integrate the system on the

time interval [0, 50].

Since we have two species, the model will involve two equations, one which describes the evolution

of the prey population and the second which describes the evolution of the predator population.

If reaction R1 takes place, then Y1 decreases by one and increases by two (−1 + 2 = 1), and Y2 is

unchanged, so ν1 becomes

ν1 =

(
1

0

)
Similarly, we can compute the state change vectors for reactions R2 and R3. Therefore the stoichiometric

matrix of the model is

ν =

(
1 −1 0

0 1 −1

)
The deterministic model of the reaction rate equations for the Lotka-Volterra model is:

dY1(t)/dt = k1Y1(t)− k2Y1(t)Y2(t),

dY2(t)/dt = k2Y1(t)Y2(t)− k3Y2(t),

The reaction rate k1 is the intrinsic rate of prey population increase, k2 is the predation rate coefficient

and k3 is the predator mortality rate.

The Chemical Langevin equations for the Lotka-Volterra model are written as:

dY1(t) = {k1Y1(t)− k2Y1(t)Y2(t)}dt+
√
k1Y1(t)dW1 −

√
k2Y1(t)Y2(t)dW2,
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dY2(t) = {k2Y1(t)Y2(t)− k3Y2(t)}dt+
√
k2Y1(t)Y2(t)dW2 −

√
k3Y2(t)dW3,

We analyze the sensitivity of the Lotka-Volterra system with respect to the parameter k1. The

sensitivity equations for the prey Y1 are:

d(
∂Y1

∂k1
) =

3∑
k=1

ν1k

[∂ak(Y(t))

∂(Y)

∂(Y)

∂k1
+
∂ak(Y(t))

∂k1

]
dt

+

3∑
k=1

ν1k
1

2
√
ak(Y(t))

[∂ak(Y(t))

∂(Y)

∂(Y)

∂k1
+
∂ak(Y(t))

∂k1

]
dWk(t)

= {Y1 + k1
∂Y1

∂k1
− k2Y2

∂Y1

∂k1
− k2Y1

∂Y2

∂k1
}dt

+
1

2
√
k1Y1

(Y1 + k1
∂Y1

∂k1
)dW1

− 1

2
√
k2Y1Y2

(k2Y2
∂Y1

∂k1
+ k2Y1

∂Y2

∂k1
)dW2

The sensitivity equations for the predator Y2 can be written as:

d(
∂Y2

∂k1
) =

3∑
k=1

ν2k

[∂ak(Y(t))

∂(Y)

∂(Y)

∂k1
+
∂ak(Y(t))

∂k1

]
dt

+

3∑
k=1

ν2k
1

2
√
ak(Y(t))

[∂ak(Y(t))

∂(Y)

∂(Y)

∂k1
+
∂ak(Y(t))

∂k1

]
dWk(t)

= {k2Y2
∂Y1

∂k1
+ k2Y1

∂Y2

∂k1
− k3

∂Y2

∂k1
}dt

+
1

2
√
k2Y1Y2

(k2Y2
∂Y1

∂k1
+ k2Y1

∂Y2

∂k1
)dW2

− 1

2
√
k3Y2

k3
∂Y2

∂k1
dW3

These equations are integrated with the initial conditions ∂Y1

∂k1
|t=0 = 0 and ∂Y2

∂k1
|t=0 = 0 since the

initial amount of Y1 and Y2 do not depend on the kinetic parameter k1.
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The equations have periodic solutions as one can observe from Figure 5.1. In order to accurately

approximate the probability distribution of the sensitivities we need a large number of trajectories. Here

we run our simulations for 10,000 trajectories.

We evaluate the mean of the sensitivities of the Chemical Langevin Equations with the fixed step

size 20×10−4. For this problem, the mean sensitivities for CLE are well approximated by the sensitivity

for RRE. Figure 5.1 shows the sensitivity with respect to k1 for the deterministic model (RRE) and

the mean of the sensitivity with respect to parameter k1 for the CLE. As we can see, the stochastic and

deterministic plots have a good agreement. Therefore, on this model, the mean of pathwise sensitivities

approximates well the sensitivity in the RRE.

In Figure 5.1, we plotted the standard deviation of the sensitivity with respect to parameter k1 for

the CLE of the Lotka-Volterra system. We see that the standard deviation is not negligible on this

model, while it is zero for the RRE model. This plot gives an information about the spread of the values

for sensitivities compared to the mean value (as given by the RRE). Moreover, our sensitivity analysis

estimates the sensitivity on each individual trajectory.

Thus, the sensitivity analysis of the RRE model fails to capture the variability in sensitivities for

models of biochemical systems which have some molecular species in low population numbers.
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Figure 5.1: Evolution in time of the number of molecules (top) and of the sensitivities for k1 for RRE
and of the mean of sensitivities for CLE (bottom)
Y 1stoch and Y 2stoch: the mean of the sensitivity of the CLE for Y1 and Y2 (stochastic plots)
Y 1det and Y 2det: the sensitivity for RRE for the species Y1 and Y2 (deterministic plots)
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Figure 5.2: Evolution in time of the number of molecules (top) and of the sensitivities for k1 for RRE
and of the std of sensitivities for k1 for CLE (bottom)
stdY 1 and stdY 2: the standard deviation of sensitivities with respect to the parameter k1 for CLE
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5.2 Michaelis-Menten Model

Next, we analyze a key model of biochemical systems, the Michaelis-Menten model which is a system

with four species:

• a substrate Y1

• an enzyme Y2

• a complex Y3

• a product Y4

Many biochemical reactions utilize enzymes. An enzymatic reaction that transforms the substrate

Y1 into a product Y4 requires the formation of a complex Y3 between the substrate Y1 and the enzyme

Y2. In fact, the enzyme acts as a catalyst for the reaction. After the formation of the product Y4, the

enzyme Y2 is released. This is summarized in the system of reactions in Table 5.2.

Reaction channel Reaction propensity Reaction rate

R1 Y1 + Y2
k1−→ Y3 a1 = k1Y1Y2 k1 = 106/(nAvol)

R2 Y3
k2−→ Y1 + Y2 a2 = k2Y3 k2 = 10−4

R3 Y3
k3−→ Y4 + Y2 a3 = k3Y3 k3 = 10−1

Table 5.2: The Michaelis-Menten chemical reaction system

We assume that the reaction between the substrate and the enzyme, which produces the sub-

strate/enzyme complex occurs at rate k1 and the reverse reaction at rate k2. The reaction between the

substrate/enzyme complex which results in the product and the enzyme occurs at rate k3. The models for

this reaction were first studied by Michaelis and Menten [36] under some assumptions. A more realistic

model was developed by Briggs and Haldane [7]. We use the initial conditions Y1(0) = b5× 10−7nAvolc,
Y2(0) = b2×10−7nAvolc and Y3(0) = Y4(0) = 1 and we integrate on the time interval [0, 50]. We denote

by nA = 6.023× 1023 the Avagadro’s number and by vol = 10−15 the volume of the system.

The Chemical Langevin equations for the Michaelis-Menten model are written as:

dY1(t) = {−k1Y1(t)Y2(t) + k2Y3(t)}dt−
√
k1Y1(t)Y2(t)dW1 +

√
k2Y3(t)dW2
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Figure 5.3: The Michaelis-Menten mechanism of enzyme action

dY2(t) = {−k1Y1(t)Y2(t) + (k2 + k3)Y3(t)}dt−
√
k1Y1(t)Y2(t)dW1

+
√
k2Y3(t)dW2 +

√
k3Y3(t)dW3

dY3(t) = {k1Y1(t)Y2(t)− (k2 + k3)Y3(t)}dt+
√
k1Y1(t)Y2(t)dW1

−
√
k2Y3(t)dW2 −

√
k3Y3(t)dW3

dY4(t) = {k3Y3(t)}dt+
√
k3Y3(t)dW3

Since the system has four species, it has dimension four, one equation for each different molecular

species.

The deterministic model of the RRE is obtained by neglecting the stochastic terms:

dY1(t)/dt = −k1Y1(t)Y2(t) + k2Y3(t),

dY2(t)/dt = −k1Y1(t)Y2(t) + (k2 + k3)Y3(t)

dY3(t)/dt = k1Y1(t)Y2(t)− (k2 + k3)Y3(t)

dY4(t)/dt = k3Y3(t).

Below, we study the sensitivity of the Michaelis-Menten system with respect to the parameter k2.

The sensitivity system is:
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d(
∂Y1

∂k2
) =

3∑
k=1

ν1k

[∂ak(Y(t))

∂(Y)

∂(Y)

∂k2
+
∂ak(Y(t))

∂k2

]
dt

+

3∑
k=1

ν1k
1

2
√
ak(Y(t))

[∂ak(Y(t))

∂(Y)

∂(Y)

∂k2
+
∂ak(Y(t))

∂k2

]
dWk(t)

= {−k1Y2
∂Y1

∂k2
− k1Y1

∂Y2

∂k2
+ k2

∂Y3

∂k2
+ Y3}dt

− 1

2
√
k1Y1Y2

(k1Y2
∂Y1

∂k2
+ k1Y1

∂Y2

∂k2
)dW1

+
1

2
√
k2Y3

(k2
∂Y3

∂k2
+ Y3)dW2

d(
∂Y2

∂k2
) =

3∑
k=1

ν2k

[∂ak(Y(t))

∂(Y)

∂(Y)

∂k2
+
∂ak(Y(t))

∂k2

]
dt

+

3∑
k=1

ν2k
1

2
√
ak(Y(t))

[∂ak(Y(t))

∂(Y)

∂(Y)

∂k2
+
∂ak(Y(t))

∂k2

]
dWk(t)

= {−k1Y1
∂Y2

∂k2
− k1Y2

∂Y1

∂k2
+ Y3 + k2

∂Y3

∂k2
+ k3

∂Y3

∂k2
}dt

− 1

2
√
k1Y1Y2

(k1Y1
∂Y2

∂k2
+ k1Y2

∂Y1

∂k2
)dW1 +

1

2
√
k2Y3

(Y3 + k2
∂Y3

∂k2
)dW2

+
1

2
√
k3Y3

(k3
∂Y3

∂k2
)dW3

The sensitivity equations for Y3, Y4 can be written as

d(
∂Y3

∂k2
) = {k1Y1

∂Y2

∂k2
+ k1Y2

∂Y1

∂k2
− Y3 − k2

∂Y3

∂k2
− k3

∂Y3

∂k2
}dt

+
1

2
√
k1Y1Y2

(k1Y1
∂Y2

∂k2
+ k1Y2

∂Y1

∂k2
)dW1 −

1

2
√
k2Y3

(Y3 + k2
∂Y3

∂k2
)dW2

− 1

2
√
k3Y3

(k3
∂Y3

∂k2
)dW3

d(
∂Y4

∂k2
) = {k3

∂Y3

∂k2
+

1

2
√
k3Y3

(k3
∂Y3

∂k2
)dW3
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Figure 5.4 shows the evolution in time of the sensitivity with respect to k2 for the deterministic model

(RRE) and the mean of the sensitivity with respect to parameter k2 for the CLE, for the Michaelis-

Menten system. We find a good agreement between them. In the bottom of Figure 5.5, we present

the plots of the standard deviation of the sensitivity with respect to parameter k2 for the CLE of the

Michaelis-Menten system. We see that the std is not negligible in the CLE model, while it is zero for the

RRE model. Thus, the sensitivities of RRE do not accurately describe the dependence on the kinetic

parameter, of the system’s dynamics.

34



CHAPTER 5. NUMERICAL RESULTS 5.2. MICHAELIS-MENTEN MODEL

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

Y1

Y2

Y3

Y4

0 5 10 15 20 25 30 35 40 45 50
−600

−400

−200

0

200

400

600

Y1
stoch

Y2
stoch

Y3
stoch

Y4
stoch

Y1
det

Y2
det

Y3
det

Y4
det

Figure 5.4: The evolution in time of the number of molecules (top) and of the sensitivities for k2 for the
RRE, and of the mean of sensitivities for the CLE (bottom)
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Figure 5.5: The evolution in time of the number of molecules (top) and of the std of the sensitivities for
k2 for the CLE (bottom)
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5.3 A system of stiff, nonlinear CLEs

Finally, we present a biochemical system of reversible reactions (see [44]). This system is challenging

due to its high degree of stiffness. In spite of its stiffness, this model can be studied very well with the

sensitivity analysis we proposed.

Reaction channel Reaction propensity Reaction rate

R1 S1 + S2
c1−→ S3 a1 = c1S1S2 c1 = 103(molecules−1s−1)

R2 S3
c2−→ S1 + S2 a2 = c2S3 c2 = 103(s−1)

R3 S1 + S3
c3−→ S2 a3 = c3S1S3 c3 = 10−5(molecules−1s−1)

R4 S2
c4−→ S1 + S3 a4 = c4S2 c4 = 10(s−1)

R5 S2 + S3
c5−→ S1 a5 = c5S2S3 c5 = 1.0(molecules−1s−1)

R6 S1
c6−→ S2 + S3 a6 = c6S1 c6 = 106(s−1)

Table 5.3: A stiff, nonlinear Chemical reaction model.

We estimate the initial conditions S1(0) = S2(0) = 103 molecules and simulate the system on the

time interval [0, 0.01]s on 10,000 trajectories . The system is stiff because it has multiple time-scales,

with slow and fast reactions with the fast ones being stable [44].

The corresponding CLEs model is

dS1(t) = {−c1S1(t)S2(t) + c2S3(t)− c3S1(t)S3(t) + c4S2(t) + c5S2(t)S3(t)− c6S1(t)}dt
−

√
c1S1(t)S2(t)dW1 +

√
c2S3(t)dW2 −

√
c3S1(t)S3(t)dW3 +

√
c4S2(t)dW4

+
√
c5S2(t)S3(t)dW5 −

√
c6S1(t)dW6

dS2(t) = {−c1S1(t)S2(t) + c2S3(t) + c3S1(t)S3(t)− c4S2(t)− c5S2(t)S3(t) + c6S1(t)}dt
−

√
c1S1(t)S2(t)dW1 +

√
c2S3(t)dW2 +

√
c3S1(t)S3(t)dW3 −

√
c4S2(t)dW4

−
√
c5S2(t)S3(t)dW5 +

√
c6S1(t)dW6

dS3(t) = {c1S1(t)S2(t)− c2S3(t)− c3S1(t)S3(t) + c4S2(t)− c5S2(t)S3(t) + c6S1(t)}dt
+

√
c1S1(t)S2(t)dW1 −

√
c2S3(t)dW2 −

√
c3S1(t)S3(t)dW3 +

√
c4S2(t)dW4

−
√
c5S2(t)S3(t)dW5 +

√
c6S1(t)dW6

(5.1)
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The RREs model for this reaction system is obtained by neglecting the noise in the system:

dS1(t)/dt = −c1S1(t)S2(t) + c2S3(t)− c3S1(t)S3(t) + c4S2(t) + c5S2(t)S3(t)− c6S1(t)

dS2(t)/dt = −c1S1(t)S2(t) + c2S3(t) + c3S1(t)S3(t)− c4S2(t)− c5S2(t)S3(t) + c6S1(t)

dS3(t)/dt = c1S1(t)S2(t)− c2S3(t)− c3S1(t)S3(t) + c4S2(t)− c5S2(t)S3(t) + c6S1(t)

(5.2)

We study the sensitivity of the reaction system with respect to the parameter c4. The sensitivities are

obtained by taking the derivative with respect to c4 in the system (5.1). The derivative of the first

equation gives:

d(
∂S1

∂c4
) = {−c1S1

∂S2

∂c4
− c1S2

∂S1

∂c4
+ c2

∂S3

∂c4
− c3S1

∂S3

∂c4
− c3S3

∂S1

∂c4
+ S2

+ c4
∂S2

∂c4
+ c5S2

∂S3

∂c4
+ c5S3

∂S2

∂c4
− c6

∂S1

∂c4
}dt

− 1

2
√
c1S1S2

(c1S1
∂S2

∂c4
+ c1S2

∂S1

∂c4
)dW1 +

1

2
√
c2S3

(c2
∂S3

∂c4
)dW2

− 1

2
√
c3S1S3

(c3S1
∂S3

∂c4
+ c3S3

∂S1

∂c4
)dW3

+
1

2
√
c4S2

(S2 + c4
∂S2

∂c4
)dW4 +

1

2
√
c5S2S3

(c5S2
∂S3

∂c4
+ c5S3

∂S2

∂c4
)dW5

− 1

2
√
c6S1

(c6
∂S1

∂c4
)dW6
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Taking derivative with respect to c4 in the second equation leads to:

d(
∂S2

∂c4
) = {−c1S1

∂S2

∂c4
− c1S2

∂S1

∂c4
+ c2

∂S3

∂c4
+ c3S1

∂S3

∂c4
+ c3S3

∂S1

∂c4

− S2 − c4
∂S2

∂c4
− c5S2

∂S3

∂c4
− c5S3

∂S2

∂c4
+ c6

∂S1

∂c4
}dt

− 1

2
√
c1S1S2

(c1S1
∂S2

∂c4
+ c1S2

∂S1

∂c4
)dW1 +

1

2
√
c2S3

(c2
∂S3

∂c4
)dW2

+
1

2
√
c3S1S3

(c3S1
∂S3

∂c4
+ c3S3

∂S1

∂c4
)dW3

− 1

2
√
c4S2

(S2 + c4
∂S2

∂c4
)dW4 −

1

2
√
c5S2S3

(c5S2
∂S3

∂c4
+ c5S3

∂S2

∂c4
)dW5

+
1

2
√
c6S1

(c6
∂S1

∂c4
)dW6

A similar behavior is observed for d(
∂S3

∂c4
).

To obtain the deterministic plots for the sensitivities with respect to c4, we use an ode solver for

approximating the solution of the following system:

dS1(t)

dt
= −c1S1S2 + c2S3 − c3S1S3 + c4S2 + c5S2S3 − c6S1

dS2(t)

dt
= −c1S1S2 + c2S3 + c3S1S3 − c4S2 − c5S2S3 + c6S1

dS3(t)

dt
= c1S1S2 − c2S3 − c3S1S3 + c4S2 − c5S2S3 + c6S1

d

dt

(∂S1

∂c4

)
= −c1S1

∂S2

∂c4
− c1S2

∂S1

∂c4
+ c2

∂S3

∂c4
− c3S1

∂S3

∂c4
− c3S3

∂S1

∂c4

+ S2 + c4
∂S2

∂c4
+ c5S2

∂S3

∂c4
+ c5S3

∂S2

∂c4
− c6

∂S1

∂c4
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d

dt

(∂S2

∂c4

)
= −c1S1

∂S2

∂c4
− c1S2

∂S1

∂c4
+ c2

∂S3

∂c4
+ c3S1

∂S3

∂c4
+ c3S3

∂S1

∂c4

− S2 − c4
∂S2

∂c4
− c5S2

∂S3

∂c4
− c5S3

∂S2

∂c4
+ c6

∂S1

∂c4

d

dt

(∂S3

∂c4

)
= c1S1

∂S2

∂c4
+ c1S2

∂S1

∂c4
− c2

∂S3

∂c4
− c3S1

∂S3

∂c4
− c3S3

∂S1

∂c4

+ S2 + c4
∂S2

∂c4
− c5S2

∂S3

∂c4
− c5S3

∂S2

∂c4
+ c6

∂S1

∂c4

with initial conditions for sensitivities ∂S1

∂c4
(0) = ∂S2

∂c4
(0) = ∂S3

∂c4
(0) = 0.
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Figure 5.6: The evolution in time of the numbers of molecules of the species S1, S2 and S3 , and of the
sensitivities for the RRE and of the mean of sensitivities for the CLE.
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In Figure 5.6, the plots present. (A) A sample trajectory of the number of molecules of S1 and S2.

(B) A sample trajectory of the number of molecules of S3. (C) The sensitivities of S1 and S2 with

respect to the parameter c4 for the RRE and the mean of the sensitivities of S1 and S2 for the CLE

in the interval [0,0.01]s.(D) The sensitivities of S3 with respect to c4 for the RRE and of the mean of

sensitivities of S3 for the CLE in the interval [0,0.01]s. The results were obtained on 1000 trajectories.

Because of the notable behavior of the species of S3, we used a separate plot for it. This behavior is

due to the large initial amount of molecules this species in comparison with the other species. Therefore

the noise term effect on it is not large.
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Figure 5.7: The standard deviation (std) of the sensitivities with respect to c4 for the Chemical Langevin
Equation(CLE) on the third model.
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Chapter 6

Conclusion

This thesis discussed the mathematical modeling and simulation of well-stirred biochemical systems.

Such systems appear in the study of important biological processes, and in particular of the cellular

dynamics. We focused on a stochastic continuous model of these biochemical systems, namely the

Chemical Langevin Equation. The classical deterministic continuous models of (bio)-chemical reactions,

the well-known model of the reaction rate equations, were extensively studied in the past. The stochastic

models of biochemical reactions are much less considered. In particular, the sensitivity analysis of the

deterministic model was well-developed, while a strong parametric sensitivity of the stochastic continuous

models is not available in the literature.

We developed such a pathwise (strong) sensitivity analysis of the stochastic continuous model of

biochemical systems, the Chemical Langevin Equation. We tested the sensitivities obtained with our

method on several models. We compared the mean of the sensitivities of the Chemical Langevin equation,

with the sensitivities of the simplified deterministic model of the reaction rate equation and found a good

agreement.

Our sensitivity analysis provides information about the statistics of sensitivities for the Chemical

Langevin equation, such as their standard deviation and higher order moments of the distributions.

This information can not be obtained from deterministic models.

In the presence of a given data set and of many parameters, responses will not change equally to

similar changes in parameters, some are sensitive and some are not. The parameter space we wish to fit

can be reduced by examining with respect to which parameters the system is sensitive and with respect

to which the system is not sensitive. We plan to investigate this problem in the future.
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Appendix A

Convergence in probability

We denote by Ω a given set.

Definition: If Ω is a set, then a σ-algebra F on Ω is a family F of subsets of Ω with the following

properties:

• ∅ ∈ F

• F ∈ F then the complement of F , F c ∈ F .

• A1, A2, ... ∈ F then A :=
⋃∞
i=1Ai ∈ F .

The pair (Ω,F) is called a measurable space. A probability measure P on a measurable space (Ω,F) is

a function P : F → [0, 1] satisfying

(i) P (∅) = 0 and P (Ω) = 1.

(ii) If A1, A2, ... ∈ F and
{
Ai

}∞
i=1

is disjoint (i.e Ai ∩Aj = ∅ if i 6= j) then

P (
⋃∞
i=1Ai) =

∑∞
i=1 P (Ai).

The triple (Ω,F , P ) is called a probability space.

Definition: Let (Ω,F , P ) be a probability space. A family {fj} j ∈ J of real and measurable

functions fj on Ω is called uniformly integrable if it satisfies

lim
M→∞

(
supj∈J

{∫
|fj |>M

|fj |dP
})

= 0

Definition: Let (Ω,F , P ) be a probability space. The sequence of random variables (Yn)n is said

to converge in probability to a random variable Y , and is denoted by Yn
p−→ Y if

P
(
ω : |Yn(ω)− Y (ω)| > ε

)
→ 0 as n→∞

for any given ε > 0.
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Appendix B

Matlab code

The Lotka-Volterra model code

%stoichiometric matrix

V = [1 -1 0 ;0 1 -1];

Y = zeros(2,1);

D = zeros(2,1);

Y(1) = 100; Y(2) = 100;

k1 = 1; k2 = 0.005; k3 = 0.6;

tfinal = 20;

L = 10000;

tau = tfinal/L; % stepsize

tvals = [0:tau:tfinal];

NumberOfRuns=100; %number of trajectries

Yvals =zeros(NumberOfRuns,2, L+1);

Dvals = zeros(NumberOfRuns,2, L+1);

Y1 = 100; Y2 = 100;

D1 = 0; D2 = 0;

% This is for 1st column of Yvals and Dvals

Yvals(:,1,1) = Y1; Yvals(:,2,1) = Y2;

Dvals(:,1,1) = D1; Dvals(:,2,1) = D2;

for j=1:NumberOfRuns

Y(1) = Y1;
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Y(2) = Y2;

D = zeros(2,1);

for k = 1:L

n = randn(4, 1);

% terms for the number of molecules

a(1) = k1*Y(1);

a(2) = k2*Y(1)*Y(2);

a(3) = k3*Y(2);

d(1) = tau*a(1) + sqrt(abs(tau*a(1)))*n(1);

d(2) = tau*a(2) + sqrt(abs(tau*a(2)))*n(2);

d(3) = tau*a(3) + sqrt(abs(tau*a(3)))*n(3);

% terms for sensitivities

Da(1) = Y(1)+ k1*D(1,1);

Da(2) = k2*D(1,1)*Y(2) + k2*Y(1)*D(2,1);

Da(3) = k3*D(2,1);

Dd(1) = Da(1)* tau + 1/2*sqrt(abs(tau/a(1)))* Da(1)*n(1);

Dd(2) = Da(2)* tau + 1/2*sqrt(abs(tau/a(2)))* Da(2)*n(2);

Dd(3) = Da(3)* tau + 1/2*sqrt(abs(tau/a(3)))* Da(3)*n(3);

% number of molecules

Y = Y + d(1)*V(:,1) + d(2)*V(:,2) + d(3)*V(:,3);

% sensitivity for k4

D = D + Dd(1)*V(:,1) + Dd(2)*V(:,2) + Dd(3)*V(:,3);

Yvals(j,1,k+1) = Y(1);

Yvals(j,2, k+1) = Y(2);

Dvals(j,1, k+1) = D(1,1);

Dvals(j,2, k+1) = D(2,1);

end

end

%mean & standard division of Dvals

meanDvals =zeros(L+1,2); stdDvals =zeros(L+1,2);

for r=1:L

meanDvals(r+1,1) = mean (Dvals(:,1, r+1));

meanDvals(r+1,2) = mean (Dvals(:,2, r+1));
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stdDvals(r+1,1) = std(Dvals(:,1, r+1));

stdDvals(r+1,2) = std(Dvals(:,2, r+1));

end

opts = odeset(’abstol’, 1.e-6);

LV=@ (tt,yy)[ k1*yy(1) - k2*yy(1)*yy(2); k2*yy(1)*yy(2)- k3*yy(2);...

yy(1)+ k1*yy(3)- k2*yy(3)*yy(2)-k2*yy(4)*yy(1);...

k2*yy(3)*yy(2)+k2*yy(4)*yy(1)-k3*yy(4)];

[tt, yy] = ode45(LV, [0,20], [Y1,Y2,0,0], opts);

%probability density function(pdf) of Yvals & Dvals

X1=round(Yvals(:,1,L+1));

XD1=round(Dvals(:,1,L+1));

X2=round(Yvals(:,2,L+1));

XD2=round(Dvals(:,2,L+1));

%hist(X1)

[n1, xout1] = hist(X1);

[nD1, xoutD1] = hist(XD1);

[n2, xout2] = hist(X2);

[nD2, xoutD2] = hist(XD2);
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The Michaelis-Menten model code

%stoichiometric matrix

V = [-1 1 0 ;-1 1 1 ; 1 -1 -1 ; 0 0 1];

Y = zeros(4,1);

D = zeros(4,1);

nA = 6.023e23; vol = 1e-15;

Y(1) = round(5e-7*nA*vol); Y(2) = round(2e-7*nA*vol);

Y(3) = 1; Y(4) =1;

k1 = 1e6/(nA*vol); k2 = 1e-4; k3 = 0.1;

tfinal = 50;

L = 1000;

tau = tfinal/L; % stepsize

tvals = [0:tau:tfinal];

NumberOfRuns=2; %number of trajectries

Yvals =zeros(NumberOfRuns,4, L+1);

Dvals = zeros(NumberOfRuns,4, L+1);

Y1 = round(5e-7*nA*vol); Y2 = round(2e-7*nA*vol);

Y3 =1; Y4=1;

D1 = 0; D2 = 0; D3 = 0; D4 = 0;

% This is for 1st column of Yvals and Dvals

Yvals(:,1,1) = Y1; Yvals(:,2,1) = Y2;

Yvals(:,3,1) = Y3; Yvals(:,4,1) = Y4;

Dvals(:,1,1) = D1; Dvals(:,2,1) = D2;

Dvals(:,3,1) = D3; Dvals(:,4,1) = D4;

for j=1:NumberOfRuns

Y(1) = Y1;

Y(2) = Y2;

Y(3) = Y3;

Y(4) = Y4;

D = zeros(4,1);

for k = 1:L
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n = randn(4, 1);

% terms for the number of molecules

a(1) = k1*Y(1)*Y(2);

a(2) = k2*Y(3);

a(3) = k3*Y(3);

d(1) = tau*a(1) + sqrt(abs(tau*a(1)))*n(1) ;

d(2) = tau*a(2) + sqrt(abs(tau*a(2)))*n(2) ;

d(3) = tau*a(3) + sqrt(abs(tau*a(3)))*n(3);

% terms for sensitivities

Da(1) = k1*Y(2)*D(1,1) + k1*Y(1)*D(2,1);

Da(2) = k2*D(3,1) + Y(3);

Da(3) = k3*D(3,1);

Dd(1) = Da(1)* tau + 1/2*sqrt(abs(tau/a(1)))* Da(1)*n(1);

Dd(2) = Da(2)* tau + 1/2*sqrt(abs(tau/a(2)))* Da(2)*n(2);

Dd(3) = Da(3)* tau + 1/2*sqrt(abs(tau/a(3)))* Da(3)*n(3);

% number of molecules

Y = Y + d(1)*V(:,1) + d(2)*V(:,2) + d(3)*V(:,3);

% sensitivity for k4

D = D + Dd(1)*V(:,1) + Dd(2)*V(:,2) + Dd(3)*V(:,3);

Yvals(j,1,k+1) = Y(1);

Yvals(j,2,k+1) = Y(2);

Yvals(j,3,k+1) = Y(3);

Yvals(j,4,k+1) = Y(4);

Dvals(j,1, k+1) = D(1,1);

Dvals(j,2, k+1) = D(2,1);

Dvals(j,3, k+1) = D(3,1);

Dvals(j,4, k+1) = D(4,1);

end

end

%mean & standard division of Dvals

meanDvals =zeros(L+1,4); stdDvals =zeros(L+1,4);

for r=1:L
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meanDvals(r+1,1) = mean (Dvals(:,1, r+1));

meanDvals(r+1,2) = mean (Dvals(:,2, r+1));

meanDvals(r+1,3) = mean (Dvals(:,3, r+1));

meanDvals(r+1,4) = mean (Dvals(:,4, r+1));

stdDvals(r+1,1) = std(Dvals(:,1, r+1));

stdDvals(r+1,2) = std(Dvals(:,2, r+1));

stdDvals(r+1,3) = std(Dvals(:,3, r+1));

stdDvals(r+1,4) = std(Dvals(:,4, r+1));

end

opts = odeset(’abstol’, 1.e-6);

MM =@ (tt,yy)[-k1*yy(1)*yy(2) + k2*yy(3);...

-k1*yy(1)*yy(2)+ k2*yy(3) + k3*yy(3);...

k1*yy(1)*yy(2) - k2*yy(3) - k3*yy(3);...

k3*yy(3);...

-k1*yy(2)*yy(5)-k1*yy(1)*yy(6)+k2*yy(7)+yy(3);...

-k1*yy(2)*yy(5)-k1*yy(1)*yy(6)+yy(3)+k2*yy(7)+k3*yy(7);...

k1*yy(2)*yy(5)+k1*yy(1)*yy(6)-yy(3)-k2*yy(7)-k3*yy(7);...

k3*yy(7)];

yy0=[Y1,Y2,Y3,Y4,0,0,0,0];

[tt, yy] = ode45(MM, [0 ,50], yy0, opts);

hold on

%probability density function(pdf) of Yvals

X1=round(Yvals(:,1,L+1));

X2=round(Yvals(:,2,L+1));

[n1, xout1] = hist(X1);

[n2, xout2] = hist(X2);

The stiff, nonlinear system of CLE code

%stoichiometric matrix

V = [-1 1 -1 1 1 -1; -1 1 1 -1 -1 1; 1 -1 -1 1 -1 1];

Y = zeros(3,1);

D = zeros(3,1);

Y(1) = 1e3;
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Y(2) = 1e3;

Y(3) = 1e6;

k1 = 1e3;

k2 = 1e3;

k3 = 1e-5;

k4 = 10;

k5 = 1.0;

k6 = 1e6;

tfinal = 0.01;

L = 50000;

tau = tfinal/L; % stepsize

tvals = [0:tau:tfinal];

NumberOfRuns=1000; %number of trajectries

Yvals =zeros(NumberOfRuns,3, L+1);

Dvals = zeros(NumberOfRuns,3, L+1);

Y1 = 1e3; Y2 = 1e3; Y3 =1e6;

D1 = 0; D2 = 0; D3 = 0;

% This is for 1st column of Yvals and Dvals

Yvals(:,1,1) = Y1; Yvals(:,2,1) = Y2;

Yvals(:,3,1) = Y3;

Dvals(:,1,1) = D1; Dvals(:,2,1) = D2;

Dvals(:,3,1) = D3;

for j=1:NumberOfRuns

Y(1) = Y1;

Y(2) = Y2;

Y(3) = Y3;

D = zeros(3,1);

for k = 1:L

n = randn(6, 1);

% terms for the number of molecules

a(1) = k1*Y(1)*Y(2);

a(2) = k2*Y(3);

a(3) = k3*Y(1)*Y(3);

a(4) = k4*Y(2);
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a(5) = k5*Y(2)*Y(3);

a(6) = k6*Y(1);

d(1) = tau*a(1) + sqrt(abs(tau*a(1)))*n(1) ;

d(2) = tau*a(2) + sqrt(abs(tau*a(2)))*n(2) ;

d(3) = tau*a(3) + sqrt(abs(tau*a(3)))*n(3);

d(4) = tau*a(4) + sqrt(abs(tau*a(4)))*n(4);

d(5) = tau*a(5) + sqrt(abs(tau*a(5)))*n(5);

d(6) = tau*a(6) + sqrt(abs(tau*a(6)))*n(6);

% terms for sensitivities

Da(1) = k1*Y(2)*D(1,1) + k1*Y(1)*D(2,1);

Da(2) = k2*D(3,1);

Da(3) = k3*Y(1)*D(3,1) + k3*Y(3)*D(1,1);

Da(4) = Y(2) + k4*D(2,1);

Da(5) = k5*Y(2)*D(3,1) + k5*Y(3)*D(2,1);

Da(6) = k6*D(1,1);

Dd(1) = Da(1)* tau + 1/2*sqrt(abs(tau/a(1)))* Da(1)*n(1);

Dd(2) = Da(2)* tau + 1/2*sqrt(abs(tau/a(2)))* Da(2)*n(2);

Dd(3) = Da(3)* tau + 1/2*sqrt(abs(tau/a(3)))* Da(3)*n(3);

Dd(4) = Da(4)* tau + 1/2*sqrt(abs(tau/a(4)))* Da(4)*n(4);

Dd(5) = Da(5)* tau + 1/2*sqrt(abs(tau/a(5)))* Da(5)*n(5);

Dd(6) = Da(6)* tau + 1/2*sqrt(abs(tau/a(6)))* Da(6)*n(6);

% number of molecules

Y = Y + d(1)*V(:,1) + d(2)*V(:,2) + d(3)*V(:,3) + d(4)*V(:,4)

+ d(5)*V(:,5) + d(6)*V(:,6);

% sensitivity for k4

D = D + Dd(1)*V(:,1) + Dd(2)*V(:,2) + Dd(3)*V(:,3) + Dd(4)*V(:,4)

+ Dd(5)*V(:,5) + Dd(6)*V(:,6);

Yvals(j,1,k+1) = Y(1);

Yvals(j,2,k+1) = Y(2);

Yvals(j,3,k+1) = Y(3);

Dvals(j,1, k+1) = D(1,1);

Dvals(j,2, k+1) = D(2,1);

Dvals(j,3, k+1) = D(3,1);
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end

end

%mean & standard division of Dvals

meanDvals =zeros(L+1,4); stdDvals =zeros(L+1,4);

for r=1:L

meanDvals(r+1,1) = mean (Dvals(:,1, r+1));

meanDvals(r+1,2) = mean (Dvals(:,2, r+1));

meanDvals(r+1,3) = mean (Dvals(:,3, r+1));

stdDvals(r+1,1) = std(Dvals(:,1, r+1));

stdDvals(r+1,2) = std(Dvals(:,2, r+1));

stdDvals(r+1,3) = std(Dvals(:,3, r+1));

end

opts = odeset(’abstol’, 1.e-6);

SSS =@ (tt,yy)[

-k1*yy(1)*yy(2)+k2*yy(3)-k3*yy(1)*yy(3)+k4*yy(2)+k5*yy(2)*yy(3)-k6*yy(1);...

-k1*yy(1)*yy(2)+k2*yy(3)+k3*yy(1)*yy(3)-k4*yy(2)-k5*yy(2)*yy(3)+k6*yy(1);...

k1*yy(1)*yy(2)-k2*yy(3)-k3*yy(1)*yy(3)+k4*yy(2)-k5*yy(2)*yy(3)+k6*yy(1);...

-k1*yy(2)*yy(4)-k1*yy(1)*yy(5)+k2*yy(6)-k3*yy(1)*yy(6)-k3*yy(3)*yy(4)+yy(2)

+k4*yy(5)+k5*yy(2)*yy(6)+k5*yy(3)*yy(5)-k6*yy(4);...

-k1*yy(2)*yy(4)-k1*yy(1)*yy(5)+k2*yy(6)+k3*yy(1)*yy(6)+k3*yy(3)*yy(4)-yy(2)

-k4*yy(5)-k5*yy(2)*yy(6)-k5*yy(3)*yy(5)+k6*yy(4);...

k1*yy(2)*yy(4)+k1*yy(1)*yy(5)-k2*yy(6)-k3*yy(1)*yy(6)-k3*yy(3)*yy(4)+yy(2)

+k4*yy(5)-k5*yy(2)*yy(6)-k5*yy(3)*yy(5)+k6*yy(4)];...

yy0=[Y1,Y2,Y3,0,0,0];

[tt, yy] = ode45(SSS, [0 ,0.01], yy0, opts);

subplot(1,2,1);

plot(tvals,squeeze(Yvals(j,1,:)),’b’,tvals,squeeze(Yvals(j,2,:)),’r’)

subplot(1,2,2);

plot(tvals,squeeze(Yvals(j,3,:)),’m’)

subplot(2,2,1);

plot(tvals, meanDvals(:,1), ’m’,tvals, meanDvals(:, 2), ’k’

,tt,yy(:,4), ’.’,tt,yy(:,5), ’*g’)

subplot(2,2,2);

plot(tvals, meanDvals(:, 3), ’r’,tt,yy(:,6), ’--’)
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subplot(2,2,3);

plot(tvals, meanDvals(:,1), ’m’,tvals, meanDvals(:, 2), ’k’

,tt,yy(:,4), ’.’,tt,yy(:,5), ’*g’)

subplot(2,2,4);

plot(tvals, meanDvals(:, 3), ’r’,tt,yy(:,6), ’--’)

subplot(2,2,2);

plot(tvals, stdDvals(:,1), ’m’,tvals, stdDvals(:, 2), ’k’)

subplot(2,2,4);

plot(tvals, stdDvals(:,1), ’m’,tvals, stdDvals(:, 2), ’k’)

subplot(1,2,1);

plot(tvals, stdDvals(:, 3), ’r’)
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