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Abstract 

Deterioration is a major problem facing engineering structures, systems and components 

(SSCs). To maintain the structural integrity and safe operation of such SSCs all through 

their service life, it is important to understand how degradation phenomena progress over 

time and space. Hence degradation modelling has been increasingly used to model 

existing deterioration, predict future deterioration as well as provide input for infrastructure 

management in terms of inspection and maintenance decision making. As deterioration 

is known to be random, modelling of spatial and temporal uncertainty remains a crucial 

challenge for infrastructure asset professionals.  

The main objective of the thesis is to develop sophisticated models for characterizing 

spatial and temporal uncertainties in deterioration modelling with a view to enhancing 

decision making under uncertainty. The thesis proposes a two-dimensional copula-based 

gamma distributed random field for the spatial uncertainties, and a copula-based 

multivariate gamma process model to characterize stochastic dependence of multiple 

degradation phenomena.  Techniques for estimating the model parameters and 
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simulating the field or process, prediction of the remaining lifetime distribution as well as 

condition-based maintenance optimization are also presented.    

To study the extreme value distribution of the random field, the thesis also presents a 

numerical method based on the Karhunen-Loève expansion for evaluating extrema of 

both one- and two-dimensional homogeneous random fields. The simulation results are 

benchmarked against existing analytical models for special cases. In addition, the study 

also investigates the effect of parameter (epistemic) uncertainty on the extreme value 

distribution of the field. Finally, the thesis presents a practical application of the proposed 

copula-based gamma field by treating the wall profile of a feeder pipe as one- and two-

dimensional gamma fields.  The thesis demonstrates a practical application of the 

multivariate gamma process model to rutting, cracking, and surface roughness of highway 

pavements.  

In summary, the proposed models have advanced the knowledge and techniques of 

stochastic deterioration modelling in the engineering field. 
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1. Introduction 

1.1   Background 

Adequate infrastructure in form of roads, bridges, airports, power plants, waterways, ports 

and dams to name a few, no doubt, remains the backbone of economic development of 

every country. However, with continued rise in population coupled with migration of 

people, infrastructure is constantly under increasing pressure and deterioration becomes 

inevitable over time. According to the Canadian Infrastructure Report Card (2016), one-

third of municipal infrastructure is in Fair to Very Poor condition due to deterioration and 

untimely maintenance. One approach to addressing the problem of deteriorating 

infrastructure is to continually seek better ways to model and manage deterioration of the 

infrastructure asset. This is a challenge for infrastructure asset practitioners, managers 

and researchers because deterioration is known to be a random phenomenon and no 

one can predict with certainty how it is going to progress over time (temporally) and space 

(spatially). 

The Wiley dictionary (1997), compiled by L.F. Webster, defines deterioration as “physical 

manifestation of failure” of a structure, material or component. Such components in civil 

engineering include concrete columns, steel girders, carbon steel pipes, and asphalt road 

pavements. The failure manifestation may be in the form of fracture, fatigue cracking, 

pitting corrosion, flaking, rutting, etc., which ultimately lowers the quality or value of the 

material or structure. In infrastructure asset management, deterioration or degradation 

modelling is a key component that needs to be studied and understood. Despite many 

models that have been proposed in the literature for deterioration of physical 

infrastructure, “more sophisticated stochastic” models are required to deal with 

uncertainties (Le Son et. al. 2013). Most especially, characterization of spatial 

dependency and dependency among different degradation phenomena need to be 

addressed. 

The probabilistic degradation models in the literature can be broadly classified into two 

main groups in terms of the type of uncertainty they address. Stochastic process based 

models focus on capturing temporal uncertainty in deterioration. However, such models 
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fail to address the issue of spatial uncertainty of dependence in degradation. Several 

stochastic processes such as gamma process, inverse Gaussian process, geometric 

Brownian motion and Markov chains have been proposed to model degradation. For 

example, discrete-time Markov chains were used to model deterioration processes 

(Sharabah et al. 2006, Guida and Pulchini 2011). Homogeneous Markov chain was 

employed to model temporal degradation of reinforced concrete (Possan and Andradec 

2014) and a nonhomogeneous Markov chain model was proposed for degradation (Jin 

and Mukherjee 2014). Regarding the inverse Gaussian process for degradation 

modelling, Zhang (2014) proposed a model for corrosion defect growth while Ye et al. 

(2014) incorporated random effects. In the literature, Park and Padgett (2005) and 

Elsayed and Liao (2004) have proposed degradation models based on the geometric 

Brownian motion. Also, Zhang (2014) extended Elsayed and Liao (2004)’s model by 

formulating a defect-specific hierarchical Bayesian corrosion growth model. Gamma 

processes have been widely used to model temporal variability of deterioration (Pandey 

et al. 2009; Zhang 2014; Shemehsavar 2014). Lawless and Crowder (2004) and Tsai et 

al. (2012) incorporated random effects into their gamma process models.  

The other group of degradation models, which are random field-based, are able to capture 

stochastic dependence in the spatial domain but not much in the temporal uncertainty. 

For example, Na et. al. (2012) and Sudret (2008), proposed lognormal random fields to 

model spatial variabilities in material properties, geometries or degradation parameters 

of reinforced concrete structures. Peng and Stewart (2013) proposed truncated normal 

and lognormal random fields while Shafei and Alipour (2015) proposed multidimensional 

non-Gaussian random fields. Aryai and Mahmoodian (2017) and Zhao and Yun (2018) 

applied the Karhunen-Loeve expansion to represent random fields for degradation 

modelling. 

Narrowing down to nuclear infrastructure, the primary heat transport system (PHTS) of a 

typical CANDU reactor has components such as a reactor core, turbine, generators, 

hundreds of feeder pipes, etc. These feeders, made of carbon steel, carry coolants 

needed to cool the reactor core and thereby preventing overheating of the core. It has 

been observed that as they age the feeders experience several degradation phenomena, 
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among which is wall thinning due to flow-accelerated corrosion (FAC). Also, the extent of 

wall thinning varies from location to location along the feeder pipes. Therefore, we have 

both spatial and temporal uncertainties. If the extent of local wall loss exceeds the limits 

specified for the design of the piping component, the feeder has to be replaced to ensure 

continuing operational safety of the power plant.  

FAC is a type of steel corrosion exacerbated by coolant flow in feeder pipes at high 

velocities and temperatures. Factors known to affect the rate of FAC include mass 

transfer, coolant flow velocity, pipe material composition in terms of chromium content, 

stress levels such as temperature and pressure, bend angle, coolant pH and oxidizing 

species (Duan et al. 2009; Chung 2010; Lee et. al. 2016; Slade and Gendron 2005). 

A feeder consists of a number of bends, each bend being further divided into four zones: 

extrados, intrados, left cheek, and right cheek (Figure 1.1). Ultrasonic technology has 

been widely used to measure wall thickness for nuclear pipes. The ultrasonic scanning 

systems used in CANDU industry typically consists of 6 or 14 probes, arranged within an 

array or bracelet. To cover the full circumference, a feeder pipe is typically scanned 

several runs. It was generally believed that thinning due to FAC was most severe on the 

extrados of a bend. This can be attributed to the fact that during bending of straight new 

feeder pipes with uniform wall thickness, the extrados of a bend gets thinner while the 

intrados becomes thicker. Another reason may be due to turbulence on the extrados of a 

bend as flow of heavy water hits the feeder pipes. However, this belief was later 

challenged by some field observations. For example, highly-localized thinning has been 

observed close to a grayloc weld, well away from bends of a feeder removed from the 

Pickering station (Jin and Awad 2011) and along a straight pipe located in a downstream 

of a check valve in a Korean nuclear power plant (Lee et. al. 2016). This further shows 

the need to develop a more sophisticated model that fully considers the overall profiles of 

feeder pipes.  
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Figure 1.1: A typical feeder segment taken from a nuclear plant. 

 

Still on the deterioration of feeders, the current state of practice in the nuclear industry, 

as found in the feeder fitness for service guidelines (FFSG), recommends two types of 

assessments: Condition Monitoring Assessment (CMA) and Operational Assessment 

(OA). CMA assesses the past performance of feeder pipes by comparing the previous 

OA with the actual feeder performance. In contrast, OA assesses the future state over 

the next operating cycle. With respect to wall thinning, FFS assessment predicts future 

minimum thicknesses (especially at the next inspection) as well as remaining service life. 

The idea is to ensure that the minimum wall thickness at the next inspection period is 

greater than the minimum thickness allowed in the guidelines for CANDU reactor feeders. 

According to CSA N285.4, when the inspection result does not satisfy the acceptance 

criteria, it must be demonstrated to the regulatory body i.e. Canadian Nuclear Safety 

Commission (CNSC) that the predicted component integrity will be sufficient at the end 

of the next inspection window. Furthermore, an inspection window of 3 years is 

recommended by the CSA. In case of disagreement between FFSG and N285.4, the latter 

supersedes. A drawback of this method is that the assessment considers only temporal 

uncertainty with regards to FAC without accounting for spatial uncertainty. Quantifying 

spatial uncertainty, which boils down to dependence modelling, could address this issue. 

Grayloc 
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Besides asset deterioration in the nuclear industry, physical assets in other infrastructure 

sectors such as pavements, bridges, buildings, water mains, sewer pipes, and so on, 

experience deterioration over time as they age. According to a report by Gill and Lawson 

(2013), annualized cost of operating and maintaining roads in Ontario alone was $2.7 

billion with a substantial part of the amount invested in rebuilding and restoring highways 

across the province. As stated in the Ministry of Transportation Ontario (MTO) (2013)’s 

manual of pavement design and rehabilitation, MTO carries out inspections of pavement 

sections and provides reports on pavement deterioration rates, distress types and their 

causes. This information is used to select appropriate maintenance and rehabilitation 

strategy for the concerned sections. Using flexible pavements as a case study, 

deterioration in flexible pavements include different forms of cracking, surface 

deformation such as rutting (Figure 1.2) and disintegration in the form of potholes to name 

a few. These multiple degradation phenomena are often dependent on one another 

because they have common underlying causes such as traffic load and environmental 

conditions.  Another probable reason for their dependence is that the phenomena may 

interact with one another because of their proximity. Therefore, there is a need to capture 

the dependence and model the degradation modes together.  

 

 

Figure 1.2: Parallel ruts on a highway (Source: https://www.cbc.ca/news/canada/newfoundland-

labrador/worsening-ruts-government-experimenting-with-polymer-pavement-1.3196025). 
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Case studies considered in this thesis are wall thinning in nuclear feeder pipes caused 

by flow accelerated corrosion (FAC) and multiple degradation mechanisms in flexible 

pavements. It is expected that the proposed methodologies will be applicable to 

degradation mechanisms in other civil engineering systems and components. 

 

1.2  Objectives and Scopes 

The overall goal of the dissertation is to develop advanced dependence models for the 

modelling of spatial and temporal uncertainties in deterioration and examine their effects 

on decision making. The research is divided into a number of parts with a view to 

answering the following research questions: 

• What is the extreme value distribution of random fields? We answer this question 

by simulating Gaussian, gamma and lognormal random fields using the K-L 

expansion and then compare the results with semi-analytical Ditlevsen function 

and Poisson approximation.  

• How do aleatory (model) and epistemic (parameter) uncertainties affect the 

extreme value distribution of one- and two-dimensional random fields? These 

questions are addressed by Monte Carlo simulation-based methods.   

• How is spatial uncertainty in degradation modelled? What is the benefit of a spatial 

model? In many previous studies, emphasis has been on temporal modelling of 

degradation as a stochastic process. Markov chains, gamma, Wiener, Poisson and 

Inverse Gaussian processes have been developed and used to temporally model 

degradation. A major drawback of this approach is that spatial uncertainty is not 

taken into consideration. To address this problem, we propose a method based on 

the random field theory. Specifically, a gamma random field is proposed and 

illustrated with a case study on wall thinning in nuclear feeders due to flow-

accelerated corrosion. 

• How are multiple degradation phenomena in components and systems modelled 

and how does it affect lifetime distribution and maintenance decisions? These 

questions are answered by adapting the gamma random field model to a 
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multivariate gamma process model. The model is illustrated with an example of 

multiple degradation in flexible pavements.  

 

 

1.3   Research Methodology and Significance  

All structures experience degradation over time and space in form of corrosion, cracking, 

creep, fatigue, to name but a few. Advanced degradation modelling is therefore required 

to model uncertainties, not only in the temporal domain, but also in the spatial domain. 

This dissertation proposes a data-driven methodology for deterioration modelling. 

Furthermore, when deterioration phenomena are modelled with random fields, extreme 

values (EV) of such random fields become important quantities in risk and reliability 

analyses. As a benchmark, the empirical extreme value distribution in one dimension will 

be compared with existing semi-analytical and analytical extreme value distributions. We 

will show in later chapters that the gamma random field presented therein is able to 

capture the spatial uncertainty; and the proposed multivariate gamma process, which is 

a variation of the gamma random field, captures the temporal uncertainty and 

dependence among degradation modes. Parameter estimation will be done by the 

maximum likelihood method because the gamma field model and its variation are 

mathematically tractable. 

On the issue of EV of random fields, Ditlevsen has proposed a distribution for EV of one-

dimensional standard Gaussian fields within a finite interval with an unknown parameter 

G. However, the exact EV distribution of non-Gaussian fields within a finite region remains 

unknown. The thesis proposes a methodology based on Monte Carlo simulation to 

calibrate parameter G and then use double transformations of the Gaussian field to any 

translation fields of interest to study EV of non-Gaussian fields within a finite region. It will 

be demonstrated later that EV distributions of Gaussian and non-Gaussian random fields 

can be evaluated using an empirical G and parameters of the fields, without simulation. 

On the issue of wall thinning due to flow-accelerated corrosion (FAC) in nuclear feeders, 

large amounts of wall thickness data are collected during pipe inspections. However, only 

the minimum wall thickness corresponding to maximum deterioration is used for temporal 
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modelling of FAC and making decisions, while all other measurements are discarded 

(Yuan et al. 2008). The model does not take into consideration spatial dependence and 

possible interaction of the corrosion defects. Furthermore, Jyrkama and Pandey (2012) 

noted that it is not certain the minimum thickness occurs at the same location every time 

measurements are taken. For instance, the minimum thickness normally occurs on the 

extrados of a new feeder pipe. As the feeder pipe experiences FAC, the exact position of 

the minimum thickness changes with time. Last, as there are an infinite number of 

locations in the feeder pipe but only a finite number of points are scanned. Therefore, 

there is a possibility that the minimum measured value is not the true minimum. The 

methodology employed in this thesis uses the entire wall profile for modelling with a view 

to capturing the spatial uncertainty and finding a distribution for the maximum 

deterioration. 

Regarding multiple degradation phenomena in flexible pavements, the major issues are 

capturing temporal uncertainty and dependence among competing degradation 

phenomena. It is suspected that modelling each phenomenon separately may lead to 

overestimation or underestimation of the remaining lifetime and possible suboptimal 

inspection and maintenance strategy. Given the current states of each degradation mode 

and the estimated parameters of the model, future degradation states may be predicted. 

Furthermore, the remaining lifetime distribution may be estimated if the failure thresholds 

of each degradation mode is known. Finally, information obtained from the multivariate 

deterioration modelling may be employed to make informed decisions regarding 

optimization of inspection and maintenance strategy. These benefits will be demonstrated 

with a case study. 

 

1.4  Organization 

The dissertation is organized as follows. Chapter 2 is the literature review which 

discusses concepts such as dependence modelling, random fields and their extreme 

values, stochastic process-based modelling of degradation, inspection and maintenance 

optimization and methods of parameter estimation. Chapter 3 presents gamma random 
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field model for degradation. Also presented in Chapter 3 are theoretical and numerical 

extreme value distributions of one- and two-dimensional standard normal, gamma and 

lognormal random fields on closed intervals. The simulation procedure employs 

Karhunen-Loeve expansion for Gaussian fields with quadratic exponential, exponential 

and triangular autocorrelation functions. Chapter 4 deals with the case study of flow 

accelerated corrosion in nuclear feeders. The feeder wall profile is treated as a one- and 

two-dimensional gamma fields and their corresponding extreme value distributions are 

evaluated. Also presented in Chapter 4 are a kriging-based method of estimating missing 

data and effect of missing data on extreme value distribution. Chapter 5 focusses on a 

multivariate gamma process model for multiple degradation modelling. The results of the 

model are used to predict the remaining lifetime distribution and optimize condition-based 

maintenance.  Chapter 6 reports the conclusions of the dissertation and future research 

directions. 
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2. Literature Review 

2.1  Dependence Modelling 

In statistics and probability, dependence refers to a relationship between random 

variables. The most common method of measuring dependence is the Pearson’s product 

moment correlation which measures linear correlation between random variables. It, 

however, gives no information about nonlinearity between the variables. Other measures 

such as Spearman’s rank correlation and Kendall’s correlation can capture nonlinear 

dependence between random variables. In this thesis, we chose copula to model 

dependence because of its ease of construction and ability to capture dependence 

structure between variables without the marginal distribution effect. 

2.1.1  Copula 

There are several ways of constructing multivariate distributions. Among them is the 

copula method. A copula is a function linking marginal distributions into a multivariate 

distribution. Given marginal distributions of random variables, copulas can be used to link 

the marginal distribution together to form the joint distribution. Nelson (2006) defines a 

copula of dimension 𝑛 (or an n-copula) as a function 𝐶 with the following properties:  

i. 𝐶 is grounded and 𝑛-increasing, 

ii. The domain of 𝐶 is 𝐼𝑛 where 𝐼𝑛 is an n-dimensional unit cube. 

iii. For every 𝒖 = 𝑢1, … , 𝑢𝑛 in 𝐼𝑛, 𝐶(𝒖) = 0 if at least one 𝑢𝑖 is zero and 𝐶(𝑢) = 𝑢𝑗 if all 

𝑢𝑖′𝑠 are 1 except 𝑢𝑗, 

iv. For every 𝒖 and 𝒗 in 𝐼𝑛 and given that 𝒖 ≤ 𝒗, the volume 𝑉𝐶(𝒖, 𝒗) ≥ 0.  

A special case of copula is the product copula ∏     that characterizes independent copulas 

i.e. 

 ∏  

 

 

= 𝐶(𝑢1, … , 𝑢𝑛) = 𝑢1 … 𝑢𝑛 2.1 
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According to Sklar’s theorem (Sklar, 1973), for an 𝑛-dimensional multivariate distribution 

H with marginal distributions F1, F2, … Fn, there exists a copula C such that 

 𝐻(𝑥1, … 𝑥𝑛) = 𝐶(𝐹1(𝑥1), … , 𝐹𝑛(𝑥𝑛)) 2.2 

 

Conversely, if 𝐶 is an n-dimensional copula and 𝐹1, 𝐹2, … , 𝐹𝑛 are distribution functions, then 

𝐻 is a joint distribution function. Another important concept in copula is the Frechét-

Hoeffding Bounds. Basically, the Frechét-Hoeffding bounds describe the lower and upper 

bounds of a copula. Any multivariate copula C satisfies the inequality below: 

 𝑚𝑎𝑥(𝑢1 +  … + 𝑢𝑛 − 𝑛 + 1, 0) ≤ 𝐶(𝑢1, … , 𝑢𝑛) ≤ 𝑚𝑖𝑛 (𝑢1, … , 𝑢𝑛) 2.3 

 

Examples of copulas are Gaussian, student t and Archimedean families of copula. Figure 

2.1 shows the bivariate version of some of these copulas. Archimedean copulas are one- 

or two-parameter families of copulas. They are very useful due to their relative ease of 

construction and properties such as symmetry and associativity. Families of Archimedean 

copulas in the literature include Clayton, Ali-Mikhail-Haq, Gumbel and Frank copulas. 

 

Table 2.1 summarises the forms and generators of some families of one-parameter 

multivariate Archimedean copulas as well as valid ranges of the parameter (Nelsen 2006).  
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 2.1 Simulated bivariate copulas (a) t-copula ρ=0.5, (b) Clayton θ=5, (c) Frank θ=5, (d) 
Gumbel θ=5). 
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Table 2.1 Archimedean copulas – generators and parameter ranges. Adapted from Nelsen 
(2006) 

Copula 𝐶𝜃(𝑢1, 𝑢2, … , 𝑢𝑛) 𝜓𝜃(𝑡) 𝜃 𝜖 

Clayton 
[𝑚𝑎𝑥(𝑢1

−𝜃 + ⋯ + 𝑢𝑛
−𝜃 − 𝑛 + 1, 0)]

−
1
𝜃 

1

𝜃
(𝑡−𝜃 − 1) 

[−1, ∞){0} 

Ali-

Mikhail-

Haq 

𝑢1𝑢2 … 𝑢𝑛

1 − 𝜃(1 − 𝑢1)(1 − 𝑢2) … (1 − 𝑢𝑛)
 𝑙𝑛  

1 − 𝜃(1 − 𝑡)

𝑡
 

[−1, 1) 

Gumbel 
𝑒𝑥𝑝 (−[(− 𝑙𝑛 𝑢1)𝜃 + (− 𝑙𝑛 𝑢2)𝜃+. . . +(− 𝑙𝑛 𝑢𝑛)𝜃] 

1
𝜃 )   (− 𝑙𝑛 𝑡)𝜃 [1, ∞) 

Frank 
−

1

𝜃
𝑙𝑛 {1 +

 (𝑒−𝜃𝑢1 − 1)(𝑒−𝜃𝑢2 − 1) … (𝑒−𝜃𝑢2 − 1)

(𝑒−𝜃 − 1)𝑛−1
} − 𝑙𝑛  

𝑒−𝜃𝑡 − 1

𝑒−𝜃 − 1
 

(−∞, ∞)

\{0} 

 

Another type of copula commonly used in the literature is the Gaussian copula. Gaussian 

copulas are distributions over [0 1]𝑛 where 𝑛 is the dimension of the copula. For a 

multivariate Gaussian copula,  

 𝐶(𝑢1, 𝑢2, … , 𝑢𝑛) = Φ(Φ−1(𝑢1), Φ−1(𝑢2) … , Φ−1(𝑢𝑛)) 2.4 

 

 

𝐶(𝑢1, 𝑢2, … , 𝑢𝑛)

= ∫ …

Φ−1(𝑢1)

−∞

∫
1

(2𝜋)𝑛/2|𝑹|0.5

Φ−1(𝑢𝑛)

−∞

exp (−
1

2
𝒙𝑇𝑹−1𝒙) 𝑑𝑥1 … 𝑑𝑥𝑛 

2.5 

where Φ−1 and Φ  are the inverse cdf and joint cdf respectively and 𝑹 is the matrix of 

correlation among individual univariate distributions. More information about the 

Gaussian copula will be discussed in the next section. 

Bivariate Gaussian copulas, as a special case of multivariate Gaussian copulas, can be 

simulated by generating random variates from multivariate normal distribution and then 

obtaining the standard normal CDF for each variate. Examples of bivariate copulas 

generated by this method are shown in Figure 2.2. Furthermore, a trivariate copula 

obtained through the same method is shown in Figure 2.3. 
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(a) 

 

(b) 



16 
 

 

(c) 

 

(d) 

Figure 2.2 Simulated bivariate Gaussian copulas (a) ρ=-0.7, (b) ρ=-0.3, (c) ρ=0.4, (d) ρ=0.9.  
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Figure 2.3 Simulated trivariate Gaussian copulas (𝜌12 = 0.7, 𝜌13 = 0.3, 𝜌23 = −0.4).  

 

There is a sizeable amount of literature on the use of copulas to study the dependence 

structure with respect to degradation modelling and reliability analysis. For example, Zhou 

et al. (2012) used a copula function to study effect of dependent defect growth on 

reliability of corroding pipelines. Similarly, Hao and Su (2014) employed copula to 

describe the dependence of two performance characteristics governing the degradation 

of a product. Li and Xue (2014) employed a multivariate copula function to describe 

dependence among multiple performance characteristics of a dormant system. Literature 

discussing construction of multivariate copulas can be found in Joe (2001) and Nelsen 

(2006). Still, constructing multivariate copulas of higher dimensions remains a challenging 

mathematical task. A simple way of constructing multivariate copulas is the inversion 

method, which works as follows. Given the univariate marginal distributions 𝐹1, 𝐹2, … , 𝐹𝑛 

with a joint distribution 𝐻, the copula 𝐶 can be constructed by 
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 𝐶(𝑢1, 𝑢2, … , 𝑢𝑛) = 𝐻(𝐹1
−1(𝑢1), 𝐹2

−1(𝑢2), … , 𝐹𝑛
−1(𝑢𝑛), ) 2.6 

 

where 𝐹𝑖
−1(𝑢𝑖) is the inverse of the marginal distribution. 

One of the major questions that arise when modelling with copulas is the choice of copula. 

This is akin to fitting data to different random variables to see which probability distribution 

fits best in some way. This question has been addressed by Genest and Rivest (1993). 

Maximum likelihood estimation and the Akaike information criterion (AIC) has been shown 

to be an effective method in this regard (Zhang and Singh 2006). 

 

2.1.2 Multivariate Gamma Distribution 

As the name suggests, a multivariate gamma distribution is a multivariate distribution with 

gamma distributions as its marginals. The multivariate gamma distribution involves a 

double transformation of the standard normal distribution to gamma distribution using the 

multivariate normal density. Hence, it is regarded as Gaussian copula-based. The gamma 

distribution mentioned here is a two-parameter continuous probability distribution whose 

probability density function (PDF) is expressed as 

 𝑔(𝑥; 𝛼,  𝛽) =
𝑥𝛼−1 

𝑒
−

𝑥
𝛽

𝛽𝛼Γ(𝛼)
  2.7 

for 𝑥 ≥ 0, where 𝛼 > 0 and 𝛽 > 0 are the shape and scale parameters, respectively. The 

cumulative distribution function (CDF) is expressed as  

 𝐺(𝑥; 𝛼, 𝛽) =
Γ(𝛼, 𝑥 𝛽⁄ )

Γ(𝛼)
 2.8 

where Γ(𝑝, 𝑞) = ∫ 𝑥𝑝−1𝑒−𝑥d𝑢
𝑞

0
  is called the lower incomplete gamma function, and Γ(𝑝) =

Γ(𝑝, ∞) the complete gamma function, which is used in Eq. (2.7) as well. Because the 

distribution functions involve the gamma function, the distribution is called a gamma 

distribution.  A gamma distributed random variable is written in shorthand as 𝑋~𝐺𝑎(𝛼, 𝛽). 
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Several important properties of the gamma distribution are worth noting.  First, the mean 

and variance of the gamma random variable are 𝛼𝛽 and 𝛼𝛽2, respectively. The coefficient 

of variation is 1/√𝛼, independent of the scale parameter 𝛽. The moment generating 

function is (1 − 𝛽𝑥)−𝛼. Second, as the name suggests, the shape parameter 𝛼 dictates 

the shape of the PDF curve.  In particular, for 0 < 𝛼 ≤ 1, the PDF decays immediately 

after at 𝑥 = 0, whereas for 𝛼 > 1, the PDF increases from 0 at 𝑥 = 0 to a peak, or the 

mode, which is equal to 𝛽(𝛼 − 1), and then decays off afterwards. When 𝛼 = 1, the 

gamma distribution reduces to an exponential distribution. Moreover, the excess kurtosis 

(i.e., the conventional kurtosis minus 3) of a gamma distribution is 6/𝛼, again independent 

of 𝛽.  Since the kurtosis decreases as 𝛼 increases, this means that small-𝛼 gamma 

distributions exhibit longer and fatter upper tail than big-𝛼 distributions. Meanwhile, it also 

shows that a gamma distribution, regardless of 𝛼 and 𝛽, has a fatter tail than a Gaussian 

distribution because the excess kurtosis is a positive number. Thus, the gamma 

distribution is leptokurtic. This observation will be applied to interpretations on some of 

the results obtained in the study later. 

 

 

Figure 2.4 Comparison of the PDFs of gamma distributions with different shape parameters 
(β=1) 

Of considerable practical importance are the scaling and additive properties of gamma 

distribution. Consider a gamma distribution 𝑋~𝐺𝑎(𝛼, 𝛽) multiplied by a scalar constant 𝑘, 

the resulting distribution is a gamma distribution with a factored scale parameter i.e. 

𝑘𝑋~𝐺𝑎 (𝛼,
𝛽

𝑘
). In a similar vein, consider a number of gamma distributions 𝑋𝑖~𝐺𝑎(𝛼𝑖, 𝛽) , 
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where 𝑖 = 1, … , 𝑛, then the sum of all the distributions is a gamma distribution. 

Mathematically,  

 ∑ 𝑋𝑖~𝐺𝑎

𝑛

𝑖=1

(∑ 𝛼𝑖, 𝛽

𝑛

𝑖=1

)

 

 2.9 

Unlike the univariate gamma distribution, the multivariate gamma (MG) distributions have 

several non-equivalent definitions.  The reason for this is that many approaches can be 

used to construct a dependent, multivariate probability distribution from a given marginal 

distribution.  Early constructions were mainly derived from a natural extension of the 

univariate probability density function, characteristic function or moment generating 

function.  For example, Kibble (1941) and Moran (1969) developed a bivariate gamma 

distribution by generalizing the univariate probability density function using Laguerre 

polynomials, whereas Krishnamoorthy and Parthasarathy’s multivariate gamma 

distribution was a direct extension of the moment generating function from its univariate 

form 𝑚(𝑡) = (1 − 𝛽𝑡)−𝛼 to the matrix form m(𝑡1, … , 𝑡𝑛) = [det(𝐈 − 𝐑𝐭)]−𝛼, where 𝐈, R, t 

represent the identity matrix, a positively definite matrix, and a diagonal matrix with 

diagonal elements 𝑡1, … , 𝑡𝑛, respectively.  Later, other approaches such as mixing, 

compounding, and conditioning were used, often inspired from practical modelling needs 

(for a systematic treatment of constructing multivariate distributions, refer to Joe (2001) 

and Kotz et al. (2000)). As a result, more than twenty versions of bivariate gamma 

distribution and eight versions of multivariate gamma distribution were reviewed in 

Balakrishnan and Lai (2009) and Kotz et al. (2000). A common problem of majority of the 

multivariate gamma distributions reviewed there is that they allow for only positive 

correlation. To loosen this constraint, a copula-based approach has been widely applied 

recently (Rodríguez-Picón et al. 2017, Wang et al. 2015).  This study adopts the copula 

approach because of its ease in concept and computation as well as its flexibility in 

dependence modelling.  Specifically, the Gaussian copula is used.  

Therefore, the Gaussian copula-based multivariate gamma distribution is defined as 

follows.  Suppose that 𝑋1, … , 𝑋𝑛 each is a gamma random variable, i.e., 𝑋𝑖 ~𝐺𝑎(𝛼𝑖, 𝛽𝑖), 𝑖 =

1, … , 𝑛. The joint cumulative distribution function of 𝑋1, … , 𝑋𝑛 is defined as 
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  𝐺𝑛(𝒙) = Φ𝑛(𝑧1, … , 𝑧𝑛; 𝐑) 2.10 

where Φ𝑛(𝒛; 𝐑) denotes the joint cumulative distribution function of a standard 

multivariate normal distribution with a correlation matrix 𝐑; 𝑧𝑖 = Φ−1(𝑢𝑖); 𝑢𝑖 = 𝐺(𝑥𝑖; 𝛼𝑖, 𝛽𝑖), 

and Φ−1(𝑢) denotes the inverse of the standard normal CDF at probability 𝑢.  It is readily 

shown that the joint probability density function of the multivariate gamma distribution is 

expressed as 

 𝑔𝑛(𝒙) =
1

(2𝜋)𝑛/2|𝐑|1/2
exp (−

1

2
𝒛𝑇𝐑−1𝒛) ∏  

𝑔(𝑥𝑖; 𝛼𝑖 , 𝛽𝑖)

𝜙(𝑧𝑖) 

𝑛

𝑖=1

 2.11 

Note that the correlation matrix 𝐑 = {𝑟𝑖𝑗}  in Eqs. (2.10) – (2.11) is not defined for the 

original gamma variables, but for the transformed standard normal variables. In other 

words, the correlation coefficient 𝑟𝑖𝑗 should not be understood as the coefficient between 

𝑋𝑖 and 𝑋𝑗 (or x-correlation coefficient hereafter).  Rather, it is between 𝑍𝑖 and 𝑍𝑗 (or z-

correlation coefficient), where 𝑍𝑖 = Φ−1[𝐺(𝑋𝑖; 𝛼𝑖 , 𝛽𝑖)]. Denote by 𝜌𝑖𝑗 the x-correlation 

coefficient of 𝑋𝑖 and 𝑋𝑗. The exact relationship between 𝜌𝑖𝑗 and 𝑟𝑖𝑗 is difficult to assess 

analytically.  For illustration purpose, simulation results of the 𝜌 − 𝑟 relationship for a 

bivariate gamma distributions with different marginal distribution 𝐺𝑎(𝛼, 1) are shown in 

Figure 2.5 The figure shows a nonlinear relationship between 𝜌 and 𝑟, confirming the 

nonlinear dependence defined by the copula function. The sensitivity analyses show that 

the relationship is a function of the shape parameters of the bivariate gamma distributions 

and independent of the scale parameters. As the shape parameters of the distributions 

become smaller, the graph diverges more at the negative end of the correlation range. 

When 𝛼 increases, however, the relationship becomes almost linear. For 𝛼 = 100, the 

curve is almost a 45-degree straight line. This is reasonable because in this case the 

univariate gamma distribution is close to a normal distribution, and the bivariate gamma 

distribution very close to a bivariate normal distribution. 
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Figure 2.5 Relationship between x- and z-correlation coefficients for different marginal 
distributions Ga(α,1).  

Tail dependence is another notion of stochastic dependence (Joe 2001).  It concerns 

particularly the dependence at the lower or upper tail of a multivariate distribution.  In this 

regard, the Gaussian copula has zero tail dependence. This means that for any two 

globally, Gaussian copula-dependent random variables 𝑋𝑖 and 𝑋𝑗, their lower or upper 

quantiles, regardless of the value of 𝜌𝑖𝑗, are asymptotically independent.  Here, we take 

the Gaussian copula as an assumption of the gamma field model and leave other copula 

options for future study. 

 

2.2 Random Fields and Extreme Value Issue 

This section reviews random fields and extreme values in relation to deterioration 

modelling. As we will see later that a random field is a function defined in space, its 

extreme values are of central importance in the context of reliability and safety 

engineering. Although, an extreme value may refer to a maximum or minimum value of a 

function, the emphasis here is on maximum values. First, we start with homogenous and 

nonhomogeneous random fields. Then, a literature review of Gaussian and non-Gaussian 

random field modelling for degradation is presented.  Finally, extreme values of random 

fields are reviewed. 
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2.2.1 Homogeneous Random Fields 

A random or stochastic field 𝑋(𝒔) , is a function whose values are random variables in 

space (Vanmarcke, 2010). Random fields may exist in one-, two- or three-dimensional 

space, i.e., 𝒔 may be a scalar or a vector of location. In addition, a random field may 

include time 𝑋(𝒔, 𝑡). This is known as a space-time process or a spatiotemporal model. 

There are several key properties of a random field such as homogeneity, isotropy, 

ergodicity and separability. These concepts will be discussed in the following paragraphs. 

Although stationarity and homogeneity are often used interchangeably to characterize 

some sort of stability of fluctuation, we use stationarity to describe time-related stability, 

and homogeneity for spatially related stability. Mathematically speaking, stationarity and 

homogeneity are dealt with in the same way. In other words, homogeneity describes the 

state of random fields with respect to space. Therefore, a random field 𝑋(𝒔)  is said to be 

homogeneous if the joint probability density functions depend on the relative locations of 

points. Furthermore, a homogeneous random field may be strongly or weakly 

homogeneous. A random field is strongly homogeneous if its probability distribution is 

homogeneous. On the other hand, in a weakly homogeneous field, only the first few 

moments are constant (Fenton and Griffiths, 2008). A good example of a weakly 

homogenous field is a second-order homogeneous field whose covariance function 

depends on the spatial lag between locations and independent of the absolute locations.  

A homogeneous random field 𝑋(𝒔) may be characterized by its constant mean, variance 

and correlation length. The mean is defined as the expectation of the random field while 

variance is defined as: 

 𝜎2(𝒔) = E[𝑋2(𝒔) ] − {E{𝑋(𝒔)}2 2.12 

 

The coefficient of correlation function, which is a dimensionless quantity, is obtained by 

dividing the covariance of random variables at two points 𝒔𝑖 and 𝒔𝑗 separated by 𝒉𝑖𝑗, 

where 𝒉𝑖𝑗 is a certain distance measured between the two points 𝒔𝑖 and 𝒔𝑗, by the product 
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of the standard deviations of the variables at both locations. Mathematically, the 

correlation between two points in a homogeneous random field 𝑋(𝒔) , is 

 𝜌(𝒉𝑖𝑗) =  
Cov[𝑋(𝒔𝑖), 𝑋(𝒔𝑗)]

𝜎(𝒔𝑖)𝜎(𝒔𝑗)
  2.13 

 

where Cov is the covariance and 𝜎(. )  is the standard deviation. Correlation length 𝜃, 

defined as a distance between two random field locations over which correlation tends to 

zero, is an important parameter of homogeneous random fields.  

Talking about isotropy, it may be regarded as a subset of homogeneity. In an isotropic 

random field, the covariance or correlation between any points depends only on the 

distance between the points. In other words, the joint probability density functions and 

covariance functions remain the same when an isotropic random field is rotated. 

Mathematically, the covariance function 𝐶(𝒔𝑖, 𝒔𝑗) = 𝐶(ℎ𝑖𝑗), where ℎ𝑖𝑗 is the Euclidean 

distance between 𝒔𝑖 and 𝒔𝑗. This means all isotropic random fields are homogenous 

random fields because isotropic fields are a class of homogenous fields. However, the 

reverse is not the case. On the other hand, anisotropy is the opposite of isotropy. An 

anisotropic random field is a field in which the correlation lengths vary with directions, for 

example, there is 𝜽 = [𝜃𝑥, 𝜃𝑦] in a two-dimensional field. 

Of considerable importance is ergodicity of random fields. Roughly speaking, a random 

field is said to be ergodic if a realization of the field provides all information, including 

statistical properties, about its joint probability distributions (Vanmarcke, 2010). For an 

ergodic random field, its average over the space is the same as its average over the 

probability space. 

In a multidimensional random field, the correlation function may be separable or 

inseparable. A correlation function in an 𝑛-dimensional random field is fully separable if 

the correlation function is the product of all individual one-dimensional correlation 

functions i.e. 𝜌(𝒉𝑖𝑗) = 𝜌(ℎ1) … 𝜌(ℎ𝑛). This property of random field has several practical 

implications especially in spatiotemporal modelling where the correlation function for time 

is separated from the one for space 𝜌(𝒔, 𝑡) = 𝜌(𝒔)𝜌(𝑡). This is an example of a partially 
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separable correlation function in which the correlation function is the product of correlation 

functions of lower dimensions. The separability property of correlation functions will be 

applied to two-dimensional random fields in Chapter 4. 

 

2.2.2 Nonhomogeneous Random Fields 

The opposite of a homogeneous field is a nonhomogeneous field. For a 

nonhomogeneous field, the statistics of the random field change with location, e.g. the 

autocovariance function depends on the locations. For a nonhomogeneous random field, 

Vanmarcke (2010) noted that the random field can be transformed to an “approximately” 

weakly homogeneous random field with a constant mean and variance of zero and one 

respectively by normalizing it. This transformation eliminates nonhomogeneity in the first-

order statistics but nonhomogeneity still exists in higher order moments.  

While a lot of statistical and analytical tools have been developed to characterize 

homogeneous random fields and stationary processes, there is yet no mathematical 

structure developed that fits all classes of nonhomogeneous random fields. In view of 

this, some researchers have proposed ways of dealing with nonhomogeneous random 

fields. For example, Denis and Cremoux (2002) proposed a method to divide a 

nonhomogeneous random field into smaller homogeneous fields. In considering spatial 

variation of soil properties for reliability analysis, Wu et al. (2012) constructed a 

nonhomogeneous lognormal random field by taking the product of the homogeneous 

random field and a depth-dependent function. Azuri et al. (2013) accounted for spatial 

nonhomogeneity in the rainfall intensity by using a trend and a residual. In addition, the 

use of moving window kriging-based random field models for nonhomogeneous fields 

have been demonstrated (Harris et al., 2010; Haas, 1990).  

 

2.2.3 Random Field Modelling for Degradation 

Most problems encountered in engineering such as deterioration (Adegbola et al. 2015; 

Stewart et. al. 2007; Yuan & Pandey 2009), wave heights (Mori & Yasuda 2002) and soil 
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properties (Na et al. 2009) involves modelling of spatial uncertainties, which often 

manifest a Gaussian or non-Gaussian probabilistic behavior. As such, stochastic fields 

have been found suitable for modelling spatial uncertainty and variability in deterioration.  

Few studies have modelled deterioration with Gaussian and non-Gaussian random fields. 

For example, Shafei and Alipour (2015) applied multidimensional Gaussian and non-

Gaussian stochastic fields to study spatial and temporal variability of deterioration 

parameters. To model variability in material properties and geometry, Peng and Stewart 

(2013) used truncated normal and lognormal random fields and Na et. al. (2012) used 

two-dimensional lognormal fields obtained by translation of the Gaussian fields. Further, 

Sudret (2008) characterized the extent of deterioration in reinforced concrete beams by 

describing parameters of the degradation model as homogeneous lognormal random 

fields.  

The Karhunen-Loeve (KL) expansion is one of the most commonly used representation 

of stochastic fields. Recently, Zhao and Yun (2018) and Aryai and Mahmoodian (2017) 

used the KL expansion to model spatial random fields with regards to deterioration in a 

reinforced-concrete bridge slab and cast-iron pipes, respectively. Meanwhile, Na et. al. 

(2012) simulated non-Gaussian fields by translating Gaussian fields generated with a 

power spectral density function.  

Another well-established method in spatio-temporal modelling is the use of separable 

fields. Oumouni et. al. (2019) proposed a separable random field model for degradation 

modelling as a product of a gamma process and a spatial random field. 

 

2.2.4 Extreme Values of Random Fields 

A big challenge of the spatial uncertainty modelling is the quantification of the extreme 

value (EV). This quantity is of fundamental importance in system reliability and safety 

analysis.  For example, to assess overall risk during structural integrity assessment, the 

second order statistics of the stochastic field (mean, standard deviation and correlation 

length) are insufficient, and it is often desirable to obtain the full probability distribution of 
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the extreme value. Extensive literature review indicates that there is no analytical solution 

for the extreme value distribution, except some asymptotic solutions from the classical 

extreme value theory and the outcrossing theory.   

This section reviews a few key results gleaned from literature that are relevant to the 

solution of EV of the random field in a finite region. We start with the classical EV theory, 

which suggests that both Gaussian and gamma distributions fall into the Type I or Gumbel 

domain of attraction.  Asymptotic results for stationary processes or fields focus on normal 

cases.  Finally, the Ditlevsen results for the EV distribution in a finite region are reviewed. 

 

2.2.4.1. Extreme Values of Random Variables 

The classical EV theory concerns the asymptotic distribution of the extreme value (either 

the maximum or minimum) of a sequence of independent and identically distributed (i.i.d.) 

random variables {𝑋1, … , 𝑋𝑛} as 𝑛 goes to infinity.  Let 𝑀𝑛 = max{𝑋1, … , 𝑋𝑛}. Then 

Pr{𝑀𝑛 ≤ 𝑥} = [𝐹(𝑥)]𝑛, where 𝐹(𝑥) is the CDF of 𝑋𝑖. For any given 𝑥, clearly the probability 

approaches to zero.  However, the classical EV theory aims to find a proper set of 

normalization parameters 𝑎𝑛 and 𝑏𝑛 such that Pr{𝑎𝑛(𝑀𝑛 − 𝑏𝑛) ≤ 𝑥} converges to a 

distribution function 𝐻(𝑥) for all 𝑥.  Indeed, it has been found that depending upon the tail 

behavior of 𝐹(𝑥), the normalized 𝑀𝑛 converges to one of the three types of probability 

distributions, namely: Gumbel, Frechet and Weibull distributions, or Type I to III EV 

distributions, respectively.  Details of the EV theory can be found in, e.g., Leadbetter et.al 

(1983). 

As two special cases, both Gaussian and gamma sequences converge asymptotically to 

the Gumbel (Type I) distribution.  For the standard normal sequence, the normalization 

factors are expressed as 𝑎𝑛 = √2 log 𝑛, and 𝑏𝑛 = 𝑎𝑛 − (log log 𝑛 + log 4𝜋)/2𝑎𝑛.  For the 

gamma sequence {𝑋𝑖~𝐺𝑎(𝛼, 𝛽)}, 𝑎𝑛 = 1/𝛽 and 𝑏𝑛 = 𝛽(log 𝑛 + (𝛼 − 1) log log 𝑛 −

log Γ(𝛼)). Detailed derivation of these results can be found in Embrechts et al. (1997). 

In practice, one may be interested in using the asymptotic EV distribution as an 

approximation to the exact solution, particularly when the latter is unknown, as we shall 
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see soon in the random field cases. As a benchmark, Figure 2.6 and Figure 2.7 compare 

the asymptotic and exact distributions for the standard normal distribution and a gamma 

distribution Ga(2, 0.5), respectively.  In both figures, the CDFs are compared in the upper 

panels, in which the blue solid lines represent the exact solution 𝐹𝑛(𝑥) whereas the red 

broken lines represent the asymptotic solution 𝐻(𝑎𝑛(𝑥 − 𝑏𝑛)), where 𝐻(𝑥) =

exp(− exp(−𝑥)). For the normal case, the asymptotic distribution almost always 

underestimates the probability. For the gamma case, however, the asymptotic distribution 

always overestimates the probability. For both cases, it is shown that the rate of 

convergence along 𝑛 is very slow as the error plots in the right panels show. 

 

 

(a) 
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(b) 

Figure 2.6 Comparison of the exact and asymptotic distributions for standard normal distribution 

 

 

(a) 
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(b) 

Figure 2.7 Comparison of the exact and asymptotic distributions for gamma distribution 
Ga(2,0.5) 

 

2.2.4.2. Extreme Values of Stationary Stochastic Processes 

Over decades, researchers have tried to extend the beautiful results of the classical EV 

theory to general situations such as dependent random sequences, stationary processes, 

non-stationary processes (Leadbetter, et al. 1983), and multi-dimensional random fields 

(Adler & Taylor 2007).  Unlike the i.i.d. sequence, there is no exact solution available for 

the EV of a stationary field within a finite interval, even for a normal field. However, several 

interesting approximate results are collected here.  First, under a certain regularity 

condition, the asymptotic extreme value distribution of a stationary Gaussian process still 

follows a Type I distribution.  For a mean-square differentiable, stationary Gaussian field 

𝑍(𝑥) with zero mean and unit variance, its maximum value over the region [0, 𝐿], 𝑀𝐿 =

max{𝑍(𝑥), 0 ≤ 𝑥 ≤ 𝐿}, converges to Type I distribution 𝐻(𝑥) = exp(− exp(−𝑎𝑇(𝑥 − 𝑏𝑇))) 

as 𝐿 → ∞, in which 𝑎𝐿 = √2 log 𝐿 and 𝑏𝐿 = 𝑎𝐿 + log (√−𝑟′′(0) 2𝜋⁄ ) 𝑎𝐿⁄ , where 𝑟′′(0) is the 

second derivative of the correlation function 𝑟(ℎ) evaluated at ℎ = 0 (Leadbetter et al. 
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1983, p.171).  Clearly, this solution applies only if 𝑟′′(0) < 0, which is exactly the condition 

for mean-square differentiability.  The quadratic exponential correlation model mentioned 

in Section 3.1 satisfies the condition.  For nondifferentiable Gaussian fields (such as those 

with exponential and triangular correlation models), the asymptotic Gumbel distribution 

still holds true with the same 𝑎𝐿 and yet with a different 𝑏𝐿 which is a function of the 

decaying order of 𝑟(ℎ). In fact, for both the exponential and triangular correlation models, 

𝑏𝐿 = 𝑎𝐿 + (log log 𝐿 + log(𝐶2 𝜋⁄ )) 2𝑎𝐿⁄ , in which 𝐶 = 3/𝜃 for the exponential model and 

1 𝜃⁄  for the triangular model (Leadbetter et al. 1983, p.217).  

 

 

Figure 2.8: Asymptotic statistics of the EV of standard normal field under different 

correlation models (θ = 1 for all cases). 

Figure 2.8 shows the means and standard deviations of the asymptotic Gumbel 

distribution for the abovementioned four correlation models. For a comparison purpose, 

the EV statistics of the i.i.d. normal sequence are also shown.  The standard deviation 

decreases with the size of random field whereas the mean EVs are monotonically 

increasing.  Among the four correlation models, the mean EV of the exponential model is 

the highest and that of the spherical model lowest. The mean EV of the iid random 

sequence is even lower than that of the spherical model. This is expected because all 
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four models have zero or close to zero correlation when ℎ = 1.  Random variables of the 

random field within ℎ = 1, although correlated, still contribute to push the EV up higher.  

Unlike the i.i.d. sequence, there is no exact solution available for the EV of a stationary 

field within a finite interval, even for a normal field. The work by Ditlevsen (1966) seems 

to be the only attempt in this issue. 

Another approximation is through the notion of mean upcrossing rate using Poisson 

assumption (Leadbetter et al. 1983). Suppose that one can find the mean upcrossing rate 

of a homogeneous random field over a given crossing level 𝑥, denoted by 𝜈(𝑥). Then the 

EV distribution can be evaluated as 

 𝐹𝑀(𝑥; 𝐿) = Pr(𝑀𝐿 ≤ 𝑥) = Pr(𝑁𝑥(𝐿) = 0) ≈ exp(−𝐿𝜈(𝑥)) 
        

2.14 

where 𝑁𝑥(𝐿) denotes the number of upcrossing over the threshold level 𝑥 within the 

interval [0, 𝐿].  For a mean-square differentiable standard normal process, the mean rate 

is  

 𝜈(𝑥) =
1

2𝜋
√−𝜌′′(0) exp (−

𝑥2

2
) 2.15 

where 𝜌′′(0) is the second derivative of the correlation function evaluated at ℎ = 0.  

Grigoriu (1984) further provided the solution for non-Gaussian translation process as 

 𝜈(𝑥) =
1

2𝜋
√−𝜌′′(0) exp (−

𝑢2(𝑥)

2
) 2.16 

where 𝑢(𝑥) = Φ−1[𝐺(𝑥)] for the gamma field.  

 

2.2.4.3. Ditlevsen Distribution 

Ditlevsen (1966) might be the very first researcher who attempted to derive an exact 

distribution for the EV of a finite random field. Starting from a bivariate connection function 

𝐶(𝑠1, 𝑠2), Ditlevsen was able to find the exact EV distribution of a standard normal field of 

a quadratic exponential correlation model as defined in Section 3.1 within the interval of 

[0, 𝐿] as 
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 𝐹𝑀(𝑥; 𝐿) = [Φ(𝑥)]1+𝐺 exp (−√3 𝜋⁄
𝐿

𝜃
⋅

𝜙(𝑥)

Φ(𝑥)
) 2.17 

where 𝜙(⋅) is the standard normal PDF. The only unknown parameter is the 𝐺 term, which 

is defined as 𝐺 = ∫ 𝜕𝐶(𝑠1, 0) 𝜕𝑠2⁄ d𝑠1
𝐿

0
, where 𝐶(𝑠1, 𝑠2) = 𝐹𝑀(𝑥; 𝑠1 + 𝑠2)/

[𝐹𝑀(𝑥; 𝑠1)𝐹𝑀(𝑥; 𝑠2)].  The exact value of 𝐺 is unknown. But clearly, 𝐺 is a function of 𝐿. In 

theory, for a given 𝑥 and 𝐿, the 𝐺 value could be solved numerically at least.  However, 

the computation is complicated.  Ditlevsen (2004) later claimed that the 𝐺(𝐿) term is ‘often 

of minor importance,’ and for this reason, he suggested to drop the 𝐺 term in Eq. (2.17) 

to make an approximate estimation of the EV distribution.  We call this approximate 

Ditlevsen model.  Note that for the exponential and triangular correlation models, the 

random field is not mean-square differentiable and thus the Ditlevsen solution does not 

exist. 

In order to solve for 𝐺 numerically, the PDF of the Ditleven’s distribution is needed in the 

maximum likelihood function. Given the Ditlevsen’s distribution in Eq. (2.17), the 

derivation of the PDF, which is the first derivative of the CDF with respect to 𝑥, is 

presented below. 

By definition, 𝑓𝑀 (𝑥) =
𝑑

𝑑𝑥
𝐹𝑀 (𝑥; 𝐿). Let 𝛾 =

1

𝜃
√

3

𝜋
 .  Applying the product rule,  

𝑓𝑀 (𝑥) = exp [−
𝜙(𝑥)𝛾𝐿

Ф(𝑥)
]

𝑑

𝑑𝑥
Ф(𝑥)1+𝐺 + Ф(𝑥)1+𝐺 𝑑

𝑑𝑥
{exp [−

𝜙(𝑥)𝛾𝐿

Ф(𝑥)
]}. The final expression for 

the PDF is found to be 

 𝑓𝑀(𝑥) = exp [−
𝜙(𝑥)𝛾𝐿

Ф(𝑥)
] Ф(𝑥)𝐺 {[1 + 𝐺]𝜙(𝑥) + 𝛾𝐿 [

𝜙2(𝑥) 

Ф(𝑥)
−𝜙′(𝑥)]}  2.18 

Note that 𝜙(𝑥) =
1

√2𝜋
exp (−

𝑥2

2
)  is the standard normal probability density function. So, 

its derivative, 𝜙′(𝑥) =
−𝑥

√2𝜋
exp (−

𝑥2

2
) = −𝑥𝜙(𝑥). 
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Figure 2.9: Comparison of the asymptotic Gumbel distribution with the approximate 

Ditlevsen distribution for stationary standard normal field with Gaussian correlation model 

(θ = 1, L = 10). 

 

It is important to recognize that the Ditlevsen results (both exact and approximate 

solutions) can be easily translated to the gamma field.  All one needs to do is to replace 

𝑥 with Φ−1(𝐺(𝑥)) in the right hand side of Eqs. (2.17).  
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2.3 Stochastic Process Modelling of Degradation 

Roughly speaking, stochastic processes may be viewed as a special class of random 

fields. In this case, the field is one-dimensional and time-indexed. Due to the random 

nature of degradation in civil engineering structures, several stochastic models have been 

developed and used to study degradation. In the literature, Markov chains, Gamma, 

Wiener, Poisson and inverse Gaussian processes are some of the common stochastic 

models used for modelling degradation over time. Variations and extensions of these 

processes have also been applied to degradation. These involve including random effects 

to account for heterogeneity in degradation and incorporating explanatory variables such 

as stress levels. A few of the stochastic processes that are widely used in degradation 

modelling are discussed in the following subsections.  

 

2.3.1  Gamma Process 

A gamma process can be stationary or nonstationary. First, we discuss the stationary 

gamma process in terms of its definition, properties and use in the literature. This is then 

followed by a discussion on nonstationary gamma process.  

A stationary gamma process {𝑋(𝑡) , 𝑡 ≥  0} is a continuous-time stochastic process 

satisfying the following: 

• 𝑋(0) = 0 with probability one; 

• 𝑋(𝑡)  has independent increments i.e. for 0 ≤ 𝑡1 < 𝑡2 ≤ 𝑡3 < 𝑡4, 𝑋(𝑡2) − 𝑋(𝑡1)   

and  𝑋(𝑡4) − 𝑋(𝑡3)  are independent; 

• The increment 𝑋(𝑡2) − 𝑋(𝑡1)  follows a gamma distribution 𝐺𝑎(𝛼(𝑡2 − 𝑡1), 𝛽) for 

any 0 ≤ 𝑡1 < 𝑡2.  

The probability density function of the independent increments mentioned in the definition 

of the stationary gamma process is given as 
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 𝑔(𝛥𝑥(𝑡); 𝛼𝛥𝑡,  𝛽) =
𝛥𝑥(𝑡)𝛼𝛥𝑡−1 

𝑒
−

𝛥𝑥(𝑡)
𝛽

𝛽𝛼𝛥𝑡Γ(𝛼𝛥𝑡)
  2.19 

for 𝑥(𝑡) ≥ 0, where 𝛼𝛥𝑡 > 0 is the time-dependent shape parameter while 𝛽 > 0 is the 

scale parameter. A stationary gamma process is characterized by its mean 𝛼𝛽𝑡 and 

variance 𝛼𝛽2𝑡. This shows that the mean and variance of a stationary gamma process 

increase linearly with time. The ratio of the standard deviation of the gamma process to 

its mean is known as the coefficient of variation 𝐶𝑂𝑉.  

 𝐶𝑂𝑉 = 1/√𝛼𝑡 2.20 

 

This ratio is independent of the scale parameter. In deterioration modelling particularly, 

gamma process has been widely applied to model the temporal uncertainty (e.g., Yuan & 

Pandey 2009; Shemehsavar 2014; Zhang & Zhou 2014). A comprehensive survey of the 

application of Gamma process in maintenance engineering can be found in Van Noortwijk 

(2007). 

The gamma process is a pure-jump process suitable for modelling monotonic degradation 

because of its mathematical tractability. In the literature, gamma processes have been 

employed to model temporal variability of deterioration (Pandey et al. 2009; Zhang 2014). 

An extension to gamma process models involves incorporating fixed and random effects. 

Random effects represent the effects due to unobserved heterogeneity. On the other 

hand, fixed effects refer to the influence of covariates such as stress levels, bend angle, 

etc. Lawless and Crowder (2004) were the first to propose a gamma process model 

incorporating covariates and random effects to account for “unexplained differences” in 

deterioration rates of different units. Tsai et al. (2012) also incorporated random effects 

into the rate parameter of a gamma process model with a view to determining optimal 

design for degradation tests. A score test for the presence of random effects has also 

been discussed (Lawless and Crowder 2004; Yuan 2007). 

A nonstationary gamma process {𝑋(𝑡) , 𝑡 ≥  0} is a continuous-time stochastic process 

satisfying the following: 

• 𝑋(0) = 0 with probability one; 
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• 𝑋(𝑡)  has independent increments i.e. for 0 ≤ 𝑡1 < 𝑡2 ≤ 𝑡3 < 𝑡4, 𝑋(𝑡2) − 𝑋(𝑡1)   

and  𝑋(𝑡4) − 𝑋(𝑡3)  are independent; 

• The increment ΔX(t) = 𝑋(𝑡2) − 𝑋(𝑡1)  follows a gamma distribution 𝐺𝑎(Δ𝛼(𝑡), 𝛽) for 

any 0 ≤ 𝑡1 < 𝑡2.  

For a nonstationary gamma process, the shape parameter is not linear with time. 

Suppose the shape function of the degradation process follows a power law 

 𝛼(𝑡) = 𝑎𝑡𝑐 2.21 

where 𝑎 and 𝑐 are nonnegative constants, the parameters of the process (i.e. 𝑎, 𝑐 and 𝛽) 

can be obtained by the maximum likelihood method. When the parameter 𝑐 > 1, the 

degradation process is accelerating and when 𝑐 < 1, the process is slowing down. If 𝑐 =

1, the process reduces to stationary gamma process. Results of stationary gamma 

processes in terms of expectation, variance and coefficient of variation are applicable to 

nonstationary gamma processes. 

 

2.3.2 Inverse Gaussian Process 

Another important stochastic process commonly used to model degradation is the inverse 

Gaussian process. In this section, we present its definition, properties and use in the 

literature for degradation modelling. An inverse Gaussian process {𝑋(𝑡) , 𝑡 ≥  0} is a 

stochastic process with monotonic degradation path satisfying  

• 𝑋(0) = 0 almost sure; 

• 𝑋(𝑡)  has independent increments i.e. for 0 ≤ 𝑡1 < 𝑡2 ≤ 𝑡3 < 𝑡4, 𝑋(𝑡2) − 𝑋(𝑡1)   and 

𝑋(𝑡4) − 𝑋(𝑡3)  are independent;  

• The increment 𝑋(𝑡2) − 𝑋(𝑡1)  follows an inverse Gaussian distribution for any 0 ≤

𝑡1 < 𝑡2. 
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The inverse Gaussian distribution is a two-parameter distribution characterized by its 

mean 𝜇 (𝜇 > 0) and shape parameter 𝛼 (𝛼 > 0). The probability density function (PDF) is 

given as  

 𝑓(𝑥; 𝜇, 𝛼) = (
𝛼

2𝜋𝑥3
)

0.5

exp {−
𝛼(𝑥 − 𝜇)2

2𝜇2𝑥
} 2.22 

for 𝑥 > 0 and 0 for 𝑥 ≤ 0. The cumulative distribution function (CDF) is 

 𝐹(𝑥; 𝜇, 𝛼) = Φ [(
𝛼

𝑥
)

0.5

(
𝑥

𝜇
− 1)] + exp (

2α

μ
) Φ [− (

𝛼

𝑥
)

0.5

(
𝑥

𝜇
+ 1)]   2.23 

where Φ(. ) is the standard normal CDF. 

Some important properties of the inverse Gaussian distribution are worth pointing out.  

First, the mean and variance of the distribution are 𝜇 and 𝜇3/𝛼, respectively. The 

coefficient of variation is √𝜇/𝛼. Second, the excess kurtosis is 15𝜇/𝛼. As the excess 

kurtosis is a positive number, the inverse Gaussian distribution has a fatter tail than any 

univariate Gaussian distribution. Third, the first passage time for a fixed positive level of 

a Brownian motion with a drift follows an inverse Gaussian distribution. Fourth, the inverse 

Gaussian distribution has scaling and additive properties similar to those of the gamma 

distribution. For instance, if an inverse Gaussian distribution 𝑋 with parameters 𝜇 and 𝜆 

is multiplied by a scalar 𝑘, the resulting distribution is an inverse Gaussian distribution 

with parameters 𝑘𝜇 and 𝑘𝜆.   

The probability density functions for the inverse Gaussian distribution with specified 

parameters are shown in Figure 2.10. 
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Figure 2.10 Comparison of the PDFs of inverse Gaussian distributions with different parameters 

 

With respect to degradation modelling, Zhang (2014) proposed an inverse Gaussian 

process to model corrosion defect growth in buried energy pipelines using imperfect 

inspection data. Few researchers have studied incorporating random effects and 

covariates into inverse Gaussian process models with illustrations to demonstrate its 

applicability to degradation modelling. Case studies have been performed to illustrate 

application of inverse Gaussian process with random effects to plan accelerated 

degradation test experiments (Ye et al., 2014) and fit laser data (Peng, 2015; Wang and 

Xu, 2010; Ye and Chen, 2014). Furthermore, Peng et al. (2014) demonstrated the 

applicability of the Bayesian method for degradation modelling with inverse Gaussian 

process.  

 

2.3.3 Geometric Brownian Motion 

Before discussing geometric Brownian motion, we would like to discuss the Brownian 

motion. This is because the Brownian motion is incorporated into most versions of the 

geometric Brownian motions proposed in the literature for deterioration modelling. The 
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standard Brownian motion or Wiener process {𝐵𝑡, 𝑡 ≥  0} is a continuous time stochastic 

process with the following properties 

• 𝐵(0) = 0 almost sure; 

• 𝐵𝑡 has independent increments i.e. for 0 ≤ 𝑡1 < 𝑡2 ≤ 𝑡3 < 𝑡4, 𝐵(𝑡2) − 𝐵(𝑡1)   and 

𝐵(𝑡4) − 𝐵(𝑡3)  are independent; 

• 𝐵(𝑡)  follows a Gaussian distribution with mean 0 and variance 𝑡 for all 𝑡 ≥ 0. 

 

 

Figure 2.11 Four realizations of a 10000-step Brownian motion X(t) = 0.75t + B(t)  

As observed in Figure 2.11, a major drawback of the Brownian motion for degradation 

modelling is that it does not ensure monotonic (non-decreasing) degradation growths. As 

a result, the use of geometric Brownian motion processes to model degradation in 

engineering has been reported in the literature.  

A geometric Brownian motion {𝑋(𝑡), 𝑡 > 0} is a continuous-time stochastic process whose 

logarithm of the random part follows a Brownian motion with drift. Basically, the geometric 

Brownian motion was proposed as a variation of the Brownian motion to ensure positive 

degradation paths. In a paper by Park and Padgett (2005), the authors proposed an 
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accelerated lifetime test model based on geometric Brownian motion. In their model, 𝑋(𝑡) 

is a geometric Brownian motion process defined as   

 log 𝑋(𝑡) − log 𝑋𝑜 = 𝐵(𝑡)  2.24 

where 𝑋(𝑡) and 𝑋𝑜 are the instantaneous degradation process and initial degradation 

respectively. This model, which may otherwise be rewritten as  

𝑋(𝑡) = 𝑋𝑜𝑒𝐵(𝑡), does not ensure non-decreasing degradation growths. Elsayed and Liao 

(2004) proposed a geometric Brownian motion model for instantaneous degradation rate 

to ensure an increasing monotonic degradation pattern as 

 𝑋(𝑡) = 𝑋𝑜𝑒𝑏𝑡𝑒𝜎 𝐵(𝑡) 2.25 

 

where 𝑏 is the drift parameter and 𝜎 is the diffusion parameter. Zhang (2014) extended 

their model by formulating a defect-specific hierarchical Bayesian corrosion growth model 

that includes inspection data measurement error in the model.  

 

2.3.4 Markov Chains 

Degradation may be assumed to be a Markov chain. For a Markov chain, the future state 

depends on the present (or the most recent state) and independent of the past. This class 

of Markov chains is sometimes described as memoryless. Markov chains can be discrete 

or continuous time. A discrete-time Markov process 𝑋(𝑡) is a Markov chain if 

 P{𝑋(𝑡 + 1)|𝑋(1), … , 𝑋(𝑡)} = P{𝑋(𝑡 + 1)|𝑋(𝑡)} 2.26 

 

It is characterized by the transition probability defined by 𝑝𝑡(𝑖, 𝑗) =

P{𝑋(𝑡) = 𝑗|𝑋(𝑡 − 1) = 𝑖} where 𝑖  and 𝑗 are transition states. When this probability does 

not depend on time, the Markov chain is said to be homogeneous, otherwise 

nonhomogeneous. States in Markov chains can be either discrete or continuous. Figure 

2.12 is an illustration of discrete state Markov chain. Apart from the so call “memoryless” 

Markov chains, there is a class of Markov chains in which the future state of the process 
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depends on some of the past states. A Markov chain of order 𝑚 is a stochastic process 

satisfying 

 𝑃(𝑋𝑛+1|𝑋𝑛, 𝑋𝑛−1, … , 𝑋1) = 𝑃(𝑋𝑛+1|𝑋𝑛, 𝑋𝑛−1, … , 𝑋𝑛−𝑚) 2.27 

 

That is, the future state of the process depends on the previous 𝑚 states. 

0 1

a

b

1-a 1-b

 

Figure 2.12 A 2-state Markov chain with transition matrix 𝑃 = [
1 − 𝑎 𝑎

𝑏 1 − 𝑏
]  where 0 ≤ 𝑎, 𝑏 ≤

1. 

 

For a continuous time Markov chain, 𝑋𝑡, 𝑡 > 0, 

 𝑃(𝑋𝑡+𝑠|𝑋𝑠, 𝑋𝑠𝑛
, … , 𝑋𝑠𝑜

) = 𝑃(𝑋𝑡+𝑠|𝑋𝑠) 2.28 

 

for any 0 ≤ 𝑠𝑜 < 𝑠1 … < 𝑠𝑛 < 𝑠. This definition still means that the future is predicted based 

on the given present state and independent of all the past states.  

In the literature, many researchers have proposed Markov chain models for deterioration 

modelling. For instance, case studies have been performed to model deterioration of 

buildings based on discrete-time Markov chain (Sharabah et al. 2006) and degradation 

of reinforced concrete over time using homogeneous Markov chain (Possan and 

Andradec, 2014).  Jin and Mukherjee (2014) presented a nonhomogeneous Markov chain 

model for degradation using a MC sampling approach. In the paper, the authors proposed 

a method of estimating empirical transition probabilities. While many Markov chain 

degradation models proposed in the literature are based on the independent increment 

assumption, Guida and Pulchini (2011), on the other hand, proposed a discrete-time 
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Markov model for degradation process with dependent increments. Similarly, Giorgio et 

al. (2011) proposed a Markov chain degradation model with transition probabilities 

between states dependent on the current age and state of the system.  

 

2.3.5 Multivariate Degradation Modelling 

Many previous studies focused on modelling degradation phenomena as independent 

stochastic processes. However, many structures or components experience multiple 

degradation phenomena which are dependent on one another. This may be due to the 

degradation phenomena having common underlying causes or the phenomena 

interacting because of proximity to one another. Assuming independence, in this case, 

may underestimate or overestimate lifetime prediction of such structures or components.   

There have been previous studies on stochastic modelling of dependent degradation. As 

bivariate degradation modelling is the basis and a special form of multivariate degradation 

modelling, the former is reviewed first. In the early days of bivariate degradation 

modelling, Whitmore et al. (1998) proposed a two-dimensional Wiener process to model 

degradation. Their model comprises two processes - the component, which is directly 

observable, is the marker while the other component, which is unobservable, determines 

the failure time. Both components are correlated and have a bivariate Gaussian 

distribution. In recent years, more researchers have proposed bivariate degradation 

models based on inverse Gaussian processes (Peng et. al. 2016; Duan et. al 2018) with 

dependence between the performance characteristics described by copula functions. Pan 

et. al. (2013) and Xu et. al. (2018) proposed bivariate degradation models based on 

Wiener processes. In both models, copula functions were used to capture the 

dependency among the performance characteristics and parameter estimation done 

using Bayesian Markov Chain Monte Carlo (MCMC). Hao and Su (2014) also proposed 

a degradation model for two performance characteristics using the Frank copula function 

and MCMC for parameter estimation because the model is “complicated and analytically 

intractable”. Several variants of bivariate degradation models have been proposed such 

as models in which performance characteristics have different marginal distribution 
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functions (Sari et. al. 2009) or different stochastic processes govern the behaviour of each 

performance characteristic (Rodriguez-Picon et. al., 2017). 

Fewer publications have dealt with the issue of multivariate degradation modelling. Liu et 

al. (2014) proposed a model for multiple degradation processes with marginal inverse 

Gaussian processes. Li and Xue (2014) proposed a multivariate degradation model 

based on multivariate Wiener process. Xu et. al. (2016) and Xu et. al. (2018) proposed 

multivariate degradation models with vine copulas and drift Brownian motions to describe 

relationship between more than two dependent performance degradation processes. 

Peng et. al. (2016) proposed a Bayesian multivariate degradation model with a 

multivariate copula function and inverse Gaussian marginals. 

Over the last decade, deterioration modelling with gamma processes has been extended 

to bivariate and multivariate gamma processes. Wang et al. (2015) proposed a bivariate 

nonstationary gamma degradation process. Their model assumed that a product state 

could be described by two dependent performance characteristics whose degradation 

mechanisms both follow nonstationary gamma processes. Also, a copula function was 

used to characterize the dependence structure. An earlier paper by Pan and Balakrishnan 

(2011) proposed a bivariate stationary gamma degradation model for reliability analysis 

of products with two dependent performance characteristics. More recently, 

Shemehsavar (2014) proposed a monotonically increasing bivariate gamma model with 

latent component and marker. Similar to Whitmore et. al. (1998), the latent process 

cannot be observed and determines the failure time while the second (i.e. the marker) 

can be observed. Both processes follow Kibble’s bivariate gamma distribution with the 

same positive shape parameter and a scale parameter of 1. Variants of bivariate gamma 

process models have been proposed by Caballé et al. (2015) and Castro et al. (2015) by 

modelling multiple degradation growths and sudden shocks in a system using gamma 

processes with initiation times following a nonhomogeneous Poisson process. Both 

competing degradation growths and sudden shocks were treated as dependent, but the 

degradation processes were assumed to be independent of one another. Pan et. al. 

(2016) extended the work of Pan and Balakrishnan (2011) by proposing a multivariate 
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gamma process model, which uses a multivariate Birnbaum-Saunders distribution for 

lifetime distribution.  

There have been fewer studies on multivariate degradation modelling for two reasons. 

First, modelling dependence among multiple processes requires constructing suitable 

multivariate distributions to describe dependence among the processes. This challenge 

is usually tackled by employing multivariate copulas (Li and Xue 2014; Liu et. al. 2014; 

Xu et. al. 2018). Second, parameter inference from multivariate process models are 

usually complicated or computationally difficult to deal with. An approach to address this 

issue involves using a 2-stage MLE-based method for parameter estimation (Liu et. al. 

2014), Bayesian Markov Chain Monte Carlo simulation (Pan et. al. 2016; Peng et. al. 

2016) or deriving parameters from transformation and modified likelihood functions (Li 

and Xue 2014). To address both challenges, we propose a copula-based model, with a 

well-behaved likelihood function, for dependence modelling.  

 

2.4 Inspection and Maintenance Optimization 

As structural components experience deterioration over time, inspections and 

maintenance need to be carried out from time to time to safely keep them in service. This 

section presents a review a widely used maintenance strategy in the literature known as 

condition-based maintenance.  

2.4.1 Condition-Based Maintenance 

In recent times, maintenance strategy is increasingly shifting towards condition-based 

maintenance (CBM) methods. Under the CBM strategy, the decision to repair or replace 

a component/system or to do nothing is based on the outcome of the inspection of the 

component or system. There has been a lot of research done to answer questions as to 

when and how often inspection and maintenance should be carried out and what should 

be the basis of these decisions.  

In the literature, inspection and maintenance decisions are based on criteria such as 

expected cost minimization, availability or reliability maximization or a combination. In this 
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section, we review few of the models that have been proposed in the last two decades. 

Guillaumot et al. (2003) proposed a cost minimization model based on Markovian 

decision process that incorporates measurement errors during inspections.  Onoufriou 

and Frangopol (2002) presented applications of different reliability-based inspection and 

maintenance optimization techniques for offshore structures and bridges. These 

techniques were based on minimizing life-cycle costs subject to a target reliability being 

met. Similarly, Rangel-Ramírez and Sørensen (2012) proposed a risk-based inspection 

planning optimization to minimize the service life costs subject to a threshold reliability 

level. Other models include Rackwitz and Joanni (2009) who proposed a cost-benefit 

maintenance optimization model and Pandey et al. (2009) who proposed a cost rate 

minimization model with inspection interval and preventive maintenance threshold as 

decision variables. With respect to multi-objective optimization, an optimization 

methodology involving cost minimization and safety maximization can be found in 

Podofillini et al. (2006). For more comprehensive reviews of the condition-based 

maintenance strategy, interested readers may refer to Ahmad and Kamaruddin (2012) and 

Alaswad and Xiang (2017). 

 

2.4.2 Lifetime Prediction 

A major benefit derivable from degradation modelling of a structure is being able to 

estimate reliability and predict the lifetime of the structure. Generally, a structure, 

component or system is considered to have failed when the cumulative degradation in it 

reaches a predetermined failure threshold 𝜁. This means that failure does not have to be 

catastrophic. The failure is characterized by a lifetime distribution which basically is a 

probability density function defined over a range of time. Its cumulative density function 

(CDF) 𝐹(𝑡) gives the probability that the component will fail by a given time 𝑡. The CDF is 

defined as 𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = 𝑃(𝑋(𝑡) ≥ 𝜁). For more information on lifetime distribution, 

see Van Noortwijk (2007) and Yu et al. (2008).  

Many models based on several stochastic process have been employed to estimate 

remaining useful life of components and systems. On one hand, Wiener, inverse 

Gaussian and gamma process-based models are used to model continuous time states. 
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A major advantage of using the Wiener process for deterioration modelling is that the 

PDF of the first passage time of the process has an analytical function which is the inverse 

Gaussian distribution. Tseng et.al. (2003) proposed a method for assessing the lifetime 

distribution of passed units of LED lamps based on the Wiener process. More recently, 

based on the Wiener process and inverse Gaussian distribution, Hu et. al. (2018) 

proposed a method to predict the real-time remaining useful life of wind turbine bearings. 

Wang & Xu (2010) obtained the failure time distribution using an inverse Gaussian 

process model. For discrete time degradation models, on the other hand, Markov chain-

based models are used. These include models based on hidden Markov model (Zhou et. 

al. 2010) and hidden semi-Markov Model (Yu, 2009), to name a few. 

Gamma process has been used to model degradation, predict reliability, and compute 

lifetime and remaining lifetime distribution of components (Yuan, 2007). Still on the 

component level, Wei and Xu (2014) presented a method to estimate remaining useful 

life of batteries using a gamma process. In their paper, Monte Carlo simulation was used 

to obtain lifetime distribution while failure threshold was a combination of both a constant 

and a Gaussian random variable. In a similar vein, Nystad et al. (2012) proposed a 

nonstationary gamma process to model a degradation phenomenon with gamma-

distributed failure threshold and estimate the remaining useful life. On the system level, 

Khorasgani et. al. (2016) developed a stochastic simulation and inverse-FORM (first order 

reliability method) approaches for predicting remaining useful life of subsystems and 

systems with several components experiencing deterioration.   

 

2.5 Statistical Estimation of Parameters 

Parameter estimation involves using sample data to estimate parameters of a model. As 

it is practically impossible to obtain an entire population, these estimated parameters give 

information about the population. In this subsection, we will discuss two methods of 

estimating parameters of models namely the maximum likelihood method and the Markov 

chain Monte Carlo simulation. 
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2.5.1 Maximum Likelihood Method 

This thesis adopts the maximum likelihood (ML) method for parameter estimation. The 

idea behind the ML estimation is to find the value of a parameter or parameters that 

maximize(s) the likelihood of obtaining a set of observations. With respect to the 

multivariate gamma distribution presented in Section 2.1.2, the joint distribution function 

of the function is given in Eq. 2.11 of Section 2.1.2.  The log-likelihood function for the 

joint distribution function is  

 𝑙(𝛼 , 𝛽 , 𝜃) = log 𝑔𝑛(𝒙𝒊, 𝛼 , 𝛽 , 𝜃) 2.29 

The constant terms can be safely dropped from the log-likelihood function and the 

maximum likelihood estimates obtained numerically. This is equivalent to solving the set 

of equations 

 
𝜕𝑙

𝜕𝛼𝑖 

,
𝜕𝑙

𝜕𝛽𝑖 

,
𝜕𝑙

𝜕𝜃 
= 0; 𝑖 = 1, … , 𝑛 2.30 

Moving on to a brief discussion of some properties of the estimator. Under regularity 

conditions, a maximum likelihood estimator possesses a number of important properties 

namely 

• Consistency 

• Asymptotic unbiasedness 

• Asymptotic normality 

• Efficiency 

• Invariance 

The maximum likelihood estimator is consistent if the estimator converges in probability 

to its true value as the sample size goes to infinity. The estimator is asymptotically 

unbiased and normally distributed i.e. (Θ̂ − θ)~𝑁(0, 𝑰−1), where 𝑰−1 is the Fisher 

information matrix. It is also known that the maximum likelihood estimator is 

asymptotically efficient and achieves the Cramer-Rao lower bound when the sample size 

approaches infinity. This bound refers to the sample’s Fisher information matrix inverse 
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evaluated at the true value of the estimator. Finally, the estimator is invariant. In other 

words, 𝑓(Θ̂) is an estimator of 𝑓(θ) if Θ̂ is an estimator of 𝜃. 

Due to their independent increment property, gamma, inverse Gaussian and Brownian 

motion processes are said to be Markovian processes. The independent increment 

property of these stochastic processes makes parameter estimation by maximum 

likelihood possible and prediction of future degradation uncomplicated. For a gamma 

process model with covariates and random effects, Lawless and Crowder (2004) 

discusses parameter estimation using the MLE method. Guida and Pulcini (2011) and 

Giorgio et al. (2011) both employed the maximum likelihood method to estimate 

parameters of their age- and state-dependent Markov chain models. The former model 

involves random effects. In a similar vein, a few researchers have used the MLE method 

to estimate parameters of their geometric Brownian motion-based degradation models, 

among whom are Elsayed and Liao (2004), Ye et al. (2014) and Ye and Chen (2014). 

Wang and Xu (2010) proposed the Expectation-Maximization algorithm to find the MLE 

iteratively when direct estimation of the parameters using the MLE method is 

computationally difficult. 

So far, the discussion has been on using the MLE method to estimate parameters of 

univariate stochastic processes. Maximum likelihood has been used for statistical 

inference with respect to bivariate and multivariate random processes. For example, Liu 

et al. (2014) used a two-stage method to estimate parameters of their multiple 

degradation processes. First, the authors estimated the marginal distribution parameters 

and then the copula parameters from the likelihood function using the results from the 

first stage. Statistical inference using the MLE method will be discussed in detail in 

Chapter 5. 

 

2.5.2 Markov Chain Monte Carlo Simulation 

Another versatile method used for parameter estimation is Markov Chain Monte Carlo 

(MCMC) simulation, which is based on Bayesian statistics. MCMC simulation is used to 

sample from a multivariate continuous distribution by constructing a Markov chain that 
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ultimately converges to a desired distribution. In using MCMC, some initial iterations of 

the Markov chain are discarded. This is known as the “burn-in” period. After the burn-in 

period, the more the number of iterations used in the MCMC simulation, the higher the 

chance of obtaining the desired distribution. MCMC samples are correlated because a 

typical iteration depends on the previous iteration. In the ordinary Monte Carlo simulation, 

however, the samples are independent and identically distributed. 

A number of algorithms have been used in MCMC simulation. These include the 

Metropolis-Hastings (M-H) algorithm and the Gibbs sampler among others. MCMC 

simulation was invented by Metropolis et al. (1953) to investigate state equations of 

interacting particles in Physics. The simulation algorithm was later improved upon by 

Hastings (1970). Basically, the M-H algorithm involves initializing parameters, usually 

denoted as 𝜽. Then, the algorithm uses what is known as the proposal distribution 

𝑞(𝜽∗|𝜽 ) to generate random seeds for the next iteration based on the current values of 

the parameters. The proposed move resulting from the generated seeds is accepted if it 

satisfies 𝑢 < min (1,
𝑝(𝜽∗)𝑞(𝜽𝑖|𝜽∗)

𝑝(𝜽𝑖)𝑞(𝜽∗|𝜽𝑖)
), where 𝑢 and 𝑝(𝜽 ) are a uniformly distributed random 

variate and a distribution proportional to the target posterior distribution. Otherwise, the 

Markov chain remains in the same location. For a symmetric proposal distribution where 

𝑞(𝜽𝑖|𝜽
∗) = 𝑞(𝜽∗|𝜽𝑖), the acceptance criterion reduces to 𝑢 < min (1,

𝑝(𝜽∗)

𝑝(𝜽𝑖)
). An 

improvement to the M-H algorithm is presented in Green (1995).  

In the Gibbs sampler algorithm introduced by Geman and Geman (1984), the algorithm 

uses the full conditional distribution of the posterior distribution to generate a random 

sample of each parameter of interest in turn. This random sample is conditioned on the 

present values of the other parameters. The proposed move in the Markov chain is always 

accepted. In other words, the Gibbs sampling algorithm may be regarded as a special 

case of the M-H algorithm with an acceptance rate of one.  
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2.6 Concluding Remarks 

In this section, a summary of major contributions and gaps in extreme value distribution 

of random fields and stochastic modelling of deterioration are presented in Table 2.2. 

Table 2.2 Summary of major contributions and gaps in dependence modelling, stochastic 
deterioration modelling and extreme value distribution of random fields. 

Major Contributions Gaps 

• Ditlevsen proposed a distribution for EV of 

one-dimensional standard Gaussian fields 

within a finite interval. 

• The distribution has an unknown 

parameter G which limits its applicability. 

• No analytical solution for EV distribution 

of Gaussian random fields of higher 

dimensions. 

• Asymptotic solutions from the classical EV 

and the outcrossing theories exist.  

• Double transformations of Gaussian fields to 

non-Gaussian fields have been 

demonstrated. 

• Extensive literature review indicates that 

there is no analytical solution for the EV 

distribution of non-Gaussian random 

fields. 

• Stochastic process models that capture 

temporal uncertainty in deterioration have 

been proposed. 

• Spatial uncertainty modelling in 

deterioration receives little attention. 

• Use of copulas to study dependence 

structures with respect to degradation 

modelling and reliability analysis have been 

demonstrated. 

• Difficulty in parameter estimation due to 

complicated and analytically intractable 

models; actual applications of 

multivariate stochastic process model in 

civil engineering were rare 
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3. Extreme Value Distribution of Homogeneous Random 

Fields 

In reliability problems, it is often required to calculate the distribution of maximum values 

of functions. When such problems are modelled with random fields, the EVs of random 

fields become important quantities in risk and reliability analyses. As a matter of fact, to 

assess overall risk during structural integrity assessment, the second order statistics of 

the stochastic field (mean, standard deviation and correlation length) are insufficient, and 

it is often desirable to obtain the full probability distribution of the extreme value. The 

extreme value (EV) theory provides useful probabilistic tools for handling the maximum 

values and their distribution. 

This chapter presents the methodology and results of extreme value distribution of 

random fields. While the main focus of the research is on the EV distribution of two-

dimensional random fields, we start off by evaluating EV distributions of one-dimensional 

random fields by comparing our simulation results with existing semi-analytical and 

analytical models. The simulation results are then extended to two-dimensional fields.  

For all the fields considered, the simulation study aims to answer the following questions: 

(1) What distribution does the EV follow? How accurate is the asymptotic Gumbel 

distribution in the modelling of the EV? For fields with a quadratic exponential 

correlation model, how accurate are the Ditlevsen, approximate Ditlevsen 

distributions and the Poisson approximation? 

(2) How does the statistics of the EV vary with the parameters of the random field, i.e., 

the size of the field (𝐿), the correlation length (𝜃), correlation model, and for gamma 

fields, the shape parameter (𝛼)? For lognormal random fields, the relationship 

between the EV statistics and parameters of the field are studied as well. In this 

study, all three correlation functions listed in Section 3.1 are investigated. 

Put differently, the objectives of the study are threefold: 1) introduce a non-Gaussian 

random field model (i.e. copula-based gamma field) for the modelling of spatial 

uncertainty in deterioration; 2) use a spectrally based simulation algorithm to evaluate the 
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extreme value distribution of the one-dimensional Gaussian, lognormal and gamma fields; 

3) evaluate the accuracy of existing asymptotic and other analytical or semi-analytical 

solutions and 4) extend the spectrally based simulation algorithm to evaluate the EV 

distribution of two-dimensional standard normal and gamma fields.  Although the study is 

performed in the context of deterioration modelling, the results and methodology are 

nevertheless applicable to other areas where the extreme values of a stochastic field or 

process within a finite time interval are of practical significance. 

The chapter is organized as follows. The basics of the copula-based gamma field are first 

introduced in terms of definition and characterization. The KL expansion in one dimension 

and multidimensional KL expansion are discussed. Furthermore, the Nystrom method 

that numerically solves the Fredholm integral equation of the second kind using the 

Gauss-Legendre quadrature is discussed. Then, the results from the one-dimensional 

standard normal, lognormal and gamma fields are discussed. Finally, the results of EV 

distribution of two-dimensional fields are presented. 

 

3.1 Definition and Characterization 

A gamma random field can be simply defined as a random field 𝑋(𝑠) of which the values 

taken at any 𝑛 distinct locations 𝑋(𝑠1), 𝑋(𝑠2), … , 𝑋(𝑠𝑛) follow a multivariate gamma 

distribution for any positive integer 𝑛.  However, there are a number of multivariate 

gamma distributions that may be qualified for the definition of the gamma random field. 

Therefore, we need to present the formal definition of the gamma field and explain our 

choice of multivariate gamma distribution. 

A random field 𝑋(𝑠) in a finite 𝑑-dimensional Euclid space Ω is called a homogeneous 

gamma field if the following conditions are satisfied: 

(1) For any point 𝑠 ∈ Ω, the value of the field 𝑋(𝑠) is a random variable that follows a 

gamma distribution with shape 𝛼 and scale 𝛽, i.e., 𝑋(𝑠)~𝐺𝑎(𝛼, 𝛽). 

(2) For any 𝑛 points 𝑠1, 𝑠2, … , 𝑠𝑛 ∈ Ω, the field values 𝑋(𝑠1), 𝑋(𝑠2), … , 𝑋(𝑠𝑛) follow a 

multivariate gamma distribution that is defined as Eqs. (2.23) and (2.24) with 𝛼𝑖 =
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𝛼 and 𝛽𝑖 = 𝛽 for 𝑖 = 1, … , 𝑛, and the z-correlation coefficient 𝑟𝑖𝑗 (𝑖, 𝑗 = 1, … , 𝑛) 

defined by 𝑟𝑖𝑗 = 𝑟(𝒉𝑖𝑗), where 𝑟(⋅) is a correlation function, and 𝒉𝑖𝑗 a certain 

distance measure between the two points 𝑠𝑖 and 𝑠𝑗. 

Therefore, the definition of the gamma field is very similar to that of a homogeneous 

Gaussian field, except that the marginal distributions are different and that the correlation 

in gamma field is not defined in the x-space but in the z-space.  In Grigoriu’s terminology, 

the gamma field is a non-Gaussian translation field (Grigoriu 1984). 

The gamma distribution mentioned in the first condition is a two-parameter continuous 

probability distribution whose probability density function (PDF) is expressed as 

 𝑔(𝑥; 𝛼,  𝛽) =
𝑥𝛼−1 

𝑒
−

𝑥
𝛽

𝛽𝛼Γ(𝛼)
  3.1 

for 𝑥 ≥ 0, where 𝛼 > 0 and 𝛽 > 0 are the shape and scale parameters, respectively. The 

cumulative distribution function (CDF) is expressed as a ratio of two gamma functions 

 𝐺(𝑥; 𝛼, 𝛽) =
Γ(𝛼, 𝑥 𝛽⁄ )

Γ(𝛼)
 3.2 

where Γ(𝑝, 𝑞) = ∫ 𝑥𝑝−1𝑒−𝑥d𝑢
𝑞

0
  is called the lower incomplete gamma function, and Γ(𝑝) =

Γ(𝑝, ∞) the complete gamma function, which is used in Eq. (3.1) as well.  

This study adopts the Gaussian copula for construction of a multivariate gamma 

distribution because of its ease in concept and computation as well as its flexibility in 

dependence modelling. For detailed information about constructing multivariate 

distributions, refer to Joe (2001) and Kotz et al. (2000).  

The correlation function is a very important second-order characteristic of a 

homogeneous random field.  For one-dimensional field, commonly used correlation 

functions are exponential, Gaussian, spherical, and triangular (Figure 3.1). 

• Exponential: 𝑟(ℎ) = 𝑒−3ℎ/𝜃  

• Quadratic exponential: 𝑟(ℎ) = 𝑒−3(ℎ 𝜃⁄ )2
  

• Triangular: 𝑟(ℎ) = 1 − ℎ/𝜃 for ℎ ≤ 𝜃, or 0 otherwise 
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Figure 3.1 Commonly used correlation functions with θ=10 (Top: exponential; Middle: quadratic 
exponential; Bottom: triangular). 
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In these models, ℎ represents the Euclidean distance between any two points in the line, 

and the parameter 𝜃 in the above correlation models is called correlation length. For multi-

dimensional field, isotropy and separability are two important considerations in correlation 

modelling. VanMarcke (1983) discussed isotropic, ellipsoidal, separable, and direction-

dependent correlation models for multi-dimensional fields.   An isotropic model is very 

similar to a one-dimensional model as described above, except that ℎ = ‖𝑠1 − 𝑠2‖2
1/2

 is 

defined the distance between two points.  In contrast, an 𝑚-dimensional separable 

correlation model is expressed as 𝑟(ℎ1, … , ℎ𝑚) = ∏ 𝜌𝑘(ℎ𝑘)𝑚
𝑘=1 , where 𝜌𝑘(ℎ𝑘) (𝑘 = 1, … , 𝑚) 

represents the one-dimensional correlation model in the 𝑘th dimension.  This study 

focuses on one-dimensional gamma field.  

Altogether, the shape parameter 𝛼, the scale parameter 𝛽, and the correlation length 𝜃 

define the 1-D homogeneous gamma field.  In stochastic degradation modelling, the three 

parameters can be estimated from inspection data by using, e.g., maximum likelihood 

method and Bayesian method.  

 

3.2 KL Expansion for Gaussian Fields 

3.2.1 One-Dimension Gaussian Fields 

The KL expansion is a widely used representation of stochastic processes and fields 

based on spectral decomposition of the autocovariance function (Ghanem & Spanos, 

1991). Since the Gaussian fields considered in the study are exclusively zero mean and 

unit variance, the autocovariance function is the same as the correlation function.  It has 

been shown that a stationary standard normal field 𝑍(𝑠; 𝜃) defined on a finite one-

dimensional domain 𝛺 can be represented by the following sum of infinite series:  

 𝑍(𝑠; 𝜃) = ∑ √𝜆𝑖𝜉𝑖(𝜃)𝑓𝑖(𝑠)

∞

𝑖=1

 3.3 

where 𝜉𝑖(𝜃) are independent standard normal variables and 𝜆𝑖 and 𝑓𝑖(𝑠) are eigenvalues 

and eigenfunctions of the correlation function. These eigenvalues and eigenfunctions are 

obtained by solving the following Fredholm integral equation of the second kind: 
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 ∫ 𝑟(𝑠1, 𝑠2)𝑓𝑖(𝑠1)𝑑𝑠1

 

𝛺

= 𝜆𝑖𝑓𝑖(𝑠2) 3.4 

where 𝑟(𝑠1, 𝑠2) is the correlation function, which for stationary fields is in the form of 𝑟(ℎ) 

in which ℎ = |𝑠1 − 𝑠2|. 

The eigenvalues in Eq. (3.3) are often sorted in the nonincreasing order of magnitude.  

Since random fields in practice are often narrow banded, the KL expansion can often be 

truncated after a finite number of terms because the terms with very small eigenvalues 

can be safely neglected without affecting the accuracy of random field approximation. 

Hence, the random field 𝑍(𝑠, 𝜃) is approximated as 

 𝑍(𝑠; 𝜃) = ∑ √𝜆𝑖𝜉𝑖(𝜃)𝑓𝑖(𝑠)

𝑛

𝑖=1

 3.5 

in which 𝑛 represents the total number of K-L expansion terms.  

Analytical solution of the integral equation (Eq. 3.4) exists for only a few functions such 

as exponential and triangular covariance functions as well as for the Brownian motion 

(Ghanem and Spanos, 1991; Wang, 2008). In view of this, numerical solutions are often 

employed and a number of methods have been developed. These methods are 

categorized into Galerkin method, collocation method, and Nystrom method; see Betz et 

al. (2014) for an overview and comparison of these methods used for solving the 

Fredholm integral in arbitrarily shaped domains. For one-dimensional random field, 

Melink and Korelc (2014) proposed a modified truncated exponential function to address 

the loss of positive definiteness within the framework of Galerkin method. Phoon et al. 

(2002) proposed a wavelet-Galerkin method that replaces polynomial and trigonometric 

bases with wavelet bases. Both methods aim to increase the numerical efficiency of the 

Fredholm integral solution in the KL expansion.  In this paper, the Nystrom method is 

used to solve the linear Fredholm integral of the second kind for the eigenvalue problem. 

Delves and Mohamed (1997) have discussed the accuracy of this method qualitatively. 
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3.2.2 Extension to m-Dimensional Field 

The extension of the one-dimensional KL expansion introduced in section 3.2.1 to a 

multivariate KL expansion is discussed in this section. A zero mean Gaussian random 

field 𝑍(𝑠1, … , 𝑠𝑚; 𝜽) defined on a finite m-dimensional domain 𝛺 can be represented by 

the K-L expansion with infinite number of terms as 

 𝑍(𝑠1, … , 𝑠𝑚; 𝜽) = ∑√𝜆𝑘𝜉𝑘(𝜽)𝑓𝑘(𝑠1, … , 𝑠𝑚)

∞

𝑘=1

 3.6 

where 𝜉𝑘(𝜃) are independent standard normal variables, 𝜆𝑘 and 𝑓𝑘(𝑠1, … , 𝑠𝑚) are 

eigenvalues and eigenfunctions of the covariance function, and 𝜽 is a vector of directional 

correlation lengths. Assuming separability of the autocovariance function in 𝑚 

dimensions, i.e. 

 𝐶(𝒔, 𝒕) = ∏  

𝑚

𝑖=1

𝐶(𝑠𝑖, 𝑡𝑖) 3.7 

the eigenvalue for the 𝑚-dimensional Karhunen-Loeve expansion is the product of the 

corresponding one-dimensional eigenvalues (Sudret and Der Kiureghian, 2000). 

 𝜆𝑘 
= ∏ 𝜆𝑖𝑗

𝑚

𝑗=1

 3.8 

where 𝜆𝑖𝑗
 are the component univariate eigenvalues. Similarly, the 𝑚-dimensional 

eigenfunction is the product of one-dimensional eigenfunctions. 

 𝑓𝑘(𝑠1, … , 𝑠𝑚) = ∏ 𝑓𝑖𝑗
(𝑠𝑗)

𝑚

𝑗=1

 3.9 

Similar to the 1-dimensional case, the eigenvalues are sorted in descending order of 

magnitude. For full details of simulation of two-dimensional random fields using the KL 

expansion, see Section 4.2.1. 
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3.3 Nystrom Method for the Fredholm Integral Equation 

Using Gauss-Legendre quadrature of 𝑛 integration points for the integral, Eq. (3.4) is 

approximated as  

 ∑ 𝑤𝑗𝑟(𝑡, 𝑠𝑗)𝑓𝑖(𝑠𝑗) = 𝜆𝑓𝑖(𝑡)

𝑛

𝑗=1

 3.10 

where 𝑤𝑗 ’s are the quadrature weights and 𝑠𝑗 ’s the integration points. Setting the above 

equation for 𝑠 = 𝑠1, … , 𝑠𝑛 yields the following equation in matrix notations: 

 𝐑𝐖𝐟 = 𝛌𝐟 3.11 

where 𝐑 = {𝑟𝑖𝑗 = 𝑟(𝑠𝑖 , 𝑠𝑗)}, 𝑾 = 𝑑𝑖𝑎𝑔{𝑤1, … , 𝑤𝑛}, 𝐟 = {𝑓𝑖𝑗 = 𝑓𝑖(𝑠𝑗)}, and 𝝀 =

𝑑𝑖𝑎𝑔{𝜆1, … , 𝜆𝑗}. Multiplying both sides of Eq. (3.11) by 𝐖1/2 yields 

 𝐀𝐡 = 𝛌𝐡 3.12 

where 𝐀 = 𝐖1/2𝐑𝐖1/2 and 𝐡 = 𝐖1/2𝐟.  Note that Eq. (3.12) is a typical eigenvalue 

problem. It can be readily shown that 𝐀 is positive definite and therefore the eigenvalues 

are real positive values.  Solving the eigen problem for the eigenvalues 𝝀 and the 

corresponding eigenvectors 𝐡, one can further obtain the discrete eigenvector at the 

integration points 𝐟 = 𝐖−1/2𝐡. Finally, the following Nystrom interpolation formula is used 

to obtain the value of the eigenfunction at any point 𝑠: 

 𝑓𝑖(𝑠) =  
1

𝜆𝑖
∑ 𝑤𝑗𝑟(𝑠, 𝑠𝑗)𝑓(𝑠𝑗)

𝑛

𝑗=1

 3.13 

For an in-depth discussion of the Nystrom method with the Gauss-Legendre quadrature 

rule, see Atkinson (1997) and Press et al (2007).   

The Nystrom method is coded in MATLAB. To validate it, we used the Nystrom method 

to calculate the eigenvalues of the exponential correlation model and compare the 

numerical results with the exact solutions.  For illustration, Figure 3.2 shows one of the 

comparisons for 𝜃 = 1 in log scale.  Clearly the eigenvalues decrease faster than an 

exponential decay, which would be a straight line in the log scale. This gives us a good 

justification for the truncated approximation of the KL expansion. On the other hand, 
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although the relative difference seems increasing for higher order eigenvalues, the 

absolute values of those eigenvalues are already very small.  Therefore, the numerical 

accuracy of the Nystrom method is deemed sufficient. See the appendix for more 

illustrations. 

 

Figure 3.2 Comparison of the first 40 eigenvalues obtained from the Nystrom method with the 
exact solution for exponential correlation model (L=2,θ=1). 

 

3.4 Simulation Algorithm 

The simulation of the one-dimensional gamma field is based on memoryless 

transformation of the standard Gaussian field, which is generated by the KL expansion 

incorporated with the Nystrom method.  As shown above, once the eigenvalues and eigen 

functions are numerically determined, the generation of the standard Gaussian field is a 

simple application of Eq. (3.5), which entails simply generation of 𝑛 independent standard 

normal random variates.  Note that the number of KL terms in Eq. (3.5) must be equal to 

the number of quadrature points in Eq. (3.10).  However, much finer equal-distance mesh 

can be used in the interpolation of the eigenfunctions as shown in Eq. (3.13).  After the 

standard Gaussian field is generated, the standard normal CDF of the Gaussian variate 

at each interpolation point is evaluated.  Finally, the corresponding gamma field is 
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generated by taking the inverse of the gamma CDF with the known shape and scale 

parameters. The maximum value of the generated gamma field can then be evaluated 

among all interpolation points of the field. Repeat this process for a prescribed number of 

simulation runs. Finally, the statistics of the maximum values can be evaluated. This 

includes the calculation of the moments, empirical distribution, distribution fitting and 

various hypothesis testing.  

Clearly, the number of KL terms (and therefore the integration points) 𝑛, the number of 

interpolation points (or grid size) 𝑚, and the number of simulation runs 𝑁𝑠𝑖𝑚 are three key 

parameters of the KL-based Monte Carlo simulation.  The number of KL terms usually 

can be determined by the size of the smallest eigenvalue. In this study, 𝑛 is chosen so 

that the truncated largest eigenvalue 𝜆𝑛+1 ≤ 10−15. The number of interpolation points 

also affects the accuracy of the extreme values.  This value is determined by convergence 

test.  For illustration, a gamma field with 𝐿 = 2, 𝛼 = 2, 𝛽 = 1, and quadratic exponential 

correlation model with 𝜃 = 1 is simulated. Based upon the truncation criterion, the number 

of KL terms is 𝑛 = 22.  As shown in Figure 3.3, both the mean and standard deviation of 

the extreme value converges quickly with the number of interpolation points (𝑚).  As one 

would expect, the statistics exhibit greater fluctuation with the number of simulations. 

However, the figure shows that when 𝑁𝑠𝑖𝑚 is greater than 105, the statistics become 

stabilized. Based on this and a lot more similar convergence tests, the following study 

takes 𝑚 = 201 and 𝑁𝑠𝑖𝑚 = 106. 
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Figure 3.3 Convergence test for the number of interpolation points (top) and the number of 
simulations (bottom) 

Using the KL expansion-based simulation algorithm presented above, the extreme values 

of the Gaussian, gamma and lognormal fields within a finite interval are studied.   

Since both the gamma and lognormal fields are simply double transforms of the standard 

normal field, we discuss the key findings of the standard normal fields at first. 

 

3.5 Standard Normal Fields 

3.5.1 Distribution of the EV 

As reviewed in Section 3, there are four possible distribution models that can be used to 

approximate the extreme values of a standard normal field with a quadratic exponential 

correlation model. They are: Gumbel, Ditlevsen, approximate Ditlevsen (without the 𝐺 

term), and the Poisson approximation. For the other two correlation models (triangular 

and exponential), only the Gumbel distribution is applicable because the two correlation 

models are not twice differentiable at the origin, a basic requirement for the calculation of 

the mean crossing rate.  To evaluate the goodness of fit, these distributions are compared 

with the empirical distribution obtained from simulation. The results for the quadratic 

exponential model are discussed first.   
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Take 𝐿 = 2 and 𝜃 = 1. Figure 3.4 compares the PDF and the probability of exceedance 

function of the empirical (E), Gumbel (G), Ditlevsen (D), and approximate Ditlevsen (aD) 

distributions as well as the Poisson approximation (P). Clearly, the Ditlevsen distribution 

offers a very accurate result for the whole range of the distribution. Without the empirically 

estimated 𝐺 term, even the approximate Ditlevsen distribution gives a surprisingly good 

fit. In contrast, the asymptotic Gumbel distribution fits poorly the empirical EV data from 

simulation.  The Poisson approximation has worse performance when the threshold level 

is small, which is expected.   

In the upper tail of the distributions, as shown in Figure 3.4(b). For the probability of 

exceedance function, the poor fit of the asymptotic Gumbel is shown even more clearly.  

The Poisson approximation gives an amazingly close fit to the empirical distribution curve, 

up to the level beyond 10-4.  Note that the divergence in the empirical curve for 𝑥 > 4.5 is 

caused by random error of Monte Carlo simulation (Recall 𝑁𝑠𝑖𝑚 = 106).  If the number of 

simulation increases, continuously close fit can be expected for the Ditlevsen distribution, 

approximate Ditlevsen distribution, and Poisson approximation. 
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Figure 3.4 Comparison of the PDFs (top) and the probability of exceedance functions (bottom) 
of the empirical, asymptotic Gumbel, Ditlevsen and approximate Ditlevsen distributions for the 

standard normal field with L=2,θ=1 and 𝜌(ℎ) = 𝑒𝑥 𝑝 (−3 (
ℎ

𝜃
)

2
).  

Further study of other cases reveals the same trend of the comparison. That is, the 

Ditlevsen distribution provides an excellent fit for the whole range of 𝑥. The approximate 

Ditlevsen distribution is slightly worse than the exact version, yet still fits the empirical 

data very well in engineering applications.  The Poisson approximation does not perform 

well for the left half of the distribution but provide an amazingly accurate prediction of the 

exceedance probability in the upper tail.    

The overall good performance of the approximate Ditlevsen distribution is particularly 

interesting, because this distribution does not require simulation. To better understand 

this, we studied how the 𝐺 term of the exact Ditlevsen distribution varies. First, it is found 

that the 𝐺 value depends only on 𝐿/𝜃–as long as 𝐿/𝜃 is kept constant, 𝐺 remains the 

same.  Second, the G value is a modest number. As shown in Figure 3.5(a), even when 

𝐿/𝜃 reaches 10, 𝐺 is still less than 1.5.  This verifies the earlier observation that although 

less accurate than the exact version, the approximate Ditlevsen model still provides a 

decent approximation to the empirical distribution in most cases.   

To further improve the predictability, a power function is used to fit the 𝐺~𝐿/𝜃 curve, 

yielding  
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 𝐺 = 0.3826 (
𝐿

𝜃
)

0.6031

 3.14 

for 0 ≤ 𝐿 𝜃⁄ ≤ 10.  For this model fitting, the coefficient of determination (R-squared) is 

0.9793 while the root mean square error (standard error) is 0.0594. Figure 3.5(b) shows 

how the difference between the empirical and fitted 𝐺 terms varies with 𝐿/𝜃. Equation 

3.14 is very useful for illustration. Instead of taking zero for 𝐺 as suggested by Ditlevsen 

(2004), we suggest using the empirical formula shown above to obtain the 𝐺 value, which 

is substituted into Eq. (2.28) to obtain a modified Ditlevsen (mD) distribution.  To test this, 

Figure 3.5(c) shows the comparison of the modified Ditlevsen (mD) distribution with the 

empirical distribution for 𝐿 𝜃⁄ = 5. Note that 𝐿 𝜃⁄ = 5 represents one of the spots that has 

the poorest fit in Figure 3.5(a), yet the mD distribution still provides a very good fit.   

 

 

(a) 
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(b) 

 

(c) 

Figure 3.5 The G~L/θ relation and performance of the modified Ditlevsen distribution. 

 

Considering the high computation cost in the estimation of G, we recommend that the 

modified Ditlevsen model be used in practice.  Note, again, that the Ditlevsen, 

approximate Ditlevsen, and the Poisson approximate methods are only applicable to 
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mean-square differentiable random fields.  If the random field is not mean-square 

differentiable, one must return to the KL expansion-based simulation. 

For standard normal fields with either an exponential or a triangular correlation model, 

only the asymptotic Gumbel distribution can be used to benchmark the empirical 

distribution.  However, simulation results have shown that in general, the asymptotic 

Gumbel model is not found to be a good fit for all three correlation models, although for 

some values of 𝐿/𝜃, the Gumbel distribution can be very close to the empirical CDF.  

Sensitivity analyses found that the performance of the asymptotic Gumbel distribution 

depends highly upon the size of the random field.  This is because the two normalization 

parameters (𝑎𝐿 and 𝑏𝐿) of the Gumbel distribution both are influenced by 𝐿 and 𝜃 

differently, whereas the empirical distribution of the EV is in fact invariant for a fixed 𝐿/𝜃. 

As an extreme case, when 𝐿 ≤ 1 (regardless of 𝜃), the asymptotic Gumbel model cannot 

be used at all because 𝑎𝐿 = √2 log 𝐿 returns a complex number.  

For illustration, Figure 3.6 compares the Gumbel distribution with the empirical CDF at 

different sizes of the fields while 𝐿/𝜃 is kept to be 5. Three correlation models – quadratic 

exponential, exponential and triangular models are considered. For all three models, the 

empirical distribution remains unchanged for the same 𝐿/𝜃, whereas the Gumbel 

distribution keep changing as the field size changes. The same trend is observed for other 

𝐿/𝜃 values as well.  It is thus concluded that the asymptotic Gumbel distribution should 

NOT be used in the modelling of the extreme value of random field with a finite region, 

regardless of the correlation model.  
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(a) 

 

(b) 
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(c) 

Figure 3.6 Comparison of empirical and asymptotic Gumbel distributions of standard normal 
fields (L⁄θ=5) for three different correlation models: (a) quadratic exponential; (b) exponential; (c) 
triangular.   

 

3.5.2 Statistics of the EV 

An important finding of the study is that the statistics of the EV of a finite stationary random 

field depend upon only 𝐿/𝜃 for all three correlation models. For stationary standard normal 

fields with a quadratic exponential correlation function, simulation results show that the 

mean and standard deviation of the extreme values are a function of the ratio of the length 

of the random field to the correlation length 𝐿/𝜃. It is also established from simulation that 

for a constant 𝐿/𝜃, the probability or cumulative distribution of extreme values is invariant. 

An investigation of the reason behind this observation reveals that, while keeping 𝐿/𝜃 

constant, if one changes 𝐿 by a factor, say 𝑐, the distances between the integration points 

will change by 𝑐. As a result, the quadrature weights will become 𝑐𝑾, and yet the 

correlation matrix of the integration points 𝑹 will remain the same. Following the derivation 

in Section 3.4, it can be shown that all the eigenvalues will be multiplied by 𝑐, and the 

corresponding eigenfunctions will be scaled by 𝑐−1/2 . Taking the root of the eigenvalues 

and multiplying it with the corresponding eigenfunction, as required in Eq. (3.5), yields the 
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same KL expansion for the scaled stochastic field. For the exponential and triangular 

correlation models, Ghanem and Spanos (1991) provided the analytical expressions for 

the eigenvalues and eigenfunctions. It can be readily shown that the same scaling occurs 

in them as it does in the quadratic exponential model (see the appendix for details). 

Therefore, our study of the trend of the EV statistics was performed in terms of 𝐿/𝜃. 

Figure 3.7 shows the trends of the mean and standard deviation of the extreme values 

along 𝐿/𝜃.  The figure also compares the empirical results from the simulation with the 

analytical results derived from the asymptotic Gumbel distribution. Based upon the 

simulation, the mean extreme value increases as 𝐿/𝜃 increases, as it should be. 

However, the standard deviation decreases with 𝐿/𝜃, except for the triangular model’s 

empirical standard deviation. The increasing standard deviation for the triangular 

correlation model can be explained by the fact that any points beyond 𝐿/𝜃 are 

independent of the points within.  

Another interesting observation about the mean extreme values is that with the same 

parameters, different correlation models will cause very different mean values. Moreover, 

the ordering sequence among the correlation models changes with 𝐿/𝜃.  For 𝐿 𝜃⁄ ≤ 7, the 

order of the mean extreme values is Exponential > Triangular > Quadratic Exponential. 

For 𝐿 𝜃⁄ > 7, the order changes to Triangular > Exponential > Quadratic.  

The asymptotic mean values derived from the Gumbel distribution demonstrate the same 

trends for the mean values for all three correlation models. As 𝐿/𝜃 increases, the 

asymptotic mean diverges from the empirical mean for all cases, although the difference 

is the least in the quadratic exponential model. The reason for this surprising 

phenomenon has yet to be found. Note also that the asymptotic mean underestimates 

the empirical value of the triangular model whereas an opposite trend is observed in the 

other two correlation models.   

According to the asymptotic EV theory discussed in Section 3.2, the asymptotic standard 

deviations of the EV are the same for all three correlation models.  As shown in Figure 

3.7, the asymptotic result exhibits a better convergence to the corresponding empirical 

value for both the quadratic exponential and exponential models. However, the 
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decreasing asymptotic standard deviation is completely opposite to the increasing trend 

shown in the empirical curve.  

 

 

(a) 

 

(b) 
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(c) 

Figure 3.7 The statistics of the EV of a standard normal field with different correlation model: (a) 
quadratic exponential; (b) exponential; and (c) triangular.  

 

3.6 Gamma Fields 

Before the study, it is important to note that the scale parameter 𝛽 of the gamma 

distribution has only a multiplicative effect on the extreme value of gamma fields. 

Therefore, a unit scale (i.e. 𝛽 = 1) is used for all analyses of the subsequent discussions. 

Since the empirical EV distribution of the gamma field is simply the double transform of 

the EV distribution of the corresponding standard normal field, it is expected that major 

findings from the standard normal fields are observed in the gamma field. Therefore, the 

major interest of this part of study is to evaluate the impact of the shape parameter 𝛼 on 

the statistics of the EV and the goodness of fit of the Ditlevsen, approximate Ditlevsen, 

asymptotic Gumbel, and Poisson approximation.   
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3.6.1 Distribution of the EV 

Three cases of shape parameters (𝛼 = 0.5, 2, 10) are studied for the quadratic exponential 

correlation model. In Figure 3.8, the simulation results show that both the transformed 

Ditlevsen, approximate Ditlevsen and modified Ditlevsen models generally produce good 

fits compared with the numerical simulation, although the exact and modified Ditlevsen 

distributions are slightly more accurate than the approximate version.  

 

 

Figure 3.8 Comparison of the empirical, Ditlevsen, approximate Ditlevsen and modified 

Ditlevsen distributions for gamma field 𝐿 ⁄ 𝜃 = 5, 𝜌(ℎ) = 𝑒𝑥𝑝 (−3(ℎ
𝜃⁄ )

2
 )  
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Figure 3.9 Performance of the Poisson approximation for gamma field with α=0.5, 𝜌(ℎ) =

𝑒𝑥𝑝 (−3 (
ℎ

𝜃
)

2
 )  

 

Unlike in the standard normal field, the Poisson approximation does not perform well in 

the gamma field. As shown in Figure 3.9, the Poisson approximation underestimates the 

probability of exceedance for 𝐿 𝜃⁄ ≤ 1, but overestimates the probability for high 𝐿/𝜃 

(e.g. 
𝐿

𝜃
≥ 20).  

Since the asymptotic Gumbel distribution has poor performance for standard normal 

fields, the model is also inaccurate for gamma fields in general. Numerous simulations 

have confirmed this postulate; for illustration purpose, only the case  
𝐿

𝜃
= 5 & 𝛼 = 2 is 

shown in Figure 3.10. 
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Figure 3.10 Comparison of the PDFs (top) and the probability of exceedance functions (bottom) 
of the empirical, Ditlevsen, approximate Ditlevsen, asymptotic Gumbel distributions and Poisson 

approximation for the Gamma field with 
𝐿

𝜃
= 5, 𝛼 = 2 and 𝜌(ℎ) = 𝑒𝑥 𝑝 (−3 (

ℎ

𝜃
)

2
). 
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3.6.2 Statistics of the EV 

With a unit scale parameter, the mean and standard deviation of the extreme value are 

normalized by 𝛼 and √𝛼, respectively. With respect to 𝐿/𝜃, the observation on extreme 

value distribution of the standard normal field is valid for gamma fields because the latter 

are obtained by monotonic transformation of the former. Figure 3.11 shows the trend of 

the normalized extreme value mean along 𝐿/𝜃 for different shape parameters. Like the 

case in standard normal fields, for any given shape parameter 𝛼, as 𝐿/𝜃 increases, the 

normalized mean of the extreme value increases.  Although, for a given 𝐿/𝜃, the absolute 

value of the extreme value mean increases with 𝛼, the normalized mean decreases with 

𝛼. Another explanation for Figure 3.11 is that a gamma distribution with a bigger shape 

parameter has a lighter right tail than one with a smaller shape parameter. This means 

there is a relatively higher probability of getting more extreme values from a gamma 

distribution with a small 𝛼 (c.f. Section 2.1). In addition, increasing 𝐿/𝜃 implies more 

randomness in the field so; the effective number of independent random variables in the 

field thereby increases.  

The trend of the normalized standard deviation of the extreme value is slightly different 

from that of the normalized mean. As shown in Figure 3.11, for a given α, the trend of the 

normalized standard deviation depends on the correlation model used for the gamma 

field. Moreover, there appears to be an anomalous trend for quadratic exponential 

correlation function at small shape parameters (Figure 3.11(b)). The reason for this 

surprising trend is still unknown. 

The ordering sequence of the mean value among the correlation models is the same as 

that of the standard normal fields. The quadratic exponential model has the least mean 

EV for the whole range of 𝐿/𝜃, whereas the exponential model has the greatest mean EV 

when 𝐿 𝜃⁄ ≤ 7, beyond which the quadratic model dominates.  
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

 

(f) 

Figure 3.11 The EV statistics of gamma fields with three correlation models ((a)&(b)—squared 
exponential; (c)&(d)—exponential; (e)&(f)—triangular).  

 

Alternatively, Figure 3.11 can be presented in a slightly different form by plotting 

normalized mean and standard deviation against shape parameter of the gamma field. 

This is shown in Figure 3.12. 



80 
 

 

(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

 

(f) 

Figure 3.12. Normalized mean and standard deviation of the EV of gamma fields with different 
correlation functions ((a)&(b) Squared exponential (c)&(d) Exponential (e)&(f) Triangular). 
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3.7 Lognormal Fields 

The lognormal random field has two parameters namely the mean 𝜇 and standard 

deviation 𝜎 of the associated Gaussian distribution. Similarly, the empirical EV distribution 

of the lognormal field is the double transform of the EV distribution of the corresponding 

standard normal field. As a result, major findings from the standard normal fields apply to 

the lognormal field. The effect of the mean 𝜇 and standard deviation 𝜎 on the statistics of 

the EV and the goodness of fit of the Ditlevsen, approximate Ditlevsen, modified Ditlevsen 

and Poisson approximation are presented in this section.  

 

3.7.1 Distribution of the EV 

Keeping 
𝐿

𝜃
 and the mean 𝜇 constant, three cases of standard deviation (𝜎 = 0.3, 0.5,0.7) 

are presented for the quadratic exponential correlation model in Figure 3.13(a). In Figure 

3.13(b), three cases of mean (𝜇 = 0,0.5,2) are presented while keeping the standard 

deviation constant. In Figure 3.13, the simulation results show that both the exact and 

modified Ditlevsen distributions are slightly more accurate than the approximate 

Ditlevsen.  
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(a) 

 

(b) 

Figure 3.13. Comparison of the empirical, Ditlevsen, approximate Ditlevsen and modified 

Ditlevsen distributions for lognormal field (L θ⁄ = 5, ρ(h) = e−3(h θ⁄ )2
). (a) μ = 0.5 (top). (b) σ = 0.5 

(bottom). 
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Figure 3.14. Performance of the Poisson approximation for lognormal field with μ = 1, σ = 0.5, 

ρ(h) = e
−3(

h

θ
)

2

 

As shown in Figure 3.14, the Poisson approximation underestimates the probability of 

exceedance for low  𝐿 𝜃⁄ , but overestimates the probability for high 𝐿/𝜃.  

 

3.7.2 Statistics of the EV 

The mean and standard deviation of the lognormal random variable are functions of the 

mean 𝜇 and standard deviation 𝜎 of the associated Gaussian distribution. For a lognormal 

random variable, its mean is 𝜇𝐿𝑁 = exp (𝜇 +
𝜎2

2
) and variance given as 𝜎𝐿𝑁

2 =

[exp(𝜎2) − 1]exp (2𝜇 + 𝜎2). Therefore, the extreme value statistics obtained from 

simulation are normalized by 𝜇𝐿𝑁 and 𝜎𝐿𝑁.  Figure 3.15 shows the trend of the normalized 

extreme value mean and standard deviation along 𝐿/𝜃 for different standard deviations 

of the associated normal distribution. Like the case of gamma fields, for any given 

standard deviation 𝜎, as 𝐿/𝜃 increases, the normalized mean of the extreme value 

increases. The ordering sequence of the mean value among the correlation models 

remains unchanged. The quadratic exponential model has the least mean EV for the 

whole range of 𝐿/𝜃, followed by the exponential model and lastly the triangular model. 
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The trend of the normalized standard deviation of the extreme value is different from that 

of the normalized mean. As shown in Figure 3.15, for a given σ, the trend of the normalized 

standard deviation depends on the correlation model used for the lognormal field. Similar 

observations are made in the case of gamma fields.  

 

 

(a) 

 

(b) 
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(c) 

 

 

(d) 
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(e) 

 

 

(f) 

Figure 3.15. The EV statistics of lognormal fields μ = 0.5 with three correlation models ((a)&(b)—

quadratic exponential; (c)&(d)—exponential; (e)&(f)—triangular). 
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This study is confined to be one-dimensional gamma fields. The EV of two- and three-

dimensional gamma fields, and other practical questions related to the proposed gamma 

field (e.g., parameter estimation, impact on inspection sampling) will be discussed in 

subsequent sections. 

 

3.8 Two-dimensional Random Fields 

Using the same KL method, we present the simulation procedure and results of statistics 

of the EV of two-dimensional random fields. The two-dimensional Gaussian and gamma 

fields are simulated as follows. 

1. Choose a pair of 𝐿𝑥/𝜃𝑥 and 𝐿𝑥/𝜃𝑦, where 𝐿𝑥 and 𝐿𝑦 are the dimensions of the 

random field. 

2. Use the Nystrom method described in section 3.4 to determine the eigenvalues 

and eigenvectors in both horizontal and vertical directions. 

3. Plug these eigenvalues and eigenvectors into the two-dimensional K-L expansion 

(eqn. 3.15) to generate a realization of a 2-D Gaussian field 

4.  𝜉(𝒔, 𝒕) = ∑  

𝑛

𝑗=1

∑ √𝜆𝑖𝜆𝑗𝜁𝑖𝑗(𝜔)𝑓𝑖(𝒔)𝑓𝑗(𝒕)

𝑛

𝑖=1

 3.15 

where the number of terms 𝑛 = 43. 

3. Repeat step 3 until enough realizations of the 2-D Gaussian field are generated. 

4. Obtain the maximum value of each Gaussian field realization. 

5. Calculate the mean and standard deviation of the field. 

6. Repeat steps 1 to 5 for another pair of 𝐿𝑥/𝜃𝑥 and 𝐿𝑥/𝜃𝑦. The range of both ratios 

is chosen as 2 to 20. 

To obtain the two-dimensional gamma fields in Figure 3.18, the maximum values got in 

step 4 are translated to gamma fields using a scale parameter 𝛽 = 1 and four shape 

parameters 𝛼 = 0.5, 1,5 and 20. 
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As noted in the previous sections on one-dimensional standard normal, gamma and 

lognormal random fields, the statistics of the EV of two-dimensional random fields 

depends upon 𝐿/𝜃𝑥 and 𝐿/𝜃𝑦 when the fields are separable. Figure 3.16 show the trend 

of the mean of extreme values along 𝐿/𝜃𝑥 and 𝐿/𝜃𝑦 for homogeneous standard normal 

fields with a quadratic exponential correlation function. The mean extreme values 

increase as 𝐿/𝜃𝑥 and 𝐿/𝜃𝑦 increase, as expected. In Figure 3.17, the normalized standard 

deviation decreases as 𝐿/𝜃𝑥 and 𝐿/𝜃𝑦 increase. 

For two-dimensional gamma fields with a quadratic exponential correlation function, the 

mean of the EV is normalized by 𝛼. With respect to 𝐿/𝜃𝑥 and 𝐿/𝜃𝑦, Figure 3.18 shows the 

trend of the normalized extreme value mean for different shape parameters. Similar to 

one-dimensional gamma fields, the normalized mean of the extreme value increases as 

𝐿/𝜃𝑥 and 𝐿/𝜃𝑦  increase, for any given shape parameter 𝛼. As shown in Figure 3.19, for a 

given α, the trend of the normalized standard deviation decreases as 𝐿/𝜃𝑥 and 𝐿/𝜃𝑦 

increase. 

 

 

Figure 3.16. The EV mean of standard normal fields with a quadratic exponential correlation 

model. 
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Figure 3.17. The EV standard deviation of standard normal fields with a quadratic exponential 

correlation model. 

 

 

Figure 3.18. The EV mean of homogeneous gamma fields with a quadratic exponential correlation 

model (Top left: α = 0.5, Top right: α = 1,Bottom left: α = 5,Bottom right: α = 20). 
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Figure 3.19. The EV standard deviation of homogeneous gamma fields with a quadratic 

exponential correlation model (Top left: α = 0.5, Top right: α = 1,Bottom left: α = 5,Bottom right: 

α = 20). 

 

3.9 Conclusions 

Based on the study on extreme values of one-dimensional random fields, a number of 

conclusions are drawn:  

• Preliminary studies have indicated that simple random simulation based on fine 

mesh will not work due to convergence problem. Hence spectrally based 

simulation techniques must be employed. The proposed KL expansion-based 

simulation method incorporating the Nystrom quadrature technique can be 

effectively used to study the EV of homogeneous random fields.  
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• The exact Ditlevsen distribution, with the G term calibrated with simulation data, 

fully characterizes the EV of the standard normal field, and with a further double 

transform, characterizes the EV of the gamma and lognormal fields as well. With 

an empirically calibrated G term, as shown in Eq. (3.14), the modified Ditlevsen 

distribution can predict more accurately than the approximate Ditlevsen with zero 

G for both types of fields.  

• In the upper tail of the distribution, the Poisson approximation also performs 

surprisingly well for standard normal fields. However, the performance 

deteriorates for gamma and lognormal fields.   

• The asymptotic Gumbel distribution is generally not recommended for either 

standard normal, lognormal or gamma fields.  

• The statistics of the EV were found to be a function of size-to-correlation length 

ratio for standard normal fields, and of the shape parameter for gamma fields and 

of the standard deviation of the underlying Gaussian field for lognormal fields as 

well. 

• Among the three correlation models studied, the quadratic exponential model 

provides the least mean EV for both standard normal and gamma fields. For large 

fields (𝐿 𝜃⁄ > 7), the triangular model includes the greatest mean EV, and the 

exponential model dominates otherwise. For lognormal random fields, the 

exponential model has the least mean EV for the whole range of 𝐿/𝜃, followed by 

the exponential model and lastly the triangular model. 

• For separable two-dimensional random fields, the statistics of the EV were found 

to be a function of size-to-correlation length ratios along horizontal and vertical 

directions for standard normal fields, and of the shape parameter for gamma 

fields. 
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4. Case Study of a Nuclear Feeder Pipe 

As discussed in Chapter 1, nuclear feeder pipes experience wall thinning due to flow-

accelerated corrosion (FAC) over their service life. The FAC rate of a feeder varies from 

location to location and over time. Models that capture temporal uncertainty of this 

degradation mechanism have been proposed in the literature. However, such models do 

not take spatial uncertainty into consideration. Therefore, a more sophisticated 

probabilistic model that considers these temporal and spatial uncertainties is required for 

efficient management of the feeders. We propose a more advanced gamma random field 

model to capture the spatial uncertainty with a view to answering the following questions:    

1. How are missing ultrasonic scan data estimated? How are different neighbouring 

scan patches of wall thicknesses aligned? 

2. How are the parameters of the gamma field estimated? How can the field be 

simulated, and its EV distribution obtained? 

From a practical point of view, it is necessary to consider uncertainties in any proposed 

model. The gamma random field model possesses aleatory uncertainty. In addition to the 

aleatory uncertainty, there is epistemic uncertainty because limited amount of scan data 

set is used for parameter estimation. The chapter is organized as follows. We start by 

verifying an assumption regarding the underlying distribution of scan data. Parameter 

estimation of one-dimensional gamma fields and evaluation of their extreme value 

distribution based on the modified Ditlevsen distribution are then presented. This is 

followed by the method of “repairing and stitching” to address the issue of missing and 

unobserved scan data. Basics of the two-dimensional gamma field are presented in terms 

of its simulation and extreme value distribution. The parameter uncertainty is considered 

by applying the asymptotic normality property of the maximum likelihood estimator. 

Finally, the effect of missing data on extreme value distribution is investigated. 
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4.1 Validation of Assumptions 

There are 2 common types of ultrasonic scanning probes used in scanning CANDU 

feeder pipes. These typically consists of 6 or 14 probes. In this study, only the data from 

14-probes are used. The 14-probe technology allows scanning along the axial direction. 

To cover the full circumference, a feeder pipe is typically scanned four runs, each covering 

one of the four zones namely the extrados, right cheek, intrados and left cheek of the 

pipe. The scan data were drawn from wall thickness measurements of a feeder pipe from 

an anonymous power generation company (Figure 4.1). The pipe has a nominal thickness 

of 5.54 mm and an outside diameter of 60 mm, which corresponds to a circumference of 

188.5 mm. 

In Figure 4.1, it is obvious that the wall thickness at any location must be a non-negative 

number. For the reason, the amount of deterioration or wall thickness loss at any location 

equally takes a non-negative value. The wall thickness loss is defined as the difference 

between the average initial wall thickness and current wall thickness. Even though the 

initial wall thickness is a random variable, a fixed value of 6mm is assumed because the 

feeder was not scanned before it was put into operation.  

Before we process the scan data, it is reasonable to try out a number of non-negative 

long-tailed random variables as a possible probability distribution of the data. Preliminary 

plots of the extrados and left cheek data suggest bimodal distributions. This can be 

explained by the fact both scan patches contain significant regions of local thinning as 

well as regions with less corrosion. As the focus is on the distribution of maximum values, 

the upper part of the mixed distribution is used for distribution fitting of both the extrados 

and left cheek scan data. Eight candidate probability distributions are considered by fitting 

each distribution to the histogram of raw deterioration data in Figure 4.2. From Figure 4.2, 

gamma, lognormal and log-logistic distributions provide decent fits to the data, with long 

right tails. Hence the empirical distribution of the deterioration data is assumed to follow 

a gamma distribution. 
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Figure 4.1 Ultrasonic scan plots showing missing data. 
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(a) 
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(b) 
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(c) 
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(d) 

Figure 4.2 Histograms of deterioration data (wall thickness loss) with distribution fits (a-extrados; 
b-left cheek; c-intrados; d-right cheek. 
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In this chapter, the Gaussian copula is assumed to capture the spatial variability in the 

deterioration data. The choice of the Gaussian copula is based on the ease of 

construction of its PDF. However, the best practice is to fit a number of copula functions 

to the deterioration data and then use criteria such as Akaike information criterion (AIC) 

and Bayesian information criterion (BIC), which are both based on the likelihood function, 

to decide the best copula model.  

 

4.2 One-dimensional Gamma Fields 

The raw data for the extrados scan (see Figure 4.1) is used to demonstrate the applicability 

of the modified Ditlevsen distribution because the scan contains the minimum wall 

thickness. Measurements obtained from each probe is assumed to be a one-dimensional 

gamma field. Essentially, there are 14 fields. Starting from 0 in the circumferential 

direction, the probes are numbered from 1 through 14. One of the terms in the likelihood 

function is the correlation matrix. For each random field, the maximum number of data 

points is 297. If all these data points were used, the size of the correlation matrix would 

be 297 by 297. To reduce computational time and round-off error during iterations, each 

field is divided into a block with 6 data points. The maximum deterioration in each block 

is chosen as the representative of the block. In case there is no data in a block, the block 

is disregarded.  

The pipe is assumed to have an average initial wall thickness of 6mm. Therefore, the 

amounts of degradation at every location is calculated by subtracting the wall thickness 

obtained from the combined random field from the initial average wall thickness of the 

feeder, 𝑤𝑜 taken as 6mm. 

The quadratic exponential correlation model is used to describe the correlation between 

any two points for each of the 14 gamma fields. Using the likelihood function of equation 

2.11,  
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 𝐿(𝛼, 𝛽, 𝜃 |𝑥𝑖, … , 𝑥𝑛)  =
1

(2𝜋)𝑛/2|𝐑|1/2
exp (−

1

2
𝒛𝑇𝐑−1𝒛) ∏  

𝑔(𝑥𝑖; 𝛼𝑖, 𝛽𝑖)

𝜙(𝑧𝑖) 

𝑛

𝑖=1

 4.1 

the estimated parameters of the fields are shown in  

Table 4.1.  

 

Table 4.1 Estimated parameters of one-dimension gamma fields from extrados scan.  

Probe No. 𝛼̂ 𝛽̂ 𝜃 ̂ 

1 51.8 0.0361 16.92 

2 40.24 0.0445 18.93 

3 25.91 0.0672 17.99 

4 15.13 0.1156 18.08 

5 6.954 0.2489 22.96 

6 5.304 0.2758 23.12 

7 5.762 0.2938 22.02 

8 2.807 0.568 24.61 

9 9.926 0.184 18.16 

10 7.066 0.2596 18.74 

11 20.66 0.0926 19.87 

12 33.58 0.0593 20.69 

13 44.85 0.0445 17.69 

14 75.69 0.0264 19.61 

 

Using the estimates in Table 4.1, the extreme value distributions can be obtained by first 

calculating a G term based on Eq. (3.14) and then plugging the G into Eq. (2.18) for each 

one-dimensional field. The results of this procedure are presented in Figure 4.3 together 

with the observed maximum thickness loss of each probe line (indicated on the horizontal 

axis). 



103 
 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4.3 Extreme value distributions of 1-D gamma fields. 

 

Figure 4.3(a) shows that the variability of the EV distributions increases from probe 1 

through probe 4 (about the first 20mm in the circumferential direction). This observation 
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can be attributed to the amounts of data captured by the probes. Similar trend is observed 

in the EV distributions of probe 11 through 14 i.e. about the last 20mm in the 

circumferential direction (Figure 4.3(d)). In Figure 4.3(b)&(c), the EV distributions of 

intermediate probes i.e. probes 5 through 10, have the greatest variability because that 

region has much more significant missing data in terms of amount and importance. By 

importance means the region contains the minimum observed wall thickness. This also 

explains why their EV distributions have greater means, if calculated. 

 

4.3 Repairing and Stitching 

Suppose we are interested in using all the four scan patches together for EV analysis, 

two major challenges arise in order to construct a full wall thickness profile from the scan 

data. First, interpreting missing data present in each scan and second, aligning the 

different ultrasonic scans. Missing data includes wall thickness at the unscanned 

locations in addition to data at the loose contact positions. Figure 4.1 shows graphically 

the extent of missing data due to loss of contact between the probe and the pipe surface. 

Quantitatively, the rates of missing data are 20.95%, 24.74%, 6.18% and 19.9% in the 

extrados, left cheek, intrados and right cheek, respectively. The scan spacing of the data 

in the axial direction is 1 mm while the circumferential spacing (i.e., the distance between 

two neighboring probes) is approximately 6 mm.  This means that the best alignment 

accuracy in axial and circumferential directions are 1mm and 6 mm, respectively. 

However, a finer grid of data e.g. 1mm x 1mm is required because the scanning positions 

at the overlapping zones do not necessarily match.  

Although a number of inspections are typically carried out along the service life of feeder 

pipes, with each inspection outage generating a snapshot of the random field, predicting 

the time trend of wall thinning remains a third challenging issue. This issue is, however, 

not covered in this research. Meanwhile, the aligning methodology used in this section 

for different scan patches can be equally applied to the alignment of the scan data 

obtained during different inspection outages. Wall thinning in nuclear pipes is a 

nonstationary nonhomogeneous random field. It is nonhomogeneous because evidences 
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support that the wall thinning tends to localize at the bends and grayloc positions.  It is 

also nonstationary because there is a relatively clear trend of wall thinning along time.  

To construct a full circumferential wall thinning profile, two major tasks are involved. We 

call them ‘repairing’ and ‘stitching,’ respectively. 

 

4.3.1 Repairing 

The repairing task refers to the estimation of the missing and unobserved data – we 

simply fix the ‘holes’ in Figure 4.1. For this, a moving window kriging is used to account for 

nonhomogeneity in the spatial data. Within each kriging window the random field is 

assumed to be homogeneous. Therefore, in this study, the kriging window size is 

determined based on the correlation length of the semivariogram function defined in Eq 

(4.3).  

In spatial statistics, the semivariogram function 𝛾(ℎ) is a very important concept defined 

as 𝛾(ℎ) = 0.5𝑣𝑎𝑟[𝑊(𝑠 + ℎ) − 𝑊(𝑠)], and empirically estimated as 

 
𝛾(ℎ ) =

1

2𝑁
∑{𝑤(𝑠𝑖) − 𝑤(𝑠𝑖+ℎ)}

𝑁

𝑖=1

2

 

 

4.2 

where ℎ is the distance between a pair of data, 𝑁 is the number of paired data. A 

theoretical model is then fitted to the empirical semivariogram to obtain the correlation 

length. To account for possible anisotropy, the semivariograms along axial and 

circumferential directions are calculated and fitted, respectively. The correlation lengths 

of the two directions 𝜃𝑥 and 𝜃𝑦 are then used to determine the side lengths of the 

rectangular kriging window. The moving kriging window is then centred at the location 

where the missing data is to be estimated.  

Twice the semivariogram term 2𝛾(ℎ) is known as the variogram function. For a 

homogeneous random field, it is readily shown that 2𝛾(ℎ) = 𝜎2(1 − 𝜌(ℎ)) = 𝜎2 − 𝐶(ℎ), 

where 𝜌(ℎ) is the auto-correlation function. A number of theoretical semivariogram 

models are available, refer to Cressie (1993) for more details. Common semivariogram 
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models in the literature include the Gaussian (i.e. quadratic exponential) and exponential 

models shown below:  

 𝛾(ℎ) = 𝑠(1 − 𝑒−3(ℎ 𝜃⁄ )2
) 4.3 

 𝛾(ℎ) = 𝑠(1 − 𝑒−3ℎ/𝜃) 4.4 

where 𝑠 is the sill and 𝜃 the correlation length. Based on the equations above, the 

correlation length is defined as the spatial distance between two locations over which the 

correlation approximately equals to 0.05. This definition is adopted for kriging purpose as 

observations beyond this distance becomes little significance in kriging. 

Kriging is an effective tool for estimating missing or unobserved data. It is basically a 

prediction method that involves a linear combination or weighted average of neighboring 

measurements. The ordinary kriging predictor, which is used in this case study, belongs 

to a class of best linear unbiased predictor or estimator (Isaaks and Srivastava 1989; 

Stein 1999). The predictor is best because it minimizes the variance of the estimator. The 

kriging predictor 𝑊̂(𝑠0) is expressed as  

 
𝑊̂(𝑠0) = ∑ 𝜆𝑖𝑊(𝑠𝑖)

𝑛

𝑖=1

                           

 

4.5 

where 𝜆𝑖, 𝑠0 and 𝑠𝑖 are kriging weights, the location of the point where an estimate is 

required and the locations with observed attributes or values, respectively. The estimator 

is unbiased if 

 
𝐸{𝑊̂(𝑠0) − 𝑊  (𝑠0)} = 0                       

 
4.6 

where 𝑊(𝑠0) represents the true value of the random field at position 𝑠0; whereas the 

minimum variance dictates the determination of the weights 𝜆𝑖’s so that 

 𝜎𝐸
2 = 𝑚𝑖𝑛 

𝜆𝑖

𝑣𝑎𝑟{𝑊̂(𝑠0) − 𝑊  (𝑠0)}  4.7 

For a homogeneous random field, the ordinary kriging weights 𝜆𝑖 sum to 1. In this case, 

it can be readily shown that the optimal weights can be calculated by using the following 

equation: 
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 𝝀 = 𝜞−𝟏 (𝜸𝟎 −
𝟏′𝜞−𝟏𝜸𝟎

𝟏′𝜞−𝟏𝟏
) 4.8 

where 𝝀 = (𝜆1, … , 𝜆𝑛)′; 𝚪 = [𝛾(𝑠𝑖, 𝑠𝑗)], 𝑖, 𝑗 = 1, … , 𝑛, is the semivariogram matrix for the 

observations; 𝜸0 = (𝛾(𝑠0, 𝑠𝑖)) is the semivariogram vector, each element being the 

semivariogram function value for 𝑠0 and 𝑠𝑖, and 𝟏 = (1, … , 1)′ is the unit vector of 𝑛 

elements. Details of derivation of Eq. (4.8) can be found in Cressie (1993).  

The empirical semivariograms of the four patches in both axial and circumferential 

directions are estimated and illustrated in Figure 4.4. The exponential and Gaussian 

models are used to fit the empirical semivariograms, and the Gaussian model (Eq.4.3) is 

found to outperform the exponential model for all eight cases. The blue solid lines in Figure 

4.4 represent the fitted model. 
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Figure 4.4 Empirical and fitted semivariograms. 

 

The sine wave pattern is consistently revealed in the axial semivariograms. Theoretically, 

the sine wave usually indicates some sort of periodic pattern in the data.  In this study, 

the axial direction undergoes two bends, and the wall thickness does show some regular 

pattern when entering and leaving a bend. Therefore, one does not need to worry about 

this. It is also interesting to see that the correlation lengths of the four patches are fairly 
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close. This shows certain homogeneity around circumference. By contrast, the 

circumferential correlation length exhibits greater variation, particularly between 

extrados/intrados and the cheeks. This is also reasonable, because the flow in terms of 

turbulence characteristics at the intrados or extrados and that at the cheeks are very 

different. Therefore, the wall thinning characteristics are also different.  

Within each kriging window, the raw data are used to re-estimate the semivariogram 

functions, which are further used in Eq. (4.8) to estimate the optimal weights. Thus, a 

kriging window of 100 mm (axial) x 30 mm (circumferential) is used for the extrados and 

intrados. For the two cheeks, the window size is selected to be 100 mm (axial) x 78 mm 

(circumferential). In the end, the spacing was reduced to 1 mm apart in both directions 

after kriging. 
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Figure 4.5 Random fields of the four scan patches.  

 

4.3.2 Stitching 

After each of the patches are ‘repaired,’ they need to be stitched together to make a full 

360◦ wall thickness profile along the whole pipe length. This stitching involves both 

circumferential and axial alignments. In view of these alignments, a two-dimensional 

cross correlation matrix is computed for each pair of neighboring patches, and the 

matching point corresponds to the coordinates with the highest positive cross correlation 

coefficient. The results of the two-dimensional correlation are shown in Figure 4.6. The 
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location with the highest correlation is chosen as the matching point for any two 

neighbouring scan patches. These points are denoted with the red crosses. 

 

Figure 4.6 Cross correlation plots for the four pairs of scan patches (Top left: Extrados-Left 

cheek; Top right: Left cheek-Intrados; Bottom left: Intrados-Right cheek; Bottom right: Right 

cheek-Extrados).  

Based on the obtained matching points in Figure 4.6, the four scan patches in Figure 4.5 

are stitched together to obtain a full characterization of the random field. For any 

overlapped position, the minimum value is chosen. The contour plot of the combined 

random field is shown in Figure 4.7. This plot starts with extrados at the bottom, followed 

by right cheek and intrados, and finally the left cheek at the top. The two bends are clearly 

shown, one centered around 60 mm in axial direction, and the other centered around 140 

mm. Also it can be seen that the extrados at the first bend becomes intrados (thicker) at 

the second bend. The globally minimum wall thickness remains unchanged from the raw 

scan data, which is 3.269 mm.  
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Figure 4.7 Contour plot of combined random field.  

 

4.4 Two-dimensional Gamma Field 

One of the underlying Kriging assumptions is that the predicted values have a Gaussian 

distribution, however, the empirical distribution of the deterioration data is skewed (Figure 

4.2). So, realizations at locations in the gamma field are assumed to follow gamma 

distribution. The combined random field shown in Figure 4.7 now serves as the input data 

for the parameter estimation of the gamma field. This is coded in MATLAB. In the 

combined random field, the number of data points is 43 240. If all these data points were 

used, the size of the correlation matrix would be 43240 by 43240. At this size, the 

correlation matrix becomes close to singular during iterations and results may be 

inaccurate. In order to avoid this issue, the combined random field is divided into smaller 

blocks of data points. The maximum deterioration in each block is chosen as the 

representative of the block. This approach drastically reduces the size of the correlation 

matrix in the likelihood function. Theoretically, the quality of the estimates depends on the 

number of blocks used during parameter estimation. In other words, as the number of 

blocks increases, the estimates obtained get closer to the true values. The block size is 

chosen as 8.5mm by 10mm. After deducting the wall thickness at every location from the 
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initial wall thickness, the maximum deterioration is 2.731mm which occurs at the location 

with the observed minimum wall thickness. 

We assume that the random field is fully separable. The two-dimensional quadratic 

exponential correlation model is used to describe correlation between any two points as 

 𝜌(ℎ𝑥, ℎ𝑦) = exp (−3 ((
ℎ𝑥

𝜃𝑥
)

2

+ (
ℎ𝑦

𝜃𝑦
)

2

)) 4.9 

where ℎ𝑥 and ℎ𝑦 are horizontal and vertical distances respectively, 𝜃𝑥 and 𝜃𝑦 are the 

correlation lengths in both directions. Using the likelihood function of equation 2.11 

(section 2.1.2),  

 

𝐿(𝛼, 𝛽, 𝜃𝑥, 𝜃𝑦|𝑥𝑖, … , 𝑥𝑛) = 𝑔𝑛(𝒙) = 

=
1

(2𝜋)𝑛/2|𝐑|1/2
exp (−

1

2
𝒛𝑇𝐑−1𝒛) ∏  

𝑔(𝑥𝑖; 𝛼𝑖 , 𝛽𝑖)

𝜙(𝑧𝑖) 

𝑛

𝑖=1

 
4.10 

the estimated parameters of the two-dimensional gamma field are found to be 𝛼̂ = 45.87, 

𝛽̂ = 0.0414,  𝜃𝑥̂ = 23.52 and 𝜃𝑦̂ = 19.29.  

 

4.4.1 Simulation 

The simulation of two-dimensional gamma fields using the KL expansion is described 

below. 

1. Using 𝜃𝑥̂ and 𝜃𝑦̂ obtained in the previous section, apply the Nystrom method 

described in section 3.4 to determine the eigenvalue and eigenvectors in both 

horizontal and vertical directions. 

2. Plug these eigenvalues and eigenvectors into the two-dimensional K-L expansion 

(eqn. 4.11) to generate a realization of a 2-D Gaussian field 

3.  𝜉(𝒔, 𝒕) = ∑  

𝑛

𝑗=1

∑ √𝜆𝑖𝜆𝑗𝜁𝑖𝑗(𝜔)𝑓𝑖(𝒔)𝑓𝑗(𝒕)

𝑛

𝑖=1

 4.11 

where the number of terms 𝑛 = 43. 
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3. Repeat step 2 until 100 000 realizations of the 2-D Gaussian field are generated. 

4. Obtain the maximum value of each Gaussian field realization. 

5. Transform the maximum values of the Gaussian field to 2D gamma field maxima 

by using 𝛼̂ and 𝛽̂ obtained in Section 4.3. 

6. The extreme value distribution is obtained from the translated maximum values 

and shown in Figure 4.8. 

  

4.4.2 Extreme Value Distribution 

The extreme value distribution, shown in Figure 4.8, has a mean and coefficient of 

variation (COV) of 2.953mm and 5.20%, respectively. From the observed scan data, the 

maximum wall thickness loss is 2.731mm which corresponds to the 5th percentile of the 

extreme value distribution. As expected, the EV distribution of the gamma field has a long 

right tail typical of gamma distributions.  

 

Figure 4.8 Extreme value distribution of the 2D gamma field (wall thickness loss) 

 

4.4.3 Extreme Value Distribution with Parameter Uncertainty 

In section 4.3, the parameters of the two-dimensional gamma field are estimated via the 

maximum likelihood method. Then, these point estimates, together with the 2-D K-L 



116 
 

expansion, are used to evaluate the extreme value distribution of the degradation in the 

feeder pipe. This distribution captures the aleatory uncertainty in the model. In this case 

study, however, epistemic uncertainty, which includes the uncertainty in the model 

parameters, has not been accounted for.  

To characterize the epistemic uncertainty in the model parameters, the general theory of 

maximum likelihood is applied. The theory says that the distribution of an estimate 𝜽̂   is 

normal with mean 𝜽 and variance equal to the inverse of the information matrix, as the 

sample size goes to infinity. The negative of the Hessian matrix, which is essentially a 

square matrix of the negative of the second-order partial derivatives of the objective 

function logarithm with respect to the decision variables evaluated at the maximum 

likelihood estimates, was obtained from MATLAB’s fmincon. The information matrix, 𝑰 is 

equal to this negative of the Hessian matrix.  

𝑰 = [

2.239 2.414𝑒3 0.1413 0.21
 2.724𝑒6 −356.6 −326.8
  6.631 4.885

𝑆𝑦𝑚.   8.053

] 

Using the inverse of the information matrix above, together with the mean of maximum 

likelihood estimator, 5750 sets of parameters are generated from the multivariate normal 

distribution. Their distributions are shown in Figure 4.9. Each set of parameters is then 

used to generate realizations of two-dimensional gamma fields by applying the method 

described in section 4.3.1. The result of the extreme value distributions is then compared 

with Figure 4.8. See Figure 4.10 below. 
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Figure 4.9. Distribution of parameters of random fields 

 

 

Figure 4.10 Extreme value distribution of 2D gamma fields (wall thickness loss) considering 
parameter uncertainty (Observed maximum thickness shown with a black dot). 
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The mean and COV of the extreme value distribution with parameter uncertainty are 

2.932mm and 5.75%, respectively. The COV is slightly greater than the COV of the 

extreme value distribution obtained from the ML estimates. The extreme value distribution 

with parameter uncertainty has longer tails as expected because introducing parameter 

uncertainty into the distribution increases the variability.   

Every structure, including nuclear components, is designed and built with a target 

reliability. The acceptance criterion for feeders is that the predicted wall thickness shall 

not be less than the design minimum wall thickness based on the N285.4 -14 Clause 

13.2.5.2.  In this case, this thickness is 2.54 mm which corresponds to 3.46 mm wall 

thickness loss. Hence the probability of failure, defined as 𝐹 = P{𝑋 ≥ 𝑤𝑜 − 2.54}, is equal 

to 0.0059. This probability of failure is one of the components of risk defined as the 

product of failure probability and consequence of failure. It is commonplace in engineering 

to carry out risk reduction which, in this case, may be achieved by either finding ways to 

reduce this feeder’s probability or consequence of failure or both.   

 

4.5 Effects of Missing Data 

To evaluate the effect of missing data on the EV distribution, the EV distribution of one-

dimensional random fields from the raw data of extrados scan is compared with that of 

the kriged data. The size of data blocks for kriged fields is fixed at 6mm for the sake of 

consistency. Based on the procedure described in section 4.1, Table 4.2 presents the 

estimated parameters of random fields covering regions with significant missing data and 

localised wall thinning. Furthermore, the modified Ditlevsen distribution was used to 

evaluate corresponding EV distributions. 
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Table 4.2 Estimated parameters of one-dimension gamma fields from extrados scan after 

kriging.  

Probe No. 𝛼̂ 𝛽̂ 𝜃 ̂ 

3 25.95 0.0671 18.54 

4 16.28 0.1066 14.6 

5 14.17 0.1259 16.96 

6 7.48 0.2246 15.49 

7 6.14 0.2686 17.39 

8 7.84 0.2191 18.74 

9 9.29 0.1955 14.33 

10 15.2 0.1233 16.12 

11 19.74 0.0979 17.44 

12 33.63 0.0589 18.34 

 

For probes with less missing data such as probes 3, 4, 11 and 12, Figure 4.11 shows that 

the EV distributions of random fields based on only raw data are similar to the distributions 

obtained using both raw and kriged data. In other words, missing data has little effects on 

EV distribution. However, the opposite is the case for EV distributions obtained from 

regions with more missing data coupled with localised thinning. For example, the EV 

distribution obtained from raw data for probes 5, 8 and 10 is way different to the EV 

distribution after kriging. Specifically, the EV distributions from raw data exhibits greater 

variability that those obtained from combined raw and kriged data due to extensive 

missing data and proximity to the region of localised thinning including the observed 

minimum wall thickness. Conversely, the EV distributions of random fields using raw and 

kriged data have lower variabilities because of additional information obtained from 

kriging i.e. using linear combinations of measurements from neighbouring probes. 
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Figure 4.11 Comparison of EV distribution of 1D gamma fields (R=raw data vs K=kriged+raw 
data). 

 

4.6 Conclusions 

Based on the case study of the nuclear pipe, the following conclusions are drawn: 

• The variability of EV distributions of one-dimensional gamma fields increases with 

increasing amount of missing data in the extrados scan.  

• The minimum wall thickness of the nuclear feeder pipe after kriging-based 

‘repairing and stitching’ remains the same as that observed in the scan data. 

Moreover, the ‘repairing and stitching’ technique also provides a useful tool for 

future spatiotemporal degradation modelling. 
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• The combined wall profile of a feeder pipe can be treated as a two-dimensional 

gamma field and its parameters estimated by the maximum likelihood method.  

• The extreme value distribution obtained for the gamma field has a mean and 

coefficient of variation (COV) of 2.953mm and 5.20%, respectively. Furthermore, 

the observed maximum deterioration (i.e. minimum wall thickness) corresponds to 

the 5th percentile of the extreme value distribution. 

• With the introduction of the parameter uncertainty in the extreme value distribution 

of the two-dimensional gamma field, the resulting distribution has much longer tails 

than the distribution obtained from the point estimates of the parameters. 

• The higher the rate of missing data, the greater the variability of the EV distribution 

of the one-dimensional gamma fields. 
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5. Multivariate Gamma Process for Dependent Degradation 

Over their service life, flexible pavements undergo several forms of deterioration which 

include cracking, potholes, depressions, cracking, rutting, shoving, etc. These forms of 

deterioration are known to occur together in pavements and often dependent due to 

shared underlying causes such as traffic load, construction and material defects and 

environmental conditions. Modelling each degradation mode separately might not give an 

accurate prediction of the remaining lifetime and possibly affect inspection and 

maintenance decisions regarding the pavement. Therefore, there is a need to capture the 

dependence and model the degradation modes together.  

The purpose of this chapter is to present a model suitable for modelling competing 

degradation phenomena. The multivariate gamma process described in this chapter is a 

variation of the copula-based gamma field described in Section 3.1. The formal definition, 

properties and simulation are presented in Section 5.1. Also presented in Section 5.1 is 

the statistical estimation of the model parameters using the maximum likelihood method. 

This is followFed by the discussion of the first passage time and remaining lifetime 

prediction. A case study of multiple dependent deterioration mechanisms in a flexible 

pavement section is presented to illustrate the applicability of the model in terms of 

remaining lifetime prediction and condition-based maintenance decisions.  

 

5.1 Multivariate Gamma Process 

5.1.1 Definition and Key Properties 

An 𝑛-dimensional multivariate gamma process 𝑋(𝑡) = {𝑋1(𝑡), … , 𝑋𝑛(𝑡)} with 𝑡 ≥ 0 

satisfies the following conditions: 

(1) 𝑋𝑗(0) = 0  for all 𝑗 = 1, … , 𝑛. 

(2) For any time 𝑡 ≥ 0, 𝑋𝑗(𝑡) is a nonstationary gamma process with increments that 

follow a gamma distribution with shape 𝛼𝑗(𝑡) and scale 𝛽𝑗, i.e., 

𝛥𝑋𝑗(𝑡)~𝐺𝑎(𝛼𝑗(𝑡), 𝛽𝑗). 
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(3) For any time interval 0 ≤ 𝑡1 < 𝑡2, the increments 𝑋𝑗(𝑡2) − 𝑋𝑗(𝑡1)  follow a 

multivariate gamma distribution that is defined as Eqs. (2.10) and (2.11) with 𝛼𝑗 

and 𝛽𝑗 for 𝑗 = 1, … , 𝑛, and the correlation coefficient is defined as correlation 

between two stochastic processes. 

Again, the gamma distribution mentioned in the second condition is a two-parameter 

continuous probability distribution whose probability density function (PDF) and 

cumulative distribution function (CDF) are defined in Eqs. 3.1 & 3.2. The shape parameter 

is assumed to follow a power law 𝛼𝑗(𝑡) = 𝑎𝑗𝑡𝑐𝑗 for 𝑗 = 1, … , 𝑛 and 𝑎𝑗 , 𝑐𝑗 > 0. When 0 < 𝑐 <

1, the rate of increase of the shape parameter decreases with time. On the other hand, 

when 𝑐 > 1, the rate of increase of the shape parameter increases with time. In both 

scenarios, the stochastic process is non-stationary. However, the stochastic process is 

said to be stationary when the shape parameter is linear with time i.e. 𝑐 = 1. 

In the context of degradation modelling, we consider 𝑋𝑗(𝑡) to be a degradation process 

that represents the cumulative amount of deterioration observed in a component. 

Although the multivariate gamma process technically starts at zero as per its formal 

definition (1st condition), it can be used to model either the cumulative increment or the 

cumulative decrement of a particular performance degradation phenomenon that does 

not necessarily start at zero. In other words, degradation phenomena may have a non-

zero starting point which must be included as part of the degradation model. 

 

5.1.2 Simulation 

Sample paths of a multivariate gamma process can be simulated by the procedure 

described in this section. The procedure involves generating multivariate Gaussian 

variates and then transforming them to multivariate random variates with gamma-

distributed marginals via copula.  

Suppose we are interested in simulating a multivariate gamma process whose dimension 

is four over a specified planning horizon. A sample path of the multivariate gamma 

process can be simulated by the procedure described below. 
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1. Generate random variates from the multivariate normal distribution 𝒛 of 

dimension 𝑛, with zero mean and a positive definite correlation matrix.  

2. Repeat step 1 until the number of sets of variates generated equals the number of 

increments required for the simulated degradation paths.  

3. Perform a double transformation of the variates in steps 1 and 2. The 

transformation involves calculating the standard normal CDF 𝑢𝑗 at each value of 𝒛 

and setting 𝑥𝑗 = 𝐺𝑗
−1(𝑢𝑗) where 𝑗 = 1, … ,4 and 𝐺𝑗

−1 is the inverse univariate gamma 

cumulative distribution function with shape and scale parameters 𝛼𝑗𝛥𝑡 and 𝛽𝑗 

respectively.  

Compute the cumulative 𝑋𝑗(𝑡) for each realization. For illustration, see Figure 5.1. Figure 

5.2 and Figure 5.3 show the correlation of increments in the standard normal and gamma 

spaces, respectively. A key assumption of the multivariate gamma process is that the 

increments of the individual gamma processes are coupled by the Gaussian copula. The 

copulas in Figure 5.2 are elliptical because the Gaussian copula belongs to the elliptical 

family. 

 

Figure 5.1 Simulated degradation path for a multivariate gamma process (𝛥t = 2, 𝑐𝑗 = 1 for 𝑗 =

1, … ,4; {𝜌12 = 0.7, 𝜌13 = 0.5, 𝜌14 = 0.7, 𝜌23 = 0.4, 𝜌24 = 0.6, 𝜌34 = 0.5}). 
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Figure 5.2 Correlation of increments for the same time interval in standard normal space. 2000 

realizations. ({𝜌12 = 0.7,𝜌13 = 0.5,𝜌14 = 0.7,𝜌23 = 0.4,𝜌24 = 0.6,𝜌34 = 0.5}). 

 



127 
 

 

Figure 5.3 Correlation of increments for the same time interval in gamma space. 2000 

realizations. (𝛥𝑡 =  0.1,𝑐𝑗 = 1 for 𝑗 = 1, … ,4; {𝜌12 = 0.7,𝜌13 = 0.5,𝜌14 = 0.7,𝜌23 = 0.4,𝜌24 =

0.6,𝜌34 = 0.5}). 

 

 

5.1.3 Parameter estimation 

With a properly structured degradation dataset, the model parameters can be estimated 

by utilizing the independent increments property. Suppose there exists datasets from 𝑚 

inspection outages of a component experiencing 𝑛 number of competing degradation 

phenomena. It is also assumed that all degradation phenomena have common inspection 
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times 𝑡0, 𝑡1, … , 𝑡𝑚, where 𝑡0 is the time the component was put into service. Considering 

the initial state of the component 𝑥0𝑗 , where 𝑗 = 1, … , 𝑛, there will be 𝑚 increments for 

each degradation phenomenon. An increment is defined as ∆𝑥𝑖𝑗 = 𝑥𝑖𝑗 − 𝑥𝑖−1,𝑗; 1 ≤ 𝑖 ≤ 𝑚 

for a fixed 𝑗. In other words, the degradation data are 𝑋1(𝑡) = [𝑥01, 𝑥11, … 𝑥𝑚1], … , 𝑋𝑛(𝑡) =

[𝑥0𝑛, 𝑥1𝑛, … 𝑥𝑚𝑛] while the increments are 𝛥𝑋1(𝑡) = [𝛥𝑥11, 𝛥𝑥21, … 𝛥𝑥𝑚1], … , 𝛥𝑋𝑛(𝑡) =

[𝛥𝑥1𝑛, 𝛥𝑥2𝑛, … 𝛥𝑥𝑚𝑛]. For any two consecutive inspection outages, the joint probability 

density function (PDF) of the multivariate gamma distribution is expressed as 

 𝑔𝑛(𝜟𝒙) =
1

(2𝜋)𝑛/2|𝐑|1/2
exp (−

1

2
𝒛𝑇𝐑−1𝒛) ∏  

𝑔(𝛥𝑥𝑖𝑗; 𝑎, 𝛽𝑗, 𝑐𝑗)

𝜙(𝑧𝑖𝑗)
 

𝑛

𝑗=1

 5.1 

Consequently, the likelihood function for the joint distribution function is the product of 

independent multivariate gamma densities of the increments 

 𝐿 (𝒂𝒋 
, 𝜷𝒋 

, 𝒄𝒋|𝛥𝑥11, … , 𝛥𝑥𝑚𝑛) =  ∏ 𝑔𝑛 (𝜟𝒙𝒊𝒋, 𝒂𝒋 
, 𝜷𝒋 

, 𝒄𝒋)

𝑚

𝑖=1  

 5.2 

The maximum likelihood estimates of 𝒂,𝜷 and 𝒄  are obtained by numerically maximizing 

the likelihood function. This is equivalent to computing the first partial derivatives of the 

likelihood function with respect to each of the parameters of the multivariate gamma 

process 

 
𝜕𝐿

𝜕𝑎1
, … ,

𝜕𝐿

𝜕𝑎𝑛
,

𝜕𝐿

𝜕𝛽1
, … ,

𝜕𝐿

𝜕𝛽𝑛
,

𝜕𝐿

𝜕𝑐1
, … ,

𝜕𝐿

𝜕𝑐𝑛
= 0 5.3 

 

It is always mathematically convenient to take the logarithm of the likelihood function 

during parameter estimation. The parameter estimation was done in MATLAB using 

fmincon. To ensure that the correlation matrix 𝑹 remained positive definite at every 

iteration during the parameter estimation, the Cholesky decomposition of  𝑹 was used in 

the likelihood function. After the solution converged, the correlation matrix was 

reassembled i.e. 𝑹 = 𝑳𝑳𝑇, where 𝑳 is a lower triangular matrix. 
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5.2 First Passage Time and Remaining Life Prediction 

Generally, failure is said to occur in engineering when degradation exceeds the threshold 

specified in the code(s). In pavement engineering, however, the definition of failure is 

dependent on what really matters to the planner. For example, a pavement experiencing 

multiple degradation phenomena may be said to fail when any individual degradation 

process 𝑋𝑗(t) reaches its critical threshold 𝜁𝑗. In other words, each degradation process 

determines the failure of the component. Mathematically, the probability of failure is 

defined as 

 𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = 1 − 𝑃(𝑋1(𝑡) < 𝜁1, … , 𝑋𝑛(𝑡) < 𝜁𝑛) 5.4 

 

The other extreme is when failure is defined as when degradation phenomena all reach 

their respective thresholds. Mathematically, 

 𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = 𝑃(𝑋1(𝑡) ≥ 𝜁1, … , 𝑋𝑛(𝑡) ≥ 𝜁𝑛)  5.5 

 

Alternatively, a pavement subjected to multiple degradation processes may be said to 

have failed when a process reaches its failure threshold, two specific processes both 

reach their thresholds, any two processes both reach their thresholds or any combination 

thereof.  

As the state of each degradation process can be observed, the probability density function 

takes into account this information. Suppose the degradation processes are last observed 

at surviving time 𝑠, then at future time 𝑡 the probability of a degradation increment of  𝜁𝑗 −

𝑋𝑗(𝑠) is an updated pdf 𝑓𝑋𝑗(𝑡)−𝑋𝑗(𝑠). To estimate the remaining lifetime distribution, growth 

of each process over time has to be predicted based on the updated pdf. So, future 

degradation process is given as  

 𝑋𝑗(𝑡) = 𝑋𝑗(𝑠) + 𝛥𝑋𝑗(𝑡 − 𝑠) 5.6 

where  𝛥𝑋𝑗(𝑡 − 𝑠) is the addition of all future increments up to time 𝑡 when failure occurs.  
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5.3 Case Study: Highway Pavement 

Flexible pavements experience multiple degradation over time as a result of normal wear 

and tear caused by traffic load and climatic conditions. Other contributing factors to 

pavement material breakdown are construction failure and prolonged exposure to 

atmospheric substances such as rain and sunlight. Examples of common degradation 

phenomena in pavement include cracking and rutting. In this case study, three measures 

of pavement degradation are considered. These are rut depth, International Roughness 

Index (IRI) and Distress Manifestation Index (DMI). MTO uses the Automatic Road 

Analyzer (ARAN®) to monitor the pavement quality. This includes measuring IRI and rut 

depths and collecting information on other forms of pavement defects which are 

subsequently aggregated under the DMI. A little background on the performance indices 

in flexible pavements is presented in the following paragraphs.   

Rutting is a permanent deformation along the wheel path on the road surface and 

increases over time. A newly constructed road, for instance, has a zero rut depth. The 

ARAN® uses Laser Crack Management System to detect and measure rut depths on 

freeways and over long distances. In order to obtain a representative rut depth for a 

pavement section, the mean of rut depths taken at regular intervals is calculated.   

The IRI is a dimensionless measure of road roughness in the sense that its unit is mm/m 

or m/km. IRI increases over time until there is an intervention in the form of a maintenance 

action. Ideally, a newly-built road is expected to have a zero IRI, but this is hardly the 

case. A rough unpaved road can have an IRI as high as 10 m/km (MTO 2012). 

DMI refers to a subjective weighted sum of all distresses and is a measure of overall 

service damage for the road section. Theoretically, DMI values range from 0 (worst 

condition) to 10 (excellent condition). The weight, severity and density of each distress 

are taken into account to calculate the DMI, which decreases over time for any road 

pavement until there is an intervention. MTO (2012) lists 15 distress types which include 

raveling, flushing, shoving, rutting, distortion, wheel track and different forms of cracking. 

For asphalt concrete pavement, the DMI is calculated as shown in Eq. 5.7 (MTO 2012). 
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 𝐷𝑀𝐼 = 10 (208 − ∑ 𝑤𝑘(𝑆𝑘 + 𝐷𝑘

𝑛

𝑘

)) /208 5.7 

where 𝑆𝑘, 𝐷𝑘, and 𝑤𝑘 represent the severity rate, density rate and weight factor of distress 

𝑘 and 𝑛 is the number of distresses in the pavement. 

Having described how degradation data are obtained in a pavement, the case study is 

now presented. For the case study, the assumptions are: 

i. The road section is subjected to multiple degradation processes 𝑋𝑗(𝑡), where 𝑗 =

1, 2, 3 and these processes are assumed to be dependent. Each {𝑋𝑗(𝑡), 𝑡 ≥ 0} is a 

nonstationary gamma process with shape and scale parameters 𝛼𝑗(𝑡) and 𝛽𝑗 

respectively. 

ii. Contrary to the first condition in the definition of the multivariate gamma process, 

degradation phenomena do not necessarily start from zero, so  𝑋𝑗(𝑡) = 𝑥0𝑗 ±

𝐺𝑎(𝛼𝑗(𝑡), 𝛽𝑗) where 𝑥0 is the initial measure of the degradation.  

Table 5.1 presents the degradation data for a section of a flexible pavement road. The 

table shows the measurements of DMI, rut depths and IRI covering a 7-year period. 

Measurements were taken on a yearly basis. To incorporate the DMI values in the 

increasing gamma process, the absolute values of the changes are used in the parameter 

estimation. Measurement error in the observed data is not accounted for in the model. 

Table 5.1 Degradation data for a road section. 

Year DMI IRI (m/km) Rut depth (mm) 

2005 9.49 1.12 3.49 

2006 9.03 1.21 4.56 

2007 8.73 1.29 4.85 

2008 8.54 1.35 5.44 

2009 7.83 1.44 5.76 

2010 7.51 1.54 5.99 

2011 7.02 1.68 6.61 
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The procedure described in Section 5.1.3 is used to estimate the parameters of the 

multivariate gamma process model. The estimated parameters are shown in Table 5.2. 

Table 5.2 Estimated parameters of the multivariate gamma process 

Parameter DMI IRI Rut depth 

𝛼 5.89 15.1 12.8 

𝑐 1.01 1.10 0.65 

𝛽 0.07 0.01 0.08 

 

Correlation 

coefficients 

DMI IRI Rut depth 

DMI 1 0.59 0.08 

IRI  1 0.32 

Rut depth sym.  1 

 

Table 5.2 reveals that the power term, 𝑐̂ of the shape parameters is less than 1 for rut 

depth. This confirms the initial assumption of nonstationarity i.e. the mean rates of the 

rutting phenomenon is not linear with time. However, the mean rates of increase of the 

DMI and IRI are close to 1. The correlation coefficients shown as part of Table 5.2 are 

nonlinear correlations among decrements in DMI as well as increments in IRI and rut 

depth. From the table, DMI and IRI are modestly correlated (i.e. 0.59). A probable 

explanation for this is that most of the distresses aggregated under DMI are also 

responsible for roughness in the pavement. However, there is a very low correlation 

between rut depth and DMI (0.08) because wheel track rutting is just one of the distresses 

in DMI but has nothing to do with the other fourteen. 

To study the effect of modelling the stochastic processes as dependent as against 

individual univariate stochastic processes, the parameters of individual nonstationary 

gamma processes are estimated by numerically maximizing the likelihood function  
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 𝐿(𝑎  
, 𝛽  

, 𝑐 |𝛥𝑥1𝑗, … , 𝛥𝑥𝑚𝑗)
 

= ∏  
𝛥𝑥𝑖𝑗

(𝑎(𝑡𝑖
𝑐−𝑡𝑖−1

𝑐 )−1)
exp(−𝛥𝑥𝑖𝑗/𝛽)

𝛽(𝑎(𝑡𝑖
𝑐−𝑡𝑖−1

𝑐 ))𝛤 (𝑎(𝑡𝑖
𝑐 − 𝑡𝑖−1

𝑐 ))
 

𝑚

𝑖=1

 5.8 

 

The parameters in Table 5.2 are compared with corresponding parameters of individual 

nonstationary gamma processes shown in Table 5.3. Both tables reveal that shape 

parameters for the multivariate gamma process model are greater than the shape 

parameters from corresponding individual gamma process models. Meanwhile, the tables 

suggest that the scale parameters and the power term in both multivariate and individual 

gamma process models are comparable. 

Table 5.3 Estimated parameters of nonstationary gamma processes 

Parameter DMI IRI Rut depth 

𝛼 5.87 14.7 13.2 

𝑐 1.02 1.12 0.64 

𝛽 0.07 0.01 0.08 

 

5.4 Remaining Lifetime Prediction 

Monte Carlo simulation is used to generate one million sample paths and failure 

probability evaluated by dividing the number of times 𝑋𝑗(𝑡) exceeds 𝜁𝑗 by the total number 

of simulation runs. The simulation uses the parameters shown in Table 5.2 in the previous 

section together with failure thresholds for freeways in Table 5.4. These are the thresholds 

that need to be satisfied for Ontario freeway pavement.  

Table 5.4 Failure thresholds of degradation phenomena in freeways 

Phenomenon 𝜁 

DMI 6 

IRI 1.9m/km (MTO 2012) 

Rut depth 12mm (Yuan et. al. 2017) 
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Figure 5.4 Remaining lifetime distribution for three scenarios. 

 

Figure 5.4 shows the remaining lifetime distribution based on current state of the pavement 

section. Three scenarios are considered namely when failure is defined as any 

degradation phenomenon reaching its failure threshold, any 2 phenomena both reaching 

their thresholds and all three reaching their thresholds. Figure 5.4 reveals that as the 

definition of failure is relaxed, the distribution of remaining lifetime shifts to the right as 

expected. Furthermore, the mean of the distribution for each scenario estimated 

numerically is shown in Table 5.5. The means are estimated to be 2.44, 2.87 and 14.2 

years, respectively.  

 

 

Figure 5.5 Remaining lifetime distribution for specific pairs of degradation phenomena. 
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Figure 5.5 shows another three scenarios as well. These are when failure is defined as 

when DMI and IRI both reach their failure thresholds, DMI and rut depth both reach their 

thresholds and IRI and rut depth both reach their thresholds. Numerical estimation of the 

expectations of these distributions are presented in Table 5.5. For the first three failure 

criteria in Table 5.5, the magnitude of the remaining lifetime means depends on how strict 

the definition of what constitutes failure in the pavement section is. In all three cases, the 

remaining lifetime distributions obtained depend largely on which degradation 

phenomenon dominates. In general, the lifetime distributions and their means are a 

function of dominance of a degradation phenomenon over another (first six failure criteria 

only) as well as the degradation parameters and how far the failure thresholds are from 

the most recent condition of the pavement. 
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Figure 5.6 Comparison of remaining lifetime distribution when only one phenomenon matters: 
Dependent vs Independent. Top: DMI; Middle: IRI; Bottom: Rut depth. 

 

In Figure 5.6, it is assumed that failure occurs when a specific stochastic process exceeds 

its failure threshold. Using Monte Carlo simulations, three scenarios are presented in the 

figure while corresponding means of the distributions are shown in Table 5.5. Comparisons 

are made between the remaining lifetime distributions obtained from the multivariate 

gamma process and univariate gamma processes. The results show that modelling 

dependent gamma processes as univariate gamma processes may slightly overestimate 

(Figure 5.6) the lifetime distributions.    

 

Table 5.5 Remaining lifetime means based on different failure criteria (multivariate gamma 

process) 

Scenario 𝑎𝑛𝑦 1 𝑎𝑛𝑦 2 𝑎𝑙𝑙 DMI 
& IRI 

DMI 
& Rut 
depth 

IRI & 
Rut 

depth 

DMI IRI Rut 
depth 

Mean 
(years) 

2.44 2.87 14.2 2.87 14.2 14.2 2.64 2.67 14.2 
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5.5 Condition-Based Maintenance Decisions 

5.5.1 Inspection Optimization 

In this section, we present what optimal decisions should be taken based on the 

multivariate gamma process model proposed in the previous sections. Based on the data 

used in the model, periodic inspections are being done on an annual basis. Suppose the 

failure cost 𝐶𝐹, preventive maintenance cost 𝐶𝑅 and inspection cost 𝐶𝐼 are known, is it 

economically justifiable to continue to carry out annual inspections of the pavement? This 

research question is formulated as an optimization problem with an overall objective of 

finding the inspection time that minimizes the total expected cost over the entire service 

life of the pavement.  

For the condition-based optimization, each degradation grows until when inspection is 

carried out. At inspection, only the cost of inspection is incurred if the pavement 

deterioration is below the preventive maintenance threshold. However, if the amount of 

deterioration is greater or equal to the preventive maintenance threshold but less than the 

failure threshold, preventive maintenance is done. Once deterioration reaches the failure 

threshold, the pavement must be immediately inspected and fixed. In other words, failures 

are self-revealing. In reality, both types of thresholds are set by the local/regional authority 

in charge of transportation infrastructure. 

In practical terms, the preventive maintenance thresholds can be compared to 

serviceability limit levels. When deterioration in pavement reaches these thresholds, 

preventive maintenance actions are required to extend the pavement service life and to 

forestall much more expensive failure maintenance due to extensive deterioration in the 

pavement. Examples of preventive maintenance actions include applying overlays and 

seals of different kinds. When the deterioration levels in the pavement are way past the 

preventive maintenance thresholds, failure maintenance actions in the form of patching, 

pothole repair, etc. need to be carried out. 

A number of assumptions are made in this model. First, it is assumed that inspections are 

perfect. This implies, there are negligible measurement errors and inspections reveal the 
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true state of the pavement. Second, we assume every future preventive or failure 

maintenance returns the pavement conditions to perfect conditions. In other words, there 

is perfect preventive and failure maintenance. Third, the times spent to carry out 

preventive and failure maintenance are assumed to be negligible, hence there are no 

downtimes. See Figure 5.7 for illustration. 

 

 

Figure 5.7 Realization of deterioration processes and associated costs when failure is defined 
any process reaching its failure threshold. 5-year inspection interval; time step – 0.25. Top left: 
DMI; top right: RI; bottom left: Rut depth; bottom right: costs incurred. 

 

According to Park (1988), the total mean cost over the service life is given as  
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𝐸[𝐶] = ∑((𝑛𝐶𝐼 + 𝐶𝑃)𝑃{𝑝𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑎𝑡 𝑛𝑡𝐼}

∞

𝑛=1

+ [(𝑛 − 1)𝐶𝐼 + 𝐶𝐹]𝑃{𝑢𝑛𝑖𝑡 𝑓𝑎𝑖𝑙𝑠 𝑖𝑛 [(𝑛 − 1)𝑡𝐼 , 𝑛𝑡𝐼]})
 
 

5.9 

where 𝑃{} is the probability of an event. The inspection cost 𝐶𝐼 is defined as the cost of 

obtaining deterioration data. The failure cost 𝐶𝐹 is defined as the cost of fixing the 

pavement when deterioration exceeds the failure threshold 𝜁. The preventive 

maintenance cost 𝐶𝑃 is the cost of fixing the pavement whenever inspection shows that 

deterioration exceeds the preventive maintenance threshold 𝜁𝑃𝑗. In this case study, 

preventive maintenance thresholds are 𝜁𝑃𝑗 = 𝑘𝑗𝜁𝑗, where 𝑘𝑗 are arbitrarily taken as 𝑘1 =

0.7, 𝑘2 = 0.8, 𝑘3 = 0.6. In order to illustrate the optimization of the expected cost, we 

assume the following cost parameters: 𝐶𝐼 = 1, 𝐶𝑃 = 10 and 𝐶𝐹 = 20. The optimization 

procedure is based on a 30-year planning horizon and 100 000 Monte Carlo simulation 

runs. 

Figure 5.8 compares the expected cost and 95th percentile of the cost when failure is 

defined as Eq. (5.4). The figure shows that the expected cost shows some form of 

undulation. This is because the expected cost depends on whether an interval is more 

associated with preventive or failure replacement. As a matter of fact, the mean 

occurrence of preventive maintenance per planning horizon decreases with inspection 

interval up to 6 years (Figure 5.9). However, the mean occurrence of preventive 

maintenance increases and reaches a maximum at an inspection interval of 8 years and 

then decreases to zero at much higher inspection intervals. Regarding the occurrence of 

failure maintenance, the mean rate increases with inspection interval, peaking at 6 years 

and then falls to local minimum at 8 years. Afterwards, the occurrence rate increases to 

a maximum of 2.7. Generally, the inspection cost decreases as the inspection interval 

increases (Figure 5.10). As a result, the cost of inspection relative to the other costs is 

small so the inspection cost has little effect in determining the shape of the curve for 

higher inspection intervals. The combination of these trends shown in Figure 5.9 explains 

why the expected cost function has multiple peaks and troughs. The optimal inspection 
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interval and corresponding (expected and 95th percentile) costs are 8 years, 39.6 and 

54.0 units, respectively. 

 

 

Figure 5.8. Expected and 95th percentile costs for when failure means any phenomenon 
reaches its threshold. 

 

Figure 5.9. Mean occurrence rates of inspections, preventive and failure maintenance actions 
against inspection interval. 
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Figure 5.10. Cost proportions of inspections, preventive and failure maintenance actions against 
inspection interval. 

 

In summary, based on the expected cost criterion, pavement inspections should be done 

every 8 years. This result is due to hypothetical cost parameters used in the optimization. 

It is important to note that the optimum inspection interval obtained is way different from 

the current MTO practice whereby pavement inspections are carried out annually partly 

due to regulatory and safety reasons.  

Changing some of the cost parameters could result in a lower optimum inspection interval. 

To illustrate how the cost parameters influence expected and 95th percentile costs and 

optimal inspection interval, the optimization is repeated with a different failure 

maintenance cost 𝐶𝐹 while all other parameters are kept constant. Figure 5.11 shows that 

when 𝐶𝐹 = 50, the optimal inspection interval is 2 years with an expected cost of 51.6 

units. 
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Figure 5.11. Expected and 95th percentile costs for when failure means any phenomenon 

reaches its threshold (𝐶𝐼 = 1, 𝐶𝑃 = 10, 𝐶𝐹 = 50). 

 

5.5.2 Multidimensional Optimization 

In the previous section, the only decision variable in the optimization is inspection interval. 

Preventive maintenance thresholds 𝑘𝑗 are parameters. The optimization problem can be 

formulated in a different way by treating inspection interval 𝑡𝐼 and preventive maintenance 

thresholds 𝑘𝐽, 𝑗 = 1,2,3 as decision variables with the objective to minimize expected cost 

𝐸[𝐶]. For the optimization, 𝑘𝑗 are continuous variables with lower and upper bounds of 0 

and 1, respectively while 𝑡𝐼 is an integer decision variable. All other assumptions in section 

5.5.1 hold. The cost parameters used are 𝐶𝐼 = 1, 𝐶𝑃 = 10, 𝐶𝐹 = 50.  

Using a genetic algorithm solver and 10,000 Monte Carlo simulations, the minimized 

expected cost is found to be 49.8 units while the optimal inspection interval is 2 years with 

optimal thresholds 𝑘1 = 0.72, 𝑘2 = 0.54, 𝑘3 = 0.37.  
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5.6 Conclusions and Summary 

Based on the study on multivariate gamma process for multiple degradation, these 

conclusions are made:  

• The proposed multivariate gamma process can be effectively used to model 

dependent degradation phenomena in civil infrastructure such as a flexible 

pavement.  

• The parameters of the multivariate gamma process were used to generate 

realizations of future degradation paths which are subsequently used to evaluate 

the remaining lifetime distribution based on a number of failure scenarios. 

• The remaining lifetime distribution of any failure scenario depends on the current 

state and parameters of the degradation phenomenon/phenomena involved, 

failure threshold(s) and the degradation phenomenon which dominates the failure.   

• The mean remaining lifetime of the pavement increases as the failure definition is 

relaxed. 

• Using the results from the multivariate gamma process modelling as input, the 

condition-based inspection and maintenance optimization reveals that the optimal 

inspection interval depends on the relative values of cost parameters used in the 

optimization.  
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6. Summary, Conclusions and Recommendations  

6.1 Summary and Conclusions 

The dissertation presents advanced dependence models for the modelling of spatial and 

temporal uncertainties in deterioration of civil and nuclear infrastructural components and 

systems and examines the models’ effects on decision making. The thesis answers a few 

research questions such as how to model spatial uncertainty in degradation, what is the 

extreme value distribution of random fields and what are the effects of inherent spatial 

(aleatory) and parameter (epistemic) uncertainty on the extreme value distribution of one- 

and two-dimensional random fields. The thesis also addresses the question of modelling 

multivariate dependent degradation phenomena as well as lifetime distribution and 

condition-based maintenance optimization of such components and systems. Moreover, 

the proposed models have been applied to deterioration in a feeder pipe and flexible 

pavement. 

Regarding EV distribution of random fields, Ditlevsen had proposed a distribution for one-

dimensional standard Gaussian fields within a finite interval with an unknown parameter 

G. Meanwhile, EV distribution of non-Gaussian fields within a finite region remained 

unknown. The thesis proposes a Monte Carlo simulation-based methodology to calibrate 

the parameter G. Moreover, simulation based on mesh refining does not work for EV 

distribution of homogeneous random fields due to convergence issues. Therefore, a 

spectrally based simulation technique based on the KL expansion is employed. 

To evaluate EV distributions of non-Gaussian random fields in a finite region, use of 

double transformations of the Gaussian field to any translation fields of interest is 

demonstrated. Based on the empirically calibrated G, a modified Ditlevsen distribution is 

proposed to evaluate EV distribution of Gaussian and non-Gaussian fields (with known 

parameters) without the need for simulation. Random fields studied include Gaussian, 

lognormal and gamma fields. The EV statistics are a function of size-to-correlation length 

ratio 𝐿/𝜃 for all the random fields studied. The exact Ditlevsen distribution and modified 

Ditlevsen, which uses an empirical G term, are found to make more accurate prediction 

of EV distribution of one-dimensional random fields than the approximate Ditlevsen with 
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zero G. The Poisson approximation performs well in the upper tail of the EV distributions. 

Regarding the correlation models, the triangular model generally gives greater EV mean 

than exponential and quadratic exponential models for large random fields. 

The copula-based gamma field proposed in this thesis takes into consideration spatial 

uncertainty in degradation. Following the ‘repairing and stitching’ procedure, the 

combined wall profile of the feeder pipe was treated as a two-dimensional gamma field. 

After parameter estimation, the EV distribution of the maximum wall thickness loss is 

obtained based on the KL expansion and double transformation of the Gaussian field to 

gamma field. With the introduction of parameter uncertainty, the resulting EV distribution 

has a much longer tail than the distribution obtained from the point estimates of the 

parameters.  

The thesis proposes a multivariate gamma process model, which is a variation of the 

gamma field model, for dependent degradation phenomena in civil infrastructure. It was 

illustrated with a case study of multiple degradation in a highway pavement section. The 

thesis shows that modelling degradation phenomena as independent stochastic 

processes overestimates the remaining lifetime prediction, when compared to the 

multivariate gamma process model. Generally, the remaining lifetime distribution of any 

failure scenario depends on the current degradation state, parameters of the degradation 

phenomena involved, failure thresholds and the degradation phenomenon which 

dominates the failure. In the context of condition-based maintenance, the optimal 

inspection interval that minimizes the expected cost over a planning horizon depends 

largely on the cost parameters.  

 

6.2 Recommendations for Future Study 

In this thesis, a gamma field model for capturing spatial uncertainty has been proposed. 

However, the underlying assumption that the Gaussian copula is adequate to capture the 

spatial variability in the wall thinning data is not checked in the current study. More 

research work should be done to address this issue by trying out some other copula 

functions. Furthermore, more work should be done to extend the ‘repairing and stitching’ 
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technique to scan data from multiple inspection outages and to develop a spatiotemporal 

degradation model. Homogeneity is another strong assumption used in the extreme value 

analysis. Extension of the results to nonhomogeneous fields requires further research. 

By treating the feeder wall profile as a random field, the number of locations is infinite. 

Therefore, it is practically impossible to inspect every location in the field. Essentially, 

there is epistemic uncertainty which may be reduced by collecting more data. Thus, the 

quantification of such uncertainty and its effect on risk-based decisions are important 

concepts in degradation modelling worth exploring. Therefore, research needs to be done 

to determine how much inspection data is needed to optimally assess the fitness for 

service (FFS) of nuclear feeders. This may be otherwise referred to as value of 

information studies. Another area of future investigation is developing a stochastic finite 

element-based approach for reliability analysis and probabilistic integrity assessment. 

This is sequel to the random field-based approach to deterioration modelling proposed in 

this thesis. 

Chapter 5 of the thesis discusses the multivariate gamma process model for competing 

degradation. In its current form, the model is section-specific and does not account for 

measurement error. The proposed model can be greatly improved by incorporating 

measurement error. Furthermore, a more sophisticated mechanistic-empirical version of 

the multivariate gamma process is worth exploring. Another possible area of future 

investigation is upscaling the section-specific deterioration model to the pavement 

network level.  
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Appendices 

Exponential and Triangular Covariance Functions - Scaling 

Consider a one-dimensional Gaussian process 𝑍(𝜁) defined on [−1/2, 1/2] with an 

exponential covariance function given as 𝐶(𝑠1, 𝑠2) = 𝑒−𝑐|𝑠1−𝑠2|, where 𝑐 = 3/𝜃 and 𝜁 =

𝑠/𝐿. As shown in Ghanem & Spanos (1991), the analytical solution of the Fredholm 

integral of the second kind for the exponential covariance function is a pair of transformed 

transcendental equations: 

1.5𝜂 − 𝛺 tan(𝛺) = 0; 𝛺 + 1.5𝜂 tan(𝛺) = 0  

where 𝜂 =
𝐿

𝜃
 and 𝛺 =

𝜔𝐿

2
 

The eigenfunctions of the two equations are 

𝑓𝑛(𝜁) =
cos(2𝛺𝑛𝜁 )

√𝐿

2
√1+

sin (2𝛺𝑛)

2𝛺𝑛

; 𝑓𝑛
∗(𝜁) =

sin(2𝛺𝑛
∗ 𝜁 )

√𝐿

2
√1−

sin (2𝛺𝑛
∗ )

2𝛺𝑛
∗

  

and the corresponding eigenvalues are 

𝜆𝑛 =
1.5𝜂𝐿

𝛺𝑛
2 +2.25𝜂2;   𝜆𝑛

∗ =
1.5𝜂𝐿

𝛺∗
𝑛
2 +2.25𝜂2    

Finally, the truncated KL expansion for the Gaussian field is a sum of odd and even terms 

and is given as 

𝑍(𝜁, 𝜃) = ∑ [𝜉𝑖√𝜆𝑖𝑓𝑖(𝜁) + 𝜉𝑖
∗√𝜆𝑖

∗𝑓𝑖
∗(𝜁)]𝑛

𝑖=1   

where 𝜉 and 𝜉∗ are independent standard normal variates. Therefore, the KL expansion 

is independent of the absolute value of the random field size 𝐿. 

For the triangular covariance function in section 2.3 defined on the domain [0, 1], the 

analytical solution is a pair of equations  𝛺𝑛 =
𝑛𝜋

𝐿
  and 𝛺 (

2

𝜂
− 1) tan 𝛺 = 1 for odd and 

even 𝑛, respectively. The eigenfunctions are 

𝑓𝑛(𝜁) =
cos(2𝛺𝑛𝜁 )+tan(𝛺𝑛)sin (2𝛺𝑛𝜁)

√𝐿

2
√2+(tan2(𝛺𝑛)−1)(1−

sin(4𝛺𝑛)

4𝛺𝑛
)+

sin2(2𝛺𝑛)  

𝛺𝑛
tan(𝛺𝑛)

; 𝑓𝑛
∗(𝜁) =

cos(𝜔𝑛
∗ 𝑠 )

√𝐿

2
√1+

sin (4𝛺𝑛
∗ )

2𝛺𝑛
∗
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for odd and even 𝑛, respectively, and the eigenvalues are 𝜆𝑛 =
𝜂𝐿

2𝛺𝑛
2 ;   𝜆𝑛

∗ =
𝜂𝐿

2𝛺𝑛
∗2. These 

results are well established in the literature of stochastic field. 

   

Additional Plots: Comparison of analytical and numerical eigenvalues.   

 

(a) 
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(b) 

 

(c) 

Figure. Comparison of first 40 eigenvalues obtained from exact analytical solution and 

numerical solution (Nystrom method). Exponential correlation function 𝜌(ℎ) =

exp (−
3ℎ

𝜃
), 𝜃 ((a) 𝜃 = 0.25, (b) 𝜃 = 5, (c) 𝜃 = 20). Domain [-1, 1]. 
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Estimator 

This section demonstrates few of the properties of maximum likelihood estimate. To test 

the accuracy of the code used to estimate the parameters in section 4.2, true values of 

the parameters of a 2D gamma field are specified as 𝛼 = 10, 𝛽 = 0.5, 𝜃𝑥 = 40 and 𝜃𝑦 =

30 while the random field size was 230 by 188. The estimation was done a total of 5000 

times and their biases calculated as -0.1588, 0.0023, 0.0077 and 0.0053, respectively. 
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Validation of two-dimensional KL expansion 

The accuracy of the extreme value distribution of one-dimensional random fields based 

on the Karhunen-Loeve expansion has been demonstrated by comparing the distributions 

with Ditlevsen and approximate Ditlevsen distributions in Section 3.6 – 3.8. As the 

Ditlevsen distribution does not exist in two or higher dimensions, this section aims to 

validate extreme values of two-dimensional random fields, based on the two-dimensional 

KL expansion, by comparing the results with the already validated extreme values of one-

dimensional random fields.  

In the figure below, the parameters of the one-dimension gamma field are 𝛼 = 30, 𝛽 =

0.1 and 𝜃𝑥 = 40. Same parameters are retained for 2D gamma fields of 200 x150, while 

the correlation length in the other direction 𝜃𝑦 is gradually increased from 20 to 1000. 

Using the KL expansions in one and two dimensions to generate 100 000 realizations of 

gamma fields for each scenario, the maximum values are recorded and their mean taken. 

The results show that at very high values of 𝜃𝑦, extreme values of two-dimensional fields 

approach that of the one-dimensional field. 

𝑍(𝑠; 𝜔) = ∑ √𝜆𝑖𝜁𝑖(𝜃)𝑓𝑖(𝑠)

𝑛

𝑖=1

 

      

𝑍(𝒔, 𝒕) = ∑  

𝑛

𝑗=1

∑ √𝜆𝑖𝜆𝑗𝜁𝑖𝑗(𝜃)𝑓𝑖(𝒔)𝑓𝑗(𝒕)

𝑛

𝑖=1
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