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Abstract 

 

Diffusivity is a strong function of concentration and an important transport property. 

Diffusion of multiple species is far more frequent than the diffusion of one species. 

However, there are limited experimental data available on multi-component diffusivity. 

The objective of this study is to develop an optimal control framework to determine multi-

component, concentration-dependent diffusivities of two gases in a non-volatile phase 

such as polymer.  

In Part 1 of this study, we derived a detailed mass-transfer model of the experimental 

diffusion process for the non-volatile phase to provide the temporal masses of gases in the 

polymer. The determination of diffusivities is an inverse problem involving principles of 

optimal control. Necessary conditions are determined to solve this problem.   

In Part 2 of this study, we utilized the results of Part 1 to determine the concentration-

dependent, multi-component diffusivities of nitrogen and carbon dioxide in polystyrene. To 
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that end, solubility and diffusion experiments are conducted to obtain necessary data. In 

the ternary system of nitrogen (1), carbon dioxide (2), and polystyrene (3), the diffusivities 

              and     versus the gas mass fractions are two-dimensional surfaces. 

The diffusivity of carbon dioxide was found to be greater than that of nitrogen. The value of 

the main diffusion coefficient     was found to increase as the concentration of carbon 

dioxide increased. The highest value of     obtained was                  for nitrogen 

mass fraction of             and for a carbon dioxide mass fraction of          . The 

cross-diffusion coefficient     increased as the concentrations of nitrogen and carbon 

dioxide increased. The diffusivity reached its maximum value when the concentrations of 

nitrogen and carbon dioxide were at their maximum values. The diffusivity was of the order 

of           .     

The diffusivity of the cross-diffusion coefficient     was found to be increased for the mass 

fractions of carbon dioxide  ranging from 0 to          .  The diffusivity was found to be 

of the order of          . The diffusion coefficient,      was found to increase with the 

concentrations of nitrogen and carbon dioxide,      remained high with low concentrations 

of carbon dioxide. The diffusivity was found to be of the order of          .  
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NOMENCLATURE 
 

     where          Diffusivity of gas or liquid component in a 

system,       

  State equation,     
  

 

  Objective functional 

   Rate of mass transfer per unit area,             

  Augmented objective functional 

   Rate of mass transfer per unit area in one 

direction,          

  Thickness of the polymer sample,   

   Mass flux of CO2,               

   Mass flux of N2,              
  

P   Pressure,     

  Temperature, 0C 

  Total run time of the experiment,   

     Where         Gas-phase composition,     
  

 

  Depth in the polymer,   

 

Greek Symbols 

 

   Density of polymer,        

λ  Costate variable defined by Equation 

   Mass fraction of N2  
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   Mass fraction of CO2  

 

     Equilibrium concentration of gases at the surface of the 

polymer,     
  

 

        Model predicted value of mass of gas absorbed,    

        Experimental value of mass of gas absorbed,    
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1 INTRODUCTION 
 

 

Diffusion can be defined in very simple terms as the movement of molecules from one 

place to another due to a concentration gradient (Philibert, 2005). Chemical engineers 

frequently deal with situations in which three or more components move from one place to 

another at the same time. The conventional approach of mass transfer in a system is based 

on the assumption that the movement of a chemical species from one place to another is 

directly proportional to a driving force. The problem is that this assumption is only good for 

cases in which diffusion is occurring in a two-component system (binary system), in a 

system in which one component is diluted by a large excess of one or more of the other 

components, or in a system in which all of the components in the mixture have similar 

quantities and natures.   

The question arises concerning whether the three or more components diffusing in a 

system can be dealt in a same way as the components of a binary system. Answer to this 

question is “No,” so we must deal with the problem of how to deal with a multi-component 

system. Concerns such as this have been on the minds of chemical engineers for a long 

time(Krishnamurthy & Taylor, 1982).

Multi-component diffusion systems exhibit characteristics that are quite different from 

those of binary systems. In addition, methods have been developed to predict multi-

component diffusion in a consistent way using matrix formulations (E. L. Cussler, 2009). The 
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matrix of a multi-component system can be incorporated into powerful computer 

software, which can be used in equipment design. This is one practical application of the 

multi-component diffusion matrix.  

Multi-component diffusion occurs when the flux of one component is influenced by the 

concentration gradient of a second component.  For example, the flux of the first 

component can be increased by as much as an order of magnitude by changing the 

concentration gradient of the second component. In multicomponent diffusion, the first 

component can diffuse against its concentration gradient, i.e., from a region of lower 

concentration to the region of higher concentration. The following examples explain these 

effects in detail. 

Figure 1.1 shows a tank that contains two homogeneous mixtures that are separated by a 

polymer membrane.   

 

 

 

 

 Figure 1.1. Two homogeneous mixtures separated by a polymer membrane 

 

The right side of the tank contains a solution of sodium sulfate, and the left side of the tank 

contains pure water. As the experiment begins, sodium sulfate diffuses from the right side 

of the tank to the left side of the tank, and the process continues until the concentrations 
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of sodium sulfate are equal on both sides of the tank. At this point, if acetone is added to 

the right side of the tank, the diffusion rate of sodium sulfate to the left side of the tank 

increases. As more acetone is added, more sodium sulfate diffuses to the other side of the 

membrane. However, if acetone is added to the left side of the tank, the rate of diffusion of 

sodium sulfate is decreased, and, if acetone is added on both sides of the porous 

membrane, the diffusion of sodium sulfate is increased slightly. This shows that the 

gradient of acetone strongly influences the diffusion of sodium sulfate (E. L. Cussler & 

Breuer, 1972). 

For the second example, consider Figure 1.2 in which tube 1 contains an equimolar mixture 

of hydrogen and argon, and the bottom tube 2 contains an equimolar mixture of methane 

and argon. The two tubes were connected to start the experiment, and they were 

disconnected to end the experiment. Since the initial difference in the argon concentration 

in the two tubes was zero, it was predicted that the difference in the concentration of 

argon in the two tubes would remain zero. However, when the concentration of argon was 

measured in both tubes at the end of the experiment, it was found that the gradients of 

hydrogen and methane had influenced the gradient of argon (Arnold & Toor, 1967). 

Figure 1.3 presents a third example. A small drop of a strong acid was coated with a thin 

layer of liquid ion exchange resin and then immersed in a weak acidic solution of nickel. 
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Figure 1.2. Equimolar mixture of hydrogen and argon in Tube 1; equimolar mixture of 
methane and argon in Tube 2. 

 

At the beginning of the experiment, the nickel diffused from the outside of the drop into 

the drop across a membrane. But the diffusion of the nickel did not stop even when the 

concentration of nickel was the same on both sides of the membrane. Nickel continued to 

diffuse into the drop even when the concentration of nickel inside the drop was many 

times greater than the concentration outside the drop. In this example, the concentration 

difference of the acid causes a flux of nickel against its gradient. Above three examples 

shows multi-component diffusion in which the flux of one solute is a function of the 

gradient of the second solute. 
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Figure 1.3. Nickel ions diffusing from an acidic solution through a membrane into a strong 
acid  

 

1.1  Definition of Multi-component Diffusion 
 

To understand multi-component diffusion, first, we need to discuss binary diffusion briefly 

because it forms the basis for the multi-component diffusion that is discussed in the rest of 

this thesis. We begin with Fick’s law, which describes the basic relationships in binary 

diffusion. The diffusion coefficient described by this law is discussed for gases and liquids. 

Diffusion in solids is not covered because it is not relevant, so, after discussing gases and 

liquids, the structure of the thesis is presented. Then, multi-component diffusion is 

addressed, including the optimal control framework for determining multi-component 

diffusion 
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1.1.1 The Origin of Fick’s Law 

 

Early studies of diffusion were split into studies of gases and liquids. Researchers interested 

in understanding the behaviors of atoms or molecules were focussed on studying gases. 

Researchers working in the areas of medicine and physiology wanted to understand 

biological transport processes, so they focused on the study of liquids, primarily the 

diffusion of liquids across membranes (Fick, 1995). Let’s look briefly at the diffusion of 

gases and liquids. 

 

1.1.2 Diffusion in Gases 

 

Thomas Graham (1829, 1833) was the first to analyze the diffusion process quantitatively. 

Most of his research was conducted using the diffusion apparatus shown below in Figure 

1.4. As shown in Figure 1.4, Graham’s apparatus consisted of a glass tube, one end of which 

was immersed in water, with the other end closed by a stucco plug. The tube was filled 

with hydrogen. Initially, the hydrogen diffuses out of the tube through the stucco plug, 

while air diffuses into the tube from the outside.  

The flux of hydrogen leaving the tube was not equal to the flux of air entering the tube, so 

the level of the water in the tube rises during diffusion (Graham, 1833). Graham observed 

that the rise in the water level in the tube would cause a pressure gradient that would 
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H2 

Glass Tube 

Stucco Plug 

Diffusing Gas 

Water 

H2 

Air 

adversely affect the diffusion process. So, Graham lowered the tube in the water so that 

the water level in the tube would remain constant. So, his experiments had the 

characteristic of changing the volume of each gas that was originally in the tube. Graham 

later showed that this change in volume was inversely proportional to the square root of 

the density of the gas.  

 

 

 

 

 

 

 

  

Figure 1.4. Graham’s apparatus for the study of diffusion 

 

Since the change in the volume of the gas in the tube was related to diffusion, Graham 

stated: 

“Diffusion or spontaneous intermixture of two gases in contact is effected by an 

interchange of position on infinitely minute volumes, being, in the case of each gas, 
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inversely proportional to the square root of the density of the gas…” (Graham, 1833). In 

other words, ‘Diffusion is inversely proportional to the square root of the molecular weight 

of the gas”. 

Graham’s diffusion experiments did not say anything about the diffusion coefficient of the 

gas. Since there was no pressure difference across the porous plug, the process of diffusion 

across the porous plug could be easily explained without any need of Fick’s law or diffusion 

coefficients (Masom & and Kronstadt, 1967). This is an example of an isobaric diffusion 

process rather than the equimolar diffusion process that commonly is used to measure 

diffusion coefficients. Graham’s experiments attracted attention towards diffusion as an 

interesting molecular process, but he was unable to develop a basic diffusion law.  

 

1.1.3  Diffusion in Liquids 

 

The results of early experiments involving diffusion in liquids were difficult to interpret due 

to the presence of the membrane in the diffusion process. Fick quoted Von Bruke (1843), a 

physiologist who used olive oil and turpentine on the opposite sides of the leather 

membrane and then he measured the change in the volume due to diffusion. This 

experiment supported the hypothesis of the osmotic effect. But, the presence of the 

membrane made the analysis of the diffusion process difficult. 
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In 1850 (Graham, 1850), Graham did a remarkable job of clarifying the diffusion process in 

liquids. To understand the diffusion process in the presence of a membrane, he conducted 

a series of experiments using the setup shown in Figures 1.5.  

 

 

Figure 1.5. (a) Diffusion in bottles with salt solution; (b) empty bottle in a jar that contains 
only water  

 

In the first set of experiments (Figure 1.5a), he connected two bottles that contained salt 

solutions at different concentrations. After several days, he separated the bottles and 

analyzed the contents to determine any changes. In the second series of experiments 

(Figure 1.5b), he placed a salt solution of known concentration in a small bottle and placed 

that bottle in a jar that contained only water. After several days, he took the bottle out of 

the jar and analyzed its contents. Based on his experiments, Graham concluded that the 

diffusion process in liquids is slower than diffusion in gases, and the process of diffusion 

Glass Plate 

(a) 
(b) 
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becomes even slower as the diffusion progresses. After analyzing the results of his 

experiments, Graham concluded that“ the quantities diffused appear to be closely in 

proportion to the quantity of salt in the diffusion solution” (Graham, 1850). In other words, 

“…the flux caused by diffusion is proportional to the concentration difference of the salt.” 

1.1.4 Fick’s Law 

 

In 1855, Fick put Graham’s experimental results on a quantitative basis. He described the 

diffusion on the same mathematical basis as Fourier’s law of heat conduction or Ohm’s Law 

for electrical conduction. Fick recognized more clearly that diffusion is a dynamic molecular 

process than Graham did. With this basic hypothesis, Fick developed the laws of diffusion 

using analogies with Fourier’s work. He described a one-dimensional flux,   , by the 

following equation:  

    
   

  
          (1.1) 

 

where    is the concentration, and    is the distance. This is Fick’s law of diffusion. The 

quantity  , which Fick referred to as the “constant that depends on the nature of the 

substance,” is also called the diffusion coefficient. Fick used Fourier’s development to 

determine the more general conservation equation: 

   

  
  (

    

   
 

 

 

  

  

   

  
)         (1.2)  

where   is the area and is a constant in a given system. So, Equation (1.2) becomes:  
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  (

    

   
)           (1.3) 

Equation (1.3) is the basic equation for one-dimensional, unsteady state diffusion. Later, 

Fick proved his hypothesis that diffusion and thermal conduction could be described by the 

same equation.  

Dense-phase molecular diffusivities are a complex process, and they can be a strong 

function of composition, temperature, and pressure. Often, they are characterized by the 

Fick diffusivity, which is a product of the Maxwell-Stefan diffusivity and a thermodynamic, 

non-ideality factor that is related to the concentration of a chemical species in the medium 

(E. L. Cussler, 2009). Fick diffusivity is a function of the concentration of the diffusing 

substance at a given temperature and pressure. This non-ideality is notably present in 

chemical systems at finite concentrations (Amooghina, et al., 2013; Bouchet et al., 1965; 

Felder & Huvard, 1980; Ghoreyshi, et al., 2004; Liu, et al., 2011; Moradi Shehni, et al.,2011; 

Rehfeldt & Stichlmair, 2007; Williams & Cady, 1934).    

Multi-component diffusivities, i.e., the simultaneous diffusivities of two or more species in 

a medium, are far more frequent than the diffusion of a single species (E. L. Cussler & 

Peter, 1966).  

Binary diffusion can be expressed mathematically as:  

                     (1.4)  

Equation (1.4) is another form of Fick’s first law of diffusion. The diffusion coefficient     is 

called binary diffusivity and   is the total concentration. There is only one independent 
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driving force,    , and one independent flux,   . However, in a ternary mixture, there are 

two independent fluxes          and two independent driving forces            Thus we 

can write:  

                           (1.5) 

                           (1.6) 

Equations (1.5) and (1.6) show that both fluxes         depend on both of the independent 

mole-fraction gradients            The                are the multi-component 

diffusivities. These four diffusivity coefficients are needed to characterize a ternary system 

(Taylor & Krishna, 1993).  

The focus of our study is to determine the matrix of four diffusivities, i.e.,            , and 

   , in a system that consisted of nitrogen, carbon dioxide, and polystyrene, as shown in   

Figure 1.6. The diffusion coefficients      and     are called main diffusion coefficients also 

known as self-diffusion coefficients. Whereas the diffusion coefficients     and     are 

called cross-diffusion coefficients also known as mutual diffusion coefficients. 

 

 

 

 

Figure 1.6. Multi-component diffusion in nitrogen, carbon dioxide, and polystyrene 
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There are two kinds of blowing agents that are most commonly used namely; Chemical 

Blowing Agents and Physical Blowing Agents. Chemical blowing agents are chemical 

compounds that release gases such as nitrogen and carbon dioxide as a result of chemical 

reactions. Whereas, physical blowing agents are compounds that release gases as a result 

of physical processes. Examples of widely used physical blowing agents are 

chlorofluorocarbons and hydrocarbons. Due to the harsh effect of chlorofluorocarbons on 

environment, their use is prohibited. 

However, hydroflourocarbons, hydrocarbons and inert gases such as carbon dioxide and 

nitrogen can substitute chlorofluorocarbons. Hydroflourocarbons are expensive and 

flammable. Whereas, hydrocarbons are highly flammable and volatile in nature. The inert 

gases such as carbon dioxide and nitrogen are benign to the environment.  

The polymer industry is gradually introducing carbon dioxide and nitrogen as a safe and low 

cost physical blowing agent (Kwag, Manke, & and Gulari, 1999). However, due to the lack of 

multi-component diffusivity data of carbon dioxide and nitrogen in polymers, the effective 

design and safe operation of separation and purification processes for polymers is not 

possible.  

Polymer such as polystyrene is colorless, non-toxic, and translucent to transparent solid 

with a glossy surface, it is mainly used in food packaging and biomedical industry e.g. in 

petri dishes, injection syringes, electrolyte drips, medical tubing, and in cannula. Where 

devolatilization and foaming process can be made safe, efficient and economical by using 

inert gases such as carbon dioxide, and nitrogen.  
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The objective is to develop an optimal control framework to determine experimentally the 

concentration-dependent diffusivities of gas mixtures in polymers, considering first 

nitrogen and carbon dioxide gases and polystyrene. The optimal control framework 

developed in this work will produce much-needed diffusivity data, allowing technological 

advancements in the Canadian polymer industry and others. Multi-component diffusivity 

data will enable effective design and safe operation of separation and purification 

processes for polymers and heavy oil. The polymer industry will benefit by using the 

diffusivity data in engineering, design, and optimization calculations. Regulatory agencies 

can use the data to establish standards related to polymer products 

 

1.2  Structure of the Thesis 

 

This thesis is organized as follows:  

Chapter 1 presents the development of the concept of diffusivity from binary to ternary 

systems. 

Chapter 2 presents a detailed literature review of ternary systems, and this review provides 

the basis for our selection of a system.  

Chapter 3 covers the experimental setup, the methods used, and the procedures used. 

Chapter 4 covers the development of the mathematical model and the optimal control 

framework that is used to determine the concentration-dependent, ternary matrix of 
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diffusivities. The conditions necessary for solving the mass transfer model is derived. This 

chapter also includes the computational algorithm. 

Chapter 5 presents all the experimental and numerical results. The ternary diffusivity 

values are calculated. The results are analyzed and discussed. 

Chapter 6 summarizes the contribution of this work, and our conclusions and 

recommendations for future work are presented.  
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2 LITERATURE REVIEW 

 

 

Ternary and higher systems are far more frequent than binary systems. However, the 

diffusivity data of the former are very limited. In the following treatment, we provide a 

review of recent studies involving multi-component diffusivity. 

Amooghina et al., 2013, developed a new mathematical model to investigate the 

permeation of a ternary gas mixture across a synthesized composite 

polydimethylsiloxane/aromatic polyamide membrane. The results showed that the 

diffusivities of hydrogen and methane increased as the feed temperature and fugacity 

increased, but the diffusivity of propane decreased. Moreover, increasing the 

concentration of propane improved the diffusion properties of all of the components. The 

results demonstrated that considering the concentration-dependent system leads to a 

small deviation of less than 10%, while the concentration-independent system had a large 

deviation, ranging from 50 to 100%. In addition, the results indicated that diffusivities of 

the lighter gases were especially affected by their composition, while solubility had a 

dominant effect on the diffusivities of the heavier gases. 

Liu et al., 2011, developed an empirical method for predicting multi-component, Maxwell 

Stefan diffusion in ternary systems accounting for friction between the two diffusing 
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species. They used an n-hexane-cyclohexane-toluene system, and their results showed that 

their model described the concentration dependence better than other models.  

In a separate investigation, Rehfeldt & Stichlmair, 2007, studied the diffusivities of liquids, 

which are of great interest for the calculation and simulation of mass transfer processes. 

Several prediction models for binary diffusivities can be found in the literature. However, 

only a few models exist for multi-component systems. Due to lack of data for ternary 

diffusivities, these models have not been verified for real systems to date. To overcome 

this limitation, they measured multi-component diffusivities within some concentration 

range of several ternary systems. Fick diffusivities were transformed to the less 

concentration-dependent Maxwell-Stefan diffusivities using a thermodynamic correction 

factor. Four prediction models were tested by comparing their predicted values with the 

experimental data. In some systems, the predictions of multi-component diffusivities 

showed promising results. However, the quality of predicted diffusivities depends strongly 

on an accurate thermodynamic description of the system.  

Ghoreyshi et al., 2004 used the Maxwell-Stefan formulation of multi-component 

diffusivities and the basic postulates of irreversible thermodynamics to develop a general 

model of membrane transport. In principle, the general model is applicable to any 

separation process that uses a homogeneous, non-porous membrane as the selective-

separation barrier. Examples of such processes include dialysis, electrodialysis, reverse 

osmosis, vapor permeation, and evaporation. The predictive capabilities of the general 

model were tested for the ethanol–water-silicone rubber system. The results obtained 
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indicated that the general model is capable of describing the pervaporation and dialysis 

performance of the ethanol-water-silicone rubber system with identical sets of 

concentration-dependent equilibrium and diffusive parameters. They concluded that the 

concentration dependence of the ternary Maxwell-Stefan diffusivities is described well by a 

natural extension of the binary relationship to multi-component systems. 

Bouchet  & Mevrel, 2007,  developed an inverse numerical analysis that permits the 

extraction of composition-dependent diffusivities for all of the compositions along a 

diffusivity path. Its application to various diffusion couples at 1100oC in a nickel-platinum-

aluminium alloy showed that, in the composition domain investigated, the direct 

diffusivities increase as the platinum content increases. A concentration gradient of 

platinum has no influence on the diffusion of aluminium. The cross coefficient was constant 

and very small.  

J. L. Duda, Ni, & Vrentas, 1978, showed the general, concentration-dependent behavior of 

diffusivity. They indicated that diffusivities increase sharply as solvent concentration 

increases and that they often exhibit maximum values in the concentrated region. At low 

solvent concentrations, a small increase in the weight fraction of the solvent will cause a 

very significant increase in the diffusivity (J. L. Duda, 1985). They found that the diffusivity 

of a solvent in a polymer increases with temperature.  

A few publications have reported the concentration dependence of dense-phase gas 

diffusivities. (Li, Liu, Zhao, & Yuan, 2009) studied the solubility and diffusivity of carbon 

dioxide in isotactic polypropylene. The diffusivity showed a weak dependence on 



  

20 
 

concentration, and it varied by an order of magnitude (from       to      m2/s) in 

isotactic polypropylene at three different temperatures.  

Jitendra, et al., 2009, Kundra, et al., 2011, and Upreti & Mehrotra, 2000 experimentally 

determined the composition-dependent diffusivity of nitrogen and carbon dioxide in low-

density polyethylene, polypropylene, and bitumen. Each time, the researchers found that 

the gas diffusivity was composition-dependent.  

 

2.1  Lack of Data for Ternary System 

 

There are no publications that report experimental diffusivities for ternary systems 

comprised of two gases and a dense phase. A few experimental studies have investigated 

only liquid phases. For example, Telis, Murarif. R.C.B.D.L., & Yamashita, 2004, studied 

solutions of NaCl and sucrose for the osmotic pre-treatment of tomato quarters. The 

maximum loss of moisture occurred when the osmotic treatment was conducted in a more 

concentrated solution, and this observation was independent of the type of solute. The 

apparent diffusion coefficients for water, NaCl, and sucrose were calculated at 30 ±1°C, and 

they were found to be in the range of            to            m2/s. 

Lin, et al.,, 2009, reported the ternary diffusivities of diethanolamine and N- 

ethyldiethanolamine  in aqueous solutions of these two compounds. The main diffusivities 

(D11 and D22) and the cross-diffusivities (D12 and D21) were reported as functions of the 

temperature and concentration of the alkanolamines. They found that the ratio of D12 to 
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D11 was greater than the ratio of D21 to D22. The diffusion coefficients were on the order of 

     m2/s. The researchers also found that the main diffusivities increased as temperature 

increased at a constant concentration of the solvent. But the diffusivities decreased with 

the concentration at constant temperature.  

Kjetil, et al., 2006, studied a system consisting of toluene, chloroform, and benzene. They 

determined the concentration-dependent molecular diffusion coefficient to be on the 

order of      m2/s.  

Our extensive literature survey showed that limited data are available concerning the 

dependence of diffusivity on concentration. The theoretical prediction of diffusivity relies 

on the self-diffusivities of the solvent, and these values usually are not available. In 

addition, the accurate prediction of the concentration-dependent chemical potential of 

solvents is needed (J. L. Lundberg, et al., 1962; J. L. Lundberg, et al., 1963; J. L. Lundberg, 

1964a; J. L. Lundberg, 1964b; J. L. Lundberg, et al., 1960). These limitations necessitate the 

determination of concentration dependent diffusivities. Table 2.1 summarizes the previous 

work done by other researchers in determining the diffusivities of carbon dioxide and 

nitrogen in polystyrene.     
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Table 2.1 Diffusion coefficients of carbon dioxide and nitrogen in polystyrene 

Serial. 
Number 

Temperature Pressure 
(MPa) 

Polymer (s) Diffusion Coefficient Reference  

1 38 0C 9 25  Polystyrene+ 
(CO2) 

(0.17-0.48)×10-6 cm2/s (Nikitin et al., 
2003) 

2 50 0C 9 25 Polystyrene+ 
(CO2) 

(0.87-0.48)×10-6 cm2/s (Nikitin et al., 
2003) 

3 55 0C 9 25 Polystyrene+ 
(CO2) 

(1.28-2.18)×10-6 cm2/s (Nikitin et al., 
2003) 

4 65 0C 9 25 Polystyrene+ 
(CO2) 

(1.57-3.06)×10-6 cm2/s (Nikitin et al., 
2003) 

5 373.15 K 2.34  8.32 Polystyrene+ 
(CO2) 

(0.81-1.67) ×10-10 m2/s (Sato, Takikawa, 
Takishima, & 
Masuoka, 2001) 

6 423.15 K 2.42 8.31 Polystyrene+ 
(CO2) 

(3.01-5.33) ×10-10 m2/s (Sato et al., 2001) 

7 473.15 K 2.52 8.42 Polystyrene+ 
(CO2) 

(9.24-9.90) ×10-10 m2/s (Sato et al., 2001) 

8 200 0C 11 12 Polystyrene+ 
(CO2) 

2.45 ×10-10 m2/s  (Surat, Eita, 
Yusuke, Dai, & 
Masahiro, 2004) 

9 373.2-453.2 K    Up to 17 Polystyrene+ 
(CO2) 

Solubility 
g gas/g polymer 
(11.57-6.87)×10-2  

(Sato, Yurugi, 
Fujiwara, 
Takishima, & 
Masuoka, 1996) 

11 373.2-453.2 K    Up to 17 Polystyrene+ (N2) (7.15-9.83) ×10-3 (Sato et al., 1996) 
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Our plan is to develop an optimal control framework to determine diffusivity versus 

concentration surfaces in ternary systems of two gases and a liquid. Therefore, the aim of 

this study was to develop an optimal control framework novel method for the experimental 

determination of multi-component diffusivities for a ternary system of two gases and one 

non-volatile, dense phase. The novel feature of this work is that it allows the natural 

evolution of multi-component diffusivity verses concentration in agreement with 

experimental data and subject to the detailed mathematical model. This is an inverse 

problem that can be solved using the principles of optimal control.  

In our study, principles of optimal control is used to extract the optimal, composition-

dependent, multi-component diffusivities (system property) as a function of another 

system property (composition). 

 

2.2  Optimal Control  

 

Optimization is a method of finding the conditions that give maximum or minimum value of 

a function. But, if optimization involves minimization or maximization of a functional 

subject to some constraint, the decision variable will not be a number, but will be a 

function. Such problems are called optimal control problems. A functional is defined as a 

function of several other functions. Optimal control problems involve two kinds of 

variables: state and control variables. These variables are usually related to each other by a 
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set of differential equations. Optimal control theory can be used to solve such problems 

(Upreti, 2013).   

An optimal control technique solves the problem in number of stages, where each stage 

develops from the preceding stage in prescribed manner. The control variables define the 

system that governs the advancement of the system from one stage to the next. The state 

variables describe the behaviour or status of the system at any stage. So, optimal control 

problem is to find a set of control variables so that the total objective functional over all 

the stages is optimized subject to a set of constraints (e.g. differential equation) on the 

control and state variables.  

Optimal control determines a control policy for a system that will maximize or minimize a 

specific performance criterion subject to constrains. Optimal control has applications in 

many different fields, including aerospace, process control, and engineering. In early 1950s 

due to the lack of fast computers only simple optimal control problems could be solved. 

The revolution of the digital computers in the 1950s, allows the application of optimal 

control theory and methods to solve complex optimal control problems. Many applications 

of optimal control theory were developed to optimization surfactant flooding process, 

polymer process, and miscible carbon dioxide process (Ramirez, 1987). Although only initial 

studies are present, promising advances are expected in the application of optimal control 

theory.  

A branch of mathematics that is useful in solving optimal control problems is the calculus of 

variations (Denn, 1969; Kirk, 1970; Ray, 1981). Calculus of variations deals with functionals, 
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or functions whose independent variables are functions themselves. To solve optimal 

control problems where the objective is to determine a function that minimize or maximize 

a specified functional, calculus of variations is a useful technique.  

The analogous problem in calculus is to determine a point that yields the minimum or 

maximum value of a function. The variation plays the same role in determining extreme 

values of functionals as the differential does in finding maxima and minima of functions. 

The fundamental theorem used in finding extreme values of a function is the necessary 

condition that the differential vanishes at an extreme point. In variational problems, the 

analogous theorem is that the variation must be zero on an extrema. 

Consider following simple example of optimal control in which functionals are formed as 

integrals involving an unknown function and its derivatives: 

 

  ∫         
  
  

                (2.1) 

 

In Equation 2.1   is a functional of the function   and  . It is assumed that    and    are 

initial and final time and are fixed, the end points of the curve are specified as    and   . 

The objective is to find the control   for which the functional   has an optimum value 

subject to the differential equation constraint which is given by   

        ̇          ̇      ̇                (2.2)  

with the initial condition 
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                  (2.3)  

At minimum of   the variation of    has to be zero.  

   ∫ (         )
  
  

            (2.4) 

      

The above equation has to satisfy the differential equation constraint. The    and    

cannot be varied arbitrary because they are tied together in the differential objective 

functional. According to optimal control theory, if the variations are arbitrary their 

coefficients are individually zero. But in this case this is not possible because the control 

and the state variable are tied together. This problem can be solved by introducing an 

undetermined function,     , called Lagrange multiplier, in the augmented objective 

functional defined as  

  ∫         
  
 

             ̇         (2.5)  

At the optimum the variation of   has to be zero 

   ∫       
  
 

      (       ̇  ̇      )              (2.6) 

  

where the role of the lambda is to untie state variable   from control   by assuming certain 

values in the time interval       . With such values of lambda we are then able to vary    

and    arbitrary and independent of each other. This leads to simplified necessary 

condition for the optimum of   which is equal to the constraind optimum of  .  The 



  

27 
 

condition would add an equation for  , the satisfaction of which enables the arbitrary 

variations in the first place (Upreti, 2013). 

 To solve an optimal control problem, we must first describe the problem in physical terms, 

and then translate the physical description into mathematical terms. Once the optimal 

problem is defined mathematically, we can apply the optimal control theory to the partial 

differential equations describing the process model.  
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3 EXPERIMENTAL SETUP 

 

This chapter describes the experimental setup used for determining the concentration 

dependent multi-component diffusivities of nitrogen and carbon dioxide in polystyrene.  

Figure 3.1 shows the experimental setup used to determine the concentration-dependent 

diffusivities of nitrogen and carbon dioxide in polystyrene. The setup was used to conduct 

two kinds of experiments, i.e., solubility experiments and diffusion experiments.  

The purpose of the solubility experiments was to determine the equilibrium concentration 

of each gas at the gas–polymer interface as a function of pressure and gas-phase 

composition. This information provides the boundary condition for the mass transfer 

model of the diffusion process. The latter is conducted in diffusion experiments to furnish 

experimental pressure and gas-phase composition as a function of time. 

Figure 3.1 shows the main parts of the setup. It consists of a diffusion cell with a concentric, 

4-cm-diameter cylindrical slot at the bottom to hold a polymer sample. 
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Figure 3.1. Experimental setup
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In an experiment, a mixture of nitrogen and carbon dioxide was allowed to diffuse into the 

polymer layer inside a closed diffusion cell at a constant temperature.  

The dimensions of the diffusion vessel are given in Table 3.1  

Table 3.1 Diffusion vessel dimensions and material 

Diameter 0.04 m 

Volume              

Depth  0.02 m 

Mass of 
Polystyrene  

         

Density of 
Polystyrene 

1060        

Carbon 

dioxide 

Obtained from MEGS specialty gases and 
equipment, Montreal (99.9 % pure) 

Nitrogen Obtained from MEGS specialty gases and 
equipment, Montreal (99.9 % pure) 

Polystyrene Sigma Aldrich (99.9% pure) 

 

The lid of the diffusion cell had a glass window that allowed a complete view of the surface 

of the polymer to an external, online, Keyence LKG displacement laser sensor, which 

tracked the polymer’s surface. The laser beam detects any displacement in the thickness of 

the polymer. The laser sensor has an accuracy of 10 µm that could lead to an error of 1.2%. 

In our experiments, as expected, the laser sensor did not detect any change in the 

thickness of the polymer because the experiments were done at room temperature (230C) 

and low pressure.  Figure 3.2 shows constant temperature inside the polymer during 
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diffusion experiment. Figure 3.3 shows constant thickness of the polymer layer during the 

diffusion experiment.  

To ensure that there is no change in the polymer’s temperature during the diffusion 

process, we inserted a thermocouple in the polymer through the glass lid, as shown in the 

Figure 3.4(b). The thermocouple used was an H1 Series thermocouple that was obtained 

from Nanmac Corporation, USA. In our experiments, the thermocouple did not detect any 

change in the temperature of the polymer. The accuracy of the thermocouple was ±0.05 

that could generate the error of 0.2% at 25 0C.   

 

 

 

Figure 3.2 Polymer temperature during diffusion experiment 
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Figure 3.3 Polymer thickness during diffusion experiments 

 

 

Figure 3.4(a) shows a digital picture of the laser sensor connected to the diffusion system. 
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from an external tank.    

The pressure in the diffusion cell was measured by a Paroscientific Digiquartz intelligent 
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Prior to the experiment, the experimental setup was tested for leaks for 2 h at the 

temperature of the experiment by pressurizing it to 1.5 times the pressure used in the 

experiment. After the system was pressurized, the tests were conducted with valves A and 

C closed and valve B open. After the test, valve C was opened to depressurize the system, 

and polystyrene granules were placed in the sample slot and by gradually raising the 

temperature to form a cylindrical layer. Figure 3.5 shows the polystyrene layer that was 

formed after the granules were gradually melted and then cooled to 23oC.  The 

experimental setup was allowed to cool for one day, after which valve C was closed, and 

the laser sensor was positioned and calibrated to track the movement of the polymer’s 

surface.  

 

 

 

 

 

 

 

Figure 3.4. (a) Laser sensor; (b) thermocouple  
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The experiments were conducted at 23oC, and the temperature was controlled within 

±0.5oC of the desired value. The gaseous mixture was introduced and only valve E and C 

were closed. Initial sample of the gaseous mixture was withdrawn from valve F. Valve F is 

then closed and the experiment was initiated by introducing the gas quickly above the 

polymer’s surface inside the diffusion cell by simultaneously opening valve E and closing 

valve A. The pressure inside the cell was recorded as the gas diffused gradually into the 

polymer layer. The pressure sensor had a resolution of ±0.006 kPa. To withdraw final 

sample valve D is closed and the sample is withdrawn from valve F.   

To determine gas solubility and diffusion, the experiment was conducted until no further 

reduction in the pressure could be discerned. That was the time when the mass fraction of 

the gas in the polymer sample tended to have a uniform equilibrium value.  The 

experiment was terminated by gradually opening valve C to release the gas. After the 

completion of each run, the gas was removed from the apparatus by a vacuum pump. After 

the vacuum pump had removed the gas, it was turned off, and the pressure was allowed to 

stabilize. The vacuum pump was operated a few times to ensure that all of the gas in the 

polymer and in the gas phase had been removed. Then, the second run was begun using 

the same steps described above.  

A magnetic micro mixing fan was affixed beneath the lid of the diffusion cell to homogenize 

the gas phase. The minimum speed that could be achieved for magnetic micro mixing was 

30 revolutions per minute and this speed was used throughout our experiments. Another 

reason for rotating the fan at lower speed is to avoid any convection and bulk motion. Also 
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at higher fan speed there would be work done by the fan inside the pressure vessel that 

could increase the temperature of the gas phase and the polymer. This magnetic micro 

mixing fan obviates the need for an additional mass transfer model for the gas phase. The 

speed of the magnetic micro mixing fa Figure 3.6 shows a schematic diagram of the fan, 

which was made by gluing aluminum strips to the bar of a magnetic stirrer at an angle of 

45o.  The magnetic micro mixing fan was attached to the base of the lid of the cell.  

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Polystyrene layer with uniform thickness 
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Figure 3.6. Magnetic mixer 

 

 

3.1  Solubility Experiments 

 

Different initial ratios of the two gases and different initial pressures were used, and the 

diffusion of nitrogen and carbon dioxide in polystyrene was conducted until there was no 

detectable change in pressure inside the diffusion cell, which took an extended period of 

time (1–2 days). The final pressures were recorded, and gas-phase samples were extracted 

at the beginning and end of the experiment and analyzed using a gas chromatograph to 

determine the initial and final gas compositions. Five solubility experiments were 

conducted with different initial compositions in the gas phase. The plots of the solubility 

experiments are given in Appendix A.    
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The purpose of these experiments was to determine the interfacial (equilibrium) 

concentration of nitrogen and carbon dioxide at the gas–polymer interface as a function of 

pressure and gas-phase composition:  

 


 

 
 

 

 
                                  (3.1) 

           

The 
 

 
s formed the boundary conditions in the mass transfer model to be used for the 

determination of the concentration-dependent, multi-component diffusivities of the gases 

in the polymer. These masses provided the solubility or 
 

 
s at the final pressures and gas-

phase compositions.  

 

3.2  Diffusion Experiments  

 

With a fixed initial ratio of the masses of the two gases and a fixed initial pressure, the 

diffusion process was conducted for 2, 4, 6, 8, and 10 minutes. The composition of the gas 

phase      was determined at the beginning and the end of each experiment using a gas 

chromatograph. 

The purpose of these experiments was to obtain data for pressure and gas-phase 

composition as a function of time, i.e.,       and      . These data provided:  

1. The experimental values of the masses of the two gases absorbed in the polymer as a 

function of time. 
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2. The calculated counterparts of the above masses given by the mass transfer model, which 

had:  

(a) Boundary conditions that were obtained from solubility experiments: 


 

 
 

 

 
                           

 (b) Composition-dependent diffusivities of each gas in polymer: 

       (  
 

 
)                              (3.2) 

 

3.3  Analysis of Gas Phase Composition 

 

The gas-phase composition during the diffusion and solubility experiments was analyzed by 

a gas chromatograph. Now, the gas chromatograph is introduced briefly, including how it 

works, how the samples were extracted during the solubility and diffusion experiments, the 

column used in this study, and the gas chromatography method that was used in the 

analysis of the composition of the gas phase. A succinct introduction of the gas 

chromatograph (GC) follows. 

3.3.1  Gas Chromatography 

 

Chromatography is the separation of a mixture of compounds (solutes) into separate 

components, making it easier to identify (qualitate) and measure (quantitate) each 

component. GC is one of several chromatographic techniques. It is appropriate for 
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analyzing 10–20% of all known compounds. To be suitable for GC analysis, a compound 

must have sufficient volatility and thermal stability. If all or some of a compound’s 

molecules are in the gas phase at 400–450 oC or below and they do not decompose at 

these temperatures, the compound probably can be analyzed by GC.  

 

3.3.2 Chromatogram 

 

The size of the peak corresponds to the amount of the compound of interest in the sample. 

As the amount of the compound of interest increases in the samples being analyzed, larger peaks 

are attained for that compound. Retention time is the time it takes for a compound to travel 

through the column. If the column and all operating conditions are kept constant, a given 

compound will always have the same retention time.  

 Peak size and retention time are used for quantitative and qualitative analyses of a 

compound, respectively. However, the identification of a compound cannot be determined 

solely by its retention time. A known amount of an authentic, pure sample of the 

compound must first be analyzed to determine its retention time and peak size. Then, this 

value is compared to the results from an unknown sample to determine whether the target 

compound is present (by comparing retention times) and in what quantity (by comparing 

peak size).  

In this study, thermal conductivity detector was used. Thermal conductivity detector relies 

on the thermal conductivity of matter passing around a tungsten-rhenium filament with a 
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current traveling through it.  In this set up helium is used as a carrier gas because of their 

relatively high thermal conductivity which keep the filament cool and maintain uniform 

resistivity and electrical efficiency of the filament. However, when analyte molecules elute 

from the column, mixed with carrier gas, the thermal conductivity decreases and this 

causes a detector response. The response is due to the decreased thermal conductivity 

causing an increase in filament temperature and resistivity resulting in fluctuations in 

voltage. Detector sensitivity is proportional to filament current while it is inversely 

proportional to the immediate environmental temperature of that detector as well as flow 

rate of the carrier gas. 

A Varian gas chromatograph, model CP3800, with Galaxie V1.9 software, was used to 

determine the amounts of carbon dioxide and nitrogen in the sample obtained from the 

diffusion cell. The column HP-Plot Q, obtained from Agilent Technologies Canada, was used 

for the detection of eluents from the gas chromatograph. The inner diameter of the column 

was 0.32 mm, and the length of the column was 15 m. The stationary phase in the column 

was polystyrene divinyl benzene.  

 

 

3.3.3  Sampling 

 

A gas-tight, high-performance, micro syringe with a volume of 1,000 µL, obtained from 

Sigma-Aldrich, was used to draw the samples from the sampling nozzle. The sample in the 

syringe was injected manually into the gas chromatograph column for detection.  
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Before we used the GC to determine the experimental masses of nitrogen and carbon 

dioxide absorbed in the polystyrene, we ran pure samples of nitrogen and carbon dioxide 

with different initial volumes. Then the areas under the peaks were plotted against the 

volume of the samples. The best straight-line fit of the data was determined and for use in 

determining the composition of these two gases in the unknown sample. The curve-fitting 

plots are provided in Appendix B.  

During the solubility and diffusion experiments, 200µL samples were injected manually 

through the GC sample inlet at 240oC. The retention time was determined by a thermal 

conductivity detector that was maintained at 240oC.  

 Helium was used as the carrier gas (mobile phase). The flow rate of the mobile phase was 

8.6 mL/min. The oven that housed the GC column was maintained at 35oC.  

Using the measured composition of the gas phase, we calculated the experimental mass of 

each gas absorbed in the polystyrene at the time when the samples were extracted. The 

detailed calculation is given in Appendix B.   
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4 THEORY and COMPUTATION 
 

 

This chapter presents the development of optimal control framework to determine 

concentration dependent multicomponent diffusivities of two gases in a non-volatile dense 

phase, which is the primary objective of this study. Interfacial gas mass fractions of two 

gases versus time are used as control in this optimal control problem.  The optimal 

diffusivities are then determined that minimises the error between the experimental the 

calculated gas mass absorbed.  

The optimal control framework to determine the concentration dependent 

multicomponent diffusivities is based on detailed mass transfer model, which comprises 

continuity equation of diffusion. Optimal control principles are applied to derive necessary 

conditions for which the error between the experimental and calculated gas mass absorbed 

is minimum. A numerical algorithm is developed to estimate the optimal ternary 

diffusivities.     

4.1  Mass Transfer Model 
 

The mathematical model was based on the following assumptions: 

1. Mass transfer is along the depth of the dense phase. 
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The polymer is in the pressure-decay vessel and only its surfaces are exposed to the 

diffusing gases. The other three sides of the polymer are adhered to the base or the walls 

of the pressure-decay vessel. Based on these facts, it can be assumed that the diffusion of 

the gases in the polymer melt is only in the downward direction (z-direction). Hence, it is a 

unidirectional diffusion process.  

2. No chemical reactions occur in the pressure vessel. 

The absorption of the gases in the polymer melt is purely a physical phenomenon. There 

are no reactions among carbon dioxide, nitrogen, and the polymer melt at the temperature 

and pressure of the experiment.  

3. Diffusion occurs at constant temperature. 

While the diffusion of the gases is occurring, the temperature of the pressure-decay system 

and its components does not change. (This assumption inherently means that any thermal 

energy released during the diffusion is dissipated instantaneously to the surroundings 

4. There is no convection in the dense, non-volatile phase.  

The rotation of magnetic micro mixer was kept low at 30 rpm. Hence, it is assumed that 

there is no diffusion due to convection or bulk motion in the gas phase due to the rotation 

of the magnetic micro mixer inside the pressure-decay vessel. Also, at this low rotational 

speed, the work done by the magnetic micro mixer does not affect the temperature inside 

the pressure-decay vessel. 

5. The wall effects are negligible.   

It is assumed that the permeating gases (carbon dioxide and nitrogen) move only along the 

z-direction i.e., the depth of the polymer.  
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6. The pressure decay is solely due to the diffusion of the gases and there is no leakage. 

Before the experiment was started, it was ensured that the pressure-decay equipment had 

no leaks. Hence, it is assumed that the decrease in the pressure is solely due to diffusion. 

7. The gas phase is homogenous at all times. 

Since the magnetic micro mixer was constantly moving at slow speed above the surface of 

the polymer. So, it is assumed that the gas phase is homogenous at all times.  

 

Figure 4.1 shows the diffusion of nitrogen and carbon dioxide in polystyrene. Dark colored 

circles represent carbon dioxide and the white color circles represent nitrogen. The two 

gases diffuse in the polymer of depth of z. The diffusivity of the two gases is a function of 

the mass fraction of the two gases            . 

 

 

 

 

 

 

 

 

 

Figure 4.1. Diffusion of two gases in an underlying dense, non-volatile phase 
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4.2  Theoretical Model Development    

 

Considering the assumptions mentioned above, the mass transfer model is presented 

below. We use subscripts ‘1’ and ‘2’ for the nitrogen and carbon dioxide respectively, and 

‘3’ for the non-volatile phase. For the first gas: 

011 









z

N

t

ω
,          (4.1)  

where 
1  is the mole fraction of the first gas, and 

1N  is the mass flux of that gas, both in 

the underlying layer of the dense, non-volatile phase; the flux is given by: 

13121111
JNωNωNωN          (4.2) 

where 
2

N  and 3
N  are the mass flux of the second gas and the dense non-volatile phase, 

respectively. Since 
3

N  is zero, Equation (4.2) becomes:  

D
JNωNωN 

21111
        (4.3) 

where 
1J  is the diffusive flux for the first gas, and it is given by:   
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Similarly for the second gas, we have  
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Substituting Equation (4.6) in Equation (4.5), we get: 



  

46 
 


































































z

ω
D

z

ω
D

z

ω
D

z

ω
DNω

ω
ω

ω
N 2

12

1

11

1

21

2

2212

2

1

1

1
1

1

1

1   (4.7) 

 

Simplifying for    we get 
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Now substituting Equation (4.11) into Equation (4.1), we get 
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Taking derivative w.r.t 
z


of R.H.S of Equation (4.13) we get the model for change in mass 

fraction of gas 1 w.r.t time. 

 

Taking derivative of the first term on the R.H.S of Equation (4.13) 
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(4.14) 

 

Taking derivative of the second term on the R.H.S of Equation (4.13) 
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            (4.15) 

Substituting Equation (4.14) and Equation (4.15) in Equation (4.13) we get,  
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(4.16) 

Or 
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            (4.17) 

             

Equation (4.17) is the mass transfer model for gas 1. Theoretical mass transfer model for 

second gas can be obtained by interchanging the subscript 1 and 2 in Equation (4.17).  The 

mathematical model for second gas is given by Equation (4.18). 
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            (4.18) 

 

In Equations (4.17) and Equation (4.18)                and      are the concentration-

dependent, multi-component diffusivities of two gases in a non-volatile, dense phase. 

Equations (4.17) and (4.18) have the following initial conditions: 

0)((0,0)  tωω
eq,ii    at the gas-liquid interface   (4.19) 

0(z,0)
i

ω     for Lz 0      (4.20) 

and the boundary conditions: 

)()(0, tωtω
eqi

     for f
tt 0      (4.21) 

0




Lz

i

z

ω
    for f

tt 0      (4.22) 

 

where       and       is the equilibrium saturation concentration of the ith  gas at the 

interface.  

 

To determine the concentration-dependent, multicomponent diffusivities using our mass 

transfer model, we conducted two kinds of experiments, i.e., solubility experiments and 
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diffusion experiments. The purpose of the solubility experiments was to determine the 

equilibrium concentration of each gas at the gas–polymer interface as a function of 

pressure and gas-phase composition. This provided the boundary conditions. The purpose 

of the diffusion experiments was to obtain data for pressure and the gas-phase 

composition as a function of time. These data provided the experimental mass of each gas 

absorbed in the dense phase.  

To solve our mass transfer model, the four unknown diffusivities,                and      

are required. This is an inverse problem that can be solved using the optimal control 

technique.  

 

4.3  Optimal Control 
 

 

An optimal control involves the improvement in the system’s performance as a function of 

time, space, or any other independent variable. In our study, the optimal control technique 

was used to extract the optimal, composition-dependent, multi-component diffusivities 

(system property) as a function of another system property (composition). Unknown 

diffusivities are control surfaces that must be optimally determined such that the 

difference between the experimental and calculated masses is minimized. The error 

function is the objective function that is described next (Upreti, 2013).  
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4.4  The Objective Functional 
 

 

The goal is to determine the unknown, concentration-dependent, multi-component 

diffusivities of the two gases in the non-volatile dense phase such that their use in 

equations (4.19) to (4.22) yields the calculated masses of the gases in the layer that are in 

agreement with experimentally-determined masses of the gases, i.e., (t)m
1exp  and (t)m

2exp  

through gas chromatograph and pressure decay measurements. The objective functional 

can be expressed as the summation of:   

 

     dttmtmI
T 2

0
exp1mod11           (4.23) 

and 

     dttmtmI
T 2

0
exp2mod22           (4.24) 

where 
1I  and 

2I  are the measures of error between the predicted and experimental gas 

masses for the respective gases over time T. 

 

At any given time,  tm
mod1  and  tm

mod1  are the model-predicted mass of gases absorbed in 

the polymer, whereas,  tm1exp  and  tm2exp  are the experimental-determined gas masses 

absorbed in the polymer. The model-predicted mass of each gas absorbed is given by: 

 


L

Adzρωm
0

1mod1   and, 
L

Adzρωm
0

2mod2       (4.25) 
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Thus, 

 dt)mρAdz(ω)mρAdz(ωIII
T L

  
0 0

2

exp22

2

exp1121     (4.26) 

 

where L is the depth of the polymer phase having a cross-sectional area A. Note that 

        is given by the highly non-linear, partial differential Equations (4.17) and (4.18), 

having diffusivities                                                as the two-

dimensional surfaces to be optimally determined. 

The optimal control problem is to determine these functions that minimizes     given by 

Equation (4.26) subject to the satisfaction of differential equation constraints. So, Equation 

(4.17) can also be written as: 
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For the second gas, Equation (4.18) can be written as: 
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            (4.28) 

 

The constrained problem above is equivalent to the unconstrained minimization of:  

 

)dzdtGλG(λIIJ
T L

  
0

22
0
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            (4.29) 

 

where   is the augmented objective functional and )(z,tλ
i  is a costate variable 
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In the next section, we derive necessary condition for J to be at its minimum value. The 

solution of necessary conditions will yield the unknown concentration dependent 

multicomponent diffusivities.  

 

4.5  Necessary Condition for the Minimum 
 

The necessary condition for the minimum is that the variation of J  is zero, i.e.: 

0
0

2222
0

111121
   )dzdtδGλGδλδGλG(δδδIδIδJ

T L

   (4.30) 

 

In the above equation: 
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Substituting Equations (4.31-4.34) into Equation (4.30) we get: 
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                          (4.35) 

variation δJ is a combination of 
1

δJ (for gas 1) and 
2

δJ (for gas 2). 

21
δJδJδJ   

where 
1

δJ and 
2

δJ are given by 
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and  
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(4.37) 

 

For the sake of simplicity we first simplify the terms on the R.H.S of Equation (4.36) for gas 

1: 

Integrating by parts the third, sixth, seventh, eighth, and ninth terms in the Equation (4.36), 

we get: 
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Substituting Equations (4.38-3.42) into Equation (4.36) and rearranging gives: 
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            (4.43) 

Similarly, 2J can be derived by interchanging subscripts 1 and 2 in Equation (4.43). 

Because the initial mass concentration of the gas in the polymer is known at the interface 

and is zero everywhere in the polymer, the variation )0,(1 z  and )0,(2 z  is zero for all 
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values of z . Since the final mass concentration of the gas is not specified, the fourth 

integral in Equation (4.43) is eliminated by forcing: 

0(z,T)λ
i                     Lz 0             (4.44) 

 

Since the equilibrium concentration of gas at the interface (t)]ωt)(0,[ω
sat11   and 

(t)]ωt)(0,[ω
sat22   is always specified, t)(0,δω1or2  is zero. Therefore, the third and fifth 

integrals are eliminated in Equation (4.43). Furthermore, by forcing:  

0(L,t)λ
i                  Tt 0              

            (4.45) 

 

00 ,t)(λ
i                     Tt 0              

            (4.46) 

 

the sixth terms in equation (4.43) are eliminated. Similarly variation of gas 2 2δJ can also be 

simplified. Simplifying and rearranging Equation (4.35), we get: 
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            (4.47) 

In the above equation, the first integral is eliminated by defining 
t

λ




1  as follows: 
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            (4.48) 

and second integral in Equation (4.47) can be eliminated by defining  
t

λ




2 as follows: 
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Equation (4.44) is the initial condition for Equations (4.48) and (4.49), and Equations (4.45) 

and (4.46) are its two boundary conditions. Equations (4.48) and (4.49) are also called 

costate equations. 

Hence, subject to Equations (4.48) and (4.49), Equation (4.47) can be simplified to:  
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since 
ij

δD , where 2,1, ji  are arbitrary, their coefficients must be individually equal to zero. 

Thus, at the minimum of J , the variational derivative of J  with respect to ,                and 

    is zero, i.e.,: 

0
11

2

2

11

1

1




















D

f
λ

D

f
λ          (4.51) 

  

0
12

2

2

12

1

1




















D

f
λ

D

f
λ          (4.52) 

0
21

2

2

21

1

1




















D

f
λ

D

f
λ          (4.53) 

0
22

2

2

22

1

1




















D

f
λ

D

f
λ          

            (4.54) 

 



  

61 
 

The negative of the variational derivative provides the gradient correction for ),ω(ωD
ij 21  in the 

iterative minimization of J . To summarize, Equations (4.44-4.46), (4.48-4.49), and (4.51-4.54) 

form the set of necessary conditions.  

The detailed derivation for the derivatives of the terms 
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Differentiating 
1f w.r.t z1 , we get 
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            (4.56) 

 

 

Differentiating 
1f  w.r.t zz1 , we get  
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Taking second derivative of 
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We can expand 
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Similarly other terms can also be expanded. Substituting their values in Equation (4.58) we 

get 
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            (4.61) 

Simplifying Equation (4.61) further we get, 
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Taking third derivative of 
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 w.r.t z , we get  
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Differentiating 
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Differentiating 
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Differentiating of 2
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Taking third derivative of 
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The variational derivatives of 1f  and 2f , Equations (4.51-4.54) are given below 
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4.6  Computational Algorithm 
 

 

Based on the necessary conditions for the minimum of the objective functional, the 

following computational algorithm was developed to determine the concentration-

dependent, multi-component diffusion coefficients.  

1 Step A: Initialize               and    . Four initial estimates of diffusivities, i.e. 

              and     ,  were provided to initialize the program.   

2 Step B: Simultaneously integrate the state equations (model) subject to the initial and 

boundary conditions, to obtain the values of        for each node. To implement the 

numerical solution, the state equations were expressed in finite-difference form along z 

direction. The model of the diffusion cell was divided into equal-spaced grid points in the z 

direction. In this way, each state equation was transformed into a set of simultaneous 

ordinary differential equations. The fifth-order, adaptive-step method of Runge-Kutta-
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Fehlberg was used with Cash-Karp parameters to achieve an accurate solution with 

minimum computational effort. The values of state variables(    and     ),         at 

each grid point in the space of t and z are saved. 

3 Step D: Evaluate the objective functional. 

4 If there is no difference between the calculated mass and the experimental mass of the 

gases absorbed then STOP, otherwise go the next step.   

5 Step E: Integrate the costate equations backward, subject to the final boundary conditions, 

using stored values of          to get the values of 
   

      at each grid point. The 

costate equations must be solved backward in the time domain. Since they are dependent 

on concentration, they can be only solved after solving the state equation in the forward 

direction in the time domain. The solution of these equations provides the variational 

derivatives to be used in the next step. 

6 Step F: Improve             using the gradient correction. 

7 Obtain the new and improved values of             at each grid point in the time interval 

using the variational derivative as follows: 

    
                where         

  

     
 and    is a small positive number whose optimal 

value provides maximum reduction in the objective functional.  

Using     
   , repeat the computations Step 2 onward until there is no further improvement 

in the objective functional. When the improvement is negligible, the values are optimal. 
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The variational derivatives were used in conjunction with the Broyden–Fletcher–Goldfarb–

Shanno algorithm (BFGS) method to improve the diffusivities. The optimal control 

algorithm was programmed in C++. Figure 4.2 shows the computational algorithm.  

The architecture of the computer program that was used to estimate optimal values of 

concentration dependent multi-component diffusivities is shown in Figure 4.3. The 

computer program is divided in five main Blocks, namely: A, B, C, D and E. We will discuss 

these Blocks briefly. Block A includes the main file of the program that consists of Broyden–

Fletcher–Goldfarb–Shanno algorithm (BFGS) and model class. The BFGS is gradient 

improvement method. Model class solves the mathematical model. Model class is 

connected to the Block B that contains the mass transfer model, experimental results and 

the input file that contains various information incluing diffusivity guesses, number of grid 

points, step size, tolerance, molecular weight of the polymer, polymer density etc.  

 When the program executes, the model class solves the differential equations i.e. state 

equations (in forwards direction) in Block B using fifth-order adaptive-step method of 

Runge-Kutta-Fehlberg with Cash-Karp parameters method and the information in the input 

file. Once the differential equations are solved, the programme calculates the difference 

between the calculated gas mass absorbed and the experimental gas mass absorbed in 

Block C using composite Simpson 1/3 and Simpson 1/8 integration rule.   

Next, the program solves the costate equations (in backward direction), in Block B, using 

Runge-Kutta-Fehlberg fifth order method and the results obtained by solving the state 

equation previously.  
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Figure 4.2. Methodology for determining diffusivities 

Step A: Provide diffusivities guesses      ω  ω   

Step B: Integrate forward 
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algorithm 
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Figure 4.3 Architecture of the computer program  
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Based on the difference between the calculated gas mass absorbed and the experimental 

gas mass absorbed the program makes the use of variational derivatives and modify the 

diffusivity estimate using Krig in Block D. Krig is a 3D interpolation method.

The BFGS uses all the above information via model class and minimizes the difference 

between the calculated gas mass absorbed and the experimental gas mass absorbed. The 

results are printed in Block E. 

The above process continues until difference between the calculated gas mass absorbed 

and the experimental gas mass absorbed is minimum. The C++ codes for calculating 

variational derivatives and the improvement in the diffusivity values are given in appendix 

C.   The results obtained in this study are presented in the next chapter. 
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5 RESULTS and DISCUSSION 

 

 

Since this work is a first step towards developing an optimal control framework to 

determine concentration dependent multi-component diffusivities so we decided to work 

at room temperature (23oC) and a pressure of 224 kPa. Using the aforementioned 

experiments and calculations, we determined the concentration-dependent multi-

component diffusivities and solubility of nitrogen and carbon dioxide in polystyrene. The 

algorithm developed in Chapter 3 was used to determine the concentration-dependent, 

multi-component diffusivities. The parameters used in the calculations are provided in 

Table 5.1 

  Table 5.1 Parameters used in calculating diffusivities 

Parameters Value 

Mass of polymer          

Density of the polymer            
Diameter of the polymer sample         
Thickness of the polymer sample             
Number of   vs.   points 10 

Number of grid points along the z 
direction 

10 and 15 

 

To arrive at the optimal diffusivities we provided different diffusivities guesses, the 

computer program was run and the improvement in the objective functional, and the 

concentration dependant diffusivities obtained were recorded. Approximately, hundreds of 
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trials were run with different diffusivities guesses and only few selected that have shown 

good improvement in the objective functional are shown in Table 5.2. The dimension of the 

diffusivities in Table 5.2 is     . The best improvement is seen in trial 117 and was 

considered to be the final result. Table 5.2 shows that by increasing the number of grid 

points the improvement in the objective function was reduced.  

 

Table 5.2 Various trials for obtaining optimal diffusivities. 

Trial     

     

    

     

    

     

    

     

Grid 
Points 

Iteration Objective  
functional   

1 14 14 3.3 33 10 317 0.14980  

2 1.4 0.14 3.3 3.3 10 120 0.13466 

3 1.4 1.4 3.3 3.3 10 64 0.13411 

4 1.6 1.4 3.3 3.6 10 11 0.13346 

5 3.6 1.4 3.3 3.9 10 51 0.13161 

6 4.2 3.5 4.3 5.0 10 88 0.12628 

7 5.2 3.5 4.3 7.0 10 123 0.12036 

8 6.2 3.5 4.3 8.0 10 24 0.12002  

9 7.2 4.5 5.3 9.0 10 32 0.11748 

10 8.2 0.45 43 9.0 10 57 0.11577 

11 9.5 0.55 58 9.0 10 48 0.11532 

12 9.5 0.95 58 9.0 10 14 0.11526 

13 9.0 9.5 61 9.0 10 295 0.10409 

14 9.1 0.95 81 9.2 10 130 0.11000 

15 9.1 0.95 8.1 9.2 10 165 0.11422 
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16 11 0.95 8.1 12 10 255 0.13743 

17 11 0.95 81 12 10 46 0.13847 

18 11 9.5 81 12 10 32 0.13328 

19 9.1 9.5 91 9.2 10 61 0.13353 

20 21 9.5 91 9.2 10 240 0.13173 

21 21 7.5 91 72 10 97 0.13573 

22 31 7.5 21 22 10 212 0.12775 

23 22 9.5 95 15 10 199 0.34413 

24 32 9.5 95 35 10 40 0.33314 

25 52 9.5 95 55 10 16 0.32460 

26 72 9.5 95 75 10 25 0.31954 

27 82 9.5 95 85 10 16 0.31760 

28 82 9.9 99 85 10 25 0.31734 

29 82 10 100 85 10 15 0.31747 

30 82 17 170 85 10 15 0.31747 

31 86 27 270 86 10 17 0.31621 

32 89 28 280 89 10 11 0.31445 

33 91 28 280 91 10 35 0.31384  

34 91 59 590 91 10 25 0.31341 

35 91 65 590 85 10 12 0.30985 

36 96 59 590 95 10 11 0.31009 

37 97 60 590 96 10 18 0.30995 

38 57 10 1000 92 10 26 0.31585 

39 75 58 1000 85 10 22 0.31087 

40 75 58 1000 100 10 21 0.30966 

41 75 58 1000 700 10 39 0.31009 
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42 10 1 10 60 10 26 0.11350 

43 0.15 0.15 1.5 0.15 10 56 1.43297 

44 0.17 0.17 1.7 0.17 10 53 1.42830 

45 0.19 0.19 1.9 0.19 10 50 1.42304 

46 0.23 0.23 2.3 0.23 10 41 1.41158 

47 0.35 0.35 3.5 0.35 10 56 1.37661 

48 0.37 0.37 3.7 0.37 10 65 1.37104 

49 0.3 0.3 3 0.3 10 47 1.39092 

50 0.4 0.4 4 0.4 10 73 1.36286 

51 0.1 0.4 4 0.63 10 13 0.83190 

52 1 0.4 4 8.3 10 17 1.23294 

53 3.3 0.4 4 0.13 10 8 0.92094 

54 0.33 0.4 4 0.93 10 73 1.36286 

55 0.43 0.4 4 0.83 10 50 1.42304 

56 0.53 0.4 4 1 10 73 1.36286 

57 0.83 0.4 4 3.3 10 50 1.42304 

58 9.3 0.4 4 0.63 10 56 1.37661 

59 14 14 3.3 33 15 288 0.15513 

60 1.4 0.14 3.3 3.3 15 102 0.13510 

61 1.4 1.4 3.3 3.3 15 52 0.10141 

62 1.6 1.4 3.3 3.6 15 6 0.13106 

63 3.6 1.4 3.3 3.9 15 44 0.13214 

64 4.2 3.5 4.3 5.0 15 79 0.13117 

65 5.2 3.5 4.3 7.0 15 111 0.13112 

66 6.2 3.5 4.3 8.0 15 13 0.12115 

67 7.2 4.5 5.3 9.0 15 27 0.11887 
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68 8.2 0.45 43 9.0 15 49 0.11775 

69 9.5 0.55 58 9.0 15 38 0.11721 

70 9.5 0.95 58 9.0 15 5 0.11511 

71 9.0 9.5 61 9.0 15 246 0.11005 

72 9.1 0.95 81 9.2 15 119 0.11105 

73 9.1 0.95 8.1 9.2 15 135 0.11511 

74 11 0.95 8.1 12 15 210 0.13925 

75 11 0.95 81 12 15 39 0.13889 

76 11 9.5 81 12 15 27 0.13420 

77 9.1 9.5 91 9.2 15 54 0.13567 

78 21 9.5 91 9.2 15 223 0.13281 

79 21 7.5 91 72 15 81 0.13866 

80 31 7.5 21 22 15 198 0.12952 

81 22 9.5 95 15 15 154 0.34622 

82 32 9.5 95 35 15 29 0.34257 

83 52 9.5 95 55 15 11 0.32510 

84 72 9.5 95 75 15 16 0.32311 

85 82 9.5 95 85 15 11 0.31822 

86 82 9.9 99 85 15 14 0.31981 

87 82 10 100 85 15 11 0.31810 

88 82 17 170 85 15 12 0.31793 

89 86 27 270 86 15 10 0.31699 

90 89 28 280 89 15 6 0.31552 

91 91 28 280 91 15 26 0.31441  

92 91 59 590 91 15 14 0.31436 

93 91 65 590 85 15 8 0.31012 
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94 96 59 590 95 15 7 0.31102 

95 97 60 590 96 15 11 0.31132 

96 57 10 1000 92 15 17 0.31864 

97 75 58 1000 85 15 13 0.31783 

98 75 58 1000 100 15 14 0.31102 

99 75 58 1000 700 15 27 0.32038 

100 10 1 10 60 15 18 0.11822 

101 0.15 0.15 1.5 0.15 15 50 1.44213 

102 0.17 0.17 1.7 0.17 15 44 1.44578 

103 0.19 0.19 1.9 0.19 15 45 1.44785 

104 0.23 0.23 2.3 0.23 15 35 1.42314 

105 0.35 0.35 3.5 0.35 15 50 1.39746 

106 0.37 0.37 3.7 0.37 15 54 1.38012 

107 0.3 0.3 3 0.3 15 40 1.40121 

108 0.4 0.4 4 0.4 15 65 1.38874 

109 0.1 0.4 4 0.63 15 9 0.85510 

110 1 0.4 4 8.3 15 9 1.24402 

111 3.3 0.4 4 0.13 15 3 0.92101 

112 0.33 0.4 4 0.93 15 59 1.38231 

113 0.43 0.4 4 0.83 15 38 1.42412 

114 0.53 0.4 4 1 15 66 1.37621 

115 0.83 0.4 4 3.3 15 38 1.46701 

116 9.3 0.4 4 0.63 15 48 1.38823 

117 15 30 13 23 15 290 0.00071 
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Figure 5.1 shows the convergence of the functional optimization yielding the optimal 

diffusivity matrix            , and    . In trial 117, by the iterative refinement of the 

initial estimates of the diffusivities, the value of   decreased monotonically from 

          to a low value of          , that is, at the optimum where the gradient 

correction of the mass transfer model tended to zero and further improvement was 

insignificant. At the optimum where the gradient correction of the mass transfer model is 

zero there is an excellent agreement between the experimental and optimal calculated 

values of the nitrogen and carbon dioxide in the polystyrene. Figures 5.2 and 5.3 shows this 

agreement between the experimental and optimal calculated values of masses of two 

gases in the polymer.  

 

 

Figure 5.1 Convergence of objective functional 
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 Figure 5.2 Experimental and calculated mass of carbon dioxide absorbed in polystyrene. 

 

 

 

Figure 5.3. Experimental and calculated mass of nitrogen absorbed in polystyrene 
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where optimal control technique was used and carbon dioxide is found to have higher 

diffusion compared to nitrogen (Kundra et al., 2011). Figures 5.4 and 5.5 show the 

interfacial mass concentration of nitrogen and carbon dioxide versus time. Figure 5.4 and 

5.5 shows as the diffusion process progresses, the mass fraction of carbon dioxide reduces 

gradually at the surface of the polystyrene due to more diffusion of carbon dioxide 

compared to nitrogen.  On the other hand, the amount of nitrogen increases gradually at 

the surface of polystyrene due to the less diffusion of nitrogen compared to carbon 

dioxide.   

 

Figure 5.4. Interfacial mass fraction of nitrogen 
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Figure 5.5. Interfacial mass fraction of carbon dioxide 
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range of   to          , i.e., the values of the diffusion coefficients increase and reach 

maximum values as the concentrations of the gases increase. Interestingly, the values 

decrease from the maximum as the concentration of carbon dioxide continues to increase. 

Similar results have been reported in various solvent-polymer systems (J. L. Duda et al., 

1978; Jitendra et al., 2009; Kundra et al., 2011; Vrentas, et al., 1982).  

 

 

Figure 5.6. Main diffusion coefficient, D11, of nitrogen in polystyrene 
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diffusion of nitrogen due to carbon dioxide. This could be due to the fact that carbon 

dioxide is a bigger molecule than nitrogen so the effect of intermolecular force of attraction 

of nitrogen on carbon dioxide is high.  The cross-diffusion coefficient     was in the order 

of       m2s-1.  

  

 

Figure 5.7. Cross-diffusion coefficient, D12, of nitrogen in polystyrene 
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due to the concentration gradient of carbon dioxide. Since there is lots of empty spaces 

available in the polymer matrix initially, the diffusivity value of     is higher. Once the 

space in the polymer matrix is saturated with the two gases the effect of nitrogen on 

carbon dioxide decreases resulting in the lower values of     (Jitendra et al., 2009; Kundra 

et al., 2011).    

 

 

Figure 5.8. Cross-diffusion coefficient, D21, of carbon dioxide in polystyrene 

 

Figure 5.9 shows that the main diffusion coefficient,      which increases as the 

concentrations of nitrogen and carbon dioxide increases. 

The main diffusion coefficient     remained high with low concentrations of carbon 

dioxide. The diffusivity was found to be on the order of      m2s-1 .The above results are in 

accordance with the findings of Biesenberger, 1983, who reported concentration-

dependant diffusion coefficients of ethyl benzene in molten polystyrene and found that a 

1.2996E-07

1.2998E-07

1.3000E-07

1.3002E-07

1.3004E-07

1.3006E-07

1.3008E-07

1.3010E-07

1.3012E-07

1.3014E-07

1.3016E-07

0.00E+00 1.00E-03 2.00E-03 3.00E-03 4.00E-03 5.00E-03 6.00E-03

D
2

1
 

Mass fraction of carbon dioxide 

0.00
1.57E-04
3.14E-04
4.71E-04
6.28E-04
7.85E-04
9.42E-04
1.10E-03
1.26E-03
1.41E-03

Mass Fraction of Nitrogen 



  

96 
 

very small amount of solvent can cause a very large increase in the diffusion coefficient. 

This behavior is particularly prominent at low concentrations of the solvent. The main 

diffusion coefficient,      decreased gradually after the mass fraction of carbon dioxide 

reached                 , and the coefficient became stable at the value of      

           when the mass fraction of carbon dioxide reached           .  

 

Figure 5.9. Main diffusion coefficient, D22, of carbon dioxide in polystyrene 
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dioxide (a larger molecule)     due to the concentration gradient of nitrogen (a smaller 

molecule), as shown in Figures 5.10 and 5.11. Our findings are in accordance with the 

findings of E. L. Cussler & Breuer, 1972, where acetone a smaller molecule, dragged the 

bigger molecule, sodium sulfate, and resulted in increased diffusion of sodium sulfate 

(bigger molecule).    

But these results are in contrast to the findings of Lin et al., 2009, they found that the 

diffusion of di-ethanol amine (a smaller molecule, compared to methyl di-ethanol amine), 

the cross-diffusion effect (   ) due to the concentration gradient of methyl di-ethanol 

amine is larger than that for the diffusion of methyl di-ethanol amine (a larger molecule) 

(D21) due to the concentration gradient of di-ethanol amine (a smaller molecule). 

Since multi-component diffusion is a complex process, further study is needed on the effect 

of molecular size, polarity, kinetic energy of molecules, dipole moment, density, viscosity, 

temperature, and pressure on multi-component diffusion.    

In general, the diffusivity of carbon dioxide in polystyrene was found to be greater than 

that of nitrogen, which was in accordance with the findings of other researchers who used 

carbon dioxide and nitrogen separately in polypropylene and LDPE systems (Jitendra et al., 

2009; Kundra et al., 2011).  
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Figure 5.10. Ratio of cross diffusion coefficient (D21/D11) of carbon dioxide due to the 
concentration gradient of nitrogen 

 

 

Figure 5.11. Ratio of cross diffusion coefficient (D12/D22) of nitrogen due to the 
concentration gradient of carbon dioxide 
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5.1 Diffusivity Correlations 
 

To develop a mathematical correlation for diffusivity as a function of gas composition, we 

used Table curve 3D software developed by (SYSTAT Software, Inc.). The results shown in 

Figures 5.6-5.9 were fitted, and the best functions with the fewest parameters are given in 

Equations (5.1-5.4). 
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The variables   and   are the compositions of nitrogen and carbon dioxide respectively. 

Table 5.3 lists all the fitting parameters and details for Equations (5.1-5.4). The mass of 

absorbed gases predicted by Equations (5.1-5.4) agrees well with that based on the 

optimally-determined diffusivity and the experimental data.  

5.2   Sensitivity Analysis 

 

The final results obtained in this study were tested for sensitivity of the initial diffusivities 

guesses. They were varied by ± 3% to find the effect on the final results. The results are 

summarized in Table 5.4. The plots are given in Appendix D. It was found that the trend of 

diffusivities stays the same and the maximum values do not change by more than 10%.  
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Table 5.3. Parameters for diffusivity correlation at 230C and 224 kPa  

Parameter                 

a      
      

      
      

                     

b       
      

      
      

                           

c       
      

      
      

             0 

d       
      

      
      

                

e       
      

      
      

6.6268 0 

f       
      

      
      

           0 

g       
      

      
      

                       

 h       
      

      
      

            0 

i       
      

      
      

        0 

j       
      

      
      

        0 

k 0 0 8.7533 0 

   Coefficient 
of 
Determination 

0.9998 0.9985 0.9907 1 

Fit standard 
error 

      
       

      
       

             0 

F-statistic 7502.8440 678.5260 951.8373         
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Table 5.4. Sensitivity analysis     change in the estimate 

 Initial 
estimate 

Output with initial 
estimate 

Output with +3% 
increase in the estimate 

% 
change 

Output with -3% 
decrease in the estimate 

% 
Change 

D11                      to 
           
 

          to 
           
 

4.50 to 
5.73 
 

            to      
      
 

-9.99 to 
2.45 

D12                      to 
         
 

          to 
          
 

2.87 to 
3 
 

            to      
     
 

-9.58 to -
9.66 

D21                       to 
          
 

          to 
          
 

3 to 3 
 

             
to           
 

-9.71 to -
9.699 

D22                      to 
          
 

          to     
     
 

7.611 to 
5.72 
 

            to 
          
 

-7.34 to -
7.07 

 

 
  
 
  
  
 

 

  

 

 



  

102 
 

6 CONCLUSIONS and 

RECOMMENDATIONS 

 

6.1  CONCLUSIONS 

 

In this study, we derived a detailed, dynamic, mass-transfer model of the experimental 

diffusion process for the polymer phase to provide the temporal masses of gases in the 

polymer during the diffusion experiments. Due to the presence of highly non-linear partial 

differential equations, the analytical solution to this problem is not possible. Therefore, the 

optimal control strategy was used to solve this problem numerically.  

For this purpose an optimal control framework was developed to determine 

multicomponent concentration dependent diffusivities. Necessary conditions were 

determined at which the error between the calculated and experimental gas masses was 

minimized. The satisfaction of these conditions determines the unknown diffusivities. Then, 

these conditions were used to develop an optimal control frame work. 

The above optimal control framework was applied to the ternary system of nitrogen (1) 

and carbon dioxide (2) in polystyrene (3) at room temperature (23oC) and a pressure of 224 

kPa. Solubility and diffusion experiments data were used along with the detailed mass 
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transfer model and optimal control framework to calculate the multi-component 

diffusivities of nitrogen and carbon dioxide in polystyrene as a function of their 

compositions. The diffusivity of carbon dioxide was found to be greater than that of 

nitrogen. The value of the main diffusion coefficient     was found to increase as the 

concentration of carbon dioxide increased. The highest value of     obtained was 

                 for nitrogen mass fraction of             and for a carbon dioxide 

mas fraction of          . The     decreased after the mass fraction carbon dioxide 

mass fraction of          . The diffusivity varied in the range of      t            . 

The cross-diffusion coefficient      increased as the concentrations of nitrogen and carbon 

dioxide increased. The diffusivity reached its maximum value when the concentrations of 

nitrogen and carbon dioxide were at their maximum values. The diffusivity was of the order 

of            .     

A trend similar to that of     was observed with cross-diffusion coefficient    . The 

diffusivity of carbon dioxide increased for the mass fractions of carbon dioxide  ranging 

from 0 to          .  The diffusivity was found to be of the order of          . After 

the carbon dioxide mass fraction reached          , the diffusivity decreased as the 

mass of carbon dioxide increased, reaching a minimum at the carbon dioxide mass fraction 

of          .      

The diffusion coefficient,      was found to increase with the concentrations of nitrogen 

and carbon dioxide. Diffusivity      remained high with low concentrations of carbon 

dioxide. The diffusivity was found to be of the order of          .  
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6.2  RECOMMENDATIONS 

 

This work was a first step towards producing the important, fundamental diffusivity data 

that are required for chemical industries.  Optimal control framework developed in this 

study can be used to generate concentration dependent multicomponent diffusivity data 

for two gases and a liquid. Future experiments can be done with different gases and 

polymers at different temperatures and pressures.  
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A 1 Pressure versus time plot of solubility experiment 

 

 

A 2 Pressure versus time plot of solubility experiment 
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A 3 Pressure versus time plot of solubility experiment 

 

 
A 4 Pressure versus time plot of solubility experiment 
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B 1 Straight line fit for nitrogen 

 

 

B 2 Straight line fit for carbon dioxide 
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Table B 1 Calculation of masses of two gases in the sample during diffusion experiments 

N2 Area Under 
the Curve 

L g g/L 

Initial 6083656.314 0.00008274 0.000207978 1.039890968 

2 min 5540370.264 0.00007535 0.000189405 0.947026048 

4 min 5119394.174 0.00006962 0.000175014 0.875067803 

6 min  4264247.514 0.00005799 0.000145779 0.728895954 

8 min  4081304.214 0.00005550 0.000139525 0.697625107 

10 min 4001164.664 0.00005441 0.000136785 0.683926701 

CO2 

Initial 7800756.09 0.00010315 0.000414931 2.074654067 

2 min 6804815.13 0.00008998 0.000361956 1.80977808 

4 min 6382529.03 0.00008440 0.000339494 1.697468765 

6 min  4502618.32 0.00005954 0.000239499 1.197496153 

8 min  3628367.43 0.00004798 0.000192997 0.964984311 

10 min 3326615.03 0.00004399 0.000176946 0.884731598 
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Table B 2 Calculation of masses of two gases in the sample during solubility experiments 

N2 Area Under 
the Curve 
Initial 

Area Under 
the Curve 
Final 

Volume in 
Liters Initial 

Volume in 
Liters 
Final 

Mass in g 
Initial 

Mass in g 
Final 

 30338453.29 24670022.39 0.000412633 0.000335537 0.001037162 0.000843379 

 23420261.44 22470110.78 0.000318539 0.000305616 0.000800654 0.000768172 

 28023893.17 25468419.5 0.000381153 0.000346396 0.000958035 0.000870673 

 30705019.36 25629510.59 0.000417619 0.000348587 0.001049693 0.00087618 

 25323649.99 28981175.65 0.000344427 0.000394173 0.000865724 0.000990762 

CO2 

 15254318.6 8941923.39 0.000201718 0.000118245 0.000811394 0.000475631 

 15773312.38 8230471.614 0.000208581 0.000108837 0.000839 0.000437788 

 13955661.99 8585441.282 0.000184545 0.000113531 0.000742317 0.000456669 

 11838321.61 66258408.34 0.000156546 0.000876179 0.000629693 0.003524358 

 10305841.78 5136473.106 0.000136281 0.000067923 0.000548179 0.000273215 
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Set Derivs. Cpp 
 

#pragma once 
#include "Experiment.h" 
#include "SetDerivatives.h" 
 
using namespace ExperimentNS; 
 
void SetDerivatives::initialize(void) 
{ 
setStatePtrs_ = setCostatePtrs_ = false; 
w_ = ddt_w_ = v_ = ddt_v_ = 0; 
} 
 
SetDerivatives::SetDerivatives(Experiment &e) : e_(e) 
{ 
initialize(); 
} 
 
SetDerivatives::~SetDerivatives(void) {} 
 
//TODO: write a Vector function to set all elements to zero 
const int SetDerivatives::operator () (const double x, double *const y, double *const dy) 
{ 
if(e_.useStateDerivs_) { //it is set up in getFunc() and getGrad() 
//set up state_ pointers only once 
return setStateDerivs(x, y, dy); 
} 
else { //set up costate pointers only once 
return setCostateDerivs(x, y, dy); 
} 
} 
 
void SetDerivatives::allocate(void) 
{ 
w_ = v_w_.set(e_.nGases_); 
ddt_w_ = v_ddt_w_.set(e_.nGases_);//used in setStateDerivs() 
v_ = v_v_.set(e_.nGases_); 
ddt_v_ = v_ddt_v_.set(e_.nGases_);//used in setCostateDerivs() 
} 
 
void SetDerivatives::set(void) 
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{ 
allocate(); 
} 
 
//------ functions called by operator() [i.e. SetDerivs() ] 
int SetDerivatives::setStateDerivs( const double x,//time 
double *const y,//gas mass fractions 
double *const dy) //d/dt(y) 
{ 
// set pointers 
w_[0] = &y[0]; 
ddt_w_[0] = &dy[0];//for 1st gas 
w_[1] = &y[e_.nZminus1_]; 
ddt_w_[1] = &dy[e_.nZminus1_];//for 2nd gas 
 
unsigned i, j; 
 
 
for(i=0; i<e_.nGases_; i++) { 
for(j=0; j<e_.nZminus1_; j++) { 
if(w_[i][j] < -1e3) { 
return -1;//failed 
//puts("w_[i][j] < 0. in Experiment::setStateDerivs().."); 
} 
} 
} 
 
 
//state_ equations for ith gas; index of the other gas is k --------------- 
for(i=0; i<e_.nGases_; i++) { 
unsigned k;//index of the other gas 
k = (i==0) ? 1 : 0; 
for(j=0; j<e_.nZminus1_; j++) { 
double w3 = 1 - w_[i][j] - w_[k][j]; double w3_sqr = SQR(w3); 
double wibyw3 = w_[i][j]/w3; 
 
double wijMinus1 = w_[i][j-1]; 
double wkjMinus1 = w_[k][j-1]; 
if(j==0) { //at the grid point below the gas-liquid surface 
wijMinus1 = (*e_.intGasWvsTime_[i])(x); 
wkjMinus1 = (*e_.intGasWvsTime_[k])(x); 
} 
//for the ith gas 
double ddz_wi = (w_[i][j+1]-wijMinus1)/e_.dZ2_; 
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double ddz_wi_sqr=SQR(ddz_wi); 
//for the other gas of index k 
double ddz_wk = (w_[k][j+1]-wkjMinus1)/e_.dZ2_; 
double ddz_wk_sqr = SQR(ddz_wk); 
 
double d2dz2_wi, d2dz2_wk; 
if(j < e_.nZminus2_) { //for intermediate grid points 
d2dz2_wi = (w_[i][j+1]-2*w_[i][j]+wijMinus1)/e_.dZsqr_; 
d2dz2_wk = (w_[k][j+1]-2*w_[k][j]+wkjMinus1)/e_.dZsqr_; 
} 
else { //at the bottom 
d2dz2_wi = 2*(w_[i][j-1]-w_[i][j])/e_.dZsqr_; 
d2dz2_wk = 2*(w_[k][j-1]-w_[k][j])/e_.dZsqr_; 
} 
 
double Dii = ( *e_.DvsGasMf_[i][i] ) ( w_[i][j], w_[k][j] ); 
double Dik = ( *e_.DvsGasMf_[i][k] ) ( w_[i][j], w_[k][j] ); 
double Dki = ( *e_.DvsGasMf_[k][i] ) ( w_[i][j], w_[k][j] ); 
double Dkk = ( *e_.DvsGasMf_[k][k] ) ( w_[i][j], w_[k][j] ); 
 
double ddwi_Dii = ( *e_.dDvsGasMf_[i][i][i] ) ( w_[i][j],w_[k][j] ); 
double ddwk_Dii = ( *e_.dDvsGasMf_[i][i][k] ) ( w_[i][j],w_[k][j] ); 
double ddwi_Dik = ( *e_.dDvsGasMf_[i][k][i] ) ( w_[i][j],w_[k][j] ); 
double ddwk_Dik = ( *e_.dDvsGasMf_[i][k][k] ) ( w_[i][j],w_[k][j] ); 
double ddwi_Dki = ( *e_.dDvsGasMf_[k][i][i] ) ( w_[i][j],w_[k][j] ); 
double ddwk_Dki = ( *e_.dDvsGasMf_[k][i][k] ) ( w_[i][j],w_[k][j] ); 
double ddwi_Dkk = ( *e_.dDvsGasMf_[k][k][i] ) ( w_[i][j],w_[k][j] ); 
double ddwk_Dkk = ( *e_.dDvsGasMf_[k][k][k] ) ( w_[i][j],w_[k][j] ); 
 
if(j < e_.nZminus2_) { //for intermediate grid points 
//@@ state eqn 
double Dkkki = Dkk*ddz_wk + Dki*ddz_wi; 
double Diiik = Dii*ddz_wi + Dik*ddz_wk; 
 
ddt_w_[i][j] = ( Dkkki + Diiik ) * (1-w_[k][j])/w3_sqr*ddz_wi 
+ ( Dkkki + Diiik ) * w_[i][j]/w3_sqr*ddz_wk 
+ ( Dki*w_[i][j] + (1-w_[k][j])*Dii ) / w3*d2dz2_wi 
+ ( Dkk*w_[i][j] + (1-w_[k][j])*Dki ) / w3*d2dz2_wk 
+ ( w_[i][j]*(ddwi_Dkk + ddwk_Dki) + (1-w_[k][j])*(ddwk_Dii + ddwi_Dik) ) / 
w3*ddz_wi*ddz_wk 
+ ( w_[i][j]*ddwi_Dki + (1-w_[k][j])*ddwi_Dii ) / w3*ddz_wi_sqr 
+ ( (1-w_[k][j])*ddwk_Dik + w_[i][j]*ddwk_Dkk ) / w3*ddz_wk_sqr; 
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} 
else { //at the bottom 
ddt_w_[i][j] = ( Dki*w_[i][j] + (1-w_[k][j])*Dii ) / w3*d2dz2_wi 
+ ( Dkk*w_[i][j] + (1-w_[k][j])*Dki ) / w3*d2dz2_wk; 
 
} 
} 
} 
 
 
 
for(i=0; i<e_.n_; i++) { 
if(!_finite(dy[i])) { 
return -1;//failed 
} 
} 
return 1; 
};//-- end of setStateDerivs() -- 
 
int SetDerivatives::setCostateDerivs( const double x,//time 
double *const y,//lambda 
double *const dy) 
{ 
// set pointers 
v_[0] = &y[0]; 
ddt_v_[0] = &dy[0];//for 1st gas 
v_[1] = &y[e_.nZminus1_]; 
ddt_v_[1] = &dy[e_.nZminus1_];//for 2nd gas 
 
//costate equations for ith gas; index of the other gas is k --------------- 
unsigned i, j; 
for(i=0; i<e_.nGases_; i++) { 
double diff = (*e_.simGasMassAbsVsTime_[i])(x) - (*e_.expGasMassAbsVsTime_[i])(x); 
if (diff > 0.) diff *= e_.penalty_; 
double term1 = e_.wt_[i]*e_.factor_*( diff ); 
 
unsigned k;//index of the other gas 
k = (i==0) ? 1 : 0; 
for (j=0; j<e_.nZminus1_; j++) { 
//derivatives for costate variables --------------- 
double vijMinus1 = 0., vkjMinus1 = 0.; 
if(j==0) {//at the grid point below the gas-liquid surface 
vijMinus1 = 0;//BC 
vkjMinus1 = 0;//BC 
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} 
else { 
vijMinus1 = v_[i][j-1]; 
vkjMinus1 = v_[k][j-1]; 
} 
//for the ith gas 
double ddz_vi = (v_[i][j+1]-vijMinus1)/e_.dZ2_; 
double ddz_vi_sqr=SQR(ddz_vi); 
//for the other gas of index k 
double ddz_vk = (v_[k][j+1]-vkjMinus1)/e_.dZ2_; 
double ddz_vk_sqr = SQR(ddz_vk); 
 
double d2dz2_vi, d2dz2_vk; 
if(j < e_.nZminus2_) { //for intermediate grid points 
d2dz2_vi = (v_[i][j+1]-2*v_[i][j]+vijMinus1)/e_.dZsqr_; 
d2dz2_vk = (v_[k][j+1]-2*v_[k][j]+vkjMinus1)/e_.dZsqr_; 
} 
else { //at the bottom 
d2dz2_vi = 2*(v_[i][j-1]-v_[i][j])/e_.dZsqr_; 
d2dz2_vk = 2*(v_[k][j-1]-v_[k][j])/e_.dZsqr_; 
} 
 
//derivatives for state_ variables --------------- 
double wij = (*e_.stateVsTime_[i][j])(x); 
double wkj = (*e_.stateVsTime_[k][j])(x); 
double w3 = 1 - wij - wkj; 
double w3_sqr = SQR(w3); 
double w3_cub = CUB(w3); 
double wibyw3 = wij/w3; 
double wkbyw3 = wkj/w3; 
 
double wijMinus1 = 0., wkjMinus1 = 0.; 
if(j==0) { //at the grid point below the gas-liquid surface 
wijMinus1 = (*e_.intGasWvsTime_[i])(x); 
wkjMinus1 = (*e_.intGasWvsTime_[k])(x); 
} 
else { 
double wijMinus1 = (*e_.stateVsTime_[i][j-1])(x); 
double wkjMinus1 = (*e_.stateVsTime_[k][j-1])(x); 
} 
 
double ddz_wi, ddz_wi_sqr, ddz_wk, ddz_wk_sqr, d2dz2_wi, d2dz2_wk; 
if(j < e_.nZminus2_) { //for intermediate grid points 
double wijPlus1 = (*e_.stateVsTime_[i][j+1])(x); 
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//for the ith gas 
ddz_wi = (wijPlus1-wijMinus1)/e_.dZ2_; 
ddz_wi_sqr=SQR(ddz_wi); 
 
double wkjPlus1 = (*e_.stateVsTime_[k][j+1])(x); 
//for the other gas of index k 
ddz_wk = (wkjPlus1-wkjMinus1)/e_.dZ2_; 
ddz_wk_sqr = SQR(ddz_wk); 
 
d2dz2_wi = (wijPlus1-2*wij+wijMinus1)/e_.dZsqr_; 
d2dz2_wk = (wkjPlus1-2*wkj+wkjMinus1)/e_.dZsqr_; 
} 
else { //at the bottom 
ddz_wi = ddz_wi_sqr = ddz_wk = ddz_wk_sqr = 0.; 

//1st derivs are zero 
 
d2dz2_wi = 2*(wijMinus1-wij)/e_.dZsqr_; 
d2dz2_wk = 2*(wkjMinus1-wkj)/e_.dZsqr_; 
} 
 
double Dii = (*e_.DvsGasMf_[i][i])(wij,wkj); 
double Dik = (*e_.DvsGasMf_[i][k])(wij,wkj); 
double Dki = (*e_.DvsGasMf_[k][i])(wij,wkj); 
double Dkk = (*e_.DvsGasMf_[k][k])(wij,wkj); 
 
double ddwi_Dii = (*e_.dDvsGasMf_[i][i][i])(wij,wkj);//d/dw[i] (Dii) 
double ddwk_Dii = (*e_.dDvsGasMf_[i][i][k])(wij,wkj);//d/dw[k] (Dii) 
double ddwi_Dik = (*e_.dDvsGasMf_[i][k][i])(wij,wkj);//d/dw[i] (Dik) 
double ddwk_Dik = (*e_.dDvsGasMf_[i][k][k])(wij,wkj);//d/dw[k] (Dik) 
double ddwi_Dki = (*e_.dDvsGasMf_[k][i][i])(wij,wkj);//d/dw[i] (Dki) 
double ddwk_Dki = (*e_.dDvsGasMf_[k][i][k])(wij,wkj);//d/dw[k] (Dki) 
double ddwi_Dkk = (*e_.dDvsGasMf_[k][k][i])(wij,wkj);//d/dw[i] (Dkk) 
double ddwk_Dkk = (*e_.dDvsGasMf_[k][k][k])(wij,wkj);//d/dw[k] (Dkk) 
 
//2nd dervatives of Dijs 
double d2dwi2_Dkk = ( (*e_.dDvsGasMf_[k][k][i])(1.001*wij,wkj) 

- ddwi_Dkk ) * 1e-3; 
double d2dwidwk_Dki = ( (*e_.dDvsGasMf_[k][i][i])(1.001*wij,wkj) 

- ddwk_Dki ) * 1e-3; 
double d2dwidwk_Dii = ( (*e_.dDvsGasMf_[i][i][k])(1.001*wij,wkj) 

- ddwk_Dii ) * 1e-3; 
double d2dwi2_Dik = ( (*e_.dDvsGasMf_[i][k][i])(1.001*wij,wkj) 

- ddwi_Dik ) * 1e-3; 
double d2dwi2_Dki = ( (*e_.dDvsGasMf_[k][i][i])(1.001*wij,wkj) 
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- ddwi_Dki ) * 1e-3; 
double d2dwi2_Dii = ( (*e_.dDvsGasMf_[i][i][i])(1.001*wij,wkj) 

- ddwi_Dii ) * 1e-3; 
double d2dwidwk_Dik = ( (*e_.dDvsGasMf_[i][k][k])(1.001*wij,wkj) 

- ddwk_Dik ) * 1e-3; 
double d2dwidwk_Dkk = ( (*e_.dDvsGasMf_[k][k][k])(wij,wkj) 

- ddwk_Dkk ) * 1e-3; 
 
//p.6 
double Dkkki = Dkk*ddz_wk + Dki*ddz_wi; 
double Diiik = Dii*ddz_wi + Dik*ddz_wk; 
 
double ddz_Dkk = ddwi_Dkk*ddz_wi + ddwk_Dkk*ddz_wk; 
double ddz_Dki = ddwi_Dki*ddz_wi + ddwk_Dki*ddz_wk; 
double ddz_Dkkki = ddz_Dkk*ddz_wk + Dkk*d2dz2_wk + ddz_Dki*ddz_wi 

+ Dki*d2dz2_wi; 
 
double ddz_Dii = ddwi_Dii*ddz_wi + ddwk_Dii*ddz_wk; 
double ddz_Dik = ddwi_Dik*ddz_wi + ddwk_Dik*ddz_wk; 
double ddz_Diiik = ddz_Dii*ddz_wi + Dii*d2dz2_wi + ddz_Dik*ddz_wk 

+ Dik*d2dz2_wk; 
 
double DwiDkkki = ddwi_Dkk*ddz_wk + ddwi_Dki*ddz_wi; 
double DwiDiiik = ddwi_Dii*ddz_wi + ddwi_Dik*ddz_wk; 
double ddwi_fi = ( 2*(1-w_[k][j])/w3*(Dkkki+Diiik) + (1- w_[k][j])* (DwiDkkki + DwiDiiik) ) / 
w3_sqr*ddz_wi 
+ ( (1+w_[i][j]-w_[k][j])/w3*Dkkki + (1+w_[i][j]-w_[k][j])/w3*Diiik + w_[i][j]*DwiDkkki + 
w_[i][j]*DwiDiiik ) / w3_sqr*ddz_wk 
+ ( (1-w_[k][j])*Dki/w3 + (1-w_[k][j])*Dii/w3 + w_[i][j]*ddwi_Dki + (1-w_[k][j])*ddwi_Dii ) / 
w3*d2dz2_wi 
+ ( (1-w_[k][j])*Dkk/w3 + (1-w_[k][j])*Dki/w3 + w_[i][j]*ddwi_Dkk + (1-w_[k][j])*ddwi_Dki ) 
/ w3*d2dz2_wk 
+ ( (1-w_[k][j])*ddwi_Dkk/w3 + (1- w_[k][j])*ddwk_Dki/w3 + (1-w_[k][j])/w3*ddwk_Dii + (1-
w_[k][j])*ddwi_Dik/w3 
+ w_[i][j]*d2dwi2_Dkk + w_[i][j]*d2dwidwk_Dki + (1-w_[k][j])*d2dwidwk_Dii + (1-
w_[k][j])*d2dwi2_Dik ) / w3*ddz_wi*ddz_wk 
+ ( (1-w_[k][j])*ddwi_Dki/w3 + (1-w_[k][j])*ddwi_Dii/w3 + w_[i][j]*d2dwi2_Dki + (1-
w_[k][j])*d2dwi2_Dii ) /w3 * ddz_wi_sqr 
+ ( (1-w_[k][j])*ddwk_Dik/w3 + (1-w_[k][j])*ddwk_Dkk/w3 + (1-w_[k][j])*d2dwidwk_Dik + 
w_[i][j]*d2dwidwk_Dkk ) /w3 * ddz_wk_sqr;  //p.6 
 
double ddwi_fk = ( -1/w3_sqr + (1-w_[i][j])/w3_cub )*Diiik*ddz_wk + (1-
w_[i][j])/w3_sqr*DwiDiiik*ddz_wk 
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+ ( -1/w3_sqr + (1-w_[i][j])/w3_cub )*Dkkki*ddz_wk + (1-
w_[i][j])/w3_sqr*DwiDkkki*ddz_wk 
 
+ w_[k][j]/w3_cub*Diiik*ddz_wi + w_[k][j]/w3_sqr*DwiDiiik*ddz_wi 
 
+ w_[k][j]/w3_cub*Dkkki*ddz_wi + w_[k][j]/w3_sqr*DwiDkkki*ddz_wi 
 
+ ddwi_Dik*w_[k][j]/w3*d2dz2_wk + Dik*w_[k][j]/w3_sqr*d2dz2_wk 
 
+ ddwi_Dkk*(1-w_[i][j])/w3*d2dz2_wk + Dkk*(-1/w3 + (1-w_[i][j])/w3_sqr)*d2dz2_wk 
 
+ ddwi_Dii*w_[k][j]/w3*d2dz2_wi + Dii*w_[k][j]/w3_sqr*d2dz2_wi 
 
+ ddwi_Dik*(1-w_[i][j])/w3*d2dz2_wi + Dik*(-1/w3 + (1-w_[i][j])/w3_sqr)*d2dz2_wi 
 
+ (w_[k][j]/w3_sqr*ddwk_Dii + w_[k][j]/w3*d2dwidwk_Dii)*ddz_wi*ddz_wk 
 
+ (w_[k][j]/w3_sqr*ddwi_Dik + w_[k][j]/w3*d2dwi2_Dik)*ddz_wi*ddz_wk 
 
+ ( (-1/w3 + (1-w_[i][j])/w3_sqr)*ddwi_Dkk + (1-w_[i][j])/w3*d2dwi2_Dkk)*ddz_wi*ddz_wk 
 
+ ( (-1/w3 + (1-w_[i][j])/w3_sqr)*ddwk_Dki + (1-
w_[i][j])/w3*d2dwidwk_Dki)*ddz_wi*ddz_wk 
 
+ (w_[k][j]/w3_sqr*ddwk_Dik + w_[k][j]/w3*d2dwidwk_Dik)*ddz_wk_sqr 
 
+ ( (-1/w3 + (1-w_[i][j])/w3_sqr)*ddwk_Dkk + (1-w_[i][j])/w3*d2dwidwk_Dkk)*ddz_wk_sqr 
 
+ ( (-1/w3 + (1-w_[i][j])/w3_sqr)*ddwi_Dki + (1-w_[i][j])/w3*d2dwi2_Dki)*ddz_wi_sqr 
 
+ (w_[k][j]/w3_sqr*ddwi_Dii + w_[k][j]/w3*d2dwidwk_Dii)*ddz_wi_sqr; 
 
 
 
double ddwiz_fi = (1-w_[k][j])*(Dkkki + Diiik + Dki + Dii) / w3_sqr*ddz_wi 
+ w_[i][j]*(Dki+Dii) / w3_sqr*ddz_wk 
+(w_[i][j]*(ddwi_Dkk + ddwk_Dki) + (1-w_[k][j])*(ddwk_Dii + ddwi_Dik) )/ w3*ddz_wk 
+2*(w_[i][j]*ddwi_Dki + (1-w_[k][j])*ddwi_Dii)/ w3*ddz_wi;   //p.7 
 
double d2dzdwi_Dkk = d2dwi2_Dkk*ddz_wi + d2dwidwk_Dkk*ddz_wk; 
double d2dwk2_Dki = ( (*e_.dDvsGasMf_[k][i][k])(wij,1.003*wkj) - ddwk_Dki ) * 1e-3; 
double d2dwk2_Dik = ( (*e_.dDvsGasMf_[i][k][k])(wij,1.003*wkj) - ddwk_Dik ) * 1e-3; 
double d2dzdwk_Dki = d2dwk2_Dki*ddz_wk + d2dwidwk_Dki*ddz_wi; 
double d2dzdwk_Dik = d2dwk2_Dik*ddz_wk + d2dwidwk_Dik*ddz_wi; 
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double d2dwk2_Dii = ( (*e_.dDvsGasMf_[i][i][k])(wij,1.003*wkj) - ddwk_Dii ) * 1e-3; 
double d2dzdwk_Dii = d2dwk2_Dii*ddz_wk + d2dwidwk_Dii*ddz_wi; 
 
double d2dzdwi_Dik = d2dwi2_Dik*ddz_wi + d2dwidwk_Dik*ddz_wk; 
double d2dzdwi_Dki = d2dwi2_Dki*ddz_wi + d2dwidwk_Dki*ddz_wk; 
double d2dzdwi_Dii = d2dwi2_Dki*ddz_wi + d2dwidwk_Dii*ddz_wk; 
 
 
double d2dzdwiz_fi = -ddz_wk*(Dkkki + Diiik + Dki + Dii) / w3_sqr*ddz_wi 
+ (1-w_[k][j])*(ddz_Dkkki + ddz_Diiik + ddz_Dki + ddz_Dii) / w3_sqr*ddz_wi 
 
+ (1-w_[k][j])*(Dkkki + Diiik + Dki + Dii)* 2*w3*(ddz_wi+ddz_wk)/w3_cub  *ddz_wi 
+ (1-w_[k][j])*(Dkkki + Diiik + Dki + Dii) / w3_sqr*d2dz2_wi 
 
+ ddz_wi*(Dki+Dii) / w3_sqr*ddz_wk + w_[i][j]*(ddz_Dki + ddz_Dii) / w3_sqr*ddz_wk 
+ w_[i][j]*(Dki+Dii)* 2*w3*(ddz_wi+ddz_wk)/w3_cub *ddz_wk 
+ w_[i][j]*(Dki+Dii) / w3_sqr*d2dz2_wk 
 
+( ddz_wi*(ddwi_Dkk + ddwk_Dki) + w_[i][j]*(d2dzdwi_Dkk + d2dzdwk_Dki) 
-ddz_wk*(ddwk_Dii + ddwi_Dik) + (1-w_[k][j])*(d2dzdwk_Dii + d2dzdwi_Dik) )/ w3*ddz_wk 
 
+(w_[i][j]*(ddwi_Dkk + ddwk_Dki) + (1-w_[k][j])*(ddwk_Dii + ddwi_Dik) )* 
2*w3*(ddz_wi+ddz_wk)/w3_cub *ddz_wk 
+(w_[i][j]*(ddwi_Dkk + ddwk_Dki) + (1-w_[k][j])*(ddwk_Dii + ddwi_Dik) )/ w3*d2dz2_wk 
 
+2*( ddz_wi*ddwi_Dki + w_[i][j]*d2dzdwi_Dki - ddz_wk*ddwi_Dii + (1-
w_[k][j])*d2dzdwi_Dii )/ w3*ddz_wi 
 
+2*(w_[i][j]*ddwi_Dki + (1-w_[k][j])*ddwi_Dii)* 2*w3*(ddz_wi+ddz_wk)/w3_cub *ddz_wi 
+2*(w_[i][j]*ddwi_Dki + (1-w_[k][j])*ddwi_Dii)/ w3*d2dz2_wi; 
 
 
double ddwizz_fi = (Dki*w_[i][j] + (1-w_[k][j])*Dii) /w3;  // p.11 
 
double d2dzdwizz_fi = ( w_[i][j]*ddz_Dki + (1-w_[k][j])*ddz_Dii + ((1-w_[k][j])/w3*ddz_wi + 
w_[i][j]/w3*ddz_wk)*Dki + 
(2*(1-w_[k][j])/w3*ddz_wi + ddz_wk )*Dii )/w3; //p.15 
 
double d2dz2_Dki = ddwi_Dki*d2dz2_wi + d2dzdwi_Dki*ddz_wi + ddwk_Dki*d2dz2_wk + 
d2dzdwk_Dki*ddz_wk; 
double d2dz2_Dii = ddwi_Dii*d2dz2_wi + d2dzdwi_Dii*ddz_wi + ddwk_Dii*d2dz2_wk + 
d2dzdwk_Dii*ddz_wk; 
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double d2dz2_Dik = ddwi_Dik*d2dz2_wi + d2dzdwi_Dik*ddz_wi + ddwk_Dik*d2dz2_wk + 
d2dzdwk_Dik*ddz_wk; 
 
double d3dz2dwizz_fi = ( ddz_wi*ddz_Dki + w_[i][j]*d2dz2_Dki 
- ddz_wk*ddz_Dii + (1-w_[k][j])*d2dz2_Dii 
+ ((1-w_[k][j])/w3*ddz_wi + w_[i][j]/w3*ddz_wk)*ddz_Dki + 
 
+ ( (1-w_[k][j])/w3_sqr*ddz_wi + (-1/w3 + (1-w_[k][j])/w3_sqr)*ddz_wk + (1-
w_[k][j])/w3*d2dz2_wi 
+ (1/w3 + w_[i][j]/w3_sqr)*ddz_wi + w_[i][j]/w3_sqr*ddz_wk + w_[i][j]/w3*d2dz2_wk 
)*Dki 
+ ((1-w_[k][j])/w3*ddz_wi + w_[i][j]/w3*ddz_wk)*ddz_Dki 
 
+ ( 2*( (1-w_[k][j])/w3_sqr*ddz_wi + (-1/w3 + (1-w_[k][j])/w3_sqr)*ddz_wk )*ddz_wi 
+ 2*(1-w_[k][j])/w3*d2dz2_wi + d2dz2_wk )*Dii 
+ (2*(1-w_[k][j])/w3*ddz_wi + ddz_wk )*ddz_Dii )/w3 + 
 
+ d2dzdwizz_fi/w3*(ddz_wi+ddz_wk); 
 
 
double ddwiz_fk = (1-w_[i][j])/w3_sqr*Dii*ddz_wk + (1-w_[i][j])/w3_sqr*Dki*ddz_wk 
+ 2*w_[k][j]/w3_sqr*Dii*ddz_wi + 2*w_[k][j]/w3_sqr*Dki*ddz_wi 
+ w_[k][j]/w3*ddwk_Dii*ddz_wk + w_[k][j]/w3*ddwi_Dik*ddz_wk 
+ (1-w_[i][j])/w3*ddwi_Dkk*ddz_wk + (1-w_[i][j])/w3*ddwk_Dki*ddz_wk 
+ 2*(1-w_[i][j])/w3*ddwi_Dki*ddz_wi + 2*w_[k][j]/w3*ddwi_Dii*ddz_wi; 
 
//double ddwiz_fk = (1-w_[i][j])/w3_sqr*(Dii*ddz_wk + Dki*ddz_wk) 
// + 2*w_[k][j]/w3_sqr*(Dii*ddz_wi + Dki*ddz_wi) 
// + w_[k][j]/w3*(ddwk_Dii*ddz_wk + ddwi_Dik*ddz_wk + 2*ddwi_Dii*ddz_wi) 
// + (1-w_[i][j])/w3*(ddwi_Dkk*ddz_wk + ddwk_Dki*ddz_wk + 2*ddwi_Dki*ddz_wi); 
 
double d2dzdwiz_fk = ((1-w_[i][j]+w_[k][j])/w3_cub*ddz_wi + 2*(1-
w_[i][j])/w3_cub*ddz_wk)*(Dii*ddz_wk + Dki*ddz_wk) 
+ (1-w_[i][j])/w3_sqr*(ddz_Dii*ddz_wk + Dii*d2dz2_wk + ddz_Dki*ddz_wk + 
Dki*d2dz2_wk) 
 
+ 2*(2*w_[k][j]/w3_cub*ddz_wi + (1-w_[i][j]+w_[k][j])/w3_cub*ddz_wk)*(Dii*ddz_wi + 
Dki*ddz_wi) 
+ 2*w_[k][j]/w3_sqr*(ddz_Dii*ddz_wi  + Dii*d2dz2_wi + ddz_Dki*ddz_wi + Dki*d2dz2_wi) 
 
+ (w_[k][j]/w3_sqr*ddz_wi + (1-w_[i][j])/w3_sqr*ddz_wk)*(ddwk_Dii*ddz_wk + 
ddwi_Dik*ddz_wk + 2*ddwi_Dii*ddz_wi) 
+ w_[k][j]/w3*(d2dzdwk_Dii*ddz_wk + ddwk_Dii*d2dz2_wk + d2dzdwi_Dik*ddz_wk + 
ddwi_Dik*d2dz2_wk 
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+ 2*d2dzdwi_Dii*ddz_wi + 2*ddwi_Dii*d2dz2_wi) 
 
+ (w_[k][j]/w3_sqr*ddz_wi + (1-w_[i][j])/w3_sqr*ddz_wk)*(ddwi_Dkk*ddz_wk + 
ddwk_Dki*ddz_wk + 2*ddwi_Dki*ddz_wi) 
+ (1-w_[i][j])/w3*(d2dzdwi_Dkk*ddz_wk + ddwi_Dkk*d2dz2_wk + d2dzdwk_Dki*ddz_wk + 
ddwk_Dki*d2dz2_wk 
+ 2*d2dzdwi_Dki*ddz_wi + 2*ddwi_Dki*d2dz2_wi); 
 
 
 
 
double ddwizz_fk = ( Dii*w_[k][j] + Dik*(1-w_[i][j]) )/w3; 
 
double d2dzdwizz_fk = ( ddz_Dii*w_[k][j] + Dii*ddz_wk + ddz_Dik*(1-w_[i][j]) - Dik*ddz_wi) 
/w3 
+ ddwizz_fk/w3*(ddz_wi + ddz_wk); 
 
double d3dz2dwizz_fk = ( d2dz2_Dii*w_[k][j] + ddz_Dii*ddz_wk + ddz_Dii*ddz_wk + 
Dii*d2dz2_wk 
+ d2dz2_Dik*(1-w_[i][j]) - ddz_Dik*ddz_wi - ddz_Dik*ddz_wi - Dik*d2dz2_wi ) /w3 
+ ( ddz_Dii*w_[k][j] + Dii*ddz_wk + ddz_Dik*(1-w_[i][j]) - Dik*ddz_wi) /w3_sqr*(ddz_wi + 
ddz_wk) 
 
+ ( ddz_Dii*w_[k][j] + Dii*ddz_wk + ddz_Dik*(1-w_[i][j]) - Dik*ddz_wi)/w3_sqr*(ddz_wi + 
ddz_wk) 
+ ( Dii*w_[k][j] + Dik*(1-w_[i][j]) )* 2/w3_cub*(ddz_wi + ddz_wk) *(ddz_wi + ddz_wk) 
+ ( Dii*w_[k][j] + Dik*(1-w_[i][j]) )/w3_sqr*(d2dz2_wi + d2dz2_wk); 
 
 
//@@ check term1 
if(j < e_.nZminus2_) { //for intermediate grid points 
ddt_v_[i][j] = term1 - v_[i][j]*ddwi_fi + ddz_vi*ddwiz_fi + v_[i][j]*d2dzdwiz_fi 
- d2dz2_vi*ddwizz_fi - 2*ddz_vi*d2dzdwizz_fi - v_[i][j]*d3dz2dwizz_fi 
+v_[k][j]*ddwi_fk - ddz_vk*ddwiz_fk - v_[k][j]*d2dzdwiz_fk 
+ d2dz2_vk*ddwizz_fk + 2*ddz_vk*d2dzdwizz_fk + v_[k][j]*d3dz2dwizz_fk; 
 
} 
else { //at the bottom 
ddt_v_[i][j] = term1 - v_[i][j]*ddwi_fi + v_[i][j]*d2dzdwiz_fi 
- d2dz2_vi*ddwizz_fi - v_[i][j]*d3dz2dwizz_fi 
+v_[k][j]*ddwi_fk - ddz_vk*ddwiz_fk - v_[k][j]*d2dzdwiz_fk 
+ d2dz2_vk*ddwizz_fk + v_[k][j]*d3dz2dwizz_fk; 
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} 
} 
} 
//for(i=0; i<e_.n_; i++) dy[i] *= 1e-5; 
for(i=0; i<e_.n_; i++) { 
if(!_finite(dy[i])) { 
return -1;//failed 
} 
} 
return 1; 
};//-- end of setCostateDerivs() – 
 
 

Set Derives. h 

 

#pragma once 
#include "..\Vector\Vector.h" 
 
using namespace VectorNS; 
 
namespace ExperimentNS { 
class Experiment; 
 
class SetDerivatives { 
Experiment &e_; 
bool setStatePtrs_, setCostatePtrs_; 
 
Vec<double*> v_w_, v_ddt_w_,//used in setStateDerivs() 
v_v_, v_ddt_v_;//used in setCostateDerivs() 
double **w_, **ddt_w_, **v_, **ddt_v_; 
 
void initialize(void); 
void allocate(void); 
 
int setStateDerivs( const double x,//time 
double *const y,//gas mass fractions 
double *const dy) //d/dt(y) 
; 
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int setCostateDerivs( const double x,//time 
double *const y,//lambda 
double *const dy) 
;//-- end of setCostateDerivs() -- 
 
public: 
SetDerivatives(Experiment &e); 
~SetDerivatives(void); 
 
void set(void); 
 
//------ function called by de object [as SetDerivs() ] 
const int operator () (const double x, double *const y, double *const dy); 
 
};//--- end of class SetDerivatives --- 
}// --- end of ExperimentNS --- 

 

 

Get Gradient.Cpp 

 
 

#pragma once 
#include "Experiment.h" 
#include "GetGradient.h" 
 
using namespace ExperimentNS; 
 
void GetGradient::initialize() 
{ 
W_ = V_ = 0; tmpW_ = vD_ = 0; dD_ = 0; 
} 
 
__forceinline void GetGradient::allocate(void) 
{ 
vD_ = v2d_vD_.set(e_.nGases_, e_.nZminus1_); 
dD_ = v4d_dD_.set(e_.nGases_, e_.nGases_, e_.nDvsGasMf_, e_.nDvsGasMf_); 
 
W_ = v_W_.set(e_.nGases_); 
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V_ = v_V_.set(e_.nGases_); 
 
W_[0] = &e_.state_[0]; //for 1st gas 
W_[1] = &e_.state_[e_.nZminus1_]; //for 2nd gas 
V_[0] = &e_.coState_[0]; //for 1st gas 
V_[1] = &e_.coState_[e_.nZminus1_]; //for 2nd gas 
 
//used in Accumulate_dD() 
tmpW_ = v2d_tmpW_.set(e_.nGases_, e_.nZminus1_); 
} 
 
GetGradient::GetGradient(Experiment &e) : e_(e) 
{ 
initialize(); 
} 
 
void GetGradient::set() 
{ 
allocate(); 
} 
 
GetGradient::~GetGradient(void){ } 
 
const bool GetGradient::operator() (double ****const D,//IN: optimization parameter ie 
diffusivity 
double *const grad)//OUT: gradient 
{ 
e_.useStateDerivs_ = false;//for use in SetDerivs() 
 
//todo: set pointers to dD[] and d2D[] in Model 
unsigned i, j, k, l, m, n; 
for(i=0; i<e_.nZminus1_; i++) for(j=0; j<e_.nSamples_; j++) e_.coState_[i][j] = 0.; 
if(e_.de_->Solve(e_.coState_) != 1)//OUT: costate[n][nSamples_] variables 
error("Experiment::getGrad() failed.."); 
 
for(i=0; i<e_.nGases_; i++) for(j=0; j<e_.nGases_; j++) for(k=0; k<e_.nDvsGasMf_; k++) 
for(l=0; l<e_.nDvsGasMf_; l++) dD_[i][j][k][l] = 0.; 
 
for(i=0; i<e_.nGases_; i++) { 
k = (i==0) ? 1 : 0;//index of the other gas 
n = (i==0) ? 1 : 0;//index of the other gas; for use in vD_ 
//for(l=0; l<e_.nSamples_; l++) { 
for(l=1; l<e_.nSamples_-1; l++) {// exclude initial and final times when variational 
derivatives are not needed (at final time) or useful (at initial time) 
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for(j=0; j<e_.nZminus1_; j++) { 
double W3 = 1 - W_[i][j][l] - W_[k][j][l]; 
double WibyW3 = W_[i][j][l]/W3; 
double WkbyW3 = W_[k][j][l]/W3; 
 
double WijMinus1 = 0., WkjMinus1 = 0.; 
if(j == 0) { //at the grid point below the gas-liquid surface 
WijMinus1 = e_.intGasW_[i][l]; 
WkjMinus1 = e_.intGasW_[k][l]; 
} 
else { 
WijMinus1 = W_[i][j-1][l]; 
WkjMinus1 = W_[k][j-1][l]; 
} 
 
double ddz_Wi, ddz_Wi_sqr, ddz_Wk, ddz_Wk_sqr, d2dz2_Wi, d2dz2_Wk; 
if(j < e_.nZminus2_) { //for intermediate grid points 
ddz_Wi = (W_[i][j+1][l] - WijMinus1)/e_.dZ2_; 

//for the ith gas 
ddz_Wi_sqr = SQR(ddz_Wi); 
 
ddz_Wk = (W_[k][j+1][l] - WkjMinus1)/e_.dZ2_; 

//for the other gas of index k 
ddz_Wk_sqr = SQR(ddz_Wk); 
 
d2dz2_Wi = (W_[i][j+1][l]-2*W_[i][j][l]+WijMinus1)/e_.dZsqr_; 
d2dz2_Wk = (W_[k][j+1][l]-2*W_[k][j][l]+WkjMinus1)/e_.dZsqr_; 
} 
else { //at the bottom 
ddz_Wi = ddz_Wi_sqr = ddz_Wk = ddz_Wk_sqr = 0.; 

//1st derivs are zero 
 
d2dz2_Wi = 2*(W_[i][j-1][l]-W_[i][j][l])/e_.dZsqr_; 
d2dz2_Wk = 2*(W_[k][j-1][l]-W_[k][j][l])/e_.dZsqr_; 
} 
double t1 = (1+1/W3); 
 
vD_[i][j] = -V_[i][j][l]*( (1-W_[k][j][l])/W3*ddz_Wi_sqr + W_[i][j][l]/W3*ddz_Wi*ddz_Wk + 
(1-W_[k][j][l])*d2dz2_Wi //ddD00_f1 
/*ddD00_f2*/+ (1-W_[i][j][l])/W3*ddz_Wi*ddz_Wk + W_[i][j][l]/W3*ddz_Wi_sqr + 
W_[k][j][l]/W3*d2dz2_Wi ) /W3; 
//coeff of delta D01 (and delta D10 in the next outermost iteration) 
vD_[n][j] = -V_[i][j][l]*( ( (1-W_[k][j][l])*ddz_Wi*ddz_Wk + W_[i][j][l]*ddz_Wk_sqr )/W3  
//ddD01_f1 
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/*ddD01_f2*/+ (1-W_[i][j][l])/W3*ddz_Wk_sqr + W_[k][j][l]/W3*ddz_Wi*ddz_Wk +  
W_[k][j][l]*d2dz2_Wk )/W3; 
 
if(!_finite(vD_[0][j]) || !_finite(vD_[1][j])) { 
puts ("infinite value .."); 
} 
 
}//-- loop over depth j -- 
 
//accumulate values of dD_[nGases_][nGases_][nDvsGasMf_][nDvsGasMf_] 
Accumulate_dD( i,//ith gas, 0 or 1 
l,//time index 
vD_);//coeff of delta Dij 
}//-- loop over time l -- 
}//-- loop over gas i -- 
for(i=m=0; i<e_.nGases_; i++) for(j=0; j<e_.nGases_; j++) for(k=0; k<e_.nDvsGasMf_; k++) 
for(l=0; l<e_.nDvsGasMf_; l++) 
{ 
grad[m++] = dD_[i][j][k][l]/e_.nSamples_; 
if(!_finite(dD_[i][j][k][l])) { 
puts ("infinite value .."); 
} 
} 
 
 
return true; 
}//-- end of operator() -- 
 
void GetGradient::Accumulate_dD( const unsigned i, //row index of the D matrix 
 
const unsigned iT, 
//time instant 
 
double **const vD) //coeff of delta Dij, vD[nGases_][nZminus1_] 
{ 
unsigned j, k, l; 
for(j=0; j<e_.nGases_; j++) {// jth column of ith gas 
for(k=0; k<e_.nZminus1_; k++) { 
tmpW_[0][k] = W_[0][k][iT]; tmpW_[1][k] = W_[1][k][iT]; 
 
} 
 
 
dDvsW0W1_.set(tmpW_[0], tmpW_[1], vD[j], 5); 
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//interpolate or extrapolate at each grid point on the base of the 3d graph dD_ vs W0 and 
W1 
for(k=0; k<e_.nDvsGasMf_; k++) { 
for(l=0; l<e_.nDvsGasMf_; l++) { 
double val = dDvsW0W1_( e_.p_gasMf_[0][k], e_.p_gasMf_[1][l] ); 
 
if(!_finite(val)) { 
puts ("infinite value .."); 
} 
dD_[i][j][k][l] += ( val ); 
} 
} 
} 
} 
 

 

Get Gradient .h 
 

#pragma once 
#include "..\Vector\Vector.h" 
#include "..\Spline\Krig.h" 
 
using namespace VectorNS; 
using namespace KrigNS; 
 
namespace ExperimentNS { 
class Experiment; 
 
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Aim:    provide getGrad() while maintaining the state of some variables 
during iterations 
 
Usage:  GetGradient getGrad; getGrad();//uses overloaded operator() 
 
Comments: 
1.  friend class of Experiment 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 
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class GetGradient { 
Experiment &e_; 
 
Vec<double**> v_W_, v_V_;//used in getGrad() 
double ***W_, ***V_; 
 
Vec2d<double> v2d_tmpW_,//used in Accumulate_dD() 
v2d_vD_;//used in getGrad() 
double **tmpW_, **vD_; 
 
Vec4d<double> v4d_dD_;//[nGases_][nGases_][nDvsGasMf_][nDvsGasMf_] 
double ****dD_;//used in getGrad() 
 
Krig dDvsW0W1_; 
 
void initialize(void); 
void allocate(void); 
 
public: 
GetGradient(Experiment &e); 
 
void set(void); 
 
~GetGradient(void); 
 
//returns whether the call was successful; gradients are returned in grad[] 
const bool operator() (double ****const D,//IN: optimization parameter ie diffusivity 
double *const grad)//OUT: gradient 
; 
 
//called by getGrad() to set dD_[i][0][nDvsGasMf_][nDvsGasMf_] 
void Accumulate_dD( const unsigned i,//row index of the D matrix 
const unsigned nT_,//time instant 
double **const vD)//vD[nGases_][nSamples_], e.g. vD_00 and vD_01 
; 
 
};//--- end of class GetGradient --- 
 
}// --- end of ExperimentNS --- 
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Appendix D 
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Plots in the following pages are the diffusivity values that were obtained in the sensitivity 

analysis when initial diffusivity estimate was increased and decreased by ± 3%. 

 

 

D 1 Main diffusion coefficient D11 with +3% increase in initial diffusivity estimate  

 

D 2 Cross diffusion coefficient D12 with +3% increase in initial diffusivity estimate 
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D 3 Cross diffusion coefficient D21 with +3% increase in initial diffusivity estimate 

 

 

 

D 4 Main diffusion coefficient D22 with +3% increase in initial diffusivity estimate 
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D 5 The convergence of objective functional to the optimum with the +3% increase in the 
initial diffusivity estimate 

 

 

 

D 6 Experimental versus calculated gas mass of nitrogen absorbed in polystyrene with the 
+3% increase in the initial diffusivity estimate 
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D 7 Experimental versus calculated gas mass of carbon dioxide absorbed in polystyrene 
with the +3% increase in the initial diffusivity estimate 

 

D 8 Main diffusion coefficient D11 with -3% decrease in initial diffusivity estimate 
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D 9 Cross diffusion coefficient D12 with -3% decrease in initial diffusivity estimate 

 

 

D 10 Cross diffusion coefficient D21 with -3% decrease in initial diffusivity estimate 
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D 11 Main diffusion coefficient D22 with -3% decrease in initial diffusivity estimate 

 

 

D 12 The convergence of objective functional to the optimum with the -3% decrease in the 
initial diffusivity estimate 
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D 13 Experimental versus calculated gas mass of nitrogen absorbed in polystyrene with the 
-3% decrease in the initial diffusivity estimate 

 

 

D 14 Experimental versus calculated gas mass of carbon dioxide absorbed in polystyrene 
with the -3% decrease in the initial diffusivity estimate 

 

 

0.00E+00

5.00E-07

1.00E-06

1.50E-06

2.00E-06

2.50E-06

0.00E+00 2.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00

M
as

s 
fr

ac
ti

o
n

 o
f 

N
2

 

Time in minutes 

Experimental Mass Fraction
Calculated Mass Fraction

0.00E+00

1.00E-06

2.00E-06

3.00E-06

4.00E-06

5.00E-06

6.00E-06

7.00E-06

8.00E-06

0.00E+00 1.00E-01 2.00E-01 3.00E-01 4.00E-01 5.00E-01 6.00E-01 7.00E-01 8.00E-01 9.00E-01 1.00E+00

M
as

s 
fr

ac
ti

o
n

 o
f 

C
O

2
 

Time in minutes 

Experimental Mass Fraction

Calculated Mass Fraction



  

143 
 

 


