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Abstract

Fault Diagnosis With Adaptive Kalman Filters and CMG Design

for Picosatellite ACS

Noel Abreu, Master of Applied Science, Aerospace Engineering

Ryerson University, Toronto, January 2011

Picosatellites have only recently become a viable research topic thanks to the creation of the

cubesat standard in 1999 and improvements in technology. However they are still limited in

application because there are no high performance active actuators available in the market

that can satisfy the mass/power/budget constraints of a picosatellite. Space and power are

limited in these satellites which means that hardware redundancy is not very practical. If

actuator faults occur, analytical redundancy techniques should be employed to determine

if, where, and how the fault(s) occurred. This thesis focuses on enhancing picosatellite

actuator technologies, as well as presenting an algorithm for fault detection, isolation, and

identification of ACS actuators.

A CMG cluster design is proposed to demonstrate the feasibility of using CMGs in

picosatellites to enhance their performance. The proposed CMG cluster design weighs less

than 100g, occupies less than 25% of a cubesat’s volume, and theoretically consumes less

than 1.5W and 1W of peak and average power respectively. Furthermore, it is capable of

providing sufficient torque and momentum storage for picosatellite attitude control in LEO.

Next a novel adaptive Kalman filter algorithm is presented that can be implemented with

the EKF and UKF for linear and non-linear systems respectively. The algorithm performs

parameter estimation with sequential adaptive estimation and fading memory mechanisms

that allow it to track changes in faulty parameters even in the presence of high levels

of measurement noise. Furthermore, it is capable of tracking continuously varying and

instantaneous changes in parameters. Numerical simulations are carried out to verify the

performance of the proposed CMG cluster design as well as the fault diagnosis algorithm.

The capabilities of the filter are further demonstrated via its application to a systems

identification problem for a nanosatellite RW prototype being developed at SSDC group.
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Chapter 1

Introduction

Since the advent of earth orbiting artificial satellites in the late 1950’s, technologies have

improved to the point where today the development of small satellites is practical. Trends

in satellite technologies have lead to more functionality in smaller packages which has

impacted the space industry. Traditionally small satellites have been considered as 500 kg

or less, the following table lists the satellite classifications by mass, At the beginning of

Class Mass(kg)

Large > 1000

Medium 500-1000

Mini 100-500

Micro 10-100

Nano 1-10

Pico 0.1-1

Femto < 0.1

Table 1.1: Satellite Classification

satellite development the solid-state age of the electronics industry had already began, this

would prove to be a catalyst for spacecraft development. The first earth-orbiting artificial

satellite was launched in 1957 by the Russians. Sputnik was an 83.6 kg satellite that helped

identify the upper atmospheric layer’s density and study the effects of the ionosphere on

radio signal distribution. Sputnik 2 was launched later that year weighing over 500 kg and

was the first to carry a living animal. The launch of Sputnik 1 sparked the Sputnik Crisis

and subsequent space race within the Cold War. The Americans were quick to respond

with the Explorer program. The 13.97 kg Explorer 1 was launched on January 31, 1958
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with a cosmic ray sensing payload. Explorer 2 was launched nearly a month later but

failed to reach orbit, and Explorer 3 was successfully launched later that month. All of

these satellites in the Explorer program weighed more than 10 kg and provided the data

needed for the discovery of the Van Allen radiation belt. In total the Americans successfully

launched seven satellites in 1958-1959, while the Russians launched five of their own. From

that time forward satellite and space probe development increased at an exponential rate

for military and scientific purposes.

1.1 Motivations

Since the beginning of satellite development in the late 1950’s, up to 1980 there had been

well over 1000 satellite launches, with a small percentage (<10%) of satellites weighing less

than 100 kg and less than 1% of satellites weighing 10 kg or less. In the time period 1980-

1999 a total of 487 small satellites have been launched, 238 mini-satellites and 249 micro

satellites from countries all over the world[Konecny 2004]. The start of the “modern” era for

small satellites was 1981 when University of Surrey launched the 54 kg UoSAT-1, the first

satellite to have an on-board microprocessor. This satellite successfully demonstrated the

versatility of small satellites when combined with high technology. Coupled with the arrival

of Dan Goldin new NASA administrator in 1992 the trend in smaller satellites persisted.

Goldin adopted a smaller, faster, cheaper philosophy for NASA projects. He knew that

smaller satellites were cheaper and faster to develop, and was weary of the failures of several

high profile missions and cuts in funding during turbulent economic times.

The trend eventually led to research on satellites that were smaller, cheaper and faster to

develop than their larger cousins. Since the late 90’s nanosatellite development has received

a lot of attention. One of the earliest nanosatellites of the modern era was launched in 2000

also by Surrey Satellite Technology. The SNAP-1 was the first satellite with a mass less

than 10 kg to have full 3-axis attitude control, on-board propulsion for orbit control, and

the ability to image other satellites in orbit. This was proof of what could be accomplished

in such a small package. Subsequently in the period 2004-2007 fifty-five nanosatellites have

been launched by eleven different countries, of which 70.91% were successful(Fig. 1.2). On
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Figure 1.1: Trend in Micro and Small Satellite Launches 1980-2000 [isu 2010].

April 2008 COM DEV International developed the NTS nanosatellite to track ships from

space using Automatic Identification System(AIS) signals. Astonishingly the entire unit

was developed and launched with in a 7-month time-frame, supporting the feasibility and

potential for commercial success of these satellites.

Figure 1.2: Nanosatellite Missions from 2004-2007

Interestingly 74.55 % of these satellites have been deployed for institutional purposes and

25.45 % for military uses, representing a shift from primarily military applications to more

civilian endeavors. Formation flying and/or constellations of nanosatellites have been the

most highly touted potential applications for these small satellites. Although constellations

of microsatellites and larger exist for communications and GPS satellites, they are extremely
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expensive to develop and cannot be launched three or four at a time because of their

size. Nanosatellite developers can launch multiple units in one shot(Fig. 1.3), resulting in

substantial cost savings and more reason to pursue satellite miniaturization research.

Figure 1.3: Number of Nanosatellites Deployed per Launcher

In 1999, California Polytechnic State and Stanford Universities developed the cubesat

standard. A cubesat is a 10x10x10 cm satellite with a mass less than 1 kg, although two

and three cubes are also common. The standard includes strict requirements on satellite

design such that it conforms with deployment vehicle specifications. From the onset it was

understood that picosatellites could be developed at lower costs and in shorter periods of

time as compared to nanosatellites. The intention of the cubesat standard was to provide

universities with the means to develop small satellites for science research and technology

demonstrations using commercial-off-the-shelf(COTS) components. COTS components can

be described as technologies that are ready-made and available for sale, lease, or license to

the general public. Motivations for using these components are reduced costs and develop-

ment times. To date there have been eight successful launches with cubesats(Table 1.1).

Since 2003 approximately forty international universities have cooperated on the devel-

opment of 31 cubesats[Schilling 2006] built by seventeen of those universities, with more

launches to take place in the near future. Thanks to the low costs associated with cube-

sat development, universities in countries across the world and many developing countries
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Date Launcher Number of Cubesats

Jun. 30, 2003 Rockot 5

Oct. 27, 2005 Kosmos-3M 3

Feb. 22, 2006 JAXA M-V-8 1 double

Dec. 16, 2006 Minotaur 1 triple

Apr. 17, 2007 Dnepr 1 6 + 1 triple

Apr. 28, 2008 PSLV 3 + 1 double + 2 triple

May 19, 2009 Minotaur 1 3 + 1 triple

Sept. 23, 2009 PSLV-C14 4

Table 1.2: Successful Cubesat Launches to Date[ams 2010]

Figure 1.4: Number of Successful Cubesat Launches per Year (2000-2010)

have been able to develop space programs. Picosatellites have proven to be an excellent

source of experience for space systems development, operation, and maintenance on a small

scale that can be used as a basis to develop larger, more complex space programs. Table

1.3 shows typical costs associated with the various classes of satellites. Evidently there is

good reason to pursue cubesat development, they are clearly the superior option for low-

income institutions. However various challenges exist within the current marketplace and

technological landscape that limit the feasibility of cubesat development for commercial

institutions. Cubesats are simply too small. Size restrictions translate to smaller pay-

loads, actuators, sensors, batteries, and radios. All of which must be newly developed.
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Class Costs (Millions of US$)

Large (> 1000 kg) > 100

Small ( 500-1000 kg) 50-100

Mini (100-500 kg) 5-20

Micro (10-100 kg) 2-3

Nano (1-10 kg) 0.5-1

Pico (0.1-1 kg) < 0.08

Table 1.3: Satellite Program Costs by Mass

For commercial interest to blossom, a profitable business model must be put forth with a

strong bottom line. Otherwise academic institutions will have to continue to spear-head

the technology development. Without commercial interest a technology is hard-pressed to

evolve. However COTS technology has consistently improved while space technologies have

lagged behind for want of space-proven parts. Consequently technologies required to build

a picosatellite actuator or payload actually exist, and universities are aware of this. As

academia continues to develop proven picosatellite technologies, a wider variety of space

missions will be possible and profitable business models may ensue. In fact, Clyde Space

has conservatively predicted that the number of cubesats launched will increase from 50

today, to about 500 by 2020. Commercial interest will inevitably follow.

1.1.1 Picosatellite Actuator Development

Picosatellite development is in its infancy, and new technologies must be developed to stim-

ulate commercial interest. They are still considered impractical for many prospective mis-

sions as compared to larger satellites due to a lack of available technologies. Few payloads

exist that can perform meaningful missions in earth orbit, and few actuator technologies

have been developed that can provide full 3-axis attitude control while satisfying cubesat

constraints. Universities are at the forefront of developing truly picosatellite sized actua-

tors. The Technical University of Berlin has developed the BeeSAT cubesat project whose

primary mission it is to test a cluster of three Reaction Wheels(RW) that weighs less than

150 g [Hakan Kayal 2007]. St. Louis University[Jayaram 2008] and the Lulea University
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of Technology[Garza 2008] of Sweden have also developed RWs for picosatellites. How-

ever only the BeeSAT system has made it to space. Within the past four years attempts

have been made to develop actuators that can provide high performance for picosatellites

although progress has been slow. This is why SSDC group is focusing on picosatellite

technology development of RWs and CMGs.

A RW consists of a flywheel mounted to an electric motor. They have been used ex-

tensively for active control of spacecraft. Generally RWs can perform slow maneuvering of

satellites with average slew rates of approximately 1
◦
/s. This is necessary to avoid saturat-

ing the wheel and to keep power consumption low. Saturation occurs when the maximum

wheel speed is reached and no more actuation is available in the direction of increasing

wheel speed. This phenomenon is usually resolved using momentum dumping techniques

with thrusters or magnetic torque rods(MTR). Power consumed during a maneuver is di-

rectly related to the reaction torque generated by a RW, fast slews translate to larger motor

torques and consequently larger current draws. Power consumption and weight issues have

been limiting factors for picosatellite RW development, however some of these issues can

be resolved by employing CMGs.

A CMG functions on the gyroscopic principle, wherein a rotating mass resists movement

with a force proportional to its speed of rotation. A similar effect is experienced when hold-

ing onto a spinning bicycle wheel on a swivel chair, with the wheel’s spin axis parallel to the

horizontal plane. As the wheel spins faster it becomes more difficult to tilt, the gyroscopic

force is resisting the movement. However if the wheel is tilted then a large force is imparted

onto the frame supporting it, causing the chair frame to rotate. CMGs consist of a flywheel

that is rotated/gimballed about one or two of its axes, an output torque is generated in

the direction of change of the flywheel spin axis. They can produce larger output torque to

input power ratios compared to RW configurations[V. Lappas & Underwood 2005] and con-

sume less electrical power for a given mass. For RW torque generation a transient current

will occur from the time a voltage is applied at the armature until the back EMF(BEMF)

voltage amplitude comes close to matching the applied voltage with opposite polarity, this

results in a near zero voltage across the armature circuit so long as the wheel speed or ap-

plied voltage does not change. More current is drawn in a transient state of the wheel speed
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than at constant speed, thus large angle maneuvers will consume more power. For CMGs

a small transient current is experienced to start up the flywheels until a desired constant

speed is attained, and the gimbal motors consume power when holding their positions or

trying to rotate the flywheels. Gimbal angle rates are usually limited to < 10
◦
/s. Because

they rotate slowly, gimbal motors do not consume much power. In Lappas[Lappas 2002]

this has been verified via hardware simulations. CMGs can provide large output torques

relative to RWs for a given electrical input at low mass penalties. This is why most CMGs

have been utilized in large spacecraft and space stations. However none exist for picosatel-

lites, with a very select few having been designed for nanosatellites. Currently, applications

of picosatellites are limited because of a lack of precise three-axis pointing. CMGs could

resolve this issue and provide greater versatility and profitability for picosatellites.

1.1.2 Fault Diagnosis for Picosatellite ACS

In general it has been the case that regardless of the size of a satellite a myriad of resources

are required in order to oversee a satellite project from proposed design and inception

to mission completion. Engineers of many disciplines must be employed, countless tests

must be performed, and in-orbit changes must be monitored. During the entire mission

life of a satellite costs are accrued, if faults or failures occur on a satellite these costs will

increase. As an owner/operator of a satellite these costs must be kept within reason. The

most probable area on a satellite for a fault to occur is the attitude control system(ACS).

Actuators almost always consist of moving mechanical parts subject to wear and tear.

Ground tests in anachoic and thermal vacuum chambers, as well as launch vibration tables,

can be used to verify that in ideal space conditions the spacecraft should survive. However

unforeseen elements can lead to premature faults or failures such as a cold solder joint

affecting electrical performance, minute particles interfering with mechanical components,

or wild temperature fluctuations. In an attempt to curb the costs associated with the

occurrence of faults or failures, fault diagnosis and identification(FDI) techniques can be

developed to help monitor and anticipate them. Fault diagnosis will refer to detection and

isolation of faults, fault identification will refer to identifying the type and severity of faults.
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The FDI problem for satellites has been addressed for for attitude determination sys-

tems(ADS) and ACSs. In either case the objective is to determine whether or not a fault

has occurred, and where it has occurred. In the past with larger satellites, faults and/or

failures were handled through hardware redundancy because online computing power was

at a premium and there was more onboard space. In the current landscape hardware re-

dundancy is limited in order to reduce costs. In case a fault occurs, numerical methods

can be utilized to diagnose and correct the problem(s). By processing sensor and actuator

data online these techniques are possible. If the satellite is able to detect, isolate, and

identify these faults then operators on the ground can move quickly to obtain the best

possible performance from the satellite, or the satellite could simply correct the problem

itself. Ultimately the goal is to facilitate at least partial completion of a mission in case of

faults or failures. Since RWs and CMGs are very common actuators online FDI algorithms

should be available that can monitor them. The problem of online FDI for a satellite ACS

has not been studied extensively in the literature. Few researchers have tackled the FDI

problem for reaction wheels in an ACS, while none have studied FDI for CMGs.

1.2 Literature Review

1.2.1 CMG Cluster Design for Picosatellites

CMG design documents are difficult to come by because they are mostly designed and

manufactured by commercial entities. Generally a company will not make its product de-

sign specifications and procedures publicly available for competitive reasons. CMGs have

been used since the early 70’s in Skylab, the US military observation satellite KH-11, and

MIR. Manufacturers VNIIEM and Honeywell were known for magnetic and ball bearing

systems respectively. The French company Aerospatiale has developed mini CMGs for

micro-class satellites and larger. The unit weighs 30 kg, consumes 45 W of peak power

and 15 W in standby mode and uses a flywheel with inertia 0.0796 kg ·m2 rotating at

12000 rpm. Momentum storage and output torque numbers are not listed, however they

are probably comparable to that of the Skylab CMG system[T. R. Coon 1976]. In refer-

ence [Joel Reiter 1999] a CMG design is proposed for microsatellites using micro-electro-
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mechanical-systems(MEMS) technology however it is not very practical. Currently, the

only CMG system developed for satellites smaller than 10 kg comes out of SSTL and is

described in reference ([Lappas 2002]). For picosatellites no designs have been proposed.

1.2.2 Fault Diagnosis and Identification

Within the current state of technology researchers can implement complex algorithms on-

board small satellite computers such that the satellites themselves can perform for the most

part autonomously. Thus research of online ACS fault diagnosis algorithms has prolifer-

ated since the mid 90’s. A “fault” will denote an unpredicted change of system behavior

resulting in a degradation of performance or preventing any semblance of normal operation

of the system. They can be classified based on their duration and severity(Fig. 1.5). Faults
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Figure 1.5: Types of Faults

can occur abruptly or slowly over time. Abrupt faults are usually caused by external dis-

turbances that severely damage a component, such as the loss of an aircraft engine when

impacted by birds or other things. Once they occur, replacement of the faulty component is

the best course of action because the abrupt nature of the fault can introduce large stresses

to the structure or electronics. Incipient faults occur slowly over time as the result of wear

and tear within a mechanical system such as increased frictional losses in ball bearings. In

this case immediate replacement of the faulty component is not necessary as long as sat-

isfactory performance can be achieved. Transient and intermittent faults occur randomly
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for bounded periods of time and then vanish, this makes them difficult to identify. They

differ with respect to the number of states they can assume. For example a transient fault

assumes one state and then vanishes, whereas intermittent faults can assume various states

throughout a faulty time interval. An example of an intermittent fault is a loose electrical

connection in a circuit. If vibrations are introduced to the circuit or changes in temper-

ature for a bounded period of time faults will occur in the system. Additive faults are

simply superimposed on healthy signals of a system, while multiplicative faults are directly

proportional to system states.

There are three primary components to fault diagnosis algorithms; (1) detection, (2)

isolation, (3) identification. An FDI algorithm should be able to detect the occurrence of a

Figure 1.6: Steps in Fault Diagnosis

fault, isolate where the fault has occurred, and for completeness identify what type of fault

has occurred(Fig. 1.6). These tasks are not relevant for all applications, some applications

will only require fault detection while others will also require isolation. Detection would only

be required when regardless of the type of fault or its location the corrective action is the

same, in this case the algorithm or mechanism would simply alert the operator(computer

or human) that a fault has occurred. Isolation could be required in a complex system

with many moving parts that could not be examined meticulously by an operator due

to the sheer size and complexity of the system. In this case the algorithm should be

able to detect and isolate the location of a fault so that the corrective action is fast and

efficient. Identification of a fault is not always necessary when an operator is in charge

of the corrective action, they would simply test the part themselves and then repair or

replace it. However, fault identification is an important element to fault diagnosis if the
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operators need to know right away which component faulted and why. Safety-critical

systems or space systems are ideal candidates for this. The identification procedure must

determine what part of the component is faulty so that the operator can determine on-

the-fly what type of corrective action to take specifically for that component. In safety

critical systems or autonomous systems this is a very valuable feature. For autonomous

systems the operator can be considered as a computer. If the operator is indeed a computer

that relies on FDI algorithms to determine the health of the system and the appropriate

corrective action to take, then data is usually available in the form of sensor measurements.

It is widely understood that sensors are subject to various errors and real-life systems are

subject to disturbances that can lead to false alarms in an FDI algorithm. Consequently

an FDI algorithm must be robust in the face of measurement noise and disturbances, such

that decreased sensitivity to noise and disturbances can be achieved without decreasing

sensitivity to faults.

Over the past 2-3 decades research in autonomous FDI systems has received a lot of

attention. As electric systems have permeated more and more into industries all over

the world, the realization has set in that considerable computational power is now avail-

able to do complex computations on-line. Furthermore the need for fault diagnostics

has increased as systems have become more complex. The most common approach in

the early development of fault diagnosis schemes was signal processing. Time domain

limit checking and trend analysis, and frequency domain techniques such as the Dis-

crete Fourier Transform(DFT) are types of signal processing techniques. Limit check-

ing involves analyzing the statistics of measurable states and outputs of a system and

comparing them to the normal operating limits of the system[S. Simani & Patton 2003].

Dynamic trend or qualitative trend analysis is one of the most common trend analysis

techniques[M.R. Maurya 2007] for FDI, it consists of two steps; (1) extracting trends from

measurements, (2) interpreting the extracted trends[Sobahni-Tehrani 2008]. Extensive

work has been done on trend extraction and representation including the establishment

of a formal framework for representing process trends[Cheung & Stephanopoulos 1990].

Neural networks are well-suited to performing trend analysis and/or feature extraction for

determining the operating state of a system[V. Venkatasubramanian 1991]. Fuzzified sym-
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bolic representations[J. Wong & Palazoglu 1998] are also well suited to the task. Cluster-

ing algorithms based on Bayesian classification rules have also been developed to classify

data into clusters that are centered about means determined a priori, with each mean

representing a particular operating condition of a system[MacQueen 1967]. Interpreta-

tion of the classified data has been approached using alignment-based sequence-matching

algorithms[M. Vingron 1989], hidden Markov models[W. Sun 2003], and dynamic time-

warping for similarity estimation[J. Colomer 2002]. Frequency domain analysis of a time-

series of measured system states and outputs is another form of signal processing. The

Discrete Wavelet Transform has been used for over fifteen years to perform feature extrac-

tion for fault diagnosis of machinery components[Peng 2004]. Another frequency domain

technique is the DFT algorithm that transforms data from a time-domain representation

to its frequency domain representation, where its frequency response can be analyzed and

interpreted[J.W. Freestone 1986].

The problem with using signal processing techniques is that they do not consider the

dynamic relationships between the measured signals of a system. The processed data rep-

resents the system as a whole including disturbances, non-linearities, and noise, thus the

estimates are not very accurate. The ARMAX model is a general deterministic-stochastic

model that has been used as far back as 1978[H. 1976] and was developed to extract in-

formation about system dynamics and noise. The model structure consists of a transfer

function for the system dynamics and one for the system noise[Zywno 2007]. This structure

must be known a priori though, which is not possible in all cases. Linear and non-linear

least-squares techniques are used to estimate the coefficients of these transfer functions.

However if disturbances occur that are not well represented in the model, and the struc-

ture is not well known, the performance of this technique is diminished. Consequently

if a large disturbance or non-linearity affects a system, signal processing algorithms will

tend to trigger false alarms[Sobahni-Tehrani 2008]. To overcome this problem researchers

have employed redundancy techniques. Figure 1.7 demonstrates how redundancy fits into

a control system. Redundancy allows for consistency checks to be performed between mea-

sured signals of a system that are mutually related, if one signal is not consistent with

the others then a fault or failure has occurred. There are two forms of redundancy; (1)
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Figure 1.7: Analytical VS Hardware Redundancy

hardware redundancy, (2) analytical redundancy. Hardware redundancy is achieved by us-

ing multiple(redundant) units of the same hardware in a system. In either case the goal

is to perform consistency checks amongst the redundant units to determine whether any

one unit is faulty. For example some satellite ACSs use four RWs for actuation with one

redundant wheel usually mounted such that it can actuate on all body-axes. If one of the

orthogonally mounted wheels fails, the redundant wheel can provide actuation about the

uncontrolled axis. Many earth-orbiting satellites use combinations of attitude sensors such

as star trackers, sun sensors, magnetometers, and earth horizon sensors to have redundant

attitude measurement. Hardware redundancy however is not always a viable option in sys-

tems where onboard space and volume is limited. Furthermore the costs associated with

extra hardware units are sometimes too large to accommodate. Some of the drawbacks of

hardware redundancy can be avoided by using analytical redundancy.
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An FDI algorithm that employs analytical redundancy is typically referred to as a

model-based fault diagnosis system. Model-based fault diagnosis consists of using a math-

ematical model of the system in question to describe the ideal behavior of the system

in a fault-free case. The output of the model is used to perform consistency checks

against the measured states of the system. If the measurements deviate noticeably from

the expected system behavior then it is assumed the system is operating in a faulty

mode. The consistency check involves taking the difference between the model output

(yk) and system measurements(zk). This results in a residual error signal that provides

information about the health of the system. Residuals are paramount to the proper

design of any FDI algorithm. A well chosen residual can mean the difference between

a good FDI algorithm that responds well to faults of all types and severities, and a

mediocre algorithm that is prone to false alarms. Residual signals should be zero in

the healthy case and non-zero in a faulty system mode, however in practice measure-

ments are subject to white-noise and systems are subject to disturbances which lim-

its the residual to being in the vicinity of zero in healthy states. Residual generation

can be approached in one of three ways[Sobahni-Tehrani 2008](Fig. 1.8); (1) mathe-

matical model-based, (2) learning/intelligence-based, (3) expert system/fuzzy rule-based.

Mathematical model-based residual generation involves a mathematical model of a sys-

tem derived using physical principles. Model-based schemes can be classified further into

linear and nonlinear observer-based methods[Wang Min 2008, Zhang Ke 2007] in a deter-

ministic setting and Kalman filtering[N. Tudoroiu 2005] (extended Kalman filter (EKF),

Unscented Kalman Filter(UKF), Adaptive Kalman Filter(AKF), and the linear Kalman

filter (LKF)) in a stochastic setting. Residual signals are defined as the output estima-

tion error or innovation sequence for deterministic and stochastic settings respectively.

Another residual generation technique is the parity-space method based on simple alge-

braic projections and geometry that provide an appropriate check of the consistency of

system measurements[E. Chow 1984]. This method has been applied to both linear and

non-linear systems[S. K. Neguang 2006] for fault diagnosis and is more sensitive to mea-

surement and process noise relative to observer-based methods. Parameter estimation can

also be used for residual generation. The goal here is to estimate physical system pa-
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Figure 1.8: Analytical Redundancy Techniques

rameters and compare the estimates to nominal parameter values. A change in any given

parameter estimate will provide information as to where a fault has occurred along with

the type and severity. Parameter estimation methods such as continuous-time adaptive

parity equations[T. Hofling 1997], neural parameter estimators [E. Sobhani-Tehrani 2008a],

Kalman filtering, Neural Networks, and least squares[Sichun Xu 2001] have been applied

for fault diagnosis.

Learning-based algorithms use time-histories of the input/output data of a system

to learn the system model. This learned model is then used to generate residuals.

These approaches are useful when a system model is difficult to obtain. However large

quantities of input/output data are usually required to train these algorithms. Refer-

ences [P. M. Frank 1996, R. J. Patton 1999, Angeli 2008] provide comprehensive surveys

of learning-based methods, also referred to as computational intelligence-based methods,

or artificial intelligence-based methods. Fuzzy logic or neuro-fuzzy systems employ a set of

“if then” rules that are based on expert knowledge of the system. If this expert knowledge

is not available then neural networks are employed to determine the parameters of those

rules. Any one of these methods are sufficient for residual generation and have been studied

extensively. The next stage in the FDI problem is residual evaluation.
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With a properly constructed residual, the healthy and faulty modes of operation should

be manifested in the residual such that each mode creates a unique residual signal or

pattern. The residual evaluation stage involves processing the residual signal such that

its patterns can be matched to particular system modes of operation. A threshold test of

instantaneous values, calculating moving window averages of the residuals, or statistical

methods such as generalized likelihood ratio or sequential probability ratio testing, can be

used to evaluate residual signals.

Threshold testing involves establishing upper and lower thresholds for the residual

signals. If the residuals exceed these boundaries then a fault has been detected. Ref-

erence [H. Azarnoush 2008] does fault detection for a RW with linear and non-linear

observers for residual generation and threshold testing for residual evaluation. In the

work of [Jung Dae Lee 2008] a simple threshold test of brushless DC(BLDC) motor cur-

rents is used to detect faults. A fault detection and isolation algorithm is presented in

[Z. Q. Li & Khorasani 2006] by applying a dynamic neural network to learn the non-linear

RW dynamics and generate residuals that are evaluated by threshold testing. However

threshold testing is not very robust in the face of large measurement noise and/or distur-

bances since they can cause peaks in the residuals that exceed the thresholds. Adaptive

thresholds that adjust based on system inputs can be applied[Gustafsson 2000], however

this still only provides the ability to detect and in some cases isolate faults.

When residual evaluation is performed using moving window averages of the residuals,

statistics of the residuals are used to estimate measurement and process noise. This method-

ology has been applied extensively to the KF in the form of AKFs to adapt measurement

and process noise. Reference [Ahmed El-Mowafy 2005a] uses the residual window averag-

ing technique for attitude determination with Global Navigation Satellite Systems (GNSS),

and [Vahid Fathabadi 2009] uses this technique for state estimation of nonlinear industrial

systems. Finally, [Christopher Hide & Smith 2003] uses residual window averaging to esti-

mate measurement and process noise for combining a low-cost inertial measurement unit

(IMU) with GPS readings for positioning and attitude information.
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Next, statistical methods are considered for residual evaluation. The generalized like-

lihood ratio test(GLRT) [Youbin Peng 1997] is a useful tool in detecting changes in a

residual. This method computes a threshold based on the probability of false alarm and

correct detection thus making it more robust than a fixed threshold algorithm. Moreover

it can estimate an abrupt jump in residual amplitude and the time of the jump. How-

ever the proposed method does not work if the residual change is not abrupt, and there

are robustness issues against modeling errors and process disturbances. In addition to the

GLRT, the sequential probability ratio test (SPRT) can be used. This method assumes

that samples are uniformly distributed and independent, and that the structure of their

distributions are known a priori with unknown parameters. In reference [Z. H. Min 2010]

the Mann-Whitney rank sum test is used so that the PDF of the samples does not need to

be known a priori. However this method is not robust to modeling errors and large process

disturbances. These methods use residual threshold testing, with the adaptation based on

statistical properties of the system.

Spacecraft fault diagnosis techniques have been developed such as Bayesian classifi-

cation for fault detection and isolation[Ji-Ye Shao 2010], wavelet and dynamic recurrent

neural networks for fault detection and isolation respectively[Zhao-Hui Cen 2010], fuzzy

neural networks for fault detection[Yue-hua Cheng 2010], learning-based diagnostic tree

approaches for fault detection and isolation[Amitabh Barua 2009], the interactive multiple

model (IMM) approach to detect and isolate faults for reconfigurable control, and adaptive

observer methods. Most methods do not perform fault identification however. Reference

[Sobahni-Tehrani 2008] is one of the few that can perform fault detection, isolation, and

identification. The algorithm is applied to RWs. This is done utilizing a mathematical

model of a system known a priori along with self-learning computational intelligence tech-

niques resulting in a hybrid approach. The algorithm cannot identify faults concurrently

however, it is assumed that only one fault occurs at a time. Furthermore, its applica-

tion to different systems requires redesign of the intelligent portion of the algorithm and

re-training. For satellite ACS FDI, an approach is required that could detect concurrent

faults while being simple to migrate to different systems.
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1.3 Problem Statement

In the sections above an overview of current trends in the satellite industry was presented.

In particular it was noted that challenges associated with enhancing the picosatellite mar-

ket are primarily a result of a lack of actuator technologies that can provide adequate

performance while satisfying the mass/power/volume constraints of a picosatellite. The

primary reason for this void is a lack of commercial interest in picosatellite technologies

because business models cannot currently be developed to provide enough benefit in a

commercial setting. With no commercial interest, technologies will not mature at a fast

pace. Instead it is left up to the institutions who will actually use these satellites to pursue

their own research on picosatellite technologies. Most will argue that picosatellites are not

reliable enough to invest in considering the limited design envelope that restricts the use

of redundant or S-class hardware. There is some truth to this belief, however there is a

school of thought that believes smaller satellites are more reliable because less parts are

required. Until this can be proven via flawless in-orbit operation of many picosatellites

over their lifetimes, the unreliability of picosatellites will have to be addressed. Without

hardware redundancy, reliability could be improved using the analytical redundancy ap-

proaches mentioned in the previous section. In case faults occur, these algorithms could

help detect, isolate, and identify faults so that the satellite can be properly configured

to mitigate negative effects that would otherwise occur if the fault was not diagnosed in

time. Thus this thesis will address two problems that could enhance the body of available

picosatellite technologies,

[Prob1] Picosatellite Actuator Design: The design of an actuator that could provide

accurate three-axis pointing while satisfying the mass/power/volume constraints of

a picosatellite. Currently the only actuator technology being tested in space is on

the BeeSat satellite which houses a RW cluster. To provide another means of high-

performance attitude control, more actuator technologies should be studied such as

CMGs to demonstrate their feasibility. Furthermore, the design should be low-cost.
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[Prob2]Picosatellite Actuator FDI : To improve the reliability of satellites, a simple FDI

algorithm is required that can be implemented in a picosatellites’ computer(s). In

particular, an algorithm that can be applied to various types of actuators and can

detect, isolate, and identify faults is required. Very little literature is available on the

identification of faults, especially for spacecraft actuators.

Picosatellite development is increasing in universities across the world. Although a RW

cluster has been designed for picosatellites in the BeeSat project, no-one has proposed

designs for a CMG cluster. Industry does not believe that a CMG could be made small

enough to fit in a picosatellite while adhering to the cubesat standard. Furthermore, there

are challenges associated with using COTS components for space hardware. COTS compo-

nents usually lack qualification for the space and launch environments. Thermal, vacuum,

launch vibration, and radiation testing must all be passed to show that the hardware stands

a chance of operating well in space.

Besides the lack of actuators for picosatellites there is also a need for FDI algorithms

with an emphasis on the identification aspect. Most schemes can detect and isolate faults,

however the ability to identify faults adds more complexity to the problem. In the context

of FDI for satellite attitude control actuators, there is very little work available. FDI

of RWs and thrusters has been addressed to a limited degree, however FDI for CMG

systems has not been addressed at all. This is surprising considering the high cost and

increased probability of failure in these systems. More moving parts typically results in

a less reliable unit. An ability to identify a faulty unit along with the type and severity

of a fault could allow reconfigurable control laws to improve control, or if the fault is too

severe the actuator could simply be shut down to avoid any adverse effects to the satellite.

Analytical redundancy coupled with hardware redundancy could increase the operational

life-time of these units and result in more reliable systems as a whole. FDI for CMGs is

a tricky concept because there are many moving parts involved, each of which must be

monitored. Furthermore, stepper motors are usually implemented as gimbal motors and a

well defined analytical stepper motor model that closely resembles its various operational

characteristics is not easy to develop. This makes analytical redundancy-based approaches

very difficult to apply. A simple approach would be to take the CMG output torque and
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compare it to the torque commanded by the ACS control law. However because CMGs

usually employ redundant units and each unit will actuate about more than one axis, it is

difficult to isolate a faulty unit. A practical approach to CMG FDI should be independent

of the specific hardware, and use telemetry from each unit to diagnose the CMG.

1.4 Research Objectives

As per the problems mentioned in the previous section, this dissertation focuses on de-

signing a novel picosatellite actuator technology that can provide high attitude pointing

performance while satisfying the mass/power/volume constraints. The performance of the

actuator is verified via analysis and numerical simulations. Furthermore, an FDI algorithm

for RWs and CMGs will be studied using Kalman filters. These objectives are listed below.

[Obj1] Picosatellite CMG cluster design: CMGs are known to be well suited for agile

satellites that require precise attitude pointing and have been proven to provide more

output torque per unit of input power than RWs. Generally they have only been

used in satellites larger than 10 kg while few have been applied in nanosatellites.

Studying the feasibility of a picosatellite CMG cluster design that could provide

average spacecraft body-rates of 1.5 ◦
/s while weighing less than 120 g, consuming

less than 1.5 W of peak power, and occupying less than 25 % of the satellite volume,

could demonstrate the potential of picosatellites to do more than they are currently

given credit for. A primary goal here will be to design the entire unit using COTS

components so that parts are cheaper and easier to access.

[Obj2] FDI for picosatellite Actuators A fault diagnosis algorithm to detect, isolate,

and identify faults in CMGs and RWs in a timely manner without false alarms is

the primary goal for this objective. Second is the requirement that it be simple and

computationally efficient relative to what is currently available. A model-based ap-

proach using KFs for parameter estimation is considered for this task. The algorithm

should be able to estimate changes in model parameters cause by intermittent, incip-

ient, abrupt, and multiplicative faults and should be robust to measurement noise.

Finally, this algorithm should be capable of estimating different faults concurrently.
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Although CMG clusters have been designed for larger satellites, the first objective

presents challenges in the design and manufacturing stages while trying to satisfy the

constraints. The technologies required for this design will stretch the design envelope to

its limit, thus savings in size and power consumption will be high on the list of design

priorities. As for the second objective, fault identification has not been addressed for RW

and CMG FDI using parameter estimation with KFs. An investigation into the capabili-

ties of KF-based parameter estimation for this application could serve as a useful tool for

subsequent online FDI algorithms.

1.5 Main Contributions

A CMG cluster design for picosatellites and an FDI algorithm to perform fault detection,

isolation, and identification for RWs and CMGs represent the two central themes of this the-

sis. The following contributions are identified and expanded upon based on the objectives

stated in section 1.4.

1. CMG Design for Picosatellites (Obj1, Chap. 3)

This thesis presents a novel design of a CMG cluster that can fit into a picosatellite.

Three-axis attitude pointing performance of the cluster is verified in simulations while

the mass/power/volume of the cluster are shown to be reasonable for operation within

a picosatellite.

2. Fault Diagnosis and Identification for CMGs (Obj2, Chap. 5)

A novel FDI methodology is developed for CMG clusters. The algorithm monitors

the gimbal angle rates of the CMG cluster to determine if multiplicative faults have

occurred. The algorithm can correctly identify multiplicative faults in each gimbal

unit of the cluster simultaneously and within a reasonable amount of time. The for-

mulation is independent of the hardware used for the gimbal motors and can therefore

be applied to any CMG unit(s). Furthermore, the algorithm is robust to singularities

in the steering logic, disturbances, and measurement noise.
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3. Novel Adaptive Kalman Filter for Parameter Estimation (Obj2, Chap. 4)

To perform robust FDI, a novel adaptive kalman filter was developed. In this fil-

ter the measurement and process noise covariances are estimated using a sequential

adaptive estimation(SAE) approach with residual processing, while the filter memory

is controlled using an adaptive forgetting factor(AFF). The SAE provides unbiased

parameter estimates, while the AFF makes sure that the filter is sensitive to changes

in parameters when faults occur. The combined effect is an algorithm that can per-

form fault detection, isolation, and identification while being robust to measurement

noise and disturbances. For linear and weakly-nonlinear systems an EKF variant is

presented, while for highly non-linear problems a UKF variant is presented. This

filter is shown to be quite adept for FDI of RWs and CMGs, and is also capable of

performing systems identification for unknown systems.

1.6 Thesis Outline

Chapter 2 presents satellite attitude dynamics and kinematics, disturbance torques mod-

eling, and torque requirements, for a picosatellite in LEO. Furthermore, different actuator

technologies are presented. Chapter 3 discusses the dynamics of a spacecraft with CMGs

along with some common cluster arrangements. CMG Sizing is carried out for picosatellites

using the information in chapter 2, followed by component selection and structural design

for the CMG cluster. Numerical simulations are then carried out for the particular CMG

design to verify the required performance is attainable. In chapter 4 an extensive review

of KFs and their applications to FDI problems is given. The proposed novel filter is then

presented. Chapter 5 first presents simulation results for RW FDI with the AUKF variant

of the algorithm. Various fault scenarios are presented to demonstrate the capabilities of

the filter in the face of different fault-types and various measurement noise levels. CMG

FDI results are then presented using the AKF variant. Finally the filter is applied to a

systems identification problem for a nanosatellite RW prototype being developed at SSDC.

Chapter 6 discusses conclusions and future work.





Chapter 2

Attitude Control System for RyePicoSat

The focus of this thesis will be the ACS of a cubesat. The ACS of any satellite regardless

of class whether active or passive is one of the most critical subsystems for the successful

completion of a mission. Passive attitude control consumes no satellite resources and usually

takes advantage of the earth’s gravitational and magnetic fields. Active attitude control

consumes either fuel or electrical power or both to maintain a desired attitude. The choice of

which method to use depends on the required pointing accuracy for the proposed mission.

The deciding factors for pointing accuracy are the communications system and type of

payload(s)[Alger 2006]. Assuming an antenna with a beam-width of 1 ◦ on a satellite in a

600 km LEO, a simple trigonometric calculation indicates the beam would cover a 10 km2

area on the earth. Thus in order to guarantee continuous communication with the ground

station the satellite must be capable of pointing its antenna with an accuracy of better

than 0.5 ◦. In practice, the beam width of a directional antenna is usually wider than 1

◦. However, it is evident that a less directional antenna requires less pointing accuracy

because it can cover more surface area on the earth. The same argument can be applied

to imaging and other payloads that require some degree of pointing accuracy.

The ACS of picosatellites have primarily been passive. Some developers have imple-

mented magnetic torque rods for active control, however only coarse two-axis pointing can

be achieved. There have been some cubesats with active ACSs, however they were mis-

sions aimed at qualifying the actuator technologies. To date RWs and magnetic torque

rods(MTRs) are the only actuators that can fit within picosatellite mass, power, and vol-

ume constraints and still provide adequate attitude control performance. These constraints

vary depending on the payload and mission requirements. Typically a cubesat has less than

2 W of available power[Polaschegg 2005, L. Alminde 2003] because surface area available to

mount solar panels is limited to 9x9 cm2 on each side without considering any restrictions
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that other subsystems may pose. Consequently at the most these solar panels can provide

about 3 W of power when at least three sides of the cube are exposed to the sun. Solar

panels are usually accompanied by lithium-ion batteries to store and supply this power

when no sun light is available, usually batteries with capacities of 3500 − 4200 mAh are

utilized depending on how many cells are used[Alger 2006]. Depending on the payload mass

penalty, mass budgets for actuators on a picosatellite can be anywhere from 100 − 150 g,

which is very restrictive considering current technologies. This section will introduce the

satellite attitude dynamics and kinematics, disturbance models for a picosatellite in LEO,

sizing of a CMG for picosatellites, component selection, structural design, and an attitude

control law with quaternion feedback.

2.1 Coordinate Frames

In order to describe the motion of a satellite in orbit three reference frames are used (Fig.

2.1): (1) Inertial reference Frame, (2) orbital reference Frame, and (3) body reference frame.
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Figure 2.1: Coordinate Frames
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The inertial reference frame is denoted XI,YI,ZI. With the XI axis facing in the direction

of the vernal equinox, YI in the orbit normal direction, and ZI in the direction of the earth’s

geographic north pole. In particular the Earth-Centered-Earth-Fixed(ECEF) reference

frame is used which has its origin at the centre of and rotates with the earth. Next is the

orbit reference frame XO,YO,ZO. The origin of this reference frame is at the spacecraft

centre of mass with ZO nadir-pointing, YO facing in the orbit anti-normal direction, and

XO completing the orthogonal set. Finally, the body frame has its origin at the spacecraft

centre of mass and is fixed to the spacecraft body. This frame is utilized to describe the

motion of the satellite with respect to other reference frames.

2.2 Satellite Attitude Dynamics

The behavior of a rigid body rotating about body-fixed axes with origin at its center of

mass can be described using Euler’s equations of rotational motion shown in the equation

below[B. Wie & Arapostathis 1989].

J sω̇
B
BI = −ωB

BI×J sω
B
BI + u+ uext (2.1)

where ωB
BI ∈ ℜ3x1 is the spacecraft angular velocity with respect to the inertial frame

expressed in the body frame, u ∈ ℜ3x1 is the control torque vector, uext ∈ ℜ3x1 is the

external disturbance vector, J s ∈ ℜ3x3 is the spacecraft inertia matrix, and ωB
BI× is a

skew-symmetric matrix defined by,

ωB
BI× =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (2.2)

2.3 Satellite Attitude Kinematics

Attitude representation has traditionally been in the form of Euler angles, Direction Cosines

Matrices(DCMs), or quaternions. Euler angles, also known as the roll(ϕ), pitch(θ), and

yaw(ψ) angles of a spacecraft, denote the amount of rotation about each of the body axes



28 Chapter 2. Attitude Control System for RyePicoSat

with respect to the orbital reference frame. Roll describes the rotation about the x -axis,

pitch is a rotation about the y-axis, and yaw is a rotation about the z-axis(Fig. 2.2).

Figure 2.2: Satellite Body Frame

There are 12 possible sequences of rotations. In this thesis the 3-2-1 sequence is selected,

corresponding first to a rotation about the roll(1) axis, then the pitch(2) axis, followed by a

rotation about the yaw(3) axis. This rotation sequence is equivalent to the following DCM,

C321 =


cθcψ cθsψ −sθ

sϕsθcψ − cϕsψ sϕsθsψ + cϕcψ sϕcθ

cϕsθcψ + sϕsψ cϕsθsψ − sϕcψ cϕcθ

 (2.3)

Note that singularities occur when the pitch angle θ has a value of 90 ◦, this is a common

problem with euler angles that limits their applicability to small rotations. The benefit of

using Euler angles is the ability to visualize the orientation of the satellite. However in

practice the quaternion is preferred because it is more computationally efficient. The unit

quaternion can be expressed as follows,

q =

 q

q4

 =


q1

q2

q3

q4

 =


cx sin (φ/2)

cy sin (φ/2)

cz sin (φ/2)

cos (φ/2)

 (2.4)

where φ denotes the principle angle and c = [cx, cy, cz]
T denotes the principle axis associated

with Euler’s Theorem
(
c2x + c2y + c2z = 1

)
, where ci are the direction cosines of the Euler axis.

q4 ∈ ℜ and q ∈ ℜ3x1 represent the orientation of the spacecraft body frame, B , with respect

to the inertial frame, I .
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The Euler axis and Euler angle can be obtained from the DCM in Eq. (2.3) as follows,

φ = acos

(
C11 + C22 + C33 − 1

2

)
(2.5a)

cx =
C23 − C32

2sin (φ)
(2.5b)

cy =
C31 − C13

2sin (φ)
(2.5c)

cz =
C12 − C21

2sin (φ)
(2.5d)

where Cij corresponds to the element in the ith row and jth column. Using Eq. (2.4) it can

be shown that the quaternion satisfies the following relation,

q21 + q22 + q23 + q24 = 1 (2.6)

This constraint is important to keep in mind when propagating the quaternion, if it does not

satisfy the relation in Eq. (2.6) then the information will not be accurate. The quaternion

is propagated using the following differential equations,

q̇ =
1

2
ω×q +

1

2
q4ω (2.7a)

q̇4 = −1

2
ωTq (2.7b)

Often times only Eq. (2.7a) needs to be computed, integrating the vector components and

substituting into Eq. (2.6), q4 can be calculated. This method ensures that the obtained

quaternion will be normalized to one.

Note that the spacecraft angular body rates in Eqs. (2.7a) and (2.7b) are with respect

to the orbital reference frame. This is a problem because rate-measurements are usually

obtained by strap-down sensor systems which provide angular rates with respect to the

inertial frame. the angular velocity of the body-fixed frame with respect to the inertial

frame can be described as

ωB
BI = ωB

BO + ωB
OI (2.8)

The direction cosine matrix CB
O describing the orientation of the spacecraft body frame

with respect to the orbital reference frame can be defined in terms of the quaternion as,

CB
O =

(
q24 − qTq

)
I + 2qqT − 2q4 (q×) (2.9)
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where q× is a skew-symmetric matrix given by

q× =


0 −qz qy

qz 0 −qx
−qy qx 0

 (2.10)

Orbital angular velocity expressed in the body frame with respect to the inertial frame,

ωB
OI , can be obtained by rotating the angular velocity into the orbital frame using the

transformation matrix CB
O as follows,

ωB
OI = CB

O


0

−ω0

0

 (2.11)

2.4 Disturbance Torques Modeling

A satellite in LEO is subject to various disturbance torques as it orbits the earth. The

gravity gradient (GG) disturbance torque is caused because of the distance between oppo-

site ends of a spacecraft. Gravity will pull on one end of the spacecraft more than the other

depending on inertia and orientation. Generally it is constant for earth-oriented vehicles

and cyclic for inertially-oriented vehicles, and is influenced primarily by spacecraft inertias

and orbital altitude. If the satellite moments of inertia(MOI) are equal the GG torque is

zero. For a spacecraft with small products of inertia the GG torque can be expressed as,

TGG =
3µ

2R3
e

(
Jsz −

Jsx + Jsy
2

)
(z0 − z) (z0 × z) (2.12)

where µ = 3.986 × 1014 m3

s2
is the Earth’s gravitational constant, Re is the orbit radius in

metres, Jsz, Jsx, Jsy are the spacecraft MOIs about the z, x, and y axes respectively, z0 is

the nadir unit vector in body coordinates, and z is the principle body z-axis unit vector.

Solar radiation pressure(SRP) is created primarily due to the difference between the

center of pressure and center of gravity of a satellite. This disturbance is manifested

as a cyclic disturbance for earth-oriented vehicles and a constant disturbance for solar-

oriented vehicles. It is primarily influenced by spacecraft geometry, surface reflectivity, and
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spacecraft center of gravity (cg). The equations are shown below,

Tsp = F (cps − cg) (2.13a)

F =
Fs

c
As (1 + q) cos (i) (2.13b)

where Fs is the solar constant (1, 367 W/m2), c is the speed of light (3×108 m/s), As is the

surface area, cps is the location of the center of solar pressure, q is the reflectance factor

( 0 to 1), and i is the angle of incidence of the sun. Magnetic disturbances are caused by

the influence of the earth’s magnetic field on a body in orbit and is manifested as a cyclic

disturbance. This disturbance is primarily influenced by orbital altitude, residual spacecraft

magnetic dipole, and orbit inclination. The worst case estimate of this disturbance can be

determined using the following equation([Wiley J. Larson 2005] page 366),

Tm = DB (2.14a)

B =
2M

R3
(2.14b)

where D is the residual dipole of the vehicle with units (A ·m2), M is the magnetic moment

of the earth (7.96 × 1015 tesla ·m3), and R is the radius from dipole (earth) center to the

spacecraft (m). Equation (2.14b) is the earth’s magnetic field in tesla and applies to vehicles

in a polar orbit- at the equator this value is halved.

Aerodynamic disturbances can also affect spacecraft in LEO due to the very thin layer of

atmosphere at these altitudes. For earth-oriented vehicles this disturbance is constant while

for inertially-oriented vehicles it is variable. The primary factors influencing aerodynamic

disturbances are orbital altitude, spacecraft geometry, and cg location. Similar to SRP

torques aerodynamic disturbances are manifested due to the difference between centers of

pressure and gravity of a spacecraft. It can be expressed as[Wiley J. Larson 2005],

Ta = F (cpa − cg) = 0.5
(
ρCdAV

2
)
(cpa − cg) (2.15)

where F is the atmospheric force, Cd is the drag coefficient (usually between 2 and 2.5),

ρ is the atmospheric density, A is the surface area, V is the spacecraft velocity, and cpa is

the center of aerodynamic pressure.
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It is paramount that these disturbance torques be understood in order to design an

adequate ACS that is capable of maintaining a particular attitude and/or performing ma-

neuvers. When the worst-case disturbance torques are known one can proceed to determine

the minimum amount of torque the actuator hardware must supply to reject them. This

design methodology has been carried out in section 4.4 of [Alger 2006] and explained thor-

oughly in [Wiley J. Larson 2005] chapter 11.

2.5 Attitude Control Requirements

When orbiting the earth a satellite must usually maintain a desired attitude, and when

appropriate perform attitude maneuvers. Environmental disturbances experienced in orbit

such as SRP, GG, magnetic, and aerodynamic disturbances cause the satellite body to drift

from the desired orientation. A control system must be designed such that sufficient torque

and momentum storage is available for any foreseeable attitude maneuvers and disturbance

rejection, this is referred to as control capability.

To determine the requirements for an ACS the expected worst-case disturbance torques

on the satellite body must be known, as well as the required torque to perform the largest

possible maneuver. A safety factor should be applied to arrive at the total required torque

to reject disturbances. The ACS must also have sufficient momentum storage capabil-

ity. In order to perform this analysis one must know the characteristics of the satel-

lite in question. The RyeSat cubesat project is currently under development at Ryerson

University[Alger 2006]. The various structural, electrical, and mechanical characteristics of

this proposed cubesat will be considered here for analysis and simulations.

2.6 Attitude Control by Quaternion Regulation

Attitude control using the quaternion attitude representation has been studied exten-

sively in the literature. Attitude control by quaternion back-stepping has been covered

in [Raymond Kristiansen 2009], while the works of [Tayebi 2008], [Jonathan Lawton 2003],

and [B. Wie & Arapostathis 1989] consider quaternion-based feedback attitude control
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strategies. The quaternion feedback regulator developed by [B. Wie & Arapostathis 1989]

is used for its ease of implementation and minimal computational requirement. This con-

troller consists of a linear body-rate feedback term, an error-quaternion feedback term, and

a non-linear body-rate feedback term that counteracts the gyroscopic coupling torque,

u = −ω×J sω−Dω−Kqe (2.16)

where D and K are 3×3 diagonal, positive-definite, and constant gain matrices. The

quaternion error component qe defines a rotation from the commanded quaternion(qc)to

the actual satellite attitude quaternion (qs), it can be obtained using the expression below.
q1e

q2e

q3e

q4e

 =


q4c q3c −q2c −q1c
−q3c q4c q1c −q2c
q2c −q1c q4c −q3c
q1c q2c q3c q4c




q1s

q2s

q3s

q4s

 (2.17)

The gyroscopic decoupling term in Eq. (2.16) is not needed for slow rotational maneuvers,

however when fast maneuvers are performed the influence of the gyroscopic effect must

be considered. When applied to satellite attitude control the body-frame will perform an

eigen-axis rotation about an axis and through an angle specified by the error quaternion

according to Eq. (2.17) This method was shown to be globally stable if K−1D> 0 .

2.7 Actuators

The most common actuator technologies for cubesats are reaction wheels (RWs), thrusters,

and magnetic torque rods (MTRs), while CMGs are also common but in larger satellites.

A RW consists of a flywheel attached to an electric motor. At least three RWs mounted

orthogonally about each of the body axes are required for full three-axis attitude control.

When the satellite must perform a maneuver the RWs accelerate and impart a torque onto

the spacecraft, if a spacecraft must maintain a desired attitude in the face of external

disturbances the RWs must absorb any added momentum to keep the total angular mo-

mentum of the system at zero. An MTR usually consists of a wire coil with a ferrite core.

When a current passes through the coil a magnetic field is created. When multiple MTRs
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are combined a magnetic dipole can be created that counteracts the earth’s magnetic field

and provides two-axis pointing of a spacecraft. MTRs are usually employed along with a

reaction wheel for full three-axis attitude control. Finally the CMG is another momentum

exchange device like the RW. A CMG unit consists of a flywheel that is gimballed about

one, two, or three of its axes. Gyroscopic torques are generated as the angular momentum

vector is rotated about axes perpendicular to the flywheel spin-axis.

Depending on mission requirements one actuator may be more appropriate than others,

in particular the required degree of pointing accuracy is a primary factor for selecting

actuators. MTRs provide the lowest pointing accuracy because of the time-varying nature

of the earth’s magnetic field and their inability to provide control about more than two

axes. They are usually used in conjunction with RWs and CMGs for momentum dumping.

For a cubesat MTRs are small enough to satisfy the mass/power/volume constraints hence

making them a popular choice. RWs provide substantially improved pointing accuracy and

agility relative to MTRs, however power consumption and mass tend to be larger. CMGs

provide more accurate and agile pointing capabilities because of their torque amplification

characteristics and gyroscopic stabilization. It must be noted that pointing accuracy is a

only as good as the combined ADS and ACS(ADCS) accuracy. In other words if the ADS

is only accurate to 1 ◦ and ACS pointing accuracy to 0.5 ◦, no better than 1 ◦ pointing

accuracy can be achieved and vice-versa.

2.7.1 Reaction Wheels

Fundamentally a RW is a flywheel mounted to an electric motor. Electric Motors in space

are usually BLDC or stepper motors as opposed to brushed motors. These types of motors

are preferred because brushes can scrape particulate matter of the electrodes and contam-

inate instrumentation. A motor consists of stationary stator windings, and a permanent

magnet or wound rotor. The difference between brushed and BLDC motors lies in the

commutation method. BLDC motors commutate using stationary position sensors located

as close to the rotor magnets as possible. The position sensors are Hall effect sensors that

output a logic high level when a magnetic field is passing over them and low when no field

is present. Each position sensor generates a pulse-train that is 120 ◦ out of phase with
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the other two sensor signals. Commutation is performed by processing the three signals

and knowing when to excite a particular stator winding. The rotor speed can also be as-

certained by observing the position sensors signal frequencies. In contrast a brushed DC

motor uses metallic or carbon conducting ’brushes’ to commutate while the stator remains

similar to that of the BLDC. The commutator is usually located above the stator windings

so that as the motor turns the brushes slide over the commutator making contact with the

different commutator segments. Each segment is attached to one winding resulting in the

generation of a dynamic magnetic field inside the motor when a voltage is applied across

the brushes. This field repels the rotor magnets or windings resulting in the rotation of

the rotor. A major problem with brushed DC motors is the wear and tear on the brushes

and commutator, in the vacuum of space the tiny particles that wear off of the brushes can

disperse in all directions and contaminate on-board electronics.

A RW model must consider motor disturbances, non-linearities, and BEMF torque

limiting. Figure 2.3 is a high-fidelity RW model for a torque-controlled BLDC motor

developed by [Bialke 1998]. Voltage-controlled motors share the same disturbances and

non-linearities. BEMF voltages are generated in stator windings when the rotor rotates.

A faster rotor speed will yield a larger BEMF voltage, its exact value is determined by the

product of wheel speed and BEMF constant Km, with SI units rad/s and V/rad/s respectively.

In so far as torque limiting, when a voltage is applied to the motor the rotor rotates. It

will rotate until a speed is reached at which the BEMF voltage is close to the applied

voltage such that the differential voltage across the armature is small resulting in a small

current. Rotation stops when the current is so small that the motor does not generate

enough torque to accelerate. For example if five volts are applied at zero wheel speed the

wheel will accelerate until the BEMF voltage nears five volts. In order to decelerate the

wheel a lower voltage must be applied and vice-versa to accelerate the wheel again.

On the mechanical side of the dynamics the motor can be subject to disturbances such

as cogging and ripple torque. Cogging torque is caused by the rotation of the magnets

in the rotor with respect to the motor windings. As a magnet rotates past a winding, its

motion is first opposed by flux leakage from the end of the windings until it passes over

the entire winding when the motor is then accelerated by the flux leakage. With current
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Figure 2.3: Reaction Wheel Dynamics

[Bialke 1998]

BLDC motor technologies cogging torque is no longer a concern as most designs minimize

the amount of ferrous material rotating across the windings. Equation (2.18) describes the

cogging torque mathematically,

Tcog = B sin (3Nωt) (2.18)

where B is a gain, N is the number of motor poles, and ω is the rotor speed. Torque ripple

occurs at the commutation frequency and is characterized as a variation in the motor torque

caused by the commutation method and the shape of the BEMF waveform. For analytical

purposes this disturbance is approximated as a sinusoid while in reality it is closer to a
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truncated rectified sine wave. The equation for this disturbance is shown below,

Trip = C sin

(
Nωt

2

)
(2.19)

where C is a constant and the other parameters are the same as in Eq. (2.18). BLDC

motors are also subject Coulomb and viscous friction non-linearities that are dependent

on the bearing material and lubricant. Coulomb friction is caused by the rolling friction

within the bearings and is characterized by a torque discontinuity when the motor is not

generating enough electrical torque. The expression for Coulomb friction is,

Tcoul = τcsign (ω) (2.20)

where τc is the coefficient of Coulomb friction with units N ·m, and the sign function can

be characterized as shown below.

sign (x) = {
−1 x < 0

0 x = 0

1 x > 0

(2.21)

Viscous friction varies depending on the type of the bearing lubricant and its temperature

as well as the speed of the rotor. A higher bearing lubricant temperature will create

less friction in the bearing while different lubricant materials will have varying viscosities.

Viscous friction can be expressed as in Eq. (2.22),

Tvisc = τvω (2.22)

where τv is the coefficient of viscous friction with units N·m/rad/s. The motor torque block

in Fig. 2.3 consists of scaling the motor current by the torque constant (Kt, with SI units
N·m/A) which is equal to the BEMF constant when expressed in SI units. For the remainder

of this thesis the terms ’BEMF constant’ and ’torque constant’ are used interchangeably.

It is important to discuss the high degree of nonlinearity in this RW model, in partic-

ular attention must be paid to the heavyside, absolute value, and signum functions in the

model. These functions all lead to discontinuities that must be approximated by appropri-

ate analytical models. These models take the form of rational exponential functions, and

become very cumbersome when linearization is required. For the numerical representation

of the this model refer to Reference [Sobahni-Tehrani 2008].
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2.7.2 Control Moment Gyroscopes

The CMG is a momentum exchange device that functions on the principle of gyroscopic

forces. This actuator consists of a spinning flywheel that generates a large and constant

angular momentum in the direction of its spin-axis. The flywheel is mounted onto a gimbal

motor shaft, when this motor rotates the angular momentum vector changes direction

resulting in a torque. Figure 2.4 demonstrates the relationships between gimbal angle

rotation and output torque.

Figure 2.4: Control Moment Gyroscope [Lappas 2002]

This figure demonstrates how a torque is created when only one gimbal exists, this is termed

a SGCMG. A CMG that has two gimbals is known as a DGCMG. Generally DGCMGS ro-

tate the flywheel about the two axes perpendicular to its spin-axis. If a gimbal would rotate

the flywheel about its spin axis no gyroscopic torques would be created, in essence rotations

about that axis would only generate reaction torques. Variable Speed CMGs(VSCMGs)

are the preferred actuator in this case, while common CMG units have constant flywheel

speeds, VSCMGs control using both gimbal and reaction torques. Table 2.1 demonstrates

advantages and disadvantages of the different types of CMGs. SGCMGs are more common

because they are less prone to faults, and simple to build. However they are also more

likely to encounter singularities. DGCMGs and VSCMGs provide extra degrees of freedom

that reduce excursions in to singular states, however they are more costly to develop and

not as reliable as SGCMGs.



2.7. Actuators 39

Table 2.1: Advantages and Disadvantages of Different Types of CMGs[Lappas 2002]
CMG Type Advantage Disadvantage

SGCMG Torque amplification Singularities

DGCMG Torque amplification, extra degree of control Cost, complexity, size

VSCMG Extra degree of control Reliability

Figure 2.5: 4SGCMG Pyramid System

A common SGCMG system configuration is the 4SGCMG pyramid cluster, shown in

the figure below. As compared to an orthogonal cluster of 3SGCMGs, the 4SGCMG con-

figuration is preferred for three reasons; (1) improved singularity avoidance, (2) increased

redundancy, (3) increased angular momentum capability. Singularities are more likely to

occur in systems with fast gimbal-rates or insufficient degrees of freedom. 4SCMGs provide

an extra degree of control freedom that minimizes singularity occurrence. In the case a unit

fails and only 3SGCMGs remain, a more robust and optimal steering law is required to

account for increased occurrence of singularities, thus 3-axis control would still be available

to a limited degree. Hardware redundancy is key in this case and satellite missions in gen-

eral. A device that can be easily reconfigured autonomously in the face of a fault or failure

is highly desirable. In conjunction with FDI using analytical redundancy as in chapter 4, a

fairly robust system can be developed. Another advantage of 4SGCMG systems shown in

Fig. 2.6 is a larger angular momentum envelope than 3SGCMG systems. If gimbal angles

are about to reach singular states a larger momentum envelope means that there is more
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freedom to avoid singularities, loosening the steering law requirements. Power consump-

tion is also lower for the 4-unit configuration relative to the 4-unit system[Hablani 1994].

An angle of inclination of β = 54.73 ◦ was selected because it results in a more spher-

ical and symmetric angular momentum envelope, and has been widely used. Reference

[Kurokawa 1997] provides more information on singular surfaces and angular momentum

profiles for different configurations of SGCMGs.

Figure 2.6: Momentum Envelopes of 4SGCMGs Pyramid Cluster (β = 54.73o) and and

3SGCMGs Orthogonal Cluster

2.8 Summary

In light of this discussion the SSDC group at Ryerson has decided to pursue the design

of a 4SGCMG pyramid system as shown in Fig. 2.5 that fits into a picosatellite cubesat

frame. As mentioned in section 1.1 CMGs are primarily used in micro and larger satellites

because of lack of interest in cubesat technologies commercially. Interest is beginning to

peak however, culminating in the efforts of various universities to develop picosatellite sized

RWs. Logically the next step is to study the feasibility of a CMG system for picosatellites.

Few researchers have attempted to develop CMGs for picosatellites due to lack of demand.

Consequently the design of a picosatellite SGCMG pyramid cluster will be proposed in this

thesis for more agile and accurate cubesats.
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CMG System Design for Picosatellites

The spacecraft mission and orbit geometry influence the pointing commands for payloads

and spacecraft attitude control system significantly. Low Earth Orbit (LEO) has the lowest

altitudes. The orbit period is shortest and the time during which the spacecraft is in line

of sight with the ground station is brief - 15 minutes or less. This necessitates autonomous

tracking and requires sophisticated pointing capabilities onboard the spacecraft. One of

the most severe constraints in small satellite is the limited power, mass or capacity of

attitude control actuators. To enable high-speed maneuver missions for small satellites,

an attitude control system using control moment gyros (CMG) is proposed in this thesis.

A CMG consists of a spinning rotor with constant angular momentum. The CMG is

an attitude control actuator that works on the principle of changing the direction of the

angular momentum vector with respect to the spacecraft by gimballing the spinning rotor.

The spinning rotor is mounted on a gimbal and torquing the gimbal results in a precessional,

gyroscopic reaction torque orthogonal to the rotor spin and gimbal axes. Thus, the output

torque is directly proportional to the rate of change of momentum and is controlled through

the gimbal rate. Small gimbal torque input can produce large control torque output on the

spacecraft. This torque amplification property of CMGs makes them favorable for precision

pointing control and momentum management of agile small spacecraft in LEO.

This chapter will present how spacecraft are modeled with CMGs for actuation, followed

by sizing and component selection for application in a picosatellite. Then attitude control

simulations are conducted using parameters determined in the sizing section to verify the

performance of the CMG cluster.
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3.1 Mathematical Modeling of Spacecraft with CMGs

Spacecraft attitude dynamics with momentum exchange actuators can be expressed as,

Ḣ
B

BI = −ωB
BI×HB

BI + u+ uext (3.1a)

HB
BI = JωB

BI + h (3.1b)

J = J s +AJaA
T (3.1c)

where HB
BI is the total angular momentum vector of the combined spacecraft and CMG, J

is the total MOI of the spacecraft including CMGs, J cmg is a n× n diagonal matrix whose

entries corresponding to the nth CMG unit inertia, A is a 3 × n projection matrix whose

columns represent the influence of each CMG unit on the spacecraft, and h is the total

CMG angular momentum vector given by

h = Ahcmg (3.2)

where hcmg ∈ ℜn×3 describes the angular momentum of each CMG unit. Substituting Eq.

(3.1b) into Eq. (3.1a) yields

Jω̇B
BI + ωB

BI×JωB
BI = u+ uext (3.3)

ḣ+ ωB
BI×h = −u (3.4)

The influence of the CMG on the momentum and acceleration of the spacecraft is described

by Eq. (3.4). Note that the CMG angular momentum is a function of the flywheel speeds

Ω and gimbal angles δ such that

h = f (δ,Ω) (3.5)

For the 4SGCMG pyramid configuration shown in Fig. 2.5 the total CMG angular mo-

mentum vector can be expressed as,

h =
4∑

i=1

hi (δi,Ωi) (3.6a)

h = h1 (Ω1)


−cβsδ1
cδ1

sβsδ1

+ h2 (Ω2)


−cδ2

−cβsδ2
sβsδ2

+ h3 (Ω3)


cβsδ3

−cδ3
sβsδ3

+ h4 (Ω4)


cδ4

cβsδ4

sβsδ4


(3.6b)
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where ’c’ and ’s’ are the cos and sin functions respectively. Given the control input u, Eq.

(3.4) can be used to obtain ḣ, subsequently the rate of change for gimbal angles δ̇ can be

determined by finding the Jacobian of Eq. (3.6b) with respect to gimbal angles δi using

the following equation,

ḣ =
4∑

i=1

∂h (δi,Ωi)

∂δi
= hoAcmgδ̇ (3.7)

where

Acmg =


−cβcδ1 sδ2 cβcδ3 −sδ4
−sδ1 −cβcδ2 sδ3 cβcδ4

sβcδ1 sβcδ2 sβcδ3 sβcδ4

 (3.8)

describes the influences of the torques of each CMG unit on the spacecraft, and ho = h1 =

h2 = h3 = h4 represents the angular momentum stored in each of the flywheels. Desired

gimbal angle rates are obtained from Eq. (3.7) by finding the pseudo-inverse A†
cmg of Acmg.

δ̇ =

(
1

ho

)
A†

cmgḣ (3.9)

A†
cmg = AT

cmg

[
AcmgA

T
cmg

]−1
=
[
AT

cmgAcmg

]−1
AT

cmg (3.10)

This method of obtaining desired gimbal angle rates is denoted ’steering logic’. Because of

inherent singularities in A for particular gimbal angle sets this method is not very practical

except in cases where the gimbal angle rates are very small and gimbal angle trajectories do

not move much. To resolve this, singularity avoidance steering logic has been developed.

Some of these methods are summarized in [Lappas 2002]. These techniques attempt to

keep gimbal angle from reaching singular states to avoid singularities and gimbal lock.

Singularities occur when gimbal angles result in a determinant of zero in the matrix of Eq.

(3.8). Gimbal lock occurs when gimbal angle combinations result in zero output torque.

Some steering logic can avoid singularities or gimbal lock while others can avoid both.
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3.2 Sizing and Component Selection for CMG

Sizing for the CMG is meant to determine how fast gimbal angle and flywheel angular

rates should be as well as what size of flywheel to use. Tradeoffs between mass, power, and

performance specifications must be made to arrive at an appropriate design. In general it

is desired to keep the flywheel speed and size to a minimum for power and mass savings.

However smaller flywheels will require higher wheel speeds and consume more power, while

less power is consumed in the opposite case. Gimbal angle rates are usually selected as large

as possible while considering power and torque requirements for the gimbal motor. Faster

gimbal rates result in more consumed power and larger torque requirement for the gimbal

motor shaft and its load, the load being the flywheel and any complementary electronics.

A gimbal motor must be selected such that its radial and axial load tolerances are large

enough to withstand launch vibrations. Axial loads push or pull the shaft into or out of

the motor in the spinning axis direction while radial loads are perpendicular and cause the

shaft to displace radially. In either case excess loads can lead to bearing damage. Flywheel

mass and its corresponding motor mass must be kept at a minimum in order to reduce axial

and radial loads (Fig. 3.1) on the shaft. Furthermore the torque required to maneuver the

gimbal depends on maximum gimbal rate, faster gimbal rates mean larger required torques.

Figure 3.1: Radial and Axial Load Directions on a Motor Shaft

Criteria for sizing of a CMG for picosatellites is established by estimating worst-case

disturbance torques and maximum angular rate for maneuvers. Worst case GG disturbance

can be determined using the following simplified equation[Wiley J. Larson 2005],

Tg =
3µ

2R3
e

|Jmax − Jmin | sin (2θ) (3.11)
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where Tg is the maximum gravity torque, θ is the maximum deviation of the Z-axis from

local vertical in radians, Jmin and Jmax are the smallest and largest MOIs of the spacecraft

respectively in kg ·m2. Worst-case disturbances can be determined using Eqs. (2.13a-2.15).

The estimated worst-case disturbance torques for a satellite in a 400km LEO have been

determined in [Alger 2006] for the RyeSat and are shown in the table below

Disturbance Torque (N ·m)

Magnetic 2.5× 10−6

Aerodynamic 5.6× 10−7

Gravity Gradient 5.8× 10−9

Solar Pressure 6.1× 10−9

Total 3.06× 10−6

Table 3.1: Worst-case Disturbance Torques for Picosatellite in 400 km LEO

The next step in the sizing procedure is to determine how much torque is required to

perform maneuvers. This is determined by specifying a change of angle θ over a time

tdur[Wiley J. Larson 2005] with the following equation,

Tman =
4θJ

t2dur
(3.12)

where J is the MOI of the satellite about a particular axis. The above equation should be

applied to the body-axis that has the largest inertia value to make sure sufficient torques

are available about all three body-fixed axes. The largest inertia component on the RyeSat

is 0.005 kg ·m2. Thus to perform a 90 ◦ maneuver in 60 seconds the torque required is

8.727 × 10−6 N ·m. In order to be capable of rejecting a worst-case disturbance while

performing the above-mentioned maneuver, total required torque comes to 1.485 × 10−5

N ·m. Having determined the total required torque for picosatellite attitude control it is

now time to determine the required momentum storage.

For RWs and CMGs momentum storage is dependent on flywheel MOI and speed. To

know how much momentum storage is needed to start an attitude maneuver, the total

spacecraft MOI (J) and maneuver angle rate
(
ωB
BI(avg)

)
must be known, then the following
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equation can be used[Wiley J. Larson 2005].

Hstart = JωB
BI(avg) (3.13)

The maneuver considered above has ωB
BI(avg) = 0.0262 rad/s while J = 0.005 kg ·m2 re-

sulting in a maximum starting angular impulse of 0.000131 N ·m · s. To stop the maneu-

ver an angular impulse equal to but opposite in sign must be applied to the spacecraft.

Over one orbital period, the required amount of momentum storage to reject disturbances

is[Alger 2006],

Hdist =
τdistP

4
√
2

(3.14)

where τdist = 3.06× 10−6 N ·m as determined above and P = 5553 s is the orbital period

resulting in 0.003 N ·m · s of required momentum storage to handle disturbances. In total

the ACS should be capable of storing 0.00313 N ·m · s for sufficient momentum storage

over one orbit. The results of the ACS requirements analysis for the RyeSat picosatellite

are summarized in Table 3.2.

Torque [N ·m] Angular Momentum[N ·m · s]

Disturbance Rejection 2× 3.06× 10−6 0.003

Attitude Maneuver 8.727× 10−6 0.000131

Total 1.485× 10−5 0.00313

Table 3.2: RyeSat ACS requirements

Having understood the ACS requirements for a picosatellite, the next step is to size the

CMG. Sizing consists of determining the flywheel size and angular velocity as well as

maximum and average gimbal rates. We start by expressing the total CMG output torque,

T CMG = h×δ̇ (3.15)

where T CMG is determined from the torque requirements mentioned above(Table 3.2).

Angular momentum and gimbal-rate vectors must be determined based on mission re-

quirements, the selection process can be facilitated by observing the torque amplification

properties of the CMG. Torque amplification for CMGs can be expressed as the ratio,

To−i

Ti−i

=
δ̇

ωB
BI(avg)

(3.16)
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where ωB
BI(avg) is the average spacecraft angular rate, To−i is the CMG output torque and

Ti−i is the input torque. These values are related as shown in Fig. 3.2.

Figure 3.2: Input/Output CMG Torque Vectors

According to Eq. (3.16) torque amplification is large when ωs ≪ δ̇, in other words when

spacecraft angular rates are much smaller than gimbal angle rates. A maneuver of 90 ◦ in

60 s for the RyeSAT would result in an average body-rate of 1.5 ◦/s or 0.0262 rad/s. In

order to achieve a torque amplification of at least 5, average gimbal angle rates of 10 ◦/s

or 0.174 rad/s will be considered. A singularity-avoidance steering law would be necessary

considering that during a 30 s maneuver a gimbal angle would reach 300 ◦ at maximum

angular speed. An x-axis maneuver will be considered using units 1 and 3 as labeled in

Fig. 2.5. The total output torque about the x-axis is the sum of torques from units 1 and

3[Lappas 2002].

T1x = hoδ̇1cβcδ1 (3.17a)

T3x = hoδ̇3cβcδ3 (3.17b)

Tx = T1x + T3x = 2hoδ̇cβcδ (3.17c)

where δ = δ1 = δ3 and δ̇ = δ̇1 = δ̇3 due to symmetric rotation for the maneuver, and

ho = Jwωw is the flywheel momentum. For Tx = 1.485 × 10−5 N ·m, δ̇max = 0.174 rad/s

and δ = 0 ◦ the required angular momentum can be determined to be ho = 7.388× 10−5

N ·m · s using Eq. (3.17c). Before the flywheel can be sized a candidate BLDC flywheel

motor is selected as the Faulhaber 1202 penny-motor, this was done in order to have a
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better idea of the maximum wheel speed which is required for the sizing process. BLDC

motors are ideal for space applications because brushes are not required to commutate

the motor. Brushes cause the release of small particles that could contaminate satellite

instrumentation. Faulhabers have space heritage and are one of the leaders in supplying

COTS motors for spacecraft actuators. There were no other motors close to offering the

performance of this motor in such a small package. Some of its specifications are shown in

the table below.

Parameter Value

Nominal Voltage 4 V

No-load Speed 41740 rpm (3935 rad/s)

No-load Current 0.028 A

Max. Output Power(40000 rpm) 0.652 W

Shaft Radial Load max.(10000 rpm) 0.6 N

Shaft Axial Load max.(10000 rpm) 1.0 N

Mass 1.1 g

Table 3.3: Faulhaber 1202 Penny Motor Specifications

Some key aspects of this motor are its low power consumption and high dynamic range

for shaft speeds(up to ≈ 4000 rad/s). The shaft diameter of this motor is only 1 mm, this

must be taken into account when designing the flywheel. If the load on this shaft is too

large, then vibration loads during launch can exceed the specified axial and radial load

tolerances resulting in either partial or complete failure of the bearing. This design will

try to keep the flywheel mass and volume as low as possible while satisfying performance

requirements, in general larger nominal speeds can allow for smaller flywheels for a given

value of momentum as per the angular momentum equation h = Jwωw. A flywheel speed

of 2000 rad/s is easily within the limits of this motor while consuming very low power in

steady-state operation, this will allow the design of a very small flywheel in addition to the

motor’s mere 1.1 g mass and 1.1 cm diameter. Considering the required angular momentum

per CMG unit ho, the required flywheel inertia can be determined by the following,

Jw =
ho
ωw

=
7.388× 10−5

2000
= 36.94× 10−9kgm2 (3.18)
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This is a very small inertia requirement, which should result in a very small flywheel mass

and volume. Using the MOI equation for a thin disk about its spin axis and assuming a

flywheel radius of rw = 6.5 mm the required mass of the flywheel can be determined as,

md =
2Jw
r2

=
73.88× 10−9

42.25× 10−6
= 1.75× 10−3kg (3.19)

According to the design the momentum wheel portion of a single SGCMG unit will only

weigh 2.85 g not-including other structural parts. This is a substantial savings in mass com-

pared to the required flywheel size for a reaction wheel. If the mass of the motor/flywheel

assembly is assumed to be 3 g and 23grms[D. Sinclair 2010] of vibrations are assumed, then

maximum resulting axial/radial torque is approximately 0.4 N which will be considered for

the gimbal motor selection. Now the height of the flywheel hd can be determined to com-

plete the flywheel design. Steel, with a density of ρs = 7800 kg/m3 , will be used as the

flywheel material due to its thermal properties and durability. The disk volume can be

found using the density and mass of the flywheel.

Vd =
md

ρs
=

1.75× 10−3

7800
= 2.24× 10−7m3 (3.20)

Next the height is determined by utilizing the volume equation for a thin disk,

hd =
Vd
πr2d

=
2.24× 10−7

132.67× 10−6
= 1.688× 10−3m (3.21)

To make the design practical in terms of manufacturing, the height hd will be 1.7094 mm,

comparable to 15-gauge steel, this results in negligible change in volume, mass and overall

performance. Table 3.4 summarizes the flywheel design.

Parameter Value

Mass 1.75 g

Radius 6.5 mm

Height 1.7094 mm

Inertia 36.94× 10−9 kg ·m2

Angular Momentum at 2000 rad/s 7.388× 10−5 kg·m2
/s

Table 3.4: Steel Flywheel Design Parameters
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Next a gimbal motor must be selected. Stepper motors are the most common motor choice

for gimbals since they perform the function really well and have large holding torques com-

pared to BLDC motors of the same size. Holding torque is an important characteristic

because it determines how well the gimbal motor will hold its position. Selection of partic-

ular gimbal motors is based upon maximum gimbal angle rates, radial and axial maximum

load ratings, and size. The Portescap P010 and Faulhaber ADM0620 stepper motors were

considered for this design. Lappas utilized the P010 in his CMG design for nanosatellites,

thus its specifications are more than sufficient for this application. However the ADM0620

was selected because it consumes less power and is smaller, also its performance specifica-

tions are on par with the requirements. A comparison of the motors is shown below.

Parameter P010 ADM0620 ADM0620

(1.5/3 V) (3/6 V) w/ Gearhead

Nominal Current per Phase 0.43/0.15 A .075/.04 A _

Holding Torque(nominal current) 1.85 mN ·m 0.2 mN ·m 25 mN ·m

Max. Output Power 0.645/0.45 W 0.225/0.24 W -

Shaft Radial Load max. ≤ 2.5 N ≤ 0.3 N ≤ 5 N

Shaft Axial Load max. ≤ 2.5 N ≤ 0.5 N ≤ 3 N

Mass 9 g 1.4 g 4.8 g

Table 3.5: Gimbal Motor Comparisons

The 6 V ADM0620 stepper motor will be used with a 06/1 planetary gearhead for the design

thanks to low power consumption and mass, and high holding torque and radial and axial

loads. Note that the gearhead increases the radial and axial load tolerances of the shaft and

bearing such that the estimated load of 0.4 N is within the motor limitations. Even with the

gearhead this motor only weighs 4.8 g, thus making the ADM0620 a more attractive option.

Considering the flywheel, flywheel motor, and gimbal motor with gearhead their combined

weight is only 7.6 g, for an entire 4SGCMG system this weight is only 30.4 g leaving 70

g for the structural and electrical components. Power consumption of the motors can be

determined using the data in Tables 3.3 and 3.5. Penny motors operate at 28 mA and 4

V nominally resulting in 0.112 W. With a load this number should increase, however the
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load (flywheel) is extremely small and should not cause much of a change, a conservative

estimate will be 0.2 W maximum power draw. Gimbal motor power consumption is 0.225

W with both phases on, in other words depending on the stepping algorithm this number

could be halved. In total the worst-case power consumption per unit is 0.425 W, four units

would consume 1.7 W peak. In practice the 1202 will be operated at about half the no-load

rated speed of 40000 rpm. Thus assuming a linear relation between power and rotor speed,

power consumption should be approximately half, or 0.1 W, for the flywheel motor. If a

stepping algorithm is used that excites only one phase per step the gimbal motor power

consumption will be approximately 0.112 W. Consequently the estimated maximum power

numbers could be approximately 0.25 W/unit for 1 W of power consumption for the total

4SGCMG cluster not-including other electronic components. Consequently the peak and

average power constraints are satisfied. Next, simulations are set up to test the performance

of the proposed system based on the sizing performed in this section.
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3.3 Proposed CMG System Performance Simulations

In order to verify the performance of the proposed CMG system, simulations were carried

out in Matlab/Simulink. The model was setup as shown in Fig. 3.3.

Figure 3.3: CMG Simulation Control Logic

The shaded area in the figure represents blocks that are implemented in continuous-

time(CT) while unshaded blocks are in discrete-time(DT). Satellite and CMG dynamics are

in CT, and the control law and steering logic blocks are in DT because they are usually im-

plemented in a microprocessor. Gimbal angle dynamics consist of an electric motor model

with wheel speed controller, this is meant to simulate transients in the the gimbal motor

for given commands. The CMG dynamics are calculated using Eqs. (3.4-3.6b), while the

satellite attitude dynamics and kinematics are simulated using Eqs. (2.1-2.7b). External

torques are included into attitude dynamics in the form of gravity-gradient, aerodynamic,

and SRP disturbances in Eqs. (2.12-2.15). A zero-order-hold(ZOH) with sampling fre-

quency (Fs) of 100 Hz is used to discretize the satellite states. Next the required change

in CMG angular momentum is obtained using Eq. (3.4), and desired gimbal angle rates

are obtained with some form of steering logic. These rates are then applied to the CMG

gimbal model, whose output is used to calculate CMG output torque and momentum which

are then passed to the satellite attitude dynamics. Simulations were conducted for 90 ◦

rest-to-rest roll, pitch, and yaw maneuvers using the singularity robust steering logic in

[Bong Wie 2001]. Desired gimbal angle rates can be computed as follows,

δ̇ =
(
1/ho

)
A†ḣ (3.22a)
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A† = AT
[
AAT + λE

]
(3.22b)

E =


1 ε3 ε2

ε3 1 ε1

ε2 ε1 1

 > 0 (3.23)

εi = ε0 sin (ωt+ ϕi) (3.24)

where λ is a scalar between 0 and 1. The εi in Eq. (3.23) are modulating functions with

amplitude ε0, modulating frequency ω, and phase of ϕi. The steering logic parameters are

shown in the table below[Bong Wie 2001].

Parameter Value

ε0 0.01

ω 0.5π rad/s

[ϕ1, ϕ2, ϕ3] [0,π /2, π] rad

λ 0.01 exp
[
−10det

(
AAT

)]
Table 3.6: SR Steering Logic Parameters

The following table lists other common simulation parameters used for all three simulations,

Parameter Value

Jx 0.0017 kg ·m2

Jy 0.001 kg ·m2

Jz 0.005 kg ·m2

Jw 36.94× 10−9 kg ·m2

ωw 2000 rad/s

Re 400 km[
δ10 δ20 δ30 δ40

] [
0◦ 0◦ 0◦ 0◦

]
β 54.73 ◦

Fs 100 Hz

Table 3.7: CMG Picosatellite Simulation Parameters

Each simulation is run for 100 s, results are shown in Figs. 3.4-3.6.
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Figure 3.4: CMG Attitude Control for 90 ◦ Roll Maneuver
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Figure 3.5: CMG Attitude Control for 90 ◦ Pitch Maneuver
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Figure 3.6: CMG Attitude Control for 90 ◦ Yaw Maneuver

Note that the roll and pitch plots are similar except that units 1 and 3 are used for to

control the roll while units 2 and 4 are used to control pitch. Furthermore, a larger control

effort is required to maneuver about the x-axis since Jx is larger than Jy, if Jx = Jy then

the same control effort would be required. When a yaw-axis maneuver is performed the

gimbal angle trajectories are far different than in the previous two cases. Torque output and

angular momentum are larger because each unit has a component about the z-axis which

is aligned with the spacecraft z-axis, thus they all contribute control effort. Generally the

cluster should be placed in a picosatellite such that the axis about which most control

effort is needed corresponds to the z-axis of the cluster. In all cases as the gimbal angle

sets approach singular states the steering logic is able to avoid singularities and gimbal lock

while performing 90 ◦ maneuvers within 60 ◦. Thus the proposed system performs well.
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3.4 4SGCMG Pyramid Cluster Structural Design

The CMG structure was designed to be compact, lightweight, and strong. It was also

designed to provide support to the gimbal motor bearing. The proposed structure is shown

below,

Figure 3.7: 4SGCMG Pyramid Structural Design

Support for the gimbal motor is provided in the form of the top-plate shown in the figure

which is mounted to the bottom plate via standoffs for extra support. Having a second

bearing attached to a top plate will alleviate some of the load on the motor bearing. All the

structural components are made of aluminum 6061 which is lightweight and strong. The

dimensions are well within the design constraints mentioned in section 1.4. It occupies less

than 25 % of the volume and the total mass of the unit is approximately 67 g not including

the electronics and wiring.



Chapter 4

FDI Using Kalman Filters

The Kalman Filter(KF) is a model-based observer that yields estimates based on the

stochastic properties of a system. This is a crucial aspect of the KF that makes it ro-

bust to measurement noise and process noise, and practical to implement. In the literature

fault diagnosis and identification(FDI) using KFs has been studied extensively for these

reasons as alluded to in section 1.5. Three of the common KF variants applied to the FDI

problem are the EKF, AKF, UKF, and adaptive unscented Kalman filter (AUKF). When

applied to the FDI problem the KF always performs residual generation by way of the

innovation sequence[A.M. Benkouider 2008][F. N. Pirmoradi 2009b]. Residual evaluation

can then be performed by a neural network[Liu 1999], a fuzzy neural network[Yang 2005],

a multiple model KF[R. Mehra 1995], or estimation of the statistical properties of mea-

surement and estimation error residuals for online tuning of the filter. The fourth case

constitutes the AKF methodology. In all cases the state-distribution is represented as a

Guassian random variable. However, whereas the EKF uses linearization to estimate the

true mean and covariance of the random variable, the UKF uses sigma points or particles.

These sigma points when propagated through a non-linear system capture the posterior

mean and covariance accurate to the third order while the standard EKF is only accurate

to the first order [N. Tudoroiu 2006]. Consequently the UKF is a more attractive option

for highly non-linear systems but yields no advantage for weakly non-linear systems. Ei-

ther algorithm can be used with an adaptive scheme, whether the EKF or UKF structures

are used the adaptive mechanism remains the same. In this thesis the term AKF refers

to the adaptive EKF. These filters can be used for either state estimation, parameter es-

timation, or joint state and parameter estimation. State estimation is the most straight

forward approach to Kalman filtering that makes use of the standard KF equations without

modifications. The goal is to estimate the system states according to the mathematical
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model of the system. Here the FDI approach can be as simple as comparing the measured

system states to the predicted model states, if the residual errors exceed a threshold a fault

has been detected. However isolation and identification are not as straight forward and

usually require clever choice of residuals and/or post-processing. Parameter estimation is

a form of systems identification because it involves estimating the physical parameters of

a system. Modifications must be made to the KF equations to accommodate the param-

eters as the state-vector. When the parameters of a system can be estimated the fault

isolation and identification problems are directly resolved because the change in parame-

ter(s) identifies where the fault(s) occurred and the severity. In other words the parameter

estimation problem is better suited for fault detection, isolation, and identification than

state-estimation.

This section will introduce standard EKF and UKF theory for both state and parameter

estimation and reasons why they alone are not well-suited to the FDI problem. Then the

AKF will be introduced along with the various forms of adaptation that can be applied

and their associated pros and cons. Finally the proposed algorithm will be presented.

4.1 Extended Kalman Filter

Given the following non-linear system,

ẋ = f (x,u,xp,w) (4.1a)

y = g (x,u,xp,w) (4.1b)

where f ∈ Rn×1 is a non-linear function that describes the system behavior in terms of the

states x ∈ Rn×1, the inputs u ∈ Rm×1, and the process parameters xp ∈ Rp×1, function

g ∈ Rt×1 is most often a linear function that maps the states, inputs, and parameters to the

outputs, and w ∈ Rr×1 is a random Gaussian white-noise vector representing process noise

with covariance E ⟨w,w⟩ = σ2
q . For implementation in the EKF the system above must

be linearized and discretized. Linearization can be accomplished by finding the Jacobians
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of f and g as shown in the equations below,

A =
∂f (x,u,xp,w)

∂x
(4.2a)

B =
∂f (x,u,xp,w)

∂u
(4.2b)

L =
∂f (x,u,xp,w)

∂w
(4.2c)

C =
∂g (x,u,xp,w)

∂x
(4.2d)

D =
∂g (x,u,xp,w)

∂u
(4.2e)

where A ∈ Rn×n is the state transition matrix, B ∈ Rn×m is the control input matrix,

C ∈ Rt×n maps the states to the outputs, D ∈ Rt×m relates the inputs to the outputs and

is usually a matrix of zeros, and L ∈ Rn×r is the disturbance response matrix. Using the

above matrices Eqs. (4.1) can be expressed in linearized form,

ẋ = Ax+Bu+ Lw (4.3a)

y = Cx+Du (4.3b)

Next the above system must be discretized at a particular sampling period ts. Discretization

amounts to an approximation of the continuous-time dynamics. Smaller sampling periods

will usually result in a more accurate DT model. A DT model of a CT differential equa-

tion is referred to as a difference equation, because the update is performed using Euler’s

forward or backward differentiation methods. The choice of method depends on the appli-

cation. Euler’s forward differentiation is commonly used in simulators while the backward

differentiation is typically applied to simple signal filters and controllers. Discretization can

also be accomplished using a Taylor Series approximation of the CT system, however it is

important to note these methods require linearized equations for proper implementation.

The discretization can be performed as follows[Rogers 2007],

Φk = eAts (4.4a)

Γk =

∫ ts

0

eAτdτB (4.4b)
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Λk =

∫ ts

0

eAτdτL (4.4c)

Ck = C (4.4d)

with the resulting discretized system shown below,

xk+1 = Φkxk + Γkuk +Λkwk (4.5a)

yk = Ckxk (4.5b)

where Φk ∈ Rn×n is the state-transition matrix, Γk ∈ Rn×m is the discrete control input

matrix, Λk ∈ Rn×r is the discrete disturbance dynamics matrix and Ck is the discrete

output matrix. The subscripts ’k’ and ’k + 1’ denote the current and next time-steps

respectively. Euler’s method is at the heart of these derivations, and can be used to

discretize the nonlinear system of Eq. (4.1) in a more basic fashion.

xk+1 = xk + Tsf (xk,uk,xpk,w) (4.6)

This expression is used in this thesis to discretize non-linear systems.

Central to the KF formulation is the measurement model shown below,

zk = h (xk,uk,xpk) + vk (4.7)

The model consists of a function ’h’ that maps the system states, inputs, and parameters

to the measurements. The vector ’vk’ is a zero-mean white-Gaussian measurement noise

vector with covariance E ⟨vk,vk⟩ = σ2
R. Later it will be shown that this covariance matrix

is an important determinant of stability for the KF along with the process noise covariance

matrix. Measurement and process noises are assumed to be uncorrelated in most KF for-

mulations such that E ⟨vk,wk⟩ = 0. Eq. (4.7) can also be considered as an output equation

for the KF as in the UKF algorithm presented in the next section. The measurement model

can be derived using CT system dynamics without requiring discretization for implementa-

tion. This is because one is describing the relation between discrete measurements and CT

dynamics directly without any differential expressions. However linearization must be per-

formed in the case of nonlinear measurement models as required by the EKF formulation,

accomplished by finding the Jacobian of h in Eq. (4.7) with respect to the state-vector,

Hk =
∂h (xk,uk,xpk)

∂xk

(4.8)
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where Hk ∈ Rt×n represents the sensitivity of the measurements to the system states. Now

the linearized measurement model can be expressed as

zk = Hkxk + vk (4.9)

Process and measurement noise matrices are defined as Q ∈ Rn×n in continuous-time and

Rk ∈ Rt×t in discrete-time respectively. Process noise, the spectral density of the noise-

vector w can be expressed in DT using the following expression.

Qk =

∫ tk+1

tk

Φ (tk − τ)L (τ)Q (τ)L (τ)T Φ (tk − τ)T dτ (4.10)

In many cases the exact form of these matrices is unknown. Typically they are approxi-

mated as diagonal matrices with the all non-zero entries equal. An explanation of how these

matrices affect filtering performance is merited. Essentially they introduce uncertainty into

the filter. Process noise indicates that the system model is not very accurate. Intuitively

this can be considered as a system with internal process disturbances that are not well

understood and cannot be accurately modeled. Introducing more modeling error into the

KF via process noise tells the filter to generate estimates by considering the measurements

more heavily. Larger entries result in decreased estimate sensitivity to model outputs and

increased filter sensitivity to measurements, where-as smaller entries have the opposite ef-

fect. The measurement noise matrix Rk is used to include measurement noise information

to the KF. Injecting more measurement noise into the KF tells the filter that estimates

are to be generated by considering the system dynamics more heavily. Larger entries will

cause the filter to consider the measurement information less than the model outputs, with

the opposite occurring with smaller entries. Together these matrices can be used to define

the bandwidth of the filter. Reference [Paul Zarchan 2000] uses the continuous-time KF

properties to arrive at a transfer function whose natural frequency is equal to the ratio

Qk/Rk. What this indicates is that if modeling uncertainty is present more than measure-

ment uncertainty the filter will have a larger bandwidth. In this case the filter will track

quickly albeit with more noise in the estimates. A lower bandwidth is characteristic of

systems with low modeling error and causes the filter to track slower with less noise in the

estimates. If there is no process noise then filter bandwidth is 0 Hz and tracking will not
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occur, however if process noise is too large instability can ensue. Selection of these matrices

is crucial to the stable operation of the filter.

Another critical component of the KF is the estimation error covariance matrix P k,

E ⟨xek,xek⟩ = P k (4.11a)

xek = x̂k − xk (4.11b)

where x̂k is the state-estimate and xk is the true state. In addition to measurement and

process noise matrices this matrix must also be initialized prudently. Initialization should

reflect the true value of the expected estimation error and is usually completed assuming

a diagonal matrix. Larger entries will tell the filter that large estimation errors exist

resulting in a larger bandwidth and noisier estimates. On the other hand if the entries

are small, the filter bandwidth will be smaller resulting in slower tracking with smooth

estimates. Thus the selection of P k, Qk and Rk matrices affects the filter bandwidth and

performance. They must be tuned appropriately for fastest, most accurate, and stable

convergence possible while remaining stable. The KF formulation is now presented,

1) Prediction

x̂−
k+1 = Φk+1x̂

−
k + Γk+1uk (4.12a)

P−
k+1 = Φk+1P

−
k Φ

T
k+1 +Qk+1 (4.12b)

2) Gain Calculation

Kk+1 = P−
k+1H

T
k+1

(
Hk+1P

−
k+1H

T
k+1 +Rk+1

)−1 (4.12c)

3) Update

x̂+
k+1 = x̂−

k+1 +Kk+1

(
zk+1 −Hk+1x̂

−
k+1

)
= x̂−

k+1 +Kk+1 (rk+1) = x̂−
k+1 +∆x̂k (4.12d)

P+
k+1 = (I −Kk+1Hk+1)P

−
k+1 (4.12e)

where the superscripts ’-’ and ’+’ denote the pre-update and post-update data respectively,

and ∆x̂k denotes the innovation sequence. The KF formulation consists of three stages;
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Figure 4.1: EKF Signal Flow

(1) prediction, (2) gain calculation, (3) update. The signal flow of the algorithm is demon-

strated in the block diagram below. First the prediction stage consists of the dynamic model

of the system to predict the next system state(s) and error covariances. Next the Kalman

gain is calculated based on the predicted estimation error covariance and measurement

noise. Finally, based on the residual vector rk+1 and Kalman gain, predicted estimates

and error covariances are corrected in the update stage. Sometimes it is better to use the

output equation to compute the residual and the Hk+1 matrix only for the gain calculation

and error covariance update. This will result in a better residual vector structure because

the Hk+1 matrix is linearized and hence less accurate for this purpose. Since the residual

vector demonstrates differences between the ideal system model and measurements it can

be used to detect faults using threshold techniques. By observing Eq. (4.12c), the effects

of the process and measurement noise matrices explained above can be better understood.

Larger entries in the measurement noise matrix and/or smaller entries in the process noise

matrix cause the gains to be small such that the states and error covariance are updated in

smaller increments. Smaller increments result in slower convergence (low bandwidth) of the

filter while larger increments (i.e. larger gains) will cause faster changes in the estimates

and error covariances thus leading to faster convergence (high bandwidth).

Many authors have employed the EKF primarily for fault detection, some of which

are briefly explained.In reference [L. An 2004] the EKF is used for state-estimation of a

hydraulic positioning system to detect and identify leakage faults. Estimated states are
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compared to measured states to generate a residual vector. According to the residual error

different patterns of change are observed to identify different faults using a look-up table

for residual evaluation. While for the application this method is sufficient, highly complex

systems where ambiguities exist between residual patterns and fault types would require

more complex residual post-processing or pattern recognition techniques to perform identi-

fication and isolation. The work of [Chetouani 2008] also uses the EKF for state estimation

of stochastic non-linear dynamic systems. Residual generation is computed as the difference

between measured and estimated states of the system, if the residual exceeds a threshold

then a fault has been detected. Then the residuals are processed in a bank of kalman filters

where each filter corresponds to a single fault in order to isolate and identify the fault.

Draw backs of this method are that a large number of filters are required to identify a large

number of faults in addition to the filter representing the normal mode of operation, and

for highly non-linear systems the method can be prone to false alarms because of the lin-

earization process. Furthermore the algorithm does not perform full identification because

it does not identify the size of a fault only the type. FDI using state-estimation with the

EKF for spacecraft attitude determination is considered in [F. N. Pirmoradi 2009a]. At

first the spacecraft attitude angles and rates are estimated in an EKF for residual gen-

eration. Statistical tests are then performed on the residuals in order to determine if a

fault has occurred. These residuals then go to a second bank of filters that is used to

isolate the source of the faults. The final stage of the algorithm involves another bank

of filters to form fault signatures from which different hypotheses were formulated. This

constitutes the identification portion of the algorithm. This method, like the previous two,

can perform residual generation and fault detection fairly easily. However it is evident that

substantial post-processing of the residuals is necessary in order to perform the isolation

and identification phases. In all three examples provided here, the linearization of non-

linear system dynamics can lead to false alarms. Fault detection is easily performed thanks

to the structure of the KF equations, however the isolation and/or identification phases

require further residual post-processing. Ultimately this algorithm is unable to fully iden-

tify the type and size of faults without sufficient residual post-processing. Even then there

are other issues with the standard EKF. It is widely known that a critical flaw of the EKF
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formulation for FDI is its inability to guarantee unbiased estimates[Chuei-Tin Chang 1995]

due to incorrect information about the system measurements or states. In other words the

linearization of the system dynamics and measurement model can lead to biased estimates

and even divergence resulting in false alarms. This fact has limited its use in practice,

however the UKF can resolve some of these issues.

4.2 Unscented Kalman Filter

In response to linearization issues affecting the EKF the UKF was developed. In 1994

a "New Filter" was designed at the Robotics Research Group(RRG) in Oxford UK, it

was named the UKF after a democratic vote by its members. In 1997 the first paper was

published describing the UKF as a new extension of the KF to nonlinear systems. The UKF

is a variant of the KF that can estimate the mean and covariance of a random variable true

to the third order while the EKF only approximates them to the first order. Consequently

higher order dynamics are not neglected. This filter builds on the principle that "it is easier

to approximate a probability distribution than it is to approximate an arbitrary nonlinear

function." In other words linear approximations are not used to approximate non-linear

functions, instead the statistical moment of the state is approximated. In particular the

UKF is a form of particle filter applied to a random variable with Gaussian distribution.

Generally particle filters can be applied to systems with sampling densities that are non-

Guassian[M. Simandl 2007]. The posterior distribution of the state is approximated using

a large number of "well chosen" particles or sigma points that change randomly in time

according to the model dynamics and system measurements[Crisan 2002]. Consequently

the UKF resembles a Monte Carlo simulation except with points chosen deterministically.

Figure 4.3 presents a visual interpretation of the unscented transform and linearized

transform. When a random variable x is propagated through the non-linear function f ,

the random variable y is obtained. The goal is to accurately estimate the mean ȳ and

covariance P yy of y. Because EKF linearization is accurate to the first order the statistical

properties of the output vector can not be captured accurately. The unscented transform

generates a cloud of sigma points whose covariance and mean are close to the real values.



66 Chapter 4. FDI Using Kalman Filters

Figure 4.2: Unscented Transformation VS Linearization

Three steps are involved in the unscented transformation process. First, given the n-state

random variable x a set of 2n sigma points are generated around x̄ along with a set of

2n+1 weights(one for x̄). Next the 2n points are propagated through the non-linear output

function g to obtain y. Finally the mean ȳ and covariance P yy of y are calculated based on

the distribution of these "particles" and their weights. The UKF formulation is presented

in the algorithm below[Rogers 2007].

1) Compute weights

W 0 =
κ

n+ κ
(4.13a)

W i =
1

2 (n+ κ)
(4.13b)

2) Establish symmetric sigma points about the state estimate

χ̂0 = x̂−
k (4.14a)

χ̂i = x̂−
k +

√
(n+ κ)P−

i , ∀i = 1, 2, ..., n (4.14b)

χ̂i = x̂−
k −

√
(n+ κ)P−

i ∀i = n+ 1, ..., 2n (4.14c)
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3) Instantiate sigma points through process model

χ̃i = f (χ̂i) (4.15)

4) Predict mean and covariance of states

x̄ =
2n∑
i=0

Wiχ̃i (4.16a)

P xx =
2n∑
i=0

Wi [χ̃i − x̄] [χ̃i − x̄]T +Q (4.16b)

5) Instantiate sigma points through measurement model

Y i = h (χ̃i) (4.17)

6) Predict mean and covariance of measurements

ȳ =
2n∑
i=0

WiY i (4.18a)

P yy =
2n∑
i=0

Wi [Y i − ȳ] [Y i − ȳ]T +R (4.18b)

7) Predict cross covariance

P xy =
2n∑
i=0

Wi [χ̃i − x̄] [Y i − ȳ]T (4.19)

8) Gain calculation and updates

K = P xyP
−1
yy (4.20a)

x̂ = x̄+K (y − ȳ) (4.20b)

P+ = P xx −KP yyK
T (4.20c)
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The scalar parameter κ provides an extra degree of freedom for fine tuning the higher order

moments of the approximation and can be used to reduce prediction errors. If x is assumed

to be Gaussian then κ should be selected such that n + κ = 3, for different distributions

another value may be more appropriate. In Eqs. (4.14b) and (4.14c) the
√

(n+ κ)P−
i

terms represent the scaled ith rows/columns of the square root-factor of P−. Factoring

can be accomplished using methods such as Cholesky factorization[J. Chandrasekar 2008]

and singular value decomposition(SVD)[M. Yamakita 2004] thus making the square-root

operation more simple. It is evident that no linearization occurs in the filter, instead sigma

points are propagated through the process and measurement models after which the state

and measurement statistics are estimated. Although the k subscripts have been dropped

steps 1-8 occur in discrete-time. The flow of the algorithm is shown below. Clearly the

Figure 4.3: UKF Signal Flow

UKF requires more computational stages than the EKF, however the advantage is the

ability to avoid linearizing highly non-linear process and/or output dynamics, which in

and of itself could require many computations. Notice that the prediction phase consists of

estimating the means and covariances of the measurement and estimates, whereas the EKF

only predicts the estimates. Thanks to the propagation of sigma points through the system,

the means and covariances of estimates and outputs are estimated with relatively higher

accuracy when compared to linearization in the EKF. This algorithm should only be used
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when absolutely necessary if the state-vector is large, otherwise the increased computational

loads will merit the added robustness. For weakly nonlinear systems the EKF should be

applied to the filtering problem, while for highly non-linear systems the UKF is a better

choice. Especially when applying the KF to FDI problems.

The UKF has been successfully applied to FDI problems to resolve some of the issues

associated with linearization in the EKF that could lead to false alarms. FDI via state

estimation with the UKF was used in reference [K. Xiong 2007] to detect sensor faults in a

satellite attitude determination system. Residual generation is obtained as the difference

between the state variables and measurements, while residual evaluation is performed by

using the local approach to devise a hypothesis test to detect faults. Essentially a running

average of the residuals is obtained of window-lengthN and is then compared to a threshold,

if the threshold is exceeded a fault has been detected. The authors claim this is the first

attempt at using the UKF for FDI purposes. This method works well for fault detection but

can not perform isolation or identification of faults. A similar method for fault detection is

used by [J. Prakash 2009] except that residual evaluation is performed using the generalized

likelihood ratio test. Reference [M. Jayakumar 2010] performs state estimation with the

UKF to isolate sensor faults in a flight control system. Residual generation consists of the

difference between estimated and measured states, while residual evaluation is performed by

simply observing the magnitude of the residual sequence to perform detection and isolation

simultaneously. The isolation mechanism is based on hypothesis testing which is not a

good method to use for systems with a large number of possible faulty modes. In that case

there would be a large number of permutations, if insufficient measurements are available

then identification/isolation of all faulty modes would not be possible. These methods

are well-suited to fault detection in a similar manner as the EKF-based state estimation

procedures, however they are more robust than the EKF in the face of large disturbances

and non-linearities thanks to the unscented transform. State-estimation with the KF is

feasible for fault detection and in some cases isolation, however it is difficult to perform

fault identification. Another form of the KF is available which could help improve FDI

performance, namely this involves modifying the KF formulation to perform parameter

estimation in addition to or instead of state-estimation.
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4.3 Parameter Estimation with Kalman Filters

In the previous sections the EKF and UKF were introduced for state estimation along with

examples where they have been applied to fault diagnosis. It was mentioned that these

methods can at best perform fault detection on their own, isolation with clever residual

design and post-processing, and identification with substantial post-processing. It was also

indicated that identification could be easily accomplished in one filter with minimal post-

processing if the KF is formulated to perform parameter estimation. Essentially a fault

is usually the result of a change in system parameters, thus direct estimation of these pa-

rameters can provide information as to the type, severity, and location of the fault. The

computational requirement of this method can be large when there are many "fault pa-

rameters"(FP) in a system, however through research the most common or critical fault

types of a system can be identified such that only parameters reflecting those faults are

estimated. This technique also has the advantage of producing as a byproduct the math-

ematical model for the system in question which can be used to generate residuals, thus

state-estimation is not always necessary. As far back as 1979[Ljung 1979] parameter es-

timation was studied for the EKF, yet only within the last decade has it been applied

in wide-ranging applications such as hydrology, soil carbon, speech dynamics, and struc-

tural dynamics[C. M. Trudinger 2008]. With the development of the UKF by Julier and

Uhlmann in 1997 parameter estimation with KFs has become even more popular in the

past decade because the UKF can handle non-linear systems better than the EKF. The

joint state and parameter estimation problem is inherently nonlinear because parameters

are usually coefficients to states.

The standard EKF is used to estimate system states while parameters remain fixed,

however this obviously is not true for parameter estimation. In this case the EKF/UKF

equations must be modified such that the state-vector includes the parameters to be es-

timated. This is accomplished by either augmenting the state-vector with the parameter

vector xp, or doing parameter only estimation. In the latter case there is less of a compu-

tational burden which is more appropriate for online operation[Jiahe Xu 2008], the system

model can then be propagated using the parameter estimates. If partial state information is

available due to lost measurements, then it would be necessary to perform joint-estimation.
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However if there is a very low probability of losing a sensor then parameter only estima-

tion is fine. Because parameters are generally constant in a given mathematical model,

their time-evolution can be described as ẋp = 0. Having said that it is important to

note that their estimates are indeed time-varying. Thus the state-prediction stages of the

EKF and UKF must be modified to account for these factors. Naturally a common ques-

tion emerges as to how the parameter estimates are varied if their time-evolution is zero.

The evolution of the parameters is driven by the stochastic characteristics of the system.

Poorly chosen Q and R matrices will lead to biases in the estimates and can even result

in instability[C. M. Trudinger 2008].

4.3.1 Parameter Estimation with EKF

In this section the KF formulation will be formulated for parameter only estimation, the

joint estimation problem can be addressed by including the state-estimation method. For

parameter estimation in the EKF a system model is not required to vary the estimates.

Thus of the linearized matrices in Eqs. (4.4) and (4.8) only the latter must be computed

except with the Jacobian being calculated with respect to the parameter vector.

Hk =
∂g (xk,uk,xpk)

∂xpk

(4.21)

Now the measurement matrix represents the relation between parameter estimates and

measurements, which is really the only way to include information from the system dy-

namics model in the filter for parameter estimation. The EKF algorithm for parameter

estimation is shown below,

1) Prediction

x̂−
p(k+1) = x̂−

pk (4.22a)

P−
k+1 = P−

k +Qk+1 (4.22b)

2) Gain Calculation

Kk+1 = P−
k+1H

T
k+1

(
Hk+1P

−
k+1H

T
k+1 +Rk+1

)−1 (4.23)
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3) Update

x̂+
p(k+1) = x̂−

p(k+1) +Kk+1

(
zk+1 − yk+1

)
= x̂−

p(k+1) +Kk+1r
n
k = x̂−

p(k+1) +∆x̂k (4.24a)

P+
k+1 = (I −Kk+1Hk+1)P

−
k+1 (4.24b)

where yk+1 = g
(
x,u, x̂−

p(k+1)

)
is the measurement/output equation. In the literature re-

view for FDI it was mentioned that a well defined or structured residual will make the

residual evaluation stage more trivial. In this case the residual generation is obtained as

the difference between the measurements and non-linear output equation as explained in

section 4.1. This is a key aspect of this formulation that makes the residual generation

more accurate and robust since the measurements of a non-linear system are being com-

pared to the non-linear output equation and not the linearized form. In general the method

of propagating states using the non-linear model while propagating covariances using the

linearized matrices mitigates some of the drawbacks from linearization. Notice that the pre-

diction elements have no information about the dynamics of the system, only the stochastic

properties of the system drive the parameter estimation. For this reason it is important to

have an error covariance prediction equation. The flow of the EKF algorithm for parameter

estimation is basically the same as with state estimation.

The residual signal is composed of system states, which is why there must be some form

of model running in parallel with the filter to compare to measurements. Computational

loads can be reduced utilizing a model that is run in parallel without performing state-

estimation. However if sensor failures are expected to occur then state-estimation should

be considered. In order to adapt parameters algorithm relies on residual data and the

relationship between measurements and parameters defined in the measurement matrix.

The measurement matrix is only utilized in the matrix equations of the filter, not in the

residual generation as shown in section 4.1. Indeed trying to generate the residual in that

manner usually results in bad performance. This is because the term HT
k+1x̂

−
k+1 only makes

sense when the estimates are measurable at least indirectly using sensors. These measure-

ments usually give an idea of the state of the system whose true state must be estimated.

For parameter estimation it is usually not possible to measure system parameters, thus

measurements do not provide information as to the true parameter value(s) of the physical

system. In state-estimation the filter tries to track the measurements while in parameter
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estimation it attempts to estimate parameters such that the residual error is minimized.

For these reasons it is more appropriate to generate residuals as shown above, using the

output equation rather than the measurement matrix.

Few FDI algorithms with EKFs use the parameter estimation technique although there

is a large body of work that has been dedicated towards developing parameter estimation

algorithms with the EKF. This can be primarily attributed to the fact that the EKF has

been around since the late 1960’s when researchers required an optimal stochastic param-

eter estimator with noisy measurements. However for FDI the algorithm has not been

used extensively. In [B. K. Walker 1995] FDI is done using the EKF to estimate states and

parameters for an industrial actuator benchmark. Fault detection, isolation, and identifica-

tion is performed via the parameter estimates. Residual generation consists of subtracting

the estimates from the nominal parameter values while residual evaluation occurs by com-

paring the residual to a threshold. There are many drawbacks to this algorithm. First the

Q and R matrices must be tuned appropriately such that the filter is sensitive to faults and

insensitive to measurement noise. The challenge resides in the fact that making the filter

more sensitive to the faults results in a filter that is more sensitive to measurement noise

thus being more prone to false alarms. Second, the linearization process of the non-linear

dynamics leads to bias and erratic behavior in the estimates when large changes occur in

the system. As these changes occur the dynamics model becomes more inaccurate which

should be accounted for by an increase in the entries of the error covariance matrix Q.

Because this formulation cannot adapt the values of this matrix, estimates will usually

diverge and result in false alarms. This algorithm performs some-what satisfactory as long

as the thresholds are adapted depending on the inputs and outputs of the system, known

as adaptive thresholding. Problems with tuning the EKF for parameter estimation are also

discussed in [C. M. Trudinger 2008]. The authors conclude that although proper tuning

of the measurement noise matrix R can allow the filter to converge, the tuning process

is time consuming and convergence is usually slow. This is because the bandwidth of the

filter does not change to reflect larger errors in the dynamics model. When changes occur

in the physical system due to changes in parameters, ideally the filter bandwidth should in-

crease to expedite convergence and then decrease as estimates approach the new parameter
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values. In addition to this problem, one must consider the issues of applying the EKF to

highly non-linear systems. For weakly non-linear systems the EKF is sufficient for the pa-

rameter estimation problem as pointed out in [T. Kataoka 1993] and [L. Loron 1993] where

the technique is used to identify parameters in induction motors. However those methods

are designed to perform the identification one time, if faults occur and system parameters

change the estimates would not be able to track. The next section will discuss how the

UKF is applied to parameter estimation problems for highly non-linear systems.

4.3.2 Parameter Estimation with UKF

For highly non-linear systems and/or systems subject to large disturbances the UKF is the

better choice for reasons stated in section 4.2. There are many papers in the literature that

apply UKFs for parameter estimation because of it’s ability to handle non-linear systems

very well such as the works of [Jiahe Xu 2008] and [Meiliang Wu 2008]. In particular the

latter reference concludes the the UKF for parameter estimation is computationally efficient

and appropriate for online applications. Relative to parameter estimation with the EKF

far less research has been done in this area because the UKF algorithm has only been in

existence for just over a decade. The formulation for parameter estimation with the UKF

is shown below[Kyung-Yup Kim 2007].

1) Compute weights

W 0 =
κ

n+ κ
(4.25a)

W i =
1

2 (n+ κ)
(4.25b)

2) Establish symmetric sigma points about the state estimate

χ̂0 = x̂−
p(k+1) (4.26a)

χ̂i = x̂−
p(k+1) +

√
(n+ κ)P−

(k+1)i, ∀i = 1, 2, ..., n (4.26b)

χ̂i = x̂−
p(k+1) −

√
(n+ κ)P−

(k+1)i ∀i = n+ 1, ..., 2n (4.26c)
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3)Predict mean and covariance of states

P−
k+1 = P−

k +Qk+1 (4.27a)

x−
p(k+1) = x+

pk (4.27b)

4) Instantiate sigma points through measurement model

Y i = g (χ̂i) (4.28)

5) Predict mean and covariance of measurements

ȳ =
2n∑
i=0

WiY i (4.29a)

P yy =
2n∑
i=0

Wi [Y i − ȳ] [Y i − ȳ]T +Rk+1 (4.29b)

6) Predict cross covariance

P xy =
2n∑
i=0

Wi

[
χ̂i − x̂−

p(k+1)

]
[Y i − ȳ]T (4.30)

7) Gain calculation and updates

K = P xyP
−1
yy (4.31a)

x̂p = x−
p(k+1) +K (y − ȳ) (4.31b)

P+
k+1 = P−

k+1 −KP yyK
T (4.31c)

The primary difference in this implementation is most notable in steps 3 and 4. Because

no dynamics information is available for parameters the sigma points from step 2 are not

propagated, instead they are used in subsequent steps as is. Consequently the predicted

means and covariances of the states are calculated as in Eqs. (4.22), in other words once



76 Chapter 4. FDI Using Kalman Filters

again only the process and measurement noise covariance matrices drive parameter esti-

mation. The "predicted" mean and covariance of the states for the state-estimation UKF,

x̄ and P xx respectively, in Eqs. (4.16) are replaced throughout the remaining steps of this

algorithm by the predicted mean and covariance x−
p(k+1) and P−

k+1 of the states in step 3 of

the parameter estimation algorithm above. The flow of this algorithm is the same as that of

the state-estimation UKF in section 4.2, differences lie in the state prediction calculations.

The UKF does not require a measurement matrix because of the unscented transform as

mentioned in section 4.2. Consequently there is no ambiguity as to which form of residual

generation should occur. The function h in step 5 of this algorithm represents the output

equation of the system in terms of its parameters. Depending on the system in question,

if joint estimation is desired then the process model function f would be the same as

the output function h. However the measurement particles Y i would be different than

particles of the estimates χ̃i because outputs of the process model h are used as inputs to

the output function h. With the UKF information relating parameters to system states is

carried through using the output function as opposed to a linearized measurement matrix,

hence it’s ability to be accurate to third order.

A performance comparison of the EKF and UKF parameter estimation algorithms is

presented in [Miao Huanga 2010]. Results indicate that the UKF performs just as well as

the EKF for certain cases of a weakly non-linear system, however the UKF is more stable

and accurate when highly non-linear cases were considered. In [Girish Chowdhary 2010]

it was also concluded that for a weakly non-linear system the EKF and UKF perfor-

mances for parameter estimation were comparable, with UKF being more computation-

ally intensive yet more robust with faster convergence. For highly non-linear systems the

UKF’s superiority to the EKF is confirmed in [Cheryl C. Qu 2009]. Parameter estima-

tion for the NPSAT1 satellite launched by the Naval Postgraduate School in 2007 was

performed using a UKF because the satellite attitude dynamics are highly coupled and

non-linear[Pooya Sekhavat 2007].

Parameter estimation with KFs has been around a long time, however application of

these algorithms to fault diagnosis problems has been studied much because of the de-

ficiencies of the algorithm. In section 4.1 it was stated that the bandwidth of the KF,
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defined by the ratio Qk+1/Rk+1
, is critical to KF performance and that the selection of these

matrices should be done carefully. In the case of parameter estimation this is relevant be-

cause ultimately parameter changes in a physical system represent a change in the system

model. When running the filter this should be reflected as an increase in process noise

covariance matrix entries or the bandwidth of the filter in general. If this is not done then

the algorithm will only be able to perform identification of the parameters once. When the

Kalman gain reaches steady-state and parameters have been estimated correctly the filter

bandwidth is usually near-zero, if any of these parameters change the filter will not be able

to track the changes because the bandwidth of the filter is fixed. In order for identification

to be possible in the face of parameter uncertainty there must be some mechanism by which

to adapt filter bandwidth based on residuals of measured changes in the system behavior

versus the modeled behavior. AKFs provide this capability.

4.4 Adaptive Kalman Filtering

Adaptive Kalman filtering has been around since the late 1960’s for online estimation of

measurement and/or process noise characteristics[Shellenbarger 1966, F. L. Sims 1969]. At

the early stages of KF research it was understood that in practice stochastic noise properties

of a system are not always known. A mechanism was needed that could recursively compute

the real measurement and process noise statistics online so that variations in system uncer-

tainty could be tracked. These methods have been documented in [R. Lynn Kirlin 1987],

three of the most common are; (1) the Bayesian approach, (2) the maximum likelihood

approach, and (3) innovation/residual-based approach.

The Bayesian approach is one of the oldest approaches for on-line noise covariance es-

timation and requires the most amount of a priori information. An expression for the

time evolution of the conditional probability density function (PDF) of the random vari-

able to be estimated must be known. Since the first two moments of a Gaussian PDF

describe it completely, it is sufficient to obtain recursive expressions of these moments to

describe the time-evolution. One approach taken by [Smith 1967] is to define the mea-

surement noise R as the product of a nominal measurement noise matrix Rnom and an
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unknown precision vector γ included as part of an augmented state-vector. In order to

obtain recursive equations for the PDF of the augmented state-vector conditioned on

measurements P (xk+1/zk), the unknown γ had to be approximated. This results in

a non-reproducing PDF meaning that a finite number of moments of the PDF will not

describe it completely. In general one is forced to approximate the PDF. One method

of approximation is the Gram-Charlier(GC) expansion to obtain the recursive equations

for the PDF[Sorenson 1967]. Basically the goal is to approximate P (xk+1/zk+1) given

the GC expansion of P (xk/zk). At each iteration this algorithm requires information of

more moments of the PDF at the previous iteration than were evaluated. Consequently

we encounter the ’expanding grid’ phenomena that leads to inaccurate estimates at the

outer edges of the PDF and very large computational loads . The Fokker-Planck equa-

tion was used to obtain differential equations for the mean and process noise covariance

in [R. L. Klein 1969]. Another method of using the Bayesian approach was developed by

[Magill 1965]. In this case an optimal adaptive estimate is obtained as an appropriately

weighted summation of conditional estimates formed by a set of estimators representing a fi-

nite number of possibilities known a priori resulting in a form of multiple-model approach.

The weighting coefficients are calculated by non-linear operations on the measurements.

Multiple model methods are also variations of the Bayesian approach. Here multiple filters

run in parallel representing different modes of operation of a system, the weighted sum

of their estimates constitutes an overall estimate with weights determined by error covari-

ances of each filter[R. Mehra 1995, N. Tudoroiu 2005]. Variational Bayesian(VB) methods

have also been developed that assume simpler, more practical forms of the PDFs such

that their calculations are more tractible and less complex[Simo Sarkka 2009]. Generally

Bayesian methods work well if the time-evolution of measurement and process noise PDFs

are known sufficiently such that recursive equations can be derived, if not a more practical

method is the maximum likelihood approach (MLA).

The MLA is based on the philosophy that the most likely value of unknown parame-

ters is that which makes their probability of occurrence given system measurements the

greatest. In general the algorithm consists of initializing the posterior mean and covari-

ance of the state independent of any a priori information about the statistics of R and
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Q. Then estimates of R are obtained with Q known based on past estimates and of Q

with R known based on past estimates. Shellenbarger [Shellenbarger 1966] attempts to

estimate the sequence R =
(
R̂1, R̂2, . . . , R̂k

)
, where Rj is the measurement noise covari-

ance at time-step j, by defining the PDF as P (zk/R). He approximates this function as

P s (Rk) = P
(
zk/R̂1, R̂2, . . . , R̂k−1;Rk

)
and maximizes it with respect to Rk to obtain

sub-optimal estimates. Process noise estimates are obtained similarly. Results indicate that

if both Q and R are unknown estimates cannot be formed. In reference [Abramson 1970]

a sub-optimal estimator is designed for diagonal, time-invariant process and measurement

noise matrices that are not known precisely a priori. Estimates of the states and noise

covariances are obtained by maximizing the logarithm of P (x̂k,zk/R,Q) with respect

to that component which must be estimated(xk, R, Q). Each estimate is obtained with

the other two known. It was shown that if the a priori values of R and Q are far from

the true values the filter will converge to biased estimates, however if only R is unknown

the estimates are unbiased. Another method was proposed in [Husa 1969] by consider-

ing uncertainties in the mean and covariance of the process and measurement noise, as

well as off-diagonal elements for the covariance matrices. Simulations showed that the

process noise estimates converged slowly and are very sensitive to initial conditions while

the measurement noise estimator performed well. These methods are in general sensitive

to filter initial conditions, in particular for estimation of process noise. The filter tuning

problem is still present at the initialization stage which reduces some of the appeal of

this method. Recent forms of the MLA use information from the innovation and resid-

ual sequences to construct more accurate covariance estimates and improve convergence

times[Herschel L. Mitchell 2000, Feng Zhou 2008, Hongwei Bian 2005]. Tuning problems

have been resolved using these newer methods, however a priori knowledge of the PDF

structure is still required. If insufficient a priori information for the PDF structures is

available such that neither of the former two methods are appropriate, innovation/residual-

based methods should be considered.

To relax the requirements on a priori information of the measurement and process noise

structures, innovation/residual-based approaches can be considered. Most current adaptive

algorithms use some form of processing of the innovation/residual sequence to obtain better
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estimates of system statistics, better tracking, and faster convergence. Algorithms such

as adaptive fading factor(AFF) and covariance matching(CM) fall into this category of

adaptive filters. AFF algorithms generally introduce a scale-factor α to the error covariance

prediction and/or gain calculations. In Reference [Vahid Fathabadi 2009] a scaling factor

α is defined as a function of estimated and theoretical innovation covariances Ĉv and Cv

respectively shown in the equations below,

α = max

{
1,

1

N
trace

(
ĈvC

−1
v

)}
(4.32a)

Ĉv =
1

N

k∑
j=k−N+1

∆x̂k∆x̂T
k (4.32b)

Cv = Rk+1 +Hk+1P
−
k+1H

T
k+1 (4.32c)

where ’trace’ is the trace operator. This has the affect of modifying the scale-factor when

estimated variances based on innovations become larger. In other words when changes

in system parameters occur the mechanism causes changes in the bandwidth of the fil-

ter. This is done by multiplying the gain of the standard KF equations by 1/α. Another

form of adapting the scale-factor is proposed in [Giulio Reina 2007] where the magnitude

of the deviation of the innovation vector from zero is used as an input to fuzzy rules,

which then output a scale-factor representing the degree of confidence that divergence is

occurring. Research presented in [Yuanxi Yang 2006] demonstrates the AFF method using

both the residual and innovation sequences and concludes that a fading factor expressed

by the innovation sequence is superior to one expressed by the residual sequence. The

CM approach is a method of making residuals and innovations consistent with their the-

oretical covariances. Usually either the R matrix is held constant while the Q matrix is

adapted or vice-versa. In the former case the estimated innovation covariance Ĉv is used

to adapt the Q matrix until it matches the theoretical covariance[Shu-Wen Zhang 2004].

As innovations become larger in the face of system faults the estimated covariance in-

creases thereby increasing Q and therefore the Kalman gain. This method can be subject

to abrupt changes in Q in which case a running average window can be used to smooth

out the estimate[H. K. Tzou 2001]. If R is to be estimated while Q is held constant, R

is adapted based on the estimated residual sequence covariance Ĉr until the covariances
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match. In reference [P. J. Escamilla-Ambrosio 2002] this method is used along with fuzzy

rules to identify the amount and direction of change that should occur in the measurement

noise matrix. These methods are sub-optimal as they involve approximations to the true

statistics and in some cases convergence is uncertain. However they are more robust and

responsive than the Bayesian and MLA methods because information from the residual

and/or innovation sequences provide close approximations to the actual variances.

Traditional covariance matching techniques estimate either the measurement or process

noise matrices while the other is assumed constant, adaptive sequential estimation is a

similar technique to that of covariance matching except that both measurement and process

noise statistics are estimated simultaneously online. Myers and Tapley[K. A. Myers 1976]

were one of the first to propose such a method. First they define an unbiased estimator for

residual rk+1 as the following sample mean

rk+1 =
1

N

N∑
j=1

rj (4.33)

Next an estimate of the covariance of rk+1 is calculated along with its expected value.

Cr =
1

N − 1

N∑
j=1

(rj − rk+1) (rj − rk+1)
T (4.34a)

E
[
Cr

]
=

1

N

N∑
j=1

HjP
−
k+1H

T
j +R (4.34b)

The resulting unbiased estimate is shown below.

R̂ =
1

N − 1

N∑
j=1

[
(rj − rk+1) (rj − rk+1)

T −
(
N − 1

N

)
HjP

−
k+1H

T
j

]
(4.35)

Process noise can be estimated in a similar fashion except using the innovation sequence,

Q̂ =
1

N − 1

N∑
j=1

[(
∆x̂kj −∆x̂

) (
∆x̂kj −∆x̂

)T −
(
N − 1

N

)(
Φk+1P

−
k+1Φ

T
k+1 − P+

k+1

)]
(4.36)

where ∆x̂ is the mean of the innovation. In this algorithm the difference between the

innovation/residual vectors and their respective running average means is used to ob-

tain covariance estimates. The goal being to obtain process and measurement noise es-

timates for covariance matching. Absolute values of diagonal entries of Q̂ and R̂ must be
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taken in order to guarantee the positive definiteness of these matrices. Another form

of this technique that is more numerically robust was developed by Mohammed and

Schwartz[A. H. Mohamed 1999]. An estimate of the innovation covariance is obtained by

averaging the innovation sequence over a window of length N .

Ĉv =
1

N

k∑
j=k−N+1

∆x̂k∆x̂T
k (4.37)

Then based on the whiteness of the filter innovation sequence the statistical matrices can

be estimated according to[A. H. Mohamed 1999].

R̂k+1 = Ĉv −Hk+1P
−
k+1H

T
k+1 (4.38a)

Q̂k+1 = Kk+1ĈvK
T
k+1 (4.38b)

In reference [A. H. Mohamed 1999] it was realized that a more useful approach to this

problem is to use the measurement residual sequence rk to estimate the process and mea-

surement noise, the reason being that changes in system states are better reflected through

measurements. A similar expression for R̂k+1 using the residual sequence rk is derived by

[A. H. Mohamed 1999] resulting in

R̂k+1 = Ĉr +Hk+1P
+
k+1H

T
k+1 (4.39)

Ĉr =
1

N

k∑
j=k−N+1

rkr
T
k (4.40)

Next the process noise estimate can be computed as

Q̂k+1 =
1

N

k∑
j=k−N+1

∆x̂k+1∆x̂T
k+1 + P+

k+1 −Φk+1P
+
k Φ

T
k+1 (4.41)

In steady-state considering only the first term in this equation and substituting the relation

∆x̂k+1 = Kk+1rk, the estimate for Q can be approximated as in Eq. (4.38b) except

using Ĉr. Most recent covariance matching techniques use as a basis one or both of these

sequential adaptive estimation(SAE) algorithms. Reference [Wan-Chun Li 2005] performs

process and measurement noise estimation by a similar method as Myers and Tapley for a

UKF with the exception that running averages of the innovation/residual are not computed.
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The method developed by Mohammed and Schwartz is also implemented in papers by

[Ahmed El-Mowafy 2005b, Christopher Hide & Smith 2003] for INS/GPS applications.

Parameter estimation with adaptive forms of the KF has been studied in the literature

more and more in recent decades because of improvements in the ratio of micro-controller

processing-power to size. Generally any adaptive scheme can be applied to the param-

eter estimation problem and has been in the literature. Yang et al.[Jann N. Yang 2004]

developed an AFF-based scheme to estimate parameters for health-monitoring of civil in-

frastructures. A matrix of scale-factors Λ is adapted online by solving an optimization

problem and is integrated into the KF equations as follows.

P−
k+1 = Λk+1Φk+1P

−
k Φ

T
k+1Λ

T
k+1 +Qk+1 (4.42)

In reference [L. Ozbek 2004] a single fading factor is used for parameter estimation of com-

partmental models in a study of ingestion and subsequent metabolism of a drug in a given

individual. The work of [Zhi Gao 2005] uses a covariance matching technique to estimate

process and measurement noise covariances for stator winding temperature estimation in an

induction machine based on a hybrid model, Fuxjaeger and Iltis[Alfred W. Fuxjaeger 1994]

employ the MM approach for parameter estimation in a spread spectrum code and Doppler

tracking application, and Szabat et al. designed an adaptive mechanism based on Genetic

Algorithm(GA) to estimate parameters for the improvement of industrial drives with me-

chanical elasticity. Much work has been done in the field of fuzzy-AKF methods such as in

reference [Zhijie Zhou 2008] for fault prediction of non-linear systems with uncertainty.

Relatively speaking FDI with AKFs has not been addressed extensively in the literature

because researchers generally prefer intelligent expert-based systems such as fuzzy logic and

neural networks or more optimal methods. Neural networks do not require mathematical

models of practical systems and instead learn a system’s behavior, while optimal algorithms

guarantee convergence. Nonetheless within the past decade research has increased in this

area thanks to an increasing need for health monitoring of electrical and/or mechanical sys-

tems and the availability of increased processing power. Reference [Karim Salahshoor 2008]

apply the IAE approach for sensor fault detection and isolation with sensor fusion. Resid-

uals are generated as the difference between measurements and their estimated values, and

are evaluated using covariance matching techniques. Hajiyev and Caliskan[C. Hajiyev 2000]
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also employ an IAE-based Kalman filter for fault detection and isolation of sensor and actu-

ator faults. Faults are classified as either sensor or actuator faults by using a threshold test

on a time-average of the residual sequence in conjunction with hypothesis testing. Fuzzy

hybrids of the EKF have also been studied. Zhou et al.[Zhijie Zhou 2008] use the AFF

technique by adapting the fading factor using fuzzy logic rather than stochastic proper-

ties for fault diagnosis, and Loebis et al. use fuzzy rules on the time-averaged residual

sequence to determine, based on the residual’s amplitude and sign, how much of an incre-

ment/decrement should be made to the measurement noise matrix for fault detection in an

intelligent aerial unmanned vehicle(UAV). By far the most common form of AKF for FDI is

the multiple-model adaptive estimation(MMAE) approach. Reference [N. Tudoroiu 2007]

designed a fault detection and isolation algorithm for reaction wheels of a satellite ACS.

A bank of KFs is designed such that each filter represents a particular faulty mode of op-

eration or the healthy mode. The fault mode is determined by detecting the filter mode

with largest conditional probability. Roumeliotis et al.[Stergios I. Roumeliotis 1998] em-

ploy a similar method using hypothesis conditional probability computations for sensor

fault detection in a mobile robot. Hanlon and Maybeck[Peter D. Hanlon 2000] and Eide

and Maybeck[P. Eide 1995] also apply a similar approaches to the FDI problem.

4.5 FDI by Parameter Estimation with Adaptive

Kalman Filters

To approach the problem of fault detection, isolation, and identification of pico-satellite

ACS hardware such as RWs and CMGs, an AUKF is presented for parameter estimation

assuming full state measurement. A primary goal in the design was to limit the compu-

tational requirements of said algorithm to facilitate implementation in the ACS module.

In other words only parameter estimation is considered in order to limit the prediction

and update equation’s computational requirements. A joint n-state and p-parameter es-

timator would result in an augmented state-vector xa with dimension n + p. Assuming

m measurements are available, dimensions of the error covariance matrix would increase

to (n+ p) × (n+ p), while those of the gain matrix would be (n+ p) × m. For n = 2,
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m = 2, and p = 2 the covariance matrix for parameter only estimation has four entries

while in the joint case this number increases by a factor of 4. Similar computational savings

are observed in the gain matrix to a lesser degree, however on macroscopic scales of time

these computational savings quickly add up. State-propagation is performed by running a

model online whose outputs are conditioned by the estimated parameters. Although this

entails excess computational requirements, they are not realized in the KF equations, and

the net savings is still considerable since only one set of equations needs to be calculated.

Another goal in the design of this algorithm was to provide fast detection, isolation, and

identification in a single filter. Monitored parameters should generally be selected based

on a priori knowledge of the kinds of faults that are most likely to occur. For example if

the frame of a UAV in flight is expected to sustain damage, inertia parameters should be

monitored. False alarms in the face of disturbances and/or increased measurement noise

should be limited, and the estimation accuracy should be better than 5%. Finally this

algorithm should be applicable in general to any linear or non-linear system.

Kalman filtering was selected because it is less complex to implement and is more

readily applied to general parameter estimation. Neural networks such as those uti-

lized by[A. Joshi & Khorasani 2008, Iz Al-Dein Al-Zyoud 2006, E. Sobhani-Tehrani 2008b]

must be tailored to their particular application. Numbers of hidden units, inputs, and out-

puts have to be tuned and trained differently for comparable performance across different

systems. With respect to linear or non-linear observers[H. Azarnoush 2008] KFs work bet-

ter in the presence of measurement noise and disturbances, especially the more robust RKF

and UKF variations. Parity space methods [E. Chow 1984, S. K. Neguang 2006] are also

sensitive to measurement noise and disturbances. In the case of fuzzy systems the rules

change based on the type of system and residuals, thus different systems require different

sets of rules. Another reason for selecting a KF-based approach is the lack of availability

of FDI algorithms for spacecraft ACS using KFs. Other than IMM approaches with the

KF very few other methods exist, especially when considering the UKF. If FDI for reaction

wheels and/or CMGs is investigated, even less can be found in the literature. Of the avail-

able methods for RW FDI at least 90% of them are IMM with the KF, or neural networks,

a centralized KF has not yet been applied to this problem let alone with the ability to
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identify faults. This KF algorithm will be applied to the FDI problem for RWs and CMGs.

As explained in section 1.5 the FDI problem consists of residual generation and evalua-

tion. Residuals will be generated as the difference between outputs of the propagated model

and measurements. For residual evaluation the various methods outlined in the previous

section were considered. The SAE approach[Christopher Hide & Smith 2003] was consid-

ered as the noise-estimation method of choice. Selection was made based on three factors;

robustness, required a priori knowledge, and computational requirements. Compared to

CM, MLA, and Bayesian approaches this algorithm is more robust because residuals are

utilized to generate estimates of the Q and R matrices simultaneously rather than esti-

mating either or. Furthermore this approach requires no a priori knowledge of stochastic

properties, thus increasing its applicability to a wide range of practical systems. Other SAE

algorithms such as[K. A. Myers 1976, Wan-Chun Li 2005] only utilize the time-averaged

residual vector rather than both the residual and innovation sequences, thereby decreasing

storage and computational requirements. With respect to MM approaches computational

savings are realized because only one filter is required rather than a bank of filters that

changes in size depending on the number of faulty modes in a system. Estimation accuracy

is also of concern in the presence of unmodeled disturbances since noise covariances are not

estimated online to adapt changes in modeling error. Some advantages to this method as

compared to Myers and Tapley[K. A. Myers 1976] and related algorithms is that no state-

transition matrix is required, for parameter estimation this is important because the matrix

is not available since state-estimation is not performed. Also, the estimation equations for

measurement and process noise matrices do not lend themselves to negative-definite re-

sults. Based on the research done for this study, this algorithm has not been applied to the

parameter estimation problem for FDI using EKFs and UKFs, thus it was also interesting

to study it’s performance for this application. To clarify, the following adaptive mechanism

is applied to the EKF formulation

Ĉr =
1

N

k∑
j=k−N+1

rkr
T
k (4.43a)

R̂k+1 = Ĉr +Hk+1P
+
k+1H

T
k+1 (4.43b)

Q̂k+1 = Kk+1ĈrK
T
k+1 (4.43c)
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To use this algorithm the EKF Eqs. (4.22a-4.24b) do not need to be modified, instead

there is an added step to the algorithm including these equations. The flow of the AKF

algorithm is shown in the block diagram below Note that the prediction stage consists of

Figure 4.4: AKF Signal Flow

Eqs. (4.22). The moving window average of the matrix in Eq. (4.43a) is updated at each

time-step. In practice the elements of the moving window are stored as an array. At each

iteration the oldest element in the array is shifted out while the newest residual vector is

shifted in, then the measurement and process noise estimates are calculated. Selection of

the window size depends on the application, reference [Christopher Hide & Smith 2003]

provides criteria for window length selection to avoid divergence and/or instability;

(1) A window size smaller than the number of measurements when adapting R.

(2) A window size smaller than the number of filter states when adapting Q.

(3) A window size smaller than the sum of update measurements and filter states when

adapting both Q and R.

In these three cases divergence occurs because there are less equations than unknown

parameters, resulting in an under-determined system. Following the above criteria destabi-

lization of the filter is averted, however biased estimates may result for small sample sizes.

For unbiased estimates a larger window length is preferred, however a window length that

is too large will not allow the filter to correctly track high-frequency changes in the system

states. Consequently the lower bound of the window length is selected based on the number

of filter states and measurements, while the upper bound is selected depending on the dy-
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namics of the system. For implementation in the UKF a modification must be made to Eq.

(4.43b) because the measurement matrix is no longer available. Estimated measurement

covariance is calculated in the UKF using Eq. (4.18b), consequently the measurement noise

covariance matrix should be calculated as[Junchuan Zhou 2010],

R̂k+1 = Ĉr + P ∗
yy (4.44a)

P ∗
yy =

2n∑
i=0

Wi [Y i − ȳ] [Y i − ȳ]T (4.44b)

where Ĉr is the same as in Eq. (4.43a). The signal flow of the resulting AUKF algorithm

is shown in the block diagram below.

Figure 4.5: AUKF Signal Flow

In this case the prediction stage of the UKF is

χ̃i = χ̂i (4.45a)

P xx = P−
k +Qk+1 (4.45b)

In addition to adapting the Q and R matrices, a fading factor is applied to the error

covariance matrix in the prediction stage so that

P−
k+1 = P−

k ε+Qk+1 (4.46)



4.5. FDI by Parameter Estimation with Adaptive Kalman Filters 89

for the EKF while for the UKF,

P xx = P−
k ε+Qk+1 (4.47)

If ε = 1 then the standard KF prediction occurs, if ε > 1 the filter will weight the data

exponentially so that the effect of current data is emphasized and information from older

measurements is discounted, hence the name ’fading factor’ or ’fading memory’. In the

standard KF algorithm estimates depend highly upon past data which can lead to diver-

gence of the estimates even in the face of new measurements. An FDI algorithm should

consider current data more heavily so that estimates can track the current state of a system.

In essence the fading factor limits how small the error covariances can get by artificially

inflating the value of the predicted error covariance matrix thus introducing more uncer-

tainty into the system. In reference [Lee 1988] it is shown that larger values of ε give the

filter a larger bandwidth with the opposite happening for a smaller value. Typically the

fading factor is in the range 1 < ε < 1.01 however the appropriate choice depends on the

particular application. If it is close to or larger than the upper bound then instability can

ensue, while if it is close to or lower than the lower bound there will be no effect.

This algorithm incorporates two adaptive mechanisms; one to ensure that changes in

system parameters are reflected as increased modeling errors, and the other to limit the

memory of the filter so that it pays more attention to current data. Ultimately the mod-

ified algorithm attempts to adapt the bandwidth of the filter based on a moving window

average of residuals while making sure that the bandwidth does not get small enough so

that the filter ignores new data. To make the algorithm more robust and accurate an

adaptive fading factor will be used. The primary goal is to force the filter to consider new

measurements more heavily when faults occur and less heavily when no further faults are

detected. Although the noise covariance estimations perform the function of adapting the

filter bandwidth, eventually the filter will converge to very small gains thus making the

bandwidth very small. In this case even if a fault occurs and the R matrix becomes large,

the Q matrix will be much smaller because it is a function of the square of the gain matrix.

Consequently the filter will not track correctly. A forgetting factor can mitigate this effect

be forcing the filter to forget older data and become more sensitive to newer data. However

a constant forgetting factor can have adverse effects when convergence has been achieved,
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where it would be desired to make the filter less sensitive to new data so that the estimate

holds even in the face of disturbances. An adaptive forgetting factor could force the filter

to ignore new data when estimates converge and consider new data more heavily in the

opposite case. This adaptation is based on the magnitude of the R matrix. Large diagonal

entries of the measurement noise covariance matrix R result from large residuals as per Eq.

(4.43a). Because a running average of the residuals is used a brief disturbance will not be

detected, however a disturbance that persists over a longer period of time will be reflected

in the residual average. Thus adapting the fading factor based on the magnitude of the R

matrix would ensure that when the residuals become larger the filter bandwidth opens up,

with the opposite happening when residuals become smaller. The adaptation is as follows,

ε = 1 +
trace (Rk)

ζ
(4.48)

This formulation guarantees that the adaptive factor will increase for larger values of Rk.

The trace operation consists of the sum of the diagonal elements of a matrix, which indicates

the size of the residual error. For larger residual errors the trace operation gets large and

therefore increases the value of the adaptive factor. Note that if ideally the Rk matrix is

close to zero the adaptive factor will be close to zero meaning that when convergence is

achieved it bases its estimates more on past data. In the opposite case that Rk diagonal

entries get larger the fading factor will increase thus forcing the filter to base its estimates

on new data. In order to keep the AFF below 1.01 upper bounds can be established

for the Rk matrix or ζ can be determined so that the largest possible value of Rk will

not cause ε to exceed 1.01. Note that the filter estimates are not smooth since this is

a sub-optimal algorithm. Furthermore, the task of a standard KF is to remove noise

from state measurements, however for parameter estimation this is not the case. Since

the estimates are not simply representations of the measurements without the noise, this

noise is manifested in the parameter estimates. Hence the estimates are smoothed by

time-averaging.



Chapter 5

Simulation Results of RW and CMG

FDI Algorithm

Simulations of the FDI algorithm were performed in Matlab/Simulink to verify its perfor-

mance. First, numerical simulations are conducted on the high fidelity RW model presented

in chapter 2 with the bus voltage and BEMF constant being the FPs. The algorithm was

tested for BEMF constant faults only, followed by bus voltage faults only, in both cases

for different types of faults. Then the faults were injected simultaneously to test the per-

formance of concurrent FDI. Next, numerical simulations were performed with the CMG

system presented in chapter 3 with multiplicative faults in the gimbal angle rates. Finally,

the algorithm was applied to a systems identification problem on the nanosatellite RW

prototype being developed at SSDC group using only wheel speed measurements.

5.1 FDI for Reaction Wheels

The high fidelity reaction wheel model shown in Fig. 2.3 was used for simulations with the

parameters listed in Table 5.1. Because of the high degree of non-linearity in the model the

AUKF algorithm was applied. The simulation was set up as shown in Fig. 5.1. A control

voltage trajectory is applied to the high fidelity Simulink model of the RW that serves as

the plant. The outputs of the system are the wheel speed and current ω and i respectively.

To simulate sensor measurements these outputs are then discretized using zero-order-holds

with a sampling period of Ts. The control voltage trajectory is also discretized to simulate

the discrete environment. All these discretized components are fed into the parameter

estimation algorithm where a residual is generated as the difference between measured

states and outputs of an analytical model of the RW that is running in parallel to the filter.
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Parameter Value

Coulomb Friction(τc) 0.002 Nm

Viscous Friction(τv) 3.84× 10−4 N·m/rad/s

Ripple Torque(B) 0.22

Cogging Torque(C) 0

Torque Noise Frequency(ωa) 0.2 Hz

Jitter Angle(θa) 0.05 rad

BEMF(Ke) Nominal 0.029 V/rad/s

Bus Voltage(Vbus) Nominal 8 V

Driver Gain (Gd) 0.19 A/V

Num. of Motor Poles(N) 36

Input Filter Resistance(RIN) 2 Ω

Quescient Bus Power(Pq) 3 W

Driver Bandwidth(ωd) 9 rad/s

Voltage Feedback Gain(kf ) 0.5 V/V

Flywheel MOI(Jw) 0.0077 kg ·m2

Overspeed Circuit Gain(ks) 95

Max. Wheel Speed (ωs) 680 rad/s

Table 5.1: Ithaco A Reaction Wheel Parameters

Thus the parameter estimates adjust such that the analytical model outputs match the

measurements as best as possible. White-noise is injected into the discretized outputs of

the RW model to simulate measurement noise. The white-noise signal power is calculated

as follows,

Pv = 10 log10

(
1

T

T∑
0

|vk|2
)

(5.1)

where wpsd is the power spectral density(PSD) of the white-noise. The nominal power

spectral densities of the wheel speed and current measurements are 1× 10−5 and 5× 10−8

respectively resulting in −9.99 dB and −33.01 dB respectively of noise-power. Based on

research done in [Sobahni-Tehrani 2008] it is known that various experimental experiences
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Figure 5.1: RW FDI Simulation Setup

with RWs on-board satellite missions have revealed the following potential sources of failure;

(i) Faults in the bus voltage

(ii) Faults in the motor torque/BEMF constant

Thus the parameters that will be monitored are the bus voltage and BEMF constant.

Changes in BEMF constant can be attributed to extreme temperatures in the windings

that exceed the Curie temperature of the magnetic material in the motor resulting in a

decrease in magnetism of the magnets. Furthermore, any blunt-force trauma imparted

onto the magnets can degauss them. Bus voltage faults may occur as a result of things

like cold-solder joints, loose wires, or failures in the power supply. Regardless of the

cause it is important to monitor these parameters to improve the performance of RWs.

Simulations were initialized as shown in the table below. The window size is selected to

be large because for parameter estimation, it is assumed that parameters are not dynamic

quantities for the most part, thus the problem of the filter not being able to track if the

window is too large is not an issue here. This window size was found to be applicable

to all the cases presented below for nominal measurement noise. The UKF parameter

κ is typically chosen as κ = n − 3, where n is the number of estimates. Note that this

is assumed for all simulations. ζ was selected to be 100 so that ε would remain below
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Sampling Period(Ts) 0.01 s

Simulation Time 4000 s

Window Size(N) 50

ζ 100

R0 2× 10−4 × I2×2

Q0 1× 10−5 × I2×2

P 0 1× 10−8 × I2×2

Qmax 1× 10−4

Rmax 0.5

x̂0 [8, 0.029]T

κ −1

n 2

Table 5.2: Simulation Parameters for RW FDI

1× 10−2, based on extensive simulations anything above that can lead to instability. The

voltage applied at the motor terminals is a sine wave with an amplitude of 5 V and a

frequency of 0.25 Hz. Various fault scenarios will be considered in the following sections.

Fault scenarios depicting low and high severity faults will be considered. A high severity

fault will be considered as changes that are ≥ 20 %, while low severity faults constitute

changes ≤ 15 %. First, severe BEMF constant faults are simulated according to the

following profile

time (s) km

t < 1000 0.029

1000 ≤ t < 2000 0.020

2000 ≤ t < 3000 0.013

t ≥ 3000 0.029

Table 5.3: Fault Case 1 - RW Severe Intermittent BEMF Constant Fault Profile

Next an intermittent time-varying BEMF constant fault is modeled as a sinusoid, the

profile is shown in the following table.
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time (s) km

t < 400 0.029

400 ≤ t < 3500 0.029− 0.018 sin
(
2π (t−400)

3000

)
3500 ≤ t 0.029

Table 5.4: Fault Case 2 - RW Intermittent Time-varying BEMF Constant Fault Profile

An example of a time-varying fault in BEMF constant is if metallic particles or materials

get into the flux gap of the motor and then eventually leave those areas. This type of fault

will also provide an indication as to the ability of the algorithm to track a time-varying

fault with time-varying states. Mild bus voltage faults are simulated as shown in Table 5.5.

These mild faults typically will not cause large changes in performance of the RW, however

time (s) Vbus

t < 1000 8

1000 ≤ t < 2000 7.5

2000 ≤ t < 3000 7

t ≥ 3000 6.8

Table 5.5: Fault Case 3 - RW Mild Intermittent Bus Voltage Fault Profile

if precise control is needed they must be monitored because they cause small changes in

current consumption. Severe bus voltage faults have a larger effect on the RW system and

can drastically limit the amount of available torque. The severe bus voltage fault profile is

shown in Table 5.6. Next the system will be simulated such that faults occur in both the

time (s) Vbus

t < 1000 8

1000 ≤ t < 2000 6

2000 ≤ t < 3000 4.5

t ≥ 3000 8

Table 5.6: Fault Case 4 - RW Severe Intermittent Bus Voltage Fault Profile
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BEMF constant and bus voltage. Case 5 will combine case 2 and a severe bus voltage fault

profile such that faults occur simultaneously for each parameter. This will demonstrate

the performance of the filter in the face of severe faults for both parameters. The profile

is shown in the table below. Finally case 6 will consist of running case 1 and a severe bus

time (s) Vbus km

t < 500 8 0.029

500 ≤ t < 1500 5 0.029− 0.018 sin
(
2π (t−500)

3000

)
1500 ≤ t < 3500 6.5 0.029− 0.018 sin

(
2π (t−500)

3000

)
t ≥ 3500 8 0.029

Table 5.7: Fault Case 5 - Simultaneous BEMF Constant and Bus Voltage Severe Faults

timeVbus
(s) Vbus timekm (s) km

t < 1000 8 t < 500 0.029

1000 ≤ t < 2000 6 500 ≤ t < 1500 0.02

2000 ≤ t < 3000 5 1500 ≤ t < 2500 0.013

t ≥ 3000 7 t ≥ 2500 0.029

Table 5.8: Fault Case 6 - Severe BEMF Constant and Bus Voltage Out of Phase

voltage profile with each parameter fault occurring out of phase with the other, this profile

is shown in Table 5.7. The performance of the system identification will be performed

using the root-mean-square(RMSE) of the estimation error and the mean of the error(ME)

calculated as follows,

ek = xp − x̂p (5.2a)

RMSE =

√√√√ 1

N

N∑
k=1

[ek]
2 (5.2b)

ME =
1

N

N∑
k=1

ek (5.2c)

These performance indices will be used for all simulation results to quantify the accuracy

of the parameter estimates while the FDI performance will be analyzed based on detection,
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isolation, and identification times. Furthermore it should be noted that these indices will be

calculated from the estimates once they have settled. In other words the transient periods

will not be considered. Estimates of the noise covariance matrices along with the AFF are

shown in appendix A. In each simulation the plots will show relevant information during

the faulty period since in the healthy time-periods outputs are the same for each case.

Consequently below are plots of the input voltage profile applied to the RW as well as the

RW outputs up to the 200 s mark.
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Figure 5.2: Reaction Wheel Applied Voltage Profile
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Figure 5.3: Reaction Wheel States for First 200 s
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5.1.1 CASE 1: Intermittent BEMF Constant Faults

In this section the FDI algorithm is applied to the RW system with severe intermittent faults

starting at 1000 s and ending at 3000 s, outside of this range of time the parameter returns

to its nominal value of 0.029. The wheel speed and current estimates are obtained from

an analytical model running in parallel with the AUKF. This model uses the parameter

estimates generated by the filter as well as the control input to generate these outputs.

Consequently the outputs will be considered as estimates since they are independent of

measurements. Residuals are generated as the difference between the analytical model

outputs and measurements. Figures 5.5 and 5.4 demonstrate that the filter parameters

adapt such that the estimates track the states very closely. The current residual seems
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Figure 5.4: CASE 1 - Reaction Wheel Current Estimation

to indicate that during the fault period the current estimates are subject to more error,

nonetheless the errors are fairly small. This increase in noise can be attributed to increased

oscillations in the BEMF constant estimates that result in a slightly noisier current estimate.

In Fig. 5.5 it can be seen that this also happens for the wheel speed. Regardless the

algorithm is able to track the parameters fairly accurately as shown in Figs. 5.6 and 5.7.
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Figure 5.5: CASE 1 - Reaction Wheel Speed Estimation

Notice that the bus voltage estimate does not contain any discernable fluctuations while

the BEMF constant values change. This indicates that changes in the RW outputs due to

BEMF constant faults do not resemble changes that would be observed if a bus voltage

fault occurs. Fault detection and isolation occur instantaneously once the BEMF constant

estimate deviates from its nominal value. Fault identification takes about 25 s. No false

alarms are triggered in this case. A false alarm would be manifested as deviations in the

estimates from the nominal values while in healthy modes, which does not occur here.

However even if a false alarm did occur, this algorithm should eventually settle back to the

true value. Thus for identification the estimates must be considered only when they have

reached steady-state. The performance of the filter is presented in Tables 5.9 and 5.10.

Excellent performance is obtained with the errors in the estimate on the order of 10−4 and

mean errors on the order 10−5. Performance of the bus voltage parameter estimation are

shown in the next table. It is important to note that the bus voltage is also being estimated

during the simulation and that its estimate can be affected by faults in the BEMF constant.
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Figure 5.6: CASE 1 - Bus Voltage Estimation

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.02

0.04
Back EMF Constant Estimate

time [s]

[V
/r

ad
/s

]

0 500 1000 1500 2000 2500 3000 3500 4000
0.01

0.02

0.03
Back EMF Constant Actual

time [s]

[V
/r

ad
/s

]

0 500 1000 1500 2000 2500 3000 3500 4000
−0.02

0

0.02

0.04
Back EMF Constant Estimation Error

time [s]

[V
/r

ad
/s

]

Figure 5.7: CASE 1 - BEMF Constant Estimation
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time (s) RMSE ME

t < 1000 1.038× 10−4 −4.41× 10−5

1000 ≤ t < 2000 1.42× 10−4 6.86× 10−5

2000 ≤ t < 3000 1.79× 10−4 1.09× 10−5

t ≥ 3000 1.04× 10−4 −2.64× 10−5

Table 5.9: CASE 1 - Performance Indices of BEMF Constant Estimate

time (s) RMSE ME

t < 1000 0.0046 −0.0044

1000 ≤ t < 2000 0.0379 −0.0354

2000 ≤ t < 3000 0.0667 −0.0651

t ≥ 3000 0.0044 −0.0042

Table 5.10: CASE 1 - Performance Indices of Bus Voltage Estimate

5.1.2 CASE 2: Incipient BEMF Constant Fault

Now the algorithm will be tested with a time-varying BEMF constant fault. From 400 s

to 3500 s the BEMF constant will vary sinusoidally with an amplitude of 0.018 V/rad/s and

frequency of 3.333 × 10−4 Hz, outside of this time period the BEMF constant will be at

its nominal value. The filter performance in this case looks good as well. Figures 5.8 and

5.9 indicate that the estimates are able to track to the measurements of the RW. In fact

to the naked eye it seems that the algorithm performs just as well in this case as in case 1.

As expected the current residual grows for a period of time, however eventually it settles

down. A key difference in this case lies in the wheel speed residual. It is more oscillatory

in this case. This is because the algorithm is continuously tracking the parameter, and

the adaptive mechanism does not get a chance to fully converge. The filter is capable

of tracking the time-varying BEMF constant while the bus voltage remains relatively con-

stant, again showing that the bus voltage estimate is not very sensitive to changes in the

BEMF constant. Figures 5.10 and 5.11 demonstrate this. Looking at the BEMF constant

estimation error it looks like the filter has a more difficult time tracking the estimate than

in the case of instantaneous changes in the parameter value. This could be because the
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Figure 5.8: CASE 2 - Reaction Wheel Speed Estimation

1000 1500 2000 2500 3000
−2

−1

0

1
Measured Current

time [s]

A
m

ps

1000 1500 2000 2500 3000
−2

−1

0

1
Estimated Current

time [s]

A
m

ps

1000 1500 2000 2500 3000
−0.05

0

0.05
Current Residual

time [s]

A
m

ps

Figure 5.9: CASE 2 - Reaction Wheel Current Estimation
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adaptive mechanism employs a moving window average of the residuals which would add

some delay to the estimate. Hence with the parameter constantly varying in time it is

not able to settle fully. In Fig. 5.7 there are spikes in the estimation error of the BEMF

constant that correspond to the abrupt change in value of the parameter. In this case there

is only one spike at the end of the faulty period when the parameter abruptly goes back to

its nominal value. Thus filter performance improves when faults do not occur abruptly or

intermittently. Fault detection and isolation occur instantaneously in this case as well as
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Figure 5.10: CASE 2 - Bus Voltage Estimation

the first, while identification occurs continuously as opposed to the previous case resulting

in very good performance. This is confirmed by the performance indices shown in Tables

5.11 and 5.12. Although the BEMF constant estimation error seems to be more oscillatory

in this case than in the previous one, the table above indicates that the accuracy of the

BEMF constant estimate is very similar. Thus this filter can track the time-varying BEMF

constant parameter as well as in the case of instantaneous faults. Again the performance of

the filter for the bus voltage estimate is presented in Table 5.12 to see how the time-varying

BEMF constant affects its estimation. The filter performance for the bus voltage estimate
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Figure 5.11: CASE 2 - BEMF Constant Estimation

while a time-varying fault occurs in the BEMF constant is very similar to that of case 1.

time (s) RMSE ME

t < 400 1.12× 10−4 −6.77× 10−5

400 ≤ t < 3500 3.84× 10−4 5.48× 10−6

t ≥ 3500 1.33× 10−4 −4.41× 10−5

Table 5.11: CASE 2 - Performance Indices of BEMF Constant Estimate

time (s) RMSE ME

t < 400 0.005 −0.0048

400 ≤ t < 3500 0.037 −0.0268

t ≥ 3500 0.0045 −0.0043

Table 5.12: CASE 2 - Performance Indices of Bus Voltage Estimate
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5.1.3 CASE 3: Mild Intermittent Bus Voltage Faults
Now the algorithm will be applied to a scenario where the bus voltage is subject to mild

instantaneous faults in the time period from 1000 s to 4000 s, outside of this range the bus

voltage is at its nominal 8 V. The wheel speed and current estimates and their associated

residuals are shown in Figs. 5.12 and 5.13. The residuals are not severely affected by the

mild bus voltage faults. Only in the current residual are there spikes corresponding to the

instantaneous changes in current caused by the instantaneous changes in bus voltage. As

opposed to cases 1 and 2, a bus voltage fault causes changes in both the wheel speed and

current. This has ramifications for estimation in general. Because the bus voltage fault

causes changes in both residuals the filter may mistaken it for a BEMF constant fault since

it too causes a change in wheel speed. If a fault in one parameter was reflected as a change

in only one residual then there would be no problem. Thus it can be expected that for

larger bus voltage faults the BEMF constant estimate should be affected somewhat.
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Figure 5.12: CASE 3 - Reaction Wheel Speed Estimation
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Figure 5.13: CASE 3 - Reaction Wheel Current Estimation

In terms of the parameter estimates the filter performs well in this case. Figures 5.14 and

5.15 demonstrate that the parameter estimates are very accurate based on estimation errors.

The BEMF constant estimate is not affected much by the mild bus voltage faults. This is

most likely because the faults are mild and do not cause large fluctuations in wheelspeed.

For more severe faults it can be expected that the BEMF constant estimate will be affected

more since the wheelspeed output will be subject to a larger change. Thus in this case

the BEMF constant estimate is not very sensitive to bus voltage faults. For bus voltage

estimation, spikes occur when the parameter changes instantaneously, however the filter

quickly converges to the true value. As in previous cases fault detection and isolation is

discerned quickly by taken the difference between the nominal parameter value and its

estimate. Fault identification occurs about 25 s after each change in the parameter with

no false alarms. One important indication of the filter performance in this case is how

small of a change in bus voltage it can detect. At 3000 s the voltage changes by only 0.2 V

and the filter is still able to track, thus even very small fluctuations are detectable. The
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Figure 5.14: CASE 3 - Bus Voltage Estimation
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Figure 5.15: CASE 3 - BEMF Constant Estimation
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time (s) RMSE ME

t < 1000 1.038× 10−4 −4.41× 10−5

1000 ≤ t < 2000 9.88× 10−5 −5.34× 10−5

2000 ≤ t < 3000 7.62× 10−5 −1.61× 10−5

t ≥ 3000 6.25× 10−5 −2.65× 10−5

Table 5.13: CASE 3 - Performance Indices of BEMF Constant Estimate

performance of the filter for this case is comparable to that of the previous cases, which

is evident based on Tables 5.13 and 5.14. These tables clearly indicate that the filter’s

ability to estimate the BEMF constant is just as good as in all previous cases and is not

greatly affected by small changes in bus voltage. For bus voltage the performance of the

time (s) RMSE ME

t < 1000 0.0046 −0.0044

1000 ≤ t < 2000 0.0085 −0.0084

2000 ≤ t < 3000 0.0117 −0.0116

t ≥ 3000 0.0133 −0.0132

Table 5.14: CASE 3 - Performance Indices of Bus Voltage Estimate

filter is very good. However it can be observed that the errors increase as the bus voltage

decreases more and more. This is most likely an issue associated with increased non-linear

behavior in the model as faults get worse. Consequently the quality of the estimates is

directly proportional to the severity of the the faults.
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5.1.4 CASE 4: Severe Intermittent Bus Voltage Faults

Severe bus voltage faults will cause large changes in both wheel speed and current of the RW

which should cause some visible deterioration of the BEMF constant estimate. Furthermore

if Table 5.14 is any indication the quality of the bus voltage estimates should degrade. Since

this in turn will affect the quality of the state estimates the BEMF constant should further

degrade as well. The scenario constitutes a faulty period between 1000 s and 3000 s, with

the bus voltage being at its nominal value outside this range. As expected Figs 5.16 and

5.17 show very large changes in wheel speed and current, along with large spikes in the

residuals corresponding to large variations in the bus voltage. Looking at how much the

RW states vary and how the filter is able to track these changes is a testament to how well

the filter performs. Observing the parameter estimates in Figs. 5.18 and 5.19 will give a

better idea of how the filter reacts to such large and abrupt changes in bus voltage. First it

is evident that the filter is able to track these severe bus voltage faults without a problem.

Spikes can be seen in the bus voltage estimation error corresponding to abrupt changes,

however eventually the estimates settle down. As expected the BEMF constant estimate

is affected by these large bus voltage faults. Again this is because large changes occur

in the RW states that the filter thinks are being cause by a change in BEMF constant.

Actually at the time of the faults both estimates diverge, here the filter bandwidth has

increased so much that both estimates change. However as time wears on the estimates

eventually settle to their true values. The filter essentially varies the estimates in the

direction that minimizes the residual error, if it has two parameters to estimate it will vary

these two parameters until its residual is near zero. This means that if there are too many

parameters to estimate and not enough measurements the filter may settle to the wrong set

of parameters. Although this would still allow say, a controller to reconfigure and provide

good performance, the true parameter values would not be known. Fault detection occurs

right away in this case, however because both parameters are affected isolation takes more

time. Thus false alarms do occur during the transient phases of the estimates. To avoid

false alarms one must wait until the parameters settle, then isolation and identification can

be performed. In this case this corresponds to waiting about 100 s for the estimates to

settle as opposed to about 25 s in the mild fault cases. Consequently it seems that the filter
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Figure 5.16: CASE 4 - Reaction Wheel Speed Estimation
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Figure 5.17: CASE 4 - Reaction Wheel Current Estimation
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takes longer to track larger abrupt faults. The explanation lies in the manner in which the

filter works. When the residuals become very large so does the filter bandwidth. The larger

the bandwidth at the onset of a fault, the longer it takes the filter to find true parameter

values. If entries in the Rk and Qk matrices were not limited, then the settling times would

be the same in general. However because of the magnitude of the wheel speed residual, the

forgetting factor would be very large and cause the filter to destabilize. Thus there exists a

tradeoff between shorter settling times and stable operation. The performance of the filter

for this case can be better understood by the performance indices in Tables 5.15 and 5.16.

From Table 5.15 it is clear that besides causing spikes in the BEMF constant estimation
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Figure 5.18: CASE 4 - Bus Voltage Estimation

error when faults occur this estimate is not severely affected once the it settles, the errors

are still very small. Thus after a waiting period of about 100 s there is no degradation to

the estimate. For the bus voltage estimates, the performance indices in Table 5.16 indicate

that the filter is still capable of estimating the parameter as accurately as in previous cases

except for when the bus voltage is really low. Again the trend of increasing errors with large

decreases in voltage is apparent, however these errors are certainly no cause for concern.
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Figure 5.19: CASE 4 - BEMF Constant Estimation

time (s) RMSE ME

t < 1000 1.038× 10−4 −4.41× 10−5

1000 ≤ t < 2000 1.42× 10−4 −9.01× 10−5

2000 ≤ t < 3000 1.29× 10−4 −1.13× 10−4

t ≥ 3000 1.28× 10−4 −6.55× 10−5

Table 5.15: CASE 4 - Performance Indices of BEMF Constant Estimate

time (s) RMSE ME

t < 1000 0.0046 −0.0044

1000 ≤ t < 2000 0.0196 −0.0195

2000 ≤ t < 3000 0.0263 −0.0262

t ≥ 3000 0.0046 −0.0044

Table 5.16: CASE 4 - Performance Indices of Bus Voltage Estimate
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5.1.5 CASE 5: Incipient BEMF Constant Fault with Severe Inter-

mittent Bus Voltage Faults

This case will test the ability of the filter to track variations in both the BEMF constant

and bus voltage concurrently. No algorithm has been proposed that can perform this task

for this application. According the the previous cases the filter should a more difficult

time estimating parameters. The time-varying BEMF constant fault is the same as in

case 2 and will be injected in the time period 500 s to 3500 s, otherwise it will be at its

nominal value. Bus voltage faults will also occur during the same time period, outside of

which the bus voltage will be at its nominal value. The maximum Rk and Qk values are

lowered to 0.1 and 0.5× 10−4 respectively because the task of estimating both parameters

concurrently while they sustain faults causes the adaptive mechanisms to fluctuate more.

Lowering these limits will cause the amplitudes of oscillations in the estimates to be smaller

and keep the filter from instability. Current and wheel speed estimates and residuals are

shown in Figs. 5.20 and 5.21. Evidently the faults cause large deviations in the states

as would be expected based on previous cases. Still the algorithm is able to adapt the

parameters and track the states. The wheel speed residual is affected much more than the

current residual because it is more sensitive to BEMF constant and bus voltage variations.

The largest fluctuations occur at the beginning of the fault period since at those times

both parameters are faulted and the bus voltage changes are fairly large. Because both

parameters are being faulted and the bus voltage faults are very severe, the non-linearities

in the RW model are more prevalent and make it more difficult for the filter to converge.

This is noticeable in the wheelspeed residual. Adding to the difficulty is the fact that the

filter is continuously trying to track the the BEMF constant parameter while tracking the

piecewise constant bus voltage parameter. Thus the bandwidth is not allowed to become

too small. Current residuals do not vary much with variations in BEMF constant because

changes in bus voltage are what affect it most. This is why the current residual only shows

spikes when the bus voltage changes abruptly, otherwise it is not greatly affected. Another

reason why the current residual is less oscillatory is that the variations in current are not

as large as in the wheel speed.
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Figure 5.20: CASE 5 - Reaction Wheel Speed Estimation

1000 1500 2000 2500 3000 3500
−2

−1

0

1
Measured Current

time [s]

A
m

ps

1000 1500 2000 2500 3000 3500
−2

−1

0

1
Estimated Current

time [s]

A
m

ps

1000 1500 2000 2500 3000 3500

−0.2

0

0.2

Current Residual

time [s]

A
m

ps

Figure 5.21: CASE 5 - Reaction Wheel Current Estimation
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Figure 5.22: CASE 5 - Bus Voltage Estimation
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Figure 5.23: CASE 5 - BEMF Constant Estimation
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By observing the parameter estimates a better understanding of the filter performance can

be achieved. Figures 5.22 and 5.23 show the parameter estimates and their associated

errors. The filter is able to track the parameters fairly well during the faulty period.

Bus voltage estimation is very good compared to the BEMF constant estimation. This

is expected because it has already been established that severe bus voltage fluctuations

affect the BEMF constant estimate while in the opposite case this is not true. Bus voltage

estimates are very clean as expected only having spikes at the times where the parameter

value changes. When trying to understand why one estimate is more smooth than the

other, it is important to note the orders of magnitude of the parameters in question. The

AFF adapts based on the largest residual component, which in this case is the wheel speed

residual. This is ok for the bus voltage estimation because it’s values are large compared

to that of the BEMF constant. Finer adjustments would result in a smoother BEMF

constant because it is on the order of 10−3, however in this case the filter will tend to make

adjustments that are too large resulting in a more oscillatory estimate. To compensate

somewhat for this the ζ parameter is used. The larger this parameter the smaller the order

of magnitude of the AFF, which will lead to smaller adjustments to the estimates, however

this also means the filter will converge slower. Consequently adjustment of this parameter

is a tradeoff between fast convergence and robustness. Fault detection occurs right away as

in previous cases, however similar to case 4 isolation and identification must be done once

the parameter estimates have settled. In this case it takes about 100 s for the parameters to

settle and therefore for identification to occur. In practice, once the estimates deviate from

nominal values a period of about 100 s must be allowed for the parameters to settle before

identification and isolation are performed. Performance indices for this case are shown in

the tables below.

Clearly the performance of the filter is degraded in this case, however this is a worst

case scenario where bus voltage is fluctuating severely and BEMF constant is continuously

varying. Considering the circumstances the filter estimates are actually fairly good and

percentage errors are still small. As expected the bus voltage estimate gets worse the

lower it gets, while the BEMF constant errors are larger when the wheel speed is varying

quickly from 2500 s to 3500 s. As mentioned before this can be explained in terms of the
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time (s) RMSE ME

t < 500 3.34× 10−4 −9.94× 10−5

500 ≤ t < 1500 9.82× 10−4 −1.7388× 10−4

1500 ≤ t < 3500 0.0015 1.82× 10−4

t ≥ 3500 1.07× 10−4 5.84× 10−5

Table 5.17: CASE 5 - Performance Indices of BEMF Constant Estimate

time (s) RMSE ME

t < 500 0.0059 −0.0048

500 ≤ t < 1500 0.4926 −0.1969

1500 ≤ t < 3500 0.2242 0.0066

t ≥ 3500 0.0122 −0.0121

Table 5.18: CASE 5 - Performance Indices of Bus Voltage Estimate

nonlinearities becoming more prevalent, as well as the analytical model attempting to catch

up with the measurements. Ultimately the filter performs the estimation function well, for

fault identification however when the BEMF constant is continuously varying while severe

bus voltage changes occur the data is not valid until the bus voltage parameter has settled.

Consequently for FDI, once spikes occur in the residuals the estimates should be considered

invalid until 100 s after they have been detected.
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5.1.6 CASE 6: Severe Intermittent BEMF Constant and Bus Volt-

age Faults

The final case to be run for the RW FDI consists of again attempting to estimate faults in

both parameters, however now changes in one parameter occur out of phase with changes in

the other parameter. Again it is expected that the BEMF constant will be affected by large

fluctuations in bus voltage even when the estimate has settled, and that the bus voltage

estimates will be fairly robust against changes in BEMF constant. It will be interesting to

observe whether or not the filter performance improves however with the BEMF constant

subject to instantaneous variations rather than continuous. The fault period begins at 500

s and ends at 3000 s, during this time the faults are injected into the RW system out of

phase. Outside of this time range the parameters return to their nominal values. Again in

this case the maximum values for the Rk and Qk matrices are lowered as in case 5. Figures

5.24 and 5.25 show the RW current and wheel speed during the simulation.
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Figure 5.24: CASE 6 - Reaction Wheel Speed Estimation
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Figure 5.25: CASE 6 - Reaction Wheel Current Estimation

The algorithm is able to correctly adapt the parameters such that the model estimates

match the measurements. Spikes occur in the current residual when the bus voltage changes,

while the wheel speed residual exhibits spikes when changes occur in either parameter.

The parameter estimates and their associated errors are shown in Figs. 5.26 and 5.27.

As expected the BEMF constant is sensitive to the faults in both parameters due to the

severity of the faults, while the bus voltage estimate is only sensitive to changes in the bus

voltage and is much cleaner. The filter has a more difficult time having to estimate both

parameters when they have undergone severe faults, and this is evident in the amplitude of

the spikes in the estimation error of the BEMF constant. A key observation from Figs. 5.26

and 5.27 is that the severity of the spikes in BEMF constant are proportional to the severity

of the bus voltage fault. In terms of fault diagnosis, fault detection occurs instantaneously

once again by simply comparing the estimates to the nominal parameter values. However

fault isolation and identification can only be done once the estimates have settled, which

takes about 100 s worst case as in case 5. Otherwise false alarms will occur. After the first

fault detection, isolation, and identification, any subsequent spikes in the residuals indicate

that the data should be ignored until the wait period of 100 s is over.
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Figure 5.26: CASE 6 - Bus Voltage Estimation
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Figure 5.27: CASE 6 - BEMF Constant Estimation
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Performance indices for this case are shown in the tables below,

time (s) RMSE ME

t < 500 3.34× 10−4 −9.94× 10−5

500 ≤ t < 1000 1.76× 10−4 −1.01× 10−5

1000 ≤ t < 1500 9.32× 10−5 −7.15× 10−5

1500 ≤ t < 2000 7.57× 10−5 1.43× 10−5

2000 ≤ t < 2500 1.36× 10−4 −5.27× 10−5

2500 ≤ t < 3000 1.72× 10−4 −8.18× 10−5

t ≥ 3000 8.02× 10−5 1.26× 10−5

Table 5.19: CASE 6 - Performance Indices of BEMF Constant Estimate

time (s) RMSE ME

t < 500 0.0059 −0.0048

500 ≤ t < 1000 0.0682 −0.0641

1000 ≤ t < 1500 0.0177 −0.0177

1500 ≤ t < 2000 0.0159 −0.0159

2000 ≤ t < 2500 0.0207 −0.0207

2500 ≤ t < 3000 0.0255 −0.0251

t ≥ 3000 0.0120 −0.0119

Table 5.20: CASE 6 - Performance Indices of Bus Voltage Estimate

These results are not surprising given the previous cases. The filter estimates are very good

once they have settled. Although the BEMF constant estimate is noticeably degraded when

bus voltage deviates far from its nominal value. Again these indices are calculated when

the estimates have reached steady state, during the transient periods the data is ignored.

This and the previous case demonstrate the capability of the filter to monitor faults in both

parameters concurrently.
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5.2 Robustness of RW FDI to Measurement Noise

This section will demonstrate the filter’s robustness to measurement noise. Large measure-

ment noise levels tend to muffle out small changes in the measurements thereby making it

more difficult for the filter produce accurate estimates. Case 6 will be run from the RW

FDI section with the increased measurement noise because this is the most challenging ap-

plication due to the high non-linearity of the high fidelity RW model. If the filter performs

well with severe faults then the other cases should be handled just as well. The following

table lists simulation parameters for the medium noise case.

Wheel Speed Noise Power 0.0065 dB

Current Noise Power −23.01 dB

Sampling Period(Ts) 0.01 s

Simulation Time 4000 s

Window Size(N) 75

ζ 1× 103

R0 2× 10−4 × I2×2

Q0 1× 10−4 × I2×2

P 0 1× 10−8 × I2×2

Qmax 1× 10−2

Rmax 50

x̂0 [8, 0.029]T

κ −1

n 2

Table 5.21: Simulation Parameters for Medium Noise RW FDI

Noticeable differences to the parameters are the ζ parameter and window size N . ζ is

much larger in this case so that the bandwidth is not kept too wide. Because there is more

noise in the measurements, a smaller bandwidth will filter out more of this noise. However

decreasing ε means that the filter will have a more difficult time tracking the parameters

because of the smaller bandwidth. In particular the filter will produce biased estimates.
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This can be mitigated by increasing the residual moving average window size. As stated in

chapter 4, the larger the window size the less biased the estimate will be. Another difference

is the upper limits of the entries in the Qk and Rk matrices. These have been lowered to

limit the amplitude of oscillations in these entries which can lead to large fluctuations in

the estimates. Similar provisions must be made in the high noise case, the parameters are

shown in the following table.

Wheel Speed Noise Power 10 dB

Current Noise Power −13.01 dB

Sampling Period(Ts) 0.01 s

Simulation Time 4000 s

Window Size(N) 50

ζ 1× 105

R0 2× 10−1 × I2×2

Q0 1× 10−4 × I2×2

P 0 1× 10−8 × I2×2

Qmax 5× 10−3

Rmax 5

x̂0 [8, 0.029]T

κ −1

n 2

Table 5.22: Simulation Parameters for High Noise RW FDI

In this case the window size had to be made much larger because the high noise levels

make it more difficult to extract the true mean of the residual. ζ was kept the same as the

medium noise case because it was able to filter the noise out sufficiently. The upper limits

of the Qk and Rk matrices are larger in this case because increased noise levels require

that the noise covariance estimates possess relatively similar profiles to get a good picture

of the noise environment and yield more accurate estimates. Results are presented in the

following sections.



124 Chapter 5. Simulation Results of RW and CMG FDI Algorithm

5.2.1 Simulation Results for Medium Noise Levels

The filter performance is good in the presence of medium noise levels. Figs. 5.28 and 5.29

show the current and wheel speed estimates along with their associated residuals. Evidently
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Figure 5.28: Medium Noise - Reaction Wheel Speed Estimation

the residuals are noisier in this case compared to previous cases, especially the wheel speed

residual, however good estimates are still obtained as shown in Figs. 5.30 and 5.31. It is

clear that the accuracy of the bus voltage estimate is not greatly affected by measurement

noise. The BEMF estimate however is much more noisy and sensitive to large changes

in bus voltage, evident in Fig. 5.31 at the 1000 s mark. Due to the higher noise levels

the filter bandwidth is smaller. Consequently settling times of the parameter estimates

are longer. However it must be pointed out that these fault scenarios are extreme and

would probably never happen in practice, and it can be assumed that performance would

improve with less severe cases. Performance indices for this case are shown in Tables 5.23

and 5.24. Although the errors are slightly larger in this case, the performance of the filter

is acceptable considering the severe faults and the presence of medium measurement noise

power levels.
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Figure 5.29: Medium Noise - Reaction Wheel Current Estimation
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Figure 5.30: Medium Noise - Bus Voltage Estimation
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Figure 5.31: Medium Noise - BEMF Constant Estimation

time (s) RMSE ME

t < 500 1.212× 10−4 3.759× 10−6

500 ≤ t < 1000 2.787× 10−4 −1.541× 10−4

1000 ≤ t < 1500 2.288× 10−4 −1.36× 10−4

1500 ≤ t < 2000 3.612× 10−4 −1.044× 10−4

2000 ≤ t < 2500 3.573× 10−4 −2.083× 10−4

2500 ≤ t < 3000 3.462× 10−4 −3.222× 10−4

t ≥ 3000 1.728× 10−4 −5.366× 10−5

Table 5.23: Medium Noise Power - Performance Indices of BEMF Constant Estimate



5.2. Robustness of RW FDI to Measurement Noise 127

time (s) RMSE ME

t < 500 0.0060 −0.0058

500 ≤ t < 1000 0.0172 −0.0170

1000 ≤ t < 1500 0.0206 −0.0205

1500 ≤ t < 2000 0.0189 −0.0189

2000 ≤ t < 2500 0.0238 −0.0237

2500 ≤ t < 3000 0.0344 −0.0343

t ≥ 3000 0.013 −0.0128

Table 5.24: Medium Noise Power - Performance Indices of Bus Voltage Estimate

Although the performance of the filter is degraded in this case, this is expected and

it is clear that the parameters can be tracked with reasonable accuracy. As noise levels

increase however, the filter will find it more and more difficult to track these parameters.

In particular because as noise levels increase the filter bandwidth will have to decrease

resulting in longer settling times. This case is studied in the next section.

5.2.2 Simulation Results for High Noise Levels

For high noise levels the performance of the filter was noticeably degraded compared to

all previous cases as expected. Wheel speed and current measurements with associated

residuals are shown in Figs. 5.32 and 5.33 respectively. In the first 1500 s it is clear that

the filter has not locked on to the parameters yet. A quick look at Tables 5.25 and 5.26

verifies this. Errors are two orders of magnitude smaller after 1500 s. This is because the

bandwidth of the system is smaller, consequently the hypothesis of the previous section is

confirmed. Looking at plot of the AFF in the appendix will also confirm this. In cases

where measurement noise levels are very large the filter must be run for a longer period of

time at initially before it can perform well. However once it settles down the performance

is reasonable albeit somewhat slower. At the onset of a change in parameter the filter

begins to track, however the large noise levels cause large fluctuations in the residuals that

cause the filter to think they are caused by parameter variations. Eventually the adaptive

mechanism picks up the trend in the residual and is able to converge. The filter is very
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Figure 5.32: High Noise - Reaction Wheel Speed Estimation
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Figure 5.33: High Noise - Reaction Wheel Current Estimation
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sensitive to any changes in the residual signal, thus even the smallest of disturbances or

will lead to fluctuations in the estimates. Fluctuations in the BEMF constant estimate

are more pronounced for reasons mentioned in the previous cases while the bus voltage

estimate is affected to a lesser degree. In this particular simulation the onset of the bus

voltage faults at 1000 s causes the BEMF constant estimate to fluctuate wildly, and it takes

the filter approximately 250 s to settle down. The parameter estimates and the associated

estimation errors are shown in the figures below. Figures 5.34 and 5.35 show that the
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Figure 5.34: High Noise - Bus Voltage Estimation

quality of the estimates is indeed degraded with the BEMF constant estimate being affected

most. However if enough time is afforded to the filter at startup to settle down, it is clear

by Tables 5.25 and 5.26 that the accuracy of the estimates is comparable to the previous

case. According to these tables the algorithm performs well considering the high noise

power levels. The errors in both estimates are fairly small after the 1500 s mark, however

the settling time of the filter is higher that in any case with lower measurement noise levels.

In the case that high noise levels are expected the filter should be run for at least 1500 s

at start-up, and a wait period of 150 s should be allowed before identification and isolation
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Figure 5.35: High Noise - Reaction Wheel Current Estimation

time (s) RMSE ME

t < 500 0.002 0.0019

500 ≤ t < 1000 0.0022 0.0018

1000 ≤ t < 1500 0.0079 0.0050

1500 ≤ t < 2000 4.281× 10−4 4.183× 10−4

2000 ≤ t < 2500 1.319× 10−4 −7.597× 10−6

2500 ≤ t < 3000 3.728× 10−4 3.368× 10−4

t ≥ 3000 2.393× 10−4 −3.04× 10−5

Table 5.25: High Noise Power - Performance Indices of BEMF Constant Estimate

can be determined once parameters deviate from their nominal values. Performance can be

expected to improve for less severe fault scenarios, however this case demonstrates clearly

that the filter can provide fairly accurate estimates at various measurement noise levels

with settling times being affected the most.
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time (s) RMSE ME

t < 500 0.0329 0.0317

500 ≤ t < 1000 0.0282 0.0256

1000 ≤ t < 1500 0.125 −0.0629

1500 ≤ t < 2000 0.0265 −0.0263

2000 ≤ t < 2500 0.0284 −0.0283

2500 ≤ t < 3000 0.0265 −0.0262

t ≥ 3000 0.0147 −0.0138

Table 5.26: High Noise Power - Performance Indices of Bus Voltage Estimate

5.3 FDI for CMGs

The CMG FDI simulation is set up the same way as in Fig. 3.3 with the FDI algorithm

being implemented in the steering logic block. Multiplicative faults are applied to the

gimbal angle rates as follows,

δ̇ =

(
1

ho

)
A†

cmgḣpf (5.3a)

pf =


pf1 0 0 0

0 pf2 0 0

0 0 pf3 0

0 0 0 pf4

 (5.3b)

where pf is the fault parameter matrix. Multiplicative faults are applied because they are

more likely to resemble actual gimbal motor faults, additive faults are not very realistic

because they would amount to the gimbal motor constantly rotating in which case no

control would be possible. This method of FDI is selected because it can work regardless

of the type of gimbal motor used. Multiplicative faults can indicate whether the bearing

friction of the gimbal motors has increased. A well known case of CMG failure occurred in

the ISS on June 8th 2002 when one of the units suffered a bearing failure. After investigating

it was determined that the bearing lubricant was not being dispensed to the bearing fast

enough resulting in increased wear of the bearing. An algorithm like this could have
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indicated before-hand that something was wrong with the system. Another capability of

this algorithm is detection of a gimbal motor bearing lock which would be indicated by

a fault parameter going to zero. In addition to detecting faults in the gimbal motor, the

algorithm should also be able to determine if a fault has occurred in the flywheel motor.

This problem can be easily approached by taking the difference between nominal wheel

speed and measured wheel speed. Because wheel speed is constant, if it changes there is

obviously a problem with the motor. A more intensive approach would be to use the RW

FDI algorithm in chapter 4. Another advantage of this formulation is that because the

Acmg matrix is not part of the AKF equations, if singularities in the steering logic occur

the filter should not be in jeopardy of going unstable. A further advantage to this approach

is the fact that the problem is not very non-linear since the fault parameters are simply

multiplied against the commanded gimbal angle rates. Having said that the AKF will be

applied to this problem. A flow diagram of this FDI approach is shown in Fig. 5.36.

Figure 5.36: CMG FDI Simulation Flow

The measurements are simulated with −30 dB of noise. The steering logic determines the

required gimbal angle rates, these rates are then applied to the CMG hardware model,

after which the hardware will output its actual gimbal rates. During the healthy mode

the hardware will match the commanded gimbal angle rates, and in the faulty mode the

hardware will output its faulty angle rates. In the steering logic block, the commanded

gimbal angle rates are multiplied by the estimated fault parameters. The difference between
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the hardware and estimated faulty outputs constitutes the residual signal

rk = δ̇m − ˆ̇δ = δ̇m − x̂pδ̇c (5.4)

Thus the filter will adapt the fault parameters until the estimated gimbal rates ˆ̇δ match the

measured gimbal rates δ̇m. In other words, the measurement/output equation here is the

steering logic equation 5.3a hence the weakly non-linear nature of the problem. Contrary

to the AUKF algorithm employed in the previous section, a measurement matrix must be

defined for the AKF. According to Eq. (5.3a) the measurement matrix can be obtained by

taking the partial derivative of δ̇ with respect to pf resulting in

Hk =
∂δ̇

∂pf

=

(
1

ho

)
A†

cmgḣ (5.5)

The CMG system is simulated using the same parameters as in Tables 3.6 and 3.7, while

the FDI algorithm parameters are initialized as in Table 5.27. Faults are injected into the

Sampling Period(Ts) 0.01 s

Simulation Time 1000 s

Window Size(N) 50

ζ 100

R0 1× 10−5 × I4×4

Q0 1× 10−5 × I4×4

P 0 1× 10−5 × I4×4

Qmax 1

Rmax 5

x̂0 [1, 1, 1, 1]T

Table 5.27: Simulation Parameters for CMG FDI

system at the 100 s mark according to the table below. The CMG system is commanded

to perform a sinusoidal maneuver about the pitch axis with an amplitude of 90 ◦ and

frequency 0.005 Hz for the first 500 s, after which the same profile is applied to the roll

axis. This is done because when actuation is applied about the pitch axis only units 2 and

4 actuate noticeably, meaning that the algorithm will have a hard time determining the
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faulty parameters of units 1 and 3 because they are not very active. Performing a roll-axis

maneuver requires that units 1 and 3 actuate more whereby the algorithm will be better

able to estimate their fault parameters.

Fault Parameter Value

pf1 0.5

pf2 0.8

pf3 0.3

pf4 0.9

Table 5.28: CMG Fault Parameters

The spacecraft attitude plots are shown in Fig. 5.37. Note the maneuver first about the

pitch-axis and then about the roll-axis. Figures 5.38-5.41 below show the commanded and
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Figure 5.37: CMG FDI - Attitude Quaternion

measured gimbal rates, the associated residual, and the fault parameter estimate for each

CMG gimbal unit. The filter is able to estimate all four parameters such that the residuals

remain near zero for the most part.
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Figure 5.38: CMG FDI - Unit 1
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Figure 5.39: CMG FDI - Unit 2
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Figure 5.40: CMG FDI - Unit 3
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Figure 5.41: CMG FDI - Unit 4
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Only during the change in maneuver at 500 s and when singularities occur does the

residual fluctuate wildly. Observing the parameter estimates, parameters fp1 and fp3 are

very noisy for the first 500 s because there is very little movement in the gimbal motors

and the filter has a hard time determining the faults in those units. Units 2 and 4 however

are relatively smooth because they are actuating. At the 500 s when the maneuver changes

there are large spikes in the estimates and residuals because of the sudden change in com-

manded gimbal rates. Afterwards the four estimates settle down. Thus the filter is fairly

robust to sharp changes in gimbal angle rates. Spikes observed after the 500 s mark are

due to large gimbal angle rate fluctuations because of singularities in the steering logic, as

demonstrated by the singularity measure in Fig. 5.42.In the beginning of this section it was

mentioned that the algorithm should not destabilize when singularities occur, according to

these figures it is obvious that the filter performs well. Thus the algorithm is robust to

sharp fluctuations in gimbal rates as well as singularities.

Performance indices for the estimates are calculated between 200 s and 400 s and 900 s

to 1000 s when the estimates have settled thus excluding any of the transient periods due

to singularities. The results are in Tables 5.29 and 5.30. Notice that the estimates for fp1
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Figure 5.42: CMG FDI Singularity Measure

and fp3 are better during the second half of the simulation when the gimbal rates are more

active. Conversely the estimates for units fp2 and fp4 are better during the first half of the



138 Chapter 5. Simulation Results of RW and CMG FDI Algorithm

time (s) fp1 fp2 fp3 fp4

200 ≤ t ≤ 400 0.0146 0.0033 0.0121 0.0014

900 ≤ t ≤ 1000 0.0012 0.0021 0.0019 0.0027

Table 5.29: CMG FDI RMSE

time (s) fp1 fp2 fp3 fp4

200 ≤ t ≤ 400 −0.0101 −0.0015 0.0024 −5.51× 10−4

900 ≤ t ≤ 1000 −8.98× 10−4 −6.83× 10−4 −0.0018 −0.0021

Table 5.30: CMG FDI ME

simulation when those gimbal rates are more active. Thus a rather intuitive implication

is that for the filter to perform well the observable outputs should be non-zero, otherwise

the algorithm can not know if anything is faulty. In terms of the FDI performance of

the algorithm, fault detection does not occur immediately. If the system is healthy and

singularities occur, spikes will occur in the estimates. To avoid false alarms one must wait

about 100 s for the estimates to settle, at this time isolation and identification may also be

performed. This is similar to the RW FDI algorithm when faults in one parameter caused

fluctuations in the other.
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5.4 System Identification of RW Hardware

During the development of this algorithm the SSDC lab has been working on a low cost

nanosatellite RW design. The module is shown in the figure below. The motor shown in

Figure 5.43: Nanosatellite RW Module

the diagram is a Portescap NuvoDisc 32BF BLDC motor. The module will perform voltage

controlled wheel speed control meaning that an accurate model of the motor is necessary.

A simple circuit diagram of the motor is shown below.

Figure 5.44: Simple DC Motor Circuit

The equation describing this circuit is

ea = eR + eL − eBEMF = Ri+ L
di

dt
− kmω (5.6)

where i is the motor current in Amperes, ω is the angular rotation rate in rad/s, R is the

armature resistance in Ω, L is the armature inductance in H, and km is the BEMF constant

in V/rad/s. The mechanical model of the BLDC motor is defined in the following equation.

τnet = τm − τf (5.7a)

Jwω̇ = kti− Tvω (5.7b)
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where Jw is the MOI of the rotor plus flywheel with units kg ·m2, kt is the torque constant

with units N·m/A and has the same value as the BEMF constant when both are expressed

in SI units, and Tv is the coefficient of viscous friction. Most of the parameters in these

equations are provided in the data sheet for this motor, they are listed in the following

table. Since the inductance term in Eq. (5.7a) is so small, it can be neglected. Then

Parameter Value

R 3.7 Ω

L 0.36 mH

km, kt 0.0078 V /rad/s, N ·m/A

Jw 1× 10−5 kg ·m2

Table 5.31: Portescap Nuvodisc 32BF

solving for the current and substituting into Eq. (5.7b) the following equation is obtained,

ω̇ = −
(
kmkt
JwR

+
Tv
Jw

)
ω +

km
JwR

ea (5.8)

Except for the coefficient of viscous friction the data sheet provides the required parameters

for the model. This sparked the need for a way to identify the coefficient, and the algorithm

in chapter 4 was applied to the problem. Re-writing Eq. (5.8) as

ω̇ = Aω +Bea (5.9)

The task of the algorithm is to estimate the A and B parameters using only a speed

measurement. The residual will be computed as the difference between the model in Eq.

(5.9) and the measured wheel speed. Motor parameters are initialized with the values in

Table 5.31 with Tv set to 0. The simulation parameters for this case are in Table 5.32. The

measurements are sampled at Ts = 0.04 s and the ζ parameter is very large here because

the Rk matrix has very large entries on the order of 103 to 105. The Rk matrix entries are

very large because after many runs it was determined that the performance was best. In

the case faults are present the Rk and Qk matrices would change abruptly which could lead

to instability. This is why the magnitudes of the entries in the matrices are limited for the

FDI cases but not in this case. The initial estimates are initialized to zero to demonstrate
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Sampling Period(Ts) 0.04 s

Simulation Time 320 s

Window Size(N) 5

ζ 1× 107

R0 1× 10−5 × I4×4

Q0 1× 10−5 × I4×4

P 0 1× 10−5 × I4×4

Qmax -

Rmax -

x̂0 [0, 0]T

Table 5.32: Simulation Parameters for Portescap Systems Identification

the capabilities of the filter in the case that no parameters are known. Instead of measuring

a particular parameter, entire coefficients are estimated. The coefficient of viscous friction

Tv will be calculated from the estimated A coefficient as follows.

Tv = −JwA− kmkt
R

(5.10)

The voltage profile in Figure 5.45 was applied to the motor.
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Figure 5.45: Applied Voltage Profile
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Figure 5.46: System Identification Results
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This voltage profile along with the measured wheel speed were used in the simulation

to obtain the results in Figures 5.46 and 5.47. Identification was a success even under the

assumption that the motor coefficients were unknown. The residual errors are large in Fig.

5.47 due primarily to the fact that current data has not been incorporated into the model

and simulation, as well as the fact that viscous friction is actually a non-linear phenomenon

while here it is being modeled as a linear quantity. However the filter still provides a best

estimate of the motor dynamics which is close to the expected values. The results of the

estimation are presented in Table 5.33. The coefficients are estimated within about 100 s of

Coefficient Value

A −1.71

B 208.13

Tv 6.95× 10−7 N ·m/rad/s

Table 5.33: Portescap System Identification Results

the start of the simulation and yield reasonable results. The resulting coefficient of viscous

friction calculated from the estimate of the ’A’ coefficient is reasonable considering the size

of the motor and bearing characteristics. A value close to this estimate was obtained by

spinning the motor up to 500 rad/s, and then applying no actuation or commutation so that

the motor decelerates until it reaches zero wheel speed. The idea being that deceleration

is only caused by the viscous friction component. This same procedure could has been

applied online with this motor with the same results.
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5.5 Conclusions

The FDI algorithm presented in chapter 4 and verified in this chapter has proven to per-

form well in a wide-range of scenarios and applications. Some key aspects of the filter

performance are listed below.

Concurrent Fault Diagnosis and Identification : This algorithm is able to diagnose

more than one type of fault concurrently. This is important in case there is more

than one faulty component in a system. However the number of parameters that

can be estimated is limited by the number of available measurements. In a system

with ’m’ measurements available, if the size of the estimation vector n > m the filter

will yield biased estimates since in under-determined systems various combinations

of parameters can yield similar results. In essence there would not be enough degrees

of freedom in the system for unbiased estimation to take place.

Systems Identification : The filter structure makes it ideal for systems identification of

unknown plants. For this method to work, the structure of the equations must be

known, such as how many inputs and outputs comprise the system. Since systems

identification consists of estimating entire coefficients rather than selective parame-

ters, the problem of under-determination is mitigated so long as each system equation

has a corresponding measurement. For example the previous section estimated two

parameters with only one measurement, however the two parameters are part of a

single equation whose output measurement is available. For non-linear systems this

problem becomes much more challenging because the coefficients are by definition

time-varying.

Measurement Noise : Kalman filters operate on the premise that measurement noise

exists in the measurements. Consequently if there is practically no measurement

noise then filter performance will degrade. Furthermore, the filter must be tuned for

different levels of measurement noise. High noise levels will usually require that the

filter bandwidth be decreased so that sudden fluctuations are dampened. A larger

window size allows the filter to better extract the true mean of the residual errors and

yield unbiased estimates. However if it is too large then the filter settling time will be
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large and tracking will not be slower. The larger ζ parameter desensitizes the filter

to fluctuations caused by high noise levels resulting in less oscillatory estimates. If

this parameter is too large however, tracking will be very slow as the filter bandwidth

will be very small. These parameters must be tuned carefully to yield optimal perfor-

mance. In practice the best approach would be to design the filter for the expected

worst-case measurement noise levels so that the filter operates well in all cases.

Input Signal Profile : Depending on the frequency and profile of input trajectory the

filter must be tuned accordingly. Higher frequency inputs result in higher frequency

outputs. In response to high frequency inputs window size N and the parameter ζ

cannot be too large, otherwise the filter response will be too slow to extract the system

behavior from the residuals. If the bandwidth of the filter is too small with respect

to the system signal frequencies then tracking will not be possible and unbiased

estimates will result. Consequently tuning is important in this case as well, the

parameters cannot be too small or too large or unbiased estimates will result.

Sampling Time : Slower sampling frequencies will result in lower filter performance.

This is because at lower sampling frequencies more happens to the spacecraft attitude

that is not accounted for in the filter which can cause the filter to lose tracking. For

any given case if a slower sampling frequency is used then the window size must be

decreased. This is because at lower sampling times a smaller number of recursive

iterations are required to cover a particular time interval. The window size should

remain fairly consistent in terms of time. In other words a window length of 100

at 100 Hz is 1 s long, to keep it 1 s long then the window length at 10 Hz should

be 10. Finally, the ζ parameter should be made relatively larger for slower sampling

frequencies. This is required to desensitize the filter to some of the increased modeling

uncertainty.





Chapter 6

Conclusions

This thesis approached the problems of picosatellite CMG cluster design and fault diagnosis

for RWs and CMGs. Picosatellite active actuator development is still in its infancy, not-

including the use of MTRs, and still requires improvements and added emphasis. Only

recently has a satellite been launched with full three-axis control using RWs. The BeeSat

satellite was developed at the Berlin Institute of Technology to demonstrate the potential of

using RWs in picosatellites. Reasons for the lack of interest and investment in picosatellite

actuator technologies were presented in chapter 1, and are primarily related to the small

volume/power/mass budgets associated with them. Most space-proven payloads consume

too much power or weigh too much to be implemented in cubesats. This is because they

have primarily been geared towards micro and nano satellite classes. Up to now mainly

passive ACS systems are employed in these satellites because they consume little power

and usually provide enough pointing for their associated payloads. Right now cubesat

development is being approached primarily by academia thanks to their associated low costs

and development times. Cubesat development has only been around since the development

of the cubesat standard in 1999, thus it is relatively young. As payload and actuator

technologies improve it is the author’s opinion that picosatellites will eventually become

attractive to commercial entities. One of the goals of this thesis was to show that a

picosatellite CMG cluster using COTS components is feasible for precise three-axis attitude

pointing given currently available technologies. Another goal was to develop an algorithm

that could diagnose and identify faults in the actuators of a satellite ACS.
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6.1 Summary of Contributions

The major contributions of this thesis are the development of a CMG FDI methodology,

the design of a novel KF algorithm to perform parameter estimation for both linear and

non-linear systems for purposes of fault diagnosis, as well as a CMG cluster design to

demonstrate the feasibility of active control in picosatellites. Online fault diagnosis is of

special concern to mission and safety critical missions in space to avoid costly oversights and

perhaps save human lives. The algorithm developed in chapter 4 enhances the current body

of work available for online FDI and systems identification. Development of picosatellite

actuators will continue to attract more research dollars as new innovative technologies are

developed. Research here at SSDC group is being focused towards enhancing picosatellite

technologies as well as increasing the reliability of these actuators with FDI techniques.

6.1.1 Picosatellite CMG Cluster Design

The proposed CMG design demonstrates fairly well that it is possible to design one that fits

into a picosatellite while not overwhelming the mass/power/volume budget of the satellite

and providing sufficient performance to control the satellite. The design comes in under

100 g, occupies less than 25 % of the satellite volume, and consumes less than 1.5 W and

1 W peak and average power respectively. The motors that have been specified are the

key components of this technology thanks to their small size and low power consumption.

With a CMG cluster available to prospective picosatellite users, an increase in potential

for their use in a wider variety of missions can be realized.

6.1.2 Novel Adaptive Kalman Filters

The AKF/AUKF performs parameter estimation by estimating the measurement and pro-

cess noise covariances with a residual adaptive estimation(RAE) approach, and also uses

an adaptive forgetting factor(AFF) to control when the filter is sensitive to new data.

Combined, these simple mechanisms yield a filter that can track changes in the parameters

of any general system. This has been shown for a highly non-linear RW system as well

as a CMG system via numerical simulation in Matlab/Simulink. An example of systems
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identification is also demonstrated using hardware data from a RW prototype being devel-

oped at SSDC group. Depending on measurement noise levels, input signal trajectory, and

sampling time, the filter parameters N , ζ, Qmax, and Rmax must be tuned appropriately

otherwise divergence will ensue. The FDI portion of the algorithm consists of comparing

the parameter estimates to their nominal values. If the estimates begin to diverge then

data should be ignored for at least 100 s after which it can be determined if a fault has

occurred and isolation and identification can follow. Overall the algorithm functions well

in the presence of various types of faults, and is able to provide isolation and identification

in the presence of large noise power levels although with degraded quality in the estimates.

6.1.3 FDI for CMGs

Multiplicative faults are injected into each of the CMG gimbal units angular rotation rates

to simulate increased friction losses in the gimbal motors. Simulated gimbal-rate measure-

ments are then compared to commanded gimbal rates generated by steering logic to form a

residual vector. Based on these residuals the measurement and process noises are estimated

and the AFF is adapted. The parameter estimates vary until residuals approach their nom-

inal values and the true multiplicative parameter values have been determined. In order

to determine if the flywheel motor is faulty, a residual is formed as the difference between

flywheel speed measurements and the expected nominal value of the flywheel speed. Any

sustained fluctuations in this residual are indicative of problems with the flywheel motor.

However this problem was not addressed in this thesis due to its trivial nature. The per-

formance of the filter is verified by an attitude control simulation in Matlab/Simulink for

a satellite that houses a 4SGCMG cluster in a pyramid configuration for attitude control.
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6.2 Future Work

6.2.1 Picosatellite CMG Cluster Design

To complete this work there is more design that must be completed followed by manufac-

turing and testing to verify performance claims in terms of attitude pointing and power

consumption. The circuit design for telemetry, motor drivers, and the serial interface must

be completed as well as the software to operate the system. The CAD model must be en-

hanced to include all these components including wiring harnesses and connectors as well

as other miscellaneous parts. Then manufacturing and testing can proceed.

6.2.2 Novel Adaptive Kalman Filters

In response to the conclusions of chapter 5 an automated tuning procedure for the N , ζ,

Qmax, and Rmax parameters is required. This will make the algorithm easier to implement

and provide better performance. Furthermore, work must be done to improve the perfor-

mance of the algorithm for slow sample frequencies, very large noise levels, and different

forms of input signal profiles.
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Appendix A

Adaptive Parameter Plots for FDI

Simulations

In this appendix the plots of the AFF and estimated Qk and Rk matrices are presented

for each of the the simulations in chapter 5.
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Figure A.1: CASE 1 - Adaptive Forgetting Factor
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Figure A.2: CASE 1 - Q and R Matrices
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Figure A.3: CASE 2 - Adaptive Forgetting Factor

0 1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

0.5
R−Matrix Diagonal Entry 1

time [s]
0 1000 2000 3000 4000

0

1

2

3

4

5

6
x 10

−4 R−Matrix Diagonal Entry 2

time [s]

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1
x 10

−4 Q−Matrix Diagonal Entry 1

time [s]
0 1000 2000 3000 4000

0

0.2

0.4

0.6

0.8

1

1.2
x 10

−4 Q−Matrix Diagonal Entry 2

time [s]

Figure A.4: CASE 2 - Q and R Matrices
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Figure A.5: CASE 3 - Adaptive Forgetting Factor
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Figure A.6: CASE 3 - Q and R Matrices
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Figure A.7: CASE 4 - Adaptive Forgetting Factor
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Figure A.8: CASE 4 - Q and R Matrices
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Figure A.9: CASE 5 - Adaptive Forgetting Factor
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Figure A.10: CASE 5 - Q and R Matrices
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Figure A.11: CASE 6 - Adaptive Forgetting Factor
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Figure A.13: Medium Noise Power - Adaptive Forgetting Factor
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Figure A.14: Medium Noise Power - Q and R Matrices
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Figure A.15: High Noise Power - Adaptive Forgetting Factor
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Figure A.16: High Noise Power - Q and R Matrices
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Figure A.17: CMG FDI - Adaptive Forgetting Factor

0 200 400 600 800 1000
0

1

2

3

4
x 10

−7 Q−Matrix Diagonal Entry 1

time [s]
0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1
x 10

−5 Q−Matrix Diagonal Entry 2

time [s]

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3
x 10

−6 Q−Matrix Diagonal Entry 3

time [s]
0 200 400 600 800 1000

0

0.5

1

1.5

2
x 10

−6 Q−Matrix Diagonal Entry 4

time [s]

Figure A.18: CMG FDI - Q Matrix
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Figure A.19: CMG FDI - R Matrix
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Figure A.20: System Identification - Adaptive Forgetting Factor
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