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- Abstract

~

A QUASI—TWO—DIMENSIONAL FINITE ELEMENT FORMULATION FOR ANALYSIS
OF ACTIVE-PASSIVE CONSTRAINED LAYER BEAMS

Jean-Jacques R. Boileau Bekuit
Master of Applied Science
Graduate Program in Mechanical Engineering
Ryerson University

2006 ‘

Active-passive damping is getting more popular with designers because it combines the
complementary passive and active features in the control of structural vibrations. The clas-
sical three-layer structure has a viscoelastic-layer sandwiched between the host beam and a
piezoelectric-layer.

The more prevalent assumptions for modeling the system are the use of Euler-Bernoulli
beam theory for both the host beam and piezoelectric-layer, and Timoshenko beam theory for
the viscoelastic-layer. The assumption that transverse displacement is constant through the
thickness limits accuracy and applicability of the model. The current formulation expresses
the through-the-thickness dependency of the ‘ﬁeld variables as polynomials while their span
dependency across a finite element is cubically interpolated.

The versatility of the formulation is demonstrated via static and dynamic studies of exam-
ples taken from the literature. A beam treated with active-passive damping is presented and
examined. The constitutive relation of the viscoelastic layer is represented using fractional
derivatives and the Griinwald approximation. The extended Hamilton’s principle is used to de-

rive the system governing equations which are integrated with the Newmark time-integration

scheme.
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Chapter 1

Introduction

The ever increasing demand for strong, stiff, lightweight materials for use in a wide range of
structures has also increased the demand for engineers to address the repetitive motion and
noise of mechanical systems, ranging from simple structures such as machine parts to the more
complex such as spacecrafts. |

Different techniques have been suggested for suppressing vibration and noise without com-
promising on stiffness, weight and coinplexity. An investigation of the different techniques and
the progress made- in recent years was compiled by Stanway and Rongong [1]. This involved
structural design, localized additions of masses or neutralizers, isolation of a body from the |
excitation source and additions of damping by the means of a constrained layer to the host
structure, which is the most widely used because it gives designers an option to control the
vibrations of the structure.

Many researchers have devoted their work in recent years to constrained layer damping
treatment as the means to control vibration in elastic structures. Among the modeling issues
facing the designers are: the kinematics, the viscbélastic models and the control strategies.
Constrained layer damping(CLD) can be divided into three categories: Passive (PCLD), Active
(ACLD) and Active-Passive or Smart (SCLD).

~ Passive damping is achieved by adding a viscoelastic layer sandwich between the host
structure and a constraining elastic layer. The constraining layer is passive because it is not
contributing in the damping process; damping is achieved by the dissipative propérties of the
viscoelastic materials. This technique is widely used in practical applications because of its

simplicity. It is very effective at high frequencies in reducing the amplitudes, structural fatigue

1



CHAPTER 1. INTRODUCTION

and noise. However, viscoelastic materials are very sensitive to temperature and frequencies.
They are ineffective at low frequencies [1].

Active damping is generally achieved by attaching a piezoelectric layer to a host beam.
The piezoelectric layer is called active because of its ability to respond to the desired degree of
damping. Active damping is “smart” if the system is free of an external source. Be_n.g'afnd Lam
[2] studied a system in which the host beam is sandwiched between distributed piezoelectric
actuators and sensors. They employed a third-order displacement theory based finite element.

Active-Passive damping is a hybrid approach that integrates both passive and active damp-
ing. The constraining layer in passive damping is replaced by a piezoelectric-layer. The com-
bination of passive and active damping gives both reliability and control over the vibrations
of the structures. Yi and Ling [3] designed a threeAlayer composite laminate. Prony series
were used to model the viscoelastic material and a solid element was adopted for finite element
modeling. Balamurugan and Narayanan [4] used a partially covered smart constrained layer.
The viscoelastic layer was modeled using the Golla-Hughes-Mctavish (GHM) time domain ap-
proach [5, 6]. A Cj finite element modeling was adopted and reduced mtcgratlon was used to
eliminate shear locking. '

" The analysis of a composite beam focuses on individual layer behavior. The assumptions
of the classical three-layer models are ( [7, 8, 9]): (1) negligible in-p]aﬁe core stiffness with the
core supporting only shear, (2) constant transverse displacement at any cross section, (3) perfect
bonding between the layers, (4) thinness and infinite stiffness of the bonding adhesive layers,
(5) adequacy of Euler-Bernoulli beam theory for the constraining layer and the host structure
and Timoshenko beam theory for the viscoelastic layer, (6) dominance of inertia from trans-
verse flexural motion, (7) smallness of deformations and strains, and (8) displacement variation
is generally piece-wise linear with partial continuity. An investigation of the different formula-
tions is reported in [10], which also examines an extension where transverse shear is included
in the host beam and constrained layer as in Reference [4]. Most of these formulations ignore
transverse shear and/or shear stress which can be significant in certain structures. Therefore,
their application and accuracy are limited. Also, they require the use of different methods to

address shear locking. The most accurate method for analyzing these structures is the use of a



CHAPTER 1. INTRODUCTION

three-dimensional brick finite element [3]. However, this results in complexity in the formula-
tion and increases computational time because a huge number of elements is needed in order
to avoid problems due to aspect ratio.

The higher order finite elements method proposed by Oskooei and Hansen [11] for static
analysis of sandwich structures, and later extended to dynamic analysis by Nabarrete and De
Almeida [12], is very instructive. A quasi-three-dimensional finite element formulation is ob-
tained by assuming a polynomial expansion of all field variables through the thickness of the
appropriate layer and interpolating their in-plane variance via the use of bicubic Lagrange
shape functions. The core anti-plane behavior is not assumed. Hence, the in-plane properties
of the viscoelastic-layer are explicitly included in the formulation.

The current study closely follows the concept presented in [11] and [12] to develop a quasi-
two-dimensional finite element formulation for analysis of active-passive constrained layer
beams. The composite structure is a Timoshenko beam for all layers. The deformations as-
sumptions of the constraining layer and the host beam are derived from the theory of laminated
beams [13]. For the core, the axial displacement is cubic in the thickness coordinates while
the transverse displacement is quadratic in the thickness coordinates. This will prevent shear
locking in the core.

The integration over the thickness is done a priori in closed-form in the variational formu-
lation while a Gaussian quadrature [14] numerical integration is used over the span. Thus, a
quasi-two-dimensional formulation is obtained.

To validate the current formulation, three examples from the existing literature are pre-
sented. Results are compared with the present formulation for both the static and dynamic
analysis. The fidelity of the formulation in relation to sandwich beams with viscoelastic cores
is also presented. A host beam with active-passive constrained layer damping is examined.

Results are presented and analyzed. A sensor voltage feedback control is adopted.



Chapter 2 -

Mathematical Formulations

2.1 System Description

A schematic of the composite beam with a segment of the span covered with an active con-
strained layer is illustrated in Fig. 2.1. The composite beam comprises three layers and has a
rectangular cross section. The bottom layer identified by the letter b is made of isotropic, lin-
early' elastic material. The core c is a viscoelastic material and the top or constraining layer p is
made of piezoelectric material. The latter has the ability to act both as a sensor and an actuator.
Some of the configurations available to designers were compiled by Stanway and Rongong [1].
A sensor/actuator configuration is adopted in this work because of its simplicity. The compos-
ite beam is divided into two sections: section (1) is the beam segment that is treated with the

active constrained layer and section (2) comprises only one elastic layer b

Controller AmpliﬁerJ-——-— From Sensor

TSR SN S ) ()

Figure 2.1: Schematic of the composite beam

4



CHAPTER 2. MATHEMATICAL FORMULATIONS

The geometry of the composite beam is such that it has a length L, width b and heights h;
where i € {p,c,b}; h =Y h; is the total height of the composite beam and z = % is taken as
the reference surface. The material properties of each layer are density p;, Young’s modulus of
elasticity E; and Poisson’s ratio v;. All layers are perfectly bonded; the adhesive layers are thin

with infinite stiffness.

2.2 Kinematic Assumptions

2.2.1 Bottom Layer (Host Beam)

The axial and transverse displacement of the host beam are v and w, respectively. The dis-

placement vector u; is given as:

u ag + 2a;

w lo

The coefficients ag, a; and [y are functions of the spatial variable = and temporal variable ¢.
This kinematic form is able to capture both Euler-Bernoulli and Timoshenko beam theories.
The coordinate of any point in the thickness direction from the reference surface is represented
by 2. The reference surface is taken at the geometric midpoint of the composite beam. Defining

a new vector {ﬁb}T == { a a1 l }, u can be expanded as:

ag
Up = a = [Zb] {ﬁb} (2.1)
lo

The corresponding strain-displacement relation is linear and given by [15]:

Ou
€z = = Qoz + zay -
Oz 2.2)

'Yz::zg'ug"'%% = 01+lo,z
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. €z Gz + 2015 .
The strain vector ¢, takes the form ¢, = = which can be reduced
Y2z a; +los
to the following compact expression:
ao .
1 200 . _ B
€= [ Dy |{ @ ¢ =[%)] D (@} 2.3)
0011
lp
where the operator matrix [D,] is given as:
F -
Fir 0 0
g
0 0
D)=| %
0 1 0
o o 2

2,2.2 Core (Visco)

The axial displacement u is interpolated through the thickness by a cubic function while the
transverse w displacement is quadratically interpolated. The displacement vector u, takes the

form:
u co+ z¢1 + 2%cy + Z3c3

w mo + zmy + 22my
where the coefficients ¢y, ¢;, ¢g, c3, Mg, My and m, are functions of the spatial variable = and

temporal variable £. This relation is expanded by the use of a new vector

=T
{u.} ={co cp C €3 My My mz}as:
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1222000
U = { o (= 2] {5} @2.4)
00 0 0 1 2 22

with the corresponding strain-displacement components [15] written as:

6z=g%= Coz + 2C1z + 2%co . + Z3c3,
&= = m; +22m,

Yoz = g%+%w5 = ¢ +2zcp + 32%c3 + mp ;. + 2my 5 + 22my

€
The strain vector ¢, takes the forme, = { ¢, o and a compact matrix notation is given as:
Yoz
¢ \
o
1
122220000 0 000 c2
&=[000 01200 0000 [[DI{ ¢ rE[Zc][Dc]{ﬁc}
00 0 00 0 122321 2 22 me
m
[ M2 |

2.5)
where the operator matrix [D] is given as:
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B% 0 0 0 0 0 0
9
o 2 0 0 0 0 0
3
o 0o £ 0 0 0o o0 _
8
o 0o 0o & o 0o o
0O 0 0 0 0 1 0O
0O 0 0 0 0 0 1
[Dc:
0O 1 0 0 0 0 O
0O 0 1 0 0 0 O
0 0 0 1 0 0 O
0O 0 0 O 3"’5 0 0
0 0 0 0 0 335 0
0 0 0 0 0 O 5‘%

2.2.3 Top Ldyer (Piezo)
Mechanical

The formulation of the piezoelectric layer is similar to the formulation of the beam layer insofar
as the mechanical aspect is concemned. Here, as in the preceding subsections, the coefficients
eo, €; and ng are functions of the spatial variable z and temporal variable ¢. The displacement
vector uy, is given as:

u e+ ze;

Up =
w T

Introducing a new vector {&i,}” = { e € Ty }, u,, is rewritten as:

€o
1 20
Up = er ¢ = [Zpl{tn} - (2.6)
001
]
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The corresponding strain-displacement components [15] are given by:

e:c:g'ui = €+ 261z

(0]
'Yzzz%"‘%% = e1+ngz
. € I €0,z + zZ€} g . .
The strain vector ¢, takes the form ¢, = = , which in matrix form
Yzz L € + nﬂ,::
corresponds to:
\
1 00 @
z -
&= [ D, ] e (= %) [ D, ] () 2.8)
0011
")
where the operator matrix [D,] is given as:
- 5 -
3z 0 0
(o)
0 0
[Dy] = 8z
0 1 0
0o 0o 2|

Electrical

The electrical potential 1), is assumed to be linear within the thickness of the piezoelectric layer

and is given by [16]: v
Yp = Yo(z,t) + 291(, t) (2.9

where 1) and ), represent the electric potential and its gradient at the midplane of the layer
respectively. Neglecting the axial component of the electrical field (i.e., E; = 0 ), one can

obtain the expression of the transverse electrical field by differentiating Eq. (2.9) with respect

to 2:
= __E 23 =
E,= 5 " (2.10)
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. . V(z,t
If V(=z, ) is the voltage app othe c layer, then iy = — . Therefore, the
final expression of F, can be written as: \

V(1)

2.11
b (2.11)

E, =

where hy, is the thickness of the piezo layer.

2.3 Constitutive Equations

2.3.1 Bottom Layer (Host Beam)

The two dimensional (z, z plane) stress-strain constitutive relation for an isotropic material is

given by [17]:
O e caz 0 €
0, ¢= | c3 ca3 O € (2.12)
Tox 0 0 ce Yez

where o, and o, represent the stress in z and z direction respectively, 7, is the shear stress

and c; are elastic constants of the material. Assuming that stress in the 2 direction is zero

(i.e., 0, =0),then €, = —%g e, and &y = (cu - Zi:*) which permits the use of the
33
constitutive relation in the form:
Oy e O €z — |
op = = = Qb € (2.13)
Tex 0 s Yoz
. . o E, _ vpEy . .
For an isotropic material, ¢;; = -i—_—;bz— and Cgg = km where k is the shear correction

factor and E}, and v, represent the Young elastic modulus and the Poisson ratio respectively.

10



CHAPTER 2. MATHEMATICAL FORMULATIONS

2.3.2 Core (Visco)
Elastic Properties

The core experiences both longitudinal and transverse stresses # 0; hence, the constitutive

relation is identical to Eq. (2.12):

O cn ¢z 0 €z
Oc= o, =]|c3 c3 0 €, = [Qc] Ec (2.14)
Tzx 0 0 cg6 Yz

_ (1-v)E
T (1-2v)(1+w)

For an isotropic material, using plane strain assumptions, c;; = ca3

e v.E. and co — v.E,
BT A2 (I +w) T ol
Viscoelastic Properties

Modeling of the viscoelastic layer presents many options to the designer. The choice is often
dictated by the type of solution the designer wants to generate or by the control law. The
- simplest model is the complex modulus: E* = E' + {E” where E' and E” are constants [3].
The Prony series model is also popular in commercial software because of low numerical
cost. The other model is the Golla-Hughes-McTavish (GHM) [4, 8, 9]. This model allows
time-domain simulation. The major shortcoming is the addition of extra degrees of freedom
which increases computation cost. If the designer is interested in the dynamic properties of the
viscoelastic layer, then the fractional derivative model (FD) is the most suitable [18].
Viscoelastic materials are time dependant; their mechanical behavior at any given time
depends not only on the current state of stress and straip but also on the full history. This

behavior can be mathematically modeled by a four-parameter fractional derivative model as

[19]:

ae(t) + T“d%igt—) = Bo[¢lec(t) +7° m[C]d%ﬁ,(t2 o @19)

The above equation represents the constitutive relation of the viscoelastic core, where E, is

the static elastic modulus (when the frequency w — 0), E denotes the dynamic elas-

11



CHAPTER 2. MATHEMATICAL FORMULATIONS

tic modulus (when the frequency w — 00), 7 is the relaxation time and is strictly posi-

tive, a, which varies between 0 and 1, is the fractional derivative order, g{; is the frac-

Cu Gs O )
. o e . (1 - Vc)
tional derivative operatorand [{] = | ¢;3 (535 0 | With(y = (33 = ESTAIETAR
0 0 dGes
Ve .z
=T zrm ™ ST 2w
The anelastic strain .(t) can be written as:
~ —10(t
Eo(t) = ec(t) — [¢] “' ( ) (2.16)
which permits Eq. (2.15) to be rewritten as:
E. —Ey . Ld%E(t)
( B ) €c(t) =E&(t)+ 7 e (2.17)

The advantage of this expression is that there is only one fractional derivative term.
Using the Griinwald definition to approximate the fractional derivative operator g—ag , Galu-

cio et al. [19] show that at a given time ¢ the anelastic strain can be expressed as:

&)= (1—n)Z=—Fo. ’IZ Hp 2= 1) E(t—jAt)  (218)

j=1

(04
where: 7 = 1'“-11:—At°’; At = —;—I,- represents the time step and IV, is the maximurg number of
terms in the Griinwald approximation of gt; . Note that IV, is strictly less than N.
Following Galucio et al. [19], a fictitious anelastic displacement vector {i.} is defined such

that the anelastic strain is expressed as:
(1) = |2 (D {ue(0)) @19)

Given the initial conditions, the value of {.(t)} at time ¢ can be obtained by substituting Eq.

12



CHAPTER 2. MATHEMATICAL FORMULATIONS

(2.19) into Eq. (2.18). Hence,

N [p+l
@) === @) -3 (‘g’%"—l) falt— AN} @20)

=1

Combining Egs. (2.16) and (2.18), the expression of the stress in the core at any time ¢ takes

the form:

Ne /ptl
7e(t) = Eal(] {(1 + ,,E_E_F_) £clt) + qiﬂ 3 (Hp :‘ 1) &t - jAt)J @21)

J—l p=2

For an elastic material, 7 = 0 and Ey, = E,; hence, Eq. (2.21) degenerates into g.(t) =

Ey[Clec(t) = [Qclec(t). Therefore, the constitutive relation of the viscoelastic core is given as:

F.(t) = [Q] [(l +n%€) eot) + n (IJP 2= 1) &t — JAt)] 2.22)

233 Top Layer (Piezo)
Mechanical

The constitutive relation for three-dimensional piezoelectric ceramics is given by [16] as:

( oz \ rcu ci2 ci3 0 0 O 1( € ‘ [ 0 0 eg ]
o | c12 €2 c3 0 0 O € 0 0 e
J o, f= ci3 ¢3 c3 0 0 O < €, [ _ 0 0 e3; Z:;
Tzy 0 0 0 ¢4 0 O Yy 0 es5 O 2
Tyz 0 0 0 O ¢5 O Yoz es 0 O
(7] [0 0 0 0 0 c||%w) [0 0 0]
(2.23)

where E; represents the electrical field in the i —th direction. The c;; coefficients are the elastic
constants in the z, y, and z plane of the piezoelectric material for a given electrical field and the
components e;; are the piezoelectric constants. The piezoelectric layer is considered as a beam;

hence, stresses in y — z plane are assumed to be zero and €, = o, = 0. Also E, =E,=0.

13



CHAPTER 2. MATHEMATICAL FORMULATIONS

Therefore, Eq. (2.23) reduces to:

Oz = C11€x + C13€; — eSlEz
0 = ci3€; + c336, —exzE, (2.24)

Tzx = C667zx -

Isolating €, in the second equation and substituting it into the first equation gives:

. & . e

Oz (Cu - '513§ € — (631 —c13 Eg) E, Ci1 €6 — €31 E,

ap = = =
T2z C667zx C66 Vzz

A compact matrix form is given as:

cu 0 € e b, (23008
op = - = [Qplep — (2.25)

0 G Yoz 0 0
Electrical

The electrical displacement field D; is given by [16] as:

¢ \
€
€y
DI 0 0 0 0 €15 0 dn 0 0 0
(P
.Dy = 0 0 0 es 0 0 < > + 0 dyp O 0
-
D, est ez ez 0 0 0 it 0 0 du|| E
Yyz
. Yz J

where d;; are the dielectric permittivities at constant strain. For D, = D, = 0, the transverse

electrical displacement field component can be written as:

2 —
Dz = (831 - 61322) €+ (d33 + 6—33-) Ez = 63163,- + d33Ez (226)
C33 C33

14
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Regrouping Egs. (2.25) and (2.26) gives:

oy e —enkE; cu 0 —ex;
&P = Ter = .0.66721: = 0 E66 O
D, €16, + dyE, &1 0 ds

2.4 Variational Formulation

'Xzz

The equation of motion is derived by employing the extended Hamilton’s principle [20]:

t+AL
/ (6T — 86U + 6W)dt = 0
t

(2.28)

where 67" and 0U are the variation of the kinetic energy and strain energy respectively, and §W

is the virtual work done by external forces on the system.

24.1 Bottom Layer (Beam)

Kinetic Energy

The variation of the kinetic energy is: 0T, = [, p,dusiisdv. Substituting for u;, from Eq. (2.1)

yields:

5Ty = po /z /,, (55)7 [ L ] (s} dyde

= o [0 1] G te
where the matrix [I;] is given by:
[ 1 2
0= [(arahiz= [ | = 2
00

15

dz

(2.29)
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Strain Energy

The variation of the strain energy is: 6U, = [, ,0esdv. Substituting for o, from Eq. (2.13)
yields:
(SU(, = /[Qb]ebésbdv

and substituting for &, from Eq. (2.3) gives the final expression of the variation of the strain

6U,,=b/${6ﬁb}T [ b,, ]T [ c,,] [D,, ] { s }da: (2.30)

where the compliance matrix [C}) of the beam is given by:

energy as:

511 2611 0 0
261 Z% 0 0
o= [ar@dize= | iz

: 1 0 0 & s

0 0

§l
§l

2.4.2 Core (Visco)
Kinetic Energy
The variation of the kinetic energy is: 07, = fu pcducii.dv. A similar use of Eq. (2.4) in place

of u, gives:

0T,

pe /: /y {ouc}” [ I ] {ii.} dydz

= b [ sayT [ L ] (i} do @31)

16
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where the matrix [I.] is given by:

(1 222300 0)

z 2222220 0 O

222420 0 0
= [@Erzde= |2 # 2 2 0 o o |a

Strain Energy

The variation of the core strain energy is: §U(t) = [, 5.(t)ée.dv and is time dependent.
Substituting for &.(¢) from Eq. (2.22) yields:

SULE) = / [Qulee(t)decdv + / [Odlee(t)deedv +

+ n— (’IIP == 1) / [QUE-(t — jAL)decdv (2.32)
_1-—1
where [Qc] = nE E, [Qc] Expanding Eq. (2.32) and substituting for &.(t) and &.(t— jAt)
from Egs. (2.5) and (2.19), Eq. (2.32) can be grouped into the sum U, (t) = 86U, (t) + 6U.(t) +
SW.(t) where,

- “T r ar -
oU(t) =b / {0a.}" | D, C. || D. { T(t) }da: (2.33)

- - T - - - -
i) =b [y | b | | & || o | { m }dz 234

JWc(t) = (pl;[p — 1).
J—'l

17
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o [ 5] [ ] [ ] {sie-s0 }o a9

Eq. (2.33) represents the variation of the elastic strain energy 0U,, Eq. (2.34) is the variation
of the anelastic strain energy & U, and Eq. (2.35) is the virtual work done by the induced force
in the viscoelastic layer. Here [C'c] in Eq. (2.34) represents the anelastic compliange matrix of
the visco layer and is given by:

C] = n%—E'O?—" (A (2.36)

where [C,] denotes the elastic compliance matrix of the viscoelastic layer and is given as:

¢l [0
[o] [C]

cl= [zrQdzpa= [ “|l éz

where [0] is a 6x6 matrix of zeros and

-

2

Ci1 2C1 2°cin 2l C13 2213
4 2 2

2Ci11 zZ°C11 zZ'C11 zZ°C11 2C13 2°C13

22611 23611 zZC11 25011 22013 22:3013

[Ce] =
223 C11 24611 25611 26611 23 C13 224013
C13 2C13 22613 23613 C33 2ZC33
2zc13 272213 272%ci3 22%cis 2z2c33 42%cs3
ces  22ce6 32%ces  Ces  ZCe6  2°Ceo
2zce6 A2%ces 62%ces 22ce6 22%ces 223ces
322ces 623ces 92%ces 32%ces 32°ces 3zices

[Ce]=

Ces  22Ces 37Z%Ces  Ces 2Ce6  2%Ce
2066 27%ces 37°Ces  ZCes  Z2Ces  2°Ces

225 228ces 32ices 2%ces  29ces . 2ices

18



CHAPTER 2. MATHEMATICAL FORMULATIONS

2.4.3 Top Layer (Piezo)
Kinetic Energy

Similar to the beam and viscoelastic layers, the variation of the kinetic energy of the piezoelec-

tric layeris: 07T}, = [, ppduyii,dv. Substituting for u, from Eq. (2.6) yields:

i, = g [ [ ny” | 1 | b

~ o )" | 1, | G 237)
where the matrix [1,] is given by:
(1 2 0]
= (W= [ | = 2 o |d
0 0 1]

Strain Energy

The variation of the strain energy in the piezoelectric layer is: Jff,, = [, 6,0€pdv. Substituting

for 6, from Eq. (2.27) yields:

T
0€; cu 0 -—ey €&
80, = / [Qplépdépdv =/ ez 0 s O Y. (2.38)
0E, en 0 ds E,

Actuation
The actuator configuration is characterized by the application of a constant electrical field to
the piezoelectric ceramics. The electrical field is a function of voltage (i.e. Eq. (2.11)), which

represents an external force applied to the system. Given that E, is known, 0E, = 0. Hence,

Eq. (2.38) reduces to

19
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CHAPTER 2. MATHEMATICAL FORMULATIONS -

- T T
- O€, i O € O€, énFE,
JU,, _ / 11 _ 31 dv
v 5’)’,;.: 0 Ces Yzz 672: 0
A , enE -
80, = / e, T [ ep— 0,74 o 8| dv (2.39)
v 0

The above equation can be separated and rewritten as 60U, = 6U, + 8Wp,

where 68U, = [, &€,” [Qp] &, dv denotes the mechanical strain energy in the piezoelectric
ceramics and §W, = — [, ¢, { énE, 0 }T dv is the virtual work done by the electrical
force which arises from the applied electrical field E,. Substituting for €p from Eq. (2.8) gives

the expressions for 6U, and W, in expanded forms as:

afur[n][a][n]{s}e oo

oW, =—b ./, {oa,}" [ D, ]T[ Z ]T dz (241)

where the compliance matrix [Cp] is given as:

511 2511 0 0 W

2C11 22511 0 0

(Gl = [Waraz)E:= [ &

0 0 G Ces

0 0

§I
§I

2% WL,
4 Veras,

YAASTE Tl e



Chapter 3

Finite Element Modeling

A typical finite element of the composite structure is shown in Fig. 3.1. Seven locations are

U —— TS . 7 ——z=k
piezo

. . 6 —-—z=h

uw” ¢

\ . * 6 - Z”h‘

U —-— ‘e . ° &5 ——z=)

W——¢ o VISCO o 6 4 —— zm=hy

U —o— g . ° 0% ———2=;ll
. DS —_—z=

uw” ?

™~ . ° 2 ——2z=h

L.

beam

U —-— . . 1 ——z=h

Figure 3.1: Schematic of a finite element

selected through the thickness and their position relative to the geometric mid-surface are
t1,t2,. .., 7. Four nodes are defined along the span to permit a cubic Lagrange interpolation

[21] of the fields variable. The global displacement vector of an element is given by:

v={u u w us wy us ug we us } (3.1)
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CHAPTER 3. FINITE ELEMENT MODELING

where u; and w; denote the magnitudes of the axial and transverse displacements evaluated at
the i — th location through the thickness where applicable.
Each node has nine degrees of freedom. Therefore, the elemental displacement vector Qe

contains 36 degrees of freedom and is defined as:
T
Qe = {Uu Uy Way U3 We1 Us) Usl Wel UTi - - - U4 Ugg Waq U3q Waq Usg Uss Wed “74}

where the first index ¢ = 1...7 represents the through thickness displacement and the second

index 7 = 1...4 represents the node along the span.

3.1 Mapping

Here, the coefficients of the field variables in each layer, as expressed in Chapter 2, are now

written in terms of their appropriate displacement field vectors.

3.1.1 Bottom Layer (Beam)

The transformation through the thickness of the displacement vector is expressed in matrix

form as:
Uy 1 ¢4 0 ag
Ug =111t 0 ai
Wy 0 0 1 lo

Solving for ag, a; and [, the resulting expression gives

-1

ag 1 ¢ 0 Uy Uy
a (=|1%%L 0 u ¢ ={%}=[T]{ u (32)
lo 0 01 wa Wo

22
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3.1.2 Core (Visco)

For the core, the transformation through the thickness of the axial and transverse displacement

can be partitioned and given as:

Uz
ug
Us

Us

/

(14 &
1 t3 &2
1 t5 8
|1t &

ot b S Sh

Y

[ <o
41

C2

kcsa

Performing the inversion operation, the above relation gives,

[
(5]
C2

C:
L 3

/

for the transverse displacement,

and the inversion gives:

m

mo

q -1

y
(14 28 "
1 t3 tg tg us
1 t5 t% tg Us
2 43
|1t 8§ 6] | u
Wo 1 t2 t2
Wy =111t ti
We 1 te tg
-1
1 t2 tg Wo
1 tg Wy
1 t6 tg We

23

r = [Tu] S

= [Tw]

Ug

us

Us

Wy

We

(3.3)
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CHAPTER 3. FINITE ELEMENT MODELING

Egs. (3.3) and ( 3.4) are combined and expressed as:

3

(

Co
Ci

C2
[T.] [0

® o (1]

mp

my

lm21

where [0] is a 4x3 matrix of zeros.

3.1.3 Top Layer (Piezo)

4

¢ \ r \
Uz Ug
us us
us us
ug (= {tc} =[Te)§ wue ¢ 3.5)
we Wy
wy Wy

[ Ws [ We )

Identical to the bottom layer, the transformation through the thickness of the displacement

vector takes the form:
Us
up = We =
Uy
Hence, .
€g 1 tﬁ 0
e =10 0 1
L 1 t7 0

1 t6 0 €g

0 01 €1

1 t7 0 ()
p

Ug Ug

we (= {ﬁ'p} = [Tp] We (3.6)
{ Uz Uy
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3.2 Shape Functions

The field variable are interpolated along the span using cubic Lagrange interpolation shape

functions [21] which are given as:

Mg = ~EEE_1E=D) )
Ny= E+D(E D=1

Nig = ~2EE DB+ DE=1)
Ny =

E+DEE+(BEE-1)
16

b —1<£<1 3.7)

J
3.2.1 Bottom Layer (Beam)

The displacement vector u, = {u; u; s} is expanded as:

Uy
Up = Uy = [ Ny Ny Nz Ny ] e = [ N, ] qe (3.8)

wo

where,
Ne 0 0 00O0O0OOO

[Nal=| 0 N4 0 000000
0 0 NeOOOOOO

Substituting for u;, from Eq. (3.8) into Eq. (3.2) yields
{tv} = [T3][No]ge (3.9)

Substituting for {#,} from Eq. (3.9) into Eqs. (2.29) and (2.30). The variation of the resulting

kinetic and strain energy in the bottom layer gives:

8Ty = 6q7 [pbb /_ 11 [N [To) T (L) [T5] [ Ne) J(&)d&] G = 6q; [My)ge (3.10)
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and

oUs

1
saZ |» [ INFTEBITIDITCADATNIGE] o

= o7 [b [_ 11 [Bs]T[Cs)[Bs)| I |d§] ge = 6¢7[K3)qe B (3.11)

where |J| is the jacobian.

3.2.2 Core (Visco)

The displacement vector u, = {u, us ws ug wa wy we}T can be expanded as:

Ue = [ N, Ny Ng Ny ] ge = [ N, ] Qe (3.12)

where -
[0 Ne 0 0 0 0 O 0 O
0 0 0 Nqf 0 0O 0 0 O
0 0 0 0 0 Ne O 0 O
Nal={0 0 0 0 0 0 Ne 0 0
0 0 Nqf 0 0 0 0 0 O
0 0 0 0 N, O O 0 O

|00 0 0 0 0 0 Ng O]

Substituting for u,. from Eq. (3.12) into Eq. (3.5) yields:
{ac} = [T][NeJge (3.13)
Similarly the anelastic displacement can be written as:

{ac} = (R][Nclﬁe (3.14)
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For a given time ¢, G.(t) can be computed by substituting Eq. (3.14) into Eq. (2.20) to obtain a

similar expression as in Ref. [19] and given as:

G(t) =Q1-n—=— Foo — qe(t) nz Hp a- 1) Gt — jAL) (3.15)

=1

Substituting for {#.} from Eq. (3.13) into Egs. (2.31) and (2.33) gives the variation of the

kinetic and elastic strain energy in the core as:

5T, = bg” [pcb / [N]T[T]T[I][TuNanlde] FMli. (16)
and
§UL(t) = oq7 [b / INJT LT DJTCAIDIT [Nc]|J|d£] @t
A [b /_ 11 [BJ"[C] [Bc]lJldEJ 2(t) = 67 [K.|q.(t) (3.17)

Similarly, the expression of the variation of the anelastic strain energy is found by substituting
for {@.} from Eq. (3.13) into Eq. (2.34). Hence

0) = o [o [ PPN 00

= o [ / [Bc]T[Cc][Bc]IJIdE] 0(t) = 7[R Jau(t) G.18)

Finally, using Eq. (3.14) in Eq. (2.35) yields the expression of the virtual work done by the

induced force in the viscoelastic layer as:

SWe(t) = qen—[ / [Bc]T[Cc][Bc]lJIdf]Z Hp — )Qe(t jAt)

Jj=1 =2
7 Foo 9 p—a-—1 T
= JCn—[Kc]Z H———;—-— G(t—jnt) =6TF(t)  (3.19)
j=1 =2
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3.2.3 Top Layer (Piezo)

Similar to the bottom layer, the displacement vector u, = {ugs we u7}T is expanded as:

Ug
Up = We = [ Npl sz NP3 Np4 ] de = [ Np :' Ge (3.20)

Uz

where
000O0O0O0N, O 0

[Nal]=]10 00000 0 Ng 0
000000 O O Ng

Hence, substituting for u,, from Eq. (3.20) into Eq. (3.6) yields:
{p} = [Tp][Nplge (321)

Substituting for {%,} from Eq. (3.21) into Eqgs. (2.37), (2.40) and (2.41). The variation of the

resulting kinetic, strain energy and virtual work in piezoelectric layer gives:

8T, = 6q; [Ppb /_ ll [No) " (L) (L T) N1 Id‘f] Ge = 0q; [My)Ge (3.22)

U, = ot [o [ MDD o

= af|of 1B BIdE] = ST o 323

o, = ot |- [ II[Np]T[Tp]T[Dp]lep]

e F,

|71d¢

ARINZ

e E,

|71d¢ | = oq. Fp (3.24)
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The virtual work due to an external load F, applied at a given position £; on an element is

given as:

1
5W, = 8¢TF, /_ INTMT8(€ - €1)de (3.25)

where [N] = [ Nig Noel Nyd Nyl ], with I being a 9x9 identity matrix and

M =[0000000 1 0] is a boolean mapping vector.

To evaluate the integrals in equations (3.10), (3.11), (3.16), (3.17), (3.18), (3.19), (3.22), (3.23),
(3.24) and (3.25), a standard four points Gaussian quadrature is adopted [14], [21] and [22].

3.3 Equation of Motion

At time %, using the extended Hamilton’s principle (i.c Eq. (2.28)), the element governing

equation is derived and given as:

(V5] + [Me] + M) ) + ([ + [ + (R + [Kq]) ae(e) = Felt) + F(e) + Fyl)
‘ (3.26)
It is worth mentioning, and as observed in [19], that the introduction of a viscoelastic mate-

rial augments the element governing equation with both stiffness and force modulators which

expression are given by:
1 Eeu—Ey
|| = n==p =2 K] (327)
d
an - E S (P p—a—1
F(t) = —UFO:[KJ E H ——p—-) 3e(t — jAt) (3.28)
i=1 \p=2

The global system equation is obtained following the methods of finite element technique [21]

by assembling the element contributions over the entire domain. This equation is written as:
[M]4(t) + [Klg(t) = F() + F(t) + F(z) (329)

where [M], [K], F, F and F represent the global mass matrix, stiffness matrix, external force

vector, viscoelastic force modulation vector and electrical force vector, respectively.

29



R T T PN ) v e an g e B e BB e we e e = Al

CHAPTER 3. FINITE ELEMENT MODELING

The Newmark time-integration scheme [21, 23] is adopted to solve the resulting governing
equation. This classical algorithm has been modified to account for the viscoelastic properties.

A new parameter is introduced for the storage of the anelastic displacement history.
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Chapter 4

Numerical Simulation

4.1 Validation

The current formulation is validated by revisiting three problems that were examined in the
literature. The first problem involves the static analysis of a sandwich beam. The second
problem pertains to the frequency analysis of a sandwich beam with a soft core, and the third,

the dynamic analysis of a sandwich beam with a viscoelastic core.

4.1.1 Piezo-Aluminium Sandwich Beam

This problem was first analyzed by Zhang and Sun [16] using an analytical method. Later,
Galucio et al. [>18] studied the same problem using finite element analysis with piecewise linear
displacements and a partial continuity formulation. The system is a cantilever sandwich beam
composed of an aluminium core covered by piezoelectric faces Fig. 4.1. Both piezoelectric
faces are actuators and a voltage of 10V is applied. The mechanical properties of the the

z

Figure 4.1: Piezo-Aluminium Sandwich beam
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aluminium core and the piezoelectric faces are given in Table 4.1.

Table 4.1: Mcchénical Properties of piezo-aluminium sandwich beam.

PZT5H Aluminium

GPa Cm™2 GPa v
Ci1 | €13 | €33 | cec | €31 | eas E .
126 | 84.1 | 117|123 | -6.5]23.3 || 70.3 | 0.345

The dimension of the sandwich beam are: L = 100mm (length of the beam), , = 16 mm
(thickness of the aluminium core) and h, = 1 mm (thickness of the piezoelectric faces). Con-
vergence of the solution is obtained using 5 finite elements.

The results for a fully cantilevered boundary condition for both the current and conven-
tional formulation are depicted in Fig. 4.2 (transverse diéplacement along the beam length) and
Fig. 4.3 (axial stress at midpoint of the beam). These results are in good agreement with the
results of [16] and [18] in which the conventional formulation method is employed.

—
o X10
6

S0
x (mm)

Figure 4.2: Transverse Displacement along the span of the beam

A modification to the problem is now introduced in order to demonstrate the superiority of
the quasi-two-dimensional formulation over the conventional formulation. Here, the geometric
properties are unchanged while the piezoelectric faces are replaced with aluminium and the
core is an elastic material with a Young’s modulus that is a fraction of that of the face-sheets:
E. = aF where a = 0.0015; v, = 0.495. A point load of 1N is applied downward at the

free end. The axial stress distribution in the core only is plotted in Fig. 4.4. Two boundaries

32



CHAPTER 4. NUMERICAL SIMULATION

z(mm)
o

-20 -15 =10 -5 [) s
o, (x 107 MPa)

Figure 4.3: Through-the-thickness Axial Stress Distribution at mid-span of the beam

conditions are examined for the quasi-two-dimensional formulation: fully cantilevered and
partially cantilevered. In the former, one end of the face-sheets and core is clamped, while only
the end of the face-sheets is clamped in the latter. The nature of the conventional sandwich

beam formulation is such that only the fully cantilevered boundary conditions are examinable.

z(mm)
o

) -2 -1 ) 1 2 3 4 5
o, (x 107 MPa) .

Figure 4.4: Through-the-thickness Axial Stress distribution in the core (k. = 16 mm).

The results show a dependency in both the formulation and boundary conditions. The
limitation of the conventional formulation for the soft core is also revealed, but this, as expected,
is more pronounce with increasing core thickness. For example, Figs. 4.5 and 4.6 depict the
axial stress distribution in the core for the Core thickness of le mm and 4 mm respectively.

While the difference in the core axial stress obtained using the present and conventional
formulations increases with the core thickness, the difference in the deflection of the beam

increases with the decreasing core thickness (see Fig. 4.7).

33



CHAPTER 4. NUMERICAL SIMULATION

o

-3 -2 -1 0 1 2 3 4 [
o, (x107* MPa)

Figure 4.5: Through-the-thickness Axial Stress distribution in the core (h, = 10 mm).

Lt

2
1.5[

1}t

0.5F

z(mm)

-osf

-1}

-15}

8 10

ED

w (1072mm)

[} 10 20 0 40 50 60 70 80 20 100
x(mm)

Figure 4.7: Deflection for Various values of core thickness (h,)

The transverse displacement obtained using the current formulation are independent of

boundary conditions.
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4.1.2 Sandwich Beam with Soft Core

The effectiveness of the current formulation in the free vibration response of a soft core sand-
wich beam is presented by comparing the presently obtained natural frequencies with those
obtained using the conventional formulation, the consistent higher-order dynamic equations
of Sokolinsky and Nutt [24], and a two-dimensional finite element analysis using commercial
software NASTRAN and ABAQUS [25].

The cantilevered sandwich beam is composed of a soft core Divinycell H60 and steel face-
sheets. The geometric properties of the beam are: L = 260 mm (length), b = 59.9 mm
(width), h, = hy, = 1.9 mm (thickness of the top and bottom layer respectively), h, = 34.8 mm

(core thickness). The mechanical properties are given in Table 4.2.

Table 4.2: Mechanical Properties of soft core-steel sandwich beam.

Divinycell H60 ( core ) Steel ( face sheets)
GPa kgm™ | v GPa |kgm™>| v

E G P EF |G p
0056 [0.022| 60 |027|210|81| 7900 |0.30

The results are tabulated in Table 4.3 and they show that the frequencies from the current
formulation and the two-dimensional finite element are quite similar. For comparison, the re-
sults from Ref. [25] were achieved using 7 elements through the thickness and 130 elements
along the span for a total of 3005 nodes, which represent approximately 7000 degrees of free-
dom. The quasi-two-dimensional formulation uses 10 elements along the span, whi‘ch translates
to 31 nodes and 217 degrees of freedom.

Combining both experimental and analytical studies, Sokolinsky et al. [25] showed that the
first five modes and the 10-th mode correspond to antisymmetric modes i.e., the face sheets and
the core are moving in the same direction. This mean that there is less tension/compression in
the core but more shear. It can be noticed that for these modes the error with the conventional
formulation is less pronounce. Modes 6-8 correspond to the symmetric modes where the face-
sheets move in opposite directions symmetric to the core. Note that the quasi-two-dimensional

formulation (i.e. the current formulation) results are in better agreement with the FEM results
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than the results with both the conventional and the consistent higher order formulation.

It is obvious that for the symmetric mode to occur, the core has to be compressible which

is not assumed in the conventional models. Thus the limitation of the formulation for soft-core

sandwich structure.

Table 4.3: Comparison of first 10 natural frequencies.

Consist. FEM Quasi 2D ( Present Method )
Mode || Convent. || Ref. [24] | Ref. [25] || Fully Clamped || Partially Clamped

1 154 165 165 165 165

2 437 512 512 513 512

3 680 912 913 915 914

4 898 1378 1379 1384 1381
5 1124 1940 1939 1947 1944
6 1356 2392 2476 2483 2483
7 1593 2395 2509 2508 2508
8 1832 2425 2558 2554 2553
9 2073 2524 2567 2582 2571
10 2315 2612 2608 2623 2619

4.1.3 Visco-Aluminium Sandwich Beam

The final example to demonstrate the effectiveness of the current formulation for viscoelastic

core is from the work of Galucio et al. [19]. The composite beam has a viscoelastic core that

is covered with two layers of aluminium. ( see Fig. 4.8 ). The load is applied through the form

luminivm

aluminium

|

F(N)

1
ha
he
by

Figure 4.8: Visco-Aluminium Sandwich beam and Load

250 i(ms)

of a triangular impulse acting on the free end of the beam for 4 ms and then released. The

observation time is 250 ms. The geometric properties of the beam are: L = 200 mm (length),

b = 10mm (width), h, = hy = 1mm (thickness of the top and bottom layer respectively),
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he = 0.2mm (core thickness). The parameters of the fractional derivative model are: a =
0.7915 and 7 = 1.4052 X 10~2 ms. The time step At = 0.25 ms and the mechanical properties
are tabulated in Table 4.4.

Table 4.4: Mechanical Properties of Visco-Aluminium sandwich beam.

f ISD112 (at27°C) Aluminium
MPa kgm=>| v [ GPa | kgm™ | v
E,| Py ) E ) ,
151699495 1600 |05 70.3 | 2690 | 0.345

The tip transverse displacement history is depicted in Fig. 4.9. Following the observation
in the static and free-vibration scenarios, the tip displacement is independent of the boundary
condition. The conventional formulation shows a faster damping of the transverse displacement

magnitude, and there is a phase shift between the two formulations.

Tip displacement (mm)

00
time (ms)

Figure 4.9: Dynamic Response of The Viscoelastic Sandwich beam

4.2 Sample Simulation

Two examples of a cantilever constrained layer beams are considered in this section. In the
first, the span of the host beam is entirely covered with a viscoelastic layer which, 1n turn, is
covered by a piezoelectric layer. The viscoelastic and piezoelectric layers cover section of the
span measured from the free end in the second scenario. The excitation force is applied at the

free end, and it is either a harmonic force or a triangular impulse load as depicted in Fig. 4.8.
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The. geometric characteristics of the composite beam are: L = 300mm (length of the
beam), b = 15 mm (width of the beam) h, = 3 mm (thickness of the elastic layer), h, =
0.2 mm (thickness of the viscoelastic layer) and h, = 1 mm (thickness of the piezoelectric
layer). The number of terms in the Griinwald approximation of the fractional derivative N =
1000. The mechanical properties of any given layer are listed in Tables 4.1 and 4.4. The
density of the piezoelectric layer is p, = 7500 kg/m3. A simple velocity feedback is adopted
for the controlled vibrations. The observation time of the beam subjected to a triangular load is
1 second and 2.5 second for the harmonic load.

4.2.1 Case of fully constrained layer beam

In this scenario, the elastic layer or the host beam is entirely covered with the viscoelastic

layer and piezoelectric layer Fig. 4.10. The beam is meshed with five finite elements along

F

©
__-_-_®_._
-_--_@.)__
_--_-.C:)_.
©

L |

=B piezo layer (7) W visco layer (6) [~ beam layer 5)

Figure 4.10: Schematic of a fully constrained layer beam

the span. The gain K, = 150Vs /m. The results obtained with the triangular impulse load
and with the hannonic load are illustrated in Figs. 4.11 and 4.12, respectively. Each figure
depicts the uncontrolled and controlled tip deflection and the actuation voltage applied when
the piezoelectric layer is actuating. Damping in the uncontrolled scenario is passive - solely
from the viscoelastic layer.

The effectiveness of the active:passivc damping combination over sole employment of pas-
sive damping is readily observable by comparing Figs. 4.11(a) and 4.11(b) on the one hand,
and Figs. 4.12(a) and 4.12(b) on the other hand. It is also worth mentioning that the magni-
tudes of the actuating voltages as depicted ianigs. 4.11(c) and 4.12(c) are far removed from
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»

N

Tip deflsction (x 107! mm)
=]

%
:

4

)

[} 0.1 02 03 04 05 06 0T 08 08 1
time (8)

(a) Uncontrolled tip deflection

K, =150V/m/s

Tip deflection (x 10 mm)
o

-2}

Jb

0 61 0z 03 04 05 06 07 08 09 1
time (s)
(b) Controlled tip deflection

20, T v v T -r

Control Voitage (V)
o

] 01 02 03 04 05 06 07 08 09 1
time (s)

_(©) Actuator voltage

Figure 4.11: Tip deflection and actuator voltage of a fully constrained layer beam subjected to
a triangular impulse load at the free end.
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8 Purely Passive

Tip deflection (x 107! mm)
o

) 05 1 15 2
time (s)

(a) Uncontrolled tip deflection

25

K =150V /s

Tip deflection (x 10™! mm)
b o

] 05 1 15 2
time (s)

(b) Controlled tip deflection

25

[} 0S 1 15 2
time (s)

(c) Actuator voltage

Figure 4.12: Tip deflection and actuator voltage of a fully constrained layer beam subjected to

a harmonic force (0.1sin150t) at the free end.



CHAPTER 4. NUMERICAL SIMULATION

the breakdown range of about 200 V' for most piezoelectric polymers.

4.2.2 Case of partially-constrained-layer beam

Unlike the scenario described in the preceding section, the system of interest here involves a
host beam whose span is partially covered with the viscoelastic layer and piezo€lectric layer

as schematically depicted in Fig. 4.13. The beam is meshed with six finite elements along the

L |

ENE piezo layer ® [ ] visco layer © — beam layer )

Figure 4.13: Schematic of a partially-constrained-layer beam

span. The first two elements from the free end are covered with the constrain layer. The gain
K, = 1500 Vs / m. While any gain is theoretically selectable provided its use does not induce
instability in the system, it is instrﬁctive that the gains are selected so as to yield actuating
voltages that are not in the breakdown voltage range of the piezoelectric material.

The results obtained by applying a triangular impulse force and an harmonic load are de-
picted in Figs. 4.14 and 4.15, respectively. Figs. 4.14(a) and 4.15(a) indicate that the sole use
of passive damping of the viscoelastic layer has negligible effect. The beat phenomenon in the
latter is a reflection of the propinquity of the forcing frequency of the harmonic load and the
second natural frequency of the system.

Again as observed in the case of fully-constrained-layer béam, active-passive damping, as

demonstrated by Figs. 4.14(b) and 4.15(b), is superior to passive damping.
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Tip deflection (x 10°! mm)
S o

.

2 M s N N s N L N
01 02 03 04 0S 06 0.7 08 09 1
time (s)

(a) Uncontrolled tip deflection

mm
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K, =1500V/mis
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-
=3

Tip deflection (x 10°! mm)
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T oz o3 04 05 06 07 08 085 1
time (s)
(b) Controlled tip deflection
200
s 100 H H
i
£
S -100H H
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(c) Actuator voltage

Figure 4.14: Tip deflection and actuator voltage of a partially-constrained-layer beam subjected
to a triangular impulse load at the free end.
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, Purely Passive
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rE 05 .
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(a) Uncontrolled tip deflection
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Tip deflection (x 10°! mm)
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Figure 4.15: Tip deflection and actuator voltage of 3 partjaﬂy-constraincd-laycr beam subjected
to a harmonic force (0.1sin150¢) at the free end.
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Conclusion

A quasi-two-dimensional finite element formulation has been presented for the analysis of
active-passive constrained layer beams. The field variables are interpolated through the thick-
ness via the use of polynomials and are interpolated along the span by using cubic Lagrange
finite elements. The major inferences from the study include:

1. The formulation is effective for sandwich beams.

2. In the typical three-layer sandwich beam scenario (i.e., all layers are made from elastic
material), the formulation is invariant to the relative stiffness between the middle (or

core) layer and the outer layers.

3. The formulation avoids the anti-plane assumption that is common in other higher-order

formulations.

4. The formulation allows the simulation of more boundary constraints. Specifically, it is
possible to constrain each layer independent of the others.

5. The formulation does not require many degrees of fneedom or elements to yield highly
accurate results, where the benchmark are the traditional two-dimensional formulation
using commercial software NASTRAN and ABAQUS.

Having stated the above, there are areas for further investigation. These include, for exam-

ple:
1. The extension to nonlinear scenarios, geometric and/or and material nonlinearity.
2. The extension of the concept to viscoelastic plates and shells.

3. The use of different viscoelastic constitutive relations and different solution methods.
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