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Abstract

Concurrent Transaction Logic {CTTZ) is a deductive language for programming database 

transaction applications that integrates queries, updates, and transaction composition in 

a complete logical framework. The language supports all the properties of classical trans

actions and the properties found in some new transaction models, e.g., sub-transactions, 

transaction rollback, and concurrent transactions.

The contributions of this thesis are twofold. First, it extends CTTZ to account for 

timing-event-based prioritized concurrent systems in which transactions may have pri

ority and timing constraints. This extension of CTTZ, here called TV-CTTZ, provides 

a high-level logic programming framework for specifying and simulating executions of 

timed transactions and trigger-events commonly present in real-time concurrent appli

cations. Second, it describes a Prolog implementation of TV-CTTZ. The implemented 

TV-CTTZ prototype supports the translation from TV-CTTZ to CTTZ. Underlying this 

protocol, we use a simplified Rate-Monotonic algorithm [10] to schedule the execution of 

constraint concurrent transactions and built-in timing predicates to handle transaction 

time-r dations.

IV
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C hapter 1 

In troduction

T h i s  thesis introduces concurrent transaction logic with priority and timing con- 

straints(T7^-CT7?.), an extension of Concurrent Transaction Logic {CTTZ). T V -  

CTTZ is designed to provide a high-level logic programming framework for specifying and 

simulating the control logic of time-related concurrent systems.

Concurrent Transaction Logic is a recently proposed deductive database language, 

introduced by Bonner and Kifer in [1]. It is based on Transaction Logic (TTZ) [3], also 

known as sequential Transaction Logic. CTTZ extends TTZ with connectives for modeling 

the concurrent execution of complex processes, in the sense tha t it integrates concurrency, 

communication, and database updates ir a complete logic framework.

In CTTZ., concurrency is accomplished by interleaving the execution of concurrent 

transactions. Such mechanism is implemented in the CTTZ prototype in terms of a pure 

Round-Robin algorithm [10]. Hence, in CTTZ, the underlying scheduling algorithm for the 

selection of next executed transaction component from a concurrent transaction execution 

does not follow any explicit priority-based scheme.

As for sequential transactions, CTTZ uses the sequential conjunction operator ( ® ) to 

denote the order of transaction execution, e.g., a ® b ® c means: first executes transaction 

a, then transaction h, then transaction c. Exception handling excluded, in CTTZ, there is 

no other mechanism one can use to force a particular execution sequence of transactions. 

Moreover, CT% does not provide any timing constraint type predicate which is necessary
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2
for embedding scheduled events m a database transaction application system, e.g., a 

real-time database application in which some events can trigger expected transactions at 

specified times.

The study on the use of logics in real-time systems has been the subject of substantial 

research in the past and nowadays. In [4], Bellirl and Mattolini reviewed a selection of the 

most representative temporal logics designed for real-time systems. For the specification 

of a real-time system behaviour, the time behaviour of a system is naturally described 

with constraints on event occurrences in [5]. Chen and Tsai present a modification of a 

pure temporal logic in [6], describing the system behaviours in terms of absolute timing 

of events as well as their relative ordering which can tell when the state actually occur. 

Torp and Jensen even assigned data with time properties in [7] .

As well, Ulusoy and Sivasankaran studied the use of logics to specify priority properties 

in real-time systems [8, 9] respectively. More specifically they focus on the design of 

scheduling algorithms to improve the protocol efficiency and maximize the number of 

transactions satisfying their real-time constraints.

However, these works focus either on priority constraints or on timing constraints. 

They do not combine these two types of constraints in one logic framework. We deem 

this greatly limits their application as formalism for specifying timing-related systems. In 

our approach, on the other hand, we are able to handle both types of constraints.

To be able to provide a formalism for specifying and simulating timing-event-based 

systems with explicit priority, in this thesis we extend CTTVs inference system by defining 

a priority-constraint-based inference system, which allows us to formally execute formu

las using a SLD-style refutation mechanism. Such inference system is implemented in 

the interpreter in terms of a simplified Rate-Monotonic Scheduling algorithm instead of 

a pure Round Robin scheduling algorithm. Our logical framework also introduces tim

ing constraint formulas for specifying timing properties commonly found in real-time 

application domains. This improved timing-event-based concurrent transaction logic we 

call TV-CTTZ. Like CTTZ, TV-CTTZ  is a language for programming database transac
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3
tions and applications. TV-C T7Vs timing and priority constraints enable programmers 

simulate real-time features in TV-CTTZ, e.g., time-event-driven and interrupt. The time- 

event-driven feature can be simulated by the TV-CTTZ’s timing constraints. Also, the 

key feature of real-time software system, interrupt, can be created by combining these 

two constraints: timing constraints and priority constraints. These features extend the 

use of logic programming languages to timing-event-based real-time database transaction 

apphcations.

A lot of real-time simulation platforms, current in use or under research, use procedure 

languages to design the real-time system, such as c in VxWorks [11] and RT-Linux [12]. 

It is unquestionable tha t the solutions designed by procedural languages usually provide 

high performance for real-time applications. But this is not always the case. To some real

time systems, e.g., real-time database applications, real-time systems with complicated 

control logic, simulations designed with procedural languages appear to be difficult and 

timing-consuming jobs. This is because procedural languages focus on computation result. 

But complicated logic include numerous computation results corresponding to the large 

amount of composite scenarios of pre-conditions. In such cases, simulating with procedural 

language is timing-consuming and low efficient. On the other hand, logic programming 

shows its advantages on this problem since logic programming focuses on the nature of 

control logic and explores every possible solution of it. As a type of logic programming, 

TV-CTTZ  not only has the natural advantages of logic programming to handle complicated 

control logic problems, but also includes real-time functionalities. By combining priority 

and timing constraints, and the high-level logic programming framework provided by 

CTTZ-has&à approaches in a complete logic framework, TV-CTTZ  provides a possible 

better solution to handle these real-time applications with complicated control logic over 

procedural language c.

Along with the introduction of TV-CTTZ, the thesis also presents an implementation 

of TV-CTTZ in Prolog, based on the CTTZ prototype. It is assumed that the reader is 

already familiar with Prolog. The prototype runs on the XSB prolog interpreter [15, 16],
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currently the most efficient deductive database system.

Thesis Outline

The thesis is organized as follows:

• Chapter 2 briefly presents the essentials of CTTVs syntax and semantics. Those 

readers more acquainted with CTTZ could skip this chapter.

•  Chapter 3 describes a system view of the CTTZ prototype software, and gives a 

detailed description of how program execution and scheduling take place in the 

prototype.

• Chapter 4 introduces TT^-CTTZ, its priority and timing constraints syntax, infor

mal semantics and inference engine, and shows how the inference engine is used to 

execute constraint concurrent transaction Horn rules.

• Chapter 5 presents the developed TV-CTTZ prototype, focusing on the differences 

between the TV-CTTZ prototype and the CTTZ prototype.

•  Chapter 6 provides TV-CTTZ program examples on two different application areas, 

namely, time-based database transaction, and real-time control system.

•  Chapter 7 concludes the work and elaborates on possible improvements.

Besides, the thesis includes one appendix, which presents a tutorial on how to use the 

software application developed in this thesis.
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C hapter 2 

A n in troduction  to  CTTZ

Co n c u r r e n t  Transaction Logic is a deductive database language for program

ming database transactions and applications. The language, an extension of Trans

action Logic [3], integrates concurrency, communication, and database updates in a com

plete logic framework. This chapter outlines the language using the terminolog}^ of de

ductive databases. Details are available in [1, 2].

2.1 Syntax

The syntax of Concurrent Transaction Logic is similar to th a t of first order logic, ex

cept th a t it extends first-order logic with three new logical connectives; ® , called 

sequential conjunction-, | , called concurrent conjunction-, and a modality of isola

tion, O  , for specifying atomic actions that executes atomically and in isolation, i.e., it 

does not communicate or interact with other programs. These operators are used to spec

ify queries and to combine simple transactions into complex ones. The resulting logical 

formulas are called transaction form ulas.

In certain important situations, CTTZ has an elegant, top-down, SLD-style proof pro

cedure tha t can be expressed within CTTZ itself. The definition below, lists the conditions 

that characterizes these situations. The subset of CTTZ that satisfies these conditions is 

called the Horn fragment of CTTZ.
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D efin ition  1 (T he H a m  fragm en t o f CTTZ) The syntax of the Horn fragment of 

CTTZ is defined recursively as follows:

• An atomic formula is an expression of the form p(ti, where p is a predicate

symbol, and ti, are terms.

• A concurrent sequential goal is in any formula of the form:

— An atomic formula; or

— ai ® ... ® af, or

— Ui I ... 1 a,; or

— O  Ui

where each Uj is a concurrent sequential goal, and i > 0.

• If a is a concurrent sequential goal and t is an atomic formula, then t <— a, is a 

concurrent Horn rule.

• A transaction base is a set of concurrent Horn rules.

□

If a and b are transaction formulas, then informally:

• a® b  means: first execute a, then execute b.

• a \ b means: execute a and b concurrently.

• Qa means: execute a “atomically” , i.e., without interleaving with other transactions. 

® t  •*— a means: to execute t is sufficient to execute a.

\
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2.2 Database States and Elementary Updates

In CTTZ, a pair of oracles, called state data oracle and state transition oracle, specify 

elementary database operations. The state data oracle specifies a set of database state 

queries, and the state transition oracle specifies a set of database elementary updates. 

These oracles are not fixed because any pair of oracles can be plugged into a CTTZ theory. 

For ease of reference, below we present the definition of these oracles, introduced in [3].

D e fin itio n  2 (s ta te  da ta  oracle) A state transition oracle O' ,̂ is a mapping from sets 

of state identifiers to sets of first-order formulas. □

Intuitively, if Dj is a state identifier, then O'^(Di) is the set of formulas considered to be 

all the truths known about the state Dj. In practice, it is not necessary to materialize 

all these truths. Because, given a logical formula 4> and a state identifier Di, the proof 

theory for CTTZ only needs to know whether (p E 0 ‘̂ (Di). Thus, to do inference in CTTZ, 

an enumeration of 0 ‘̂ (Di) is all that is needed.

D efin itio n  3 (s ta te  tra n s it io n  oracle) A state transition oracle is a mapping 

from pairs of state identifiers to sets of ground atomic formulas. These ground atoms are 

referred to as elementary transitions. □

Intuitively, if D i and Dg are two state identifiers, and h 6 0*(Di, Dg), then h is the set of 

elementary updates that change state D% into state Dg. An elementary update can thus 

be non-deterministic, since for each update, the transition oracle defines a binary relation 

on states. In practice, this relation does not have to be materialized. Instead, for a given 

update u, and a given state D%, the proof theory of CT'IZ only needs an enumeration of 

the possible successoi tes, Dg.

2.2.1 The R elational Oracle

The examples in this thesis use the notion of relational databases, in which a state is a set 

of tuples, and elementary transactions consist of the insertion and deletion of individual

Reoroduced with permission of the coovriaht owner. Further reproduction prohibited without permission.



tuples from the database.

In [1, 2, 3], Bonner and Kifer represent relational databases in the usual way as sets 

of ground atomic formulas. Moreover, they use two predicates, ins and del, to insert and 

delete atoms from the database. The definition of Relational Oracles formalizes this idea.

D efin itio n  4 (R ela tiona l O racles) : A state D is a set of ground atomic formulas. 

The data oracle simply returns all these formulas. Thus O'^(D) =  D.

Moreover, for each p in D, the transition oracle defines two new predicates, ms(p) 

and del{p), representing the insertion and deletion of single atom p in D respectively as 

follows;

ins{p) € 0 ‘(D i, D 2) iff D 2 =  D i +  {p} 

del{p) E O ^ D i,D 2 ) iff D 2 =  D i -  {p}

□

It should be noted, however, that CTTL is restricted neither to relational databases, nor 

to update operations based on single tuple. For instance, databases could be deductive,

object-oriented, disjunctive, or a collection of scientific objects, such as matrices or DNA

sequences. Likewise, database operations could include SQL-style bulk updates, or the 

insertion and deletion of rules, or complex scientific calculations, such as the Fourier 

transformation and matrix inversion. In CTTZ, the set of states is determined by the data 

oracle. Changing the oracles can change the set of states, and thus the set of semantic 

structures. This is one way in which different oracles give rise to different versions of 

CTTZ. In this thesis, we used the relational oracle for the simplicity.

2.3 Examples of CTTZ Formulas

This section gives some examples to illustrate CTTZ’s syntax and informal semantics. The 

full description of CTTZ semantics is available in [1, 3]. We start with simple examples of 

sequential goals and concurrent sequential goals.

Reoroduced with oermission of the coovriaht owner. Further reoroduction orohibited without oermission.



9
Sequentia l con junction  an d  d a tab ase  u p d a te  p red icates: The formula below il

lustrates the sequential conjunction ( 0  ) combined with the elementary update predicates 

del and ms;

del{r{a)) ® ins{s{a))

“Delete r{a) from the database, and then insert s(a)” .

C o n cu rren t sequen tia l goal: The formula below illustrates the use of the concurrent

and sequential conjunctions, | and 0  , respectively, in the specification of concurrent 

transactions:

(̂ 1 ® "A;) I ®

“Execute concurrently the transactions (f)i 0  ÿg and (/?i ® ip2 - To execute 

(j)i0 (p2 , first do tpi then cp2 , and similarly for ®

H o rn  ru les: Like classical logic, CTTZ has a Horn-like fragment with both a procedural 

and a declarative semantics. The formula:

q{X) <— r{X) 0  del{r{X)) 0  ins{s{X))

defines a subroutine with name q and parameter X. Given the parameter value a, q{a) 

commits if the atom r(a) exists in the databases before the updates execute and assuming 

r{X) is a updatable database tuple.

In the following examples, we show how CTTZ can be used to combine elementary 

operations into complex transactions.

E xa m p le  1 (D atabase  tran sac tio n s  for o p e ra tin g  a n  online sto re) Assume a re

lation inventory(Name, Amt) represents the amount of available goods in a store’s inven

tory, where Name is the goods’ name and Am t is an integer rep’ renting the amount 

available. To simplify, we ignore the price and other factors. The rules below define three 

transactions in the transaction base:

Reoroduced with oermission of the coovriaht owner. Further reproduction prohibited without permission.
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processjorder{CustomInfo, Name^Amt) ■<—
O  ( inventory{Narae, OldAmt)
® OldAmt > Ami 
<g) N ew Am t is OldAmt — Amt 
® change-inventory{Name, OldAmt, NewAmt) 
® ins{record{CustomInf a, Name, Amt)))

supply[SupplierInfo, Name, Amt) <—
0 (  not inventory{Name, OldAmt)
® ins{inventory{Name, Amt))
® ins{supplier{SupplierInfo, Name, Amt))) 

supply{SupplierInfo, Name, Am t) <—
0 (  inventory{N^ame, OldAmt)
0  N ewAm t is OldAmt +  Am t 
0  change-inventory{Name, OldAmt, NewAmt) 
0  ins{supplier{SupplierInfo, Name, Amt)))

change-inventory{Nam.e, OldAmt, NewAmt) +—
0 (  del{inventory{Name, OldAmt))
0  ins{inventory{Name, NewAmt)))

The first rule specifies: to sell an amount A m t of goods Name to a customer Customer- 

Info, first check how many goods are available in the store’s inventory database. If the 

available amount, OldAmt, is no less than the requested amount, Am t, then deduct Am t 

from the available amount OldAmt, and update the latest inventory amount, and then 

record this transaction in the database; othervfise the process-order transaction should 

fail since the available amount of goods can not meet I'w demand of the order. The sec

ond rule specifies the supplying transaction: to supply an amount A m t of goods into the 

inventory, if the goods’ name are new to the inventory, add a new inventory record with 

the goods’ name and amount, and then add another supplying record to the supplier’s 

account; Otherwise, if the goods have already a record in the inventory, add the amount 

into tha t inventory record, and add another record to the supplier’s account in the same 

way. The last rule is in charge of changing the amount of a goods in the inventory record: 

first delete the old record with the OldAmt, then insert a new record wi h Name and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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NewAmt.

Due to the O  operator, process-order, supply, and changeAnventory are all executed 

“atomically”. That is , they execute either entirely or not at all. The transaction below 

specifies the concurrent execution of supply and procès sing-order:

supply {supplier 1, tapel, A m tl)  j processing-order{customerl, tapel, Amt2)

That is, an amount Am tl of goods tapel is supplied by supplierl while a customer places 

an order for tapel. Because this is intended to be a transaction, if one sub-transaction fails, 

then both sub-transactions are rolled back whatever the other sub-transaction succeeds 

or fails.

Notice that, the CTTZ program behaves correctly while an equivalent Prolog program 

could not; updates in Prolog are not logical. If the execution fails after an update 

is performed, the update cannot be undone. So although execution in Prolog can be 

backtracked, the database does not roll back to its initial state if updates are involved. 

Thus transaction fail in a Prolog program will lead to database inconsistency. □

The above example illustrates the combination of concurrency and updates that CTTZ 

supports. The next example shows how CTTZ also supports communication, where two 

processes synchronize themselves by exchanging messages via communication signals.

E xam ple  2 ("Synchronization betw een tw o e levator con tro l processes) Assume 

stopRequest-control and moving-control are two processes specified to control the stop 

request control system and the moAng control system of an elevator model, respectively. 

Here, our goal is to illustrate the communication between the two concurrent processes. 

Hence, we simplif): our model to enable one round processing of these two control pro

cesses, without considering the loop condition.
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stopRequest-control <— tasku
® send{requestSignal, FloorNum)
(g) receive{stopSignal, Fir)
® taski2

moving-control task2i
® receive{requestSignal, FloorNum)
<S) moveTo{FloorNum)
® send(stopSignal, Fir)
® task22

where ta sku  and task2\ are initialization tasks of stopR request-C on trol and m ovin g-con tro l, 

respectively; task i2  and task22 are the post-handling tasks of sto p R eq u est-co n tro l and 

m oving-control, respectively.

The next transaction specifies the concurrent execution of sto p R eq u est-co n tro l and 

m oving-Control:

stop Request-control | moving-control

During execution, stopRequest-Control and moving-control can communicate and syn

chronize the execution of their tasks effectively by sending and receiving messages along 

channel requestSignal and stopSignal. Note: send{Ch, Msg) and receive{Ch, Msg) are 

two communication predicates, which are used to send and receive a message Msg along 

a channel Ch, as shown in [1]. moveTo cannot start moving the elevator to a specific floor 

until taskn  finishes and a FloorNum  message is received along the requestSignal chan

nel from the stop request control process. Likewise, stopRequest-control process cannot 

continue until moveTo finishes and a stop message Fir is received along the stopSignal 

channel. In such a way, the two processes communicate with each other and synchronize 

their execution steps.

□
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2.4 CTTVs Inference System

This section first introduces the SLD-style resolution of the CTTZ inference system. This 

inference system is used to formally execute transactions. In Chapter 4, we will introduce 

an extension of this inference system, which allow us to formally execute transactions 

involving constraints.

SLD -style reso lu tion

The inference system manipulates expressions called sequents, which have the form

P , D h ( 3 ) ( ^

where P  is a program, D  is any legal database state, and çi> is a concurrent sequential 

goal. The informal meaning of such a sequent is that, based on program P  the formula 

(3) (j) can be proved from state D.

Let the concurrent sequential goal clause be the expression

(2 .1)- G o
where Go is the sequent P ,D i h (3) <p 

A SLD-style refutation of — Go is a sequence of goal clauses — Go • • ■ — G„ where 

Gn is the empty clause, i.e., the sequent P,D „ H (), where D„ is a database state, and 

( ) denotes the empty formula. This sequent is an axiom of the inference system, and 

this axiom states that the empty formula is true on any database state. Each +—Gi+i is 

obtained from +— Gi by using the inference system later presented in this section.

Before presenting CTTZ's inference system, we deem relevant to also present the notion 

of hot components introduced in [1]. Summarily, hot components of a transaction (j), 

denoted hot{4>), is the set of transactions ready for execution in (j). Formally:

D e fin itio n  5 (H o t co m p o n en ts)  Let ^ b e a  concurrent sequential goal. Its set ô  not 

components, hot{(j)), is defined recursively as follows:
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hot{{ )) =  { } , where ( ) denotes the empty goal; 

hot{b) =  {6}, if b is an atomic formula;

(g) - • • ® l/'n) =  hot{'ipi)\ 

hot{ipi 1 • • • I ipn) =  U • ■ • U hot{i)n)\

• hot{Qi)) = {©■0}

□

D efin ition  6 (CTTZ’s Inference sys tem )  The inference system consists of one axiom 

and four inference rules.

Axiom: P ,D  h (), for any state D

Inference rules: In rules 1-4, a  is a substitution, 0  and ip' are concurrent sequential 

goals, and hot {ip) — a.

1. Applying rule definitions: Suppose 6 ■<— /? is a rule in P  whose variables have 

been renamed so that the rule shares no variables with ip. l î  a and b unify with 

mgu cr, then
P , D h (3) ip'a 
P , D b ( 3 ) 0

where 0 ' is obtained from ip by replacing an element of a by fi.

2. Querying the database: If j=  ̂ (3)acr, and aa and ip'a share no variables,

then

P ,D  h (3 )0V  
P , D h ( 3 ) 0

where ip' is obtained from ip by deleting an element of a.

3. Executing elementary updates: If 0^(D i,D g) j=“ (3)au, and aa and ip' share 

no variables, then
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P,D2l-  (3)^V  
P,Dif-(3)V'

where 'tp' is obtained from ip by deleting an element of a.

4. Executing atomic transactions: If ©a- is the hot component in ip, then

P ,D I - ( 3 )  (aigiV;')
P , D h  (3 )^

where ip‘ is obtained from ip by deleting an element of ©a.

□

Based on these inference rules, one can prove the execution sequence of both sequential 

executions and concurrent executions. Let us consider the following program.

P  ■<—  C l  I 0 2

01 <— m s (a)
0 2  <— ins{b)

(2 .2)

The deduction of the transaction p is illustrated in Table 2.1.

Table 2.1: A deduction for program (2.2)

Sequents Inference rule Hot components

P , {} h ai 1 0 2  

P , {} 1- ins{a) 1 0 2  

P , {o} h 0 2  

P , {o} h ins{b) 
P ,{ o ,6 } P  0

1

1

3
1

3
Axiom

{P}
{oi, 02} 

{m s(o), 02} 
{02} 

{m s (6)}
{ }

Each sequent in the table is derived from the one below by an inference rule. The 

deduction succeeds because the bottom-most sequent is an axiom. Carried out top-down, 

the deduction corresponds to an execution of the transaction p in which atoms o and b 

are inserted into the empty database in the order, first a, then b.
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C hapter 3 

T he CTTZ P ro to ty p e

T h e  CTTZ prototype [13, 17] is an implementation of the Horn fragment of CT77. 

and CTTZ's inference system.

To facilitate the understanding of the TV-CTTZ prototype later introduced in Chapter 

5, in this chapter we outline the CTTZ prototype by presenting a system view of the 

software application available in [17]. This chapter is organized as follows. First it presents 

a system description of the CTTZ prototype, describing its major components. Then it 

shows how the prototype handles sequential execution, concurrent execution, and database 

updates and queries.

3.1 System Description of the CTIZ Prototype

Figure 3.1 shows a use case diagram of the CTTZ prototype. As such, it shows the 

system functionalities seen from the user’s viewpoint. These functionalities are two: to 

compile a CTTZ program into an internal program; and to execute transactions based on 

the translated internal program.

16
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Figi ' ,.1; Use case diagram for the CT7Z system

CTR Prototype

Compile CT 
Programs

Execute
Transactions^

To handle these functions, the CTTZ prototype system can be seen as consisting of a 

compiler and an interpreter, as shown in Figure 3.2 .

F igure  3.2: The CTTZ prototype

[CTR prototype

Compiler Interpreter

The role of the CTTZ compiler introduced in [17] is to translate a CTTZ program into 

an internal format recognizable to the CTTZ interpreter. The CTTZ interpreter is an
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implementation of the CTTL inference engine, which is used to prove transactions based 

on the relational oracle and the translated CTTZ programs.

Figure 3.3 shows the two most important components of the CTTZ interpreter: the 

inference engine and the relational oracle.

Figure 3.3: The CTTZ Interpreter

interpreter

Relational
Oracle

Inference
Engine

In the CTTZ prototype, a CTTZ program consists of a transaction base file and a 

database file, as shown in figure 3.4.

Figure 3.4: The CTTZ program files

CTR program

database
(.db)

transaction 
base (.ctr)

Transaction-base files have the extension .ctr and database files have the extension 

.db. A transaction base is a program consisting of a set of concurrent Horn rules. Table
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3.1 illustrates the notations used in the CTTZ prototype and the corresponding notations 

used in CT7Z.

Table 3.1: Corresponding notations used in the CTTZ prototype and CTTZ

CTTZ Prototype CTTZ Meaning
Logical implication

* Sequential conjunction
# 1 Concurrent conjunction
0 G Modality o f isolation

A CTTZ prototype database is a Prolog rulebase, consisting of database rules and 

database tuple declarations. A  database rule is a normal Prolog rule, which has one of the 

following forms:

• an atomic formula; or

• (f) ■- A, where (j) is an atomic formula and a  is a clause.

There are two main reasons for putting rules in a CTTZ database:

1. to update them (only those rules in the CTTZ database can be changed at runtime).

2 . to  express queries with negation-as-failure.

To illustrate, below we show an excerpt of a CTTZ database:

finished not (unfinished),

unfinished a(X). 

u(lOO). <z(99). -- o(l). a(0).

The first and second rules specify a query with negation as failure. The atomic formulas 

a(_) specify which atoms are true in the initial database state. To update a database 

atom during execution, it must be declared as an updatable database tuple. Database 

tuple declarations are of the form
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updatable B./n.

For instance, considering the database formulas above, the database tuple declaration 

below specifies th a t the tuple a with arity one, is updatable.

updatable a/1.

The example below illustrates the functionality of declarations and ground atomic for

mulas.

E xam ple  3 (A  s im p le  book order applica tion) The CT7?. program below exempli

fies a simple book order system. The book inventory is represented by the tuple book/1 

in the database.

• The transaction-base file book.ctr:

order{X) o{book{X) * del(book{X))) * writeln{succeeded). 

order{X) writeln{failed).

• The database file book.db: 

updatable bookjl. 

book{l).

book{2).

The transaction base specifies how orders of books are placed. The database defines an 

updatable tuple book/1, and includes two initial instantiations of the tuple hook, book{l) 

and book{2). □

Figure 3.5 shows a use case scenario describing how the user interacts with the CTTZ 

prototjTJe to compile and interpret a CTTZ program:

• The user compiles a CTTZ program.

— The CTTZ prototype compiler translates the Horn rules in the CTTZ program’s 

transaction base.
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Figure 3.5: CTTZ prototype use case scénario

Com piler Interpreter tran sac tio n -b ase da tab ase

Compile a 
CTR program translate CTR t ansaction base

translate CTR database

Execute
consult

consult

answer

answer
Result

— The CTTZ prototype compiler translates the rules in the CTTZ program’s 

database.

•  Wlien the user executes a transaction, the CTTZ prototype interpreter executes 

the transaction with inference engine. In each resolution step, the CTTZ prototype 

interpreter communicates with the transaction base and the database according to 

the executed transaction component in the following ways;

— Consulting the transaction base.

— Consulting the database.

— Updating the database.

— The CTTZ interpreter outputs the result to the user.
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3.2 Executing CTIZ Prototype Formulas

The CTTZ prototype interpreter uses a Round-Rohin scheduling algorithm to schedule 

multi-processes in concurrent transaction executions. This algorithm assumes that each 

transaction process in a concurrent execution has the same priority level. Thus, in the 

CTTZ prototype, these concurrent processes have the same opportunity to execute.

In the CTTZ prototype, the hot component set introduced in Chapter 2 is implemented 

as a Prolog list. The transaction in the head of the list is selected for execution. If this 

transaction is defined as a rule in the transaction base, then the transaction formula in 

the body of the rule replaces the transaction, and then is inserted at the end of the list. 

When a transaction is selected, the CTTZ prototype interpreter executes one element of 

the transaction, and then feeds the remaining elements of the transaction back into the 

end of the list. This is consistent with the CTTZ inference system presented in Chapter

2 . In this way, the concurrent sequential transactions in the queue are able to execute in 

equal turn.

In the rest of this section, we analyze sequential executions and concurrent executions 

in the CTTZ prototype respectively.

3.2.1 Sequential Execution

Sequential execution is the simpler type of execution, where transactions are connected 

with sequential conjunction operators. These transactions are executed in sequential order 

from left to right.

When executing a sequential conjunction, such a.spi * P2 *■■■* Pn, the CTTZ prototype 

interpreter starts the execution from pi, then p2 , and repeats until p„ is completed. If 

any given transaction pi fails, the whole transaction will roll back.

Also, any transaction Pi could have been defined by rules. For instance, pi could have 

been defined as another sequential conjunction, i.e., pi a * b. During execution, the 

CTTZ prototype interpreter would decompose any composite operation, e.g., replacing p\
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with a * b.

3.2.2 Concurrent E xecution

The prototype simulate ■ concurrency by interleaving the execution of concurrent processes 

with a Round-Robin scheduling algorithm. Consider the concurrent transaction execution:

task a i*  a2 * ... * an bi * b2 * * ... * bn-

To run this transaction, first, the Round-Robin algorithm picks up the first element from 

the first concurrent sub-transaction, ai- and executes it, then followed by the first element 

from the other concurrent sub-transaction, 6 1 . After that, the Round-robin algorithm 

continues to pick up elements from the two concurrent sub-transactions in the same fashion 

and execute them until all the elements in the two sub-transactions are executed. The 

resulting execution sequence is: Oi, 6 1 , 0 2 , 6 2 , •••, «n,

This applies for transactions consisting of more than two concurrent transactions, e.g.,

task Oi * 0 2  #  61 ^ 62 #  Cl * C2 .

The resulting execution sequence is Oi, ùi, ci, 0 2 , 6 2 , C2 . And for transactions defined as 

concurrent rules, e.g.,

task . '-  O i  *  a  #  *  6 3 .

a  0 2  *  0 3 .

j3 bi * 62.

After replacing transactions a  and P with their respective definitions, the resulting exe

cution sequence is :

task oi * 0 2  * 0 3  #  61 * 62 * 6 3 .

In this way, a composite transaction can be decomposed to an execution sequence con

sisting of elementary operations.
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3.3 State Updates and Queries

In CTTZ, the semantics of database states queries and updates are defined by a pair 

of relational oracles, called, state data oracle and state transition oracle. The CTTZ 

prototype uses the following predicates to implement the state queries and updates defined 

in the oracles.

•  db{p) determines whether atom p is true in the current database state.

• ins{p) inserts atom p in the database.

• del{p) deletes atom p in the database.

To be able to preserve the database consistency when a transaction that updates the 

database fails, the CTTZ prototype uses a backtracking mechanism for undoing updates,

i.e., to rollback the failed execution and enable re-execution. It performs a relative commit 

of the updates, as opposed to an absolute commit, which commits only after the entire 

transaction succeeds. Considering the following transaction;

ins{a) * db{b) * ins{c)

Assume atom a and c are not in the initial database. The first update ins(a) inserts the 

atom a into the database. Then, the second operation queries the database. If the atom b 

exists in the database, then the third operation, ins{c), will take place and thus the three 

atoms are all in the final database. However, if the atom b is not in the database, then 

the transaction execution fails, and the update ins{a) is undone. In this case, although 

the update performed by ins{a) has been already executed, the database is able to restore 

to its initial state and the database consistency is thus guaranteed. The undo is possible 

because the commit was not absolute, but was relative to the overall transaction.

To undo updates in a failed transaction, the CTTZ prototype actually introduces

two underlying atom tags to represent the existence of an updatable atom p, namely,

inserted{p) and deleted{p).
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The atom p is true in the database if inserted{p) is true and deleted{p) is not true in 

the database. The atom p is not true in the database if deleted{p) is true or inserted{p) 

is not true.

By implementing these two atom tags, the technique in [17] leads to transaction roll

back or partial rollback, and re-execution when a failure occurs, and thus prevents the 

Prolog database from being corrupted by backtracking through updates.
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rv-crn

Al t h o u g h  CTTI is a logic for specifying and executing database processes involv

ing queries and updates concurrently aS' well as serially, CTTi, does not support 

explicit priority constraints in its logic framework. In CTTZ, the programmer  ̂ uses the 

sequential and concurrent connectives to specify the ordering of a transaction execution. 

In a concurrent conjunction, there is no preference over which transaction will be selected 

for execution. Hence, CTTZ’s orientation is towards logic eventuality rather than real

time immediacy. This particular feature of the logic has limited its application extended 

to real-time domains. Also, CTTZ can not handle timing-related applications due to lack 

of timing constraints, e.g., a timing relation to specify when to execute a process.

To overcome this limitation, and extend concurrent transaction logic to the real-time 

domain, we extend the CTTZ logic framework to a so-called timing-event-based priori

tized concurrent transaction logic {T'P-CTTZ), which provides a high-level formalism for 

specifying priority constraints and timing constraints in timing-event-based transaction 

applications. Summarily, T'P-CTTZ extends CTTZ in the sense that it introduces con

straints in concurrent Horn rules, a translation mechanism to translate such rules, and an 

inference system to handle prioritized transactions.

In this chapter, we describe the TT^-CTTZ’s syntax, informal semantics, the inference 

system and the interpretation of constraint concurrent Horn rules.

^Like C'TTZ, 'T'P-C'T'IZ is a logic for programming transactions. Hence in this thesis, users and 
programmers are considered synonyms

26
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4.1 Syntax of T V -C T IZ  Priority and Timing Con

straints

CTTZ does not include priority constraints in its logic framework. In CTTZ, the program

mer uses the sequential and concurrent connectives to specify the transaction execution 

order in programs. For instance, in a concurrent conjunction, all the concurrent processes 

have the same opportunity to be selected for execution. This feature of the logic has 

limited its apphcation in real-time domains.

T'P-CTTZ, an extension of CTTZ, is designed to provide a high-level framework for 

specifying priority constraints and timing constraints in concurrent transaction logic sys

tems. To allow the specification of priority constraints and timing constraints that may be 

used to trigger or interrupt other transactions, we use constraint concurrent Horn rules. 

In T'P-CTTZ, b -r— <j) : -ip is a. constraint concurrent Horn rule if 6 t— 0 is a concurrent 

Horn rule and ip is a constraint formula. A TP-CTTZ program  is composed of a set of 

constraint concurrent Horn rules. The definition of the concurrent Horn rule 6 ^  here

is the same as that in CTTZ, as shown in definition 1. Below is the definition of the 

constraint formula ip.

D e fin itio n  7  ('C onstrain t form ula) A Constraint formula is any formula of the form:

» priority{a,p), where a  is an atomic formula in (p and p is an integer number, rep

resenting the priority level of the atomic formula a.

• tim eElapsedit) triggerEvent(a), where t  is a positive integer number, and a  is 

an atom in (p.

• ipi A • • • A ipk, where each ipi is a constraint formula, and K  >t).

□

With the above extended syntax definition, we can use constraint concurrent Horn rules 

to specify priority and timing constraints, which may be used to trigger or interrupt other 

transactions.
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When a constraint concurrent Horn rule has no constraint formula, it becomes a 

concurrent Horn rule. A TV-CTH. program  consists of both a set of concurrent Horn 

rules and a set of constraint concurrent Horn rules.

4.2 Informal Semantics of T V -C T T l

Next we introduce the informal semantics of constraint concurrent Horn rules from the 

users’ viewpoint.

P r io rity  co n stra in ts

In TV-CTTZ, priority constraints specify the execution priority of transactions occurring 

in a concurrent goal formula. For instance, the constraint concurrent Horn rule below 

specifies the execution priorities of the concurrent transactions p, q, and r.

g <— p 1 9  1 r  : priorityip, 2) A priority{q, 1) A priority{r, 1) (4.1)

“To execute s, execute p, q, and r  concurrently, observing that p has higher 

priority than  q and r, and q has the same priority as r .”

Notice tha t the second argument of the priority predicate represents the execution priority 

level of the predicate occurring in its first argument. The bigger the number representing 

the priority level, the higher its execution priority is. Priority levels ranges from 1 to 100. 

The default priority level of a transaction predicate is 1, i.e., if a constraint concurrent 

Horn rule does not specify the priority of a transaction predicate explicitly, then it is 

given the lowest execution priority.

But then one might ask: why use the complicated formula above when one can more 

succinctly write the equivalent and more straightforward formula below?

s <— p ® (g I r)
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This is because priority constraints like the ones in Expression (4.1) are useful specially 

when combined with timing constraints. The examples in the rest of this section illustrate 

the point.

Tim ing Constraints

Timing properties are usually specified by the timing relations among events. In [5], the 

timing relations refer to terms of time that specify constraints among events. We are 

interested in these timing properties and adopt some of them into our system . Below we 

illustrate some examples involving timing constraints.

Let b, c, and d be transactions. The rule below specifies a timing constraint for b:

a <— fe I c I d : timeElapsed{100) triggerEvent{b) (4.2)

The rule above specifies the following: to execute a, execute b, c, and d concurrently, 

but delaying the execution of b 100 seconds. That is, for the first 100 seconds, only c and 

d should run concurrently, and then after 1 0 0  seconds, transaction b should be triggered, 

and thus added to the concurrent execution.

The example below illustrates how priority and timing constraints can be combined 

to provide interesting real-time interrupt behavior.

Let again b, c, and d denote transactions. The constraint concurrent Horn rule below, 

specifies timing and priority constraints for transaction b.

a ■f— h \ c \ d :  timeElapsed(lQ^i) —̂ triggerEvent{b) A priority{b, 2)

The priority constraint specifies th a t b has execution priority over c and d. Notice that 

no constraint is specified for c or d, i.e., they run as a flat concurrency (with the default 

priority level 1). The timing constraint specifies that the execution of b should start 100 

seconds after a is activated.

Let’s assume tha t c and d represent complex transactions whose respective execution 

times last for more than 200 seconds time. Given these assumptions, since b has high
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execution priority, the activation of b should interrupt the execution of c and d. That is 

to say, after 1 0 0  seconds, b starts execution, and c and d are suspended because of their 

lower priority level. Until b finishes its execution, the execution of c and d can be resumed. 

This behavior of concurrent transaction execution, created by the combined use of timing 

and priority constraints, illustrates the interrupt functionality. This is what often happens 

in a real-time domain scenarios, and the reason why we introduce the priority constraint 

into the extended system.

Some comments on the use of constraints in T'P-CTTZ: one may have noticed that 

priority constraints are not suitable for all transactions in a concurrent sequential goal. 

For example, suppose a, 6 , and c are transactions, and r  is defined by the rule below;

r <— a ® 6 0  c

It does not make sense to specify a priority for the transactions occurring in the body of 

the rule above, since the semantics of the 0  connective specifies the execution order of 

the goal o 0  6  0  c. Priority constraints only make sense when thev refer to transactions 

occurring in a concurrent conjunction, since it can change the execution sequence of the 

transactions involved in the conjunction.

4.3 Inference System

The inference system introduced here differs from the inference system introduced in 

CTTZ in the sense tha t in CTTZ, there is no criteria for selecting which transaction in a 

concurrent goal will be executed. This means in CTTZ, the execution order of concurrent 

transactions is non-deterministic. In T'P-CTTZ, on the other hand, a simplified Rate 

Monotonie scheduling algorithm based on the priority level of a predicate, is employed as 

the selection criteria. Thus, the execution order of concurrent transactions with different 

priority levels is deterministic.

The next definition formalizes this idea. It defines the transaction to be executed 

amongst the candidates for execution. We refer to it as the “hott( st” component of a
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concurrent sequential goal.

D e fin itio n  8 (H o tte s t  co m p o n en t)  Let be a concurrent sequential goal. Its hottest 

component, denoted hottest{(p), is defined recursively as follows:

• hottest{{ )) =  {}, where ( ) is the empty goal;

• hottest{b) =  {6 }, if & is a atomic form.ula;

# hottest(ipi ® • • • <g) 'ipk) — hottest^il)])-,

(hottest^ipi) , i î  pLevel{hottest{'tpi)) >
pLevel{hottest{ip2 | "  - | ipk)) , 

hottest{ip2  \ ■ ■ ■ \ ipk) , otherwise 
where pLevel{<p) denotes the priority level of (p.

» hottest{Qip) =  Qip.

□

Since the compiler adds an extra first parameter to all prioritized predicates and encodes 

in this parameter the priority level of the predicate, one can obtain the priority level of a 

sequential goal as follows:

• pLevel{p{priority{l), •••)) =  I, if p{- ■ •) is an atomic formula;

• pLevel{ipi (g) • • • ® '^/.) =  pLevel{ipi)

Like CTTZ, T'P-CTTZ also uses the SLD-style resolution introduced in Chapter 2, the 

only difference between them being the inference rules and the notion of hot component 

used in CTTZ, and hottest component used in TP-CTTZ. In CTTZ, hot component is a set 

representing the sub-transactions ready for execution. In TP-CTTZ, hottest component 

is the first highest priority-level component of the CTTZ hot component set.

A xiom : P , D h ( ), for any state D
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In ference  ru les: In rules 1-3, cr is a substitution, ijj and 'tp' are concurrent sequential 

goals, and hottest{ip) — a.

1. Applying rule definitions: Suppose b fi is a rule in P  whose variables have 

been renamed so tha t the rule shares no variables with ip. If a and b unify with 

mgu cr, then
P ,D  h {3) Ip'a 
P,-D\-{3)iP

where ip' is obtained from ip by replacing a by fi.

2. Querying the database: If O'^ÇDi) (3)acr, and aa and ip'a share no variables, 

then
P ,D  h {3) Ip'a 
P ,-D b{3)iP

where ip' is obtained from ip by deleting a.

3. Executing elementary updates: If Dg) (3)acr, and aa and ip' share 

no variables, then
P, D2 l - (3 )  iP 'a  

P,Dil-(3)V
where ip' is obtained from ip by deleting a.

4. Executing atomic transactions: If © a is the hottest component in ip, then

P , D I - ( 3 )  {a ®  Ip')
P , D h ( 3 ) V '

where ip' is obtained from ip by deleting 0 a.

Each inference rule consists of two sequents, and has the following interpretation; 

if the upper sequent (Gj+i) can be inferred, then the lower sequent (Gj) can also be 

inferred.
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4.4 Interpreting Constraint Concurrent Horn Rules

Based on the constraint formalism presented in the above sections, here we initially present 

how the TV-CT'R, interpreter translates constraint concurrent Horn rules into concurrent 

Horn rules. Then we show how to formally execute prioritized constraint concurrent Horn 

rules using the SLD-style resolution procedure. Finally we illustrate how the TV-CTTZ 

compiler translates the concurrent Horn rules with timing constraints.

4.4.1 C om piling Priority Constraints

To illustrate how the translation takes place, we use the following example: let the pro

gram below define transactions s, p, and q.

s <r- p I q: priorityip, 2 )
p <— ins{ria)) (4.3)
q <— ins{rih))

Notice that the first rule specifies: to execute s, execute p and q concurrently. Its

constraints specify: in the concurrent sequential goal p \ q, p has higher priority than q.

The second and third rules specify: to execute p, insert the atom r(a) in the database; to 

execute q, insert the atom r( 6 ) in the database.

In essence, the compilation consists of translating the priority predicates occurring in 

the constraint formula into function terms. These function terms are added as an extra 

argument to the respective predicates in the head and body of the concurrent Horn rules. 

Below we present the result of the translation of program (4.3).

s <— p{priorityi2)) | q{priority{!))
p{priority{2)) +— ins{r(a)) (4.4)
q{priority{l)) <— ins{r{h))

Notice that the compiler assigned the default priority level 1 to transaction q.
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34

With the TV-CTTZ four inference rules, we can deduce the transaction s defined in 

program (4.3) as in the Table 4.1. Notice in program (4.3) and on Table 4.1 that if no 

priority constraints is used in the specification of s, then there are two possible sequence 

of database states when s executes: one in which r(a) is inserted first and then r{b) is 

inserted, and the other in which r{b) is inserted first and then r{b). However, because 

of the priority constraints bound to transaction p and q, they force the transaction s to 

run in a definite sequence, which causes r(a) to be inserted before r{b) is inserted in the 

database.

Table 4.1: A deduction for program (4.3)

Sequents Inference rule Hottest component
P , { } H s
P ,{ }  h p(priority(2)) | q{priority{\)) 
P , {} h ins{r{a)) j q{priority{l))
P ,  {r(n)} h q{priority{l))
P ,{ r ( a ) } h  ins{r(b))
P ,{ r ( a ) , r ( 6 )} h ()

1

1

3
1

3
Axiom

s
p{priority{2))

ins{r[a))
q{priority{l))

ins{r{b))
{ }

4.4.3 Com piling T im ing Constraints

The program below specifies a timing constraint for transaction b.

o -s— 6  I c j d ; timeElapsed{WO) —)■ triggerEvent{b) 
b <— ins{r{e)) 
c ins{r{f)) 
d <— ins{r{g))

The TV-CTTZ interpreter translates it into the following program

a <— 6  1 c 1 d
b *— timeElapsed{100) ® ins{r{e)) 
c ins{r{f)) 
d 4-  ins(r(g))

(4.5)
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where timeElapsed{t) is a built-in predicate, which is satisfied when t  seconds have elapsed 

since the execution of concurrent rule a has started. This predicate is interpreted by the 

TV-CT'JZ prototype interpreter in a specific way in the chapter 5. Here, we present the 

logical definition of the predicate timeElapsed below:

timeElapsed{DelayTime) <—

timeElapsed{DelayTime)

startTim e  ( In itia lT  ime)
0  now(PresentTime)
0  (PresentTime > In itia lT im e  -t- DelayTime)

startT  im e(InitialTim e)
0  now{PresentTime)
0  {PresentTime < In itia lT im e  +  DelayTime)
0  timeElapsed{DelayTime)

In the above definition, you can notice tha t if pre-condition (PresentTime > Initial

Time + DelayTime) fails, then timeElapsed{DelayTime) stays in a sort of while-loop 

until the condition {PresentTime  >  Initia lT im e  -(- DelayTime) is satisfied, and the 

corresponding transaction is then triggered.

Reoroduced with oermission of the coovriaht owner. Further reoroduction orohibited without oermission.



C hapter 5 

The 'TV-C'TTZ P rototype

T h e  TV-CTTZ prototype is an implementation of the Horn fragment of TV-CTTZ 

and the inference system, both introduced in Chapter 4. In Chapter 3 we have pre

sented the outline of the CTTZ prototype. Since the TV-CTTZ prototype is an extension 

of the CTTZ prototype, here we focus on their diflFerences.

As the CTTZ prototype shown in Figure 3.2, the TV-CTTZ prototype also has two 

major components; the compiler and the interpreter. Both have been extended to handle 

the timing and priority constraints introduced in TV-CTTZ. In this chapter, we first 

present how the TV-CTTZ prototype compiler translates a TV-CTTZ program. Then we 

show how the TV-CTTZ prototype interpreter works.

5.1 The T V -C T T t Prototype Compiler

Before executing a TV-CTTZ program, a user first has to compile the transaction base and 

database files. In a TV-CTTZ program, priority constraints and timing constraints are, 

in fact, a syntax sugar, which we call constraint concurrent Horn rules. Unlike the CTTZ 

prototype, the TV-CTTZ prototype compiler first translates these constraint concurrent 

Horn formulas into CTTZ recognizable formulas. Figure 5.1 shows how this process takes 

place.

This translation consists of two stages, carried on by compiler I and compiler II,

36
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Figure 5.1: The T'P-CTTZ compiler.

TP-CTR program- CompilerCompiler
CTR program

C om piler

respectively, as illustrated in Figure 5.1. Compiler I translates the constraint concurrent 

Horn rules in a T'P-CTTZ program into an intermediate CTTZ program. Then compiler 

II translates this intermediate program into an internal notation format.

The reason why the T'P-CTTZ prototype compiler translates a TV-CTTZ program 

into a CTTZ recognizable program instead of using CTTZ recognizable program at the 

beginning is because the translated CTTZ recognizable syntax looks clumsy, unlike a 

typical neat Prolog-like syntax. For example, assigning every transaction a priority level 

and distributing timing constraints to the triggered transactions. To make formulas neat 

and clear to users, the TV-CTTZ prototype puts all these constraints in the syntax sugar 

format and leaves the compiler to do the translation. Moreover, compiler I takes care of 

this part of the translation, only. Hence, introducing more complicated timing constraints 

and priority constraints into the system would require only extending compiler I. This 

improves the flexibility of the TV-CTTZ prototype compiler.

The example below illustrates the idea of compiler I. Suppose we have the following 

rules in the transaction base:

task : - inüT im e * taskA  : tim eE lapsed{10 )tr iggerE ven t{ta skA ).

task A  :- monitor {'task A  complete').

Compiler I creates a temporary transaction-base file, which is added an extension .temp 

to the end of the old transaction-base file. Below are the corresponding translated rules:

task :- in itT im e * taskA.

taskA timeElapsed{10) * monitor{'taskA complete').
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If a rule in the original transaction base does not have a constraint, the translated rule is 

the same as the original one.

The compiling process carried on by compiler 11 is more elaborate, and thus deserves a 

more detailed analysis of the processes and notations used within. The next two sections 

provide this analysis.

5.1.1 Transaction B ase Internal Syntax

Like a CTTi, program, a TV-CTTZ program consists of a transaction-base and a database 

too. We saw in Section 5.1 that ultimately a TV-CTTZ program is translated into an 

internal notation format. This subsection introduces the internal notation format.

The transaction base of a TV-CTTZ program has two kinds of components: atomic 

formulas and rules. Atomic formulas do not change after translation.

On the other hand, constraint concurrent Horn rules in transaction-base are in the 

form of a  ;- /? : 7 , where a  is an atomic formula, ^  is a transaction formula, and 7  is 

a constraint formula, which can include both priority constraints and timing constraints. 

The head a  is translated into the internal notation trans{a). Transaction formula no

tations involving sequential conjunction and concurrent conjunction, are translated into 

internal notations as follows:

• Sequential conjunction: seq([ai, 0 2 , --, <%»]) is the internal representation of transac

tion formula Ui * aa * ... * a„.

• Concurrent conjunction: conc([ai, aa, ..., a„]) is the internal representation of the 

transaction formula a i# aa# ...# a„ .

• Modality operator: isolateiO) is the internal representation of o{0).

Constraint formula notations involving priority and timing constraints are translated as 

follows:
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•  Priority constraint: a{priority{Level)) is the internal representation of the transac

tion a with the priority constraint priority{Level, a).

•  Timing constraint:

seq([timeElapsed(a, Time),or{[seq{[isolate{seq{[event{a, T im e),now {X),

db{startMme{Y)), X  > =  Tim e  +  Y, del(event{a, Time))]))

, b]), seq{[event{a, Tim e), a])])]) 

is the internal representation of the rule body of a b, where a is triggered by 

the timing constraint timejBZapsed(Time) triggerEvent{a). Note: the predicate 

timeElapsed(Time) in the translated intermediate file is replaced by this internal 

notations with the TV-CTTZ prototype interpreter recognizable built-in predicate 

timeElapsedia, Time).

The next examples illustrate these translation methods of internal syntax.

E xam ple  4 (T ransla ting  sequentia l and  co n curren t goals) Suppose a goal con

nected with sequential and concurrent conjunctions is as the form of:

p a*  bftc.

Like the CTTZ compiler, TV-CTTZ compiler translates it into the following internal syn

tax:

trans{p) conc([seg([a, 6 ]),c]). D

If a rule has priority constraints, it is translated as shown in the example below:

E xam ple  5 (T ransla ting  p r io r ity  constra in ts)  Suppose in a transaction-base, there 

is the following simple priority constraint concurrent Horn rule:

p a # 6  ; priority {a, 8).

which has the following intermediate and internal representations during and after com

pilation:
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p a{priority{8)) #  6 . - Intermediate syntax, i.e., equivalent CTTZ rule
trans{p) conc{[a{priority{8)),b]). - TP-CTT?. internal syntax

□

The following example shows the original, intermediate and internal syntax in the case 

of a timing constraint concurrent Horn rule.

E xam ple  6 ( T ransla tion  o f  tim in g  constra in t ru les)  The rules below specify the 

concurrent execution transactions a and b. For the sake of easy understanding, the two 

transactions are just assigned simple tasks. The transaction formula a is scheduled to 

execute ten seconds after the execution begins.

p :- in itT im e  * {a^b) : tim eE lapsed (10 )tr iggerE ven t{a ). 

a monitor {^transaction a completed'), 

b monitor {'transaction b completed').

As the first step, the 'TV-CT7Z compiler I translates the TV-CTTZ program above into 

the following CTTZ program:

p :- in itT im e  * (u # 6 ).

a timeElapsed{10) * monitor {^transaction a completed'), 

b monitor {^transaction b completed').

Then the TV-CT'fZ compiler II translates the CTTZ program into an internal notation.

trans{p) seq{[initTime, conc{[a, 6])]).

trans{a) seq{[timeElapsed{a, 10), or{[seq{[isolate{seq{[event{a, 10),now{X), 

db{startiime{Y)), X  >= 10 +  Y, del{event{a, 10))])), 

m.onitor{'transaction a completed')]), seq{[event{a, 1 0 ), a])])]). 

trans{b) monitor {^transaction b completed').

□
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\%en a TV-CT'R, program combines timing constraints and priority constraints, it is 

translated in the way as shown in the example below.

E xam ple  7 (T ra n sla tin g  p r io r ity  and tim in g  co n stra in t)  Suppose we add a con

straint to the rule p shown in Example 6, resulting in the following rule;

p in itT im e  * (a#b) : timeElapsed(lQ) triggerEvent{a)

A priority{a,8).

First, the TV-CTTZ compiler I translates them into the following CT7Z program: 

p :- in itT im e  * (a{priority{8))i^b).

a{priority{Z)) : — timeElapsed(10) * monitor{'transaction a completed'), 

b monitor (transaction b completed').

Then the TV-CTTZ compiler II translates the CTTZ program above into the following 

internal notation:

transip) seq{[initTime., conc{{a{priority{8)), &])]).

trans{a{priority{Z))) seq{[timeElapsed{a{priority{Z)), 10), or{[seq{[isolate{seq{[ 

event{a{priority{Z)), 10), now{X), db{startJim e{Y)), X  > =  10 -f- Y, 

del{event{a{priority{Z)), 10))])), monitor{'transactionacompleted')])

, seq{[event{a{priority{Z)), 10),a(pHority(2'))])j)]). 

trans(b) monitor{'transaction b completed').

□

By recursively applying the translation rules above, the TV-CTTZ compiler translates 

a transaction-base file into a TV-CTTZ transaction-base object file.

5.1.2 The TV-CTTl P rototyp e D atabase

The syntax and semantics of the TV-CTTZ prototype database is the same as in the CTTZ 

prototype database. The only difference is that internally, the system uses a couple of
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other system predicates. In the TV-CTTZ prototype databases, there are three system- 

required database tuple declarations in TV-CTTZ prototype databases, namely:

• updatable event/2. - the declaration of timing-event-to-be-triggered list

• updatable priority L is t/I .  - the declaration of concurrent transaction priority list

• updatable startJtime/1. - the declaration of execution start time

5.2 The TV-C TTZ  Prototype Interpreter

The TV-CTTZ prototype interpreter consists of inference engine and relational oracle, as 

the CTTZ prototype interpreter shown in Figure 3.3. Although both the CTTZ prototype 

and the TV-CTTZ prototype use the same relational oracle, the TV-CTTZ prototype 

interpreter use a different inference engine. Compared to the CTTZ inference engine, it 

implements the notion of hottest component instead of hot component, as shown in Chap

ter 4. During execution, the TV-CTTZ inference engine picks up the hottest transaction 

component, i.e., the first highest-priority-level element in the hot component queue.

The interpreter is the key module of the TV-CTTZ prototype. The user interacts 

with the prototype by presenting transaction goals to be executed, execute{Goal). The 

interpreter then picks up the hottest component of the goal for execution. If the pro

gram in the transaction base does not include any constraints, the priority level of all 

transactions is considered as the default lowest priority level. In this case, the no

tion of hottest component introduced in TV-CTTZ system is analogous to the notion 

of hot component introduced in CTTZ system because the underlying simplified Rate- 

Monotonic algorithm handles the non-priority-constraint goals in the same way as that 

of the Round-Robin algorithm.

The inference engine of TV-CTTZ uses the underlying scheduling algorithm to pick up 

the hottest component in a concurrent transaction execution. It also interprets the prior

ity and timing constraints and drives the execution of the transactions. The rest of this
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îction is organized as follows: Next we introduce the adopted underlying scheduling algo

rithm - simplified Rate Monotonie Algorithm(SRMA)[10]. Then we present how priority 

constraints are interpreted, and how the S R M A  schedules the concurrent transactions. 

Finally, we present how the TV-CTTZ timing constraints are interpreted.

5.2.1 U nderlying Scheduling A lgorithm  in th e TV-CTTZ Inter
preter

Before introducing the underlying scheduling algorithm in the TV-CTTZ interpreter, we 

first give a brief introduction of the Round-Robin scheduling algorithm used in the CTTZ 

interpreter.

Round-Robin Scheduling Algorithm

The Round-Robin algorithm is one of the oldest, simplest and most widely used schedul

ing algorithms, designed especially for time-sharing systems. It assigns each concurrent 

process an unit of time in a one-by-one sequence and feeds the process tha t has used up its 

share of time back to the end of the sequence. In CTTZ, Bonner made a small adjustment: 

using one step transaction execution instead of one unit of cpu time, to simplify trans

action execution in a concurrent sequence. Thus, the Round Robin scheduling algorithm 

in the CTTZ system assigns one execution step time to the selected transaction, which is 

in the head of the concurrent transaction sequence. In CTTZ, one execution step means 

one inference step. In this way, the CTTZ scheduler picks up the first hot component, 

executes one inference step, feeds the unfinished transaction component back to the end 

of the sequence, and releases CPU resource to the scheduler in the mean time.

The Round-Robin scheduling algorithm is a simple and effective algorithm for a concur

rent transaction system without priority demands. However, in reality, many concurrent 

transaction systems need to assign priority level to some special transactions. For exam

ple, in a classified-customer financial system, a transaction request from a higher level 

customer always has preference over that from a lower level customer. When faced with 

such requirements, the Round-Robin scheduling algorithm shows its application limita
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tion. In order to handle such types of applications, the TV-CTTZ system uses a simplified 

version of Rate monotonie algorithm.

Simplified R ate-M onotonie Scheduling A lgorithm

In the SRMA, each concurrent transaction is assigned a fixed priority by user or by default. 

Assuming task a and task b are concurrent execution transactions, during execution, the 

SRMA schedules tasks a and b in the following way:

• Task a can not be executed before task b finished, if task b has a higher priority 

level than task a.

• Task a has an equal chance to execute as task b, if task a and b have the same 

priority level.

In the design of TV-CTTZ, our main goal is to verify the logic of time-event-based prior

itized transaction systems, while introducing features of real-time systems, i.e., priority 

constraints and timing constraints. However, we do not include a great variety of real

time features a t current stage. More precisely, we ignore an important feature of real-time 

systems, deadline, which improves the efhciency of concurrent systems by giving up some 

tasks running over deadlines. Moreover, the fixed priorities of the system are assigned by 

users when writing TV-CTTZ programs. These adjustments simplify the Rate Monotonie 

algorithm in our system by ignoring the transaction execution period assessment and cor

responding automatic priority assignment, which is not important in a timing-event-based 

transaction verification system.

5.2.2 Interpreting and Scheduling Priority  C onstraints

Section 5.1 shows how the TV-CTTZ compiler translates a concurrent Horn rule with 

priority constraints. This subsection presents how the TV-CTTZ prototype interpreter 

interprets priority constraints represented in internal notations.
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After the translation by the TV-CTTi, prototype compiler, a priority constraint is 

dded as the first parameter of the corresponding transaction, as shown in the example 5. 

Then the T V-CTTZ prototype interpreter uses a SRMA to schedule constraint concurrent 

Horn rules. Each concurrent transaction in a TV-CTTZ program has a priority level, 

which is used to determine their execution priority. To find the first highest priority level 

transaction from a concurrent sequence, the SRMA needs to know both the priority level 

of a transaction and the highest priority level of the concurrent transaction sequence. In 

the TV-CTTZ prototype, lists are used to store these variants.

• The list priorityL ist stores all priority levels of the concurrent transactions in a 

priority descending order. For example, priorityL ist [3, 2,2] means there are three 

transactions in the concurrent sequence, and their priority levels are 3, 2 and 2, 

respectively.

• During interpretation, a transaction’s priority level is indicated by the last element 

of the transaction list, e.g., [seg([a, 5]), 2] means the seq{[a,b]) has priority level 2. 

The priority level will not disappear before this sequential transaction execution 

finishes.

The example below illustrates how priority constraints are interpreted by the TV-CTTZ  

interpreter according to the simplified RMA.

E xa m p le  8 (In te rp re tin g  a TV-CTTZ program ) Consider the following transaction 

base;

task  : — taskA ((-taskB i(taskC
: priority (task A, 1) A priority (task B, 2) A priority (taskC, 2). 

taskA  :- ins{in(a)).
ta skB  :- ins(in{b)).
taskC  :- ins{in{c)).

When interpreting the concurrent transaction task, the sub-transaction taskA , taskB  

and taskC  are converted to .ne following cone list in the TV-CTTZ prototype interpreter:
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conc([[ins(in(a)),l},[ins(in(b)),2],[ins(in(c)),2}])

where the respective priority level of each execution transaction is the last element of their 

list. The list priorityL ist is used to store the three transaction priority levels, as shown 

in Figure 5.2:

F igure  5.2: The list p r io r ity L is t  in TV-CTTZ  interpreter.

priorityList

priority
levelt

taskA

priority
levels

taskC

priority
Ievel2

taékB

Ievel2 levels levelt

where levell is the taskA's priority level 1, level2 is the taskB's priority level 2, and level3 

is the taskC’s priority level 2. The elements of the priority L ist sort in an descending order, 

from higher priority level to lower priority level. □

During interpretation, the SRMA uses the following steps to determine the hottest 

component:

1. Picks up the first element of the execution transaction list

2. Gets the priority level of the first element from the execution transaction list

3. Gets the highest priority level from the priority L ist {the first element)

4. If the current element’s priority level is not the highest priority level, puts it in the 

end of the execution transaction list, then returns to the first step, and repeats steps 

1 to 4.
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5. Otherwise, the element is the hottest component and the interpreter should execute 

one step of this element.

• If this step is the last step of the belonged transaction execution, deletes the first 

element of priorityL ist. Then returns to the step 1 if there is still transactions 

in the execution queue; or ends execution if no other transaction is left in the 

execution sequence.

• Otherwise, returns the remaining of this element to the end of the execution 

transaction list, and then returns to the step 1.

In such a way, the TV-CTTZ interpreter implements the inference system using a SRMA 

to formally execute TV-CTTZ programs.

5.2.3 Interpreting T im ing Constraints

At current stage, the TV-CTTZ prototype has two timing constraints: timeElapsed/1  

and delay/I. timeElapsed  is used to set an absolute timing relation, where a transaction 

is set to be triggered at an absolute time instant, delay is used to set a relative timing 

relation, where a transaction is set to start a period of time after the end of another 

transaction.

Actually, the timing constraints timeElapsed  and delay are similar from a logic view

point. The only difference is the start time instant. Figure 5.3 illustrates the underlying 

logic for these two timing relations.

Both timing constraints are handled using such logic within the TV-CTTZ interpreter. 

The timing constraint timeElapsed  uses the start-tim e{X) to retrieve the start time, 

which stores the start time instant of the whole execution. In TV-CTTZ, we use timing- 

event-based mechanism for this timing constraint: satisfaction of the constraint precondi

tion is used to trigger another transaction event. The TV-CTTZ interpreter uses an atom 

event to specify the triggered transaction. After the timing condition is satisfied and the
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Figure 5.3: Timing logic handled in the TV-CTTZ  interpreter.

No

Y >= X + D?

Yes

Get start time X

Next transaction

Get current time Y

Note: D is the specified delay

specified transaction is triggered, the atom event corresponding to this transaction is 

deleted from the database system.

The other timing constraint of the current TV-CTTZ prototype, delay, is used to 

define a delay relationship between two transactions. Thus, its start time is not the start 

time of the execution, but the start time of itself. When the specified delay time goes, 

the delay loop will end and it will go to the second transaction execution.
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Chapter 6 

T im e-based P rioritized  T V -C T IZ  
Program  E xam ples

To illustrate how TV-CTTZ can be used to specify priority and timing constraints 

in timing-event-based prioritized transaction system, this chapter presents two ex

amples in different application areas. More specifically, the first example regards financial 

transaction. The second example regards real-time logic control system.

6.1 A Time-based Financial Transaction Application

Example 9 is an extension of the financial transaction application presented in [1], where 

Bonner and Kifer illustrate how CTTZ can be used to specify the atomicity of financial 

transactions. Here we show how timing features and priority features in TV-CTTZ is used 

to schedule tasks in a long-run financial transaction application.

E xam ple  9 (Specifying tim e-b ased  p rio ritized  financial tran sac tio n s) For the sake 

of understanding, first we briefly introduce the rules used in Bonner and Kifer's financial 

transaction example in [1].

transfer{Am t, Acctl, Acct2) <— © {withdraw[Amt, Acctl)

® deposit{Amt, Acct2))

49
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withdraw{Amt, Acct) balance{Acct, Bal)

® Bal > Arat

® changeJbalance{Acct, Bal, Bal — Amt)

deposit{Amt, Acct) <— balance{Acct, Bal)

® changeJbalance{Acct, Bal, Bal +  Amt)

changeJ)lance{Acct, B a ll, Bal2) ■<— del{balance{Acct, Ball))

® ins(balance[Acct, Bal2))

The first predicate, transfer , specifies how a money transfer transaction is accomplished, 

i.e., by withdrawing an amount A m t from one bank account Acctl and then depositing 

the A m t into another bank account Acct2. The next two predicates, withdraw and de

posit, define the withdraw  transaction and the deposit transaction, respectively. Both of 

them use the predicate changeJbalance to update an account’s balance via the built-in 

elementary updates del(balance{Acct, Bal) and ins(balance{Acct, Bal).

Based on the above basic transaction rule definitions, the TV-CTTZ program below 

simulates a long-run time-based financial transaction scenario: to a source account, higher 

priority level transfer requests can always be answered even when normal transfer trans

actions are executing. In the program, a timed prioritized transfer transaction is assigned 

with a higher execution priority. Another transfer transaction process, assigned with the 

default priority level, runs recursively every two seconds until the remaining amount in 

the account is not enough for another transfer.

trans f  er-process +— transfer-queue{Feel, Client, Broker)

I trans fer-urgent{Fee2, Client, Urgent-Acct)

: timeElapsed{100) tirggerEvent{transferjurgent 

(Fee2, Client, Ur gent-Acct))

Apriority {transfer.urgent

{Fee2, Client, Ur gent-Acct), 2)

transfer-queue{Am t, Acctl, Acct2) <— balance{Acctl, Bal)
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0  {Bal > Amt)

0  trans fe r  {Amt, Acctl, Acct2)

0  delay{2)

0  transfer-queue{Amt, Acctl, Acct2) 

transfer-queue{Amt, Acctl, Acct2) +— monitorif trans f  er ends') 

tra n sa f erjurgent{Amt, Acctl, Acct2) ■«— transfer{A m t, Acctl, Acct2)

The first constraint concurrent Horn rule specifies the simulation process. It consists of 

two predicates, transfer-queue{Feel. Client, Broker) and transafer^ urgent(Fee2, Client, 

Urgent-Acct), which runs concurrently. The constraint formula specifies a timing event 

for transafer-urgent, which has priority in this concurrent execution and is scheduled 

to take place 100 seconds after the simulation starts. The transaction transfer.queue 

implements a long-run series of bank account transfer transactions, in which an amount 

F eel is transferred from one account Client to another account Broker, and the transfer 

process is called recursively every two seconds until the balance of Client is smaller than 

the amount Feel. In this example, we adjust the initial amount of the account Client 

and the transferred amount F ee l to ensure the transaction transfer-urgent is triggered 

during the execution of the transaction transfer-queue.

The result shows that the specified prioritized event takes place right at 100 seconds, 

and the transaction tra n sa f er-urgent is triggered and then interrupts the normal transfer 

process by becoming the hottest component of the concurrent conjunction. As expected, 

the amount Fee2 is thus transferred from the Client's account to the urgent account 

Urgent-Acct with priority. Only after this prioritized transfer transaction is completed, 

the interrupted normal transfer process can then resume its normal execution.

□
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6.2 A Simplified Elevator Logic Control Application

Besides the area of database transaction, applications, TV-CTTZ can also be used to

simulate real-time control systems. Working with priority constraints, a timeElapsed 

timing-event-based constraint can create an interrupt functionality, which is scheduled to 

take place at specified time. The interrupt is one key feature of a real-time control system. 

Example 10 presents how to use TV-CTTZ to simulate the interrupt in an elevator logic 

control system.

E xam ple  10 (S im u la ting  a sim plified  elevator controller) For the sake of under

standing, below we present the assumptions for a simplified elevator controller model and 

basic control logic rules:

• The elevator is for a ten-floor building with one stop button on each floor. When 

the button is pushed, a stop request is sent to the controller.

• The elevator cage takes about 3 seconds to go up or down one floor.

• Every floor has a location sensor to indicate the elevator’s position.

• In any exceptional case, the elevator should take stop action immediately.

Based on these assumptions, the program below specifies the simplified control logic for

the elevator controller:

simulate ■t— moving-control{stop)
I userjrequest | accident 
: timeElapsed{Sl) —>■ triggerEvent{accident)
A priority {accident, 2) 

userjrequest reg(5) | req(8] j req(2)
: timeElapsed(lO) trigger Event {req{5))
A timeElapsed{30) —> triggerEvent{req{8))
A timeElapsed{5Q) triggerEvent{req{2))

req(Level) *— ins{stopjreq{Level))
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m.ovingj2.onirol{3tatus) <— Status =  stop 

® stopjreq{Level)
® moveto{Level)
® dei{stopjreq{Level))
® moving-.control^stop) 

moving-control{Status) •«— moving-control{stop)

maveto{Level) accSignal
® stop-handle 

maueto{Level) ■*— not accSignal
® getLocation{X)
® X  <> Level 
® moveto{Level) 

moveto{Level) +— not accSignal
® getLocation{X)
® X  = Level 
® stop-handle

accident ins{accSignal)

where basic atomic formulas and built-in predicates in the specification have the following 

definition:

• The atomic formula stop-req{Level) is used to store the stop requests to be an

swered.

• stopJiandle is a built-in predicate to stop the elevator.

• getLocation{X] is a  built-in predicate to retrieve the current elevator location.

• The atom accSignal is used to denote an urgent exceptional event.

In the program, the first constraint concurrent Horn rule specifies the entire simula

tion process. It consists of three concurrent transactions, moving-control^ userjrequest 

and accident. The constraint formula specifies an exceptional event: an accident which 

is scheduled to take place at 31 seconds after the simulation starts. The predicates 

moving-control and userjrequest implement the normal elevator control logic. The pred

icate userjrequest simulates use case scenario: three stop requests are scheduled to take
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place at specified times. The predicate moving-control is used to control the elevator: 

moving to a floor according to the stop requests. The predicate moveto{Level) performs 

the elevator moving action, and monitors any exceptional accident as well.

"Wdien the specified accident takes place at the 31 seconds time instant, because of its 

priority, the predicate accident works as an interrupt and notifies the system at once by 

inserting the atom accSignal into the database. In our case, the elevator is still moving 

from 5th floor to 8th floor at that time. The predicate moveto{Level) receives this signal, 

then correspondingly executes the predicate stopJiandle to stop the elevator at once. □

This example demonstrates that TV-CTTZ can be used to simulate some intrinsically 

real-time phenomena, e.g., the interrupt effect and timing relations. By elaborately com

bining priority constraints and timing constraints in different ways, we can verify different 

elevator logic control cases with the TV-CTTZ program.
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C hapter 7 

C onclusions and Future W orks

IN the previous chapters, we presented an extension of Concurrent Transaction Logic, 

a formalism originally designed to handle state changes in deductive databases. We 

extended CTTZ by defining a logic framework in which the user can not only specify 

concurrent transaction processes as logic programs, but also define priority and timing 

constraints on these processes. This increases the flexibility and power of the language. 

Users are no longer forced to schedule the transaction order only by the sequential con

junction and concurrent conjunction. The execution order of concurrent transactions can 

also be specified or changed by extra ways: assigning timing constraints and priority con

straints to these transactions. The interrupt effect created by combining the event-driven 

feature of the timing constraint timeElapsed  with priority constraints schedules trans

actions in a more flexible and powerful way, and thus opens the logic to a new range of 

advanced application, e.g., real-time domain application, long-run time-related applica

tion, digital circuit design with clock-driven and continuous-simulation of the designed 

digital circuit, etc.

To allow the formal execution and thus the simulation of such programs, we introduced 

an inference system that is able to handle priority constraints with the underlying sim

plified Rate-Monotonic scheduling algorithm. The formal execution of programs works 

as SLD-style refutation mechanism. By this way, our approach provides a high-level 

framework for specifying and executing transaction logic programs involving priority and
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timing properties. Also, we have shown how logic programming techniques can be used 

to implement real-time database application domains.

To make theory meet practice, we have implemented our TV-CTTZ prototype in XSB 

Prolog and have tested the examples presented in this thesis.

There are still some issues left open, especially real-time issues. Below we elaborate 

on them.

• Sophisticated Timing Constraints. The timing properties in our timing constraint 

are quite straight-forward at present stage. It only handles the timing property of 

a transaction when to be triggered, and a delay relation between two transactions. 

However, in reality, timing properties of a real-time system are much diverse, such 

as described in [4, 5, 6]. Some of them relate to the deadline of a transaction as 

well as the initial time instant. Adopting these ideas into the TV-CTTZ timing 

constraint will be valuable to expand its real-time application domain.

• Underlying scheduling algorithm. The current TV-CTTZ possible prototype uses 

a simplified Rate Monotonie Scheduling algorithm to schedule concurrent transac

tions. In real-time domain, this algorithm is straight-forward and may be inefficient 

in some cases. It should be possible to adopt a more sophisticated scheduling algo

rithms, to improve the performance of the TV-CTTZ prototype in real-time domains.
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A p p en d ix  A  

T V -C T n  Tutorial

A .l 'TV-CTTZ Prototype File System

The TV-CTTZ prototype in this thesis is extended on the base of Concurrent Transaction 

Logic with Recovery prototype available in [17]. It consists of the following models:

• ctr.P  - the basic TV-CTTZ interpreter

• parser.P  - a parser for TV-CTTZ  rules

• updates.P - the code for back-trackable updates

• load.P - startup routine th a t loads the prototype modules

• upload.P - a module including rules to load a TV-CTTZ transaction-base and a 

database into X S B  system.

• tim er.P  - including TV-CTTZ system rules regarding timing constraints

A.2 Getting Started

The TV-CTTZ  prototype was implemented in XSB Prolog, and consists of the modules 

introduced above. To run the implementation, at query prompt, the load module must 

first be consulted, then invoke the predicate ctrAnit. The predicate ctr.in it is defined

57
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in the module to load all necessary files into XSB Prolog and initialize the necessary 

parameters. Below we illustrate how the user interacts with the system.

$xsb -i

XSB Version 2.5 (Okocim) of March 11, 2002

[i686-pc-linux-gnu; mode; optimal; engine: slg-wam; gc: indirection; scheduling: local]

I ? — [load].

[load loaded] 

yes

I ?  — ctr-init.

[ctr loaded] - basic TV-CTTZ interpreter

[updates loaded] - code for back-trackable updates

[parser loaded] - parser for prototype rules

[upload loaded] - compilers for loading and translating rules

[timer loaded] - embedded timing constraints

[scrptutl loaded] - necessary XSB system module for system timing predicates 

yes

A.3 TV-CT7Z  Prototype Commands and Program Files

Like CTTZ programs, T'P-CTTZ programs are also stored in the transaction-base and 

database with filename extensions .ctr and .dh, respectively. Although in some cases the 

database file maybe empty, it is still needed in our prototype.

A .3.1 C om piling C om m ands in TV-CTTZ

The TV-CTTZ  programs are compiled with the following three commands:

•  ctr-Comp{programjname).  - to compile both the transaction-base and database;

• comp-transiprogramjname). - to compile the transaction-base only;
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’ comp-db{programjname). - to compile the database only.

where program_name is the filename of the TV-CTTZ program without extension. After 

compiled, a TV-CTTZ  transaction-base file generates two files:

prograrri-name. ctr. temp 

program-name. ctr. o

where program-na.me.ctr.tem p  is an intermediate compiled file, in which the timing con

straints and priority constraints have been translated into a recognizable CTTZ program. 

The program-name.ctr.o file is the final transaction object file via the underlying T V -  

CTTZ compiler.

Like the CTTZ database object file, a TV-CTTZ compiler creates a TV-CTTZ  database 

object file with the name;

program-uame.db.o

where the extension .db.o denotes the file to be a database object file.

A .3.2 E xecu tion  C om m and

To execute a transaction in the TV-CTTZ program after compilation, the user uses the 

following command:

execute (transaction-name).

where transaction-name is the head of one of the rules in the transaction-base file.

A.4 The T V -C T 71  Prototype Syntax

A .4,1 Transaction R ules

The constraint concurrent Horn rules consists of three parts: a rule head, a rule body, 

and a constraint body.

Head Body : Constraint Body.
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or

Head Body. 

or

Head.

where

• Head is an atomic-formula;

• Body is a sequence of transaction actions (or queries) connected by any of the 

following conjunction operators:

— sequential conjunction(+),

— concurrent conjunction(#),

— isolation (o).

• Constraint Body is a sequence of the following constraints connected by conjunction(A) :

— timing constraint timeElapsed{X) <— triggerEvent{Transactionjname),

— priority constraint priority {Transaction-name, Priority.Level)

A .4.2 D atabase R ules

A database is any Prolog rule or atom in the forms of format:

Head Body. 

or

Head.
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.5 Built-in 'TV-C'T'IZ Predicates

The prototype has some built-in predicates, which are used in the transaction-base or 

database. These predicates should not be re-defined by the user.

A.5.1 D atabase D eclaration

Database atoms represent tuples in a relation. Like table in relational database, a relation 

should be declared before it can be accessed. The statement below declares a database 

relation N am e  with arity NArgs:

updatable Name/Nargs.

By default the following basic system database declarations and tuples are always declared 

for any TV-CTTZ program;

updatable event/2 - timing driven event list 

updatable start-tim e/1 - start time instant of an execution

updatable priorityList/1 - a current executed transaction priority list in descending

order

priority List ([ ]) - the initial empty list

A .5.2 B u ilt-in  Predicates in Transaction-base

For the declared database atoms, there are three built-in predicates for accessing them:

• db{p{x)) and empty{p{x)) - query atomp(æ) in the database

• ins{p{x)) - inserts atom p{x) into the database

• del{p{x)) - deletes atom p{x) from the database

At present stage, there are the following built-in constraint predicates:
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• timeElpased{X) - a timing constraint based on an absolute timing instant

• delay{X) - a timing constraint based on a relative timing instant

• priority{Transactionjname, priorityJevel) - priority constraint

Besides, in the TV-CTTZ prototype we have kept the useful CTTZ monitor command 

below, which can be used to trace a transaction execution.

monitor (Task).

where Task is a name or a term. Note that monitor {Task) does not execute Task, it 

only displays messages. When the monitor executes, it displays one of the messages:

• Completed Task - when monitor{Task) is executed.

• undoing Task - when monitor {Task) is rolled back.

A. 6 Programming Examples

The following examples illustrate some simple TV-CTTZ programs and their execution. 

They are executed in XSB Prolog, with the loaded TV-CTTZ prototype.

Exam ple A .l  Concurrent Processes w ith Priority Constraints

The following program executes three concurrent non-interacting transactions. The 

three transactions have different priority levels and has two tasks respective. The program 

name is interleave. Below are the contents of the database file and transaction file.

Database file inter leave.db:

updatable event/2, 

updatable priorityList/1. 

priority List ([]).

Transaction Base file interleave.ctr:
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parent ta skA # ta skB # ta skC  : priority (taskA, 2) A

priority {taskB, 2) A 

priority (taskC, 1). 

taskA monitor (taskA 1) * monitor (task A2).

taskB monitor (taskB 1) * monitor (taskB 2).

taskC monitor(taskCl) * monitor(taskC2).

Compiling the program and executing a transaction:

1 ?- ctr_comp(interleave). - compile the program

yes

1 ?- execute (parent). - execute the parent goal

completed taskA 1 - complete the first task of taskA

completed taskB 1 - complete the first task of taskB

completed taskA2 - complete the second task o f taskA

completed taskB2 - complete the second task o f taskB

completed taskCl - complete the first task of taskC

completed taskC2 - complete the second task o f taskC

yes

E xam ple A .2 In te r ru p t  in  C o n cu rren t P rocesses

This example shows how the interrupt is created by combining a timing constraint 

and a priority constraint in a long-run program. The initial process is timed to start at 1 

sec after the execution start, and the three concurrent sub-processes of the process parent 

have the same priority level. The subprocess of the initial process, interrupt, has higher 

priority level in the concurrent execution.

Database file interrupt.db:

updatable event/2, 

updatable startAime/1. 

updatable a/1.
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updatable priority L ist/1. 

priority List ([]). 

finished not (unfinished),

unfinished a(X). 

a(lOO). a(99). - - a(l). a(0).

Transaction Base file interrupt.ctr

parent in itT im e  * {long-runJtransactionij^initialfi^shortJtransaction)

: timeElapsed{\)— > triggerEvent{initial)

Apriority (long jrun-transaction, 2)

Apriority (initial, 2)

Apriority(short-transaction, 2). 

long-run-transaction:-o(del(a(X)) * monitor(X)) * longsun-trausaction. 

longjrumtransaction finished.

initial monitor (interrupt Jnit-task) * interrupt : priority(d, 5).

interrupt m onitor(interruptJaskA) * monitor (interrupt JtaskJl). 

short-transaction monitor(short-transaciotnJ,ask-\)

*monitor(short-transactionJask-2)

*monitor(short-transaction-task-3)

*monitor(short-transaction-taskA).

Compiling the program and executing a transaction:

I ?- ctr.comp(interrupt). - compile the program

yes

I ?- execute(parent). - execute the parent goal

completed 100 - shows one round of longer un-transaction is

completed

completed short_transaction_task_l - shows one round of short-transaction is

completed short_transaction_task_2 completed
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impleted 99

impleted short_transaction_task_3 

completed short_transaction_task_4 

completed 98

65

completed 75

completed interrupt jnit_task 

completed 74

completed interrupt_task_l 

completed interrupt _task_2 

completed 73

shows the initial task of the interrupt is 

completed

shows one task of the interrupt is completed

completed 0 

yes
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