
NOTE TO USERS

This reproduction is the best copy available.

UMI

C O N C U R R E N T T R A N S A C T IO N
LO GIC W IT H P R IO R IT Y A N D

T IM IN G C O N ST R A IN T S

by

JIWEN GE
B.Eng

Hangzhou, ZheJiang, P.R.China, 1989

A thesis

presented to Ryerson University

in partial fulfillment of the

requirement for the degree of

Master of Applied Science

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2004

Ĝ JPATDN GE2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: EC52923

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform EC52923

Copyright 2009 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PC Box 1346
Ann Arbor, Ml 48106-1346

Borrower’s Page

Ryerson University requires the signatures of all persons using or photocopying this thesis.
Please sign below, and give address and date.

Nam e Signature Address D ate

Ill

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C O N C U R R E N T TR A N SA C T IO N LOGIC W ITH PR IO R IT Y
A N D TIM ING C O N STR AIN TS

Master of Applied Science 2004

JIWEN GE

Electrical and Computer Engineering

Ryerson University

Abstract

Concurrent Transaction Logic {CTTZ) is a deductive language for programming database

transaction applications that integrates queries, updates, and transaction composition in

a complete logical framework. The language supports all the properties of classical trans

actions and the properties found in some new transaction models, e.g., sub-transactions,

transaction rollback, and concurrent transactions.

The contributions of this thesis are twofold. First, it extends CTTZ to account for

timing-event-based prioritized concurrent systems in which transactions may have pri

ority and timing constraints. This extension of CTTZ, here called TV-CTTZ, provides

a high-level logic programming framework for specifying and simulating executions of

timed transactions and trigger-events commonly present in real-time concurrent appli

cations. Second, it describes a Prolog implementation of TV-CTTZ. The implemented

TV-CTTZ prototype supports the translation from TV-CTTZ to CTTZ. Underlying this

protocol, we use a simplified Rate-Monotonic algorithm [10] to schedule the execution of

constraint concurrent transactions and built-in timing predicates to handle transaction

time-r dations.

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgment

I appreciate the support and encouragement from Dr. Marcus Vinicius Santos , my

supervisor. His expertise in Transaction Logic and Logic programming was instrumental

for this work.

I would hke to thank all the committee members for their participation in my thesis

defense.

I would like to thank the Electrical and Computer Engineering Department at Ryerson

University for the financial support of my study and research.

I would like to thank all staff of the Electrical and Computer Engineering at Ryerson

University for their kind help.

I wish to convey the warmest thanks to my family for their endless support.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C ontents

1 Introduction 1

2 An introduction to CTTZ 5

2.1 S y n tax .. 5

2.2 Database States and Elementary Updates ... 7

2.2.1 The Relational O r a c l e .. 7

2.3 Examples oî CTTZ F orm ulas.. 8

2.4 CTTVs Inference S y s te m ... 13

3 The CTTZ Prototype 16

3.1 System Description of the CTTZ P ro to ty p e ... 16

3.2 Executing CTTZ Prototype F o rm u la s ... 22

3.2.1 Sequential E x ecu tion ... 22

3.2.2 Concurrent Execution .. 23

3.3 State Updates and Q ueries..24

4 TV-CTTZ 26

4.1 Syntax of TV-CTTZ Priority and Timing C onstrain ts 27

4.2 Informal Semantics of TV -C TTZ .. 28

4.3 Inference S y s te m .. 30

4.4 Interpreting Constraint Concurrent Horn Rules .. 33

4.4.1 Compiling Priority C o n s tra in ts .. 33

4.4.2 Using the Inference System to Execute Transactions......................... 34

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4.3 Compiling Timing C onstraints.. 34

5 The TV-C TTl Prototype 36

5.1 The TV-C TTl Prototype C o m p ile r... 36

5.1.1 Transaction Base Internal S y n ta x .. 38

5.1.2 The TV-C TTl Prototype D a tab ase ... 41

5.2 The TV-C TTl Prototype In te rp re te r ... 42

5.2.1 Underlying Scheduling Algorithm in the TP-CTTi Interpreter . . . 43

5.2.2 Interpreting and Scheduling Priority Constraints................................... 44

5.2.3 Interpreting Timing C onstrain ts.. 47

6 Time-based Prioritized TV-C TTl Program Examples 49

6.1 A Time-based Financial Transaction Application... 49

6.2 A Simplified Elevator Logic Control A pplication ... 52

7 Conclusions and Future Works 55

A TV -C TTl Tutorial 57

A.l TV-CTTl Prototype File S y s te m .. 57

A.2 Getting S ta r te d .. 57

A.3 TV-C TTl Prototype Commands and Program F ile s 58

A.3.1 Compiling Commands in T V -C T T l .. 58

A.3.2 Execution C om m and.. 59

A.4 The TV-C TTl Prototype S y n ta x .. 59

A.4.1 Transaction R u les.. 59

A.4.2 Database R u le s .. 60

A.5 Built-in TV-C TTl P re d ic a te s .. 61

A.5.1 Database D eclaration.. 61

A.5.2 Built-in Predicates in Transaction-base.. 61

A.6 Programming Examples .. 62

YU

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

vui

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f F igures

3.1 Use case diagram for the CTTZ. s y s te m .. 17

3.2 The CTTZ p ro to ty p e ... 17

3.3 The CTTZ In terpreter.. 18

3.4 The CTTZ program files .. 18

3.5 CTTZ prototype use case scen a rio .. 21

5.1 The TV-CTTZ compiler... 37

5.2 The list priority L ist in TV-CTTZ interpreter... 46

5.3 Timing logic handled in the TV-CTTZ interpreter.. 48

IX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Tables

2.1 A deduction for program (2 .2) ... 15

3.1 Corresponding notations used in the CT7?. prototype and C T T ^ 19

4.1 A deduction for program (4 .3) ... 34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 1

In troduction

T h i s thesis introduces concurrent transaction logic with priority and timing con-

straints(T7^-CT7?.), an extension of Concurrent Transaction Logic {CTTZ). T V -

CTTZ is designed to provide a high-level logic programming framework for specifying and

simulating the control logic of time-related concurrent systems.

Concurrent Transaction Logic is a recently proposed deductive database language,

introduced by Bonner and Kifer in [1]. It is based on Transaction Logic (TTZ) [3], also

known as sequential Transaction Logic. CTTZ extends TTZ with connectives for modeling

the concurrent execution of complex processes, in the sense tha t it integrates concurrency,

communication, and database updates ir a complete logic framework.

In CTTZ., concurrency is accomplished by interleaving the execution of concurrent

transactions. Such mechanism is implemented in the CTTZ prototype in terms of a pure

Round-Robin algorithm [10]. Hence, in CTTZ, the underlying scheduling algorithm for the

selection of next executed transaction component from a concurrent transaction execution

does not follow any explicit priority-based scheme.

As for sequential transactions, CTTZ uses the sequential conjunction operator (®) to

denote the order of transaction execution, e.g., a ® b ® c means: first executes transaction

a, then transaction h, then transaction c. Exception handling excluded, in CTTZ, there is

no other mechanism one can use to force a particular execution sequence of transactions.

Moreover, CT% does not provide any timing constraint type predicate which is necessary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2
for embedding scheduled events m a database transaction application system, e.g., a

real-time database application in which some events can trigger expected transactions at

specified times.

The study on the use of logics in real-time systems has been the subject of substantial

research in the past and nowadays. In [4], Bellirl and Mattolini reviewed a selection of the

most representative temporal logics designed for real-time systems. For the specification

of a real-time system behaviour, the time behaviour of a system is naturally described

with constraints on event occurrences in [5]. Chen and Tsai present a modification of a

pure temporal logic in [6], describing the system behaviours in terms of absolute timing

of events as well as their relative ordering which can tell when the state actually occur.

Torp and Jensen even assigned data with time properties in [7] .

As well, Ulusoy and Sivasankaran studied the use of logics to specify priority properties

in real-time systems [8, 9] respectively. More specifically they focus on the design of

scheduling algorithms to improve the protocol efficiency and maximize the number of

transactions satisfying their real-time constraints.

However, these works focus either on priority constraints or on timing constraints.

They do not combine these two types of constraints in one logic framework. We deem

this greatly limits their application as formalism for specifying timing-related systems. In

our approach, on the other hand, we are able to handle both types of constraints.

To be able to provide a formalism for specifying and simulating timing-event-based

systems with explicit priority, in this thesis we extend CTTVs inference system by defining

a priority-constraint-based inference system, which allows us to formally execute formu

las using a SLD-style refutation mechanism. Such inference system is implemented in

the interpreter in terms of a simplified Rate-Monotonic Scheduling algorithm instead of

a pure Round Robin scheduling algorithm. Our logical framework also introduces tim

ing constraint formulas for specifying timing properties commonly found in real-time

application domains. This improved timing-event-based concurrent transaction logic we

call TV-CTTZ. Like CTTZ, TV-CTTZ is a language for programming database transac

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3
tions and applications. TV-C T7Vs timing and priority constraints enable programmers

simulate real-time features in TV-CTTZ, e.g., time-event-driven and interrupt. The time-

event-driven feature can be simulated by the TV-CTTZ’s timing constraints. Also, the

key feature of real-time software system, interrupt, can be created by combining these

two constraints: timing constraints and priority constraints. These features extend the

use of logic programming languages to timing-event-based real-time database transaction

apphcations.

A lot of real-time simulation platforms, current in use or under research, use procedure

languages to design the real-time system, such as c in VxWorks [11] and RT-Linux [12].

It is unquestionable tha t the solutions designed by procedural languages usually provide

high performance for real-time applications. But this is not always the case. To some real

time systems, e.g., real-time database applications, real-time systems with complicated

control logic, simulations designed with procedural languages appear to be difficult and

timing-consuming jobs. This is because procedural languages focus on computation result.

But complicated logic include numerous computation results corresponding to the large

amount of composite scenarios of pre-conditions. In such cases, simulating with procedural

language is timing-consuming and low efficient. On the other hand, logic programming

shows its advantages on this problem since logic programming focuses on the nature of

control logic and explores every possible solution of it. As a type of logic programming,

TV-CTTZ not only has the natural advantages of logic programming to handle complicated

control logic problems, but also includes real-time functionalities. By combining priority

and timing constraints, and the high-level logic programming framework provided by

CTTZ-has&à approaches in a complete logic framework, TV-CTTZ provides a possible

better solution to handle these real-time applications with complicated control logic over

procedural language c.

Along with the introduction of TV-CTTZ, the thesis also presents an implementation

of TV-CTTZ in Prolog, based on the CTTZ prototype. It is assumed that the reader is

already familiar with Prolog. The prototype runs on the XSB prolog interpreter [15, 16],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

currently the most efficient deductive database system.

Thesis Outline

The thesis is organized as follows:

• Chapter 2 briefly presents the essentials of CTTVs syntax and semantics. Those

readers more acquainted with CTTZ could skip this chapter.

• Chapter 3 describes a system view of the CTTZ prototype software, and gives a

detailed description of how program execution and scheduling take place in the

prototype.

• Chapter 4 introduces TT^-CTTZ, its priority and timing constraints syntax, infor

mal semantics and inference engine, and shows how the inference engine is used to

execute constraint concurrent transaction Horn rules.

• Chapter 5 presents the developed TV-CTTZ prototype, focusing on the differences

between the TV-CTTZ prototype and the CTTZ prototype.

• Chapter 6 provides TV-CTTZ program examples on two different application areas,

namely, time-based database transaction, and real-time control system.

• Chapter 7 concludes the work and elaborates on possible improvements.

Besides, the thesis includes one appendix, which presents a tutorial on how to use the

software application developed in this thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 2

A n in troduction to CTTZ

Co n c u r r e n t Transaction Logic is a deductive database language for program

ming database transactions and applications. The language, an extension of Trans

action Logic [3], integrates concurrency, communication, and database updates in a com

plete logic framework. This chapter outlines the language using the terminolog}^ of de

ductive databases. Details are available in [1, 2].

2.1 Syntax

The syntax of Concurrent Transaction Logic is similar to th a t of first order logic, ex

cept th a t it extends first-order logic with three new logical connectives; ® , called

sequential conjunction-, | , called concurrent conjunction-, and a modality of isola

tion, O , for specifying atomic actions that executes atomically and in isolation, i.e., it

does not communicate or interact with other programs. These operators are used to spec

ify queries and to combine simple transactions into complex ones. The resulting logical

formulas are called transaction form ulas.

In certain important situations, CTTZ has an elegant, top-down, SLD-style proof pro

cedure tha t can be expressed within CTTZ itself. The definition below, lists the conditions

that characterizes these situations. The subset of CTTZ that satisfies these conditions is

called the Horn fragment of CTTZ.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6
D efin ition 1 (T he H a m fragm en t o f CTTZ) The syntax of the Horn fragment of

CTTZ is defined recursively as follows:

• An atomic formula is an expression of the form p(ti, where p is a predicate

symbol, and ti, are terms.

• A concurrent sequential goal is in any formula of the form:

— An atomic formula; or

— ai ® ... ® af, or

— Ui I ... 1 a,; or

— O Ui

where each Uj is a concurrent sequential goal, and i > 0.

• If a is a concurrent sequential goal and t is an atomic formula, then t <— a, is a

concurrent Horn rule.

• A transaction base is a set of concurrent Horn rules.

□

If a and b are transaction formulas, then informally:

• a® b means: first execute a, then execute b.

• a \ b means: execute a and b concurrently.

• Qa means: execute a “atomically” , i.e., without interleaving with other transactions.

® t •*— a means: to execute t is sufficient to execute a.

\

Reproduced with permission of the copvriqht owner. Further reproduction prohibited without permission.

7
2.2 Database States and Elementary Updates

In CTTZ, a pair of oracles, called state data oracle and state transition oracle, specify

elementary database operations. The state data oracle specifies a set of database state

queries, and the state transition oracle specifies a set of database elementary updates.

These oracles are not fixed because any pair of oracles can be plugged into a CTTZ theory.

For ease of reference, below we present the definition of these oracles, introduced in [3].

D e fin itio n 2 (s ta te da ta oracle) A state transition oracle O' ,̂ is a mapping from sets

of state identifiers to sets of first-order formulas. □

Intuitively, if Dj is a state identifier, then O'^(Di) is the set of formulas considered to be

all the truths known about the state Dj. In practice, it is not necessary to materialize

all these truths. Because, given a logical formula 4> and a state identifier Di, the proof

theory for CTTZ only needs to know whether (p E 0 ‘̂ (Di). Thus, to do inference in CTTZ,

an enumeration of 0 ‘̂ (Di) is all that is needed.

D efin itio n 3 (s ta te tra n s it io n oracle) A state transition oracle is a mapping

from pairs of state identifiers to sets of ground atomic formulas. These ground atoms are

referred to as elementary transitions. □

Intuitively, if D i and Dg are two state identifiers, and h 6 0*(Di, Dg), then h is the set of

elementary updates that change state D% into state Dg. An elementary update can thus

be non-deterministic, since for each update, the transition oracle defines a binary relation

on states. In practice, this relation does not have to be materialized. Instead, for a given

update u, and a given state D%, the proof theory of CT'IZ only needs an enumeration of

the possible successoi tes, Dg.

2.2.1 The R elational Oracle

The examples in this thesis use the notion of relational databases, in which a state is a set

of tuples, and elementary transactions consist of the insertion and deletion of individual

Reoroduced with permission of the coovriaht owner. Further reproduction prohibited without permission.

tuples from the database.

In [1, 2, 3], Bonner and Kifer represent relational databases in the usual way as sets

of ground atomic formulas. Moreover, they use two predicates, ins and del, to insert and

delete atoms from the database. The definition of Relational Oracles formalizes this idea.

D efin itio n 4 (R ela tiona l O racles) : A state D is a set of ground atomic formulas.

The data oracle simply returns all these formulas. Thus O'^(D) = D.

Moreover, for each p in D, the transition oracle defines two new predicates, ms(p)

and del{p), representing the insertion and deletion of single atom p in D respectively as

follows;

ins{p) € 0 ‘(D i, D 2) iff D 2 = D i + {p}

del{p) E O ^ D i,D 2) iff D 2 = D i - {p}

□

It should be noted, however, that CTTL is restricted neither to relational databases, nor

to update operations based on single tuple. For instance, databases could be deductive,

object-oriented, disjunctive, or a collection of scientific objects, such as matrices or DNA

sequences. Likewise, database operations could include SQL-style bulk updates, or the

insertion and deletion of rules, or complex scientific calculations, such as the Fourier

transformation and matrix inversion. In CTTZ, the set of states is determined by the data

oracle. Changing the oracles can change the set of states, and thus the set of semantic

structures. This is one way in which different oracles give rise to different versions of

CTTZ. In this thesis, we used the relational oracle for the simplicity.

2.3 Examples of CTTZ Formulas

This section gives some examples to illustrate CTTZ’s syntax and informal semantics. The

full description of CTTZ semantics is available in [1, 3]. We start with simple examples of

sequential goals and concurrent sequential goals.

Reoroduced with oermission of the coovriaht owner. Further reoroduction orohibited without oermission.

9
Sequentia l con junction an d d a tab ase u p d a te p red icates: The formula below il

lustrates the sequential conjunction (0) combined with the elementary update predicates

del and ms;

del{r{a)) ® ins{s{a))

“Delete r{a) from the database, and then insert s(a)” .

C o n cu rren t sequen tia l goal: The formula below illustrates the use of the concurrent

and sequential conjunctions, | and 0 , respectively, in the specification of concurrent

transactions:

(̂ 1 ® "A;) I ®

“Execute concurrently the transactions (f)i 0 ÿg and (/?i ® ip2 - To execute

(j)i0 (p2 , first do tpi then cp2 , and similarly for ®

H o rn ru les: Like classical logic, CTTZ has a Horn-like fragment with both a procedural

and a declarative semantics. The formula:

q{X) <— r{X) 0 del{r{X)) 0 ins{s{X))

defines a subroutine with name q and parameter X. Given the parameter value a, q{a)

commits if the atom r(a) exists in the databases before the updates execute and assuming

r{X) is a updatable database tuple.

In the following examples, we show how CTTZ can be used to combine elementary

operations into complex transactions.

E xa m p le 1 (D atabase tran sac tio n s for o p e ra tin g a n online sto re) Assume a re

lation inventory(Name, Amt) represents the amount of available goods in a store’s inven

tory, where Name is the goods’ name and Am t is an integer rep’ renting the amount

available. To simplify, we ignore the price and other factors. The rules below define three

transactions in the transaction base:

Reoroduced with oermission of the coovriaht owner. Further reproduction prohibited without permission.

10

processjorder{CustomInfo, Name^Amt) ■<—
O (inventory{Narae, OldAmt)
® OldAmt > Ami
<g) N ew Am t is OldAmt — Amt
® change-inventory{Name, OldAmt, NewAmt)
® ins{record{CustomInf a, Name, Amt)))

supply[SupplierInfo, Name, Amt) <—
0 (not inventory{Name, OldAmt)
® ins{inventory{Name, Amt))
® ins{supplier{SupplierInfo, Name, Amt)))

supply{SupplierInfo, Name, Am t) <—
0 (inventory{N^ame, OldAmt)
0 N ewAm t is OldAmt + Am t
0 change-inventory{Name, OldAmt, NewAmt)
0 ins{supplier{SupplierInfo, Name, Amt)))

change-inventory{Nam.e, OldAmt, NewAmt) +—
0 (del{inventory{Name, OldAmt))
0 ins{inventory{Name, NewAmt)))

The first rule specifies: to sell an amount A m t of goods Name to a customer Customer-

Info, first check how many goods are available in the store’s inventory database. If the

available amount, OldAmt, is no less than the requested amount, Am t, then deduct Am t

from the available amount OldAmt, and update the latest inventory amount, and then

record this transaction in the database; othervfise the process-order transaction should

fail since the available amount of goods can not meet I'w demand of the order. The sec

ond rule specifies the supplying transaction: to supply an amount A m t of goods into the

inventory, if the goods’ name are new to the inventory, add a new inventory record with

the goods’ name and amount, and then add another supplying record to the supplier’s

account; Otherwise, if the goods have already a record in the inventory, add the amount

into tha t inventory record, and add another record to the supplier’s account in the same

way. The last rule is in charge of changing the amount of a goods in the inventory record:

first delete the old record with the OldAmt, then insert a new record wi h Name and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11
NewAmt.

Due to the O operator, process-order, supply, and changeAnventory are all executed

“atomically”. That is , they execute either entirely or not at all. The transaction below

specifies the concurrent execution of supply and procès sing-order:

supply {supplier 1, tapel, A m tl) j processing-order{customerl, tapel, Amt2)

That is, an amount Am tl of goods tapel is supplied by supplierl while a customer places

an order for tapel. Because this is intended to be a transaction, if one sub-transaction fails,

then both sub-transactions are rolled back whatever the other sub-transaction succeeds

or fails.

Notice that, the CTTZ program behaves correctly while an equivalent Prolog program

could not; updates in Prolog are not logical. If the execution fails after an update

is performed, the update cannot be undone. So although execution in Prolog can be

backtracked, the database does not roll back to its initial state if updates are involved.

Thus transaction fail in a Prolog program will lead to database inconsistency. □

The above example illustrates the combination of concurrency and updates that CTTZ

supports. The next example shows how CTTZ also supports communication, where two

processes synchronize themselves by exchanging messages via communication signals.

E xam ple 2 ("Synchronization betw een tw o e levator con tro l processes) Assume

stopRequest-control and moving-control are two processes specified to control the stop

request control system and the moAng control system of an elevator model, respectively.

Here, our goal is to illustrate the communication between the two concurrent processes.

Hence, we simplif): our model to enable one round processing of these two control pro

cesses, without considering the loop condition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

stopRequest-control <— tasku
® send{requestSignal, FloorNum)
(g) receive{stopSignal, Fir)
® taski2

moving-control task2i
® receive{requestSignal, FloorNum)
<S) moveTo{FloorNum)
® send(stopSignal, Fir)
® task22

where ta sku and task2\ are initialization tasks of stopR request-C on trol and m ovin g-con tro l,

respectively; task i2 and task22 are the post-handling tasks of sto p R eq u est-co n tro l and

m oving-control, respectively.

The next transaction specifies the concurrent execution of sto p R eq u est-co n tro l and

m oving-Control:

stop Request-control | moving-control

During execution, stopRequest-Control and moving-control can communicate and syn

chronize the execution of their tasks effectively by sending and receiving messages along

channel requestSignal and stopSignal. Note: send{Ch, Msg) and receive{Ch, Msg) are

two communication predicates, which are used to send and receive a message Msg along

a channel Ch, as shown in [1]. moveTo cannot start moving the elevator to a specific floor

until taskn finishes and a FloorNum message is received along the requestSignal chan

nel from the stop request control process. Likewise, stopRequest-control process cannot

continue until moveTo finishes and a stop message Fir is received along the stopSignal

channel. In such a way, the two processes communicate with each other and synchronize

their execution steps.

□

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

13
2.4 CTTVs Inference System

This section first introduces the SLD-style resolution of the CTTZ inference system. This

inference system is used to formally execute transactions. In Chapter 4, we will introduce

an extension of this inference system, which allow us to formally execute transactions

involving constraints.

SLD -style reso lu tion

The inference system manipulates expressions called sequents, which have the form

P , D h (3) (^

where P is a program, D is any legal database state, and çi> is a concurrent sequential

goal. The informal meaning of such a sequent is that, based on program P the formula

(3) (j) can be proved from state D.

Let the concurrent sequential goal clause be the expression

(2 .1)- G o
where Go is the sequent P ,D i h (3) <p

A SLD-style refutation of — Go is a sequence of goal clauses — Go • • ■ — G„ where

Gn is the empty clause, i.e., the sequent P,D „ H (), where D„ is a database state, and

() denotes the empty formula. This sequent is an axiom of the inference system, and

this axiom states that the empty formula is true on any database state. Each +—Gi+i is

obtained from +— Gi by using the inference system later presented in this section.

Before presenting CTTZ's inference system, we deem relevant to also present the notion

of hot components introduced in [1]. Summarily, hot components of a transaction (j),

denoted hot{4>), is the set of transactions ready for execution in (j). Formally:

D e fin itio n 5 (H o t co m p o n en ts) Let ^ b e a concurrent sequential goal. Its set ô not

components, hot{(j)), is defined recursively as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#

14
hot{{)) = { } , where () denotes the empty goal;

hot{b) = {6}, if b is an atomic formula;

(g) - • • ® l/'n) = hot{'ipi)\

hot{ipi 1 • • • I ipn) = U • ■ • U hot{i)n)\

• hot{Qi)) = {©■0}

□

D efin ition 6 (CTTZ’s Inference sys tem) The inference system consists of one axiom

and four inference rules.

Axiom: P ,D h (), for any state D

Inference rules: In rules 1-4, a is a substitution, 0 and ip' are concurrent sequential

goals, and hot {ip) — a.

1. Applying rule definitions: Suppose 6 ■<— /? is a rule in P whose variables have

been renamed so that the rule shares no variables with ip. l î a and b unify with

mgu cr, then
P , D h (3) ip'a
P , D b (3) 0

where 0 ' is obtained from ip by replacing an element of a by fi.

2. Querying the database: If j= ̂ (3)acr, and aa and ip'a share no variables,

then

P ,D h (3)0V
P , D h (3) 0

where ip' is obtained from ip by deleting an element of a.

3. Executing elementary updates: If 0^(D i,D g) j=“ (3)au, and aa and ip' share

no variables, then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

P,D2l- (3)^V
P,Dif-(3)V'

where 'tp' is obtained from ip by deleting an element of a.

4. Executing atomic transactions: If ©a- is the hot component in ip, then

P ,D I - (3) (aigiV;')
P , D h (3)^

where ip‘ is obtained from ip by deleting an element of ©a.

□

Based on these inference rules, one can prove the execution sequence of both sequential

executions and concurrent executions. Let us consider the following program.

P ■<— C l I 0 2

01 <— m s (a)
0 2 <— ins{b)

(2 .2)

The deduction of the transaction p is illustrated in Table 2.1.

Table 2.1: A deduction for program (2.2)

Sequents Inference rule Hot components

P , {} h ai 1 0 2

P , {} 1- ins{a) 1 0 2

P , {o} h 0 2

P , {o} h ins{b)
P ,{ o ,6 } P 0

1

1

3
1

3
Axiom

{P}
{oi, 02}

{m s(o), 02}
{02}

{m s (6)}
{ }

Each sequent in the table is derived from the one below by an inference rule. The

deduction succeeds because the bottom-most sequent is an axiom. Carried out top-down,

the deduction corresponds to an execution of the transaction p in which atoms o and b

are inserted into the empty database in the order, first a, then b.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 3

T he CTTZ P ro to ty p e

T h e CTTZ prototype [13, 17] is an implementation of the Horn fragment of CT77.

and CTTZ's inference system.

To facilitate the understanding of the TV-CTTZ prototype later introduced in Chapter

5, in this chapter we outline the CTTZ prototype by presenting a system view of the

software application available in [17]. This chapter is organized as follows. First it presents

a system description of the CTTZ prototype, describing its major components. Then it

shows how the prototype handles sequential execution, concurrent execution, and database

updates and queries.

3.1 System Description of the CTIZ Prototype

Figure 3.1 shows a use case diagram of the CTTZ prototype. As such, it shows the

system functionalities seen from the user’s viewpoint. These functionalities are two: to

compile a CTTZ program into an internal program; and to execute transactions based on

the translated internal program.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

Figi ' ,.1; Use case diagram for the CT7Z system

CTR Prototype

Compile CT
Programs

Execute
Transactions^

To handle these functions, the CTTZ prototype system can be seen as consisting of a

compiler and an interpreter, as shown in Figure 3.2 .

F igure 3.2: The CTTZ prototype

[CTR prototype

Compiler Interpreter

The role of the CTTZ compiler introduced in [17] is to translate a CTTZ program into

an internal format recognizable to the CTTZ interpreter. The CTTZ interpreter is an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18
implementation of the CTTL inference engine, which is used to prove transactions based

on the relational oracle and the translated CTTZ programs.

Figure 3.3 shows the two most important components of the CTTZ interpreter: the

inference engine and the relational oracle.

Figure 3.3: The CTTZ Interpreter

interpreter

Relational
Oracle

Inference
Engine

In the CTTZ prototype, a CTTZ program consists of a transaction base file and a

database file, as shown in figure 3.4.

Figure 3.4: The CTTZ program files

CTR program

database
(.db)

transaction
base (.ctr)

Transaction-base files have the extension .ctr and database files have the extension

.db. A transaction base is a program consisting of a set of concurrent Horn rules. Table

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19
3.1 illustrates the notations used in the CTTZ prototype and the corresponding notations

used in CT7Z.

Table 3.1: Corresponding notations used in the CTTZ prototype and CTTZ

CTTZ Prototype CTTZ Meaning
Logical implication

* Sequential conjunction
1 Concurrent conjunction
0 G Modality o f isolation

A CTTZ prototype database is a Prolog rulebase, consisting of database rules and

database tuple declarations. A database rule is a normal Prolog rule, which has one of the

following forms:

• an atomic formula; or

• (f) ■- A, where (j) is an atomic formula and a is a clause.

There are two main reasons for putting rules in a CTTZ database:

1. to update them (only those rules in the CTTZ database can be changed at runtime).

2 . to express queries with negation-as-failure.

To illustrate, below we show an excerpt of a CTTZ database:

finished not (unfinished),

unfinished a(X).

u(lOO). <z(99). -- o(l). a(0).

The first and second rules specify a query with negation as failure. The atomic formulas

a(_) specify which atoms are true in the initial database state. To update a database

atom during execution, it must be declared as an updatable database tuple. Database

tuple declarations are of the form

Reproduced with permission of the copvriflht owner. Further reproduction prohibited without permission.

20
updatable B./n.

For instance, considering the database formulas above, the database tuple declaration

below specifies th a t the tuple a with arity one, is updatable.

updatable a/1.

The example below illustrates the functionality of declarations and ground atomic for

mulas.

E xam ple 3 (A s im p le book order applica tion) The CT7?. program below exempli

fies a simple book order system. The book inventory is represented by the tuple book/1

in the database.

• The transaction-base file book.ctr:

order{X) o{book{X) * del(book{X))) * writeln{succeeded).

order{X) writeln{failed).

• The database file book.db:

updatable bookjl.

book{l).

book{2).

The transaction base specifies how orders of books are placed. The database defines an

updatable tuple book/1, and includes two initial instantiations of the tuple hook, book{l)

and book{2). □

Figure 3.5 shows a use case scenario describing how the user interacts with the CTTZ

prototjTJe to compile and interpret a CTTZ program:

• The user compiles a CTTZ program.

— The CTTZ prototype compiler translates the Horn rules in the CTTZ program’s

transaction base.

Reoroduced with oermission of the coovriaht owner. Further reoroduction orohibited without oermission.

21

Figure 3.5: CTTZ prototype use case scénario

Com piler Interpreter tran sac tio n -b ase da tab ase

Compile a
CTR program translate CTR t ansaction base

translate CTR database

Execute
consult

consult

answer

answer
Result

— The CTTZ prototype compiler translates the rules in the CTTZ program’s

database.

• Wlien the user executes a transaction, the CTTZ prototype interpreter executes

the transaction with inference engine. In each resolution step, the CTTZ prototype

interpreter communicates with the transaction base and the database according to

the executed transaction component in the following ways;

— Consulting the transaction base.

— Consulting the database.

— Updating the database.

— The CTTZ interpreter outputs the result to the user.

Reoroduced with oermission of the coovriaht owner. Further reoroduction orohibited without oermission.

^ 22
3.2 Executing CTIZ Prototype Formulas

The CTTZ prototype interpreter uses a Round-Rohin scheduling algorithm to schedule

multi-processes in concurrent transaction executions. This algorithm assumes that each

transaction process in a concurrent execution has the same priority level. Thus, in the

CTTZ prototype, these concurrent processes have the same opportunity to execute.

In the CTTZ prototype, the hot component set introduced in Chapter 2 is implemented

as a Prolog list. The transaction in the head of the list is selected for execution. If this

transaction is defined as a rule in the transaction base, then the transaction formula in

the body of the rule replaces the transaction, and then is inserted at the end of the list.

When a transaction is selected, the CTTZ prototype interpreter executes one element of

the transaction, and then feeds the remaining elements of the transaction back into the

end of the list. This is consistent with the CTTZ inference system presented in Chapter

2 . In this way, the concurrent sequential transactions in the queue are able to execute in

equal turn.

In the rest of this section, we analyze sequential executions and concurrent executions

in the CTTZ prototype respectively.

3.2.1 Sequential Execution

Sequential execution is the simpler type of execution, where transactions are connected

with sequential conjunction operators. These transactions are executed in sequential order

from left to right.

When executing a sequential conjunction, such a.spi * P2 *■■■* Pn, the CTTZ prototype

interpreter starts the execution from pi, then p2 , and repeats until p„ is completed. If

any given transaction pi fails, the whole transaction will roll back.

Also, any transaction Pi could have been defined by rules. For instance, pi could have

been defined as another sequential conjunction, i.e., pi a * b. During execution, the

CTTZ prototype interpreter would decompose any composite operation, e.g., replacing p\

Reoroduced with oermission of the coovriaht owner. Further reoroduction orohibited without oermission.

23
with a * b.

3.2.2 Concurrent E xecution

The prototype simulate ■ concurrency by interleaving the execution of concurrent processes

with a Round-Robin scheduling algorithm. Consider the concurrent transaction execution:

task a i* a2 * ... * an bi * b2 * * ... * bn-

To run this transaction, first, the Round-Robin algorithm picks up the first element from

the first concurrent sub-transaction, ai- and executes it, then followed by the first element

from the other concurrent sub-transaction, 6 1 . After that, the Round-robin algorithm

continues to pick up elements from the two concurrent sub-transactions in the same fashion

and execute them until all the elements in the two sub-transactions are executed. The

resulting execution sequence is: Oi, 6 1 , 0 2 , 6 2 , •••, «n,

This applies for transactions consisting of more than two concurrent transactions, e.g.,

task Oi * 0 2 # 61 ^ 62 # Cl * C2 .

The resulting execution sequence is Oi, ùi, ci, 0 2 , 6 2 , C2 . And for transactions defined as

concurrent rules, e.g.,

task . '- O i * a # * 6 3 .

a 0 2 * 0 3 .

j3 bi * 62.

After replacing transactions a and P with their respective definitions, the resulting exe

cution sequence is :

task oi * 0 2 * 0 3 # 61 * 62 * 6 3 .

In this way, a composite transaction can be decomposed to an execution sequence con

sisting of elementary operations.

Reoroduced with oermission of the coovriaht owner. Further reoroduction prohibited without oermission.

24
3.3 State Updates and Queries

In CTTZ, the semantics of database states queries and updates are defined by a pair

of relational oracles, called, state data oracle and state transition oracle. The CTTZ

prototype uses the following predicates to implement the state queries and updates defined

in the oracles.

• db{p) determines whether atom p is true in the current database state.

• ins{p) inserts atom p in the database.

• del{p) deletes atom p in the database.

To be able to preserve the database consistency when a transaction that updates the

database fails, the CTTZ prototype uses a backtracking mechanism for undoing updates,

i.e., to rollback the failed execution and enable re-execution. It performs a relative commit

of the updates, as opposed to an absolute commit, which commits only after the entire

transaction succeeds. Considering the following transaction;

ins{a) * db{b) * ins{c)

Assume atom a and c are not in the initial database. The first update ins(a) inserts the

atom a into the database. Then, the second operation queries the database. If the atom b

exists in the database, then the third operation, ins{c), will take place and thus the three

atoms are all in the final database. However, if the atom b is not in the database, then

the transaction execution fails, and the update ins{a) is undone. In this case, although

the update performed by ins{a) has been already executed, the database is able to restore

to its initial state and the database consistency is thus guaranteed. The undo is possible

because the commit was not absolute, but was relative to the overall transaction.

To undo updates in a failed transaction, the CTTZ prototype actually introduces

two underlying atom tags to represent the existence of an updatable atom p, namely,

inserted{p) and deleted{p).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25
The atom p is true in the database if inserted{p) is true and deleted{p) is not true in

the database. The atom p is not true in the database if deleted{p) is true or inserted{p)

is not true.

By implementing these two atom tags, the technique in [17] leads to transaction roll

back or partial rollback, and re-execution when a failure occurs, and thus prevents the

Prolog database from being corrupted by backtracking through updates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 4

rv-crn

Al t h o u g h CTTI is a logic for specifying and executing database processes involv

ing queries and updates concurrently aS' well as serially, CTTi, does not support

explicit priority constraints in its logic framework. In CTTZ, the programmer ̂ uses the

sequential and concurrent connectives to specify the ordering of a transaction execution.

In a concurrent conjunction, there is no preference over which transaction will be selected

for execution. Hence, CTTZ’s orientation is towards logic eventuality rather than real

time immediacy. This particular feature of the logic has limited its application extended

to real-time domains. Also, CTTZ can not handle timing-related applications due to lack

of timing constraints, e.g., a timing relation to specify when to execute a process.

To overcome this limitation, and extend concurrent transaction logic to the real-time

domain, we extend the CTTZ logic framework to a so-called timing-event-based priori

tized concurrent transaction logic {T'P-CTTZ), which provides a high-level formalism for

specifying priority constraints and timing constraints in timing-event-based transaction

applications. Summarily, T'P-CTTZ extends CTTZ in the sense that it introduces con

straints in concurrent Horn rules, a translation mechanism to translate such rules, and an

inference system to handle prioritized transactions.

In this chapter, we describe the TT^-CTTZ’s syntax, informal semantics, the inference

system and the interpretation of constraint concurrent Horn rules.

^Like C'TTZ, 'T'P-C'T'IZ is a logic for programming transactions. Hence in this thesis, users and
programmers are considered synonyms

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27
4.1 Syntax of T V -C T IZ Priority and Timing Con

straints

CTTZ does not include priority constraints in its logic framework. In CTTZ, the program

mer uses the sequential and concurrent connectives to specify the transaction execution

order in programs. For instance, in a concurrent conjunction, all the concurrent processes

have the same opportunity to be selected for execution. This feature of the logic has

limited its apphcation in real-time domains.

T'P-CTTZ, an extension of CTTZ, is designed to provide a high-level framework for

specifying priority constraints and timing constraints in concurrent transaction logic sys

tems. To allow the specification of priority constraints and timing constraints that may be

used to trigger or interrupt other transactions, we use constraint concurrent Horn rules.

In T'P-CTTZ, b -r— <j) : -ip is a. constraint concurrent Horn rule if 6 t— 0 is a concurrent

Horn rule and ip is a constraint formula. A TP-CTTZ program is composed of a set of

constraint concurrent Horn rules. The definition of the concurrent Horn rule 6 ^ here

is the same as that in CTTZ, as shown in definition 1. Below is the definition of the

constraint formula ip.

D e fin itio n 7 ('C onstrain t form ula) A Constraint formula is any formula of the form:

» priority{a,p), where a is an atomic formula in (p and p is an integer number, rep

resenting the priority level of the atomic formula a.

• tim eElapsedit) triggerEvent(a), where t is a positive integer number, and a is

an atom in (p.

• ipi A • • • A ipk, where each ipi is a constraint formula, and K >t).

□

With the above extended syntax definition, we can use constraint concurrent Horn rules

to specify priority and timing constraints, which may be used to trigger or interrupt other

transactions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28
When a constraint concurrent Horn rule has no constraint formula, it becomes a

concurrent Horn rule. A TV-CTH. program consists of both a set of concurrent Horn

rules and a set of constraint concurrent Horn rules.

4.2 Informal Semantics of T V -C T T l

Next we introduce the informal semantics of constraint concurrent Horn rules from the

users’ viewpoint.

P r io rity co n stra in ts

In TV-CTTZ, priority constraints specify the execution priority of transactions occurring

in a concurrent goal formula. For instance, the constraint concurrent Horn rule below

specifies the execution priorities of the concurrent transactions p, q, and r.

g <— p 1 9 1 r : priorityip, 2) A priority{q, 1) A priority{r, 1) (4.1)

“To execute s, execute p, q, and r concurrently, observing that p has higher

priority than q and r, and q has the same priority as r .”

Notice tha t the second argument of the priority predicate represents the execution priority

level of the predicate occurring in its first argument. The bigger the number representing

the priority level, the higher its execution priority is. Priority levels ranges from 1 to 100.

The default priority level of a transaction predicate is 1, i.e., if a constraint concurrent

Horn rule does not specify the priority of a transaction predicate explicitly, then it is

given the lowest execution priority.

But then one might ask: why use the complicated formula above when one can more

succinctly write the equivalent and more straightforward formula below?

s <— p ® (g I r)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29
This is because priority constraints like the ones in Expression (4.1) are useful specially

when combined with timing constraints. The examples in the rest of this section illustrate

the point.

Tim ing Constraints

Timing properties are usually specified by the timing relations among events. In [5], the

timing relations refer to terms of time that specify constraints among events. We are

interested in these timing properties and adopt some of them into our system . Below we

illustrate some examples involving timing constraints.

Let b, c, and d be transactions. The rule below specifies a timing constraint for b:

a <— fe I c I d : timeElapsed{100) triggerEvent{b) (4.2)

The rule above specifies the following: to execute a, execute b, c, and d concurrently,

but delaying the execution of b 100 seconds. That is, for the first 100 seconds, only c and

d should run concurrently, and then after 1 0 0 seconds, transaction b should be triggered,

and thus added to the concurrent execution.

The example below illustrates how priority and timing constraints can be combined

to provide interesting real-time interrupt behavior.

Let again b, c, and d denote transactions. The constraint concurrent Horn rule below,

specifies timing and priority constraints for transaction b.

a ■f— h \ c \ d : timeElapsed(lQ^i) —̂ triggerEvent{b) A priority{b, 2)

The priority constraint specifies th a t b has execution priority over c and d. Notice that

no constraint is specified for c or d, i.e., they run as a flat concurrency (with the default

priority level 1). The timing constraint specifies that the execution of b should start 100

seconds after a is activated.

Let’s assume tha t c and d represent complex transactions whose respective execution

times last for more than 200 seconds time. Given these assumptions, since b has high

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30
execution priority, the activation of b should interrupt the execution of c and d. That is

to say, after 1 0 0 seconds, b starts execution, and c and d are suspended because of their

lower priority level. Until b finishes its execution, the execution of c and d can be resumed.

This behavior of concurrent transaction execution, created by the combined use of timing

and priority constraints, illustrates the interrupt functionality. This is what often happens

in a real-time domain scenarios, and the reason why we introduce the priority constraint

into the extended system.

Some comments on the use of constraints in T'P-CTTZ: one may have noticed that

priority constraints are not suitable for all transactions in a concurrent sequential goal.

For example, suppose a, 6 , and c are transactions, and r is defined by the rule below;

r <— a ® 6 0 c

It does not make sense to specify a priority for the transactions occurring in the body of

the rule above, since the semantics of the 0 connective specifies the execution order of

the goal o 0 6 0 c. Priority constraints only make sense when thev refer to transactions

occurring in a concurrent conjunction, since it can change the execution sequence of the

transactions involved in the conjunction.

4.3 Inference System

The inference system introduced here differs from the inference system introduced in

CTTZ in the sense tha t in CTTZ, there is no criteria for selecting which transaction in a

concurrent goal will be executed. This means in CTTZ, the execution order of concurrent

transactions is non-deterministic. In T'P-CTTZ, on the other hand, a simplified Rate

Monotonie scheduling algorithm based on the priority level of a predicate, is employed as

the selection criteria. Thus, the execution order of concurrent transactions with different

priority levels is deterministic.

The next definition formalizes this idea. It defines the transaction to be executed

amongst the candidates for execution. We refer to it as the “hott(st” component of a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31
concurrent sequential goal.

D e fin itio n 8 (H o tte s t co m p o n en t) Let be a concurrent sequential goal. Its hottest

component, denoted hottest{(p), is defined recursively as follows:

• hottest{{)) = {}, where () is the empty goal;

• hottest{b) = {6 }, if & is a atomic form.ula;

hottest(ipi ® • • • <g) 'ipk) — hottest^il)])-,

(hottest^ipi) , i î pLevel{hottest{'tpi)) >
pLevel{hottest{ip2 | " - | ipk)) ,

hottest{ip2 \ ■ ■ ■ \ ipk) , otherwise
where pLevel{<p) denotes the priority level of (p.

» hottest{Qip) = Qip.

□

Since the compiler adds an extra first parameter to all prioritized predicates and encodes

in this parameter the priority level of the predicate, one can obtain the priority level of a

sequential goal as follows:

• pLevel{p{priority{l), •••)) = I, if p{- ■ •) is an atomic formula;

• pLevel{ipi (g) • • • ® '^/.) = pLevel{ipi)

Like CTTZ, T'P-CTTZ also uses the SLD-style resolution introduced in Chapter 2, the

only difference between them being the inference rules and the notion of hot component

used in CTTZ, and hottest component used in TP-CTTZ. In CTTZ, hot component is a set

representing the sub-transactions ready for execution. In TP-CTTZ, hottest component

is the first highest priority-level component of the CTTZ hot component set.

A xiom : P , D h (), for any state D

Reoroduced with oerm ission of the coovriaht owner. Further reoroduction orohibited without oerm ission.

32
In ference ru les: In rules 1-3, cr is a substitution, ijj and 'tp' are concurrent sequential

goals, and hottest{ip) — a.

1. Applying rule definitions: Suppose b fi is a rule in P whose variables have

been renamed so tha t the rule shares no variables with ip. If a and b unify with

mgu cr, then
P ,D h {3) Ip'a
P,-D\-{3)iP

where ip' is obtained from ip by replacing a by fi.

2. Querying the database: If O'^ÇDi) (3)acr, and aa and ip'a share no variables,

then
P ,D h {3) Ip'a
P ,-D b{3)iP

where ip' is obtained from ip by deleting a.

3. Executing elementary updates: If Dg) (3)acr, and aa and ip' share

no variables, then
P, D2 l - (3) iP 'a

P,Dil-(3)V
where ip' is obtained from ip by deleting a.

4. Executing atomic transactions: If © a is the hottest component in ip, then

P , D I - (3) {a ® Ip')
P , D h (3) V '

where ip' is obtained from ip by deleting 0 a.

Each inference rule consists of two sequents, and has the following interpretation;

if the upper sequent (Gj+i) can be inferred, then the lower sequent (Gj) can also be

inferred.

Reoroduced with oerm ission of the coovriaht owner. Further reoroduction orohibited without oermission.

33
4.4 Interpreting Constraint Concurrent Horn Rules

Based on the constraint formalism presented in the above sections, here we initially present

how the TV-CT'R, interpreter translates constraint concurrent Horn rules into concurrent

Horn rules. Then we show how to formally execute prioritized constraint concurrent Horn

rules using the SLD-style resolution procedure. Finally we illustrate how the TV-CTTZ

compiler translates the concurrent Horn rules with timing constraints.

4.4.1 C om piling Priority Constraints

To illustrate how the translation takes place, we use the following example: let the pro

gram below define transactions s, p, and q.

s <r- p I q: priorityip, 2)
p <— ins{ria)) (4.3)
q <— ins{rih))

Notice that the first rule specifies: to execute s, execute p and q concurrently. Its

constraints specify: in the concurrent sequential goal p \ q, p has higher priority than q.

The second and third rules specify: to execute p, insert the atom r(a) in the database; to

execute q, insert the atom r(6) in the database.

In essence, the compilation consists of translating the priority predicates occurring in

the constraint formula into function terms. These function terms are added as an extra

argument to the respective predicates in the head and body of the concurrent Horn rules.

Below we present the result of the translation of program (4.3).

s <— p{priorityi2)) | q{priority{!))
p{priority{2)) +— ins{r(a)) (4.4)
q{priority{l)) <— ins{r{h))

Notice that the compiler assigned the default priority level 1 to transaction q.

Reoroduced with oermission of the coovriaht owner. Further reoroduction orohibited without oermission.

4.4.2 U sing th e Inference System to E xecute Transactions
34

With the TV-CTTZ four inference rules, we can deduce the transaction s defined in

program (4.3) as in the Table 4.1. Notice in program (4.3) and on Table 4.1 that if no

priority constraints is used in the specification of s, then there are two possible sequence

of database states when s executes: one in which r(a) is inserted first and then r{b) is

inserted, and the other in which r{b) is inserted first and then r{b). However, because

of the priority constraints bound to transaction p and q, they force the transaction s to

run in a definite sequence, which causes r(a) to be inserted before r{b) is inserted in the

database.

Table 4.1: A deduction for program (4.3)

Sequents Inference rule Hottest component
P , { } H s
P ,{ } h p(priority(2)) | q{priority{\))
P , {} h ins{r{a)) j q{priority{l))
P , {r(n)} h q{priority{l))
P ,{ r (a) } h ins{r(b))
P ,{ r (a) , r (6)} h ()

1

1

3
1

3
Axiom

s
p{priority{2))

ins{r[a))
q{priority{l))

ins{r{b))
{ }

4.4.3 Com piling T im ing Constraints

The program below specifies a timing constraint for transaction b.

o -s— 6 I c j d ; timeElapsed{WO) —)■ triggerEvent{b)
b <— ins{r{e))
c ins{r{f))
d <— ins{r{g))

The TV-CTTZ interpreter translates it into the following program

a <— 6 1 c 1 d
b *— timeElapsed{100) ® ins{r{e))
c ins{r{f))
d 4- ins(r(g))

(4.5)

Reoroduced with oermission of the coovriaht owner. Further reoroduction orohibited without oermission.

35
where timeElapsed{t) is a built-in predicate, which is satisfied when t seconds have elapsed

since the execution of concurrent rule a has started. This predicate is interpreted by the

TV-CT'JZ prototype interpreter in a specific way in the chapter 5. Here, we present the

logical definition of the predicate timeElapsed below:

timeElapsed{DelayTime) <—

timeElapsed{DelayTime)

startTim e (In itia lT ime)
0 now(PresentTime)
0 (PresentTime > In itia lT im e -t- DelayTime)

startT im e(InitialTim e)
0 now{PresentTime)
0 {PresentTime < In itia lT im e + DelayTime)
0 timeElapsed{DelayTime)

In the above definition, you can notice tha t if pre-condition (PresentTime > Initial

Time + DelayTime) fails, then timeElapsed{DelayTime) stays in a sort of while-loop

until the condition {PresentTime > Initia lT im e -(- DelayTime) is satisfied, and the

corresponding transaction is then triggered.

Reoroduced with oermission of the coovriaht owner. Further reoroduction orohibited without oermission.

C hapter 5

The 'TV-C'TTZ P rototype

T h e TV-CTTZ prototype is an implementation of the Horn fragment of TV-CTTZ

and the inference system, both introduced in Chapter 4. In Chapter 3 we have pre

sented the outline of the CTTZ prototype. Since the TV-CTTZ prototype is an extension

of the CTTZ prototype, here we focus on their diflFerences.

As the CTTZ prototype shown in Figure 3.2, the TV-CTTZ prototype also has two

major components; the compiler and the interpreter. Both have been extended to handle

the timing and priority constraints introduced in TV-CTTZ. In this chapter, we first

present how the TV-CTTZ prototype compiler translates a TV-CTTZ program. Then we

show how the TV-CTTZ prototype interpreter works.

5.1 The T V -C T T t Prototype Compiler

Before executing a TV-CTTZ program, a user first has to compile the transaction base and

database files. In a TV-CTTZ program, priority constraints and timing constraints are,

in fact, a syntax sugar, which we call constraint concurrent Horn rules. Unlike the CTTZ

prototype, the TV-CTTZ prototype compiler first translates these constraint concurrent

Horn formulas into CTTZ recognizable formulas. Figure 5.1 shows how this process takes

place.

This translation consists of two stages, carried on by compiler I and compiler II,

36

Reoroduced with permission of the coovriaht owner. Further reoroduction orohibited without oermission.

37
Figure 5.1: The T'P-CTTZ compiler.

TP-CTR program- CompilerCompiler
CTR program

C om piler

respectively, as illustrated in Figure 5.1. Compiler I translates the constraint concurrent

Horn rules in a T'P-CTTZ program into an intermediate CTTZ program. Then compiler

II translates this intermediate program into an internal notation format.

The reason why the T'P-CTTZ prototype compiler translates a TV-CTTZ program

into a CTTZ recognizable program instead of using CTTZ recognizable program at the

beginning is because the translated CTTZ recognizable syntax looks clumsy, unlike a

typical neat Prolog-like syntax. For example, assigning every transaction a priority level

and distributing timing constraints to the triggered transactions. To make formulas neat

and clear to users, the TV-CTTZ prototype puts all these constraints in the syntax sugar

format and leaves the compiler to do the translation. Moreover, compiler I takes care of

this part of the translation, only. Hence, introducing more complicated timing constraints

and priority constraints into the system would require only extending compiler I. This

improves the flexibility of the TV-CTTZ prototype compiler.

The example below illustrates the idea of compiler I. Suppose we have the following

rules in the transaction base:

task : - inüT im e * taskA : tim eE lapsed{10)tr iggerE ven t{ta skA).

task A :- monitor {'task A complete').

Compiler I creates a temporary transaction-base file, which is added an extension .temp

to the end of the old transaction-base file. Below are the corresponding translated rules:

task :- in itT im e * taskA.

taskA timeElapsed{10) * monitor{'taskA complete').

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38
If a rule in the original transaction base does not have a constraint, the translated rule is

the same as the original one.

The compiling process carried on by compiler 11 is more elaborate, and thus deserves a

more detailed analysis of the processes and notations used within. The next two sections

provide this analysis.

5.1.1 Transaction B ase Internal Syntax

Like a CTTi, program, a TV-CTTZ program consists of a transaction-base and a database

too. We saw in Section 5.1 that ultimately a TV-CTTZ program is translated into an

internal notation format. This subsection introduces the internal notation format.

The transaction base of a TV-CTTZ program has two kinds of components: atomic

formulas and rules. Atomic formulas do not change after translation.

On the other hand, constraint concurrent Horn rules in transaction-base are in the

form of a ;- /? : 7 , where a is an atomic formula, ^ is a transaction formula, and 7 is

a constraint formula, which can include both priority constraints and timing constraints.

The head a is translated into the internal notation trans{a). Transaction formula no

tations involving sequential conjunction and concurrent conjunction, are translated into

internal notations as follows:

• Sequential conjunction: seq([ai, 0 2 , --, <%»]) is the internal representation of transac

tion formula Ui * aa * ... * a„.

• Concurrent conjunction: conc([ai, aa, ..., a„]) is the internal representation of the

transaction formula a i# aa# ...# a„ .

• Modality operator: isolateiO) is the internal representation of o{0).

Constraint formula notations involving priority and timing constraints are translated as

follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39
• Priority constraint: a{priority{Level)) is the internal representation of the transac

tion a with the priority constraint priority{Level, a).

• Timing constraint:

seq([timeElapsed(a, Time),or{[seq{[isolate{seq{[event{a, T im e),now {X),

db{startMme{Y)), X > = Tim e + Y, del(event{a, Time))]))

, b]), seq{[event{a, Tim e), a])])])

is the internal representation of the rule body of a b, where a is triggered by

the timing constraint timejBZapsed(Time) triggerEvent{a). Note: the predicate

timeElapsed(Time) in the translated intermediate file is replaced by this internal

notations with the TV-CTTZ prototype interpreter recognizable built-in predicate

timeElapsedia, Time).

The next examples illustrate these translation methods of internal syntax.

E xam ple 4 (T ransla ting sequentia l and co n curren t goals) Suppose a goal con

nected with sequential and concurrent conjunctions is as the form of:

p a* bftc.

Like the CTTZ compiler, TV-CTTZ compiler translates it into the following internal syn

tax:

trans{p) conc([seg([a, 6]),c]). D

If a rule has priority constraints, it is translated as shown in the example below:

E xam ple 5 (T ransla ting p r io r ity constra in ts) Suppose in a transaction-base, there

is the following simple priority constraint concurrent Horn rule:

p a # 6 ; priority {a, 8).

which has the following intermediate and internal representations during and after com

pilation:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

p a{priority{8)) # 6 . - Intermediate syntax, i.e., equivalent CTTZ rule
trans{p) conc{[a{priority{8)),b]). - TP-CTT?. internal syntax

□

The following example shows the original, intermediate and internal syntax in the case

of a timing constraint concurrent Horn rule.

E xam ple 6 (T ransla tion o f tim in g constra in t ru les) The rules below specify the

concurrent execution transactions a and b. For the sake of easy understanding, the two

transactions are just assigned simple tasks. The transaction formula a is scheduled to

execute ten seconds after the execution begins.

p :- in itT im e * {a^b) : tim eE lapsed (10)tr iggerE ven t{a).

a monitor {^transaction a completed'),

b monitor {'transaction b completed').

As the first step, the 'TV-CT7Z compiler I translates the TV-CTTZ program above into

the following CTTZ program:

p :- in itT im e * (u # 6).

a timeElapsed{10) * monitor {^transaction a completed'),

b monitor {^transaction b completed').

Then the TV-CT'fZ compiler II translates the CTTZ program into an internal notation.

trans{p) seq{[initTime, conc{[a, 6])]).

trans{a) seq{[timeElapsed{a, 10), or{[seq{[isolate{seq{[event{a, 10),now{X),

db{startiime{Y)), X >= 10 + Y, del{event{a, 10))])),

m.onitor{'transaction a completed')]), seq{[event{a, 1 0), a])])]).

trans{b) monitor {^transaction b completed').

□

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41
\%en a TV-CT'R, program combines timing constraints and priority constraints, it is

translated in the way as shown in the example below.

E xam ple 7 (T ra n sla tin g p r io r ity and tim in g co n stra in t) Suppose we add a con

straint to the rule p shown in Example 6, resulting in the following rule;

p in itT im e * (a#b) : timeElapsed(lQ) triggerEvent{a)

A priority{a,8).

First, the TV-CTTZ compiler I translates them into the following CT7Z program:

p :- in itT im e * (a{priority{8))i^b).

a{priority{Z)) : — timeElapsed(10) * monitor{'transaction a completed'),

b monitor (transaction b completed').

Then the TV-CTTZ compiler II translates the CTTZ program above into the following

internal notation:

transip) seq{[initTime., conc{{a{priority{8)), &])]).

trans{a{priority{Z))) seq{[timeElapsed{a{priority{Z)), 10), or{[seq{[isolate{seq{[

event{a{priority{Z)), 10), now{X), db{startJim e{Y)), X > = 10 -f- Y,

del{event{a{priority{Z)), 10))])), monitor{'transactionacompleted')])

, seq{[event{a{priority{Z)), 10),a(pHority(2'))])j)]).

trans(b) monitor{'transaction b completed').

□

By recursively applying the translation rules above, the TV-CTTZ compiler translates

a transaction-base file into a TV-CTTZ transaction-base object file.

5.1.2 The TV-CTTl P rototyp e D atabase

The syntax and semantics of the TV-CTTZ prototype database is the same as in the CTTZ

prototype database. The only difference is that internally, the system uses a couple of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42
other system predicates. In the TV-CTTZ prototype databases, there are three system-

required database tuple declarations in TV-CTTZ prototype databases, namely:

• updatable event/2. - the declaration of timing-event-to-be-triggered list

• updatable priority L is t/I . - the declaration of concurrent transaction priority list

• updatable startJtime/1. - the declaration of execution start time

5.2 The TV-C TTZ Prototype Interpreter

The TV-CTTZ prototype interpreter consists of inference engine and relational oracle, as

the CTTZ prototype interpreter shown in Figure 3.3. Although both the CTTZ prototype

and the TV-CTTZ prototype use the same relational oracle, the TV-CTTZ prototype

interpreter use a different inference engine. Compared to the CTTZ inference engine, it

implements the notion of hottest component instead of hot component, as shown in Chap

ter 4. During execution, the TV-CTTZ inference engine picks up the hottest transaction

component, i.e., the first highest-priority-level element in the hot component queue.

The interpreter is the key module of the TV-CTTZ prototype. The user interacts

with the prototype by presenting transaction goals to be executed, execute{Goal). The

interpreter then picks up the hottest component of the goal for execution. If the pro

gram in the transaction base does not include any constraints, the priority level of all

transactions is considered as the default lowest priority level. In this case, the no

tion of hottest component introduced in TV-CTTZ system is analogous to the notion

of hot component introduced in CTTZ system because the underlying simplified Rate-

Monotonic algorithm handles the non-priority-constraint goals in the same way as that

of the Round-Robin algorithm.

The inference engine of TV-CTTZ uses the underlying scheduling algorithm to pick up

the hottest component in a concurrent transaction execution. It also interprets the prior

ity and timing constraints and drives the execution of the transactions. The rest of this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43
îction is organized as follows: Next we introduce the adopted underlying scheduling algo

rithm - simplified Rate Monotonie Algorithm(SRMA)[10]. Then we present how priority

constraints are interpreted, and how the S R M A schedules the concurrent transactions.

Finally, we present how the TV-CTTZ timing constraints are interpreted.

5.2.1 U nderlying Scheduling A lgorithm in th e TV-CTTZ Inter
preter

Before introducing the underlying scheduling algorithm in the TV-CTTZ interpreter, we

first give a brief introduction of the Round-Robin scheduling algorithm used in the CTTZ

interpreter.

Round-Robin Scheduling Algorithm

The Round-Robin algorithm is one of the oldest, simplest and most widely used schedul

ing algorithms, designed especially for time-sharing systems. It assigns each concurrent

process an unit of time in a one-by-one sequence and feeds the process tha t has used up its

share of time back to the end of the sequence. In CTTZ, Bonner made a small adjustment:

using one step transaction execution instead of one unit of cpu time, to simplify trans

action execution in a concurrent sequence. Thus, the Round Robin scheduling algorithm

in the CTTZ system assigns one execution step time to the selected transaction, which is

in the head of the concurrent transaction sequence. In CTTZ, one execution step means

one inference step. In this way, the CTTZ scheduler picks up the first hot component,

executes one inference step, feeds the unfinished transaction component back to the end

of the sequence, and releases CPU resource to the scheduler in the mean time.

The Round-Robin scheduling algorithm is a simple and effective algorithm for a concur

rent transaction system without priority demands. However, in reality, many concurrent

transaction systems need to assign priority level to some special transactions. For exam

ple, in a classified-customer financial system, a transaction request from a higher level

customer always has preference over that from a lower level customer. When faced with

such requirements, the Round-Robin scheduling algorithm shows its application limita

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44
tion. In order to handle such types of applications, the TV-CTTZ system uses a simplified

version of Rate monotonie algorithm.

Simplified R ate-M onotonie Scheduling A lgorithm

In the SRMA, each concurrent transaction is assigned a fixed priority by user or by default.

Assuming task a and task b are concurrent execution transactions, during execution, the

SRMA schedules tasks a and b in the following way:

• Task a can not be executed before task b finished, if task b has a higher priority

level than task a.

• Task a has an equal chance to execute as task b, if task a and b have the same

priority level.

In the design of TV-CTTZ, our main goal is to verify the logic of time-event-based prior

itized transaction systems, while introducing features of real-time systems, i.e., priority

constraints and timing constraints. However, we do not include a great variety of real

time features a t current stage. More precisely, we ignore an important feature of real-time

systems, deadline, which improves the efhciency of concurrent systems by giving up some

tasks running over deadlines. Moreover, the fixed priorities of the system are assigned by

users when writing TV-CTTZ programs. These adjustments simplify the Rate Monotonie

algorithm in our system by ignoring the transaction execution period assessment and cor

responding automatic priority assignment, which is not important in a timing-event-based

transaction verification system.

5.2.2 Interpreting and Scheduling Priority C onstraints

Section 5.1 shows how the TV-CTTZ compiler translates a concurrent Horn rule with

priority constraints. This subsection presents how the TV-CTTZ prototype interpreter

interprets priority constraints represented in internal notations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45
After the translation by the TV-CTTi, prototype compiler, a priority constraint is

dded as the first parameter of the corresponding transaction, as shown in the example 5.

Then the T V-CTTZ prototype interpreter uses a SRMA to schedule constraint concurrent

Horn rules. Each concurrent transaction in a TV-CTTZ program has a priority level,

which is used to determine their execution priority. To find the first highest priority level

transaction from a concurrent sequence, the SRMA needs to know both the priority level

of a transaction and the highest priority level of the concurrent transaction sequence. In

the TV-CTTZ prototype, lists are used to store these variants.

• The list priorityL ist stores all priority levels of the concurrent transactions in a

priority descending order. For example, priorityL ist [3, 2,2] means there are three

transactions in the concurrent sequence, and their priority levels are 3, 2 and 2,

respectively.

• During interpretation, a transaction’s priority level is indicated by the last element

of the transaction list, e.g., [seg([a, 5]), 2] means the seq{[a,b]) has priority level 2.

The priority level will not disappear before this sequential transaction execution

finishes.

The example below illustrates how priority constraints are interpreted by the TV-CTTZ

interpreter according to the simplified RMA.

E xa m p le 8 (In te rp re tin g a TV-CTTZ program) Consider the following transaction

base;

task : — taskA ((-taskB i(taskC
: priority (task A, 1) A priority (task B, 2) A priority (taskC, 2).

taskA :- ins{in(a)).
ta skB :- ins(in{b)).
taskC :- ins{in{c)).

When interpreting the concurrent transaction task, the sub-transaction taskA , taskB

and taskC are converted to .ne following cone list in the TV-CTTZ prototype interpreter:

Reproduced with permission of the copyright ovmur. Further reproduction prohibited without permission.

46
conc([[ins(in(a)),l},[ins(in(b)),2],[ins(in(c)),2}])

where the respective priority level of each execution transaction is the last element of their

list. The list priorityL ist is used to store the three transaction priority levels, as shown

in Figure 5.2:

F igure 5.2: The list p r io r ity L is t in TV-CTTZ interpreter.

priorityList

priority
levelt

taskA

priority
levels

taskC

priority
Ievel2

taékB

Ievel2 levels levelt

where levell is the taskA's priority level 1, level2 is the taskB's priority level 2, and level3

is the taskC’s priority level 2. The elements of the priority L ist sort in an descending order,

from higher priority level to lower priority level. □

During interpretation, the SRMA uses the following steps to determine the hottest

component:

1. Picks up the first element of the execution transaction list

2. Gets the priority level of the first element from the execution transaction list

3. Gets the highest priority level from the priority L ist {the first element)

4. If the current element’s priority level is not the highest priority level, puts it in the

end of the execution transaction list, then returns to the first step, and repeats steps

1 to 4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47
5. Otherwise, the element is the hottest component and the interpreter should execute

one step of this element.

• If this step is the last step of the belonged transaction execution, deletes the first

element of priorityL ist. Then returns to the step 1 if there is still transactions

in the execution queue; or ends execution if no other transaction is left in the

execution sequence.

• Otherwise, returns the remaining of this element to the end of the execution

transaction list, and then returns to the step 1.

In such a way, the TV-CTTZ interpreter implements the inference system using a SRMA

to formally execute TV-CTTZ programs.

5.2.3 Interpreting T im ing Constraints

At current stage, the TV-CTTZ prototype has two timing constraints: timeElapsed/1

and delay/I. timeElapsed is used to set an absolute timing relation, where a transaction

is set to be triggered at an absolute time instant, delay is used to set a relative timing

relation, where a transaction is set to start a period of time after the end of another

transaction.

Actually, the timing constraints timeElapsed and delay are similar from a logic view

point. The only difference is the start time instant. Figure 5.3 illustrates the underlying

logic for these two timing relations.

Both timing constraints are handled using such logic within the TV-CTTZ interpreter.

The timing constraint timeElapsed uses the start-tim e{X) to retrieve the start time,

which stores the start time instant of the whole execution. In TV-CTTZ, we use timing-

event-based mechanism for this timing constraint: satisfaction of the constraint precondi

tion is used to trigger another transaction event. The TV-CTTZ interpreter uses an atom

event to specify the triggered transaction. After the timing condition is satisfied and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48
Figure 5.3: Timing logic handled in the TV-CTTZ interpreter.

No

Y >= X + D?

Yes

Get start time X

Next transaction

Get current time Y

Note: D is the specified delay

specified transaction is triggered, the atom event corresponding to this transaction is

deleted from the database system.

The other timing constraint of the current TV-CTTZ prototype, delay, is used to

define a delay relationship between two transactions. Thus, its start time is not the start

time of the execution, but the start time of itself. When the specified delay time goes,

the delay loop will end and it will go to the second transaction execution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

T im e-based P rioritized T V -C T IZ
Program E xam ples

To illustrate how TV-CTTZ can be used to specify priority and timing constraints

in timing-event-based prioritized transaction system, this chapter presents two ex

amples in different application areas. More specifically, the first example regards financial

transaction. The second example regards real-time logic control system.

6.1 A Time-based Financial Transaction Application

Example 9 is an extension of the financial transaction application presented in [1], where

Bonner and Kifer illustrate how CTTZ can be used to specify the atomicity of financial

transactions. Here we show how timing features and priority features in TV-CTTZ is used

to schedule tasks in a long-run financial transaction application.

E xam ple 9 (Specifying tim e-b ased p rio ritized financial tran sac tio n s) For the sake

of understanding, first we briefly introduce the rules used in Bonner and Kifer's financial

transaction example in [1].

transfer{Am t, Acctl, Acct2) <— © {withdraw[Amt, Acctl)

® deposit{Amt, Acct2))

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50
withdraw{Amt, Acct) balance{Acct, Bal)

® Bal > Arat

® changeJbalance{Acct, Bal, Bal — Amt)

deposit{Amt, Acct) <— balance{Acct, Bal)

® changeJbalance{Acct, Bal, Bal + Amt)

changeJ)lance{Acct, B a ll, Bal2) ■<— del{balance{Acct, Ball))

® ins(balance[Acct, Bal2))

The first predicate, transfer , specifies how a money transfer transaction is accomplished,

i.e., by withdrawing an amount A m t from one bank account Acctl and then depositing

the A m t into another bank account Acct2. The next two predicates, withdraw and de

posit, define the withdraw transaction and the deposit transaction, respectively. Both of

them use the predicate changeJbalance to update an account’s balance via the built-in

elementary updates del(balance{Acct, Bal) and ins(balance{Acct, Bal).

Based on the above basic transaction rule definitions, the TV-CTTZ program below

simulates a long-run time-based financial transaction scenario: to a source account, higher

priority level transfer requests can always be answered even when normal transfer trans

actions are executing. In the program, a timed prioritized transfer transaction is assigned

with a higher execution priority. Another transfer transaction process, assigned with the

default priority level, runs recursively every two seconds until the remaining amount in

the account is not enough for another transfer.

trans f er-process +— transfer-queue{Feel, Client, Broker)

I trans fer-urgent{Fee2, Client, Urgent-Acct)

: timeElapsed{100) tirggerEvent{transferjurgent

(Fee2, Client, Ur gent-Acct))

Apriority {transfer.urgent

{Fee2, Client, Ur gent-Acct), 2)

transfer-queue{Am t, Acctl, Acct2) <— balance{Acctl, Bal)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51
0 {Bal > Amt)

0 trans fe r {Amt, Acctl, Acct2)

0 delay{2)

0 transfer-queue{Amt, Acctl, Acct2)

transfer-queue{Amt, Acctl, Acct2) +— monitorif trans f er ends')

tra n sa f erjurgent{Amt, Acctl, Acct2) ■«— transfer{A m t, Acctl, Acct2)

The first constraint concurrent Horn rule specifies the simulation process. It consists of

two predicates, transfer-queue{Feel. Client, Broker) and transafer^ urgent(Fee2, Client,

Urgent-Acct), which runs concurrently. The constraint formula specifies a timing event

for transafer-urgent, which has priority in this concurrent execution and is scheduled

to take place 100 seconds after the simulation starts. The transaction transfer.queue

implements a long-run series of bank account transfer transactions, in which an amount

F eel is transferred from one account Client to another account Broker, and the transfer

process is called recursively every two seconds until the balance of Client is smaller than

the amount Feel. In this example, we adjust the initial amount of the account Client

and the transferred amount F ee l to ensure the transaction transfer-urgent is triggered

during the execution of the transaction transfer-queue.

The result shows that the specified prioritized event takes place right at 100 seconds,

and the transaction tra n sa f er-urgent is triggered and then interrupts the normal transfer

process by becoming the hottest component of the concurrent conjunction. As expected,

the amount Fee2 is thus transferred from the Client's account to the urgent account

Urgent-Acct with priority. Only after this prioritized transfer transaction is completed,

the interrupted normal transfer process can then resume its normal execution.

□

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52
6.2 A Simplified Elevator Logic Control Application

Besides the area of database transaction, applications, TV-CTTZ can also be used to

simulate real-time control systems. Working with priority constraints, a timeElapsed

timing-event-based constraint can create an interrupt functionality, which is scheduled to

take place at specified time. The interrupt is one key feature of a real-time control system.

Example 10 presents how to use TV-CTTZ to simulate the interrupt in an elevator logic

control system.

E xam ple 10 (S im u la ting a sim plified elevator controller) For the sake of under

standing, below we present the assumptions for a simplified elevator controller model and

basic control logic rules:

• The elevator is for a ten-floor building with one stop button on each floor. When

the button is pushed, a stop request is sent to the controller.

• The elevator cage takes about 3 seconds to go up or down one floor.

• Every floor has a location sensor to indicate the elevator’s position.

• In any exceptional case, the elevator should take stop action immediately.

Based on these assumptions, the program below specifies the simplified control logic for

the elevator controller:

simulate ■t— moving-control{stop)
I userjrequest | accident
: timeElapsed{Sl) —>■ triggerEvent{accident)
A priority {accident, 2)

userjrequest reg(5) | req(8] j req(2)
: timeElapsed(lO) trigger Event {req{5))
A timeElapsed{30) —> triggerEvent{req{8))
A timeElapsed{5Q) triggerEvent{req{2))

req(Level) *— ins{stopjreq{Level))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53
m.ovingj2.onirol{3tatus) <— Status = stop

® stopjreq{Level)
® moveto{Level)
® dei{stopjreq{Level))
® moving-.control^stop)

moving-control{Status) •«— moving-control{stop)

maveto{Level) accSignal
® stop-handle

maueto{Level) ■*— not accSignal
® getLocation{X)
® X <> Level
® moveto{Level)

moveto{Level) +— not accSignal
® getLocation{X)
® X = Level
® stop-handle

accident ins{accSignal)

where basic atomic formulas and built-in predicates in the specification have the following

definition:

• The atomic formula stop-req{Level) is used to store the stop requests to be an

swered.

• stopJiandle is a built-in predicate to stop the elevator.

• getLocation{X] is a built-in predicate to retrieve the current elevator location.

• The atom accSignal is used to denote an urgent exceptional event.

In the program, the first constraint concurrent Horn rule specifies the entire simula

tion process. It consists of three concurrent transactions, moving-control^ userjrequest

and accident. The constraint formula specifies an exceptional event: an accident which

is scheduled to take place at 31 seconds after the simulation starts. The predicates

moving-control and userjrequest implement the normal elevator control logic. The pred

icate userjrequest simulates use case scenario: three stop requests are scheduled to take

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54
place at specified times. The predicate moving-control is used to control the elevator:

moving to a floor according to the stop requests. The predicate moveto{Level) performs

the elevator moving action, and monitors any exceptional accident as well.

"Wdien the specified accident takes place at the 31 seconds time instant, because of its

priority, the predicate accident works as an interrupt and notifies the system at once by

inserting the atom accSignal into the database. In our case, the elevator is still moving

from 5th floor to 8th floor at that time. The predicate moveto{Level) receives this signal,

then correspondingly executes the predicate stopJiandle to stop the elevator at once. □

This example demonstrates that TV-CTTZ can be used to simulate some intrinsically

real-time phenomena, e.g., the interrupt effect and timing relations. By elaborately com

bining priority constraints and timing constraints in different ways, we can verify different

elevator logic control cases with the TV-CTTZ program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 7

C onclusions and Future W orks

IN the previous chapters, we presented an extension of Concurrent Transaction Logic,

a formalism originally designed to handle state changes in deductive databases. We

extended CTTZ by defining a logic framework in which the user can not only specify

concurrent transaction processes as logic programs, but also define priority and timing

constraints on these processes. This increases the flexibility and power of the language.

Users are no longer forced to schedule the transaction order only by the sequential con

junction and concurrent conjunction. The execution order of concurrent transactions can

also be specified or changed by extra ways: assigning timing constraints and priority con

straints to these transactions. The interrupt effect created by combining the event-driven

feature of the timing constraint timeElapsed with priority constraints schedules trans

actions in a more flexible and powerful way, and thus opens the logic to a new range of

advanced application, e.g., real-time domain application, long-run time-related applica

tion, digital circuit design with clock-driven and continuous-simulation of the designed

digital circuit, etc.

To allow the formal execution and thus the simulation of such programs, we introduced

an inference system that is able to handle priority constraints with the underlying sim

plified Rate-Monotonic scheduling algorithm. The formal execution of programs works

as SLD-style refutation mechanism. By this way, our approach provides a high-level

framework for specifying and executing transaction logic programs involving priority and

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56
timing properties. Also, we have shown how logic programming techniques can be used

to implement real-time database application domains.

To make theory meet practice, we have implemented our TV-CTTZ prototype in XSB

Prolog and have tested the examples presented in this thesis.

There are still some issues left open, especially real-time issues. Below we elaborate

on them.

• Sophisticated Timing Constraints. The timing properties in our timing constraint

are quite straight-forward at present stage. It only handles the timing property of

a transaction when to be triggered, and a delay relation between two transactions.

However, in reality, timing properties of a real-time system are much diverse, such

as described in [4, 5, 6]. Some of them relate to the deadline of a transaction as

well as the initial time instant. Adopting these ideas into the TV-CTTZ timing

constraint will be valuable to expand its real-time application domain.

• Underlying scheduling algorithm. The current TV-CTTZ possible prototype uses

a simplified Rate Monotonie Scheduling algorithm to schedule concurrent transac

tions. In real-time domain, this algorithm is straight-forward and may be inefficient

in some cases. It should be possible to adopt a more sophisticated scheduling algo

rithms, to improve the performance of the TV-CTTZ prototype in real-time domains.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A p p en d ix A

T V -C T n Tutorial

A .l 'TV-CTTZ Prototype File System

The TV-CTTZ prototype in this thesis is extended on the base of Concurrent Transaction

Logic with Recovery prototype available in [17]. It consists of the following models:

• ctr.P - the basic TV-CTTZ interpreter

• parser.P - a parser for TV-CTTZ rules

• updates.P - the code for back-trackable updates

• load.P - startup routine th a t loads the prototype modules

• upload.P - a module including rules to load a TV-CTTZ transaction-base and a

database into X S B system.

• tim er.P - including TV-CTTZ system rules regarding timing constraints

A.2 Getting Started

The TV-CTTZ prototype was implemented in XSB Prolog, and consists of the modules

introduced above. To run the implementation, at query prompt, the load module must

first be consulted, then invoke the predicate ctrAnit. The predicate ctr.in it is defined

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58
in the module to load all necessary files into XSB Prolog and initialize the necessary

parameters. Below we illustrate how the user interacts with the system.

$xsb -i

XSB Version 2.5 (Okocim) of March 11, 2002

[i686-pc-linux-gnu; mode; optimal; engine: slg-wam; gc: indirection; scheduling: local]

I ? — [load].

[load loaded]

yes

I ? — ctr-init.

[ctr loaded] - basic TV-CTTZ interpreter

[updates loaded] - code for back-trackable updates

[parser loaded] - parser for prototype rules

[upload loaded] - compilers for loading and translating rules

[timer loaded] - embedded timing constraints

[scrptutl loaded] - necessary XSB system module for system timing predicates

yes

A.3 TV-CT7Z Prototype Commands and Program Files

Like CTTZ programs, T'P-CTTZ programs are also stored in the transaction-base and

database with filename extensions .ctr and .dh, respectively. Although in some cases the

database file maybe empty, it is still needed in our prototype.

A .3.1 C om piling C om m ands in TV-CTTZ

The TV-CTTZ programs are compiled with the following three commands:

• ctr-Comp{programjname). - to compile both the transaction-base and database;

• comp-transiprogramjname). - to compile the transaction-base only;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59
’ comp-db{programjname). - to compile the database only.

where program_name is the filename of the TV-CTTZ program without extension. After

compiled, a TV-CTTZ transaction-base file generates two files:

prograrri-name. ctr. temp

program-name. ctr. o

where program-na.me.ctr.tem p is an intermediate compiled file, in which the timing con

straints and priority constraints have been translated into a recognizable CTTZ program.

The program-name.ctr.o file is the final transaction object file via the underlying T V -

CTTZ compiler.

Like the CTTZ database object file, a TV-CTTZ compiler creates a TV-CTTZ database

object file with the name;

program-uame.db.o

where the extension .db.o denotes the file to be a database object file.

A .3.2 E xecu tion C om m and

To execute a transaction in the TV-CTTZ program after compilation, the user uses the

following command:

execute (transaction-name).

where transaction-name is the head of one of the rules in the transaction-base file.

A.4 The T V -C T 71 Prototype Syntax

A .4,1 Transaction R ules

The constraint concurrent Horn rules consists of three parts: a rule head, a rule body,

and a constraint body.

Head Body : Constraint Body.

Reproduced with permission of the copyright owner. Further reproduction prohibited without perm ission.

60
or

Head Body.

or

Head.

where

• Head is an atomic-formula;

• Body is a sequence of transaction actions (or queries) connected by any of the

following conjunction operators:

— sequential conjunction(+),

— concurrent conjunction(#),

— isolation (o).

• Constraint Body is a sequence of the following constraints connected by conjunction(A) :

— timing constraint timeElapsed{X) <— triggerEvent{Transactionjname),

— priority constraint priority {Transaction-name, Priority.Level)

A .4.2 D atabase R ules

A database is any Prolog rule or atom in the forms of format:

Head Body.

or

Head.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.5 Built-in 'TV-C'T'IZ Predicates

The prototype has some built-in predicates, which are used in the transaction-base or

database. These predicates should not be re-defined by the user.

A.5.1 D atabase D eclaration

Database atoms represent tuples in a relation. Like table in relational database, a relation

should be declared before it can be accessed. The statement below declares a database

relation N am e with arity NArgs:

updatable Name/Nargs.

By default the following basic system database declarations and tuples are always declared

for any TV-CTTZ program;

updatable event/2 - timing driven event list

updatable start-tim e/1 - start time instant of an execution

updatable priorityList/1 - a current executed transaction priority list in descending

order

priority List ([]) - the initial empty list

A .5.2 B u ilt-in Predicates in Transaction-base

For the declared database atoms, there are three built-in predicates for accessing them:

• db{p{x)) and empty{p{x)) - query atomp(æ) in the database

• ins{p{x)) - inserts atom p{x) into the database

• del{p{x)) - deletes atom p{x) from the database

At present stage, there are the following built-in constraint predicates:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62
• timeElpased{X) - a timing constraint based on an absolute timing instant

• delay{X) - a timing constraint based on a relative timing instant

• priority{Transactionjname, priorityJevel) - priority constraint

Besides, in the TV-CTTZ prototype we have kept the useful CTTZ monitor command

below, which can be used to trace a transaction execution.

monitor (Task).

where Task is a name or a term. Note that monitor {Task) does not execute Task, it

only displays messages. When the monitor executes, it displays one of the messages:

• Completed Task - when monitor{Task) is executed.

• undoing Task - when monitor {Task) is rolled back.

A. 6 Programming Examples

The following examples illustrate some simple TV-CTTZ programs and their execution.

They are executed in XSB Prolog, with the loaded TV-CTTZ prototype.

Exam ple A .l Concurrent Processes w ith Priority Constraints

The following program executes three concurrent non-interacting transactions. The

three transactions have different priority levels and has two tasks respective. The program

name is interleave. Below are the contents of the database file and transaction file.

Database file inter leave.db:

updatable event/2,

updatable priorityList/1.

priority List ([]).

Transaction Base file interleave.ctr:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63
parent ta skA # ta skB # ta skC : priority (taskA, 2) A

priority {taskB, 2) A

priority (taskC, 1).

taskA monitor (taskA 1) * monitor (task A2).

taskB monitor (taskB 1) * monitor (taskB 2).

taskC monitor(taskCl) * monitor(taskC2).

Compiling the program and executing a transaction:

1 ?- ctr_comp(interleave). - compile the program

yes

1 ?- execute (parent). - execute the parent goal

completed taskA 1 - complete the first task of taskA

completed taskB 1 - complete the first task of taskB

completed taskA2 - complete the second task o f taskA

completed taskB2 - complete the second task o f taskB

completed taskCl - complete the first task of taskC

completed taskC2 - complete the second task o f taskC

yes

E xam ple A .2 In te r ru p t in C o n cu rren t P rocesses

This example shows how the interrupt is created by combining a timing constraint

and a priority constraint in a long-run program. The initial process is timed to start at 1

sec after the execution start, and the three concurrent sub-processes of the process parent

have the same priority level. The subprocess of the initial process, interrupt, has higher

priority level in the concurrent execution.

Database file interrupt.db:

updatable event/2,

updatable startAime/1.

updatable a/1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64
updatable priority L ist/1.

priority List ([]).

finished not (unfinished),

unfinished a(X).

a(lOO). a(99). - - a(l). a(0).

Transaction Base file interrupt.ctr

parent in itT im e * {long-runJtransactionij^initialfi^shortJtransaction)

: timeElapsed{\)— > triggerEvent{initial)

Apriority (long jrun-transaction, 2)

Apriority (initial, 2)

Apriority(short-transaction, 2).

long-run-transaction:-o(del(a(X)) * monitor(X)) * longsun-trausaction.

longjrumtransaction finished.

initial monitor (interrupt Jnit-task) * interrupt : priority(d, 5).

interrupt m onitor(interruptJaskA) * monitor (interrupt JtaskJl).

short-transaction monitor(short-transaciotnJ,ask-\)

*monitor(short-transactionJask-2)

*monitor(short-transaction-task-3)

*monitor(short-transaction-taskA).

Compiling the program and executing a transaction:

I ?- ctr.comp(interrupt). - compile the program

yes

I ?- execute(parent). - execute the parent goal

completed 100 - shows one round of longer un-transaction is

completed

completed short_transaction_task_l - shows one round of short-transaction is

completed short_transaction_task_2 completed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

impleted 99

impleted short_transaction_task_3

completed short_transaction_task_4

completed 98

65

completed 75

completed interrupt jnit_task

completed 74

completed interrupt_task_l

completed interrupt _task_2

completed 73

shows the initial task of the interrupt is

completed

shows one task of the interrupt is completed

completed 0

yes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Anthony J. Bonner and Michael Kifer, “Concurrency and Communication in Trans

action Logic", Proceedings of the Joint International Conference and Symposium on

Logic Programming(JICSLP), Sep. 2-6 1996, Pages 142-156. MIT Press.

[2] Anthony J. Bonner, “Concurrency Transaction Logic”, Presented at the Dagstuhl

Seminar on Transaction Workflows, July, 15-19 1996, International Conference and

Research Center for Computer Science, Schloss Dagstuhl, Wadern, Germany.

[3] Anthony J. Bonner and Michael Kifer, “Transaction Logic programming (or a

logic of declarative and procedural knowledge)”,Tec/micaZ Report CSRI-323, Uni

versity of Toronto, November 1995. http://www.cs.toronto.edu/ bonner/ transaction-

logic.html.

[4] P. Bellini, R. Mattolini, and P. Nesi, “Temporal Logics for real-Time System Speci

fication,” ACM Computing Surveys, Vol.32, No.l, March 2000.

[5] B. Dasarathy, “Timing Constraints of Real-Time Systems: Constructs for Expressing

Them, Methods of Validating Them”, IEEE Trans. Software Engineering, Vol. SE-11,

No. 1, January 1985, PP.80-86.

[6] Horng-Yuan Chen and Jeffrey J.P. Tsai and Yaodong Bi, “An Event-Based Real-

Time Logic to Specify the Behavior and Timing Properties of Real-Time Systems,”

IEEE, 0-8186-2300-4/91 (c)1991.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.toronto.edu/

67
[7] Kristian Torp, Christian S. Jensen, Richard T. Snodgrass, “Effective timestamping

in databases," The VLDB Journal, (c)Spring-Verlag 2000.

[8] Ogur Ulusoy, Geneva G. Belford, “Concurrency Control in Real-Time Database Sys-

tems," ACM, 089791-472-4/92/0002/0181, 1992.

[9] Rajendran M. Sivasankaran, John A. Stankovic, Don Towsley, Bhaskar Purimetla,

KritM Ramamritham, “Priority assignment in real-time active databases,” The

VLDB Joum.al , (c) Spring-Verlag 1996.

[10] Wayne Wolf, “Computer as Components: Principles of Embedded Computing Sys

tem Design”, Morgan Kaufman Publishers, 2001, ISBN 1-55860-541-X.

[11] Neugass H., Espin G., Nunoe H., Thomas R., Wilner D., “VxWorks: an interactive

development environment and real-time kernel for Gmicro,” TRON Project Sympo-

sium,lQ91. Proceedings,, Eighth , 21-27 Nov. 1991 Page(s): 196 -207

[12] Terrasa, A.; Garcia-Pornes, A , “Real-time synchronization between hard and soft

tasks in RT-Linux” Real-Time Computing Systems and Applications, 1999. RTCSA

’99. Sixth International Conference on , 13-15 Dec. 1999 Page(s): 434 -441

[13] Amalia F. Sleghel, “An Optimizing Interpreter for Concurrent Transaction Logic”

Thesis for degree of Master of Science in University o f Toronto, 2000.

[14] Jiwen Ge, Marcus Vinicius Santos, “Using logic programming techniques to han

dle timing and priority constraints in real-time systems” Seventh World Conference

On Integrated Design &Process Technology IDPT Vol.2 2003, ISSN No. 1090-9389,

Page(s): 800-806

[15] Konstantinos Sagonas, Terrance Swift, David S. Warren, Juliana Preire, Prasad Rao,

Baoqiu Cui, Ernie .Johnson, “The XSB System Version 2.5 Volume I: Programmer’s

Manual” SU N Y at Stony Brook, 2002.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68
[16] Konstantinos Sagonas, Terrance Swift, David S. Warren, Juliana Freire, Prasad Rao,

Baoqiu Cui, Ernie Johnson, “The XSB System Version 2.5 Volume II: Programmer’s

Manual” SU N Y at Stony Brook, 2002.

[17] Anthony Bonner,"CT77. prototype with recovery” , ftp://ftp.cs.toronto.edu/cs/ftp

/pub/bonner/papers/transaction.logic/prototype/recoverable/.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ftp://ftp.cs.toronto.edu/cs/ftp

