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Network Screening Methods to Identify Roadway Sites for Safety 
Investigation: An Examination of Some Critical Issues

Master of Applied Science, 2005

By Brent Gotts

Department of Civil Engineering 
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Abstract

Traffic accidents are responsible for about 3,000 deaths and $25 billion In 

economic losses annually In Canada. One way for transportation authorities to 

Improve safety Is to Identify potentially hazardous roadway elements through network 

screening. The process of network screening Is a low-cost statistical analysis of 

highway safety data, which yields a ranked list of sites to be Investigated In detail.

Critical Issues of two network screening methods are Investigated In this thesis. 

The first method Is a peak-searching algorithm for screening roadway segments, with 

attention focused on threshold values of a key user-selected variable, namely the 

coefficient of variation. The second method examined Is a method of screening for 

high proportions of specific accident types. For this method, parameter estimation 

techniques are compared, and the effect of the ‘critical proportion,’ a key user-selected 

variable In the method, on site rankings Is Investigated.

In addition to the two network screening methods, an Investigation Is carried 

out Into some aspects of safety performance functions calibrated using negative 

binomial regression. Specific attention Is given to how the negative binomial 

dispersion parameter changes over the range of some Independent variables.
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1 Introduction

1.1 Road Safety

Canadians are among the most mobile people in the world, and this year 21 

million licensed drivers in Canada will travel over 300 billion kilometers. Unfortunately, 

almost 3,000 people will die in traffic collisions, and over 200,000 will be injured. 

Transport Canada estimates that the economic cost of collisions is about $25 billion 

annually (1).

By any measure, these numbers are unacceptable. The economic burden as a 

result traffic accidents is staggering, let alone the less tangible costs of life and limb. 

Thus, the problem is clear: traffic accidents must be reduced in terms of both

frequency and severity.

Unfortunately, there is no single solution to the problem, although progress has 

been made on many fronts. For example, vehicles now have better safety features, 

such as airbags; governments have implemented programs such as graduated 

licensing; police enforcement programs such as Reduce Impaired Driving Everywhere 

(RIDE) have been used to try to reduce the number of impaired-driving crashes; 

highway design standards are constantly updated with respect to safety; and many 

other avenues have been explored, all with the goal of making the transportation 

network safer.

1.2 Network Screening

A road network is made up of all the transportation facilities (freeways, highways, 

intersections, ramps, etc.) in a given Jurisdiction. The jurisdiction may be a province, 

state, region, municipality, or any other clearly-defined area of interest. One of the 

tasks of transportation authorities in a given jurisdiction is to examine the road network 

for sites (individual road segments, intersections, etc.) that demonstrate a need for 

improved safety. This task is commonly referred to as network screening.

The result of network screening is generally a ranked list of sites, with those sites 

at the top of the list representing the most ‘unsafe’ sites. Some or all of these sites are 

then flagged" for a more detailed investigation, sometimes called a detailed 

engineering study (DES). The aim of a DES is to suggest feasible crash-reduction 

countermeasures for the flagged sites.



The criteria for what makes a given site unsafe vary by jurisdiction and by the 

method of network screening. In the most simple forms of network screening, sites are 

flagged based on observed accident counts, or -  by taking into account some measure 

of exposure (e.g., traffic volume, etc.) -  accident rates. These approaches, and their 

inherent limitations, are discussed in more detail in Chapter 2. More advanced 

methods employ an empirical Bayes (EB) procedure to estimate long-term expected 

accident frequencies, or proportions of specific accident types. Two such EB methods 

are described in Chapters 5 and 6.

In the past two decades, network screening has made tremendous advances; 

much of this is due, either directly or indirectly, to huge improvements in computing 

power, and the ubiquitous use of computers. In particular, EB methods offer the 

advantage of accounting for the random fluctuations inherent in annual accident 

counts. It is this randomness that renders the simpler screening techniques prone to 

errors. The consequences of making errors in network screening are that relatively 

safe sites may receive unnecessary remedial work, while unsafe sites may be ignored. 

These errors are costly both economically, and in terms of life and limb.

1.3 SafetyAnalyst

The United States’ Federal Highway Administration (FHWA) has recognized the 

need for state-of-the-art highway safety practices to be applied on a wide scale. To 

that end, the FHWA, along with other agencies and institutions, is developing 

SafetyAnalyst, a set of software tools designed to improve the safety management 

programs of highway agencies.

SafetyAnalyst is currently in the development stage, but will ultimately provide 

highway safety practitioners with a number of tools, each representing a different 

“stage” of a safety management program. The tools include: the Network Screening 

Tool to identify sites that may have safety deficiencies; the Diagnosis Tool, used for 

site-specific diagnoses of safety problems; a Countermeasures Selection Tool for 

identifying specific remedial projects for a given site; an Economic Appraisal Tool for 

identifying cost-effective countermeasures at a given site; a Priority Ranking Tool, 

which ranks those sites that have been selected for the application of specific 

countermeasures based on the cost/benefit analysis performed using the Economic 

Appraisal Tool; and, finally, the Evaluation Tool, which is used to evaluate the 

effectiveness of highway safety projects by employing before-after studies.



This thesis is concerned with the first step in the process, the Network Screening 

Tool. Ultimately, SafetyAnalyst will offer several network screening options, all of 

which will employ EB techniques. Sites flagged in the course of network screening are 

often referred to as “sites with promise” for safety improvement. Sites with promise 

may be identified by one of the following criteria:

• sites with higher-than-expected accident frequencies which may 

indicate the presence of safety problems that are potentially 

correctable in a cost-effective manner;

• sites whose accident frequencies are not higher than expected, given

the traffic volumes and other characteristics present at the site, but '

which nevertheless experience sufficient numbers of accidents that 

may potentially be improved in a cost-effective manner;

• sites with high accident severities, and;

• sites with high proportions of specific accident types.

The goal of SafetyAnalyst is to provide highway agencies with the means to 

apply sound statistical methods in the quest for improved highway safety, and thus 

yield more reliable results. This should ultimately result in both better use of highway 

safety resources and improved highway safety.

1.4 Objectives

Some of the screening methods that have been proposed for the Network 

Screening Tool have not been widely used, and there are questions about them that 

must be answered. Two of the screening methods are studied in detail: the peak- 

searching algorithm for screening roadway segments, and screening for high 

proportions of specific accident types.

Some screening methods make use of accident prediction models, or safety 

performance functions (SPFs), and the reliability of these models has an effect on the 

results of the screening. Of particular interest is the nature of the negative binomial 

dispersion parameter. Chapter 4 describes a brief investigation into how SPF 

parameters change over the range of some independent variables.



Chapter 5 describes the peak-searching algorithm for screening road segments 

that has been proposed for SafetyAnalyst. The focus of attention is how network 

screening rankings are affected by different values of the coefficient of variance.

In Chapter 6, the method of screening for high proportions of specific accident 

types is examined in detail. The method was developed by Heydecker and Wu (2), 

and may be included in the Network Screening Tool. Methods of parameter estimation 

are compared, and the effect of the ‘critical proportion’ on site rankings is investigated. 

Screening for high proportions of specific accident types is then compared with more 

traditional SPF-based screening methods.

Chapter 2 provides the theoretical background for the methods used, and 

Chapter 3 describes the data used for analysis. Conclusions and recommendations 

for future work are given in Chapter 7.



2 Background and Literature Review

2.1 What Is Safety?

If one Is to Improve the safety of a road network, one must first decide how 

‘safety’ shall be defined and measured. Everyone Is acquainted with the notion of 

safety as being freedom from harm or loss; however, safety may be measured both 

subjectively and objectively. The latter Is clearly needed If engineering decisions are 

to be made with respect to safety.

Hauer (3) describes road safety (or road unsafety’) as an objective measure 

reflected In the prevalence of traffic accidents and their harm. The subjective 

perception of safety Is referred to as the feeling of security.

2.2 How Is Safety Measured?

If safety Is to be measured quantitatively, a unit of measure must be adopted. 

While It Is easy to decide on a unit of measure for, say, the length of a rod, road safety 

Is less straightforward. First, we must specify the entitles being evaluated; these could 

Include road segments. Intersections, ramps, or other highway facilities. In general, 

entitles, or ‘sites,’ are compared with others of the same type. For example, the safety 

of a 2-lane rural highway Is not normally compared with that of an urban freeway owing 

to the many differences between them. In metaphoric terms, we must compare apples 

to apples, not apples to oranges.

If the safety of an entity Is manifest In accident occurrence, then the number of 

accidents occurring at a site Is clearly of Interest. First, we consider accident counts 

as a measure of safety. Figure 2.1 shows monthly accident counts for a two-lane rural 

highway In Washington state. The counts vary from month to month for no obvious 

reason. While It Is conceivable that these fluctuations are due to some unmeasured 

phenomenon. It Is far more likely that this Is simply evidence of the random nature of 

accident counts. Indeed, other sites experience similar random behavior. Hauer (3) 

refers to these as random fluctuations that cannot be attributed to causes of Interest. 

Given this randomness, accident counts can be an unreliable estimate of safety. The 

pitfalls of evaluating safety by the count of accidents are discussed In more detail In 

the next section.
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Fig. 2.1: 1996 monthly accident counts for a 2-lane rural 
highway in Washington State.

Hauer (3) and others suggest that safety must be defined as a stable property 

of an entity. Hauer (3) deems this the “underlying stable property that has the nature 

of a long-term average.” This long-term average is unknown to us, but it can be 

estimated using statistical methods. This estimate yields the number of accidents 

expected to occur on an entity during a specified period.

More commonly, we are interested in an expected accident frequency. 

Accident frequency is simply a number of accidents per unit time, usually one year. 

Thus, if an intersection had 12 accidents in 3 years, we would say that it had an 

observed accident frequency of 4 accidents per year. We could also examine the 

predicted accident frequency based on mathematical models; these models are more 

commonly called accident prediction models (APMs), or safety performance functions 

(SPFs). The expected accident frequency (i.e., the estimated long-term average) is 

calculated by combining the information from a mathematical model and the 

observational data. The estimation of expected accident frequency usually involves 

applying empirical Bayes methods, which will be described later in this Chapter.



Another common measure of safety is accident rate. Accident rate is defined

as:

Exposure is generally derived from traffic flow, and generally involves estimates of 

annual average dally traffic (AADT). For example, accident rate may be measured as 

accidents per million vehicle-kilometers. So, for a 1.5 km road segment with an AADT 

of 25,000 vehicles per day (vpd) and an accident frequency of 5 accidents per year, 

the accident rate is calculated as follows:

Accident Rate = ç2Smvpd)Ç>65d! yr){\ .5km)

=  0.37 acc/ million veh-km

Other measures of accident rate may also be used. For example, accident 

rates for intersections are often defined as accidents per million entering vehicles. 

AADT is normally measured via automatic counters, usually deployed for a few days or 

weeks at a given site.

Many have criticized the use of accident rates as a measure of safety, as this 

amounts to assuming a linear relationship between accidents and traffic flow; see, for 

example, Persaud (5). It has been shown that this relationship is generally non-linear, 

and thus accident rate is not a good measure of safety. Figure 2.2 depicts an accident 

prediction model of off-the-road accidents on 2-lane highways in Georgia. The model 

is clearly non-linear, and is of the form:

Accidents /  mile ! yr = a - AADT^  (2 .2 )

where «=0.0042, and ̂ =0.51 are regression coefficients calibrated from historical data.

At point A, the accident rate is calculated as 0.36 accidents/million veh-km, 

while at point B, the rate is 0.16 accident/million veh-km. Thus, one may be tempted to 

conclude that a site corresponding to point B is twice as safe as at point A; however, 

since twice as many accidents per year are experienced at point B, one may argue 

that point A is in fact the safer of the two. To conclude the argument, if accident rate is 

to be selected as the measure of safety, then an accompanying assumption of a linear



relationship between traffic and accidents must be made. As this is not generally the 

case, accident rate should not be used as the primary measure of safety. It should be 

noted that accident rates should not be entirely ignored. To illustrate, consider a site 

that experiences a high accident rate but a low accident frequency; if a bona fide 

safety problem exists, such a site may not be identified by frequency-based screening 

methods, and it is not fair to expose even a few people to undue risk.

0.45

0.4

0.35

|»-3
0)1 0.25 
<
■§I
1  0.15
c
£ 0.1

0.05

1000 2000 3000 4000 5000 6000 7000 8000
AADT

Fig. 2.2: Accident prediction model for off-the-road 
accidents on 2-lane rural highways in Georgia.

2.3 The Regression-to the-Mean Phenomenon

A common method of identifying sites for remedial safety work is to consider 

accident counts over a period of time (e.g. 3 years). In practice, sites are grouped 

according to some set of criteria (e.g. type of site, traffic volume, etc.), and those sites 

that experienced an accident count greater than some specified limit are ‘flagged’ for 

safety investigation. For example, a two-way, stop-controlled (TWSC) intersection 

might be flagged if there were 12 or more accidents over period of 3 years.



The advantages of a screening process based on accident counts are that it is 

conceptually very simple, and the data requirements are minimal. The major problem 

with using accident counts as a measure of safety is that unusually high accident 

counts are likely to decrease in the future, even if no remedial safety accident is taken. 

This is a phenomenon know as regression to the mean, and it has been well- 

documented by Persaud (5), for example, and others. Thus, when sites are subjected 

to a safety treatment based on high accident counts, the safety effect of the 

improvement is likely to be overstated.

Regression-to-the-mean bias, or ‘selection bias,' is a critical flaw of count-based 

screening methods, and so an improved method of identifying sites with promise is 

needed.

2.4 Empirical Bayes Analysis

The more recently proposed methods for identifying sites with promise are mostly 

based on the empirical Bayes (EB) technique. Bayesian statistical methods permit the 

combination of observations from stochastic processes (i.e.: accident counts) with 

information from other sources, such as mathematical models for accident prediction. 

The resulting estimates are a weighted combination of the two sources of information, 

and the weights are calculated in such a way as to implicitly account for the amount of 

information in each source. Thus, the EB estimates are as accurate as possible given 

the two sources of information. See Higle and Witkowski (4), Persaud (5), Hauer (3,6), 

and others for details.

In the road safety context, EB methods combine site-specific accident 

observations with information from other sites of the same kind. The ‘information from 

other sites’ is generally in the form of a mathematical model.

The mathematical models, or accident prediction models, are calibrated by an 

appropriate regression technique. In general, where the parameters of an accident 

prediction model has a relatively high variance, it will have less influence (i.e., a 

smaller EB weight) than one with a relatively low variance. At the same time, sites 

with high accident counts (and thus low variance) will be given a greater weight than 

sites with low accident counts.

The main feature EB methods is that the random fluctuations in accident counts 

are ‘smoothed out’ by defining the safety of a site as its expected long term average.



rather than a short-term accident count. Thus EB methods control for regresslon-to- 

the mean bias, marking a major improvement over ‘traditional’ techniques.

Accident prediction models play a central role in the application of the EB 

procedure, and these models are the subject of much current research. Details of 

some of the more important accident prediction models are given in the next section.

2.5 Accident Prediction Models

2.5.1 Introduction

One of the important tasks of the road safety practitioner is the development of 

safety performance functions (SPFs), also called accident prediction models. 

Generally speaking, SPFs are found by performing statistical regression on accident 

count data and other relevant information. The result is a mathematical function that 

returns the predicted accident frequency of an entity given one or more independent 

variables. Most models have the following general form:

^ = /(X,PO (2.3)

where k  is the predicted accident frequency, X is a vector of characteristic traits of the 

entity, p is a parameter vector, and fQ is some function.

As discussed above, SPFs are generally developed for different types of entities. 

For example, if one wished to predict accidents within a given area (e.g., city, county, 

etc.), separate models would be created for four-legged signalized intersections, three- 

legged signalized intersections, all-way stop-controlled (AWSC) intersections, urban 

freeways, 2-lane rural highways, and so on. Because it is impossible to find two sites 

exactly alike, it is necessary to group them in such a way that they are both logically 

comparable (“apples to apples'") and statistically valid. The latter generally depends on 

the sample size, which in this case is the number of sites used in the model; the 

greater the number of sites used, the better the model will be.

At a minimum, traffic volume (AADT) is required to develop a practicable model; 

however, it is very common to see models including other traits, such as geometric 

features, area features, driver characteristics, many others. The number of
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independent variables that may be used is limited only by data availability, and the 

statistical significance of those variables chosen for the model.

Many different model types have been developed over the past few decades, 

with varying degrees of success. Below are descriptions of several modelling 

methods.

2.5.2 Linear Least-Squares Models

Early attempts to predict accidents employed multiple linear regression (MLR) 

models. MLR techniques use linear least-squares equations to fit a model of the form:

JP =  A ) + ^ 2 ^ 2 + • (2-5)

where y  is the dependent (response) variable, x, are the independent (predictor) 

variables, m is the number of independent variables, and are regression parameters. 

In general, traffic volume would be the most important predictor variable. Thus, a 

simple linear model (i.e.: m-2), with accidents as a function of AADT would be of the 

form:

K = p Q + P r A A D T  , (2.6)

where k  is the predicted accident frequency per mile per year. Here, Po is the y- 

intercept of a straight line, and p, is the slope. The addition of segment length allows 

accidents to be predicted on a per-kilometer or per-mile basis. This equation appears 

to have a minor logical difficulty: if Po is nonzero, then the number of accidents 

predicted for a site with no traffic will also be nonzero; however, as models only pertain 

over the range of independent variables used for the calibration, this is not problem.

If we examine a multiple linear model (/w>1), we can I 

mmediately see a flaw. Consider the multiple linear model with AADT and shoulder 

width as the independent variables:

k  = pQ+p^- AADT + p 2 • {Shoulder Width) . (2.7)

Hauer (7) uses a similar model to illustrate another problem with MLR models. He 

describes the above equation as being additive in nature; thus, a change in shoulder 

width would have the same effect on an entity’s accident frequency whether the AADT
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was 100 vpd or 100,000 vpd. Hauer (7) argues that this can surely not be true, thus 

showing another limitation of MLR models.

Maher and Summersgill (8) and Persaud et al. (9) have discussed problems with 

the early application of MLR models, namely the assumptions of normally distributed 

errors and homoscedasticity. Generally, the “errors” are represented by the 

distribution of accident counts; however, it accident counts are not normally distributed, 

given the discrete nature of count data.

A further assumption, the requirement of a linear relationship, also has a serious 

practical problem: the model predicts that as traffic volume increases, accident rate 

increases proportionally. In reality, as traffic volumes approach or exceed a highway 

facility’s capacity, operating speeds decrease substantially; thus a lower accident rate 

is generally observed with high-volume sites as compared with low-volume sites.

Some of the advantages of using linear models are that they are functionally and 

computationally simple; however, great leaps in computing power, and commercially- 

available statistics software, such as SAS® and GLIM®, over the last 20 years have 

made more complex models as easy to calibrate as linear models.

2.5.3 Non-Linear Least-Squares Models

An extension of linear least-squares modelling is non-linear least-squares 

modelling, which allows a larger and more general class of functions to be used. 

Without the linearity constraint, there are very few limitations in the way parameters 

may be used in the functional part of the model.

As with linear least-squares models, homoscedasticity and normally-distributed 

errors are assumed. Thus, while the problems of a linear function are resolved, the 

other difficulties remain.

In order to overcome these difficulties, the next major step in improving accident 

prediction models involved the use of generalized linear models.

2.5.4 Generalized Linear Models

2.5.4.1 Introduction

Generalized linear models (GLMs) were developed in the 1970s as a method of 

modelling data where the distribution of the response variable (the distribution of
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accident counts, in this case) is a member of the exponential family (10). Exponential 

distributions include Poisson, binomial, gamma, negative binomial, and others.

This section will describe accident prediction models based on Poisson and 

negative binomial distributions. The random-effect negative binomial model will also 

be discussed.

2.5 4.2 Poisson Models

The first attempts to use GLMs involved Poisson regression. The Poisson 

distribution is a discrete distribution that is well suited for modelling count data, 

particularly where the data contains a large number of zeros. This applies to road 

safety modelling, as accident counts are discrete and often have many zeros (i.e.: it is 

common for an entity to have zero accidents over a given period).

Maher and Summersgill (8), Miaou and Lum {11), and others showed that by 

assuming accident counts followed a Poisson distribution, the resulting accident 

prediction models were a significant improvement over the standard regression models 

used previously.

One of the assumptions of the Poisson distribution is that the variance is equal to 

the mean. This implies that the model variance is explained entirely by the chosen 

independent variables; however, accident prediction models are usually found to have 

a variance greater than the mean (8, and others). This additional variance is termed 

overdispersion. Maher and Summersgill (8) suggest several possible causes of 

overdispersion: there are unobserved explanatory variables which effectively add to 

the random error; there are errors in the explanatory variables; or, the model may be 

mis-specified.

Another advantage of Poisson models is that they can be effectively used in 

empirical Bayes (EB) analysis. EB analysis combines model predictions with observed 

accident counts to improve prediction. EB techniques were discussed in Section 2.4.

Most recently, Qin et al. {12) used zero-inflated Poisson (ZIP) models for 

predicting accidents on two-lane highway segments in Michigan. They argue that the 

over-representation of zero-crash observations in the data may suggest overdispersion 

in the data even though the assumption of a Poisson distribution is actually correct.

The ZIP model accounts for the large probability “spike” at zero by combining 

two probabilities; the first is the probability that a site will have zero accidents, the
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second that the site will have a Poisson-distributed accident count. The total 

probability of observing zero accidents is then found by mixing these probabilities 

together. Thus, it is assumed that there is more than one underlying process that may 

be influencing accident frequency.

Qin et al. {12) argue that the ZIP model is an improvement over both pure 

Poisson models and negative binomial models; however, Lord et al. {13) refute this 

claim and give alternative reasons for the preponderance of zeros in crash data. 

Negative binomial models will be discussed in the next section.

2.5.4 3 Negative Binomial Models

Another way of dealing with overdispersion is to assume that accident counts 

come from a negative binomial distribution. Negative binomial (NB) accident 

prediction models have been used extensively in the past few decades; see, for 

example, Hauer (3), Persaud et al. (9), Vogt and Bared {14), and many others.

The standard negative binomial model assumes that the observed accidents 

(accident counts), )//, are distributed about a true mean, fi=XT, where X is the true 

accident rate per year, and T is the length of the observation period. A second

assumption is that X is gamma-distributed with a mean of i , and a shape of a. Here,

X  is the estimate based on known values of the explanatory variables, as shown here:

i  = exp(P^x) , (2.8)

where x  is a vector of independent variables (e.g. AADT, shoulder width, etc.) with the 

first term equal to 1, and p is a vector of parameters estimated by the fitting process 

(8).
The NB model has the same functional form used in the Poisson model. 

Negative binomial parameters may be found using weighted least squares if a is

known; otherwise, a, p , and the negative binomial dispersion parameter, k, may be 

estimated by the method of maximum likelihood.

Mayer and Summersgill (8) showed that, for a given data set, the NB regression 

parameters were very similar to those estimated by assuming a Poisson model. Since 

the functional form of the two models is the same, the accident frequency predicted by 

the models is almost identical. The difference between the Poisson and NB models is
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in the calculation of variance; the negative binomial model adds a quadratic term to the 

variance, such that the variance is calculated as:

Var(y) = // + , (2.9)

where E{y)=n.

From Equation 2.9, we can see that the negative binomial distribution will 

approach the Poisson distribution as A:->0. Negative binomial models will exhibit 

greater variance than Poisson models, and the models will thus carry less weight in 

the context of the EB procedure; however, because the NB model more accurately 

reflects the observed variance, NB models are generally more appropriate than 

Poisson models.

Much research is being conducted on negative binomial accident prediction 

models. Recently, zero-inflated negative binomial (ZINB) models have been used to 

try to improve prediction; see Lord, et al. {13) for details. Chin and Quddus {15) have 

also proposed a random-effect negative binomial (RENB) model.

2.5.5 Nonparametric Models
The accident prediction models described thus far are all parametric; that is, 

each model is function of the chosen independent variables and the regression 

parameters. The regression parameters are constant over the range of independent 

variables; thus, a single process is assumed to govern all sites to which the model is 

applied. The problem with this assumption is that there may be many different 

processes at work; for example, sites with very high AADT may ‘behave’ differently 

than sites with low AADT, with respect to safety performance.

One way to address this issue is to employ a nonparametric model. 

Nonparametric methods trace the dependent variable (i.e., accident frequency) as a 

response to one or more independent variables (i.e., AADT) without specifying a 

functional relationship in advance. See Kononov and Allery {16) for details.

Nonparametric methods are relatively new, and have been facilitated by rapid 

advances in computing power. While many people prefer the simplicity and relative 

elegance" of mathematical models, nonparametric models show much promise, and 

should be the subject of further research.
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2.6 Potential for Safety Improvement
An alternative to screening based on EB-adjusted expected accident frequency is 

to consider the ‘potential for safety improvement’ (RSI), or "excess accident frequency.’ 

In its simplest form, RSI is defined as the difference between the expected accident 

frequency, X, and SPF-predicted accident frequency, k:

PSI = X - K  , (2.10)

where RSI is measured in accidents/mi/yr, or accidents/yr, whichever is appropriate.

The idea was proposed by Persaud et al. {17), Persaud et al. {18), and others. 

The idea is based on comparing the expected accident frequency of a site to what is 

‘normal’ for other sites. This measure of safety is attractive, as it aims to quantify the 

accident frequency that is ‘correctable.’ To illustrate, suppose an intersection had an 

EB-adjusted expected accident frequency of 10 accidents/yr, but the model prediction 

for the site was 4 accidents/yr. The site’s RSI would be 10-4=6 accidents/yr. Since 

the site experiences an ‘excess’ of 6 accidents/yr over what a ‘normal’ site would, then 

it may be reasonable to believe that these 6 accidents can be reduced to normal level 

of safety.

It can be argued that a similar site experiencing the normal accident frequency 

of 4 accidents/yr would pose a more difficult challenge for remedial safety work, as this 

would amount to making the site ‘safer than normal.’ A negative value of RSI indicates 

that the site’s safety performance is better than normal for similar sites.
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3 General Features of the Data Used in the Research

3.1 HSIS Data

All data used in this research was taken from the Highway Safety Information 

System (HSIS) database. The HSIS database, developed by the FHWA, is a collection 

of crash, traffic, roadway inventory and geometric data compiled from a select group of 

states. The data are processed into a common computer format and made available for 

research purposes.

Three main sets of data were used in this thesis, one from Washington, two from 

California. The Washington were for 2-lane rural highways {19)\ the California data were 

for rural, 4-leg two-way-stop-controlled (TWSC) intersections, and rural, 4-leg signalized 

intersections (20). The Washington data were for 4 years, 1993-1996, and the California 

data were for 5 years, 1997-2001. Relevant statistics for the datasets used for analysis 

in this thesis are provided in the appropriate sections.

For each dataset, all milepost data were reported to a precision of 0.01 mi 

(16.1m).

The HSIS data were received is SAS format, and that program was used to 

manipulate all data prior to analysis.

3.2 Accident Data

For the Washington road segment data, intersection and intersection-related 

accidents were excluded from all analyses. For the California intersection data, only 

accidents occurring within 75m (0.0466mi) are included for analysis; all others are 

omitted.

For the Washington data, the reported injury severities were fatal, non-fatal injury 

(NFI), and property damage only (PDO). Fatal/injury (FI) accidents were computed as 

the sum of fatal and NFI accidents.

The California accident data were reported using one of five severities: fatal (K), 

severe injury (A), other visible injury (B), complaint of pain (C), or property damage only 

(O). The severity levels correspond to the KABCO injury scale {21), which will be 

described in more detail in Chapter 6. FI accidents were calculated as the sum of K, A 

and B accidents.
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3.3 Traffic Data

Traffic volume data were reported as average annual daily traffic (AADT). Wtiere 

a site had no reported AADT data, that site was excluded from analysis. Where the site 

had at least one year of AADT data, missing values were dealt with in accordance with 

the method used in the Interactive Highway Safety Design Module (22), which is as 

follows:

• If AADT data were available for only a single year, that same value was 

assumed to apply to all years of the analysis period.

• If two or more years of AADT data were available, the AADTs for 

intervening years were computed by linear interpolation.

• AADTs for years before the first year for which data were available were 

assumed to be equal to the AADT for that first year.

• AADT for years after the last year for which data were available were 

assumed to be equal to the last year.

3.4 Units

All HSIS data were presented in U.S. customary units, and all analyses were 

performed in those units. All methods described in this thesis are equally effective when 

metric units are specified. The only non-metric units used are miles (mi), which may be 

converted to kilometres by 1mi=1.61km.
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4 An Investigation of the Overdispersion Parameter of Safety Performance
Functions Used in Network Screening

4.1 Background

Safety performance functions, also called accident prediction models, are 

mathematical models that have accident frequency as the dependent variable, and one 

or more traits of the sites under Investigation as the Independent variables. The list of 

Independent variables usually Includes traffic volume (I.e., AADT) at a minimum, and 

often Includes measured geometric characteristics (e.g., lane width, speed limit, etc.) 

and other relevant traits. In theory, any measurable characteristic may be Included In 

the model provided that It Is shown to have a statistically significant effect on the 

dependent variable (I.e., accident frequency).

Safety performance functions (SPFs) have two Important applications. First, they 

may be used to predict the safety performance (I.e., accident frequency) of a proposed 

transportation facility, or to predict the change In safety performance where modifications 

are proposed to existing facilities. This can help designers to compare the predicted 

safety performance of alternative designs; the Interactive Highway Safety Design 

Module (IHSDM) makes use of SPFs for this purpose (22).

Second, SPFs are commonly used as part of empirical Bayes (EB) analyses to 

Identify “sites with promise” for safety Improvement. In this case, the model predictions 

from the SPF are the Bayesian prior estimates, which are then combined with slte- 

speclflc accident data to produce EB-adjusted expected accident frequency estimates. 

The peak-searching algorithm for screening of roadway segments, described In the next 

chapter, employs SPF model predictions In this manner; thus, the SPF plays an 

Important role In network screening.

While It Is understood that the application of SPFs has much Improved the 

process of network screening, there are also some Issues that must be addressed. Not 

the least of these problems Is that the Independent variables In the model are assumed 

to be free of errors. This assumption Is perhaps the single greatest weakness of SPFs. 

To Illustrate this point, consider that the most Influential (and often the only) dependent 

variable Is traffic volume. The traffic volume of a site Is usually measured with an 

automated traffic counter over a short period of time (days or weeks), and at a particular 

point on the roadway. The results of these short-term traffic counts are then used to 

generate annual traffic statistics (I.e.: AADT) for a given length of road (or a given 

Intersection). To suggest that AADT data, or any other data to be used In the model, are

19



error free is, at best, questionable; however, the generalized linear modelling methods 

used to develop SPFs do not account for variance in the dependent variables. At 

present, there is no well-accepted method of dealing with these errors, except to exclude 

the variable from the model. The exclusion of AADT from the model would result in 

losing what is by far the most significant independent variable in the model. So, when 

developing SPFs, the lesser of two evils is chosen: a model with error-prone

independent variables is preferred to having no viable model at all.

SPFs are now most commonly developed by assuming that traffic counts at 

individual sites correspond to a negative binomial distribution (see Section 2.S.4.3 for 

details). For these models, it is generally assumed that the negative binomial dispersion 

parameter, k, is constant over the range of independent variables; however, it has been 

suggested by Hauer (23), Miaou and Lord (24) and others that this is not, in fact, the 

case.

In this paper, the effects of two independent variables on the negative binomial 

dispersion parameter are investigated, namely segment length and AADT.

4.2 Overdispersion Issues

In Chapter 2, the reasons for assuming that accident counts follow a Poisson 

distribution are explained. The variance of the Poisson distribution is assumed to be 

equal to the mean; in other words, it is assumed that the variance observed in a Poisson 

model can be explained by the independent variables. In the case of accident prediction 

models, model variance is usually found to exceed the mean. This ‘extra-Poisson’ 

variance (i.e., overdispersion) may indicate that the assumption of a Poisson distribution 

is inappropriate.

The negative binomial distribution is similar to the Poisson distribution in most 

respects; however, negative binomial models can accommodate overdispersion 

explicitly. Overdispersion is represented negative binomial dispersion parameter, which 

is estimated in the regression process along with other model parameters. It is most 

commonly denoted k, such that as Æ-̂ O, the negative binomial distribution approaches a 

Poisson distribution. It is also sometimes given as d, which is the inverse of k, thus, 

d=Mk, and as rf-^oo, the negative binomial distribution approaches the Poisson 

distribution. In this thesis, the negative binomial dispersion parameter shall be defined 
as k, above.
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Overdispersion may be thought of as the model variance not explained by the 

independent variables. One should not be surprised to see overdispersion in accident 

prediction models, as the true number of variables involved in accident occurrence is 

much larger than the number of modelled variables.

Overdispersion is usually held constant for SPFs; however, this assumption has 

come under question of late. The next sections describe a brief investigation into how 

overdispersion estimates vary with segment length and AADT.

4.3 Data Used in This Part of the Research

HSIS data for 2-lane rural highways in Washington state, from 1993 to 1995, 

were used to calibrate the models. A summary of relevant statistics for the Washington 

data is shown in Table 4.1.

The data were disaggregated by terrain type -  level, rolling and mountainous. 

SPFs were calibrated for each terrain type; however the rolling terrain data will be the 

focus of this examination, owing to the larger numbers of sites and collisions. Segment 

lengths ranged from 0.01 to 28.66mi. Sites were defined as contiguous road segments 

that were homogeneous with respect to measured traffic and geometric characteristics 

(AADT, shoulder width, speed limit, etc.).

Table 4.1 : Relevant statistics of the Washington HSIS data used for calibrating SPFs.
Level Rolling Mountainous Total

Total Length (mi) 952.63 3835.44 460.37 5248.44
Total No. Sites 1941 5792 663 8396
Mean Site Length (mi) 0.49 0.66 0.69 0.66
Mean AADT ('93-'95) 4740 4320 1770 3060
Total Collisions 4016 12917 1248 18181
Fatal/Injury Collisions 1906 6200 535 8641

4.4 Negative Binomial Model Calibration

The SPFs were all calibrated by negative binomial regression, which was 

performed SAS® software, with all parameters being estimated by maximum likelihood 

using the GENMOD procedure (25, 26). A simple AADT model’ was specified, where 

the predicted accident frequency, k, in accidents/mile/year, is estimated as a function of
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AADT only. The segment length, SL, in miles, and number of years of data being used, 

«, were treated as offset variables. The model form is as follows:

K = f(A A D T ) = a  • AADT^ (4.1) (same as 2.2)

where a and are parameters estimated from the data.

While SPFs were developed for each of the three terrain types, sites in rolling 

terrain only are used for the screening methods presented in this thesis; thus, only 

results for rolling terrain are reported herein.

For total accidents, a and p  were estimated to be 0.0012 and 0.87, respectively, 

and k was estimated to be 0.49. Figure 4.1 shows a scatter plot of the observed 

accident counts, and the SPF estimated from those data.

SPF 
% ^Obseived

2500010000 15000
AADT

Fig. 4.1: Scatter plot of observed total accident counts and SPF for 
Washington 2-lane rural highways In rolling terrain.
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For fatal/injury (FI) accidents, the estimates of a and p were 0.0006 and 0.87, 

respectively, and k was estimated to be 0.48. Plots of the SPFs for both total and FI 

accidents are shown in Figure 4.2.
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Fig. 4.2: SPFs for total and FI accidents on Washington 2-lane rural highways

4.5 Overdispersion as a Function of Segment Length

The first part of the investigation was to see how SPF parameters are related to 

the lengths of the segments used in the regression. (Recall that segment length is 

considered an offset variable, rather than a regressor variable.) To begin, a dataset 

made up of 2-mile segments was extracted from the original Washington 2-lane rural 

highway data. This was done by taking every site in the original data that had a length 

of at least 2 miles and disaggregating these into as many 2-mile segments as possible.

For example, a 4.3-mile site would yield two contiguous 2-mile segments 

beginning at the same point as the original site; the 0.3-mile remainder would be 

excluded from the analysis. In the end, the subset of the original data included 831 2- 

mile segments, some of which were congruent, and others isolated. Each segment was
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homogeneous along Its length, with respect to measured characteristics. Segments 

were not, in general, homogeneous with respect to one another.

The same negative binomial regression procedure that was used in the previous 

section was applied to the 2-mile subset. The SPF, based on 1662 total miles of road, 

and 3289 total accidents, is shown in Figure 4.3, along with the SPF for the ‘full’ dataset.

The SPF calibrated from the 2-mile segments predicts fewer accidents than does 

the SPF from the original data. One of the reasons for this may relate to the fact that the 

original data includes many short segments (the mean site length is 0.66mi); this implies 

that geometric and/or traffic characteristics are changing over a short distance, and it 

has been suggested that changes in roadway, traffic, or environmental characteristics 

may be associated with increased accident risk. A deeper examination of this issue is 

beyond the scope of this work; see, for example, Anderson et al. (27), Ng and Sayed 

(28), and others for details.
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Fig. 4.3: Total-accident SPFs for all 2-lane rural highway segments in the 
Washington dataset, and a subset of 831 2-mile segments.
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Next, the 2-mile segments were split into a new subset of 1-mile segments. The 

‘1-mile dataset’ had the same total number of accidents, total length of road, and traffic 

volumes as did the 2-mile dataset. Negative binomial regression was performed on the 

1-mile dataset as before, but there were now twice as many observations used.

The process of dividing segments into shorter, equal-length subsegments was 

continued until the minimum possible length for analysis, 0.01 mi, was reached. Figure

4.4 describes how the datasets were created.

2mi
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Fig. 4.4: Division of a site.
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SPF parameters were calibrated for each segment length used, and the results 

are shown in Table 4.2. All datasets were the same, except for the length and number 

of subsegments in each; thus, differences in parameter estimates can be attributed only 

to the differences in the segment lengths of the datasets.

For each new set of data, a negative binomial regression model was calibrated. 

The parameter estimates are shown in Table 4.2. The parameter estimates for a and p 

are not equal across datasets, and this will result in differences in model prediction; this 

is evident in Figure 4.5, which shows the family of SPFs calibrated from the different 

datasets. Additional model information, including goodness-of-fit statistics, are given in 

Appendix A.

Table 4.2: Negative binomial regression parameters for data subsets.

Dataset Statistics Negative Binomial Regression 
Parameters

Segment
Length

(mi)
No. of 
obs.

Total
Accidents

Total
Length

(mi)
a P k

0.01 166200 3289 1662 0.0013 0.83 6.00
0.02 83100 3289 1662 0.0013 0.83 3.23
0.04 41550 3289 1662 did not converge
0.05 33240 3289 1662 0.0013 0.83 1.54
0.08 20775 3289 1662 0.0012 0.83 1.17
0.10 16620 3289 1662 0.0012 0.84 1.00
0.20 8310 3289 1662 0.0011 0.85 0.83
0.25 6648 3289 1662 0.0011 0.85 0.79
0.40 4155 3289 1662 0.0010 0.86 0.68
0.50 3324 3289 1662 0.0010 0.86 0.61
1.00 1662 3289 1662 0.0009 0.88 0.59
2.00 831 3289 1662 0.0007 0.91 0.55
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Fig. 4.5: (a) Family of SPFs calibrated using subsets of 1662 miles of Washington 
2-lane rural highway segments with varying segment lengths. Inset is shown in (b).
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While the differences in the estimates a and p  are relatively small and subtle, the 

differences between overdispersion estimates are much more pronounced. To visualize 

how the overdispersion estimates vary with segment length, the ^-values were fitted with 

a shape-preserving interpolant using MATLAB® software; this is shown in Fig. 4.6. A 

shape-preserving interpolant oid{d=Mk) is shown in Figure 4.7.
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Fig. 4.6: Shape-preserving interpolant of k vs. segment length.
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Fig. 4.7: Shape-preserving interpolant of d vs. segment length.
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The interpolants shown In Figures 4.6 and 4.7 would suggest that a functional 

relationship exits between overdispersion and segment length. To determine this 

relationship, the data points were fitted to several different models. The following non­

linear model was found to fit the data very well:

k = f(S L )
+ Sh 

PiSL
(4.2)

where P\ and P2 are parameters. This overdispersion model was calibrated using the 

NUN procedure in SAS (26), and P\ and P2 were estimated to be 0.107 and 1.97, 

respectively. The model implies that as SL—̂co, k-*MP2, and as SL-*0, k-*co] thus, k will 

approach a minimum value, k„„„, as segment length increases. Figure 4.8 shows that 

this model agrees closely with the observed values of k. Figure 4.9 shows a plot of the 

inverse of Equation 4.2, which is simply d vs. segment length.
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k=(P.11+SL)/(2.0*SL)
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Fig. 4.8: Equation 4.2 fitted to k vs. segment length.
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Fig. 4.9: Inverse of Equation 4.2 fitted to d vs. segment length.

Clearly, the value of the value of k is large for small segment lengths, and smaller 

at longer lengths. Knowing that the variance of the negative binomial distribution is 

given by;

Var{y) = ju + kf? (4.3) (same as 2.9)

it can be seen that the variance of the SPF will increase as k increases. Note that the 

mean of the negative binomial distribution, n, at any value of AADT would be the same 

as the model prediction, k ,  for any site with that AADT. To illustrate. Table 4.3 shows 

how the model variance changes with k, for a hypothetical value of the mean,
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Table 4.3: Variance of model prediction, p, where p=3 accidents/yr.___________
Segment Length (mi) Dispersion Parameter, k Var(ic)

0.01 6.00 57.0
0.02 3.23 32.1
0.05 1.54 16.8
0.1 1.00 12.0

0.25 0.79 10.1
0.5 0.61 8.48
1 0.59 8.28
2 0.55 7.98

The model variance increases dramatically as k becomes large, and one of the 

implications of this is that EB weights will be affected. The EB weight, w, is a function of 

k (and hence the variance), and is given by:

w = — -—  . (4.4)
l + kju

The EB weight is used when model predictions and site-specific observations are 

combined to estimate the expected accident frequency, k. The larger the value of w, the 

greater the influence of the model prediction, p, and hence there is less influence on the 

observed accident counts. Table 4.4 shows the value of w calculated for each of the 

different k estimates; again, an SPF prediction of k =3 accidents/mi/yr is assumed.

Table 4.4: EB weights, where p=3 accidents/yr.
Segment Length (mi) Overdispersion Parameter, k EB weight, w

0.01 6.00 0.053
0.02 3.23 0.093
0.05 1.54 0.18
0.1 1.00 0.25

0.25 0.79 0.30
0.5 0.61 0.35
1 0.59 0.36
2 0.55 0.38
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As k approaches zero, the weight given to the model prediction appears to 

approach zero. Conversely, the weight of the observed accident counts would approach 

unity.
The reasons why short segments should exhibit greater overdispersion than 

longer ones are not entirely clear. If one were to imagine a single 10-km-long road 

segment, and compare it to 100 discontiguous 0.1-km segment segments, it would be 

reasonable to expect a relatively low overdispersion from the longer site. If only because 

the same drivers are using the same 10-km of road in the same environmental 

conditions on each trip. The same cannot be said for the group of shorter segments. To 

date, very little work has been done on this topic, and further research is needed to gain 

an understanding of the underlying causes of overdispersion variation.

To see what effect different values of k will have on network screening results, 

the EB procedure was applied to the 2-mile segments of Washington 2-lane rural 

highway dataset. The sum of the SPF predictions (i.e., the Bayesian prior estimates), 

Ik , for each value of k, and sum of the EB expected accidents, 2LT, are shown in Table 

4.5, and compared with the average annual counts from 1993-1995, adjusted to 1995. 

The results are shown in Figure 4.10.

Table 4.5: Total observed, predicted, and expected accidents for different values of k, for

Segment Length (mi) Observed (93-95) Predicted (95) EB Expected (95)

SL SK S k SX

0.01 1096 1127 1120

0.02 1096 1127 1120

0.05 1096 1128 1122
0.1 1096 1130 1122
0.25 1096 1136 1123
0.5 1096 1141 1123
1 1096 1150 1123
2 1096 1162 1123
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Fig. 4.10: Comparison of observed, predicted, and EB expected accidents 
for different segment lengths of Washington 2-iane rurai highways.

The number of accidents predicted by the model Increases as segment length 

Increases; however, the EB estimates of expected accident frequency show a 

remarkable stability. Thus, It would seem that large differences In the estimated 

overdlsperslon do not carry over to the final weighted EB estimates.

4.6 Overdispersion As A Function of AADT

To see If AADT has an effect on estimates of the overdlsperslon parameter, data 

for 5,792 2-lane rural highway segments In Washington were selected. Four years of 

accident and traffic data were available, from 1993-1996. Table 4.6 shows relevant 

statistics from the dataset.

Sites were grouped Into five groups, or ‘bins’, based on AADT. The choices of 

bln size were made so that each group had a large sample size; thus the bln ranges are 

not equal. Table 4.7 shows relevant data for each bln.
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Table 4.6: Relevant statistics of Washington 2-lane rural highways used for
overdlsperslon investigation.____________________________________ ___
Total Sites 5 792
Total Miles of Highway 3 835.44
Total Accidents (1993-1996) 17 634
Minimum AADT 110
Maximum AADT 23 500
Mean AADT 4 360
Mean Site Length (mi) 0.66

Table 4.7: Bin descriptions for AADT data.

Bin AADT Range # Sites Mean AADT
Total Length 

(mi)
Mean Site 

Length (mi)

1 0 -1 5 0 0 1479 900 1608.80 1.09
2 1500-3000 1407 2200 971.36 0.69
3 3000 -  5000 1161 4020 639.64 0.55
4 5000 -  8000 885 6070 345.77 0.39
5 8000+ 860 12560 269.87 0.31

For each bin, negative binomial regression was performed using SAS as before. 

The SPF parameter estimates for each bin are shown in Table 4.8. Parameter 

estimates for bin 3 were not statistically significant. Further details are provided in 

Appendix A.

Table 4.8: Results of negative binomial regression
Parameter Estimates

Bin AADT Range a P k
1 0 -1 5 0 0 0.00033 1.1 0.60
2 1500-3000 0.00024 1.1 0.43
3 3000 -  5000 ‘parameters not significant
4 5000 -  8000 0.00016 1.1 0.42
5 8000+ 0.00084 0.94 0.40
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The results would suggest estimates of k are quite stable for AADT values in 

excess of 1500. For bin 1, which had the iowest range of AADT, the value of k was 

higher than for other bins; however the difference between bin 1 and bin 5 was the only 

significant difference (i.e., estimates for bins 1-4 were not significantly different, and 

estimates for bins 2-5 were not statistically different).

Table 4.7 showed that the mean site length decreases substantially as AADT 

increases. This is because higher volume roads generally have more access points 

than lower-volume roads; thus, AADT or other site characteristics are likely to change 

more frequently, and these changes define site boundaries.

Given the results of the previous section, it may be reasonable to expect that 

overdispersion would rise for high-AADT sites, as the segment lengths are relatively 

short; however, overdispersion does not appear to increase with AADT, and may even 

decrease. This could mean that sites with high AADT exhibit less variance than low- 

AADT sites, and this moderates the effects of segment length; however, it is too early to 

tell if this is the case, and further study is needed.

4.7 Chapter Summary

This was intended to be a brief excursion into the nature of overdispersion, so it 

is difficult to draw hard conclusions. The results of Section 4.3 showed that EB-adjusted 

expected accidents are not seriously affected by differences in overdispersion estimates; 

however, it is difficult to generalize this result; so the indications that overdispersion is 

not, in fact, constant over the range of a given independent or offset variable is 

suggestive that a better understanding of overdispersion could lead to better accident 

prediction models, and this is an avenue of research that should be pursued.
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5 Investigation of Application Issues for the Peak-Searching Algorithm for
Screening Roadway Segments

5.1 Background

The peak-searching algorithm examined in this chapter is a network screening 

approach for use with road segments. The method was developed by Hauer (29), and 

has been suggested for inclusion in the SafetyAnalyst Network Screening Tool (30).

The peak-searching algorithm has several similarities to the sliding window’ 

approach to screening road segments. In the sliding window approach, all sites under 

investigation are divided into subsegments of some equal length, SLsub, such as 0.1 or

0.01 km (or mi). A ‘window’ of length W  is ‘placed’ at the beginning of the road segment, 

and the EB-adjusted expected accident frequency, Xy, or the excess accident frequency. 

Excess Y is calculated for the given window on a per-mile basis, as shown in Figure 5.1. 

The subscript Y denotes the year for which the accident frequency is estimated. The 

accident frequencies may be estimated for total accidents, fatal/injury (FI) accidents, or 

any other accident type, provided sufficient data exist. Estimates of Xy and Excessy are 

calculated using empirical Bayes methods; therefore, appropriate SPFs must be 

calibrated prior to screening.

Site starts Site ends

/ I

^=0.3mi

X=^ .2 acc/mi/yr 

Var(^=0.21

Fig. 5.1: Sliding window concepts: placement of the first window.
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Once the calculations for the first window have been made, the window is then 

moved a length of one increment, Zwc. down the roadway, and the calculations are 

repeated for the new window. The increment size is usually taken to be the same as the 

subsegment length, SLsim', however, any value of Lmc may be used, provided L,m>SLsim- 

So long as the chosen window size is larger than the increment, as is usually the case, 

adjacent windows will overlap. This has the effecting of “smoothing” the averages, and 

is one of the main features of the sliding window approach.

The process continues until the window reaches the end of the site. If the site 

has a ‘remainder’ at the end, the last window is taken to be the distance W from the site 

endpoint. A  remainder is a length of road shorter than the subsegment length, SLsub. 

and one is created wherever the site length is not a multiple of the subsegment length.

Figure 5.2 illustrates the window locations and accident frequency calculations at 

a fictitious 0.44-mi site, with fr=0.3mi and Z,/w=0.1mi.

0.10 0.10 0.10 0.10 0.04

Window #1
X=1.3acc/mi/yr

Var(X)=0.22

Window #2
X=1.9acc/mi/yr

Var(X)=0.28

Window #3
X=1.6acc/mi/yr

Var(X)=0.26

Fig. 5.2: Example of sliding window procedure.

For a given site, the window with the highest expected accident frequency or 

excess accident frequency, is selected to ‘represent’ that site. All sites in the network 

are then ranked based on the given frequency, with those sites having the highest 

frequencies being ranked at the top. The variance o IX y  or Excessy are also estimated for 

each site; however, they do not influence the rankings.
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Another feature of the sliding window approach is that the windows may ‘bridge’ 

adjacent sites provided that the sites are contiguous with respect to one another. This 

feature is illustrated in Figure 5.3.

Site A SiteB

Window #1

Window #2

Window #3

Window #4

Fig. 5.3: Sliding window bridging' adjacent sites.

One of the problems with the sliding window method is the question of what 

window size should be used. If a very small window size is selected, then, as shown in 

Chapter 4, the EB estimates will exhibit large variances; thus, the reliability of the 

screening results would be questionable. If a large window size is selected, any isolated 

sites with a total length of less than the window size would be excluded from the 
screening procedure.

To overcome these difficulties, Hauer (29) developed a peak-searching algorithm 

to screen roadway segments. In this method, the window length is not fixed, and the 

variances of the safety estimates play a central role in the ranking of sites.
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5.3 The Peak-Searching Algorithm

5.3.1 General

For the peak-searching algorithm, sites are divided into subsegments in the 

same way as for the sliding window approach. A minimum window size, is selected 

such that it represents the shortest segment length that can be evaluated with a 

reasonable degree of accuracy. The size of will be dictated by the precision of the 

network data under investigation, and reasonable assumptions regarding the accuracy 

of those data. For example, some jurisdictions report accident locations to 0.001 mi 

(1.6m) precision; however, it is difficult to believe that the size of a ‘real’ hazardous 

location could be defined so precisely.

The first window is of size and it is placed at the beginning of the site. The 

expected accident frequency, Xy, or the excess accident frequency, Excessy, is then 

calculated for the window in the same way as for the sliding window approach, along 

with the estimate’s variance. The estimate of Xy or Excessy is then subjected to a test of 

statistical precision, which is done by calculating the coefficient of variation (CV) of the 

estimate. CV is defined as the standard deviation of the estimate divided by the 

estimate; thus, CV is given by:

JVar^Es,im a,e) (g , ,
Estimate

Estimates with relatively large variances will have large values of CV. Thus, the lower 

the value of CV, the more precise the estimate. A CV of zero would indicate near­

perfect precision.

Prior to screening, a limiting value is selected for the coefficient of variation, CVn„,. 

If the first window has a CV of less than or equal to CVu„, the site is ‘flagged,’ and the 

site is ranked based on the expected accident frequency or excess accident frequency 

of the window on a per-mile basis. If the first window is not flagged, then a second 

window is placed one increment down the roadway in the same manner as with the 

sliding window approach. The same calculations are made for the new window, and it is 

subjected to the same statistical precision test. If the second window does not pass the 

CV test, then the window is moved another increment down the roadway. This process 

continues until the site end point is reached, or until a window is flagged. Figure 5.4 

shows the procedure where W=W’„i„=0.10, and CVn„,=0.5.
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5 @ 0.1 Omi

Y
X=1,2acc/mi/yr 
CV=2.5 
Pass? NO

X=1.1acc/mi/yr 
CV=2.7 

Pass? NO

X=1.1 acc/mi/yr 
CV=2.7 

Pass? NO

X=1.5acc/yr 
CV=1.5 

Pass? NO

X=1.8acc/yr 
CV=1.1 

Pass? NO

Fig. 5.4: Peak-searching concepts; W=Wmm

If no windows pass the test, then the window size is increased by one unit, which 

shall be taken to be the same as the increment size, Ltsc- Again, the window moves 

down the roadway, this time with larger, overlapping windows, until the end of the site is 

reached or a window has an acceptably low CV. This is shown in Figure 5.5 for 
Z,wc=0.1; thus W=W„,i„+L,N(~0.20m\.
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5 @ O.IOmi

X=1.2acc/mi/yr 
CV=1.3 

Pass? NO

X=1.2acc/mi/yr 
CV=1.1 

Pass? NO

X=1.3acc/mi/yr 
CV=0.8 

Pass? NO

X=1.7acc/mi/yr 
CV=0.4 

Pass? YES

Fig. 5.5; Peak-searching concepts, W=0.20.

If there are still no windows flagged, then the procedure is repeated with 

successively larger window sizes until either the site has been flagged or the window 

size is equal to the site length. If all possible window sizes have been tried, and none 

have passed the test, then the site is not included in the ranked list of sites.

The algorithm is repeated for every site in the network under investigation. The 

end result is a list of sites which have an expected accident frequency or excess 

accident frequency estimated to a desired level of precision. Sites are then ranked as in 

the sliding window method, where sites with the largest Xy or Excessy estimates are 

ranked highest.

The value of CVn„ represents the minimum level of precision the EB estimates 

must show in order to be included in the ranked list. This has the effect of excluding 

those sites whose safety estimates are deemed to be too unreliable.

The peak-searching algorithm may be performed for any type of accident for 

which a sufficient SPF can be developed. In this thesis, screening procedures are 

demonstrated for total, fatal/injury, property-damage-only, and equivalent-property- 

damage-only accidents, denoted by the subscripts TOT, FI, PDG, and EPDO,
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respectively. The network may be evaluated for each accident type, and for either 

expected accident frequency or excess accident frequency. Step-by-step instructions for 

each case are given below.

5.3.2 Ranking of Sites Based on Expected Accident Frequency on Road 
Segments

Step 1: Safety performance functions for both total and FI accidents are calibrated for 

the network under investigation. Alternatively, SPFs from another source may be 

transferred from another jurisdiction applied to the current network; however, methods 

for this are not yet well developed. See Persaud et al. (9) for details.

It is planned that future users of the Network Screening Tool will have the option 

of using default SPFs calibrated using data from other jurisdictions, or other SPF 

parameters specified by the user. Presumably, the latter SPF would be calibrated using 

data from the network being investigated.

Step 2: Once the network data have been broken down into subsegments of length 

SLsim, the SPFs may be applied. Using the appropriate SPF model parameters, the 

predicted number of accidents per mile, Ky, for each year, y, y=\,2,...,Y, is calculated for 

both total and FI accidents as follows:

’ ŷ(TOT) — (5.2)

(5.3)

Step 3: Using the model predictions calculated in Step 2, the yearly correction factor, 

Cy, was computed for total and FI accidents, and for each year, as follows:

'^y{TOT) -  ( 5 .4 )
\̂{TOT)

C y i F n = ^  (5.5)
N(F/)

Step 4: Using K,,..., ky, and the negative binomial dispersion parameter, k, the EB 

weight, w, was calculated for total and FI accidents with the following:
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WjoT -■ (5.6)

Wp! —■

1 + kjQj ^  l̂ y(TOT) 
y=\

1
Y

y=i

(5.7)

Step 5: Next, the base EB-adjusted expected number of accidents, X], for total and FI 

accidents, were calculated for year 1 :

^ \(T O T )  — '^TOT^\(TOT)^^sub  +  0 "  ^♦^rOT’ )

y \
'^^yiTOT)

_______
Y

^CyiTOT)
Vy=i

^ U F / )  -  '^FI ^UFn^^sub + 0 “  ^F /)

r  Y \

y=i_____
Y

y=i /

(5.8)

(5.9)

Step 6: Then Xy, the EB-adjusted expected number of accidents for>^=y, the final year 

for which data exist for the site. Ultimately, flagged sites will be ranked based on these 

estimates. For total, FI, and PDO accidents, X y  is calculated as follows:

^Y(TOT) — ^\(TOT) ̂ Y(TOT)

^Y(FI) -  ^\{FI) ̂ Y(FI)

^Y(PDO) -  ^Y(TOT) ~ ̂ Y(FI)

(5.10)

(5.11)

(5.12)

Step 7: The variance of each EB-adjusted expected accident frequency estimate was 

then calculated, and is the measure of precision for the estimates. Note that the 

variance for PDO accidents is given by the sum of the total and FI variances. This 

amounts to a worst-case' estimate for the PDO variance by assuming that total and FI 

accident counts are statistically independent, which is clearly not the case. Were PDO
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accidents modelled explicitly, the variance of the estimates would likely be smaller than 

the sum of the total and FI variances. Thus, the PDO variance is overestimated.

CY(TOT)
Y

Zc
yy=\

Y{TOT)

Y \

^ Y ( F I )
Y

^^Y (F /)  
y=\ J

(5.13)

(5.14)

Var{x Y (PDO) )~ y(tot) )+ ) (5.15)

The following two steps apply only to screening for EPDO accidents. If screening is not 

being performed for severity-weighted accidents. Steps 8 and 9 are skipped.

Step 8: The EPDO expected accident frequency was calculated by applying a relative 

severity weight, SW, for each level of crash severity (e.g., fatal, severe injury, etc.) 

described in the data. The relative severity weight is the cost of an accident of the given 

severity level in terms of PDO accidents; thus, PDO accidents always have a weight of

1. Because accident reporting practices vary over Jurisdictions, different severity scales 

and different accident cost estimates may be used. In this Chapter, only fatal (F), 

nonfatal injury (NFI) and PDO severity types are considered. The number of FI 

accidents is the sum of F and NFI accidents. To calculate the EPDO expected accident 

frequency, let RCpi be the relative weight of FI accidents as compared to PDO accidents. 

RCi i was calculated as follows;

RCp,=P;,SW^+P^^,SW,NFI' NFI (5.16)

where f,. is the proportion of FI accidents that were fatal, and Pni-i is the proportion of all 

FI accidents that were nonfatal. Different injury scales may have a different number of 

levels and different severity types, but the premise is the same.

The EB-adjusted EPDO expected accident frequency was then be estimated by:
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^Y(EPDO) ~  ^Y(PDO) ^Y(FI) ■ (5.17)

Step 9: Next, the variance of the EPDO estimate was found by:

V a r { x  Y {EPDO) )“ V a r { x  y{j-ot) )+ i ^ ^ F /  ~  0 ^ o r { x  Y{f/) ) . (5.18)

Whether or not the network is being screened for EPDO accidents, calculations 
for individual subsegments are now complete. The next steps describe the calculations 
performed for individual windows.

Step 10: The average expected accident frequency of a given window of length fFwas 
calculated by:

^Y(TOT)

Avg(XY{ror) ) - ^  (5.19)

y^.^Y(F/)

  (5.20)

^^Y(PDO)
^ V g Ç ^ Y ( P D O ) ) - ^  (5.21)

y .̂^Y(EPDO)
A v g { x y(epdo) )= ' (5.21)

step 11: The variance of each average was calculated by summing the variance of the 
above statistics for the respective accident severity levels as shown below:

^^V a r{x  y(tot)^

V a r [A v g {x  y(tot) ) ] = ~  ^  (5.22)

V a r \A v g [X Y {F i ) \= —  ^  (5.23)
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PF'

y i  F<3r ( x  Y (EPDO) )

V a r \A v g { X y (E P D O ) \= ~  ^  (5-25)

Step 12: The expected accident frequency or the excess accident frequency for each 

window of length fF„/„ was then subjected to the statistical precision test by calculating 

the CV of the estimated expected accident frequency, Xy. The CV of Xy  was calculated 

as follows for each severity level:

(5.26)
A y t̂OT)

= (5.27)
^  Y{FI)

CF,™, = (5.28)
^  Y{PDO)

(5.29)
^  Y (EPDO)

The CVs from all of the windows of length W„,i„ are then compared to the value of 

CVu„. When at least one CFis less than CF/,„, the entire roadway segment (i.e., site) is 

flagged. From all windows that have a CV less than CF/,„, the window with the largest 

peak expected accident frequency, Peak{Xy), is selected. To express Xy on a per-mile 

basis, Xy is multiplied by 1/fF to account for the window length.

The entire flagged roadway segment is placed on the list of roadway segments to 

be ranked and the location of the window “passing the test” and the value, on a per-mile 

basis, of its expected accident frequency is included in the output.

If a roadway segment is not flagged, then the window size is increased by one unit 

of increment, Lmc. The now-larger window is now placed at the beginning of the site,
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and subsequent windows are moved to the right one increment at a time. The expected 

accident frequency for the window is determined by calculating the average of the 

expected accident frequency, Avg(Xy), across all subsegments contained in the window. 

The expected accident frequency for each subsegment was calculated in accordance 

with Steps 2 though 9 above.

Once the algorithm has been completed for each site in the network, a final ranked 

list of sites can be generated; sites are ranked by expected accident frequency on a per- 

mile basis. If a shorter list of sites is desired, the value of CF/,„ may be decreased 

arbitrarily so that fewer sites will pass the CV test. Increasing the value of CVn„ will 

generate a longer list of sites. In practice, sites at the top of the list would be subjected 

to a more detailed safety investigation.

5.3.3 Calculation of PSI Based on Excess Accident Frequency on Road 
Segments

The procedures for screening roadway segments based on excess accident 

frequency, Excessy, are very similar to those for screening based on expected accident 

frequency. Excess accident frequency is defined as the difference between the SPF- 

predicted accident frequency and the EB-adjusted expected accident frequency. Steps 

1 to 7 are identical to those used for screening based on expected accident frequency; 

thus, the excess expected accident frequency calculation are shown beginning at Step 

8’ .

Step S’: Calculate the excess accident frequency for all severity levels:

Excess Y ̂ Ĵ̂OT) ~^Y(TOT) ~ ^Y(TOT)^^SUB (5.30)

ExcessY{̂ P!) = ^ y(fi) ~ ^ y{fi)^^ sub (5.31)

Excess Y (PDO) = Excess Y (POT) ~ Excess y (p/) (5.32)

Step S’: Calculate the variance of the excess accident frequency for all severity levels:

Var(ExcessY(poT) ) — x(7or) i/^Y(TOT)^^suB (5.33)Ktot
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Var{ExcessY(pi) ) — Var{x y(pi) )+  — {j^y(fi)^^sub (5.34)
kpi

Var{ExcessY(PDO) )=  Var{ExcessY(TOT) )+ Var[ExcessY(pi) ) (5.35)

Step 10’: The relative weight of a given FI accident, RCm, is found in the same manner 

as Step 10 in Section 5.3.1. Then, excess expected EPDO accidents is calculated by;

E x c e s S Y ( E P D O ) - ■ (5.36)

step 11’: The variance of the excess expected EPDO accident estimate is given by:

Var{ExcessY(EPDO))= Var{ExcessY(TOT)̂ -̂  (^Cp, - \ f  Var{ExcessY(̂ p]))

(5.37)

Step 12’: Calculate the average excess accident frequency of the given window:

^ Excess y(to t )
Avg{ExcessY(TOT))=— -----  ---------------------------------  (5.38)

Y ,E x c e s s Y (p i)
Avg[ExcessY(p,) ) = — — ---- --------------------------------  (5.39)

Yj^XCeSSY(PE,0)
Avg[ExcessY(PDO))=— ----- —---------------------------------  (5.40)

y. Excess y(ep d o )
Avg[ExcessY(EPDO))=—   ---------------------------------  (5.41)

Step 13’: The variance for each window, and for each severity is given by:

Y /a r { E x c e s s Y (T O T ) )
Var[Avg[ExcessY(TOT) ) ]= — ------------------------------------  (5.42)
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Var{ExcesSy  ̂PD )
Var\Avg[ExcessY(pi) ) ]= — --------- -̂-----------  (5.43)

Y/ar[ExcessY(PDO))
Var[Avg[ExcessY(PDO)\ = — ------- ^ ------------  (5.44)

Y^Var[ExcessY(EPDO))

Var\Avg{ExcessY^̂ EP[)Q̂  )] = (5.45)

As before with Avg(Xy), the estimate of Avg(£xcessy) for each window is subjected to 

the statistical precision test, where the CV is calculated as the ratio of VVar over Avg  of 

the appropriate statistic. From among all of the windows that pass the test, the window 

with the largest AvgfExcessyJ is selected, denoted Peak{Excessy), and this is used to rank 

the entire roadway segment (i.e., site). The boundaries of the respective window are 

also included in the output.

If statistical significance is not achieved for any window of length W=WMifA-LiNc, 

then W=WMiiA-'2.L,fjc is tried, and so on, until the window length is equal to the entire

length of the roadway segment.

If there is still no window flagged, the site is not included in the list of ranked

sites. The final result is a list of all sites passing the test ranked in order of the largest

excess accident frequency.

5.4 Application to Washington Rural, 2-lane Highway Data

The peak-searching algorithm was performed on a set of HSIS data for 2-lane 

rural highways in Washington. Three years of accident data, from 1993 to 1995, were 

used for model prediction and EB estimation.

Sites were defined as contiguous highway segments that were homogeneous 

with respect to AADT, lane width, shoulder width, and other measured characteristics. 

Each site was divided into subsegments 0.01 mi in length. This was the level of precision 

for geometric, traffic, and accident data for the Washington HSIS data.
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The smallest allowable window size, Wnm, was taken to be 0.1 mi, as it was 

perceived that this was a reasonable limit to the accuracy of accident locations. Thus, 

any site with a total length of less than 0.1 mi was not included in the screening 

procedure. The increment size, Lwc, however, was set at 0.01 mi. This had the effect of 

eliminating the need for dealing with the ‘remainder’ segment at the end of the site, at 

the expense of increased computing times.

5.5 Development of Safety Performance Functions

Safety performance functions were calibrated for the Washington highway data in 

the manner described in Chapter 4, using the GENMOD procedure in SAS. Once again, 

SPF model predictions were calculated using the following functional form:

/c = a- AADT^ , (5.46) (same as 4.1, 2.2)

where k  is the predicted accident frequency in accidents/mi/yr.

The SPF parameter estimates for the current dataset are shown in Table 5.2 for 

both total and FI accidents.

Table 5.1 : SPF parameter estimates for Washington 2-lane rural highways
SPF Parameter Estimates

a P k

Total Accidents 0.0012 0.87 2.0
FI Accidents 0.00058 0.87 2.1

The parameter estimates were used to calculate the predicted accident frequency, Xy, for 

each site, for both total and FI accidents, and for each year. The estimates of the 

dispersion parameter, k, were used to calculate the EB weights used in the peak- 

searching algorithm.

5.6 Execution of the Peak-Searching Algorithm

The peak-searching algorithm was programmed using MATLAB® software. For 

simplicity, the value of A: was assumed to be constant with respect to segment length and 
AADT.
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The algorithm was used to screen 100 sites from the Washington 2-lane rural 

highway network for each of the four accident types (total, FI, PDO, and EPDO), and for 

both expected accident frequency Xy, and excess accident frequency, Excessy.

The algorithm was run using different values of CVu„ to see what effect this had 

on the number of sites ranked, and the distribution of segment lengths for ranked sites.

The results of ranking for the expected accident frequency of total accidents is 

given in Table 5.3. Results for excess accident frequency of total accidents are given in 

Table 5.4. Results for other accident types are given in Appendix B. An example of the 

MATLAB peak-searching program is given in Appendix D.
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Table 5.3a: Results of peak searching algorithm for expected accident frequency of total

Screening Criterion:
Accident Type:
CVlim
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

EB-adjusted expected accident frequency 
Total accidents 

1.8
98/100
1.78
0.11

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

Peak(Xv)
(acc/mi/yr)

Var[Peak(XY)] CV[Peak(XY)] Rank

47 2.7 0.1 14.8 42.1 0.44 1
6 0.25 0.1 14.2 47.6 0.49 2

22 0.89 0.1 13.4 34.6 0.44 3
12 1.18 0.1 12.0 44.8 0.56 4
23 0.13 0.1 11.3 30.2 0.49 5
5 0.64 0.1 10.9 36.8 0.56 6

26 2.4 0.1 10.4 25.6 0.49 7
29 5.37 0.1 10.1 24.4 0.49 8
7 0.41 0.1 9.83 30.1 0.56 9

48 0.24 0.1 9.48 28.1 0.56 10
18 0.8 0.1 9.47 28.0 0.56 11
43 0.25 0.1 8.87 24.6 0.56 12
25 3.34 0.1 8.09 20.4 0.56 13
16 0.84 0.1 7.14 23.1 0.67 14
15 0.13 0.1 7.11 22.9 0.67 15
17 1.32 0.1 7.11 22.9 0.67 16
11 0.72 0.1 6.82 21.1 0.67 17
50 0.57 0.1 6.50 19.2 0.67 18
45 0.18 0.1 6.35 18.3 0.67 19
54 1.2 0.1 6.18 17.3 0.67 20
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Table 5.3b: Results of peak-searching algorithm for expected accident frequency of total

Screening Criterion;
Accident Type:
CVlim
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

EB-adjusted expected accident frequency 

Total accidents 
1.0
90/100
1.91
0.14

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

PeakCXv)
(acc/mi/yr)

Var[Peak(XY)] CV[Peak(XY)] Rank

47 2.7 0.1 14.8 42.1 0.44 1
6 0.25 0.1 14.2 47.6 0.49 2

22 0.89 0.1 13.4 34.6 0.44 3
12 1.18 0.1 12.0 44.8 0.56 4
23 0.13 0.1 11.3 30.2 0.49 5
5 0.64 0.1 10.9 36.8 0.56 6

26 2.4 0.1 10.4 25.6 0.49 7
29 5.37 0.1 10.1 24.4 0.49 8
7 0.41 0.1 9.83 30.1 0.56 9

48 0.24 0.1 9.48 28.1 0.56 10
18 0.8 0.1 9.47 28.0 0.56 11
43 0.25 0.1 8.87 24.6 0.56 12
25 3.34 0.1 8.09 20.4 0.56 13
16 0.84 0.1 7.14 23.1 0.67 14
15 0.13 0.1 7.11 22.9 0.67 15
17 1.32 0.1 7.11 22.9 0.67 16
11 0.72 0.1 6.82 21.1 0.67 17
50 0.57 0.1 6.50 19.2 0.67 18
45 0.18 0.1 6.35 18.3 0.67 19
54 1.2 0.1 6.18 17.3 0.67 20
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Table 5.3c: Results of peak searching algorithm for expected accident frequency of total

Screening Criterion:
Accident Type:
CVlim
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

EB-adjusted expected accident frequency
Total accidents
0.5
65/100
2.44
0.39

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

Peak(Xv)
(acc/mi/yr)

Var[Peak(XY)] CV[Peak(XY)] Rank

4 2.6 0.1 16.1 49.6 0.44 1

7 0.41 0.1 16.0 49.0 0.44 2
12 1.18 0.1 15.7 58.7 0.49 3
47 2.7 0.1 14.8 42.1 0.44 4

6 0.25 0.1 14.2 47.6 0.49 5
9 3.27 0.1 13.5 43.5 0.49 6

22 0.89 0.1 13.4 34.6 0.44 7
14 0.82 0.1 13.2 41.3 0.49 8
37 2.07 0.1 13.0 32.6 0.44 9
5 0.64 0.11 13.0 40.1 0.49 10
18 0.8 0.1 12.4 36.7 0.49 11
17 1.32 0.11 12.4 36.3 0.49 12
41 1.56 0.1 12.1 34.7 0.49 13
54 1.2 0.1 11.8 33.1 0.49 14
49 0.3 0.11 11.8 32.7 0.49 15
56 6.2 0.1 11.5 31.6 0.49 16
2 0.62 0.11 11.3 30.4 0.49 17

23 0.13 0.1 11.3 30.2 0.49 18
20 1.76 0.1 11.1 29.2 0.49 19
25 3.34 0.1 10.6 26.8 0.49 20
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Table 5.3d: Results of peak-searching algorithm for expected accident frequency of total 
accidents, using CViim=0 2._______________________________________________
Screening Criterion:
Accident Type:
CVlim
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

EB-adjusted expected accident frequency 
Total accidents 
0.2 
13/100
5.07 

2.20
Site No. Site

Length
(mi)

Length of 
Flagged 

Window (mi)

Peak(Xv)
(acc/mi/yr)

Var[Peak(Xy)] CV[Peak(XY)] Rank

47 2.7 0.5 14.2 8.09 0.20 1
4 2.8 0.79 10.0 3.91 0.20 2
12 1.18 1.06 8.87 3.13 0.20 3
9 3.27 1.33 6.22 1.50 0.20 4

40 6.87 1.16 5.31 1.11 0.20 5
20 1.76 1.53 4.33 0.745 0.20 6
25 3.34 1.48 4.27 0.728 0.20 7
29 5.37 1.68 3.79 0.544 0.19 8
39 3.93 1.84 3.13 0.380 0.20 9
56 6.2 3.13 2.22 0.195 0.20 10
97 7.52 5.89 0.913 0.0333 0.20 11
86 9.9 6.38 0.619 0.0153 0.20 12
67 10.9 8.34 0.403 0.00648 0.20 13
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Table 5.4a: Results of peak-searching algorithm for excess accident frequency of total

Screening Criterion:
Accident Type:
CViim
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Excess accident frequency 
Total accidents 
4.0 
77 
2.10 
0.10

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

Peak(Xv)
(acc/mi/yr)

Var[Peak(XY)] CV[Peak(XY)] Rank

47 2.7 0.1 10.9 45.2 0.62 1
22 0.89 0.1 10.8 36.0 0.56 2
23 0.13 0.1 8.65 31.6 0.65 3
26 2.4 0.1 8.31 26.5 0.62 4
29 5.37 0.1 8.15 25.2 0.62 5
6 0.25 0.1 7.21 57.5 1.05 6
12 1.18 0.1 6.31 51.3 1.14 7
25 3.34 0.1 6.03 21.3 0.77 8
43 0.25 0.1 5.99 26.2 0.86 9
18 0.8 0.1 5.75 30.8 0.97 10
48 0.24 0.1 5.68 31.0 0.98 11
5 0.64 0.1 3.85 46.8 1.78 12

40 6.87 0.1 3.66 13.6 1.01 13
19 0.72 0.1 3.65 20.7 1.25 14
9 3.27 0.1 3.56 42.4 1.83 15
52 1.06 0.1 3.54 18.7 1.22 16
38 1.88 0.1 3.53 16.0 1.13 17
54 1.2 0.1 3.53 18.8 1.23 18
53 0.92 0.1 3.53 18.8 1.23 19
96 4.5 0.1 3.50 9.74 0.89 20
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Table 5.4b: Results of peak-searching algorithm for excess accident frequency of total

Screening Criterion:
Accident Type:
CViim
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Excess accident frequency 
Total accidents 
2.5 
74 
2.15 
0.10

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

PeakfXv) VarfPeakfXv)] 
(acc/mi/yr)

CV[Peak(Xv)] Rank

47 2.7 0.1 10.9 45.2 0.62 1
22 0.89 0.1 10.8 36.0 0.56 2
23 0.13 0.1 8.65 31.6 0.65 3
26 2.4 0.1 8.31 26.5 0.62 4
29 5.37 0.1 8.15 25.2 0.62 5
6 0.25 0.1 7.21 57.5 1.05 6
12 1.18 0.1 6.31 51.3 1.14 7
25 3.34 0.1 6.03 21.3 0.77 8
43 0.25 0.1 5.99 26.2 0.86 9
18 0.8 0.1 5.75 30.8 0.97 10
48 0.24 0.1 5.68 31.0 0.98 11
32 1.03 0.1 5.64 18.5 0.76 12
10 2.87 0.1 4.79 40.4 1.33 13
2 0.62 0.1 4.65 32.6 1.23 14
5 0.64 0.1 3.85 46.8 1.78 15

40 6.87 0.1 3.66 13.6 1.01 16
56 6.2 0.1 3.65 17.7 1.15 17
19 0.72 0.1 3.65 20.7 1.25 18
37 2.07 0.1 3.63 14.5 1.05 19
9 3.27 0.1 3.56 42.4 1.83 20
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Table 5.4c: Results of peak-searching algorithm for excess accident frequency of total
duuiuciiid, udiiiy
Screening Criterion;
Accident Type:
CV„m
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Excess accident frequency 
Total accidents 
1.5 
62/100 
2.34 

0.10

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

PeaKXy) Var[Peak(XY>] 
(acc/mi/yr)

CV[Peak(XY)] Rank

47 2.7 0.1 10.9 45.2 0.62 1
22 0.89 0.1 10.8 36.0 0.56 2
7 0.41 0.1 9.32 58.0 0.82 3
4 2.8 0.1 9.05 59.6 0.85 4
14 0.82 0.1 8.82 45.2 0.76 5
23 0.13 0.1 8.65 31.6 0.65 6
26 2.4 0.1 8.31 26.5 0.62 7
29 5.37 0.1 8.15 25.2 0.62 8
6 0.25 0.1 7.21 57.5 1.05 9
9 3.27 0.1 6.77 52.7 1.07 10
12 1.18 0.1 6.31 51.3 1.14 11
25 3.34 0.1 6.03 21.3 0.77 12
5 0.64 0.11 6.00 49.2 1.17 13

43 0.25 0.1 5.99 26.2 0.86 14
18 0.8 0.1 5.75 30.8 0.97 15
48 0.24 0.1 5.68 31.0 0.98 16
32 1.03 0.1 5.64 18.5 0.76 17
17 1.32 0.1 5.54 38.0 1.11 18
49 0.3 0.1 5.52 33.8 1.05 19
50 0.57 0.1 5.41 31.2 1.03 20
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Table 5.4d: Results of peak-searching algorithm for excess accident frequency of total

Screening Criterion;
Accident Type:
CV,;m
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Excess accident frequency 
Total accidents 
1.0 

45 

2.61 

0.11
Site No. Site

Length
(mi)

Length of 
Flagged 

Window (mi)

Peak(Xv)
(acc/mi/yr)

Var[Peak(XY)] CV[Peak(Xy)] Rank

37 2.07 0.1 11.1 33.3 0.52 1
47 2.7 0.1 10.9 45.2 0.62 2
22 0.89 0.1 10.8 36.0 0.56 3
12 1.18 0.1 10.0 65.3 0.80 4
7 0.41 0.1 9.32 58.0 0.82 5
4 2.8 0.1 9.05 59.6 0.85 6
14 0.82 0.1 8.82 45.2 0.76 7
23 0.13 0.1 8.65 31.6 0.65 8
9 3.27 0.11 8.53 53.1 0.85 9

20 1.76 0.1 8.35 30.7 0.66 10
26 2.4 0.1 8.31 26.5 0.62 11
29 5.37 0.1 8.15 25.2 0.62 12
6 0.25 0.12 7.77 49.5 0.91 13

39 3.93 0.1 7.75 21.5 0.60 14
17 1.32 0.11 7.59 40.6 0.84 15
49 0.3 0.11 7.47 36.2 0.81 16
41 1.56 0.1 7.08 27.4 0.74 17
19 0.72 0.1 6.59 29.4 0.82 18
2 0.62 0.11 6.52 34.6 0.90 19
56 6.2 0.1 6.39 25.2 0.79 20
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Table 5.4e: Results of peak-searching algorithm for excess accident frequency of totai
## W  W lin i

Screening Criterion;
Accident Type:
c v ^
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Excess accident frequency
Total accidents
0.5
13
3.46
0.14

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

Peak(Xv)
(acc/mi/yr)

Var[Peak(Xy)] CVfPeakCXv)] Rank

7 0.41 0.1 24.7 105 0.42 1
4 2.8 0.1 21.4 97.7 0.46 2
39 3.93 0.1 16.7 41.5 0.39 3
47 2.7 0.1 16.6 61.4 0.47 4
20 1.76 0.1 16.3 51.5 0.44 5
40 6.87 0.1 13.4 37.2 0.46 6
41 1.56 0.12 12.8 36.6 0.47 7
29 5.37 0.12 10.6 25.9 0.48 8
33 0.91 0.13 9.74 22.1 0.48 9
37 2.07 0.21 6.97 10.9 0.47 10
25 3.34 0.21 6.87 11.1 0.49 11
26 2.4 0.29 5.25 6.52 0.49 12
67 10.9 0.16 3.99 3.78 0.49 13
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5.7 Discussion of Peak-Searching Results

When screening for either expected accident frequency or excess accident 

frequency, and for any severity, fewer sites were flagged when the value of CF/,„ was 

lowered, as was expected.

It is clear that, as CVum is lowered, the average length of ranked sites increases; 

thus, small values of CVlim favour sites with relatively long segment lengths. This is 

owing to the fact that longer segments exhibit less variance than shorter sites.

Also, the average window length for flagging a given site increases as CVüm is 

decreased. It should be noted that computing time is substantially longer for small 

values of CVüm, as compared with larger values.
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6 Screening for High Proportions of Specific Accident Types

6.1 introduction

Bayesian network screening methods most commonly identify sites with promise 

based on some measure of accident frequency. These methods, including the peak- 

searching algorithm described in the preceding chapter, are data-intensive in that they 

require traffic volume data at a minimum; however, these data are sometimes 

unavailable.

An alternative to screening for high accident frequencies is to screen the network 

for high proportions of specific accident types. A site with an unusually high proportion 

of a certain accident type could be a candidate for safety countermeasures specific to 

that accident type. Accident types may be simple, such as head-on or wet-pavement, or 

may be compound, such as night-time run-off-road crashes. For example, a road 

segment with an unusually high number of opposite-direction crashes could be a 

candidate for the installation of centreline rumble strips.

One of the advantages of this method is that traffic volume data are not required 

as they are for SPF-based methods; however, this may also be a disadvantage, as 

traffic volume is an important safety variable.

The method of screening for high proportions of specific accident type, or simply 

‘screening for proportions,’ is described below.

6.2 Empirical Bayes Analysis Using Beta-Binomial Models

6.2.1 Theoretical Framework

Heydecker and Wu (2) devised an empirical Bayes (EB) approach to screening 

for high proportions of specific accident types. It is assumed that whether or not a given 

accident is of a particular type can be modelled as a Bernoulli trial. Thus, for any site, /, 

over a given period of time, the count of target accidents, out of «, total accidents has 

a binomial distribution. The binomial distribution, with mean parameter 0, is written as:

I { M 1
/ ( x , |n . ,0 )=  ^ ^ '(1 -^ )" -^ ', 0 < x , < « , ,  (6.1)

where is the binomial coefficient, defined by:
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(6.2)
w x ! ( n - x ) l

In present context, 6 represents the proportion of all accidents that are of a 

particular type. It is assumed that 6 is well defined for each site, but is unknown. Any 

accident type may be considered, provided that the appropriate data are available. The 

value of 6 is assumed to be fixed for each site, but to vary among sites.

Heydecker and Wu (2) postulated that the distribution of 6 among sites could be 

modelled using a beta distribution. The distribution of 0 among sites corresponds to the 

Bayesian prior distribution; that is, it represents a priori knowledge of the process that 

governs the observed proportions. The beta distribution is written:

g ,(0 \a ,P )=  '  ’  . O < 0 < \ ,  (6.3)
B(a,P)

where a and are strictly positive parameters, and B(a,^) is the beta function. The 

subscript b denotes before, indicating that the information is a priori. The beta function is 

represented by the upper-case Greek letter beta, and is defined as:

where T(.) is the gamma function, given by:

. (6.5)

The beta distribution offers several features that make it a good choice of 

Bayesian prior. First, it is defined on the open interval (0,1); because accidents 

proportions are defined on the closed interval [0,1], no transformation of variables is 

necessary.

Second, the beta distribution can have a wide variety of shapes, making it very 

versatile. Figure 6.1 shows some of the possible shapes. Note that when a=y9=1, the 

uniform distribution results.
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Fig. 6.1 : Some of the different shapes of the beta distribution.

Finally, the beta distribution is the natural conjugate prior of the binomial 

distribution. In theory, any distribution yielding a good fit to the data could be used; 

however, by using the natural conjugate prior, the EB calculations are much more 

tractable.

The mean of the prior beta distribution, E(0), is given by:

E(0) =
a

a  + P 

and the variance is:

Var(0) =

(6.6)

ap

[(a+ (« + /? + !)]

which can also be expressed as:

(6.7)

a  + y9 +  l
(6.8)
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The binomial distribution of the observed accidents, shown in Eq. 6.1, can be 

combined with the beta distribution of B over similar sites that is given in Eq. 6.3. This 

leads to the unconditional beta-binomial distribution of given a and p. Note that 6, 

which is unknown, has been eliminated. The beta-binomial distribution is written:

(6.9)

It is now possible to determine the posterior distribution of 9 by employing Bayes’ 

theorem. Bayes" theorem can here be written as:

Here, the subscript a  denotes after, or a posteriori. After substitutions, the 

posterior distribution becomes:

g^{û\a + Xi,P + n ^ -x J = —.-----  ̂ r , 0 < ^ < !  (6.11)
B(cr +  X j , p  +  rij — Xj )

The expression for the posterior distribution may be further simplified by 

introducing the posterior parameters, a ’ and p \  expressed as:

a ' = a-vXi  , (6.12)

/? '= yff + /7j — X, . (6.13)

Substituting a ’ andp ’ in Eq. 6.11 yields:

g .(g |« '.A ')=  ' (61")

which is clearly a beta distribution of the form of Eq. 6.3.

It is now possible to evaluate the expected value of the posterior, E(6i), for each 

site, /, as in Eq. 6.6. Thus,

■ (G1:)
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and, similar to Eq. 6.7, the posterior variance for each site is given as;

6.2.2 Bayesian Analysis

The posterior distribution represents the state of knowledge of 6 after the prior 

distribution has been ‘updated’ by the observational distribution. In this case, the 

parameter d is the proportion of accidents of a certain type, the prior (Eq. 6.3) is beta- 

distributed and represents the distribution of 6 among similar sites, and the observational 

distribution is the site-specific binomial distribution (Eq. 6.1), based on observed 

accident patterns.

For the purposes of network screening, it is necessary to compare individual 

sites with others of the same type within the area of study. This is accomplished in two 

steps. First, the critical proportion of the beta prior, 0*, is found by solving the following:

g,[e\a,p)de = 7T , (6.17)

where k is defined as the percentage of all sites whose proportion of the accident type in 

question is less than the value of 6*, and is chosen by the analyst to be some value 

between 0 and 1. To illustrate, if k is taken to be 0.8, then 80% of the sites in the 

network would be expected to have a proportion, 9, of that accident type, less than 9*. 

Heydecker and Wu (2), Sayed et al. (31), Bolduc and Bonin (32, 33), and Mollett (34) all 

used a value of 0.5 for k, which corresponds to the median; however, any value of k may 

be used.

The beta distribution in Fig. 6.2 has been evaluated at its median using Eq. 6.17; 

the shaded area represents the value of k. The critical proportion is 0.37; thus, 50% of 

the sites should experience an accident proportion of 0.37 or less for accident type.
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Fig. 6.2: A beta distribution. The shaded 
area represents the value of n.

Once 9* is known, the probability that the accident proportion, for any site 

exceeds 0* can be calculated by the following expression:

(6.18)

The integral in Eq. 6.18 represents the area of the posterior beta distribution that 

is greater than the value of 9*. This value is sometimes called the pattern score, and is 

shown by the shaded area in Fig. 6.3.
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Fig. 6.3: Prior and posterior beta distributions. The shaded area represents the 
probability that the posterior distribution exceeds 0*.

The pattern score is the degree of belief that a given site experiences a greater 

proportion of accidents than the one specified by 0*. A pattern score of one indicates 

that it is almost certain that a site is, in fact, experiencing a relatively high proportion of a 

given accident type; a pattern score of zero indicates that this is almost certainly not 

true, with 0.5 being neutral. Thus, for the purposes of network screening, the site with 

highest pattern score is ranked first.

Only those sites that have a pattern score greater than some critical value, ô, are 

ranked. Sites with high accident counts are expected to exert more influence over the 

prior than those with low counts. This is because sites with relatively high counts will 

have relatively low variances with respect to the observational binomial distribution.
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6.3 Parameter Estimation Methodology for Beta Prior Distribution

6.3.1 General

In order to apply Bayes’ theorem, the parameters of the beta prior distribution 

must be estimated by statistical methods. The two most common methods of estimation 

are the method of moments (MM) and the method of maximum likelihood (ML). Other 

methods include weighted least-squares regression, and Markov-chain, Monte Carlo 

simulation.

Here, three methods of parameter estimation are compared: the method of 

maximum likelihood, and two versions of the method of moments.

6.3.2 Maximum Likelihood Estimates

Maximum likelihood estimation has been used by Heydecker and Wu (2); Bolduc 

and Bonin (32,33); and Mollett (34) for the calibration of beta priors. In each case, the 

data were groups of intersections with relatively small sample sizes, and models were 

calibrated for various accident characteristics.

Maximum likelihood estimates are found by maximizing the likelihood function of 

the sample data. The likelihood function, Z,„ represents the probability of observing the 

sample data, given the chosen sample distribution, which is in this case the beta 

distribution. The likelihood function is derived from Eq. 6.9:

L  =
w,'l B (q ;-¥Xj,P + rij — )

(6.19)

The ML procedure is usually simplified by taking the logarithm of the likelihood 

function. This is the log-likelihood function, and it is expressed as:

lo g (A )  =  lo g +  lo g [B (a  +  +  Hi -  x J ] -  lo g [B (a ,/? ) ] (6.20)

The values of a and p that maximize Eq. 6.20 are the maximum likelihood 

estimates, â  and . The caret (^) indicates that the values are estimates, rather than 

true values.

By applying Eq. 6.4 to the terms in equation Eq. 6.20, the following expressions 

can be shown:
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Iog[B(ûr + Xi,p + w, -  X, )] = log[r(a + x, )] + log[r(/9 + -  x, ) ]-  log[r(ûr + ̂  + «, )]

(6.21)

and

log[B(or,/?)] = log[r(a)]+log[r(y9)]-log[r(a + /?)] . (6.22)

Substituting Equations 6.21 and 6.22 into Eq. 6.20, the log-likelihood function 

becomes:

log(I, ) = log[r(or + X, )] + log[r(/9 + /7, -  X, )] -  log[r(ûr + /? + «, )]
(6.23)

-  (iog[r(or)]+iog[r(/?)]- iog[r(ûf+ ^)])

The binomial coefficient is omitted from Eq. 6.23 since it is not a function of the beta 

parameters, and is thus a constant.

Mollett (34) demonstrated a method of maximizing Eq. 6.23 using the Solver®

tool in Microsoft Excel®, to yield ML beta prior estimates, â ^ i  and .

6.3.3 Method of Moments -  Method 1 (MM1 )

The first method of moments considered is the simplest of the three approaches 

described in this thesis. The beta parameters, a and p, can be used to determine the 

moments (i.e., mean and variance) of the beta distribution, as shown in Equations 6.6 

and 6.8. If moments can be estimated from the sample data, these sample moments

can be expressed in terms of the parameters; thus, «"ici Pmm\ can be estimated 

by solving the resulting equations.

The first step is to calculate the observed proportion of accidents, 0/, for each site

/, i=I,2 m, where m is the number of sites. In this case, 6i=x/tii, «,>1, where x, and n,

are the count of accidents of the type of interest, and the total number of accidents, 

respectively, that have been observed at site / within the given study period. The

sample mean, 6 , and the sample variance, ŝ , are calculated using the following:
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ë = - a —
m

(6.24)

and

m - \
(6.25)

where the subscript MM1 Indicates that the parameters were estimated using the first 

method of moments.

If the sample size Is sufficiently large, 0 can be substituted for E(9) In Eq. 6.6, 

while Is substituted for Var(6) In Eq. 6.8. The result Is two equations with the two 

unknown parameters, a and p. Solving the equations leads to the following estimates for 

a and

2
S MM\

(6.26)

and

'M M \ = ( i - ë ) (6.27)

The advantage of this technique Is that the solutions to Equations 6.25 and 6.26 

are straightforward; no Iterative routine Is required.

6.3.4 Method of Moments -  Method 2 (MM2)

A variation of the above method of moments was described by Sayed et al. {31), 

and applied to a sample of Intersection crash data. The method uses the same 

principles as the first method of moments. In that the sample moments are substituted 

for the ‘true’ distribution moments.

The difference between the two methods Is In the way that the sample variance, 

ŝ . Is calculated. For the second method, the sample observations are considered to be
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a set of paired values, rather than a univariate ratio, as in the first method. 

Thus, the mean is calculated by Eq. 6.24, as in Method 1, and the variance is:

2 f
S MM2 =

m — \ i=l

■Xi
m

n> 2 (6.28)

Substituting the sample mean, 0  , for E (6) in Eq. 6.6, and for Var(6) in Eq. 6.8, 

the following useful expressions are obtained:

MM 2 = ------ ^ ------------
a
0 .

(6.29)

(6.30)

Equation 6.29 can be solved for a  using the Solver tool in Microsoft Excel. The 

solution is the parameter estimate • which can then be substituted into Eq. 6.30 to

give the remaining parameter estimate, Pmm2 ■

Sayed et al. {31)  argue that Method 2 (MM2) yields beta priors with less variance 

than those estimated by Method 1 (MM1).

6.4 Application to HSIS Data

The screening for proportions method of network screening was applied to three 

HSIS databases. The first dataset consisted of 2202 rural, TWSC intersections in 

California, with accident data from 1997-2002. The second dataset had 108 rural, 

signalized intersections in California, also with data for 1997-2002. The third dataset 

was for 831 2-mile segments of 2-lane rural highway in rolling terrain, in Washington 

state. The Washington crash data were for 3 years, 1993-1995. Table 6.1 gives a brief 
summary of each dataset.
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Table 6.1 : Summary of databases,
Set State Type of Site No. Sites Years No. Accs.

1 CA Rural, 4-leg TWSC Intersections 2202 1997-2001 10337
2 CA Rural, 4-leg Signalized Intersections 108 1997-2001 2565
3 WA Rural, 2-lane Highway in Rolling Terrain 

(2-mile segments)
831 1993-1995 3289

For each dataset, beta prior distributions were calibrated for each possible type 

of accident using each of the three parameter estimation methods described above. 

Dataset 1 was analyzed with data for the full 5 years of data; dataset 2 was calibrated 

using both 3 years (1997-1999) and 5 years (1997-2001) for comparison. Dataset 3 was 

examined for the given 3 years of data.

Table 6.2 shows the accident types that were considered for each dataset, as 

well as the number and proportion of each accident type.

The results of the parameter estimation techniques are shown in Tables 6.3 to

6.9.

Table 6.2a: Summary of target accident types for California TWSC Intersections 
Total Accidents = Zn,= 10337 
Years of Data: 5 (1997-2001)

Observed Target Accidents Observed Proportion
Accident Type Zx, Zx/Zn,
Fatal/Injury (FI) 2584 0.25
Head-On 377 0.036
Sideswipe 918 0.089
Rear-End 2274 0.22
Broadside 4544 0.44
Hit Object 1338 0.13
Overturning 260 0.025
Pedestrian 111 0.011
Other/Unknown 515 0.050
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Table 6.2b: Summary of target accident types for California signalized intersections.
5 years (1997-2001)

Total Accidents = Zn,= 2565
Observed Observed

Target Proportion
Accidents

3 years (1997-1999
Total Accidents = Zn,= 1441
Observed Observed

Target Proportion
Accidents

Accident Type Zx, Zx/Zn, Zx, ZX|/Zn,
Fatal/Injury (FI) 406 0.16 239 0.17

Head-On 128 0.050 73 0.051
Sideswipe 266 0.10 158 0.11

Rear-End 1141 0.44 624 0.43
Broadside 747 0.29 429 0.30

Hit Object 151 0.059 80 0.056
Overturning 28 0.011 16 0.011
Pedestrian 27 0.011 15 0.010
Other/Unknown 77 0.030 46 0.032

Table 6.2c: Summary of target accident types for Washington 2-lane rural highways (2- 
mile segments).______________________
Total Accidents = Enp 3289 
Years of Data: 3 (1993-1995)

Observed Target Accidents Observed Proportion
Accident Type Zx, ZX|/Zn,
Head-On 51 0.016
Angle 1 0.00030
Sideswipe, same direction 47 0.014
Sideswipe, opposite direction 108 0.033
Animal 315 0.096
Bicycle 5 0.0015
Pedestrian 1 0.00030
Parked vehicle 27 0.0082
Overturning 830 0.25
Hit fixed object 1331 0.40
Other multi-vehicle 317 0.096
Other single-vehicle 99 0.030
Other/Unknown 16 0.0049
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Table 6.3: Maximum likelihood beta prior estimates for California rural, 4-leg signalized Intersections.

Database: HSIS, California
Site Type: Rural, 4-leg, Signalized Intersections
Total Sites: 108
Total Accidents: 2565 (5 years) and 1441 (3 years) 
Years of Data: 5 (1997-2001), and 3 (1997-1999)

Accident
Type

Observed
Proportion

(=Zx/Zn)

5 yrs (1997-2001)

Maximum Likelihood Estimates 

a p E(0) Var(O)

Observed
Proportion

(=Zx/Zn)

3 yrs (1997-1999)

Maximum Likelihood Estimates 

a p E(0) Var(6)
FI 0.16 10.1 53.5 0.16 0.0021 0.17 15.5 78.4 0.17 0.0015

Head-on 0.050 3.72 71.0 0.050 0.00062 0.051 3.60 67.5 0.051 0.00067
Sideswipe 0.10 3.41 28.9 0.11 0.0028 0.11 3.32 26.6 0.11 0.0032
Rear-end 0.44 4.42 6.30 0.41 0.021 0.043 5.00 7.21 0.41 0.018

Broadside 0.29 3.73 8.38 0.31 0.016 0.30 3.27 7.21 0.31 0.019
Hit Object 0.059 2.86 43.0 0.062 0.0012 0.056 1.83 29.8 0.058 0.0017

Overturning 0.011 1.16 105 0.011 0.00010 0.011 0.381 30.8 0.012 0.00038
Pedestrian 0.011 0.163 11.6 0.014 0.0011 0.010 0.136 11.3 0.012 0.00094
Other/Unk. 0.030 3.73 117 0.031 0.00025 0.032 2.64 80.3 0.032 0.00037



Table 6.4: MM1 beta prior estimates for California rural, 4-leg signalized intersections.

Database: HSIS, California
Site Type: Rural, 4-leg, Signalized Intersections
Total Sites: 108
Total Accidents: 2565 (5 years) and 1441 (3 years) 
Years of Data: 5 (1997-2001), and 3 (1997-1999)

5 yrs (1997-2001) 3 yrs (1997-1999)
Accident

Type
Observed
Proportion Method of Moments Estimates - Method 1 Observed

Proportion Method of Moments Estimates - Method 1
(=Ex/Zn) a P E(0) Var(0) (=Zx/Zn) a P E(0) Var(0)

FI 0.16 1.31 7.11 0.16 00014 0.17 0.710 3.73 0.16 0.025
Head-on 0.050 0.607 11.8 0.049 0.0035 0.051 0.377 7.53 0.048 0.0051

Sideswipe 0.10 0.993 8.38 0.11 0.0091 0.11 0.475 3.67 0.11 0.020
Rear-end 0.44 2.05 3.06 0.40 0.039 0.043 1.41 2.07 0.41 0.054

Broadside 0.29 1.78 3.85 0.32 0.033 0.30 1.38 3.13 0.31 0.039
Hit Object 0.059 0.558 7.46 0.070 0.0072 0.056 2.31 30.5 0.059 0.0019

Overturning 0.011 0.106 9.39 0.011 0.0010 0.011 0.0892 6.51 0.014 0.0018
Pedestrian 0.011 0.0942 5.72 0.016 0.0023 0.010 0.071 5.62 0.012 0.0018
Other/Unk. 0.030 0.425 13.1 0.032 0.0021 0.032 0.258 8.85 0.028 0.0027
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Table 6.5: MM2 beta prior estimates for California rural, 4-leg signalized intersections.

Database: HSIS, California
Site Type: Rural, 4-leg, Signalized intersections
Total Sites: 107
Total Accidents: 2565 (5 years) and 1441 (3 years) 
Years of Data: 5 (1997-2001), and 3 (1997-1999)

5 yrs (1997-2001) 3 yrs (1997-1999)
Accident

Type
Observed
Proportion Method of Moments Estimates - Method 2 Observed

Proportion Method of Moments Estimates - Method 2
(=Zx/Zn) a P E(0) Var(8) (=Ix/Zn) a P E(0) Var(0)

FI 0.16 4.61 24.7 0.16 0.0044 0.17 4.90 27.3 0.16 0.0039
Head-on 0.050 41.8 804 0.049 5.5E-05 0.051 3.11 61.4 0.048 0.00070

Sideswipe 0.10 5.66 47.3 0.11 0.0018 0.11 1.50 11.5 0.12 0.0073
Rear-end 0.44 3.92 5.78 0.40 0.023 0.43 3.51 5.07 0.41 0.025
Broadside 0.29 4.65 10.4 0.31 0.013 0.30 5.09 11.4 0.31 0.012
Hit Object 0.059 2.31 30.5 0.070 0.0019 0.055 2.83 42.2 0.063 0.0013

Overturning 0.011 0.340 30.0 0.011 0.00035 0.011 0.743 56.7 0.014 0.00024
Pedestrian 0.011 0.381 22.9 0.016 0.00066 0.010 0.503 39.4 0.013 0.00030
Other/Unk. 0.030 6.41 195 0.032 0.00015 0.032 3.58 121 0.029 0.00022



Table 6.6: ML beta prior estimates for California rural, 4-leg TWSC intersections.

Database: HSIS, California
Site Type: Rural, TWSC Intersections
Total Sites: 2202
Total Accidents: 10337
Years of Data: 5 (1997-2001)

-si
00

Accident Type Observed Prop. 
£x/£n a

Maximum Likelihood Estimates 
P E(0) Var(0)

FI 0.25 5.47 16.3 0.25 0.0083
Head-on 0.036 3.04 80.0 0.037 0.00042

Sideswipe 0.089 2.26 22.4 0.092 0.0032
Rear-end 0.22 1.48 5.33 0.22 0.022

Broadside 0.44 1.66 2.63 0.39 0.045
Hit Object 0.13 1.18 6.50 0.15 0.015

Overturning 0.025 0.945 34.1 0.027 0.00073
Pedestrian 0.011 0.367 32.1 0.011 0.00033
Other/Unk. 0.050 1.58 27.5 0.054 0.0017



Table 6.7: Method of moments beta prior estimates for California rural, 4-leg TWSC Intersections.

Database: HSIS, California
Site Type: Rural, TWSC Intersections
Total Sites: 2202
Total Accidents: 10337
Years of Data: 5 (1997-2001)
Notes: 1692 sites used for Method 1 (si acc.); 1308 sites used for Method 2 (s2 acc.)

■vj(O

Accident
Type

Observed
Proportion
(=Zx/Zn)

Method of Moments 

a p

Estimates -  

E(0)

Method 1 

Var(0)

Method of Moments Estimates -  

a p E{0)

Method 2 

Var(0)
FI 0.25 0.332 0.958 0.26 0.084 7.22 20.8 0.26 0.0066

Head-on 0.036 0.0562 1.58 0.034 0.013 2.23 59.5 0.036 0.00056
Sideswipe 0.089 0.112 1.00 0.10 0.043 1.57 14.8 0,096 0.0050
Rear-end 0.22 0.252 0.971 0.21 0.074 1.95 7.06 0.22 0.017
Broadside 0.44 0.362 0.654 0.36 0.11 1.86 3.13 0.37 0.039
Hit Object 0.13 0.156 0.683 0.19 0.082 1.21 6.02 0.17 0.017

Overturning 0.025 0.0311 0.874 0.034 0.017 0.334 10.5 0.031 0.0025
Pedestrian 0.011 0.0169 1.40 0.012 0.0049 1.13 89.5 0.012 0.00013
Other/Unk. 0.050 0.0744 0.987 0.070 0.032 1.74 24.0 0.068 0.0024



Table 6.8: ML beta prior estimates for 2-mile segments of 2-lane rural highway in Washington.

Database: HSIS, Washington
Site Type: Rural, 2-lane Highways, Rolling Terrain -  2-mile Segments 
Total Sites: 831 
Total Accidents: 3289 
Years of Data: 3 (1997-1999)

Accident Type Observed Prop. 
ZxIZn

Maximum Likelihood Estimates 
P E(0) Var(0)

CO
o

Head on 0.016 dnc dnc dnc dnc
Angie 0.00030 0.00137 2.32 0.00059 0.00018

Sideswipe -  same dir 0.014 3.75 260 0.014 5.3E-05
Sideswipe -  opp dir 0.033 2.84 84.2 0.033 0.00036

Animal 0.096 1.38 12.7 0.099 0.0059
Cyclist 0.0015 0.00986 3.89 0.0025 0.00051

Pedestrian 0.00030 0.00493 12.8 0.00039 3.2E-05
Parked Veh 0.0082 dnc dnc dnc dnc
Overturn 0.25 2.84 7.66 0.27 0.017

Fixed Object 0.40 5.21 7.91 0.40 0.017
Other Multivehicle 0.096 3.75 35.6 0.095 0.0021

Other Stationary Veh 0.030 0.656 21.6 0.030 0.0012
Unknown 0.0049 0.181 37.6 0.0048 0.00012



Table 6.9: MM1 and MM2 beta prior estimates for 2-mlie segments of 2-iane rural highway in Washington.

Database: HSIS, Washington
Site Type: Rural, 2-lane Highways, Rolling Terrain -  2-mile Segments 
Total Sites: 831 
Total Accidents: 3289 
Years of Data: 3 (1997-1999)

Accident
Type

Observed
Proportion
(=Zx/Zn)

Method of Moments Estimates -  Method 1 Method of Moments Estimates -  Method 2

E(0) Var(0) E(0) Var(0)

GO

Head on 0.016 0.0342 3.12 0.011 0.0026 6.66 474 0.014 0.000028
Angle 0.00030 0.00145 14.0 0.00010 6.9E-06 0.0500 377 0.00013 3.5E-07
SSSD 0.014 0.0195 1.45 0.013 0.0053 dnc dnc dnc dnc
SSOD 0.033 0.0490 1.64 0.029 0.011 1.28 39.8 0.031 0.00072
Animal 0.096 0.115 0.986 0.10 0.044 1.36 12.0 0.10 0.0063
Cyclist 0.0015 0.00506 6.31 0.00080 0.00011 dnc dnc dnc dnc
Red. 0.00030 0.00133 6.00 0.00022 3.2E-05 0.102 359 0.00028 7.9E-07

Parked 0.0082 0.0165 2.99 0.0055 0.0014 dnc dnc dnc dnc
Overturn 0.25 0.289 0.665 0.30 0.11 1.99 5.15 0.28 0.025
Fix Obj 0.40 0.466 0.748 0.38 0.11 4.82 7.40 0.39 0.018

0th Mult 0.096 0.152 1.79 0.078 0.025 2.49 25.2 0.090 0.0029
0th Sta 0.030 0.0288 0.864 0.032 0.016 1.12 39.9 0.027 0.00063

Unk. 0.0049 0.00552 0.996 0.0055 0.0027 dnc dnc dnc dnc



6.5 Comparison of Parameter Estimation Methods

6.5.1 General

It Is clear that the three parameter estimation methods yielded different results. 

In a real network screening application, however, it would be impractical to use more 

than one method; thus, a decision must be made regarding the ‘best’ alternative.

As a first step in this decision, a set of criteria must be developed in order to 

compare the methods. For each beta prior calibrated, the estimated expected value of

the proportion of that accident type, È {0 \  is calculated, as well as the and the estimated

variance, Var{6). The variance serves as one indicator of the accuracy of the model. A

relatively high variance means that the modelled prior distribution will have less influence 

in the empirical Bayes procedure than would a model with relatively low variance. In 

other words, a prior model with high variance will carry over less information to the 

posterior distribution than would a prior model with low variance.

6.5.2 Dataset 1: California Rural 4-Leg TWSC Intersections

Figure 6.4 shows the results of the three methods applied to California TWSC 

intersections for the following accident types: fatal/injury, rear-end, broadside, hit object, 

and pedestrian. The histogram shows the number of sites with a given proportion of. 

accidents for each of 15 equally-spaced bins.
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Fig. 6.4a: Beta priors for fatal/injury accidents at California rural, TWSC intersections.
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Fig. 6.4b: Beta priors for rear-end accidents at California rural, TWSC intersections.
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Fig. 6.4c: Beta priors for broadside accidents for Caiifornia rurai, TWSC intersections.
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Fig. 6.4d: Beta priors for hit-object accidents for California rural, TWSC intersections.
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Fig. 6.4e: Beta priors for pedestrian accidents for California rural, TWSC intersections.

The maximum likelihood and MM2 estimates are broadly similar; for each 

accident type, they have similar shapes, expected values, and variances. The ML and 

MM2 estimates yielded a bell-shaped curve for all but the two accident types accounting 

for the lowest proportion of all accidents, overturning (2.5%) and pedestrian (1.1%). A 

bell-shaped curve results when both a and p are greater than 1. By contrast, the first 

method of moments (MMl) yielded either L-shaped (a<^,p>^) or U-shaped (a,p<‘\) 

curves for every accident type.

The histograms in Fig. 6.4 exhibit large ‘spikes’ at the ends of the graphs, and, to 

a lesser extent, at the midpoints of the graphs. This is because a large number of 

intersections had only one or two total accidents. Thus, for a large number of 

intersections, it was likely that, for a given accident type, a proportion of 0 (no target 

accidents) or 1 (all target accidents) would be observed. For intersections with 2 total 

accidents, many intersections would have a proportion of 0.5, resulting in the high 

frequency at that level. As the number of total accidents increases, it becomes more 

likely that a clearly defined pattern emerges; it is this pattern that is of interest, not the 

randomness inherent in small accident counts.

It is clear from the figures that the MMl estimates are more heavily influenced by 

the high frequencies of ‘zeros and ones.' This is not surprising, as the sample statistics
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used for parameter estimation considers only the observed proportion at each site; thus, 

each site is given equal weight (i.e., each site’s observations are assumed to carry the 

same amount of information), regardless of the number of observations at a given site. 

The ML and MM2 approaches, however, consider the observed target accidents and 

total accidents at each site as a pair of values; thus, more weight is given to high- 

accident sites when estimating the parameters.

In order to see how the estimated prior distributions perform over a range of total 

accidents, «„ Figure 6.5 shows the prior distribution for broadside accidents estimated 

above compared with histograms of observed proportions for 5,10,15 accidents.
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Fig. 6.5a: Proportion of Broadside accidents for #i/>2 at Caiifornia TWSC intersections.
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Fig. 6.5b: Proportion of Broadside accidents for it,>5 at California TWSC Intersections.
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Fig. 6.5c: Proportion of Broadside accidents for n^lO at California TWSC intersections.
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Fig. 6.5d: Proportion of Broadside accidents for /t^l5 at Caiifornia TWSC intersections.

It is immediately evident that the MM1 model does not fit the data well at higher 

accident counts. Both the MM2 and ML methods perform better; however, at higher 

accident counts, the data appear to be negatively skewed (i.e., skewed to the right), 

whereas the models are positively skewed. This indicates that the predicted mean will 

differ from the observed mean.

It is important to recall that the MM2 approach considers only sites with n^2 

accidents, while the ML and MM1 approaches considered sites with n;>\ accidents. 

Thus, the histogram in Fig. 6.5a represents the data from which the MM2 model was 

calibrated. The fact that the ML estimates agree very closely with the MM2 estimates 

shows that the ML estimates are relatively robust.

Fig. 6.6 shows a beta prior estimated using only sites with «^10 accidents.
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Fig. 6.6: Broadside Beta Priors Calibrated for/tj>10 at California TWSC Intersections.

Each new model appears to perform better than Its original counterpart; however, 

the presence of a pattern is not clear, and it is difficult to tell if the assumption of a beta 

distribution is appropriate.

6.5.3 Dataset 2: California Rural Signalized Intersections

The California TWSC intersections considered above experienced a relatively 

low number of accidents per site: 0.94 accidents per site, per year on average. The 

California signalized intersections under investigation experienced an average of 4.8 

accidents per site, per year. Thus, it is expected that the models for these data will 

suffer less from the influence of low-accident sites.

Figure 6.7 shows the beta priors for fatal/injury, rear-end, broadside, hit-object, 

and pedestrian accidents for California rural, signalized intersections.
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Fig. 6.7a: Beta priors for fatal/injury accidents at Caiifornia rural, signalized intersections.
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Fig. 6.7b: Beta priors for rear-end accidents at California rural, signalized intersections.
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Fig. 6.7c: Beta priors for broadside accidents at California rural, signalized intersections.
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Fig. 6.7d: Beta priors for hit-object accidents at California rural, signalized intersections.
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Fig. 6.7e: Beta priors for pedestrian accidents at California rural, signalized intersections.

For the signalized intersections, the ML and MM2 beta priors are similar in shape 

to those calibrated for the TWSC intersections. The MM1 beta priors are bell-shaped for 

those accident types representing greater than about 15 percent of all accidents; in this 

case, only fatal/injury, rear-end, and broadside have proportions in excess of 15 percent. 

In all other cases, the MMl distributions were L-shaped.

None of the MMl-fitted distributions had a U-shaped curve, as was the case for 

TWSC intersections. As discussed above, this was expected, owing to the larger 

accident counts observed at the signalized intersections.

The ML and MM2 priors were again similar with respect to expected values and 

variances. In general, the MMl priors exhibited larger variances than the other two 

methods.

6.5.4 Dataset 3: 2-Mile Segments of Washington 2-Lane Rural Highways

All of the previous work on screening for high proportions of specific accident 

types has been applied to intersections. In theory, there is no reason that the method 

could not be applied to any type of transportation facility. Here, 2-mile segments of 

Washington 2-lane rural highways in rolling terrain are examined. Traffic volumes and 

some geometric traits vary between sites.
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Figure 6.8 shows the beta prior distributions for head-on, animal, overturning, 

and fixed object accidents estimated using the ML, MM1, and MM2 approaches. Note 

that maximum likelihood parameter estimates did not converge for the head-on accident 

model.
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Fig. 6.8.a: Beta priors for head-on accidents on 2-mile 
segments of Washington 2-iane rural highways.
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Fig. 6.8.b: Beta priors for animai accidents on 2-miie 
segments of Washington 2-lane rural highways.
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Fig. 6.8 .C : Beta priors for overturning accidents on 2-mile 
segments of Washington 2-lane rural highways.
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Fig. 6.8.d: Beta priors for fixed-object accidents on 2-mile 
segments of Washington 2-lane rural highways.
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The beta prior distributions calibrated for the Washington highway segments 

have many similarities with the beta priors estimated for California TWSC intersections. 

As with the intersection models, the MM1 estimates for highway segments were all 

either L-shaped or U-shaped. Again, it appears that the MM1 parameter estimates are 

strongly influenced by the many ‘zeros and ones’ in the observations.

The ML and MM2 beta priors are again bell-shaped for relatively high-proportion 

accident types, and are L-shaped for lower-proportion types. Again, the ML and MM2 

estimates have similar expected values and variances.

Maximum likelihood estimates did not converge for head-on and parked-vehicle 

accidents, which represented 1.6 and 0.82 percent of total accidents, respectively. MM2 

parameter estimates failed to converge for same-direction sideswipe (1.4%), cyclist 

(0.15%), parked-vehicle (0.82%), and unknown (0.49%) accident types, where the 

number in parentheses indicates the percentage of total accidents for the given target 

type. Models for accident types representing more than 2 percent of total accidents 

converged in every case.

In order to see the effects of including sites with low accident counts, the beta 

priors are compared with histograms of observed proportions for n^2 and n;>5 total 

accidents. These are shown in Fig. 6.9.
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Fig. 6.9a: Proportion of fixed-object accidents fo r /t^  on 2-mile segments of 
Washington rural 2-lane highways.
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Fig. 6.9b: Proportion of fixed-object accidents for nl>5 on 2-mile segments of Washington
rural 2-iane highways.

For both ni>2 and nj>5, the ML and MM2 estimates still appear to fit the data 

reasonably well; however, it is evident that the MM1 estimates are not appropriate for 

these data. Fig. 6.10 shows the beta prior distribution estimated using only data for ni>5 

sites:
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Fig. 6.10: Proportion of fixed-object accidents calibrated for on 2-miie 
segments of Washington rural 2-iane highways.

The ML and MM2 beta priors show in Fig. 6.10 are similar to those calibrated for 

the maximum number of sites; however, the MMl estimates are a much better fit than 

the MMl estimates shown in Fig. 6.9. The MM1-fitted prior is no longer influenced by 

the large numbers of zeros and ones as in the earlier attempts.

6.6 How Many Years of Data Are Needed To Calibrate Beta Priors?

When performing network screening, a decision must be made regarding the 

number of years of data to include. If many years are used, there are more observations 

and, thus, better-fitting models should result; however, the characteristics of a given site 

can change over time, including traffic volume, the roadway environment, vehicles, and 

drivers, to name a few. If significant changes have occurred at the site over the course 

of the observation period, then the model parameters gleaned from these data are 

questionable. If a short observational period is used, there will be fewer data points with 

which to calibrate a model, and the random fluctuations in accident occurrence will 

become more influential to the model.

Sometimes, the required accident data is available only for short periods; in this 

case, all data would normally be included. If a large number of years of data are 

available, it is common to use 3 years of data. Here, beta priors are estimated using 5
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years of accident data are compared to beta priors calibrated from 3 years of data. This 

comparison is made only with the California signalized rural intersection database, as 

these sites had much higher average accident counts than did the other two databases.

Figure 6.11 shows the 5-year and 3-year maximum-likelihood-estimated beta 

priors at California signalized intersections for fatal/injury, rear-end, broadside, hit object, 

and pedestrian accidents.

5-year
3-year

0.1 02 0.3 0.4 0.5 0.6 0.7 0.0 0.9
Proportion of Fatal/Injury Accidents

Fig. 6.11a: Comparison of fatal/injury beta priors for 5 and 3 years of accident 
data, using maximum likelihood estimation. (Washington signalized intersections)
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Fig. 6.11b: Comparison of rear-end beta priors for 5 and 3 years of accident data, 
using maximum likelihood estimation. (Washington signalized intersections)
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Fig. 6.11c: Comparison of broadside beta priors for 5 and 3 years of
accident data, using maximum likelihood estimation.
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Fig. 6.11d; Comparison of hit-object beta priors for 5 and 3 years of 
accident data, using maximum likeiihood estimation.
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Fig. 6.11e: Comparison of pedestrian beta priors for 5 and 3 years of 
accident data, using maximum likelihood estimation.
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Fig. 6.12 shows both 5-year and 3-year MMl estimates for rear-end and 

broadside accidents, and Fig. 6.13 shows the MM2 estimates for the same accident 

types. Again, all results are from the California signalized intersection database.
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Fig. 6.12a: Comparison of rear-end beta priors for 5 and 3 years of 
accident data, using MMl estimation.
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Fig. 6.12b: Comparison of broadside beta priors for 5 and 3 years of
accident data, using MMl estimation.
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Fig. 6.13a: Comparison of rear-end beta priors for 5 and 3 years of 
accident data, using MM2 estimation.
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Fig. 6.13b: Comparison of broadside beta priors for 5 and 3 years of
accident data, using MM2 estimation.
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The 5-year and 3-year beta priors compare very well for both maximum likelihood 

and MM2 estimates. The MM1 estimates also compare reasonably well; however, theS- 

year MM1 estimates exhibit a larger variance than the corresponding 5-year estimates.

6.7 Results of Site Ranking

6.7.1 General

The empirical Bayes procedure described here ranks the sites based on the 

degree of certainty that the proportion of all accidents of a specific accident type, is 

higher than some value, 6*. The value of 6* has generally been taken to be the median 

proportion, 6„, observed at all other sites of the same kind in the network being 

investigated {2,31-34). Heydecker and Wu (2) describe using the median as a means of 

identifying those sites having an accident proportion that is “greater than normal for sites 

of the same kind.”

The ‘degree of certainty’ is represented by the pattern score, Pr(<9, > 0*), 

calculated using Eq. 6.17, with a value of 1 being almost absolute certainty that the 

statement is true; a value of zero indicates the proposition is almost certainly false.

While a pattern score is calculated for each site, it is usually desirable to limit the 

list of ranked sites to only those sites with a relatively high probability of having a high 

proportion of the given accident type. This is accomplished by selecting a limiting value 

of the pattern score, S. In theory, any value of ô may be used, but this will have an effect 

on the size and order of the ranked list. If ô is large (e.g. 0.99), a relatively small number 

of sites will pass the test’ and be ranked; however, these sites will have a very high 

probability of having a high proportion of the given accident type, and thus a relatively 

low type I error (i.e.: fewer ‘false positives’ should be observed). As ô decreases, a 

larger number of sites are ranked, with a corresponding increase in ‘false-positive’ 

errors.

The choice of ô can easily be changed to fit the data at hand; if a large number of 

sites are ranked after setting <5 to, say, 0.95, one need only increase ô to reduce the 

number of sites on the ranked list. Similarly, if too few sites are ranked, Ô can be 

reduced. It would be prudent to select minimum possible value of 6, in order to keep 

false-positive errors to some ‘acceptable’ minimum. In this thesis, no site is ranked with 

a pattern score of less than 0.90. It is important to note that changing the value of ô
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does not influence the order the sites are ranked; it merely governs the number of sites 

making the final list.
A way of modifying the ranked list is by modifying tc as described in Section 6.2.2. 

As already mentioned, a value of 0.5 indicates the median, as 50% of the sites will have 

a pattern score greater than the median, and 50% will have a lesser score. A value of 

0.8, for example, would indicate the probability that the observed proportion at a given 

site is greater than 80% of similar sites. Several values of k are used in this thesis, and 

the results are compared. For each of the three datasets, the following ;r-values were 

used; 0.5, 0.75, 0.8, 0.9, and 0.95.
All calculations for the screening procedure were performed using Microsoft 

Excel spreadsheets. Pattern scores are reported to three decimal places; however, 

rankings are based on scores computed to about 8 decimal places of accuracy. It would 

be unreasonable to believe that differences of that magnitude are significant, and it could 

be argued that no differences in ranking should result from them. In practice, however, 

no decision to conduct road safety remedial work is to be based on a site’s ranking; 

rather, the flagged sites are subjected to a more detailed investigation, the results of 

which would dictate the allocation of resources.

6.7.2 California Rural 4-leg TWSC Intersections

Rankings of California TWSC intersections were calculated for each accident 

type, for each of the three parameter estimation method, and for the different values of k 

described above. Tables 610 to 6.13 show the screening results for rear-end accidents 

where the beta priors were estimated using maximum likelihood. Rankings are shown 

for ;r-values of 0.5, 0.8, 0.9, and 0.95.

When 7t was taken to be 0.5 (i.e.: the median), 137 sites were flagged. This is 

likely a far greater number of sites than could be economically studied in detail. Even if 

a value of 0.99 was selected for S, there would have been 51 flagged sites, which is still 

probably too many for practical purposes. It should be noted that the highest-ranked 

sites are not necessarily the sites with the highest observed proportions.

When n was increased from 0.5 to 0.8, the value of 6* increased from 0.19 to 

0.34. At the same time, the number of flagged sites decreased from 137 to 30. Sites 

with relatively low accident proportions (with respect to the other ranked sites) were
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either demoted to lower rankings when the n was increased, or pushed off of the list 

altogether. Sites with a relatively high proportion were more likely to be promoted.

For zr-values of 0.9 and 0.95, the numbers of flagged sites were reduced to 15 

and 2, respectively. While the number of flagged sites on these lists could be increased 

by decreasing , this is done at the peril of increasing the probability of making a false- 

positive error.
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Table 6.10: Screening for proportions rankings of California 4-leg, TWSC rural

Dataset:
Target Accidents:
n

0 *
Parameter estimates:
S
Number of sites ranked:

1 (California rural TWSC intersections)
Rear-end
0.5

0.19
Maximum likelihood
0.90
137

Site No.

/

Total
Accidents

«/

Rear-end
Accidents

Xl

Observed 
Proportion of 
RE Accidents

Oi

Pattern Score

Vr{pi>0*)

Rank

464 26 19 0.73 1.000 1
1003 31 19 0.61 1.000 2
1716 23 16 0.70 1.000 3
1095 24 16 0.67 1.000 4
146 24 16 0.67 1.000 4
302 22 15 0.68 1.000 6
1585 20 14 0.70 1.000 7
645 10 10 1.00 1.000 8
1211 16 12 0.75 1.000 9
149 16 12 0.75 1.000 9
742 11 10 0.91 1.000 11
617 19 13 0.68 1.000 12
300 28 16 0.57 1.000 13
1977 29 16 0.55 1.000 14
1011 15 11 0.73 1.000 15
152 34 17 0.50 1.000 16
177 11 9 0.82 1.000 17

1294 11 9 0.82 1.000 17
1198 17 11 0.65 1.000 19
144 24 13 0.54 1.000 20

106



Table 6.11: Screening for proportions rankings of Caiifornia 4-ieg, TWSC rural

Dataset:
Target Accidents:
n
0 *
Parameter estimates:
â
Number of sites ranked:

1 (California rural TWSC intersections) 
Rear-end 
0.8 

0.34
Maximum likelihood
0.90
30

Site No.

/

Total
Accidents

«/

Rear-end
Accidents

Xl

Observed 
Proportion of 
RE Accidents

01

Pattern Score

?r{0 i>0*)

Rank

464 26 19 0.73 1.000 1
645 10 10 1.00 0.998 2
1716 23 16 0.70 0.997 3
742 11 10 0.91 0.996 4
1095 24 16 0.67 0.995 5
146 24 16 0.67 0.995 5
302 22 15 0.68 0.995 7
1003 31 19 0.61 0.995 8
1585 20 14 0.70 0.994 9
1211 16 12 0.75 0.993 10
149 16 12 0.75 0.993 10
617 19 13 0.68 0.989 12
1011 15 11 0.73 0.987 13
177 11 9 0.82 0.984 14

1294 11 9 0.82 0.984 14
300 28 16 0.57 0.975 16
1198 17 11 0.65 0.967 17
863 8 7 0.875 0.967 18
867 8 7 0.875 0.967 18
1977 29 16 0.55 0.966 20
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Table 6.12: Screening for proportions rankings of California 4-leg, TWSC rural

Dataset:
Target Accidents:
n
0*
Parameter estimates:
Ô
Number of sites ranked:

1 (California rural TWSC intersections)
Rear-end
0.9
0.43
Maximum likelihood
0.90
15

Site No.

/

Total
Accidents

«/

Rear-end
Accidents

Xi

Observed 
Proportion of 
RE Accidents

e,

Pattern Score

Pr(%>#*)

Rank

464 26 19 0.73 0.988 1
645 10 10 1.00 0.984 2
742 11 10 0.91 0.969 3
1716 23 16 0.70 0.959 4
1211 16 12 0.75 0.942 5
149 16 12 0.75 0.942 5
1585 20 14 0.70 0.941 7
1095 24 16 0.67 0.940 a
146 24 16 0.67 0.940 a
302 22 15 0.68 0.940 10
1003 31 19 0.61 0.920 11
177 11 9 0.82 0.915 12
1294 11 9 0.82 0.915 12
617 19 13 0.68 0.913 14
1011 15 11 0.73 0.913 15
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Table 6.13: Screening for proportions rankings of California 4-ieg, TWSC rural

Dataset: 1 (California rural TWSC intersections)
Target Accidents: Rear-end
n 0.95
e* 0.50
Parameter estimates: Maximum likelihood
Ô 0.90
Number of sites ranked: 2

Site No. Total
Accidents

Rear-end
Accidents

Observed 
Proportion of 
RE Accidents

Pattern Score Rank

1 «1 Xi Oi Pr(<?/>(?*)
645 10 10 1.00 0.938 1
464 26 19 0.73 0.922 2

Table 6.14 shows how 0* changes with the value of n. Table 6.15 shows the top 

20 sites ranked by using the median value for 6* and shows how each ranked using 

higher values of n. Where the site has been flagged (i.e.: the pattern score was greater 

than 0.9), the rank is in bold type; where it has not been flagged, the rank is given in 

plain type.

Table 6.14: Values of for rear-end accidents at California

Percentage Critical Proportion
n 0*

0.5 0.19
0.75 0.31
0.8 0.34
0.9 0.43
0.95 0.50

109



Table 6.15: 
is shaded.

Site rankings for rear-end accidents using different ;r-values. Where the site has not been flagged, the ranking

Site No.
464
1003
1716
1095
146
302
1585
645
1211
149
742
617
300
1977
1011
152
177
1294
1198
144

Total Accs. 
ni
26
31
23
24 
24 
22 
20 
10 
16 
16 
11 
19 
28 
29 
15 
34 
11 
11 
17 
24

Rear-end Accs. 
X|

19
19
16
16
16
15 
14 
10 
12 
12 
10 
13
16 
16 
11 
17 
9 
9 
11 
13

Proportion
e.

0.73
0.61
0.70
0.67
0.67
0.68
0.70
1.00
0.75
0.75
0.91
0.68
0.57
0.55
0.73
0.50
0.82
0.82
0.65
0.54

;r=0.5
1
2
3
4 
4 
6
7
8 
9 
9 
11 
12
13
14
15
16 
17 
17
19
20

Rankings Using Different n̂ -vaiues 
7r^0.75 TT̂ O.S /T—0.9

1
4 
3
5 
5 
8
9 
2
10 
10 
7 
12 
16
17
13 
21
14 
14
18 
22

1
8
3 
5 
5 
7
9 
2
10 

10

4 
12 
16 
20
13 
22
14 
14 
17 
23

1
11
4 
8 
8 
10 
7 
2
5 
5 
3
14 
19 
22
15 
34 
12 
12 
18 
28

;r=0.95
2
17

: :4 ^ ::
11

1
5
5
3
14
25
26 
13 
63 
9 
9 

20 
41



In order to understand the mechanism by which sites may be ‘pushed out,’ 

consider site number 1003. This site was ranked second highest where k was 0.5, but 

as the ;r-values increased, it was ranked steadily lower, and was not flagged at all 

;r=0.95. Figure 6.14 depicts the posterior distribution for rear-end accidents at site 1003. 

The vertical lines represent the values of 6* for ;r=0.5 and ;r=0.95. The area under the 

posterior curve to the right of the given value of 6* is the same as the pattern score, and 

quantifies the degree of certainty that the observed accident proportion is in fact greater 

than 6*.

From Fig. 6.14, it is clear why the pattern score for any given site decreases as 

the choice of the ;r-value increases. Site 1003 experienced a relatively large number of 

collisions, and for this reason, the posterior distribution exhibits a relatively low variance. 

It is because of this low variance that the site is ranked so high when the median value 

of 0* is used; had the variance been much higher, more of the curve’s area would be to 

the left of 6*.

In general, sites with high accident counts are favoured by lower values of 9*, 

and sites with high proportions of the given target accident are favoured by higher 

values. Of course, sites with both high accident counts and high proportions have high 

rankings regardless of the choice of 6*.
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Fig. 6.14a: Posterior distribution of rear-end accidents for site no. 1003. The area 
of the shaded section is equivalent to the site’s pattern score. Here ;r=0.5.
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Fig. 6.14b: Posterior distribution of rear-end accidents for site no. 1003. The area 
of the shaded section is equivalent to the site’s pattern score. Here ;r=0.95.

The ranking ‘mechanisms’ observed for rear-end accidents are the same for 

other accident types: as n (or <5) goes up, the number of flagged sites goes down, and 

sites with lower accident proportions are removed from the list. Table 6.17 shows values 

of 6* at different yr-values for broadside accidents at California TWSC intersections, and 

Table 6.16 shows the results of ranking. Results for 7t=0.95 are omitted, as no sites 

were flagged.

Table 6.16: Values of for broadside accidents at California

Percentage, n Critical Proportion, 0* No. of flagged sites

0.5 0.37 231
0.75 0.54 67
0.8 0.58 40
0.9 0.69 7
0.95 0.76 0
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Table 6.17: Site rankings for broadside accidents using different n^-values. Where the site has not been flagged, the 
ranking is shaded.____________________________________________________________________________________________

CO

Site No.
1006
153
1719
157
652
610
959
305
1005
861
1498
464
1271
1220
482
1501
318
1539
1189
144

Total Accs.
iti
61
48
40
50
37
45
31
26
30 
29
31 
26 
16 
21 
39
23 
36 
44 
12
24

Broadside Accs.
 ^ ______

49
39
34
38
30
34
26
22
24
23
24 
21 
15 
18 
28 
19 
26 
30 
12 
19

Proportion
e,

0.80
0.81
0.85
0.76
0.81
0.76
0.84
0.85
0.80
0.79
0.77
0.81
0.94
0.86
0.72
0.83
0.72
0.68
1.00
0.79

;r=0.5
1
2
3
4
5
6
7
8
9
10 
11 
12
13
14
15
16
17
18
19
20

Rankings Using Different ;r-values 
0.75
1
3 
2 
6 
5
9
4
7 
11 
14
19
17
8 
12
25
18
26 
42
10
20

1
3 
2 
9
5 
12
4
7 
13 
18 
19 
17
6 
11 
34 
16 
37 
50
8 
22

n=0.9
2
4 
1

23 
11 
26
7
8 
18
24
30 
19
5 
12 
66 
17 
62 
125
3

31



6.7.3 California Rural 4-Leg Signalized Intersections

The California signalized intersections had, on average, much higher accident 

frequencies than did the TWSC sites and the Washington highway segments, and far 

fewer sites. Tables 6.18-6.21 show the screening results for rear-end and broadside 

accidents at the signalized sites. Where no sites have been flagged for a given %̂ -value, 

that column is omitted.
For signalized intersections, the results are broadly the same: lower values of it 

favour sites with high accident frequencies, and higher values favour sites with high 

proportions. High values of k cannot be used for this database, as no sites are ranked 

for 7r>0.8. This is due primarily to the smaller number of sites in the network.

Table 6.18: Values of#* for rear-end accidents at California signaiized

Percentage, n Critical Proportion, 0 * No. of flagged sites

0.5 0.41 25
0.75 0.51 5
0.8 0.54 3
0.9 0.61 0

0.95 0.66 0

Table 6.19: Values of#* for broadside accidents at California signalized

Percentage, n Critical Proportion, 0 * No. of flagged sites

0.5 0.30 18
0.75 0.39 4
0.8 0.42 3
0.9 0.48 0
0.95 0.54 0
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Table 6.20: Site rankings for rear-end accidents at California signalized intersections using different 7r-values. Where the 
site has not been flagged, the ranking is shaded._____________________________________________________________________

cn

Site No.
28
50
5
67
54
38
29
10
27
69
16
35
6 

101
36 
75 
20 
11 

79 
108

Total Accs.
fti
69
55
113
58
35
82
72
17
61
41
54
17
49
22
37
37
23
15
15
13

Rear-end Accs.
 ^ _____

46
38
66
36
24
47 
42 
14 
36 
26 
30 
12 
27 
14 
21 
21 
14 
10 
10 
9

Proportion
Oj

0.67
0.69
0.58
0.62
0.69
0.57
0.58
0.82
0.59
0.63
0.56
0.71
0.55
0.64
0.57
0.57
0.61
0.67
0.67
0.69

ar=0.5
1
2
3
4
5
6
7
8
9
10 
11 
12
13
14
15 
15
17
18 
18 
20

Rankings Using Different ;r-values
7r=0.7S 7r=0.S

2
1
5
6 
4 
11 
8 
3
9 
7 
18
10 
22 
12 
19 
19 
17 
14 
14 
13

2
1
7
5 
4 
11 
10 
3 
9
6 
22
8
24
12
19
19
17
14
14
13



Table 6.21: Site rankings for broadside accidents at California signaiized intersections using different n^-vaiues. Where the 
site has not been flagged, the ranking is shaded._____________________________________________________________________

O)

Site No.

39
62
30
77
87
97
95
52
22
44
43
103
86
17
47
21
23
84

Total Accs.

«/
52
28
22
28
23
22
18
32
8
61
16
11
20
26
26
29
21
16

Rear-end Accs.

 ^ _____
29
19
15
17
13
12
10
15
6
25
9
7
10 
12 

12 
13 
10
8

Proportion

0,
0.56
0.68
0.68
0.61
0.57
0.55
0.56
0.47
0.75
0.41
0.56
0.64
0.50
0.46
0.46
0.45
0.48
0.50

Rankings Using Different ^-values 
;r=0.5 n=0.75 ;r=0.8

1 2 3
2 1 1
3 3 2
4 4 4
5 5 ■ . : ' : /5 ;
6 7 :7 .
7 - : : 8  ' : : 9
8 11 12
9 , : 6 /  6
10 23 28
11 10 10
12 : , 9 ' '  ■ 8
13 ;T2::: 11
14 17
14 15  ̂ 17
16 ^^7 ; / ^ - : / : : : : ^ : /  : 2 0 ;
17 J - 1 4 ' , :  ' 14
18 13



6.7.4 Washington Highway Segments

Screening for high proportions of specific target accidents on road segments 

uses the same procedure as for the intersection screening described above. The only 

differences one would expect to see would be the target accidents examined, owing to 

the differences in nature of intersection and highway segment accidents and their 

associated countermeasures.

Tables 6.22-6.25 show the results of screening on 831 2-mile segments of 2-lane 

rural highways in Washington. The accidents types shown are overturning and fixed- 

object.

In general, a smaller portion of sites were ranked than for the intersection 

databases; use of the median value for 0* would appear to be the only option, as 

otherwise too few sites would be flagged.

Table 6.22: Values of for overturning accidents on 2-mile segments of

Percentage, n Critical Proportion, 0* No. of flagged sites

0.5 0.26 23
0.75 0.35 1
0.8 0.38 0
0.9 0.45 0

0.95 0.51 0

Table 6.23: Values of for fixed-object accidents on 2-mile segments of

Percentage, n Criticai Proportion, 0 * No. of flagged sites

0.5 0.39 20
0.75 0.49 5
0.8 0.51 4
0.9 0.57 0

0.95 0.62 0
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Table 6.24: Site rankings for overturning accidents on 2-mile segments of 2-lane rural highways in Washington using
different ;r-vaiues. Where the site has not been flagged, the ranking is shaded._________________________________

00

Site No.
697
343
72

664
510
173
285
462
67
790
751
468
703
112
288
289
291
388
602
700

Total Accs.
iti
9
14
12
4
10
5 
5 
5 
14 
14 
8 
9 
9 
3 
3 
3 
3 
3 
3 
3

Rear-end Accs.
________ Xl

7

8 
7 
4 
6 
4 
4
4 
7 
7
5 
5 
5 
3 
3 
3 
3 
3 
3 
3

Proportion
e,

0.78

0.57
0.58
1.00
0.60
0.80
0.80
0.80
0.50
0.50
0.63
0.56
0.56
1.00
1.00
1.00
1.00
1.00
1.00
1.00

Rankings Using Different ^-values
;r=0.5 7t= 0 .7 5

1
2
3
4
5
6 
6 
6 
9 
9 
11 

12 
12 
14 
14 
14 
14 
14 
14 
14

1
3
4 
2
5
6 
6 
6 
21 
21
9
23
23
10 
10 
10 
10 
10 
10 
10



Table 6.25: Site rankings for fixed-object accidents on 2-mile segments of 2-lane rural highways in Washington using
different ^-values. Where the site has not been flagged, the ranking is shaded.__________________________________

(O

Site No.
149 
532
782 
514 
748 
779 
792 
743 
784 
521
783 
750 
808 
88 
815 
503 
698 
742
150 
482

Total Accs.
tij
43
15
21
23
21
19
12
12
12
8
19
17 
13 
11 
9 
9 
7 
7
18 
12

Rear-end Accs.
 ^ _____

30
13 
16 
17 
15
14 
9 
9 
9
7 
12 
11 

9
8 
7
7 
6 
6 
11

8

Proportion
0,

0.70
0.87
0.76
0.74
0.71
0.74
0.75
0.75
0.75
0.88
0.63
0.65
0.69
0.73
0.78
0.78
0.86
0.86
0.61
0.67

Rankings Using Different r̂-vaiues
;r=0.5 jr=0.75 ;r=0.8

1
2
3
4
5
6 
7 
7 
7 
10 
11 

12
13
14
15 
15 
17 
17
19
20

1
2
3
4 
6
5 
8 
8 
8 
7 
18 
17 
16 
15 
13 
13 
11 
11 
23 
22

1
2
3
4 
6

^5':
8
8
8
7
18
17
16
15
13
13
11
IT
23
22



6.8 Accounting for Accident Severity in Screening for Proportions

6.8.1 EPDO Accidents

As described in the peak-searching algorithm, equivalent property damage only 

(EPDO) accidents are used to account for the very large costs to society that are 

incurred by injury accidents, as compared to property damage only (PDG) accidents.

To incorporate EPDO accidents into the framework of screening for proportions, 

the observed accident counts at each site, and are modified by multiplying the 

number of observed injury accidents, %/./;, by a relative weight (or relative cost factor), 

RC,.,.
To calculate the relative weight of injury accidents, a cost must be ascribed to 

each level of accident severity as recorded in the dataset. In the case of the California 

intersection datasets, accident severity was classified as either fatal (K), severe (A), 

visible (B), possible (C) injuries, or property damage only (O). These classifications 

correspond to the KABCO injury scale (21), which describes the costs associated with 

injury accidents in the United States. The KABCO scale is shown in Table 6.26.
The severity weight, SWj, where y=K,A,B,C,0, is then calculated by dividing the 

cost of each severity level by the PDO cost. In this way, the economic costs of each 

level of severity can be described as a multiple of the cost of a PDO accident (hence, 

equivalent PDO), with PDO accidents having a severity weight of 1. Table 6.27 shows 

the severity weight for each severity level, and the proportion of all accidents that were 

of the given severity, Pj, for the California signalized intersections in dataset 2.

Table 6.26: KABCO Scale, from National Safety Council (22)
Code Severity Cost (2000, US $)

K Fatal $3,214,290
A Incapacitating Injury $159,449
B Visible Injury $41,027
C Possible Injury $19,528
0 Property Damage Only $1,861
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Table 6.27: Severity weights and accident proportions of injury accidents for California

Severity Cost (NSC) Severity Weight, SWj Proportion, Pj
Fatal (K) $3,214,290 1727 0.01
Incapacitating (A) $159,449 86 0.03
Visible (B) $41,027 22 0.12
Possible (0) $19,528 10 0.23
PDO (0) $1,861 1 0.61

The relative weight for a given injury accident is given by the following;

RCp, = Pf^SWi. + P^SW^ + PsSWb + PcSWc . (6.30)

For the 108 signalized intersections in dataset 2, RCiq was found to be 23.6. Thus, on 

average, an FI accident was over 20 times more costly to society than did the average 

PDO accident.

The observed accident counts were then modified as shown in the following:

î(EPDO) ~ î(PDO) FI^i(FI) > (6.31)

and

î(EPDO) — î(PDO) +  ^^FI^i(FI)  > (6.32)

where the subscripts PDO and FI represent the counts of PDO and injury accidents, 

respectively, at site /.

Once the observed accident counts have been modified to EPDO accidents, 

parameters for the beta prior distribution can be estimated as before. Table 6.28 shows 

maximum likelihood parameter estimates for prior beta distributions for California 

signalized intersection dataset. Tables 6.29 and 6.30 show the results of screening for 

EPDO broadside accidents at California signalized intersections.
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Table 6.28: Maximum likelihood parameter estimates for EPDO accidents at California

Total Target 
Accidents

EPDO Target 
Accidents

Maximum Likelihood Parameter 
Estimates

Accident Type Zx, ZX|(EPDO) a P
Head-on 128 1048 0.280 3.92
Rear-end 1141 3382 4.42 6.30
Broadside 747 5065 0.849 1.29
Hit Object 151 906 2.86 43.0
Overturning 28 193 1.16 105
Pedestrian 27 404 0.163 11.6
Other/Unknown 77 478 0.199 4.57

Table 6.29: Values of 0* for broadside accidents at California signalized

Percentage, ^ Critical Proportion, 0* No. of flagged sites

0.5 0.36 42
0.75 0.62 18
0.8 0.67 14
0.9 0.81 5
0.95 0.89 4
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Table 6.30: Site rankings for broadside EPDO accidents at California signalized Intersections using different 7r-values. 
Where the site has not been flagged, the ranking Is shaded._______________________________________________________

Site No.

Total Accs.

«/

Broadside
Accs.

Xl

Broadside 
FI Accs.

Xl(Fl)

Total EPDO 
Accs.

Hl(EPDO)

Broadside
EPDO
Accs.

Xl(EPDO)

Rankings Using Different n̂ -values

;r=0.5 ;r=0.8 ;r=0.9 ;r=0.95
84
98
57
87
35
28
56
83
77
24

22
28
18
9
13
26
23
32
61
52

15
19
10
5
6 
12 
10 
15 
25 
29

9
7
5 
3 
3
6 
5
5
6
8

234
193
136
80
84
191
165
197
250
335

227
184
128
76
77 
154 
128 
133 
167 
218

1
1
3
4
5
6 
8 
18 
20 
25

1
2
3
4
5 
12 
15 
38 
43 
52

1
2
3
4

" 5:;:!
17
27
46
46
46

97 38 11 3 109 82 11 13 V \ 17 \
53 54 20 7 314 185 11 46 :46;.4':v^
74 10 2 2 57 49 13 7 ■ 8
34 27 10 6 263 152 14 49 57 y  46:}:'':;
67 32 13 5 221 131 15 43 : : 54 '46::yy.:
103 23 5 2 70 52 16 16 16 y.-,: I8 ::::y :
66 7 4 1 31 28 17 10 7 . , 7

91 3 1 1 27 25 18 9 6 ' 6
31 28 17 3 146 88 19 34 48 ■ :} 46:::'
65 22 12 4 187 106 20 45 56



6.8.2 Joint Probabilities of Target Accidents and FI Accidents

Another way to incorporate accident severity into the screening for proportions 

methodology is to calculate the joint probability that a given site experiences both a 

greater than normal proportion of target accidents and a greater than normal proportion 

of injury accidents. The joint probability is given by the product of the marginal 

distributions of target accidents and FI accidents, and is written as:

^  (̂(vpe)’ î(F/) > ^Fl) ~ ^̂ ^̂ i(type) > (̂type)) > ^F/) ' (6.33)

where the subscript {type) indicates the target accident type. The marginal probabilities 

in Eq. 6.33 are simply the pattern scores for the target accidents and FI accidents, as 

calculated in Section 6.7.2. It is very important to note that use of Equation 6.33 

assumes independence between injury accidents and the given target accident type, 

and this is questionable.

This approach was used by Bolduc and Bonin (32) to calculated the joint 

probability that sites experienced both a high proportions of Monday-Tuesday- 

Wednesday accidents and Thursday-Friday accidents. They compared the results of 

calculations based on joint probabilities with those based on an assumption of a 

Dirichlet-multinomial model rather the univariate beta-binomial model used here. The 

Dirichlet-multinomial approach is not appropriate in the present case, as FI accidents 

and the given target accidents are not mutually exclusive events; thus, the marginal 

probabilities must be used.

To investigate the effectiveness of this approach, the marginal probability for FI 

accidents is combined with rear-end and broadside marginal probabilities using the 

California signalized intersection dataset. Only maximum likelihood estimates were 

used, and the median only was used for all values of 6* (i.e.: ^=0.5). For <5=0.9, only 

one site was flagged for high proportions of both broadside and injury accidents, and no 

sites were flagged for rear-end and injury accidents. It would, of course, be possible to 

flag more sites by changing ô to some lower value, but this is at the expense of a larger 

type I error.

It is clear by the small number of sites flagged that this method would be of little 
practical use.
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6.9 Comparison of Screening for Proportions Approach with an SPF-Based
Approach to Screening for High Frequency of Target Accidents

6.9.1 General

One of the main goals of screening for high proportions of specific accident types 

is to identify those sites that may benefit from the application of a given road safety 

countermeasure. For example, if a jurisdiction was considering the installation of 

shoulder rumble strips, it would be desirable to find those sites with a high proportion of 

run-off-road accidents.

It is usually assumed that the application of a given countermeasure will alter the 

expected accident frequency by a certain proportion; this proportion is known as an 

accident modification factor, or AMP. Keeping with the rumble strips example, suppose 

that the AMP for run-off-road accidents after installation is 0.8; thus, for a site with an 

expected run-off-road accident frequency of 10 accidents per year, one would expect to 

observe 10x0.8=8 run-off-road accidents per year after installation.

If one can put faith in the validity of AMPs, then the sites that would benefit the 

most from a given countermeasure would be those sites with the highest frequency of 

the appropriate target accident(s). This would be in keeping with what Hauer et al. (35) 

deems the most-bang-for-the buck (MBB) principle. In simple terms, it is more important 

to reduce the frequency of a given accident than the proportion of that accident.

The basic principles of screening for expected accident frequency and excess 

expected accident frequency have been discussed in Chapter 5, with applications to 

road segments. In this section, the screening is applied to intersections, which requires 

some modification of the road segment screening method. The approach for 

intersections is described in the next subsection.

6.9.2 Development of Safety Performance Functions

As a first step in the empirical Bayes estimation of expected accident frequency, 

a safety performance function must be developed. The safety performance functions 

are again developed by assuming that accident counts at a given site follow a negative 

binomial distribution.

The SRPs for intersections were calibrated using the GENMOD procedure in 

SAS as before. The key difference for the intersection models was the use of two 

independent variables, AADT\ and AADT-i, representing the AADTs of the major and
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minor approaches, respectively. The SPFs for the two California intersection datasets 

had the following general form:

SP = a  AADTf'AADT£^ (6.34)

where SP is the predicted accident frequency in accidents/year, and a, y9/, P2 are 

parameters.
Tables 6.31 and 6.32 show the SPF parameter estimates for California rural 

TWSC and signalized intersections, respectively. Recall that the dispersion parameter k, 

is such that as k-*co, the negative binomial distribution approaches a Poisson 

distribution.

Table 6.31: SPF parameters at California rural TWSC intersections.

Accident Type Parameter Estimates Overdispersion
in(a) fix A k

Total -8.3 0.67 0.40 0.64
FI -8.6 0.57 0.38 0.86

Head-on -10 0.50 0.44 1.1
Sideswipe -10 0.62 0.34 0.93
Rear-end -12 1.0 0.30 1.1
Broadside -9.6 0.58 0.59 1.3
Hit Object -8.2 0.55 0.19 0.69

Overturning dnc dnc dnc dnc
Pedestrian -16 1.1 0.24 2.5

Other/Unknown -9.4 0.60 0.15 0.39

126



Table 6.32: SPF parameters at California rural signalized intersections.

Accident Type Parameter Estimates
in(a) Px Pi

Overdispersion

Total
FI

Head-on 
Sideswipe 
Rear-end 
Broadside 
Hit Object 

Overturning 
Pedestrian 

Other/Unknown

- 6.2
dnc
dnc
-7.9
-9.5
dnc
dnc
dnc
dnc
dnc

0.64
dnc
dnc
0.50
0.83
dnc
dnc
dnc
dnc
dnc

0.20
dnc
dnc
0.29
0.27
dnc
dnc
dnc
dnc
dnc

0.32
dnc
dnc
0.48
0.54
dnc
dnc
dnc
dnc
dnc

For the TWSC intersections, the negative binomial models converged in all but 

one case; for the signalized intersection data, however, the models converged for only 

total, sideswipe, and rear-end accidents. The explanation for this difference lies with the 

difference in sample size: with only 108 sites and a wide range of AADT data, it is more 

difficult to extract statistically significant parameter estimates.

6.9.3 Screening Based on Expected Accident Frequency and Excess Accident
Frequency of Specific Target Accidents for Intersections

The procedure for calculating EB-adjusted expected accident frequency at 

intersections is similar to the one used in the peak-searching algorithm. As in that 

approach to screening, a model prediction is combined with site-specific observations 

using empirical Bayes methods.

For the purposes of this thesis, the only total accidents of a given type were 

considered; FI, PDO, and EPDO calculations were not performed, although these would 

be done in a similar fashion to those described in the peak-searching algorithm. A 

detailed description of the method for intersections is given below.

First, SPF model predictions, > ^ 1 ,2 , . . .were calculated using the SPF from 

equation 6.34 and the estimated parameters from Section 6.9.1. Thus,

=  cxAADTf' AADTi- (6.35)
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where Ky, is measured in accidents/mi/yr, and the subscript type denotes the accident 

type (e.g., head-on, broadside, etc.).

Next, the yearly correction factor, Q, was computed for each year;

_  ’ ŷjiype) (6.36)
K̂type)

where k\, is the model prediction for year 1. 

The EB weight was then found by:

1
w,(type) Y

 ̂ (̂type) ̂  ̂ y(type) 
y=\

(6.37)

The EB-adjusted expected number of accidents, X\, for total accident of a given 

type for year 1 were calculated via the following:

\̂(type) ^̂ (type)̂ \(type) + (l — W,(type)

^y(type)
y=]

'^^y(type) 
y=\ y

(6.38)

where Ky is the observed accident count in yeary. Note that Equation 6.38 is similar to 

Equation 5.8 from the peak-searching algorithm. The only difference is that the segment 

length variable, SL, has been omitted for intersections (i.e.: SL is assumed to be 1).

The expected accident frequency is calculated for year 7 by:

^  Y (type) -  ^\(type)CY(type) (6.39)

and the variance oiXy is given by:
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V a r{x  Y (type) )  (type) ^(type) )
^  Y (type)

Y

^j^y(type) 
V j ’=i

(6.40)

Where sites were ranked based on the expected accident frequency, PSI=Xy(,ypc). 

Sites were then ranked based on PSI. While the variance of the estimates is included in 

the output, it does not affect the rankings.

If sites were to be ranked based on the excess accident frequency of a specific 

accident type, Excessŷ ,ype), two more equations were needed; estimates of excess 

accident frequency and the variance of the estimate are given by;

Excess Y ̂ lypg-̂  — X  Ŷ jypg'̂  ~ 1^Y(type) (6.41)

and

V ar(E xcesS y^„^)=V ar{x ,^^■ ,)+^^^^!^  . (6.42)
(type)

6.9.4 Comparison of Results of Screening for EB-Expected Accident Frequency
Screening for High Proportion of Accidents for Specific Accident Types

The method of screening for high frequency of a specific accident was applied to 

broadside and rear-end accidents at California rural TWSC intersections. The results of 

this screening, and the results of screening for high proportions for comparison, are 

shown in Tables 6.33 and 6.34.

For both rear-end and broadside accidents, most of the top 10 sites ranked 

based on proportion were included in the top 20 sites ranked based on expected 

accident frequency; thus these sites would probably be flagged for detailed investigation 

regardless of which of the two screening methods were used.

There were, however, some discrepancies between the frequency-ranked lists 

and the proportion-ranked lists. For example, from Table 6.33, site No. 1272 is ranked 

14“* with respect to frequency screening, but it is ranked 2096“* with respect to proportion 

screening. The expected accident frequency screening method will generally favour 

sites with high accident counts -  indeed, this is the basis of the method -  and not
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necessarily sites with high proportion. Keeping with Site No. 1272 as an example, that 

location experienced 10 rear-end accidents out of a total of 71. Thus, the target accident 

count is fairly high (10), but the proportion of rear-end accidents is low (0.14).

Table 6.33: Results of screening for high frequency of rear-end accidents at California 
TWSC intersections. Ranking from screening for high proportions method is shown for 
comparison.

Total
Accidents

Count of 
Rear-end 
Accidents

Expected Rear-end 
Accident Frequency 

(acc/yr)
Site No. ni xi X Rank (freq) Rank (prop)

1716 23 16 3.23 1 3
1003 31 19 3.17 2 2
464 26 19 3.05 3 1
1977 29 16 3.00 4 14
152 34 17 2.71 5 16
1205 31 12 2.64 6 48
176 34 14 2.59 7 34
300 28 16 2.55 8 13
302 22 15 2.54 9 6
1195 33 15 2.54 10 23
146 24 16 2.41 11 4
1095 24 16 2.10 12 4
881 20 10 2.05 13 33
1272 71 10 2.03 14 2096
652 37 15 2.01 15 32
1504 27 12 1.96 16 35
303 20 11 1.91 17 24
149 16 12 1.89 18 9
806 20 11 1.88 19 24
1585 20 14 1.85 20 7
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Table 6.34: Results of screening for high frequency of broadside accidents at California 
TWSC intersections. Ranking from screening for high proportions method is shown for 
comparison.___________________________________________________________________

Total
Accidents

Count of
Broadside
Accidents

Expected Broadside 
Accident Frequency 

(acc/yr)

Site No. ni XI Rank (freq) Rank (prop)
1006
1719
1272
153
157
610
482
1539
652
2103
919
318
1270
1012
861
1005
499
1188
305
464

61
40
71
48
50
45
39
44
37
43
37 
36
33 
32
29
30
38
34 
26 
26

49
34
34
39
38
34
28
30
30
21
25
26 
23 
23
23
24 
26 
22 
22 
21

8.87
6.78 
6.75 
6.57 
6.46 
6.43 
5.84
5.65
5.65 
4.97
4.79 
4.59 
4.53 
4.42 
4.41
4.34
4.34 
4.12 
4.09 
4.04

1
2
3
4
5
6
7
8
9
10 
11 
12
13
14
15
16
17
18
19
20

1
3

137
2
4 
6 
15 
18
5

174
30
17
29
24 
10 
9

25 
47 
8 
12
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6.9.5 Comparison of Results of Screening for Excess Frequency to Screening for
High Proportion of Specific Accident Types

Tables 6.35 and 6.36 show the results of screening for excess accident 

frequency a specific accident types compared to screening for proportions of specific 

accident types, for both rear-end and broadside accidents. The two methods agree 

more closely than the expected-frequency-based ranks did with the proportion-based 

ranks. For broadside accidents, the top six excess-ranked sites also ranked in the top 

six proportion-ranked sites.

It should not be surprising that these lists have similarities; if a site is 

experiencing a higher frequency of target accidents than is expected, as compared with 

other sites, it is also probable that that site will also be experiencing a higher proportion 

of those target accidents.
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Table 6.35: Results of screening for expected excess frequency of rear-end accidents at 
California TWSC intersections. Ranking from screening for high proportions method and 
screening for expected frequency are shown for comparison.

Total
Accidents

Count of 
Rear-end 
Accidents

Expected 
Excess Rear- 
end Accident 

Frequency 
(acc/yr)

Excess
Freq.

Freq. Prop

Site No. ni xi Excess(X) Rank Rank Rank
1003 31 19 2.61 1 2 2
464 26 19 2.50 2 3 1
152 34 17 2.16 3 5 16
1716 23 16 2.16 4 1 3
1977 29 16 2.11 5 4 14
146 24 16 1.99 6 11 4
300 28 16 1.97 7 8 13
1095 24 16 1.79 8 12 4
302 22 15 1.79 9 9 6
1195 33 15 1.74 10 10 23
652 37 15 1.71 11 15 32
1585 20 14 1.54 12 20 7
144 24 13 1.50 13 21 20
272 27 13 1.42 14 24 26
149 16 12 1.41 15 18 9
1504 27 12 1.39 16 16 35
617 19 13 1.38 17 28 12
806 20 11 1.28 18 19 24
1198 17 11 1.24 19 26 19
1424 25 11 1.24 20 22 41
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Table 6.36: Results of screening for expected excess frequency of broadside accidents at 
California TWSC intersections. Ranking from screening for high proportions method and 
screening for expected frequency are shown for comparison.

Total
Accidents

Count of 
Broadside 
Accidents

Expected
Excess

Broadside
Accident

Frequency
(acc/yr)

Excess
Freq.

Freq. Prop.

Site No. ni xi Excess(X) Rank Rank Rank
1006 61 49 7.96 1 1 1
157 50 38 5.69 2 5 4
153 48 39 5.33 3 4 2
1719 40 34 5.08 4 2 3
610 45 34 5.05 5 6 6
652 37 30 4.23 6 9 5
1539 44 30 4.13 7 8 18
482 39 28 3.93 8 7 15
499 38 26 3.87 9 17 25
318 36 26 3.70 10 12 17
919 37 25 3.61 11 11 30
959 31 26 3.48 12 23 7
1005 30 24 3.34 13 16 9
1498 31 24 3.31 14 24 11
861 29 23 3.14 15 15 10
1188 34 22 2.84 16 18 47
1639 28 20 2.74 17 31 31
2103 43 21 2.70 18 10 174
305 26 22 2.70 19 19 8
144 24 19 2.59 20 38 20
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6.10 Chapter Conclusions

The method of screening for high proportions of specific accident types is 

relatively new, and has not yet been widely applied. SPF-based screening methods 

have been widely used throughout the world in the past few years; however, using SPF 

methods to screen for specific accident types has not been commonly used as 

compared with screening for total, FI, or EPDO accidents.

Possibly the greatest advantage of using the proportion-based screening is that 

the method is not data-intensive; the data requirements are accident counts by type (and 

severity, if desired) and enough basic information to classify the site as a particular type 

(e.g., 4-leg signalized urban intersections).

Of the three parameter estimation techniques, maximum likelihood and MM2 had 

the best performance. The MM1 technique was the only one to yield estimates in every 

case; this was because the solution was computed directly, rather than using an iterative 

method as was the case with the ML and MM2 methods. MM1 estimates, however, 

yielded the largest variance in every case, and were heavily influenced by observations 

with very low accident counts. The MM1 estimates for all sites that experienced 

accidents did not perform well when compared to data containing only sites with higher 

numbers of accidents. The MM1 estimates also did not perform as well as ML and MM2 

when modelling data for only 3 years as opposed to 5. The ML and MM2 estimates, in 

contrast, agreed closely for both 3 and 5 years of data. For these reasons, the MM1 

method is not recommended for calibration of the beta prior distributions.

The maximum likelihood and ML2 estimates agreed very closely in almost every 

case examined. Both methods yielded similar estimates for 3 and 5 years of data, 

indicating a reasonable degree of stability. Both ML and MM2 estimates failed to 

converge in some cases; however, estimates converged for every accident type 

representing greater than 2% of all accidents.

The value of n, which dictates the size of the critical theta value, 6*, may be set 

to any value from zero to 1. The larger the value of n, the larger the value of 6*, and 

fewer sites are ranked; however, those sites that are ranked will have the highest 

proportions of all sites in the network, provided a sufficient number of accidents have 

occurred at the site.

When Tt is set to a relatively low value, such as 0.5 as for the median, many sites 

are ranked. In this case, ranked sites may not have observed proportions that are much 

higher than median; a site with many accidents may have an accident proportion only
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20% greater than the median, but still have a high ranking because of the low variance 

of the observations.

A small value of n favours sites with high accident counts, while a larger value 

favours those sites with a high proportion of the given accident type.

It was shown in Section 6.5 that the observed accident proportions at some 

accident types increase as sites with low accident counts are dropped from the analysis. 

Using the beta-binomial screening method, there is no obvious way to account for these 

variations other than to group sites by total accidents, which will result in much-reduced 

sample sizes, and less-reliable models.

The variation in accident proportion can be easily explained by SPF-based 

methods: for a given AADT, the expected proportion of specific accident type can be 

defined as the ratio of the expected values of the SPFs for total accidents, and the target 

accidents as follows:

E{0) = ? ^ f^  (6.43)
SPFjot

Because the SPFs are continuous functions, there is no requirement for 6 to be 

constant over the range of independent variables. In this case, the value of 6 would 

only be constant when the SPF 'slope' parameters. Pro? and %ype) are equal.

The SPF-based methods offer the advantage of being able explicitly model one 

or several independent variables, most importantly AADT. It is clear from the SPF 

calibration results that accident frequency is a function of AADT, and it would be 

reasonable to believe that as traffic volume varies, accident characteristics change as 

well.

In Section 6.9.4, it was shown that SPF-based screening for excess frequency of 

specific accident types compares reasonably well with screening form proportions; 

however, the SPF method accounts for other variables (i.e., AADT) that influence 

accident frequency, and there is no assumption of a constant proportion for a given 
accident type.

Screening for excess accident frequency has the appeal of quantifying the level 

of ‘unsafety’ by showing how much ‘worse’ (or better) a given site is than other sites of 

the same kind. It also suggests that the excess should be correctable, and that reducing 

the accident frequency, to at least the mean frequency for all sites, is an achievable 
goal.
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A fundamental flaw with the screening for proportions method is that a site may 

appear to experience a higher than normal proportion of some accident types, simply 

because the site experiences an unusually low proportion of another accident type or 

types. Thus, if a site is 'safe' with respect to one accident type, it necessarily appear to 

be less safe with respect to other accident types. This represents a major weakness of 

the screening method.

Because of the advantages inherent in using SPF-based screening methods 

described above, and the fundamental weakness of the screening for proportions 

method, the method of screening for excess frequency of specific target accidents is 

preferred over the screening for proportions method. The screening for proportions 

approach appears to be somewhat viable, and could be used where reliable SPFs are 

not available.
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7 Conclusions and Recommendations for Future Work

The screening methods described in this thesis are state-of-the art procedures 

that may see wide-scale use if they are included in the SafetyAnalyst Network Screening 

Toolbox. All of the methods applied here employ empirical Bayes methods to account 
for regression-to-the-mean effects, which makes them more reliable than accident count 

or accident rate screening methods.

The examination of the negative binomial dispersion parameter showed that the 

assumption of constant overdispersion in SPF models may not be valid. Overdispersion 

varies as a function of segment length, and possibly as a function of traffic volume. 

Empirical Bayes estimates of expected accident frequency, on average, do not seem 

seriously affected by different values of the dispersion parameter, but this may not be 

the case for individual sites. Further study of this issue is needed.

The peak-searching algorithm was shown to overcome some of the limitations of 

the sliding window approach, and performed well when applied to real-world data. It was 

found that low values of CVu„ resulted in the ranked list of sites favouring longer 

segments, and having fewer sites. Larger values of resulted in many more sites being 

ranked, and tended to favour shorter segments.

The method of screening for high proportions of specific accident types received 

the most detailed investigation. It was found that the method of maximum likelihood and 

a modified method of moments (MM2) were preferred for making parameter estimates 

for the beta prior distributions.

It was shown that by varying the value of the critical proportion, 6*, the number of 

ranked sites could be varied; the higher the value, the fewer sites were ranked. Also, 

high values of 0* favoured sites with high proportions of the target accident type, while 

lower values favoured sites with high accident counts.

It was also found that the proportion of a given accident type was not constant 

between high- and low-accident sites.

The screening for proportions method was compared with SPF-based methods 

for screening for high expected frequency and excess frequency of specific target 

accidents. The SPF method for screening for excess accident frequency compared well 

with the screening for proportions method; however, the SPF methods do not make the 

assumption that the mean proportion of a given target accident is constant. This makes 

the SPF-based method a more powerful screening tool.
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The main advantage of the screening for proportions methodology is that no 

AADT or geometric data are required; thus, where reliable SPFs are unavailable, the 

screening for proportions method would be a good alternative.
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Appendix A 

Regression Results

A-1



Table A.1: Negative binomial regression parameter estimates and goodness-of-fit statistics for 2-miie segments of 2 lane rural highway 
lents are progressively broken down into smaller segments. Crash data for 1993-1995.

Seg.
Length

No.
Obs. Parameter Estimates Goodness-of-Fit

Statistics

(mi) n in(a)
Std.
Error Pr(<X*) p

Std.
Error X" Pr(<X )̂ k

Std.
Error

Deg. Of 
Freedom

Pearson
X*

2 831 -7.22 0.31 554 <.0001 0.91 0.041 487 <.0001 0.55 0.05 829 0.95
1 1662 -7.06 0.26 759 <.0001 0.88 0.034 679 <.0001 0.59 0.04 1660 0.99

0.5 3324 -6.90 0.22 978 <.0001 0.86 0.029 892 <.0001 0.61 0.05 3322 1.01
0.25 6648 -6.81 0.20 1117 <.0001 0.85 0.027 1031 <.0001 0.79 0.06 6646 1.00
0.1 16620 -6.70 0.19 1301 <.0001 0.84 0.024 1219 <.0001 1.00 0.08 16618 0.98
0.05 33240 -6.67 0.18 1363 <.0001 0.83 0.023 1283 <.0001 1.54 0.12 33238 0.99
0.02 83100 -6.65 0.18 1399 <.0001 0.83 0.023 1321 <.0001 3.23 0.24 83098 0.98
0.01 166200 -6.64 0.18 1413 <.0001 0.83 0.828 1336 <.0001 6.00 0.43 166198 0.98

I



Table A.2: Negative binomial regression parameter estimates and goodness-of-fit statistics for 5 bins of different AADT ranges, for 2-

Bin No.
Obs. Parameter Estimates Goodness-of-Fit

Statistics

n ln(a)
Std.
Error Pr(<X*) P

Std.
Error X* Pr(<X )̂ k

Std.
Error

Deg. Of 
Freedom

Pearson
X̂

1 1479 -8.00 0.53 226 <.0001 1.1 0.079 198 <.0001 0.60 0.059 1477 2.08
2 1407 -8.34 1.24 45 <.0001 1.1 0.16 49 <.0001 0.43 0.040 1405 1.73
3 1161 -2.04 1.77 1.32 0.25 0.35 0.21 2.71 0.10 0.44 0.038 1159 1.12
4 885 -8.76 2.10 17.4 <.0001 1.1 0.24 22.4 <.0001 0.42 0.045 883 1.47
5 860 -7.09 1.13 39.5 <.0001 0.94 0.12 61.7 <.0001 0.40 0.038 858 1.35

I



Table A.3: Regression results for k vs. segment length, using PROC 
NUN in SAS®.

Model;

Regression Method:

k (̂px+SL)l{P2*SL)

Gauss-Newton

Parameters Estimate Approx Std. Error

0.107 0.0036

A 1.96 0.056

Mean-squared residual: 0.0017
Fit OK? YES
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Table A.4: Negative binomial regression parameter estimates and goodness-of-fit statistics for total and FI accident, for 2-lane rural

Acc
Type

No.
Obs. Parameter Estimates Goodness-of-Fit

Statistics

n in(a)
Std.
Error Pr(<X )̂ p

Std.
Error X̂ Pr(<X )̂ k

Std.
Error

Deg. Of 
Freedom

Pearson
X̂

Total 5792 -6.69 0.14 2185 <.0001 0.87 0.017 2503 <.0001 0.49 0.023 5790 1.50
FI 5792 -7.47 0.17 1902 <.0001 0.87 0.021 1760 <.0001 0.48 0.031 5790 1.42

I



Table A.Sa: Negative binomial regression goodness-of-fit statistics for rural, 4-leg, signalized intersections in Caiifornia. Crash data for
5 years, 1997-2001.

Accident
Type

Parameter Estimates

ln(a)
Std.
Error Pr(<X )̂ Pi

Std.
Error Pr(<X )̂ P2

Std.
Error Pr(<X )̂

Std.
Error

I

Total
FI
Head-on 
Sideswipe 
Rear-end 
Broadside 
Hit Object 
Overturn. 
Pedestrian 
Other/Un k.

-6.25
-7.45
-7.01
-7.90
-9.51
-5.00
-5.69
-9.63
-4.30
-11.4

1.28
2.1
2.9
2.1
1.6
1.8
2.5
5.2
6.7
3.0

24
13
5.8
14 

34
7.8 
5.2 

3.5 
0.42
14

<.0001
0.0003
0.016
0.0002
<.0001
0.0053
0.0221
0.0618
0.5185
0.0002

0.64
0.64
0.47
0.50
0.83
0.47
0.37
0.57
0.34
0.86

0.13
0.21
0.30
0.22
0.17
0.19
0.26
0.54
0.70
0.32

24
9.1 
2.5
5.1
25
6.3
2.1 

1.1 

0.23
7.4

<.0001
0.0026

0.12
0.0243
<.0001
0.0118
0.1471
0.2863
0.6316
0.0067

0.20
0.12
0.13
0.29
0.27
0.10
0.45
0.14
0.25
0.15

0.043
0.066
0.09
0.07
0.06
0.056
0.07
0.16
0.20
0.08

22
3.4 

2.1 
16 

23
3.4 

1.9 
0.83 
1.6 
3.2

<.0001
0.064
0.14

<.0001
<.0001
0.0671
0.1633
0.3612
0.2137
0.0737

0.32
0.58
0.82
0.48
0.54
0.46
0.45
1.5
4.0
0.26

0.049
0.13
0.26
0.14
0.09
0.09
0.17
1.0
2.0
0.24



Table A.Sb: Negative binomial regression parameter estimates for rural, 4 leg, signalized intersections in Caiifornia.
Crash data for 1997-2001.

Accident Type Goodness-of-Fit Statistics
Degrees Of Freedom Pearson X Model Valid?

Î

Total
Fi
Head-on
Sideswipe
Rear-end
Broadside
Hit Object
Overturning
Pedestrian
Other/Unk.

105
105
105
105
105
105
105
105
105
105

1.0
0.87
0.94
1.0
1.0
1.1
1.0

0.95
1.1
1.1

Yes
No -  parameter(s) not 
No -  parameter(s) not 

Yes 
Yes

No -  parameter(s) not 
No -  parameter(s) not 
No -  parameter(s) not 
No -  parameter(s) not 
No -  parameter(s) not

significant.
significant.

significant.
significant.
significant.
significant.
significant.



Table A.6a: Negative binomial regression goodness-of-fit statistics for rural, 4-leg, TWSC intersections in California. Crash data for 5
years, 1997-2001.

Accident
Type

Parameter Estimates

ln(a)
Std.
Error Pr(<X^) Pi

Std.
Error Pr(<X )̂ P2

Std.
Error Pr(<Xl

Std.
Error

i

Total
FI
Head-on
Sideswipe
Rear-end
Broadside
Hit Object
Overturn.
Pedestrian
Other/Unk.

-8.26
-8.63
-10.4
- 10.1
-12.4
-9.58
-8.19
-8.91
-15.8
-9.37

0.24
0.35
0.75
0.52
0.46
0.38
0.40
0.78
1.5

0.59

1190
624
194
371
729
642
420
130
110
257

<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001

0.67
0.57
0.50
0.62
1.0

0.58
0.55
0.54
1.1

0.60

0.03
0.04
0.08
0.06
0.05
0.04
0.04
0.09
0.16
0.06

634
228
38
118
397
196
152
38
47
86

<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001

0.40
0.38
0.44
0.34
0.30
0.59
0.19
0.056
0.24
0.15

0.01
0.02
0.05
0.03
0.03
0.02
0.03
0.05
0.08
0.04

733
298
93
112
146
612
57
1.3
8.8
18

<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
0.2623
0.0030
<.0001

0.64
0.86
1.1

0.93
1.1
1.3 

0.69
1.3 
2.5 
0.39

0.03
0.06
0.29
0.14
0.09
0.08
0.10
0.47
1.0

0.17



Table A.6b: Negative binomial regression parameter estimates for rural, 4 leg, TWSC intersections in Caiifornia.
Crash data for 1997-2001.

Accident Type Goodness-of-Fit Statistics
Degrees Of Freedom Pearson Model Valid?

Total 2199 1.2 Yes
FI 2199 1.0 Yes
Head-on 2199 0.97 Yes
Sideswipe 2199 1.1 Yes
Rear-end 2199 1.0 Yes
Broadside 2199 1.5 Yes
Hit Object 2199 1.0 Yes
Overturning 2199 1.0 No - parameter(s) not significant.
Pedestrian 2199 0.88 Yes
Other/Unk. 2199 1.1 Yes

I
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Table B.1: Results of peak-searching algorithm for expected accident frequency of FI

Screening Criterion:
Accident Type:
CViin,
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Expected accident frequency
FI accidents
1.5
93/100
1.87
0.13

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

Peak(Xv)
(acc/mi/yr)

Var[Peak(XY>] CV[Peak(XY)] Rank

22 0.89 0.1 8.68 17.91 0.49 1
12 1.18 0.1 7.08 22.68 0.67 2
5 0.64 0.1 6.67 20.16 0.67 3
6 0.25 0.1 6.63 19.87 0.67 4
26 2.4 0.1 6.08 11.51 0.56 5
15 0.13 0.1 6.07 16.68 0.67 6
7 0.41 0.1 6.07 16.68 0.67 7

48 0.24 0.1 5.46 13.51 0.67 8
52 1.06 0.1 4.88 10.76 0.67 9
23 0.13 0.1 4.70 10.00 0.67 10
24 0.34 0.1 4.69 9.97 0.67 11
9 3.27 0.1 3.47 9.96 0.91 12
8 0.13 0.1 3.46 9.88 0.91 13
10 2.87 0.1 3.44 9.76 0.91 14
4 2.8 0.1 3.36 9.34 0.91 15
17 1.32 0.1 3.34 9.20 0.91 16
11 0.72 0.1 3.33 9.17 0.91 17
16 0.84 0.1 3.33 9.16 0.91 18
1 1.73 0.1 3.22 8.57 0.91 19
14 0.82 0.1 3.21 8.51 0.91 20
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Table B.2: Results of peak-searching algorithm for expected accident frequency of Fi

Screening Criterion:
Accident Type:
CV,im
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Expected accident frequency 
FI accidents 
1.0 
86/100 
1.99 
0.18

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

Peak(Xv)
(acc/mi/yr)

Var[Peak(Xv)] CV[Peak(XY)] Rank

22 0.89 0.1 8.68 17.91 0.49 1
12 1.18 0.1 7.08 22.68 0.67 2
5 0.64 0.1 6.67 20.16 0.67 3
6 0.25 0.1 6.63 19.87 0.67 4
26 2.4 0.1 6.08 11.51 0.56 5
15 0.13 0.1 6.07 16.68 0.67 6
7 0.41 0.1 6.07 16.68 0.67 7

48 0.24 0.1 5.46 13.51 0.67 8
52 1.06 0.1 4.88 10.76 0.67 9
23 0.13 0.1 4.70 10.00 0.67 10
24 0.34 0.1 4.69 9.97 0.67 11
9 3.27 0.1 3.47 9.96 0.91 12
8 0.13 0.1 3.46 9.88 0.91 13
10 2.87 0.1 3.44 9.76 0.91 14
4 2.8 0.1 3.36 9.34 0.91 15
17 1.32 0.1 3.34 9.20 0.91 16
11 0.72 0.1 3.33 9.17 0.91 17
16 0.84 0.1 3.33 9.16 0.91 18
1 1.73 0.1 3.22 8.57 0.91 19

14 0.82 0.1 3.21 8.51 0.91 20
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Table B.3; Results of peak-searching algorithm for expected accident frequency of FI

Screening Criterion:
Accident Type:

CViim
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Expected accident frequency
FI accidents
0.5
54/100
2.79
0.60

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

Peak(Xv)
(acc/mi/yr)

Var[Peak(Xy)] CV[Peak(XY)] Rank

4 2.8 0.1 11.69 32.48 0.49 1
5 0.64 0.11 11.62 31.89 0.49 2
7 0.41 0.1 11.56 31.77 0.49 3
9 3.27 0.11 11.04 28.78 0.49 4

47 2.7 0.1 10.12 24.31 0.49 5
20 1.76 0.1 8.91 18.86 0.49 6
22 0.89 0.1 8.68 17.91 0.49 7
39 3.93 0.1 7.00 11.64 0.49 8
40 6.87 0.11 6.86 11.12 0.49 9
54 1.2 0.14 6.79 10.72 0.48 10
12 1.18 0.21 6.77 10.34 0.47 11
10 2.87 0.19 6.58 9.83 0.48 12
56 6.2 0.14 6.52 9.89 0.48 13
26 2.4 0.15 5.45 6.88 0.48 14
29 5.37 0.15 5.31 6.53 0.48 15
48 0.24 0.21 5.23 6.16 0.47 16
36 0.76 0.17 4.69 5.05 0.48 17
33 0.91 0.17 4.67 5.02 0.48 18
37 2.07 0.2 4.14 3.88 0.48 19
41 1.56 0.26 3.75 3.09 0.47 20
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Table B.4: Results of peak-searching algorithm for expected accident frequency of Fi

Screening Criterion:
Accident Type:
CViim
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Expected accident frequency 
FI accidents 
0.2 

9/100 

4.49 
4.19

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

Peak(Xv)
(acc/mi/yr)

Var[Peak(Xv)] CV[Peak(XY)] Rank

9 3.27 1.89 3.94 0.60 0.20 1
4 2.8 1.99 3.51 0.49 0.20 2

47 2.7 1.91 3.15 0.40 0.20 3
25 3.34 2.86 1.68 0.11 0.20 4
40 6.87 2.95 1.52 0.09 0.20 5
29 5.37 3.68 1.29 0.06 0.20 6
56 6.2 4.77 1.11 0.05 0.20 7
86 9.9 8.58 0.27 0.00 0.20 8
67 10.9 9.05 0.22 0.00 0.20 9
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Table B.S: Results of peak-searching algorithm for excess frequency of FI accidents,

Screening Criterion:
Accident Type:
CV„m
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Excess accident frequency 
FI accidents 
4.0 
66/100 
2.28 
0.10

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

Peak(Xy)
(acc/mi/yr)

Var[Peak(Xy)] CV[Peak(Xy)] Rank

22 0.89 0.1 7.48 18.21 0.57 1
26 2.4 0.1 5.13 11.70 0.67 2
12 1.18 0.1 4.48 24.11 1.10 3
15 0.13 0.1 3.92 17.65 1.07 4
48 0.24 0.1 3.72 14.15 1.01 5
52 1.06 0.1 3.67 11.07 0.91 6
23 0.13 0.1 3.50 10.31 0.92 7
24 0.34 0.1 3.46 10.29 0.93 8
5 0.64 0.1 3.45 22.34 1.37 9
6 0.25 0.1 3.44 22.01 1.37 10
1 1.73 0.1 3.31 17.05 1.25 11
9 3.27 0.1 3.24 20.21 1.39 12
11 0.72 0.1 3.20 18.48 1.34 13
7 0.41 0.1 3.02 18.64 1.43 14
4 2.8 0.1 2.92 19.23 1.50 15
96 4.5 0.1 2.59 4.36 0.81 16
3 1.16 0.1 2.46 10.89 1.34 17

41 1.56 0.1 1.61 5.76 1.49 18
19 0.72 0.1 1.52 6.94 1.74 19
56 6.2 0.1 1.47 5.72 1.62 20
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Table B.6: Results of peak-searching algorithm for excess frequency of FI accidents,

Screening Criterion:
Accident Type:
CViim
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Excess accident frequency 
FI accidents 
2.5 
66/100 
2.28 
0.10

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

Peak(Xv)
(acc/mi/yr)

Var[Peak(XY)] CV[Peak(XY)] Rank

22 0.89 0.1 7.48 18.21 0.57 1
26 2.4 0.1 5.13 11.70 0.67 2
12 1.18 0.1 4.48 24.11 1.10 3
15 0.13 0.1 3.92 17.65 1.07 4
17 1.32 0.1 3.89 17.82 1.09 5
14 0.82 0.1 3.86 16.39 1.05 6
48 0.24 0.1 3.72 14.15 1.01 7
10 2.87 0.1 3.68 19.24 1.19 8
52 1.06 0.1 3.67 11.07 0.91 9
13 0.44 0.1 3.61 15.48 1.09 10
47 2.7 0.1 3.51 13.44 1.05 11
23 0.13 0.1 3.50 10.31 0.92 12
24 0.34 0.1 3.46 10.29 0.93 13
5 0.64 0.1 3.45 22.34 1.37 14
6 0.25 0.1 3.44 22.01 1.37 15
1 1.73 0.1 3.31 17.05 1.25 16

49 0.3 0.11 3.29 13.15 1.10 17
9 3.27 0.1 3.24 20.21 1.39 18
11 0.72 0.1 3.20 18.48 1.34 19
7 0.41 0.1 3.02 18.64 1.43 20
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Table B.7: Results of peak-searching algorithm for excess frequency of FI accidents,

Screening Criterion:
Accident Type:
CV||nn
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Excess accident frequency 
FI accidents 

1.0
35/100
2.59
0.10

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

Peak(Xv)
(acc/mi/yr)

Var[Peak(XY)] CV[Peak(XY)] Rank

7 0.41 0.1 8.51 33.73 0.68 1
22 0.89 0.1 7.48 18.21 0.57 2
12 1.18 0.11 6.81 28.70 0.79 3
5 0.64 0.1 6.47 31.46 0.87 4
9 3.27 0.1 6.11 28.44 0.87 5

47 2.7 0.1 5.91 19.22 0.74 6
10 2.87 0.11 5.75 22.82 0.83 7
4 2.8 0.1 5.69 26.95 0.91 8

37 2.07 0.1 5.15 11.42 0.66 9
26 2.4 0.1 5.13 11.70 0.67 10
36 0.76 0.1 5.06 10.88 0.65 11
33 0.91 0.1 4.99 10.84 0.66 12
6 0.25 0.12 4.94 22.09 0.95 13
17 1.32 0.13 4.74 15.51 0.83 14
19 0.72 0.1 3.85 12.38 0.91 15
41 1.56 0.1 3.76 10.35 0.86 16
48 0.24 0.15 3.72 9.44 0.83 17
54 1.2 0.1 3.67 11.13 0.91 18
52 1.06 0.1 3.67 11.07 0.91 19
56 6.2 0.1 3.60 10.23 0.89 20
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Table B.8: Results of peak-searching algorithm for excess frequency of FI accidents,

Screening Criterion:
Accident Type:

CV,im
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Excess accident frequency
FI accidents
0.5
9/100
3.12
0.49

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

Peak(Xy)
(acc/mi/yr)

Var[Peak(XY)] CV[Peak(XY)] Rank

4 2.8 0.1 16.80 57.81 0.45 1
7 0.41 0.1 14.00 48.82 0.50 2

20 1.76 0.1 9.78 23.67 0.50 3
39 3.93 0.11 7.15 12.06 0.49 4
40 6.87 0.31 3.05 2.24 0.49 5
22 0.89 0.71 2.14 1.01 0.47 6
47 2.7 1.27 1.73 0.72 0.49 7
29 5.37 0.78 1.60 0.62 0.49 8
25 3.34 0.97 1.44 0.49 0.49 9
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Table B.9: Results of peak-searching algorithm for expected frequency of PDO accidents,

Screening Criterion:
Accident Type:
CViin,
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Expected accident frequency 

PDO accidents 
2.5 
80/100 

2.09 
0.13

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

Peak(Xv)
(acc/mi/yr)

Var[Peak(XY>] CV[Peak(XY)] Rank

47 2.7 0.1 14.29 43.29 0.46 1
29 5.37 0.1 9.75 25.16 0.51 2
18 0.8 0.1 8.95 29.25 0.60 3
6 0.25 0.1 7.52 67.51 1.09 4

23 0.13 0.1 6.56 40.18 0.97 5
17 1.32 0.1 6.53 24.54 0.76 6
43 0.25 0.1 6.17 30.55 0.90 7
50 0.57 0.1 5.98 20.47 0.76 8
45 0.18 0.1 5.84 19.51 0.76 9
25 3.34 0.1 5.76 24.91 0.87 10
38 1.88 0.1 5.32 15.82 0.75 11
12 1.18 0.1 4.90 67.45 1.68 12
22 0.89 0.1 4.73 52.48 1.53 13
26 2.4 0.1 4.29 37.10 1.42 14
5 0.64 0.1 4.18 56.95 1.80 15

48 0.24 0.1 4.02 41.58 1.61 16
16 0.84 0.1 3.81 32.29 1.49 17
7 0.41 0.1 3.76 46.82 1.82 18

49 0.3 0.1 3.61 28.81 1.49 19
32 1.03 0.1 3.58 24.88 1.39 20
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Table B.10: Results of peak-searching algorithm for expected frequency of PDO

Screening Criterion:
Accident Type:
CV»m
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Expected accident frequency
PDO accidents
1.5
76/100
2.15
0.15

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

Peak(Xv)
(acc/mi/yr)

Var[Peak(XY)] CV[Peak(XY)] Rank

47 2.7 0.1 14.29 43.29 0.46 1
29 5.37 0.1 9.75 25.16 0.51 2
18 0.8 0.1 8.95 29.25 0.60 3
12 1.18 0.1 8.63 81.43 1.05 4
6 0.25 0.1 7.52 67.51 1.09 5
5 0.64 0.1 7.20 47.83 0.96 6

23 0.13 0.1 6.56 40.18 0.97 7
17 1.32 0.1 6.53 24.54 0.76 8
2 0.62 0.1 6.36 35.76 0.94 9
7 0.41 0.1 6.18 22.32 0.76 10

43 0.25 0.1 6.17 30.55 0.90 11
50 0.57 0.1 5.98 20.47 0.76 12
45 0.18 0.1 5.84 19.51 0.76 13
25 3.34 0.1 5.76 24.91 0.87 14
38 1.88 0.1 5.32 15.82 0.75 15
26 2.4 0.1 4.29 37.10 1.42 16
16 0.84 0.1 3.81 32.29 1.49 17
49 0.3 0.1 3.61 28.81 1.49 18
32 1.03 0.1 3.58 24.88 1.39 19
54 1.2 0.1 3.50 23.25 1.38 20
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Table B.11: Results of peak-searching algorithm for expected frequency of PDO
^  a a w a

Screening Criterion;
Accident Type:
CV|im
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Expected accident frequency 

PDO accidents 
1.0
59/100
2.46
0.19

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

Peak(Xv)
(acc/mi/yr)

Var[Peak(XY)] CV[Peak(XY)] Rank

47 2.7 0.1 14.29 43.29 0.46 1

20 1.76 0.1 10.63 30.12 0.52 2
29 5.37 0.1 9.75 25.16 0.51 3
18 0.8 0.1 8.95 29.25 0.60 4
12 1.18 0.1 7.57 32.95 0.76 5
39 3.93 0.1 7.38 24.33 0.67 6
5 0.64 0.1 7.20 47.83 0.96 7
6 0.25 0.1 6.79 26.86 0.76 8

26 2.4 0.1 6.76 43.18 0.97 9
49 0.3 0.1 6.67 38.19 0.93 10
41 1.56 0.1 6.61 32.02 0.86 11
10 2.87 0.1 6.58 25.04 0.76 12
23 0.13 0.1 6.56 40.18 0.97 13
16 0.84 0.1 6.56 24.72 0.76 14
17 1.32 0.1 6.53 24.54 0.76 15
9 3.27 0.1 6.48 24.51 0.76 16
2 0.62 0.1 6.36 35.76 0.94 17
14 0.82 0.11 6.22 33.35 0.93 18
4 2.8 0.1 6.22 22.62 0.76 19
7 0.41 0.1 6.18 22.32 0.76 20
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Table B.12: Results of peak-searching algorithm for expected frequency of PDO

Screening Criterion:
Accident Type:

CViim
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Expected accident frequency 
PDO accidents 
0.5 
18/100 
4.01 

1.52

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

PeakCXy)
(acc/mi/yr)

Var[Peak(XY)] CV[Peak(XY)] Rank

47 2.7 0.1 14.29 43.29 0.46 1
7 0.41 0.16 13.87 41.16 0.46 2

40 6.87 0.1 12.91 40.45 0.49 3
39 3.93 0.21 8.64 15.72 0.46 4
17 1.32 0.2 8.14 14.87 0.47 5
29 5.37 0.22 7.45 13.78 0.50 6
12 1.18 0.72 4.54 4.72 0.48 7
25 3.34 0.51 3.20 2.27 0.47 8
20 1.76 0.5 2.73 1.86 0.50 9
37 2.07 0.5 2.62 1.65 0.49 10
32 1.03 0.63 2.43 1.35 0.48 11
41 1.56 1.11 2.41 1.44 0.50 12

4 2.8 2.16 2.20 1.21 0.50 13
9 3.27 2.5 2.00 0.96 0.49 14

56 6.2 1.94 1.47 0.51 0.49 15
97 7.52 4.15 0.54 0.06 0.47 16
86 9.9 4.37 0.36 0.03 0.50 17
67 10.9 7.27 0.20 0.01 0.50 18
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Table B.13: Results of peak-searching algorithm for excess frequency of PDO accidents,

Screening Criterion:
Accident Type:
CV,im
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Excess accident frequency
PDO accidents
4.0
73/100
2.15
0.10

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

Peak(Xv)
(acc/mi/yr)

Var[Peak(Xv)] CV[Peak(XY)] Rank

47 2.7 0.1 12.17 47.11 0.56 1
29 5.37 0.1 8.68 26.14 0.59 2
18 0.8 0.1 6.94 32.69 0.82 3
12 1.18 0.1 5.57 89.40 1.70 4
23 0.13 0.1 5.15 41.88 1.26 5
14 0.82 0.1 4.96 61.59 1.58 6
25 3.34 0.1 4.64 25.96 1.10 7
43 0.25 0.1 4.62 32.62 1.24 8
49 0.3 0.1 4.35 42.76 1.50 9
38 1.88 0.1 4.13 17.04 1.00 10
16 0.84 0.1 4.07 30.02 1.35 11
17 1.32 0.1 3.94 30.25 1.40 12
50 0.57 0.1 3.79 24.53 1.31 13
6 0.25 0.1 3.77 79.48 2.36 14
2 0.62 0.1 3.77 41.49 1.71 15

45 0.18 0.1 3.72 23.32 1.30 16
46 0.2 0.1 3.67 26.52 1.40 17
10 2.87 0.1 3.53 32.94 1.63 18
5 0.64 0.1 3.41 60.05 2.27 19

22 0.89 0.1 3.32 54.17 2.22 20
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Table B.14: Results of peak-searching algorithm for excess frequency of PDO accidents,

Screening Criterion:
Accident Type:
CV|jm
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Excess accident frequency
PDO accidents
2.5
69/100
2.22
0.10

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

Peak(Xv) Var[Peak(Xv)] 
(acc/mi/yr)

CV[Peak(XY)] Rank

47 2.7 0.1 12.17 47.11 0.56 1
20 1.76 0.1 9.16 31.96 0.62 2
29 5.37 0.1 8.68 26.14 0.59 3
18 0.8 0.1 6.94 32.69 0.82 4
12 1.18 0.1 5.57 89.40 1.70 5
23 0.13 0.1 5.15 41.88 1.26 6
14 0.82 0.1 4.96 61.59 1.58 7
25 3.34 0.1 4.64 25.96 1.10 8
43 0.25 0.1 4.62 32.62 1.24 9
49 0.3 0.1 4.35 42.76 1.50 10
38 1.88 0.1 4.13 17.04 1.00 11
16 0.84 0.1 4.07 30.02 1.35 12
17 1.32 0.1 3.94 30.25 1.40 13
50 0.57 0.1 3.79 24.53 1.31 14
6 0.25 0.1 3.77 79.48 2.36 15
2 0.62 0.1 3.77 41.49 1.71 16

45 0.18 0.1 3.72 23.32 1.30 17
46 0.2 0.1 3.67 26.52 1.40 18
10 2.87 0.1 3.53 32.94 1.63 19
5 0.64 0.1 3.41 60.05 2.27 20
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Table B.15: Results of peak-searching algorithm for excess frequency of PDO accidents,
usiiiij wwiin,-
Screening Criterion:
Accident Type:

CVw
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Excess accident frequency 
PDO accidents 
1.0 

26/100 
2.78 

0.11
Site No. Site

Length
(mi)

Length of 
Flagged 

Window (mi)

PeakfXy)
(acc/mi/yr)

Var[Peak(XY>] CV[Peak(Xy>] Rank

7 0.41 0.1 12.44 95.43 0.79 1
47 2.7 0.1 12.17 47.11 0.56 2
20 1.76 0.1 9.16 31.96 0.62 3

29 5.37 0.1 8.68 26.14 0.59 4
12 1.18 0.1 8.24 54.90 0.90 5
41 1.56 0.11 7.49 34.53 0.78 6
17 1.32 0.1 7.17 40.66 0.89 7
23 0.13 0.11 7.00 40.88 0.91 8
18 0.8 0.1 6.94 32.69 0.82 9
46 0.2 0.1 6.69 35.62 0.89 10
45 0.18 0.1 6.60 31.61 0.85 11
39 3.93 0.1 6.49 25.00 0.77 12
53 0.92 0.15 4.28 13.42 0.86 13
38 1.88 0.1 4.13 17.04 1.00 14
37 2.07 0.1 4.10 15.42 0.96 15
35 2.42 0.1 4.06 14.40 0.93 16
40 6.87 0.1 4.06 14.39 0.93 17
25 3.34 0.1 4.05 15.88 0.99 18
99 0.73 0.1 4.02 15.87 0.99 19
33 0.91 0.1 3.91 14.41 0.97 20
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Table B.16: Results of peak-searching algorithm for excess frequency of PDO accidents, 
using CV|im=0-5._______________________________________________________________
Screening Criterion:
Accident Type:

CVw
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Excess accident frequency
PDO accidents
0.5
3/100
4.50
0.15

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

Peak(Xv)
(acc/mi/yr)

VarfPeakfXv)] CV[Peak(Xv)] Rank

47 2.7 0.1 15.02 55.19 0.49 1
40 6.87 0.1 14.43 47.07 0.48 2
39 3.93 0.26 6.97 11.37 0.48 3
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Table B.17: Results of peak-searching algorithm for expected frequency of EPDO

Screening Criterion:
Accident Type:

CViim
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Expected accident frequency 

EPDO accidents 
2.5 
100/100 

1.75 
0.10

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

PeakfXv)
(acc/mi/yr)

Var[Peak(Xv)] CV[Peak(XY)] Rank

22 0.89 0.1 163.81 5407.63 0.45 1
12 1.18 0.1 134.60 6848.96 0.61 2
6 0.25 0.1 128.93 6008.87 0.60 3
5 0.64 0.1 126.45 6083.02 0.62 4

26 2.4 0.1 115.66 3478.85 0.51 5
7 0.41 0.1 114.97 5032.48 0.62 6
15 0.13 0.1 112.28 5027.25 0.63 7
48 0.24 0.1 104.13 4081.87 0.61 8
23 0.13 0.1 92.70 3030.94 0.59 9
52 1.06 0.1 90.65 3246.35 0.63 10
16 0.84 0.1 64.81 2771.33 0.81 11
11 0.72 0.1 64.50 2770.59 0.82 12
9 3.27 0.1 64.00 3000.51 0.86 13
8 0.13 0.1 63.74 2976.10 0.86 14

49 0.3 0.1 58.06 2454.19 0.85 15
2 0.62 0.1 57.05 2376.22 0.85 16

54 1.2 0.1 52.54 1793.71 0.81 17
19 0.72 0.1 52.43 1985.51 0.85 18
25 3.34 0.1 48.47 1368.43 0.76 19
3 1.16 0.1 47.15 1627.46 0.86 20
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Table B.18: Results of peak-searching algorithm for expected frequency of EPDO

Screening Criterion:
Accident Type:
CViin,
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Expected accident frequency 
EPDO accidents 
1.0 
86/100 
1.99 

0.16
Site No. Site

Length
(mi)

Length of 
Flagged 

Window (mi)

Peak(Xv)
(acc/mi/yr)

Var[Peak(Xv)] CV[Peak(XY)] Rank

22 0.89 0.1 163.81 5407.63 0.45 1
12 1.18 0.1 134.60 6848.96 0.61 2
6 0.25 0.1 128.93 6008.87 0.60 3
5 0.64 0.1 126.45 6083.02 0.62 4

26 2.4 0.1 115.66 3478.85 0.51 5
7 0.41 0.1 114.97 5032.48 0.62 6

15 0.13 0.1 112.28 5027.25 0.63 7
48 0.24 0.1 104.13 4081.87 0.61 8
23 0.13 0.1 92.70 3030.94 0.59 9
52 1.06 0.1 90.65 3246.35 0.63 10
24 0.34 0.1 87.17 3007.44 0.63 11
16 0.84 0.1 64.81 2771.33 0.81 12
11 0.72 0.1 64.50 2770.59 0.82 13
9 3.27 0.1 64.00 3000.51 0.86 14

18 0.8 0.1 64.00 2235.19 0.74 15
8 0.13 0.1 63.74 2976.10 0.86 16

10 2.87 0.1 63.44 2940.66 0.85 17
14 0.82 0.1 62.50 2575.62 0.81 18
4 2.8 0.1 61.93 2812.20 0.86 19

17 1.32 0.1 61.67 2772.19 0.85 20
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Table B.19: Results of peak-searching algorithm for expected frequency of EPDO

Screening Criterion;
Accident Type:

CV|im
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Expected accident frequency
EPDO accidents
0.5
58/100
2.65
0.46

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

Peak(Xv)
(acc/mi/yr)

Var[Peak(XY>] CV[Peak(XY)] Rank

7 0.41 0.1 231.60 9625 0.42 1
4 2.8 0.1 218.61 9794 0.45 2
5 0.64 0.11 214.20 9607 0.46 3
9 3.27 0.11 203.49 8671 0.46 4

20 1.76 0.1 173.32 5708 0.44 5
22 0.89 0.1 163.81 5408 0.45 6
47 2.7 0.1 151.23 5610 0.50 7
12 1.18 0.14 144.67 5212 0.50 8
6 0.25 0.15 126.69 4001 0.50 9
54 1.2 0.11 125.86 3954 0.50 10
10 2.87 0.19 123.12 2964 0.44 11
41 1.56 0.11 122.67 3714 0.50 12
26 2.4 0.1 118.12 3485 0.50 13
37 2.07 0.1 117.14 3410 0.50 14
40 6.87 0.1 114.20 3098 0.49 15
39 3.93 0.1 110.78 2703 0.47 16
29 5.37 0.11 105.30 2751 0.50 17
56 6.2 0.13 103.76 2646 0.50 18
33 0.91 0.13 89.31 1951 0.49 19
25 3.34 0.14 88.06 1889 0.49 20

B-20



Table B.20: Results of peak-searching algorithm for expected frequency of EPDO

Screening Criterion:
Accident Type:

CVjim
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi);

Expected accident frequency 
EPDO accidents 

0.2 
11/100 
5.71 
3.57

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

Peak(Xv)
(acc/mi/yr)

Var[Peak(XY)] CV[Peak(XY)] Rank

9 3.27 1.51 79.16 241.44 0.20 1
4 2.8 1.49 74.45 221.58 0.20 2
47 2.7 1.4 68.18 178.01 0.20 3
40 6.87 1.88 36.88 54.36 0.20 4
25 3.34 2.32 32.26 41.53 0.20 5
29 5.37 2.47 29.63 34.12 0.20 6
56 6.2 3.99 21.79 18.33 0.20 7
39 3.93 3.24 20.13 15.82 0.20 8
97 7.52 7.28 7.93 2.51 0.20 9
86 9.9 6.31 5.86 1.37 0.20 10
67 10.9 7.37 4.19 0.70 0.20 11

B-21



Table B.21: Results of peak searching algorithm for excess frequency of EPDO accidents,

Screening Criterion:
Accident Type:
CV,im
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Excess accident frequency 
EPDO accidents 
4.0 

66/100 
2.28 

0.10
Site No. Site

Length
(mi)

Length of 
Flagged 

Window (mi)

Peak(Xy) Var[Peak(XY)] 
(acc/mi/yr)

CV[Peak(XY)] Rank

22 0.89 0.1 140.41 5500 0.53 1
26 2.4 0.1 97.19 3536 0.61 2
12 1.18 0.1 83.83 7283 1.02 3
15 0.13 0.1 70.38 5323 1.04 4
48 0.24 0.1 70.06 4277 0.93 5
23 0.13 0.1 69.29 3123 0.81 6
52 1.06 0.1 67.05 3340 0.86 7
6 0.25 0.1 66.72 6660 1.22 8
10 2.87 0.1 65.33 5801 1.17 9
5 0.64 0.1 63.61 6748 1.29 10

24 0.34 0.1 63.07 3105 0.88 11
1 1.73 0.1 58.39 5140 1.23 12
9 3.27 0.1 56.47 6095 1.38 13
11 0.72 0.1 56.02 5574 1.33 14
7 0.41 0.1 55.40 5630 1.35 15
4 2.8 0.1 50.28 5801 1.51 16
96 4.5 0.1 48.37 1319 0.75 17
3 1.16 0.1 45.46 3290 1.26 18
18 0.8 0.1 30.64 2422 1.61 19
25 3.34 0.1 30.01 1426 1.26 20
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Table B.22: Results of peak-searching algorithm for excess frequency of EPDO accidents,

Screening Criterion:
Accident Type:
CVw
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Excess accident frequency 
EPDO accidents 
2.5 
66/100 
2.28 

0.10
Site No. Site

Length
(mi)

Length of 
Flagged 

Window (mi)

Peak(Xy)
(acc/mi/yr)

Var[Peak(Xv)] CV[Peak(XY)] Rank

22 0.89 0.1 140.41 5500 0.53 1
26 2.4 0.1 97.19 3536 0.61 2
12 1.18 0.1 83.83 7283 1.02 3
15 0.13 0.1 70.38 5323 1.04 4
48 0.24 0.1 70.06 4277 0.93 5
17 1.32 0.1 69.68 5374 1.05 6
23 0.13 0.1 69.29 3123 0.81 7
13 0.44 0.1 67.75 4677 1.01 8
52 1.06 0.1 67.05 3340 0.86 9
6 0.25 0.1 66.72 6660 1.22 10
50 0.57 0.1 65.59 4349 1.01 11
10 2.87 0.1 65.33 5801 1.17 12
5 0.64 0.1 63.61 6748 1.29 13

24 0.34 0.1 63.07 3105 0.88 14
1 1.73 0.1 58.39 5140 1.23 15
2 0.62 0.11 57.96 3919 1.08 16
9 3.27 0.1 56.47 6095 1.38 17
11 0.72 0.1 56.02 5574 1.33 18
7 0.41 0.1 55.40 5630 1.35 19
4 2.8 0.1 50.28 5801 1.51 20
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Table B.23: Results of peak-searching algorithm for excess frequency of EPDO accidents,

Screening Criterion;
Accident Type:

C Vw
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Excess accident frequency 

EPDO accidents 
1.0
41/100
2.59
0.11

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

Peak(Xy)
(acc/mi/yr)

Var[Peak(Xy)] CV[Peak(Xy)] Rank

7 0.41 0.1 172.03 10222 0.59 1
22 0.89 0.1 140.41 5500 0.53 2

5 0.64 0.1 115.91 9484 0.84 3
9 3.27 0.1 109.38 8575 0.85 4
10 2.87 0.11 103.47 6881 0.80 5
4 2.8 0.1 101.48 8125 0.89 6
37 2.07 0.1 100.27 3458 0.59 7
26 2.4 0.1 97.19 3536 0.61 8
36 0.76 0.1 93.88 3285 0.61 9
6 0.25 0.12 93.25 6676 0.88 10

33 0.91 0.1 92.19 3270 0.62 11
12 1.18 0.1 87.57 7297 0.98 12
17 1.32 0.13 85.36 4676 0.80 13
14 0.82 0.1 75.65 4963 0.93 14
19 0.72 0.1 70.32 3736 0.87 15
48 0.24 0.1 70.06 4277 0.93 16
23 0.13 0.1 69.29 3123 0.81 17
41 1.56 0.1 69.27 3124 0.81 18
47 2.7 0.1 68.79 4069 0.93 19
50 0.57 0.1 68.54 4358 0.96 20
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Table B.24: Results of peak-searching algorithm for excess frequency of EPDO accidents,

Screening Criterion:
Accident Type:
CViim
Number of Sites Ranked:
Mean length of all ranked sites (mi): 
Mean length of all flagged windows (mi):

Excess accident frequency
EPDO accidents
0.5
13/100
2.62
0.23

Site No. Site
Length

(mi)

Length of 
Flagged 

Window (mi)

Peak(Xv)
(acc/mi/yr)

Var[Peak(XY)] CV[Peak(XY)] Rank

7 0.41 0.1 273.32 14768 0.44 1
4 2.8 0.1 258.16 15107 0.48 2

20 1.76 0.1 188.22 7159 0.45 3
22 0.89 0.12 144.21 4756 0.48 4
39 3.93 0.1 127.07 3574 0.47 5
47 2.7 0.16 123.79 3776 0.50 6
40 6.87 0.12 108.90 2878 0.49 7
54 1.2 0.29 70.92 1194 0.49 8
26 2.4 0.29 63.59 871 0.46 9
33 0.91 0.25 62.05 910 0.49 10
41 1.56 0.36 58.33 741 0.47 11
25 3.34 0.53 37.91 335 0.48 12
29 5.37 0.51 37.05 329 0.49 13
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Appendix C

Goodness of Fit Statistics
For Beta Models
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Table C.1 : Goodness of fit statistics for beta models calibrated using the method

Accident Type y (0.10) Pr(</(o.io)) Comments
FI - - Could not compute /  value.
Head-on 425 <0.0001 Good fit.
Sideswipe 64.8 >0.995 Questionable fit.
Rear-end 168 0.99 Questionable fit.
Broadside - - Could not compute /  value.
Hit Object - - Could not compute /  value.
Overturning - - Could not compute /  value.
Pedestrian 5.68 >0.995 Questionable fit.
Other/Unknown - - Could not compute /  value.

Table C.2: Goodness of fit statistics for beta models calibrated using the method

Accident Type y  (0.10) P r(< /(o .io )) Comments
FI 4380 <0.0001 Good fit.
Head-on - - Could not compute /  value.
Sideswipe - - Could not compute /  value.
Rear-end 1270 <0.0001 Good fit.
Broadside - - Could not compute /  value.
Hit Object 9.91 >0.995 Questionable fit.
Overturning 149 <0.0001 Good fit.
Pedestrian 37.6 >0.995 Questionable fit.
Other/Unknown - - Could not compute /  value.

C-2



Table C.3: Goodness of fit statistics for beta models calibrated using the first
method of moments (MM1) from 5 years of California signalized intersection data.

Accident Type ^(0.10) (0.10)) Comments
FI
Head-on
Sideswipe
Rear-end
Broadside
Hit Object
Overturning
Pedestrian
Other/Unknown

5.03 >0.995 Questionable fit.
2.09 >0.995 Questionable fit.
3.12 >0.995 Questionable fit.
15.2 >0.995 Questionable fit.
50.1 >0.995 Questionable fit.
0.760 >0.995 Questionable fit.
0.578 >0.995 Questionable fit.
2.77 >0.995 Questionable fit.
0.516 >0.995 Questionable fit.

Table C.4: Goodness of fit statistics for beta models calibrated using the first

Accident Type (0.10) (0.10)) Comments
FI 52.1 >0.995 Questionable fit.
Head-on 179 <0.0001 Good fit.
Sideswipe 6120 <0.0001 Good fit.
Rear-end 28.2 >0.995 Questionable fit.
Broadside 370 <0.0001 Good fit.
Hit Object 20.9 >0.995 Questionable fit.
Overturning 2.75 >0.995 Questionable fit.
Pedestrian 34.0 <0.0001 Good fit.
Other/Unknown - - Could not compute value.
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Table C.5: Goodness of fit statistics for beta models calibrated using the second

Accident Type ^ (0.10) (0.10)) Comments
FI 200 <0.0001 Good fit.
Head-on - - Could not compute/^ value.
Sideswipe 1590 <0.0001 Good fit.
Rear-end 87.3 0.50 Questionable fit
Broadside - - Could not compute value.
Hit Object 451 >0.995 Questionable fit.
Overturning 33.6 >0.995 Questionable fit.
Pedestrian 25.6 >0.995 Questionable fit.
Other/Unknown - - Could not compute y  value.

Table C.6: Goodness of fit statistics for beta models calibrated using the second

Accident Type y  (0.10) (0.10)) Comments
FI 288 <0.0001 Good fit.
Head-on - - Could not compute value.
Sideswipe - - Could not compute ẑ  value.
Rear-end 284 <0.0001 Good fit.
Broadside - - Could not compute ẑ  value.
Hit Object 14.0 >0.995 Questionable fit.
Overturning 7730 <0.0001 Good fit.
Pedestrian 708 <0.0001 Good fit.
Other/Unknown - - Could not compute ẑ  value.
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Table C.7: Goodness of fit statistics for beta models calibrated using the method

Accident Type /̂ (O.IO) (0.10)) Comments
FI - - Could not compute y  value.
Head-on - - Could not compute /  value.
Sideswipe - - Could not compute /  value.
Rear-end - - Could not compute /  value.
Broadside 1350 <0.0001 Good fit.
Hit Object - - Could not compute /  value.
Overturning - - Could not compute /  value.
Pedestrian - - Could not compute /  value.
Other/Unknown - - Could not compute /  value.

Table C.8: Goodness of fit statistics for beta models calibrated using the first

Accident Type /(0.10) Pr(</(o.io)> Comments
FI 661 <0.0001 Good fit.
Head-on 110 0.25 Questionable fit.
Sideswipe 329 <0.0001 Good fit.
Rear-end 463 <0.0001 Good fit.
Broadside 611 <0.0001 Good fit.
Hit Object 465 <0.0001 Good fit.
Overturning 122 0.10 Good fit.
Pedestrian 38.0 >0.995 Questionable fit.
Other/Unknown 212 <0.0001 Good fit.

Table C.9: Goodness of fit statistics for beta models calibrated using the second 
method of moments (MM2) from 3 years of California TWSC intersection data.

Accident Type /  (0.10) Pr(^/ (0.10)) Comments
FI - - Could not compute /  value.
Head-on - - Could not compute /  value.
Sideswipe - - Could not compute /  value.
Rear-end - - Could not compute /  value.
Broadside 2530 <0.0001 Good fit.
Hit Object - - Could not compute /  value.
Overturning - - Could not compute /  value.
Pedestrian - - Could not compute /  value.
Other/Unknown - - Could not compute /  value.
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Table C.10: Goodness of fit statistics for beta models calibrated using the
method of maximum likelihood from 3 years of 2-mile segments of Washington 2-

Accident Type y  (0.10) Pr(</(o.io)) Comments
Head-on - - Gould not compute /  value.
Angle 1.17 >0.995 Questionable fit.
SSSD - - Could not compute /  value.
SSOD - - Could not compute /  value.
Animal - - Could not compute /  value.
Cyclist 1.56 >0.995 Questionable fit.
Pedestrian 0.781 >0.995 Questionable fit.
Parked Vehicle - - Could not compute /  value.
Overturning - - Could not compute /  value.
Fixed Object - - Could not compute /  value.
OMV - - Could not compute /  value.
OSV - - Could not compute /  value.
Unknown - - Could not compute /  value.

Table C.11 : Goodness of fit statistics for beta models calibrated using the first 
method of moments (MM1) from 3 years of 2-mile segments of Washington 2-lane

Accident Type (̂0.10) Pr(</(o.io>) Comments
Head-on 10.9 >0.995 Questionable fit.
Angle 0.123 >0.995 Questionable fit.
SSSD 29.5 >0.995 Questionable fit.
SSQD 50.1 >0.995 Questionable fit.
Animal 120 0.92 Good fit.
Cyclist 2.20 >0.995 Questionable fit.
Pedestrian 1.83 >0.995 Questionable fit.
Parked Vehicle 7.33 >0.995 Questionable fit.
Qverturning 180 <0.0001 Good fit.
Fixed Qbject 219 <0.0001 Good fit.
QMV 118 0.90 Good fit.
QSV 39.2 >0.995 Questionable fit.
Unknown 12.5 >0.995 Questionable fit.
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Table C.12: Goodness of fit statistics for beta models calibrated using the second
method of moments (MM2) from 3 years of 2-mile segments of Washington 2-lane

Accident Type y  (0.10) (0.10)) Comments
Head-on - - Could not compute ̂  value.
Angle 0.00001 >0.995 Questionable fit.
SSSD - - Could not compute/^ value.
SSOD - - Could not compute/^ value.
Animal - - Could not compute/^ value.
Cyclist - - Could not compute y  value.
Pedestrian - - Could not compute value.
Parked Vehicle - - Could not compute value.
Overturning - - Could not compute /  value.
Fixed Object - - Could not compute /  value.
OMV - - Could not compute /  value.
OSV - - Could not compute /  value.
Unknown - - Could not compute /  value.
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Appendix D 

MATLAB Code for Peak-Searching Algorithm
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MATLAB Code for Peak-Searching Algorithm

% Peak-Searching Algorithm for screening for
% EB-adjusted expected accident frequency
%

% by Brent Gotts, July, 2004
%

no__sites=max (site) ; %number of sites; 
temp=size(site) ;
no subs=temp(:,1); %number of subsegments (total);

CVlim=l.5; 
inc=l; 
no_subs=0; 
run_count=0;

'Beginning algorithm...'

for d=l:l:no sites; 
d;
countl=round(l+run_count);
no_subs=round(site_lng(countl)*100); %number of subsegs in site i, 

assuming all subsegs are O.Olmi; 
size=9; 
flag=0;
max_win=no_subs-9; %maximum number of different window sizes; 

for j=l: 1:max_win;
j;
size=size+l;
no_wins=round(no_subs-size+l); %number of windows using a 

given window size;
count 2=count1;

for k=l:l:no wins; 
k;
count2;
winbp=sub_bp(count2); 
winep=sub_ep(count2+size-l); 
winlng=winep-winbp;
winX=sum(sub_tot(count2:count2+size-l))/wining; 
winvarX=sum(sub_var_tot(count2:count2+size-l))/winlng^2; 
CV=sqrt(winvarX)/winX;

if CV<=CVlim; 
flag=l;
site_qut(d)=site(count2); 
sitebp_out(d)=site_bp(count2); 
siteep_out(d)=site_ep(count2); 
site_lng_out(d)=site_lng(count2);
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winbp_out(d)=winbp; 
winep__out (d) =winep; 
winlng_out(d)=winlng; 
winX_out(d)=winX; 
winvarX_out(d)=winvarX;
CV_out(d)=CV; 
flag_out(d)=1; 
break;

else
count2=count2+inc;

end;

end

if flag>0;
break; %Quits this loop if CVlim has already been reached;

end;

end

if flag<0.5;
site_out(d)=site(count2); 
sitebp_out(d)=site_bp(count2); 
siteep_out(d)=site_ep(count2); 
site_lng__out (d) =site_lng (count2) ; 
winbp__out (d) =0; 
winep_out(d)=0; 
winlng_out(d)=0; 
winX_out(d)=winX; 
winvarX__out (d) =winvarX;
CV_out(d)=CV;
flag_out(d)=0;

end;

run_count=run_count+no_subs;

end

*Algorithm complete.*

for m=l:l:no_sites;
output(m,:)=[site_out(m) sitebp_out(m) siteep_out(m) 

site_lng_out(m) winbp_out(m) winep_out(m) winlng_out(m) winX__out(m) 
winvarX__out (m) CV_out (m) flag_out (m) ] ; 
end;

count3=1;
for n=l : 1 :no__sites;

if output(n,11)>0.5;
passed(counts,:)=output(n,:); 
count3=count3+l;

end;
end

if count3<2;
*No sites were ranked.'

else
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sortrows(passed,8);
% disp(passed);

header='PS Output';
colnames={'Site No.', 'Site bp', 'Site ep', 'Site Lng', 'Window 

bp', 'Window ep', 'Window Lng', 'Exp. Acc Freq', 'VAR (EAF)',
' C V  , ' Flag ' ) ;

xlswrite(passed,header,colnames);

'Finished.'
end;

  s.
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