

An Analysis of the Dynamics of the Legitimation Processes of Innovations in

Open Source Software:

A Qualitative Study of the Rational Deliberations in the Drupal Project

By Soran Nouri

A Thesis Presented to Ryerson University

in Partial Fulfillment of the Requirements for the Degree of

Masters of Management Science (MMSc)

For the Program of Management of Technology and Innovation

In the Ted Rogers School of Management

Toronto, Ontario, Canada, 2013

1

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners. I authorize Ryerson University to

lend this thesis to other institutions or individuals for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research. I understand that my thesis may be made electronically available to the

public.

2

Abstract

Analyzing the Innovation Legitimation Processes in Open Source Software:

A Deductive Qualitative Study on the Rational Deliberations of the Drupal Community

For the Master of Management Science (MMSc) Program

Management of Technology and Innovation

Ryerson University

Soran Nouri

Within the Open Source Software (OSS) literature, there is a lack of studies addressing the

legitimation processes of innovations that are born in OSS. This study sets out to analyze the

legitimation processes of innovations within the deliberations of the Drupal project. The data set

constitutes 52 rational deliberation cases discussing innovations that were proposed by members

of the community. Habermas’s Ideal Speech Situations (ISS) is used as the framework to view

Drupal’s rational deliberations from; in fact within the 52 cases that are examined in this thesis,

there were no violations to the guidelines of the ISS in the deliberations. The Communicative

Action Theory, Influence Tactics theory and the theory of Validity Claims are aspects of the

framework that is used to code and analyze the conversations. These aspects allow for an

effective conceptualization of the dynamics of the Drupal deliberations. This thesis was able to

find that legitimation processes of innovations in open source software were influenced by the

type, complexity and implications of the innovations on the rest of the community. Also, bug

fixes, complex innovations and innovations that have implications on the rest of the software will

result in a long (in terms of number of comments) legitimation process. Also, it is empirically

backed in this study that in open deliberations that aim at achieving mutual understanding

towards a common goal, the communicative action type and the rational persuasion influence

tactic are the most common methods for innovators to interact with the community.

3

Acknowledgement

I express my sincere gratitude to Dr. Ojelanki Ngwenyama, who was not only influential in the

development of this thesis, but also in my learning experience during my enrollment in Ryerson

University. I am also grateful for the study space that Dr. Ngwenyama’s institute provided me,

and to Ryerson University for providing that institute with research space. Also, I am thankful

for all who are responsible and hardworking for the operations of the Ted Rogers School of

Management. This thesis research was supported by SSHRC Grant #410-735213; I am grateful

for this support, without it I could not have completed my degree studies.

4

Contents

1. Introduction ... 7

1.1 The Scope of the Study ... 8

1.2 Research Goals .. 8

1.3 The Research Approach .. 8

1.4 Structure of the Thesis .. 9

2. Literature Review .. 10

2.1 Background ... 10

2.2 Key Themes in OSS Research .. 13

2.2.1 The Political Economy of OSS ... 13

2.2.2 Literature on Intellectual Property Rights and Innovation in OSS 15

2.2.3 The Organization of OSS Development ... 18

2.3 Legitimation of IT Innovations ... 21

3. Theoretical Framework ... 24

3.1 Situated Rational Deliberations .. 25

3.2 The Social and Organizational Context .. 26

3.2.1 Social and Organizational Structures ... 27

3.3 Social Actions and Influence Tactics .. 28

3.3.1 Communicative Action Types .. 28

3.3.2 Validity Claims ... 29

3.3.3 Influence Tactics ... 31

4. Organizational Context of the Case .. 32

4.1 Background ... 32

4.2 Design and Technical Information .. 33

4.3 Social and Organizational Structure ... 34

5. Research Methodology ... 36

5.1 Empirical Analysis Procedure ... 36

5.2 Summary of Empirical Analysis ... 37

6. Discussion of Empirical Findings ... 46

6.1 Basic Characteristics of Uncommitted Innovation Proposals ... 47

6.1.1 Communicative Characteristics of SRDs .. 48

6.1.2 Examples of SRDs of Uncommitted Innovation Proposals .. 49

5

6.1.3 Selective Illustration of the SRD Dynamics of Case 2 ... 50

6.2 Basic Characteristics of Committed Innovation Proposals ... 57

6.2.1 Communicative Characteristics of SRDs .. 58

6.2.2 Examples of SRDs of Fast Commits ... 59

6.2.3 Illustrative Examples... 60

6.2.4 An Example of a Slow Commit SRD ... 65

6.3 Concluding Summary ... 74

7. Theoretical Discussion .. 75

7.1 The Social and Organizational Context of Drupal .. 75

7.2 Leadership, Roles and Rewards .. 76

7.3 The Dynamics of Structured Deliberations ... 79

7.4 Communication Dynamics of Structured Deliberations ... 80

7.5 Characteristics of Legitimation Processes .. 82

7.6 Use of influence Tactics in Structured Deliberations ... 84

8. Conclusion .. 88

8.1 Implications of this Thesis .. 89

8.2 Limitation .. 89

8.3 Recommendation for Future Research .. 90

Bibliography ... 91

APPENDCES .. 100

APPENDIX A ... 100

APPENDIX B ... 101

APPENDIX C ... 102

APPENDIX D ... 105

APPENDIX E ... 108

APPENDIX F.. 109

Reflection .. 109

6

List of Figures

Figure 3-1 The Conceptual Structure of the Ideal Speech Situation ... 24

Figure 3-2 Explaining the Different Social Action Types .. 29

Figure 5-1 Summary of social action types for 24 committed cases .. 39

Figure 5-2 Summary of social action types for 28 uncommitted cases .. 40

Figure 5-3 Summary of Influence Tactics in 24 Committed Cases .. 40

Figure 5-4 Summary of Influence Tactics in 28 Uncommitted Cases .. 40

Figure 5-5 Summary of the Validity Claims Challenged in 24 Committed Cases 41

Figure 5-6 Summary of Validity Claims Challenged for 28 Uncommitted Cases 42

Figure 5-7 Summary of Types of Innovation Proposals for 24 Committed Cases 42

Figure 5-8 Summary of Types of Innovation Proposals for 28 Uncommitted Cases 42

Figure 6-1 Basic Characteristics of 28 Uncommitted Innovation Proposals .. 47

Figure 6-2 Communicative Characteristics of the Uncommitted Innovation Proposals 48

Figure 6-3 Communicative Characteristics of Two Uncommitted Examples .. 49

Figure 6-4 Summary of Basic Characteristics of the Case of Innovation Proposals 57

Figure 6-5 Comparison of the Communicative Characteristics of Fast and Slow Commits 59

Figure 6-6 Summary of Characteristics of the Three Example Fast Commit Cases 60

Figure 6-7 Summary of Communicative Characteristics of the Three Example Fast Commit Cases 61

Figure 6-8 Communicative Characteristics of Slow Commit Case 12 ... 65

7

1. Introduction

The Open Source Software Development (OSSD) methodology is an emergent and rapidly

growing methodology (von Hippel & von Krogh, 2003; Lerner & Tirole, 2001). It started with

the General Public License (GPL) initiative by Richard Stallman, who created the GPL initiative

as a response to a certain source code that he was using becoming private (Vainio & Vaden ,

2007). In turn and as an act of defiance to the privatization of formerly public source code,

Stallman invented the GPL, which serves to ensure that software under its license is accessible

and distributed free of charge. The GPL is also used by many other successful and popular open-

source projects such as Linux, Apache, Google, Android, etc. (Mustonen, 2003). Such software

brought attention to the open-source methodology, a software production methodology that is

proving worthy of challenging the traditional and hierarchal nature of software production; in

fact there is an abundance of evidence within the literature proving so (Bonaccorsi & Rossi,

2003; Crowston, Annabi, & Howison, 2003; Kogut & Metiu, 2001; Strang & Macy, In Search of

Excellence: Fads, Success Stories, and Adaptive , 2001). This growing popularity has led to an

increase in studies that are aimed at understanding the open source phenomenon and the way in

which it operates. Some key reasons for this popularity are: (1) the importance of open source

software to social and economic sectors; (2) interest in understanding the economic and social

organization of open source software development and (3) interest in understanding how open

source projects drive innovation.

There has been a range of studies on the economic paradox of open source software projects

(Zeitlyn, 2003; Tirole & Lerner, 2002; Ashton & Oakley, 1997), and the social composition of

the open source community, which is entirely based on a voluntary and self-organizing system

(Ljungberg, 2000; Lakhani & von Hippel , 2003; Crowston & Scozzi, 2003; Crowston, K, Wei,

Eseryel, & Howison, 2007). However, there are still outstanding areas of research worth

addressing, particularly the lack of studies that focus on the legitimation processes of the

innovations that are essential to OSSD. This thesis is an attempt to fill this gap in the literature.

8

1.1 The Scope of the Study

This study will examine the dynamics of legitimizing innovations in open source software by

analyzing conversations of the Drupal open source web content management system. These

conversations discuss Drupal’s operations, and thus entail information that aids this study in

understanding the underlying dynamics of how the open source project innovates. This study will

attempt to explain dynamics of the rational deliberations in Drupal from the theoretical

perspective of the Ideal Speech Situation (ISS) (Habermas, 1970). Three aspects of the

framework are used to help me code and analyze the dynamics of legitimizing innovations.

These aspects are: (1) Habermas’s theory of Communicative Action (CAT), (2) the theory of

Validity Claims (VC) and (3) the Influence Tactics (IT) theory.

1.2 Research Goals

In this thesis I set out to address the following research question: What are the dynamics of the

innovation legitimation processes in open source software development? To answer this question

this study entails a critical discourse analysis to examine the legitimation processes of the

innovations. This research is relevant and persisting because although interest for open source

projects has seen much growth, there is a lack of research on what is potentially OSSD’s most

promising aspect, their ability to innovate. Thus, before any insight from OSSD innovations can

be transferred onto other disciplines, we must first examine and understand its dynamics in

OSSD.

1.3 The Research Approach

This is an explanatory study; it aims at explaining the dynamics of the legitimation processes of

innovations in open source software. This thesis uses a deductive approach to the research; it

utilizes the Ideal Speech Situation (ISS) (Ngwenyama O. , 1993; Ngwenyama & Lyytinen, 1997)

as the conceptual framework and primary strategy for analyzing the rational deliberations of the

Drupal development team, and uses the Critical Discourse Analysis (CDA) method developed by

(Cukier, Ngwenyama, Bauer, & Middleton, 2009). This method offers a strategy and a set of

procedures for interrogating discourses to identify empirical observations concerning validity

claims which are embedded in conversations. The Drupal conversations at hand are viewed by

9

this study as Situated Rational Deliberations that are coded and analyzed by the CAT, IT, and

VC.

This study follows the interpretivist approach. This is appropriate because I interpret the content

of the deliberations and code accordingly. The empirical materials for this study comprises a

corpus of 6,000 pages of textual data documenting conversations of the Drupal open source

development community between 2003 and 2004. The data analysis was qualitative in nature,

and was conducted using HyperResearch, a qualitative analysis software.

1.4 Structure of the Thesis

This thesis is built in a series of chapters. Chapter Two discusses key themes of the OSSD

literature, with a focus on innovation and legitimation in open source software projects and the

difference between the traditional and open source structures. Chapter Three elaborates on the

theoretical framework that is used in this thesis. Chapter Four situates the context of the case,

explaining the organizational and social context of the Drupal project. Chapter Five discusses the

research methodology, where the approach to the data collection, coding and analysis are

discussed. Chapter 6 discusses the data analysis, Chapter Seven is the theoretical discussion,

where the data analysis is corroborated with the literature and propositions are made. Lastly,

Chapter 9 is the conclusion of the thesis, with remarks on the limitations of the study and

potential future research.

10

2. Literature Review

2.1 Background

The birth of open source software development (OSSD) was attributed to a group of computer

engineers and scientists who considered the free sharing of software code an important aspect of

their knowledge development and collaborations. A common practice within the academic

culture is the sharing of information and material serving the purposes of collaboration and

corroboration, in comparison, it is fitting to believe that scientists, engineers, and other

contributors within the software development industry would also support such open source

initiatives, and are willing to share code for the sake of “better code”. After all, the collaborative

attitude of the scientific community is one of its key success factors that propelled its status to

the level of knowledge and advancement seen today (Krogh, 2003; Terttu Luukkonen, 1992;

Olle Persson, 2004).

In 1969, the OSSD initiatives received a strong boost in operation when the United States’

Defense Advanced Research Project Agency (DARPA) established the ARPAnet, which was

“the first transcontinental, high-speed computer network. ARPAnet allowed developers to

exchange software code and other information widely, easily, swiftly and cheaply” (Krogh,

2003; Clark, 1988; leiner, et al., 1997). With the rapid advancement in contributions to this field,

ARPAnet soon became overloaded; and a bottleneck was formed due to the large processing

demand. This bottleneck would only be solved by the creation of the Internet. The Internet, and

the technologies that allow for it to function such as web servers and routing protocols, are

responsible for boosting the number of hosts handled by ARPAnet from 250 hosts, to more than

One Million users worldwide, as of Spring of 2003 (Krogh, 2003; leiner, et al., 1997).

The Start of Open Source Software

MITs artificial intelligence lab had a significant role in the birth of the Open Source Software

(OSS) concept. The lab had a communal culture present among a group of programmers since

the 1960s. The OSS movement all started in the 1980s, when MIT licensed a piece of software

to a commercial software firm, which later restricted access to its source code, blocking even the

programmers at MIT who helped develop the software from accessing it. To the software

11

development team at MIT that developed this piece of software, this meant that they would no

longer be legally allowed to either use or build upon this software. As a reaction, Richard

Stallman, an accomplished programmer at MIT, founded the Free Software Foundation (FSF),

which sought to diffuse a legal initiative that would maintain the programmers’ right to access

software they helped write. “The basic license developed by Stallman, in order to implement

this idea, was the General Public License or GPL. The basic rights transferred to those

possessing a copy of free software included the right to use it at no cost, the right to study and

modify its ‘source code’, and the right to distribute modified or unmodified versions to others at

no cost” (Krogh, 2003; Vainio & Vaden , 2007; Carver, 2005).

Later, the term ‘Free’ software appeared troublesome for commercial software developers. So,

in response to this notion, Bruce Perens and Eric Raymond, along with other prominent hackers

founded what is now known as the Open Source movement. Open source licensing covered the

same licensing practices as the initial Free Software Foundation movement. But unlike the Free

software movement that requires the software to be posted entirely in the public domain, Open

Source Definition requires the software’s source code as well as compiled form to be distributed

(Kogut & Metiu, 2001; Vainio & Vaden , 2007). This license may not require a royalty or

purchase price, but it allows for developers to gain monetary return from variations of software

that they have modified “without distributing the source code of the modification” (Kogut &

Metiu, 2001; Vainio & Vaden , 2007). For example, The Berkeley System Distribution (BSD)

and the Apache web server allow for private sale of a modified version of the software, without

the distribution of the source code. But the original version of the software will still be attainable

for no cost. (Kogut & Metiu, 2001; Vainio & Vaden , 2007).

12

Table 2-1 below identifies a list of OSS projects that became popular in the recent years, and that

are now used on a frequent basis in the commercial industry (Kogut & Metiu, 2001).

Table 2-1 Examples of Open Source Projects

Name Definition/description

Linux An open-source server operating system

Apache An open-source web server

Zope Enables teams to collaborate in the creation and

management of dynamic web-based business applications

such as intranets and portals

Sendmail The most important and widely used e-mail transport

software on the Internet

Mozilla Netscape-based, open-source browser

MySQL Open-source database

Scripting Languages:

Perl The most popular web programming language

Python An interpreted, interactive, object-oriented programming

language

PHP A server-side HTML embedded scripting language

Other:

Bind Provides the domain-name service for the entire Internet

Adopted from: (Kogut & Metiu, 2001)

The significance of the Open Source Software Development (OSSD) methodology becomes

relevant when the various successful open source projects within the software development

literature are reviewed. The OSSD processes vary from the Traditional Software Development

(TSD) processes in ways that will be discussed below. Some Open Source Software (OSS) that

have been in use by companies such as IBM, NASA, and governments such as the German

government are a testament to the notion that regardless of the methodology used to develop

software, efficient software is in demand (Krogh, 2003; Mockus, Fielding, & Herbsleb, 2002).

Popular OSS projects such as the projects outlined in table 1 are proof that OSS is relevant and

persisting in the software development industry.

13

2.2 Key Themes in OSS Research

Research on open source software development has been largely dominated by three important

themes: (1) The political economy of the approach; (2) Innovation and intellectual property

rights; and (3) the organization and management of open source software development projects.

However, more recently some new questions about the viability of open source software are

asked. In this chapter I will provide an overview of the three themes of OSS, and based on this

literature review, I will then proceed to situate my thesis topic within the literature.

2.2.1 The Political Economy of OSS

Open source software development is largely a Gift Economy in which “thousands of top-notch

programmers contribute freely to the provision of a public good” (Krogh, 2003). Such an

economic organization is in contradiction to the dominant logic of capitalist economics which

argues that human beings are self-interested agents who seek only to maximize their utility/

earnings, and from that capitalist economic perspective, OSSD is an interesting paradox (Kogut

& Metiu, 2001; Bitzer, Schrettl, & Schroder, 2007; Hertel, Niedner, & Herrmann, 2003). The

Oxford Review of Economic Policy journal states that “the natural resolutions to this paradox are

to tie provisions to intrinsic reward or to supplementary extrinsic rewards” (Kogut & Metiu,

2001).

While the reasons as to why top-notch programmers dedicate their time, for no direct financial

return, to OSS initiatives have sufficiently been discussed in the OSSD literature, the ability by

the OSS movement of stopping the commercial industry from gaining financial returns from

advancements in OSS is still an area of concern. (Kogut & Metiu, 2001; Bitzer, Schrettl, &

Schroder, 2007).

These perspectives provide a solid reason as to why OSS has gained traction within the last two

decades, there is also an emerging trend in the software development discourse supporting the

efficiency of OSSD, and challenges “the theory of the second best”, which states that “innovators

will not innovate if they do not have patent protection” (Kogut & Metiu, 2001). It has been

apparent that programmers are enrolling in OSS for intrinsic and supplementary extrinsic

14

rewards. An intrinsic reward is the self-satisfaction from doing public good. Extrinsic reward is

the potential to increase chances in the labor market via an enhanced reputation that a

programmer attains by enrolling his/her name with a popular, successful OSS project. (Kogut &

Metiu, 2001; Hertel, Niedner, & Herrmann, 2003).

According to von Hippel and von Krogh (2003)

Open-source software developers freely reveal and share because they garner personal

benefits from doing so, such as learning to develop complex software, perfecting

expertise with a computer language, enhancing their reputation, and for pure fun and

enjoyment. Many of these benefits depend on membership in a well-functioning

developer community.

OSS developers also find it beneficial to enroll in the development of OSS because feedback is

received from other top-notch programmers. This can be valuable for both the expertise of the

contributing programmer as well as for the software being produced, especially if the software is

of complex nature. One perspective claims that OSS developers are encouraged by ‘Altruism’.

For example, Kahneman (1986) and Bies (1993) point out in their studies that OSS developers

actually ignore economic calculations when it came to contributing their time to OSS projects.

This same study found that OSS developers sometimes shared a fixed reward, also developers

defected less from OSS projects that included more communications (Kahneman, Knetsch , &

Thaler, 1986; Bies, Tripp, & Neale, 1993).

On the other hand, Lerner and Tirole (2001) argue that the reasoning behind the free

contributions of the OSS community is that it does not take much time for programmers to

contribute code since these expert programmers have usually already written/modified codes for

their private applications. Lerner and Tirole (2001) also state that the code is not always written

for the sole purpose of sharing with the rest of the community, rather it is written for personal

applications, but is then turned over to the community in hopes of further improving the code,

which can then further benefit the programmer who initially submitted the code. In addition,

Lerner and Tirole (2001) present the notion that developers gain merit by submitting efficient

code to the community. Thus, contributions to high-profile OSS projects can potentially increase

chances in the labour market.

15

In another study conducted on the Apache web server support groups, it is apparent that some

OSS developers operate under a reciprocal system, in which the developers’ desire to help other

developers stems from their appreciation for having been helped by other programmers in the

past, or for the purpose of paying it forward for when the need be in the future (Lakhani & von

Hippel , 2003).

In another study by Hertel et. al (2003) on the Linux operating system kernel, it was concluded

that the positive image and the fact that the software is well known creates a sense of

responsibility from developers submitting code towards the software. The group dynamics also

motivated the contributing programmers by instilling in them a sense of indispensability. In

addition, it seems that programmers contribute to OSS due to personal motives of producing

better quality software of their own. In other words, they want the opportunity to learn certain

areas of knowledge, which they probably would not otherwise learn, and to be able to apply that

knowledge to their personal work.

Commercial software development projects usually put programmers under a contract, which

encompasses various aspects of the production cycle such as structure, style, due date and other

such restrictions. On the other hand, programmers that volunteer to enroll in an OSS project are

under no legally binding contract to contribute, in addition they have the flexibility as to what,

when and how to contribute. From the perspective of the traditional software development

(TSD) methodology, this can be found counterproductive as there is a lack of control by

management on the contributing programmers, however an alternate school of thought views the

OSSD methodology as a productive one.

2.2.2 Literature on Intellectual Property Rights and Innovation in OSS

Intellectual Property Rights

In the commercial industry, intellectual property law guarantees programmers, or the

organizations that they work in, revenue. In contrast, intellectual property rights in the OSS

industry guarantees future users against appropriation for using the software (Vainio & Vaden ,

2007; Dahlander, 2005; Mustonen, 2003; Bonaccorsi & Rossi, 2003).

16

A common aspect of the various open source licensing practices is that the intellectual property

rights to the software are in the public domain. However, due to an emerging trend of software

developers who believe that a hybrid between public and private intellectual property rights

present in the same software results in better software, discussions about variations between

OSSD methodologies have started, with the main varying factor between different open source

licenses being the extent to which private intellectual property rights are to be included within an

OSS (Osterloh & Rota, 2007; Tirole & Lerner, 2002).

Under the General Public License (GPL), a developer can make money from the software, and

that same software could also be available at no cost, which means the software could be double

licensed (Vainio & Vaden , 2007; Osterloh & Rota, 2007; Lerner & Tirole, 2001). According to

Kogut and Metiu (2001), “the boundaries between the public and private segments of the

software developed by the open-source community are thus not distinct”. Therefore, as the

OSSD communities further advance, this is one aspect that will need to be addressed more

clearly and concisely, in order to stimulate further interaction with the commercial industry.

In essence, the OSS industry seeks to protect the software from being hidden and privatized.

This GPL license allows for incremental innovation from developers in the community who

collectively offer the potential of effectively fixing the code (Bonaccorsi & Rossi, 2003).

Innovation in Open Source Software

In essence, an invention is a scientific breakthrough, and an innovation is the commercialization

of that breakthrough (Schumpeter, 1934; Roberts, 2007; Nelson & Winter , 1982). Moreover,

innovation that occurs within an open source environment is ‘Open Innovation’. According to

Gallagher and West (2006), open Innovation is a result of a firm’s use of a broader range of

sources than the traditional ‘Vertically Integrated’ approach to innovation. For example, a firm

fostering open innovation can utilize its customers, competitors, firms in other industries, and

academics in its innovative activities. Essentially, Gallagher and West (2006) define open

innovation as:

17

“systematically encouraging and exploring a wide range of internal and external sources

for innovative opportunities, consciously integrating that exploration with firm

capabilities and resources, and broadly exploiting those opportunities through multiple

channels”

Since open innovation takes into consideration external sources of innovation, such as leveraging

the research of others, Gallagher and West (2006) identify a few issues that firms should address

in order to encourage open innovation. Firstly, like traditional approaches to innovation, internal

innovation is still a significant source of innovation, and firms must optimize its use of internal

Research and Development (R&D) to maximize its capabilities. Such capabilities will allow for

innovations to be internally and externally commercialized, and can also potentially increase the

firm’s capability of recognizing and utilizing innovations beyond the firm’s boundaries (external

innovation) (Gallagher & West, 2006). Secondly, Gallagher and West (2006) recommend taking

advantage of external sources of innovation by commercializing innovations from other firms or

industries, consulting with clients and suppliers, and utilizing governmental and academic

research. The challenge here is to identify relevant external innovation to spend the firm’s

resources on. Lastly, Gallagher and West (2006) address a situation where external innovation

becomes scarce, due to the over-dependence of firms on governmental and academic sources of

innovation, or on each other. Thus, it is recommended that incentives, whether intrinsic or

extrinsic, be given towards internal innovation to promote the spillover of innovation.

Innovation being ‘spilled over’ by firms in an industry can potentially increase the amount of

innovation for firms within such industry.

In comparison with patents laws and private intellectual property rights, Mazzoleni and Nelson

(1998) state that public intellectual property rights deter innovators from innovating because they

cannot own the rights to the innovation, and are thus not guaranteed monopolistic profit from the

innovation. On the other hand, according to (Kogut & Metiu, 2001) “the strong recent expansion

of the legal protection of software from copyright to patent has been decried as a threat to

innovation and to the sharing of knowledge in fast-paced industries”. For example, Lerner (1995)

found that patents by large firms in bio technology have effectively deterred smaller firms from

innovating in this field. In other words, the patenting system has defeated its own purpose of

18

providing an incentive to innovate. According to David (2000), this threat is also present in the

academic research field.

2.2.3 The Organization of OSS Development

The rapid growth of OSSD suggests that it is a relevant methodology of software production

(Bonaccorsi & Rossi, 2003). This brings into focus the argument of Kogut and Metiu (2001),

which state that TSD only continues to enjoy success due to the commercial industry’s desire to

profit from intellectual property rights. In other words, once profit is put aside, TSD is deemed a

less efficient software production methodology in comparison to OSSD, and although it is still

an object of controversy, the success of OSS in recent years leaves little doubt that it is a

convincingly appealing methodology for software development (Tirole & Lerner, 2002; Mockus,

Fielding, & Herbsleb, 2002). In addition to challenging the ‘Second best’ theory, OSSD’s ability

to concurrently design and test software is perceived as an advantage over the highly

bureaucratic and structured approach of TSD. This concurrency in designing and testing is

achieved by utilizing more effective communication methods via the Internet (Mockus, Fielding,

& Herbsleb, 2002; Bonaccorsi & Rossi, 2003).

The dynamics of the growth of OSSD are reminiscent of those of the Internet. The internet was

started by the US army, and further developed by federal programs to facilitate communication

among researchers. Essentially, the internet started on the notion of disseminating ideas for the

purpose of distributed collaboration, but the Internet itself is also a result of interconnected

networks and worldwide collaboration, just as the OSSD industry operates nowadays. “The

world wide web is an open source software program” (Kogut & Metiu, 2001). Similarly, the

production of academic research is also bound by “strong norms regarding the public ownership

of knowledge and the importance of public validation of scientific results” (Kogut & Metiu,

2001). Although there is a bold line between the scientific community’s stance on public access

and the commercial industry’s focus on property rights, when the popularity of the internet and

advances of the scientific communities are brought into perspective, OSSD appears more

promising than it already has proven to be and less puzzling to skeptics (Kogut & Metiu, 2001;

Crowston, Annabi, & Howison, 2003).

19

Open source software development is mostly organized as flexible, virtual and collaborative

teams (Bergquist & Ljungberg, 2001; Crowston & Scozzi, 2003). While collaborators in an OSS

project may vary in culture and geographic location, they are highly motivated volunteers who

share an interest in the realisation of the proposed software product and are committed to the

values of the global OSS community (Gallivan M. J., 2001; Stewart & Gosain, 2006; Bergquist

& Ljungberg, 2001). OSS projects often start with an entrepreneurial developer who has an idea

for a software product which he/she thinks might interest the OSS community. The entrepreneur

then ‘shops around’ the idea and recruits volunteers from the many OSS online communities to

collaborate in developing the software product. OSS initiatives find it relatively easy to attract

highly motivated and competent collaborators to carry out the software project (Krogh, 2003).

The flexibility of a virtual organization, voluntary participation, high motivation and solidarity

among the developers enable highly effective OSS teams (Koch & Schneider, 2002; Gallivan M.

J., 2001). Participants of OSS projects find that this organizational environment offers them more

freedom to be creative, improve their skills and produce higher quality software than traditional

commercial development projects do (Krogh, 2003; Koch & Schneider, 2002; Kogut & Metiu,

2001). While some volunteers are simply intrinsically motivated, others view OSSD projects as

opportunities to polish their skills and gain a reputation which can be leveraged in the wider

software labour market.

2.2.3.1 Intrinsic reward versus extrinsic reward

Also, Kogut and Metiu (2001) make an interesting analogy by comparing software development

with Richard Titmuss’s study on blood donors (Ashton & Oakley, 1997). In his book, Titmuss

claims that when blood donors are intrinsically rewarded, meaning they are motivated by the

public good and blood is donated as opposed to sold, the quality of blood remains high.

However, when blood donors are extrinsically rewarded, meaning they are paid for their blood,

the results are potentially disastrous for the blood market. Titmuss came from the school of

thought that stated that blood donors themselves best know the quality of their blood, and that a

blood donor that is intrinsically motivated would only donate blood if it is for the public good,

however an extrinsically motivated blood donor would donate for the purpose of monetary return

regardless of the quality of the blood being donated, and thus an extrinsically motivated blood

donor would be less hesitant to donate low quality blood. Titmuss believed that extrinsically

20

motivated blood donors were a threat to the blood market because the need to filter the donated

blood would be overly expensive for the blood market, thus potentially crashing it. In other

words, “a voluntary policy provides a highly motivated donor” (Kogut & Metiu, 2001). This

analogy is familiar to the quality of software between OSSD and TSD.

2.2.3.2 OSSD versus TSD Processes

In an attempt to optimize the process of producing software, the commercial software industry

adopted what Cusumano (1991) calls a ‘Software Factory’ approach, in which the software

production is routinized. “This approach culminated in an attempt to rationalize the entire cycle

of software production, installation, and maintenance through the establishment of factory-like

procedures and processes.” Kogut and Metiu (2001) indicate however, the factory-like approach

is not always recommended for high quality and innovative software production. Glass (2006)

views the software production process as a creative one, and believes that attempts to turn the

processes of software production including design, testing, coding, etc., into a tightly structured

format will have negative effects on the software. Namely, such an approach will increase the

complexity of the software, and make it difficult for detailed-level problems to be resolved.

According to Subramanyam and Krishnan (2003), extreme complexity of software is software’s

worst enemy. Therefore, the software development literature had pointed towards initiatives that

would help reduce the complexity of software development, such initiative is hidden knowledge

within different modules of the software (Kogut & Metiu, 2001). The use of modules allows for

greater control over the aspects of that one module, and also allows for a narrower scope of

accountability for that one module, and thus better management of it. Another initiative to

reduce software complexity is the partitioning of different development processes to be managed

under different team leads. These two development concepts of ‘hidden knowledge’ and

partitioning of development processes that help reduce complexity of software is commonly

utilized by OSSD. In addition, OSSD enjoys the advantage of a more diverse and distributed

community than commercial software development teams do, made possible by the use of the

Internet (Vainio & Vaden , 2007; Crowston, Annabi, & Howison, 2003; Bonaccorsi & Rossi,

2003). The diverse community of developers in OSSD also allow for a more efficient

21

development process because design and debugging can be done concurrently. This is because

when the source code of an OSS is released, the code is debugged on a decentralized basis.

Also, OSSD utilizes a more flexible and interactive approach. This is done by the use of modular

design, which allows for utilizing the intellectual property of the masses, coupled with the

software license that allows for individual developers to modify the module of their choice.

Allowing programmers to contribute in the module of their choice provides better fit between

task and competency (Kogut & Metiu, 2001; Vainio & Vaden , 2007).

2.3 Legitimation of IT Innovations

According to Kaganer et. al (2010), most of the definitions of legitimation in the organization

literature fall under one of two categories: Strategic or Institutional. The strategic approach

depicts legitimacy as an organizational tool used to accomplish goals, while the institutional

approach considers legitimation as a perceived acceptance of an innovation, based on the value

system of the institution (Scott, 2001; Ashforth & Gibbs, 1990; Pfeffer, 1981). Recent literature

has attempted to merge the two approaches with the rationale that although organizational

environments and their underlying values and beliefs are constitutive of legitimation,

organizational actors do have the capacity to strategize the legitimation of IT innovations based

on goals (Suchman, 1995; Golant & Sillince, 2007; Oliver, 1991).

Traditionally, legitimation is believed to be controlled by decision makers, executives or key

stakeholders in an organization, or what Cyert and March (1963) name a “dominant coalition”.

According to Cyert and March (1963), ``A dominant coalition consists of the network of

individuals within and around an organization that most influence the mission and goals of the

organization. One role of dominant coalitions within organizations is to create a system in which

they encourage compliance from organizational members towards a laid out strategy (Cyert &

March, 1963; Pattigrew, 1985). This notion of dominant coalitions corresponds to one of the

traditional legitimation perspectives in the literature: the `Strategy-Legitimation Nexus`, which is

discussed from a multitude of perspectives in the Management discourse, with the ``Implicit

message … that organizational leaders have near monopolistic control over the interpretive

process and that they determine the limits to their control`` (Neilson & Rao, 1987). For example,

Pondy (1978) views leadership as a ``language game``, where the leader is the ``linguist, and

22

mentor who shapes the values and frames the organizational members``. Kramer (1975)

illustrates that some dominant coalitions use ``planning systems and analyses to legitimate

political choices, clothing the choice process with a veneer of value free rationality``. Also,

Salancik and Meindl (1984) exposed the notion that dominant coalitions take responsibility for

negative outcomes in an attempt to influence organizational members into perceiving that the

coalition possess control over strategy in a ``hostile`` environment.

While significant progress has been made in IT Innovation in the past 20 years, most studies

were approached from the “Dominant paradigm of IT innovation research”, as Fichman (2004)

labels it. This approach considers the organization to be the unit of analysis, and the notion that

the adopters of new IT innovations adopt on a rationalistic basis (Fichman, 2004; Strang &

Macy, 2001). However, a number of authors have pointed to over-rationalization of models that

are outputted from the dominant paradigm, namely, due to the lack of focus on the technical and

institutional aspects of modern organizations (Abrahamson, 1991; Currie & Parikh, 2005; Strang

& Soule, 1998).

In an effort to account for “the complexity of today’s IT innovations and the degree of

interconnectedness among potential adopters and other stakeholders”, Kaganer et. al (2010) built

a model that takes into consideration the dynamics of the institution and the environment in

which an innovation is to be diffused within. To accomplish this, Kaganer et. al (2010) adapted

and extended the Organizing Vision framework from Swanson and Ramiller (1997), which

distanced itself further from the dominant paradigm, and closer to an open discourse, by

considering a “community discourse” in attempting to understand the application of a proposed

innovation, as opposed limiting the evaluation of an innovation to a dominant coalition.

Legitimation Within Open Source Environments

As previously mentioned, the dominant figures and decision makers in open source projects

come in different forms: Some projects are led by single actors, such as Dries and Torvalds in the

Drupal and Linux projects, respectively, where they both possess the ultimate authority over

their respective projects, while in the Apache project, suggestions from selected people will be

considered based on merit. These developers are known as the Apache Board and are the only

people that are allowed to make changes to the web server.

23

Regardless of the authority structure employed in an open source project, and as opposed to the

monopolistic approaches mentioned in the dominant paradigm of IT innovation research,

legitimization in open source projects can be better understood from the interpretive approach in

the Information Systems literature that states that legitimacy in organizations is reached based on

the input of a set of actors from different hierarchal levels within an organization (Bernard, 1938;

Neilson & Rao, 1987).``It is suggested that legitimation is a multilayered process of social

discourse and that the message that dominant coalitions have unilateral control over interpretive

processes is as questionable as the notion that authority is granted from above rather than

consented to from those below in the organization hierarchy.`` (Neilson & Rao, 1987). Further

explaining this notion, Neilson and Rao (1987) state that ``It is contended that the shared

meanings that guide human behavior are rooted in the combined thinking of human actors and

that the emergence and legitimation of these meanings involves complex interactions among all

who have an effect on organizational functioning``.

24

3. Theoretical Framework

The theoretical framework for this research is rooted in the theory of communicative action

(Habermas, 1970; Habermas, 1975; Habermas, 1989). Specifically, this research applies the

theoretical concepts of the Ideal Speech Situation (ISS) to interrogate the deliberative discourses

about software innovations in the context of open source software development. The ISS is

concerned with social interaction in collaborative processes where the aim of the participants is

to reach agreements for joint action via rational deliberation. According to Ngwenyama (1993)

the ISS also provides “set rules and guidelines to facilitate fair and effective communication and

rational discourse” upon which collaborative group processes such as software development

could be designed and studied. The ISS theoretical framework offers a set of concepts which can

be used to empirically interrogate the key characteristics and dynamics of deliberative discourses

within both OSS and traditional software development projects. Figure 3-1 adopted from:

Ngwenyama (1993) below illustrates the relationship of concepts of ISS framework that are

relevant to this empirical study.

Figure 3-1 The Conceptual Structure of the Ideal Speech Situation

Adopted from (Ngwenyama & Lyytinen, 1997; Ngwenyama O. , 1993)

25

Habermas’s theory of communicative action and the Ideal Speech Situation will be used to

critically analyze data concerning the interactions of the actors in the Drupal open source

community. Specifically, I am interested in interrogating the underlying structure and

characteristics of the communication taking place among the actors with regards to the

legitimation of proposed innovations. In this regard I will view these communicative

interactions as a set of rational deliberations, the objective of which is to come to an agreement

on which innovations to implement. It is important to note here that in the context of open source

communities where work efforts are voluntary, implementations of new innovations must be

agreed upon by key members of the community. These agreements are achieved via open debate

(a set of Situated Rational Deliberations) in which the participants are free to state their opinions

and to challenge and interrogate the opinions of each other. In this regard Habermas’s theory of

communicative action and the ISS is an appropriate framework for developing a theoretical

understanding of the open debate of open source communities.

3.1 Situated Rational Deliberations

In this research I will view the open debate to legitimate software innovation proposals within

the Drupal open source community as a set of situated rational deliberations. According to

Ngwenyama (1993) the ISS offers a set of guidelines for studying the communicative actions

within software development teams while the ISS sets out a simple set of rules to which

participants must abide by during rational deliberations (Ngwenyama & Lyytinen, 1997). The

goal of the ISS is to achieve agreements for collaborations, and the entire process falls within a

social and organizational context which gives meaning to the rules Ngwenyama (1993). The

rules of ISS are as follows:

1. All participants have equal status in the group deliberations

2. All participants have equal opportunity to raise issues, challenge, or defend the

validity of all actions or statements.

3. All communications must be clear and understandable; no form of jargon may be

used to mystify or erect barriers to communication

4. All statements must be relevant to the existing deliberations

5. All statements and actions must be appropriate to the situation under consideration.

26

6. All participants must say what they mean and take the action that is mutually agreed

7. All proposed actions will be meaningful and effective for achieving the intended

goals

Some researchers Blake (1995) and Cooren (2000) have argued that no discourse can adhere to

the guidelines of the Ideal Speech Situation as there are always time and space constraints. Also,

if time was not a constraint, the process of reaching agreement would be inefficient, taking much

longer than desired by the collaboration. These are however misunderstandings of Habermas’s

intent for the ISS. (Habermas, 1970) Used the term ideal in the theoretical and sociological

sense, so did Weber (Burger, 1976). The term ideal is meant to identify a goal to aspire to with

the full understanding that no social situation can fully attain it. The objective of Habermas’s ISS

is to provide a framework to help actors who aspire to free and open deliberations, avoid some of

the common traps that undermine such deliberations.

3.2 The Social and Organizational Context

The social and organization context comprises norms, resources, incentive and recognition

schemes that orient organizational activity. According to Gioia (1986) the social and

organizational context embodies both explicit and visible structure and policies of the

organization, as well as implicit norms and beliefs of the organization’s lifeworld. As stated

earlier, most OSSD is organized around virtual teams in which the participants are located in

different geographic locations (Gallivan M. J., 2001; Stewart & Gosain, 2006; Bergquist &

Ljungberg, 2001; Crowston & Scozzi, 2003). This often results in a set of team members with

different cultural backgrounds carrying uniquely different ways of interpreting and acting in the

world which often leads to breakdowns in understanding within the team (Olson & Olson, 2000;

Malhotra & Majchrzak, 2004; Cramton, 2001; Bjorn & Hertzum, 2006; Malhotra & Majchrzak,

2004). Organizations and all forms of collaborative social actions require a set of social

structures (shared beliefs and common organizational norms) to orient the actors (Bjorn &

Ngwenyama, 2009).

27

3.2.1 Social and Organizational Structures

Three classes of social and organizational structures are relevant to my study: (1) structures that

participants use to interpret and enact meaning in the actions of each other; (2) structures

defining roles and responsibilities of the participants; and (3) structures that participants use to

test the validity and legitimacy of their actions and interactions. Bjorn and Ngwenyama (2009)

refer to these as lifeworld, organizational structures and work practices, respectively.

Lifeworld structures are the beliefs (social norms) and cultural meanings that guide people’s

behaviours and attitudes that are formed by lived experiences within certain social contexts

(Habermas, 1985). While each participant brings to the team a unique lifeworld structure that

includes cultural practices, meaning structures and rules of social interactions in addition to their

technical competences, effective collaboration depends upon the team developing a shared set of

social structures and a common context of meaning (Bjorn & Ngwenyama, 2009). Some

researchers have argued that a common language, shared meaning and work practices are

necessary for virtual organizations to function effectively (Olson & Olson, 2000; Malhotra &

Majchrzak, 2004; Cramton, 2001; Bjorn & Hertzum, 2006). The lack of these contributes to the

increase in the potential for breakdowns in communication (Ngwenyama O. , 1998; Bjorn &

Ngwenyama, 2009).

Role structures define the different roles an actor can play and the duties and responsibilities for

the role (Habermas, 1985; Bjorn & Ngwenyama, 2009). From the perspective of ISS, all actors

have equal status in the rational deliberations and the moral obligation to fully engage in the

debate while following the seven basic rules outlined above. Every deliberative process requires

some rules of process and a stopping rule. In ISS the participants decide on the rules of process

and the stopping rule, also known as the Obligatory Passage Point (OPP) in this study, before the

deliberation commences. The OPP is defined at the start of the deliberation process; the

participants discuss and come to agreement on what constitutes consensus agreement. Before the

rational deliberation starts someone is appointed facilitator and monitor, and assumes the

responsibility to keep the debate on course and to poll the participants for consensus. When

28

consensus is achieved (as defined by the participants) the deliberations are closed; the agreement

for joint action are legitimated and the participants turn their attention on implementation.

It is important to note that while most of the rules of the deliberative process are articulated and

available, most participants are socialized by participating in the deliberative process. In the case

of an OSSD team, the more situated rational deliberations a new member witnesses, the more

that new member realizes that members can state their opinions without restrictions. It is via

active participation in the rational deliberations that new members are socialised into their right

and obligations in the OSS community. This approach to organizational socialization is very

different from a traditionally organized software development team. The ideals and lifeworld

beliefs of an OSS community confer upon its members the moral obligation to extend their best

efforts in the realization of the best software product that meets needs of the user community.

3.3 Social Actions and Influence Tactics

3.3.1 Communicative Action Types

In the ISS framework, (Habermas, 1974) outlines four basic types of communicative actions in

which the participants of rational deliberations may engage (cf. Table 3.1). These are

communicative, discursive, strategic and instrumental action (strategic action is beyond the

scope of this thesis). In categorizing the actions of individuals within the social and

organizational context Habermas acknowledges that individuals are more than just entities that

are receptors of information, as the positivist perspective states, instead he recognizes individuals

as “active persons or interpreters … who create and enact the meaning that they come to hold”

(Habermas, 1974). Also, in contrast to the interpretive perspective where the purpose of the

communication is to achieve understanding, Habermas’s four types of social action address all

forms of symbolic communication (Ngwenyama & Lee, 1997). According to the CAT, every

utterance of an individual within a social context represents an intentional social action of one of

the above mentioned four types.

The Strategic social action type is non-applicable in this study. This is due to the fact that within

OSSD, innovations are legitimized by conducting rational deliberations amongst contributors of

a certain project. More specifically, the majority of issues discussed within the Drupal open-

29

source project are concerned with solving bugs or implementing new features. To go forward

with any suggestion a solid argument must be accepted by Drupal’s founder, Dries, and the rest

of the community. Since no member is under an obligation to accept, we assume in this study

that the use of strategic action would be ineffective in this study. Thus, strategic action has not

been identified from within the data collected.

Table 3-1 lists and explains the four social action types identified in ISS.

Figure 3-2 Explaining the Different Social Action Types

Social Action Type Characteristic

Communicative
Action

Oriented to achieve understanding. The intention of communicative actions

is to make clear and comprehensible statements that are truthful and aims at

establishing mutual understanding between the members of a conversation.

This action is namely aimed at educating the recipient on something that the

commenter is aware of. This social action excludes any sort of challenge

within a discussion.

Discursive Action Raises a challenge, whether it was in the form of challenging a validity

claim presented by another person, or simply questioning another person’s

actions. In essence, any comment that raises some sort of challenge

Instrumental Action

Aims at directing or ‘instrumenting’ a discussion towards a certain direction.

It is an action that attempts to exert influence within a certain social context.

Strategic Action Is when it is not the speaker’s sole purpose to achieve mutual understanding,

rather it is a mean for a further end. The speaker could knowingly guide the

hearer through particular inferences, for the purpose of achieving a goal that

the speaker has, and that the hearer is unaware of.

3.3.2 Validity Claims

For the purpose of this study, Habermas’s social action types are used to analyze the

conversations that take place within the OSS community when participants propose, deliberate,

and seek to legitimize new software innovations. From an analytical perspective, to critically

analyze the legitimation process which unfolds during the rational deliberation one must identify

the social action types involved and the specific validity claims that are raised and challenged

(Ngwenyama & Lee, 1997).

In principle, each innovation proposal implicitly raises at least one of the validity claims below

(Table 3-2) and other community members will only raise challenges to claims they find difficult

to substantiate, thus only a subset of these might be challenged and debated upon in the rational

deliberations. For example, if a participant proposes an innovation and another member does not

30

understand the proposal, then that member will be challenging the comprehensibility claim of

that innovation. After which a conversation will be oriented to achieving an understanding of the

nature of the proposal in an attempt to redeem the implicit comprehensibility claim challenged.

Validity claims and challenges on them ensue in the dialogue. A deliberation might turn to some

other validity claim, such as effectiveness or relevance, and the same process can take place. An

innovation can only be accepted, or a new feature added, when such deliberations continue until

agreement is reached on the issue at hand.

Table 3-1

Validity Claim Criteria for Ideal
Communication

Potential
Breakdown

Validity Test

Comprehensibility What is communicated

is legible (audible) and

intelligible

misunderstanding Is the communication

sufficiently intelligible?

Is the communication

complete?

Is the level of detail

appropriate?

Truth Is the proposition

content of what is

communicated factual

or true?

misrepresentation Is the communication

honest?

Is the communication

reasonable?

Is the content of the

communication

warranted?

Relevance Is the proposal relevant

to the problem at hand?

inappropriateness Does the proposed

innovation offer a

solution that directly

addresses the defined

problem?

Effectiveness Is the proposal

effective for resolving

the problem?

ineffectiveness Is the proposed

innovation an effective

solution for the defined

problem?

Are there better

solutions for the

defined problem?

Efficiency Is the proposal efficient

for resolving the

problem?

Waste of resources Does the proposed

innovation make

efficient use of the

available resources?

Are there more efficient

alternatives?

31

3.3.3 Influence Tactics

In his elaboration of the Ideal Speech Situation, Habermas acknowledges that participants in

rational deliberations exercise influence tactics to persuade one another. Depending on the social

and organizational context, and the position of the social actor within the context, influence

processes can differ between soft and hard tactics. In this study I am interested in the type of

influence tactics the participants use during the debate process. For this part of the empirical

study I have chosen influence tactics of Yukl and Falbe (1990), illustrated in figure 3.2 below.

Table 3-3 A List of Influence Tactics

Influence tactic Definition

Rational persuasion

The agent uses logical arguments and factual evidence to persuade

the target that a proposal or request is viable and likely to result in

the attainment of task objectives.

Consultation

The agent seeks a target’s participation in planning a strategy,

activity or change for which the target’s support and assistance are

desired, or is willing to modify a proposal to deal with the target’s

concerns and suggestions.

Ingratiation

The agent uses praise, flattery, and friendly or helpful behaviour to

get the target in a good mood or to think favourably of him or her

when asking for something.

Personal appeals

The agent appeals to the target’s feelings of personal loyalty and

friendship when asking for something.

Exchange/reciprocity

The agent offers an exchange of favours, indicates willingness to

reciprocate at a later time, or promises a share of the benefits if the

target helps accomplish a task.

Alliance/coalition

The agent seeks the aid of others to persuade the target to do

something, or uses the support of others as a reason for the target to

agree as well.

Coercion/pressure The agent uses demands, threats, frequent checking or persistent

reminders to influence the target to do what he or she wants.

Rewards/recognition The agent uses incentives and rewards to influence the target to

achieve the task objectives.

(Yukl & Falbe, 1990)

32

4. Organizational Context of the Case

4.1 Background

Drupal was founded in 1999 and it all started when Dries Buytaert, the founder of the Drupal

project, shared an internet connection with eight of his fellow students in the dorms of the

University of Antwerp because it was too expensive for each to have their own connection. Since

they were sharing the same connection, Dries felt that there was potential for an efficient

medium of communication between them with the help of the central connectivity, so he started

a simple internal site where they discussed news and any other items of interest to them, it was a

blog for the eight of them. After he graduated, Dries hosted the website on the internet so that he

and his friends can still use it, and allowed other people to become a part of it. Eventually, the

website grew to become more than just a simple way for the eight friends to communicate. Dries,

his friends, and the new audience from the internet started to discuss “new web technologies,

such as moderation, syndication, rating, and distributed authentication. Drop.org slowly turned

into a personal experimentation environment, driven by the discussions and flow of ideas. The

discussions about these web technologies were tried out on drop.org itself as new additions to the

software running the site” (Drupal, 2013). Within a year, the website received interest from

developers around the world, and in an attempt to further the potential of the experimental

software they were building, Dries made the project open-source in 2001 (Drupal, 2013) .

Operations in Drupal are conducted by a volunteer community of over 630,000 users and

developers. Operations are conducted on dedicated IRC channels, online forums, and during

face-to-face conferences. Drupal.org, the drupal projects official website, state that contributors

enroll from over 200 countries (in 181 languages) and thus the majority of discussions regarding

bug reports, new feature requests and tasks take place online, either in IRC chats or online

forums in Drupal.org. Conferences also frequently take place in counties all over the world,

where seminars and opportunities to discuss various issues take place. “[the] worldwide

community drives the innovation that makes Drupal the preferred choice for web developers and

site owners.” (Drupal, 2013).

33

As new and innovative ideas kept coming into Drupal from contributors, innovative projects took

flight and Drupal became a successful open-source content management system that was being

used by individuals as well as institutions, some of which are key players in their industries, such

as The Economist news publications, universities such as MIT and Harvard and corporate

websites for the likes of AOL, MTV, SONY, and Warner Brothers Records (Drupal, 2013).

4.2 Design and Technical Information

Drupal is an open source content management software that provides tools to help build,

organize, administer, and customize websites. The drupal software is designed in a way that

allows individuals to build and customize websites without needing to write code. This is done

by downloading the Drupal core software that runs the wide range of available modules that have

already been designed and submitted by the community, for the use of anyone who chooses to

use. Drupal is also able to cater to the more technical audience that require further

customization. In such cases, developers can either modify existing modules, or write modules

that are compatible with the core software. This is possible because the Drupal core is open

source, thus the community can code modules that are compatible with the Drupal core. Also,

developers and expert users can find support when developing new modules from the Drupal

community. Essentially, the Drupal core can be downloaded to run the basic software, and

customization of the software is done in the form downloading modules on a need basis.

The Technical Background of the Software

The Drupal core software consists of code that allows basic functionality such as a library of

common functions, and basic modules. Modules add certain required functionalities such as

Calendars, Image Galleries, or Forums (cf. Appendix A). These modules are added to the core

on a need basis, and are called on by the core software with what Drupal names Hooks. Hooks

are the internal events that call certain modules to “hook into” the rest of the Drupal software

(VanDyk & Westgate, 2007).

In Drupal, Themes are responsible for translating the code into languages that the internet

browsers recognize, such as HTML. This can be done via several of the most popular templating

approaches such as the Template Attribute Language for PHP and PHP template.

34

In regards to strategy, Drupal’s goal is to be able to run on inexpensive web hosting accounts

such as Apache, which is an open source web server, and to be also able to distribute to the

largest amount of websites. “The former goal means using the most popular technology, and the

latter means careful, tight coding.” (VanDyk & Westgate, 2007). To this end, Drupal is written in

the PHP, which is a popular coding language that runs on all popular platforms.

4.3 Social and Organizational Structure

Essentially, Dries is the authority that must approve new innovations into the software core. In

Drupal, the transition of an innovation from a mere suggestion into a legitimate item to be

included in the next version of the software is called Committing. Only the core committers

(Table 4-1) below are allowed to commit to Drupal. During the timeframe in which this study

examined Drupal, the only core committer was Dries. By giving himself this authority, Dries is

able to ensure the quality of new features to the software, and maintain the project on a roadmap

towards strategies he sees fit.

In addition to the core committers, Maintainers are also members in the community whom have

authority and a more significant opinion than others in the forums, based on past contributions to

the Drupal project. Maintainers are appointed by Dries, and operate to take some load off Dries

by being responsible for a certain area/module of the software. These maintainers have the

authority to commit into their own modules only, whereas Dries has the authority to commit

anywhere in the software. During the production of Drupal 4.6, Dries had assigned 10 site

maintainers to different areas of the software such as the filter system, locale system, menu

system, Blog API and so on. A complete list of the site maintainer and their responsibilities for

4.6 can be found here https://api.drupal.org/api/drupal/MAINTAINERS.txt/4.6.

Finally, core contributors may partake in an existing discussion that they can add value to, or

create a new discussion in which they propose a new patch, feature, or discuss any issue relevant

to the status of the Drupal project (cf. table 4-1). These contributions take the form of messages

in an online forum or IRC Chat. A deliberation on the initiative takes place, and if progressed

enough, an idea could be legitimated into the software, or debunked all together.

35

One can join the Drupal community by registering in www.Drupal.org. From there, all open

issues can be viewed in the issues queue. The Drupal software project entails the below roles and

responsibilities:

Table 4-1 The Different Roles in the Drupal Project

Drupal OSS Collaborators Position and Role Responsibilities

Founder and Lead
Developer

Obligatory Passage Point

Permanent Core Committer

approving or rejecting software

innovation proposals and patches

Appointing code maintainers

Any software developers
who are members of
Drupal OSS community

Core committers

Appointed by Dries for their

extensive experience with and

extensive knowledge of the Drupal

software

Reviewing software innovations

proposals

Maintaining software code

Implementing software changes

Branch Maintainer

Appointed by Dries …

The branch maintainer are

allowed to commit code only in

their respective branches

Maintainer

Anyone may apply for maintainer

status after they have made

significant contributions to a

specific software component

Maintenance of a specified

portion of the software (for

example, a particular core

module)

Core contributor

Anyone who have made substantive

contributions to a core component

of the software

Voluntary contribute software

innovations, patches or

documentation for the Drupal

software

(Drupal, 2013)

http://www.drupal.org/

36

5. Research Methodology

This research uses a critical theory methodology for interrogating the dynamics of organizational

discourse (Ngwenyama & Lee , 1997; Cukier, Ngwenyama, Bauer, & Middleton, 2009). The

critical theory approach to Information Systems (IS) research has a long history starting in the

early 1980’s (Lyytinen K. , 1992; Myers & Klein, 2011). The critical theory approach to IS

research uses qualitative and quantitative methods and a critical interpretive approach to develop

understandings about social actions within organizational situations (Lyytinen K. , 1992; Myers

& Klein, 2011). This study uses the Critical Discourse Analysis (CDA) method developed by

Cukier et. al (2009) as the primary strategy for analyzing the rational deliberations of the Drupal

development team. The CDA method offers a strategy and a set of procedures for interrogating

discourses to identify empirical observations concerning validity claims which are embedded in

conversations. In this study I am interested in how the Drupal collaborators, engaged in rational

deliberations, challenge and defend the set of validity claims raised by specific innovation

proposals. The CDA uses Habermas’s Communicative Action Theory (CAT) and content

analysis for identifying empirical observations about validity claims. The empirical materials for

this study comprises a corpus of 6,000 pages (in .doc format) of textual data documenting

conversations of the Drupal open source development community between 2003 and 2004. The

majority of these conversations discuss the builds of Drupal 4.5 and 4.6. While these

conversations document the general interactions of the Drupal developers, they include the

rational deliberations of the Drupal developers while engaged in decision making on software

innovation proposals from members of the community. As such these conversations are a source

of primary data on Drupal’s software innovation legitimation processes, which is the empirical

situation of interest to this thesis research.

5.1 Empirical Analysis Procedure

The empirical analysis of the research followed a multi-stage process in which the concepts of

the theoretical framework were used to code, categorize and analyze the contents of

conversations pertaining to the rational deliberations about innovation proposals in order to

identify relevant empirical observations for theoretical analysis and interpretation. Step 1

involved data sampling from the corpus of the empirical materials to identify deliberative

37

conversations concerning software innovation proposals relevant to this research and the

preparation and loading of these textual data into HyperResearch for coding and analysis. Step 2

involved three levels of analysis and coding. However, before coding the conversation threads I

read and categorized them as Committed and Uncommitted innovation proposals. I then

commenced the three rounds of coding of the selected conversations using the concepts of

Communicative Action Theory (CAT), Influence Tactics (IT) and Validity Claims (VC). This

process consisted of coding first the social action types, then the influence tactics and finally the

validity claims. The validation process that followed each round of coding consisted of a set of

rational deliberations between me and my supervisor. In these deliberations my supervisor

would challenge a sample of my codes and I had to defend my coding decisions with regards to

the concepts of the theoretical framework, sometimes this lead to the revising of code. This

process was used to ensure that I produce defensible and valid interpretations of the empirical

materials. Step 3 involved identifying (a) different types of innovation proposals and their

characteristics and (b) identifying and characterizing different categories of legitimation

processes. While I was able to do in-situ coding to identify types of innovation proposals; I

needed to analyze the legitimation processes in relation to the empirical observations of social

action types, influence tactics and validity claims. In this way I was able to develop an

empirically grounded understanding of the characteristics and dynamics of software innovations

legitimation processes. I will now provide a brief summary of the empirical analysis before

moving on to an in-depth discussion of the findings in the following two chapters (Chapters 6

and 7).

5.2 Summary of Empirical Analysis

Step 1: The empirical materials was received in the form of over 30,000 pages of textual data

(MS Word format) harvested from the electronic communications of the Drupal community for

the period 2004-2005. I started this empirical analysis with the idea to develop a sample of 100

complete conversations concerning deliberations on software innovation proposals. I started by

reading empirical materials for the purpose of selecting appropriate conversations and planning

the coding process. However, I soon realized that the average size of the conversations was quite

large and that a strategy was needed to manage the process. So I started the data preparation

process by printing the first 3000 pages of the empirical materials, reading the pages, looking for

38

clues that would enable me to identify the beginning, ending and content of a conversation

thread. I found clues which I used to code the beginning and end points of conversation threads.

Using this approach I was able to identify 78 conversations in the first 3000 pages sampled.

However, on further more in-depth analysis of these conversations, three challenges arose:

1. Since the data was from email communications, conversation threads are repeated again

and again with every new comment, resulting is long duplicated text.

2. Some discussions were too short to be able to act as evidence for anything

3. After the 78 conversation threads were scrubbed and prepared for empirical and coding

there were no more than 12 complete conversations about unique software innovation

proposals that were approved by the Dries and the community.

A total of 36 conversation threads were deemed invalid and removed from the dataset based on

the above three constraints. This left me with 42 valid threads, only 12 of which constituted

commits. I continued the data preparation process by selecting the next 3000 page segment of the

textual data and repeating the process of preliminary analysis. However, this time using the MS

Word Search feature I searched for keywords such as ‘Committed’ to help identify relevant

conversations in an attempt to increase the count of conversations that constitute commits. In my

re-reading of the text in the first segment of my preliminary analysis I realized that the word

‘committed’ was explicitly stated every time an innovation proposal was accepted for

implementation. I was able to find 12 of this valid type of conversations, which were added to

my dataset. At this point, the empirical data comprised a set of 24 committed conversations and

30 uncommitted conversations for a total of 54 valid conversations comprising 6,000 pages of

textual data. This was too large of a file to load in HyperResearch, it slowed the analysis

significantly. So it was necessary to re-load the data set into HyperResearch as 9 smaller files to

speed up machine processing for coding and content analysis.

After the text was loaded into HyperReseach, two empty cases where found in the uncommitted

category, both named ‘unnamed’. I had lost these files, to correct for this loss; those two

uncommitted cases were eliminated from the count of the dataset. The dataset’s final count

consisted of 52 deliberative discourse cases, 24 of which consist of successful legitimations

(A.K.A commits in Drupal), while the other 28 deliberations did not result in a commit, at least

until the point of the deliberation that was examined in this study.

39

Step 2a: After loading the textual data into HyperResearch I commenced the coding process. I

then commenced coding each conversation using the concepts from the CAT. The coding

procedure consisted of reading and re-reading the 52 conversation threads to develop an

understanding of the context and dynamics of the conversation. After a significant amount of

reading and re-reading I started coding occurrences of the primary social action types

(communicative, strategic and instrumental) of each comment in each thread based on definitions

I had developed in my codebook. Thus, three codes were created in HyperResearch

(Communicative Action, Discursive Action and Instrumental Action).

In the 24 committed conversations there are a total of 221 comments. As illustrated in figure 5-1,

evidence shows that communicative action is the most common social action type engaged by

members in these cases. Usually, but not always, Dries is the person in these deliberations to use

instrumental action; often in the form of giving directions to an innovator to accomplish a

commit (cf. Appendix B). Figure 5-1 summarized each social action type in these 24 committed

cases.

Figure 5-1 Summary of social action types for 24 committed cases

In the 28 uncommitted conversations there are a total of 430 comments. As illustrated in figure

5-2, evidence shows that communicative action is again the most common social action type

engaged by members in these 28 cases. As with committed, in uncommitted cases Dries is

usually, but not always, the person to use instrumental action; often in the form of giving a set of

criteria that must be met before Dries considers a commit. Figure 5-2 summarized each social

action type in these 28 uncommitted cases.

40

Figure 5-2 Summary of social action types for 28 uncommitted cases

Step 2b: The second coding activity consisted of coding for influence tactics within each

conversation thread. I read each comment within the context of the conversation flow and

labeled according to my understanding of its meaning. Using the influence tactics aspect of the

framework I analyzed each comment to determine which of the influence tactics were enacted in

it and a corresponding code was assigned. The influence tactics applicable for the context of the

Drupal discussions were either the Rational Persuasion or Consultations tactic.

In the 24 committed cases, there are 85 instances of rational persuasion tactics and 15 instances

of consultation tactics. Figure 5-3 provides a summary of the empirical observations made

concerning influence tactics used in the 24 committed cases.

Figure 5-3 Summary of Influence Tactics in 24 Committed Cases

In the 28 uncommitted cases, there are 211 instances of rational persuasion tactics, 19 instances

of consultation, 2 support/alliance tactics and 1 instance of ingratiation. Figure 5-4 provides a

summary of the empirical observations made concerning influence tactics used in the 28

uncommitted cases

Figure 5-4 Summary of Influence Tactics in 28 Uncommitted Cases

In both cycles of coding each coded text segments were marked for future retrieval and memos

were written to document my rational for the interpretations. These memos were then indexed to

41

the specific text segments using the HyperResearch indexing and memo tools. After completing

each cycle of coding I took time out from the empirical analysis and focused on reading relevant

literature and re-working parts of the early chapters of my thesis. This break from the empirical

analysis enabled me to re-examine the coding a second and third time with a more critical eye,

sometimes revising my coding. I then had discussions with my thesis advisor to clear points of

concern I had about any of the interpretations I was making. His approach was to challenge me

to defend my position or to modify it in the light of our discussions. It is important here that it

took time and intense reading for me to develop an understanding of the social and

organizational context of Drupal. And as I progressed in my understanding, I had to revise some

of my coding.

Step 2c: In this step of the empirical analysis I focused on identifying which validity claims were

challenged and redeemed within the 52 cases. Using concepts identified in Table 3.2 I had to

closely examine the dynamics of the conversations to explicitly identify challenges made to

innovation proposals and coded them in accordance with the five types of validity claims

outlined in my framework. I was also careful to code the replies to challenges and to document

the discourse cycle from beginning until the challenge was redeemed or it prevailed. In the 24

committed cases, efficiency claims were challenged most frequently, followed by effectiveness,

comprehensibility then relevance. Figure 5-5 below summarizes the primary observations on the

validity claims challenged and resolved for the 24 committed conversation threads.

Figure 5-5 Summary of the Validity Claims Challenged in 24 Committed Cases

In the 28 uncommitted cases the frequency of validity claims challenged is in the same sequence

as the 24 committed cases. Efficiency claims were also challenged most frequently, followed by

effectiveness, comprehensibility then relevance. The Figure 5-6 below illustrates the validity

claims challenged for the 28 uncommitted cases.

42

Figure 5-6 Summary of Validity Claims Challenged for 28 Uncommitted Cases

Step 3: At this stage of the empirical analysis I switched focused to identifying specific

categories of innovation proposals and characterizing the legitimation processes on the basis of

examining the empirical observations made in the prior coding exercise. Step 3a: On closer

reading of the conversations I was able to determine that were three types of innovation

proposals: Bug Fixes, New Features and New Tasks. I then did content analysis to find out which

conversations were discussing which type of innovation proposals (Bug Fixes, New Features, or

New Tasks) and coded each conversation accordingly. Each conversation discussed only one of

those three types of innovations. For the 24 committed cases, the analysis yielded 11 empirical

observations of bug fixes, 6 of new features, and 7 of new tasks. Figure 5-7 below summarizes

the types of innovations for the 24 committed cases.

Figure 5-7 Summary of Types of Innovation Proposals for 24 Committed Cases

For the 28 uncommitted cases, those frequencies are 13 feature requests, 12 bug fixes and 3

tasks. Figure 5-8 below shows the types of innovations for the 28 uncommitted cases

Figure 5-8 Summary of Types of Innovation Proposals for 28 Uncommitted Cases

Table 5-9 below provides three examples of empirical observations of how these different types

of innovation proposals are identified in the conversation threads. As observed in the content

analysis, bug fixes are proposals aimed at addressing bug reports in the software. In such

43

deliberations, a member of the community starts the conversation by identifying a specific bug,

and the rest of the community joins the deliberation. For example, in thread 57 in Figure 5-9,

Jasper, a member of the Drupal community identifies a bug that needs fixing and explains the

problem. While in thread 75, we see kbahey is proposing a new software feature to enhance the

Drupal software. Finally in thread 74 Drumm is seeking to update a software module’s

instructions text, to remove what he thinks are confusing instructions.

Figure 5-9 Examples of Different Types of Innovations

Innovation

Type

Case Empirical Evidence (Quote) Explanation

Bug Fixes Thread

57

November 19, 2004 - 16:03 : jasper

1. "my account" link can not be given "weight"

2. If edited, "my account" link behaves strangely:

appears as separate menu in admin screen,

disappears from navigation menu, etc.

3. Subitems can't be added under my account, or,

strange things happen if you try to do that.

Jasper identifies a bug

in the software

 New

Features

Thread

75

February 1, 2005 - 21:26 : kbahey

Attachment:

http://drupal.org/files/issues/contact.module-

subject.patch (1.93 KB)

I find it very undescriptive when I recieve a message

from Drupal with the subject "message from

username".

This patch adds a "subject" field for the

contact.module which the user can fill, and would

tell you what they want right away. Oh, and it helps

group the 'conversation' on Gmail into something

meaningful.

(Note, I have not tested this since I do not have a

CVS installation at the moment. Appreciate if

someone can test it).

This feature will allow

more efficient

communication within

the Drupal

community.

New Tasks Thread

74

February 8, 2005 - 01:10 : drumm

Attachment:

http://drupal.org/files/issues/page.module_2.diff

(1.56 KB)

The page module's long help text is a bunch of lies

and then it briefly explains it's permissions. IMO it

should just be taken out. I can't think of what help

should be there.

Drumm is seeking to

eliminate excess

wording in Drupal.

44

In all cases when an innovation proposal is made the members engage in open deliberations at

the end of which, the proposal is either accepted or the conversation is left open until updated in

a repeat attempt at approving the innovation discussed. In these deliberations the members of the

Drupal community focus on clarifying the problem, designing and implementing a solution that

improves the functionality, reliability, effectiveness and efficiency for both the developers and

end-users.

Step 3b: I focused on analyzing the legitimation processes with an interest in identifying

similarities and differences among the conversation threads based on the profile of social action

types, influence tactics employed and the frequency of challenged to validity claims. Based on

the aforementioned criteria, I was able to find two distinct categories of legitimation processes

summarized in Figure 5-10.

I came about distinguishing these two categories during the content analysis of the committed

cases, that is when I noticed that some conversation where taking much more collaborative effort

to arrive at a commit than others. I then created a code for short commits and another for long

commits, and assigned each case with the appropriate code, and then I summarized the

characteristics of all cases in the short commit category based on the three aspects of the

framework this study uses, and again for all the long commits. This was done in HyperResearch.

I found that the characteristics of each category were different: (1) the frequencies of the types of

innovation (whether bug fix, new feature or task), (2) complexity of innovation (high vs. low)

and (3) frequencies of types of validity claims challenged. This result was in line with my

conjecture that there must be some aspects of the cases that influence the length or amount of

collaborative effort of conversations. These two different innovation legitimation processes will

be elaborated upon in Chapter 6.

45

Figure 5-10 Summary of Two Categories of Legitimation Processes

Characteristics Fast
Commits

Slow
Commits

Number of cases 16 8

Complexity Low 11 1

 High 5 7

Social Action Types Communicative 75 112

Discursive 8 18

Instrumental 2 6

Influence Tactics Rational Persuasion 32 52

Consultation 6 9

Validity Claims
Challenged

Comprehensibility 2 1

Effectiveness 3 3

Efficiency 5 12

Relevance 1 1

46

6. Discussion of Empirical Findings

As stated earlier there are 52 empirical cases of innovation proposals analyzed in this study. Of

these 28 were uncommitted and remain unapproved at the end of my study, while 24 were

approved, committed and implemented in the Drupal core software. The primary objective of

this chapter is to outline some of the key dynamics of the legitimation processes of the

committed software innovations. However, for the sake of the balance of the empirical

observation of this thesis I need to briefly discuss the key characteristics of the uncommitted

innovation proposals before moving on to discussing the key dynamics of the legitimation

processes of committed cases. The legitimation processes for both types (committed and

uncommitted) unfolded as a structured rational deliberation (SRD) which comprises a set of

communicative interactions that can be summarized as follows:

1. A community member announces and describes a proposed innovation or describes the

need for an innovation and consults with the community about a solution

2. When an innovation proposal is offered other Drupal community members will respond,

accepting, challenging or rejecting the validity claims of the proposed innovation, or

proposing alternatives to the one under discussion

3. The proponent may seek to defend the validity claims of the proposed innovation, modify

it in response to community input or abandon it all together in favor of another alternative

4. When a community member describes the need for an innovation and consults with the

community about a solution, the other members will respond presenting alternative

approaches to ones already presented

5. At some point in the deliberations Dries will intervene accepting the proposed innovation

for inclusion in the core software or request further deliberations outlining some

outstanding legitimation issues

6. When Dries accepts the innovation proposal, he states publicly ‘committed’ and makes

the innovation proposer responsible for finalizing the software code, its testing and

inclusion into the Drupal core modules

From the perspective of Dries the objective of these SRDs was to obtain community involvement

in vetting the innovation proposals in order to achieve high quality software and to identify a

community member who would take the responsibility for implementing (and possibly

47

maintaining) the software innovation. From the perspective of the innovation proposer, the

deliberations served as a forum to obtain input and support from the community and to achieve

approval and recognition for the proposed innovation from Dries. In order to achieve success the

proponent had to convince a critical mass of the community represented by an appropriate

number of ‘+’ votes on the value of the innovation proposal (more details to follow).

6.1 Basic Characteristics of Uncommitted Innovation Proposals

The empirical analysis of the 28 uncommitted innovation proposals revealed 14 high complexity

and 14 low complexity proposals. Of those, 12 are Bug Fixes, 13 are New Features and 3 are

New Tasks. Empirical analysis of the conversations also showed that a range of 1 to 12 and an

average of 5 actors participated in the SRDs of these uncommitted innovation proposals. The

SRD cycles of these uncommitted innovation proposals comprised a total of 430 comments and

an average of 15 communications per deliberation. These communications comprise a range of 2

to 38 communicative actions, 0 to 8 discursive actions and 0 to 2 instrumental actions. Table 6.1

below summarizes the basic characteristics of the 28 uncommitted cases. I will discuss a few

these in more detail later when I discuss the deliberation processes.

Figure 6-1 Basic Characteristics of 28 Uncommitted Innovation Proposals

Empirical Dimensions Uncommitted Cases

Number of Cases 28

Complexity of Innovation High Low

14 14

Type of Innovation Bug Fixes 12

New

Feature

13

New Task 3

Number of Actors in

Deliberations

Range Average

1-12 5

Number of Comments in

Deliberations

Total Average

430 15

48

6.1.1 Communicative Characteristics of SRDs

The structured rational deliberations (SRDs) unfolded as a set of dialogues in which the actors

used various forms of communicative actions to influence each other towards the development of

consensus about the value of an innovation proposal to the Drupal core software. The SRD

cycles concerning the uncommitted innovation proposals vary in length, but it is important to

make clear that at the time of this study these conversations were still in progress. Therefore it is

not possible to state whether they were eventually legitimized. However, it is possible to discuss

the communicative characteristics of these SRDs. My empirical analysis of these SRDs suggests

the participants were oriented to reaching agreement and had a preference communicative action

and soft influence tactics. The use of communicative action was 3.75 times more than all other

action types. There were 83 empirical observations of discursive action and 8 of instrumental

action. The dominant influence tactic was Rational Persuasion which was enacted 11.2 times

more than all other influence tactics. However, there were 19 empirical observations of the

consultation influence tactic. There were 83 validity claim challenges, most, 43 focused on the

efficiency of innovation proposals, while 16 focused on their effectiveness, 13 on

comprehensibility and 11 on relevance. Figure 6.2 below summarizes the key communicative

characteristics of 28 uncommitted cases. To provide a better understanding of the communicative

dynamics of the uncommitted innovation proposals I will discuss an example in the next section.

Figure 6-2 Communicative Characteristics of the Uncommitted Innovation Proposals

ISS Dimensions Uncommitted (28 Cases)

Action Types Total Min Max Mean

Communicative 339 13 38 12.11

Discursive 83 7 8 2.96

Instrumental 8 1 2 0.29

Influence Tactics Total Min Max Mean

Rational Persuasion 213 1 27 7.54

Consultation 19 1 3 0.68

Validity Claims

Challenged

Total Min Max Mean

Comprehensibility 13 0 3 0.46

Effectiveness 16 0 3 0.57

Efficiency 43 1 6 1.54

Relevance 11 0 2 0.39

49

6.1.2 Examples of SRDs of Uncommitted Innovation Proposals

These two examples of uncommitted innovation proposal (Cases 2 and 6) represent the extreme

points of uncommitted cases empirically analysed in my study. Because these cases have not

been rejected there is no way of stating definitively their statuses. However, what I can do is to

give empirical observations of the communicative characteristics based on my analysis of the

continuing deliberations on these cases. Case 2 is a New Feature of high complexity while Case

6 is a Bug Fix of low complexity. The SRD for Case 2 comprised 8 participants involved in 47

communications comprising 28 instances of influence tactics and 6 validity claim challenges.

The SRD for Case 6 comprised 5 participants involved in 20 communications comprising 11

instances of influence tactics and 7 validity claim challenges. Figure 6.3 provides a summary of

the details of the communicative characteristics of the two uncommitted cases. In the following

section I will provide short selective illustrations of the SRD communications on Case 2 to

provide some understanding of the communicative dynamics.

Figure 6-3 Communicative Characteristics of Two Uncommitted Examples

ISS Dimensions Case 2(Uncommitted) Case 6(Uncommitted)

Action Types Total Total

Communicative 38 13

Discursive 7 7

Instrumental 2 1

Influence Tactics (Total) 28 11

Rational Persuasion 27 9

Consultation 1 2

Validity Claims Challenged

(Total)

6 7

Comprehensibility 3 3

Effectiveness 2 0

Efficiency 1 4

Relevance 0 0

50

6.1.3 Selective Illustration of the SRD Dynamics of Case 2

Case 2 concerns a New Feature of high complexity proposed by Chx. Chx started the

deliberations and replied 25 times throughout the conversation exerting rational persuasion

influence tactics. Dries contributes to the conversation a total of 11 times, while Jose A Reyero

contributes to the conversation using two instances rational persuasion and one instance of

consultation. The rest of the participants contribute with a total of 8 direct replies to rational

persuasion tactics in both a communicative and discursive manner, and in 2 instances full

support was given to the proposed innovation. None the less, it remained uncommitted at the end

of the period of conversations included in this empirical study.

The SRD is initiated by Chx who has developed some new functionality and is suggesting that it

should be considered for inclusion in Drupal core software. Chx states

--

(December 23, 2004 - 23:25):

“Attachment: http://drupal.org/files/issues/node_builder.patch (5.56 KB)

Although I have posted this to the devel list, as Steve pointed out, putting patches to

sandbox is not the best way to do things. So I open this thread. I have measured the time

for build a node query in this is about 0.22-0.24ms (on an Athlon 933 MHz machine).”

--

A few hours later Dries responded making it clear that he is unlikely to commit the innovation

proposal. He used discursive action, challenging the effectiveness on the innovation proposal:

--

December 24, 2004 - 00:33 : Dries

I'm not likely to commit this. It's not conform with Drupal's coding conventions, but more

importantly, a node query builder doesn't solve any real problems. It just adds a

different way of doing things without offering a significant advantage.

Almost immediately Chx responds using rational persuasion to make a case for the effectiveness

of the innovation, pointing to some specific functions that could find it relevant. He also retests

his proposed software innovation and discovers some problems, reports on them and points out

that it is just the beginning of the SRD, so the problems can be worked out with revisions:

51

--

December 24, 2004 - 00:51 : chx

Attachment: http://drupal.org/files/issues/node_builder_0.patch (5.67 KB)

At this moment there are direct queries into the node table everywhere.

After node_access_*_sql calls were invented, a lot of queries needed to be changed, and I

think we will find more to be inserted. If someone does sg. else with the queries,

permission, language etc. he needs to patch 60+ quieries in core alone. This is not a

good thing. That's why I am proposing a central node query builder. As for code

standards, code-style.pl node.module returns 17 errors, none of them comes from my

patch. However, I should admit, there were a few spaces missing from the database.inc

patch. So I resubmit.

--

--

December 24, 2004 - 00:56 : chx

Attachment: http://drupal.org/files/issues/node_builder_1.patch (5.67 KB)

OK, I was wrong, there is a space missing in one of the rewritten queries. But I doubt this

matters too much, as this is only a proposal and I think there will be a lot of revisions

before it gets to the core.

--

At this point Drumm enters the SRD replying to Chx’s rationale and also challenging the

effectiveness of the innovation proposal, but suggests some revisions, and lays out some

conditions under which he would give support:

--

“December 24, 2004 - 01:26 : drumm

The blank lines between the comments and function starts will confuse the documentation

parser on drupaldocs.org.

I'm not sure if I support this quite yet. Reducing the number of queries and whatnot is

great, but this patch doesn't do that quite yet. I'd only want this if the new system is more

readable and easy to write. I'm not sure if this is true.

As for code-style.pl, I don't think this is actually used much and it doesn't catch

everything. Such as, most operators (=, =>, +, etc) like a space on either side of

themselves. I'd support removing code-style.pl and throwing it in contributions

52

somewhere. (If this needs further discussion or action, please file another issue, lets keep

this focused on this patch).

I'm going to wait for a few more revisions of this before I weigh in a

+1 or -1.”

--

A few minutes later Jose entered the SRD in response to Chx’s rational persuasion tactic, using

communicative action and in support of Chx’s innovation proposal:

--

December 24, 2004 - 01:58 : Jose A Reyero

I can really think of a number of advantages of this, and though not really for

committing it yet, think is very good to see some discussion on the issue and some

concrete implementations.

When implementing i18n I run into this problem, of having to patch lots of queries -

actually too many- in about all the modules doing any kind of node listing. This far, I'm

stuck at this point. Then I realized it was just the same for node permissions, and will be

the same again for whatever new functionality you want to add in the future which affects

node listings.

I think actually that direct access to 'node' table should be avoided when possible out of

the node.module. And the only way to achieve this is to have some kind of query builder.

And also think that chx's approach is very good. it provides some upper layer at the

'node'

level, which can use some object level semantics while relying on a db layer query

builder, which could be used later for other objects -users, taxonomy terms...-

Just think of all the work that this could have saved when implementing permissions

system, which I think is ugly and dirty anyway because of all that node_join,

node_where...

In the long run, adding such complex logic as sql code, patching and re-patching queries

is bad, very bad, making any new change one higher level of complexity and driving us

away from a OO model, which I think we should tend to. It's not using PHP objects. It is

thinking of nodes as 'objects' and coding according to it.

Oh, yes, sorry, this is growing too long to write it here :-). But we could talk also about

db portability...

--

53

A fourth participant, Moshe, enters the SRD using communicative action, replying to Chx’s

rational persuasion in support of the effectiveness of the innovation proposal:

--

December 24, 2004 - 02:14 : moshe weitzman

I should add that the Organic Groups module could benefit from this node listing SQL

builder. I have awkwardly worked around the problem for now but I don't like it.

I don't know if this patch is good or not, but I do lean toward the functionality that it

offers. Remember that any developer is free not to use the query builder and issue direct

SQL as needed. If the query builder is making life hard, simply don't use, just like today.

--

At this point a fifth participant, Kessels, enters the SRD using communicative action and in

support of the relevance of the innovation proposal and votes ‘+1’ in favor of its adoption:

--

December 24, 2004 - 11:35 : B?r Kessels

I +1 for this functionality (i have no time to comment on coding style etc).

It will not only improve maintainability, but will allow a far easier implementation of the

i18n. i18n currently has a lot of patches, simpley to add logic to all those node sql

queries referred to.

--

Chx then presents a revised version of the proposal and uses rational persuasion in another

attempt to obtain support from Dries and the other Drupal community members:

--

December 24, 2004 - 14:20 : chx

Attachment: http://drupal.org/files/issues/node_builder_2.patch (1.63 KB)

OK, maybe the former approach was too complex. How about this? This requires a lot

less change to the queries and no change to database.inc and ten times faster.

As usual, a sample query is rewritten and an example of the proposed hook is provided.

--

54

Some hours later Chx follows up yet another revision of the proposal which he claims is more

efficient than the last; here again he uses communicative action and rational persuasion.

--

December 25, 2004 - 01:09 : chx

Final thoughts for this day. If you like the last version, there is a possibility to automate

the whole thing by adding the following three lines to the beginning of db_prefix_tables:

Of course, there is very small chance of a loop here, so this would require more thought,

but I think at the end this would be a good thing.

--

Dries responds more positively, however, using communicative action and still seeking more

input from other members of the Drupal community. He also politely requests that Chx does

more query updates to make sure that the innovation is effective in all cases:

--

December 27, 2004 - 13:55 : Dries

I like the second approach better as it keep things readable and gives me a bit more

control over the order in which things are written.

Looking for more feedback from the others. Did you try updating more queries to make

sure it works as intended in all cases?

--

Chx complies with Dries’s requests for testing, discovers some issues and revises the innovation

proposal yet again. He responds to Dries as follows:

55

--

December 27, 2004 - 20:48 : chx

Attachment: http://drupal.org/files/issues/node_builder_3.patch (1.23 KB)

Yes, I tried with many different queries. And I have found one bug -- forgot the

underscore in the regexp following FORM so I have rewritten the whole regexp. It is now

a lot simpler :)

And node_query is now reentrant, so if a function in the process of hook_sql calls

node_query, it won't fall into an infinite loop. This situation did not occur but it's better

to forestall such things.

--

Moshe again enters the deliberations in support of the evolving innovation. He uses

communicative action and is in support of the innovation, with some comments to spare for

Chx’s innovation proposal:

--

December 28, 2004 - 06:48 : moshe weitzman

This patch is a step forward. I thought of another feature which becomes easier with the

proposed hook_sql(). think of filtering like freshmeat.net. At freshmeat, you can say that

you only want to see projects where OS=Windows and License=GPL (for example). A

Drupal equivalent is 'only show me nodes related to Democrats and Poverty'.

This sort if global node filtering is very hard in Drupal today. With this hook, it becomes

easy.

--

Dries again responds with communicative action, although he is more supportive he offers some

recommendations for Chx to do before a commit is possible:

--

December 28, 2004 - 13:37 : Dries

It's starting to look good (and you're getting more support)! Have you read the following

threads:

http://lists.drupal.org/archives/drupal-devel/2004-11/msg00198.html and

http://lists.drupal.org/archives/drupal-devel/2004-11/msg00230.html?

56

It's an open issue related to your work. If you start joining tables, you might have to add

DISTINCT()s. When you are not joining tables, it would be nice if we'd not pay the cost

of a DISTINCT().

 It would be good if you could update the node queries in core to take advantage of it.

It's not necessary while prototyping though.

 It would be good if the il8n team could take a closer look at this patch by trying to use it.

 It would be good if you could add some PHPDoc.

--

Chx continue to repost updated version of the patch, but a little later in the conversation, Jose

find a problem with the patch, but instead of solely challenging Chx’s proposal, Jose attached a

patch of his own:

--

January 7, 2005 - 18:30 : Jose A Reyero

Attachment: http://drupal.org/files/issues/central_node_query_node_module.patch (7.07

KB)

I found some problems when using the patch. The where conditions are not merged well

if there are more than once, and also conditions need some parenthesis around.

So I replaced the $where and $join strings in _node_rewrite_sql by arrays which are

imploded at the end.

Also added some 'hint' definitions. Patches for i18n module are coming next.

This works like charm for node listings, comment listings, searches, etc...

Btw, I also think 'semaphores' are not really needed.

--

This SRD continues with several more participants joining the deliberations, some supporting

Chx’s proposal, some challenging its validity claims, but I will stop the illustration here. The

communicative dynamics of the SRD for Case 2 should be clear. Also it is clear that Chx is

proposing a complex innovation and that the SRD is serving a critical function of improving the

quality of the innovation. The roles of the other participants are also clear. In some cases they

challenge validity claims of the innovation proposal in other cases they suggest alternatives to

improve the efficiency and effectiveness of the proposal. However, as stated earlier this

innovation was still uncommitted; the deliberations were still ongoing at the end of this study.

57

6.2 Basic Characteristics of Committed Innovation Proposals

In my empirical analysis of the 24 committed innovation proposals, I categorized 16 as Fast

Commits and 8 as Slow Commits based on the number of communicative interactions required

for them to be committed. Figure 6.4 below summarizes the basic characteristics of the 24 cases.

My empirical analysis revealed that the 16 Fast Commits comprised 5 high complexity and 11

low complexity innovations, while the Slow Commits comprised 7 high complexity innovations

and 1 low complexity innovation (cf. Appendix C, D). The Fast Commits comprise 6 Bug Fixes,

4 New Features and 6 New Task; while Slow Commits comprise 5 Bug Fixes, 2 New Features

and 1 New Task. Empirical analysis of the conversations showed that 2 to 6 actors participated in

the structured rational deliberations of the Fast Commits, while 4 to 9 actors participated in the

Slow Commit deliberations. This resulted in significantly longer structured deliberations on Slow

Commits. The SRD cycles of Slow Commits consist of 7 to 39 communicative action type

interactions; while SRD cycles of Fast Commits consist of only 2 to 7 communicative action

type interactions. I will discuss these in more detail later when I discuss the deliberation

processes.

Figure 6-4 Summary of Basic Characteristics of the Case of Innovation Proposals

Empirical Dimensions Fast Commits Slow Commits

Number of Cases 16 8

Complexity of Innovation High Low High Low

5 11 7 1

Type of Innovation Bug Fixes 6 Bug Fixes 5

New Feature 4 New Feature 2

New Task 6 New Task 1

Number of Actors in

Deliberations

Range Average Range Average

2 to 6 3.5 4 to 9 5.9

Number of Comments in

Deliberations

Total Average Total Average

85 5.3 136 17

58

6.2.1 Communicative Characteristics of SRDs

The SRDs unfolded as a set of dialogues in which the actors used various forms of

communicative action to influence each other towards the development of consensus about the

value of an innovation proposal to the Drupal core software. The cycle of SRDs of Fast and Slow

Commits vary in length as the Slow Commits required much more discussion than the Fast

Commits. However, the type of communicative actions chosen by the participants in the

deliberations suggests an orientation to reaching agreement and preference for soft influence

tactics. The deliberations were dominated by communicative action and rational persuasion, with

discursive action and consultation secondary options, and instrumental action rarely used.

Validity challenges during the SRD cycles were mostly to the efficiency of the innovation

proposal; and there were no meaningful differences in the type of validity claim challenges

between Fast Commits and Slow Commits except for the number challenges (cf. Figure 6.5).

Slow Commits receives more than 2 times the number of challenges in total. Each of the

categories appears to arrive to the point of legitimization from different grounds, with the most

obvious distinctions being that a Fast Commit occurs when the value of the fix seems to be of

relatively clear or the bug fixes are of low-complexity, whereas Slow Commits are more

complex and had many validity claim challenges, thus requiring more deliberative effort to arrive

at legitimation. Table 6.5 presents a comparative analysis of the key empirically observed

differences between Fast and Slow Commits. In the next section I will discuss some examples of

SRDs of Fast and Slow Commits to illustrate the differences in their dynamics.

59

Figure 6-5 Comparison of the Communicative Characteristics of Fast and Slow Commits

ISS Dimensions Fast Commits (16 Cases) Slow Commits (8 Cases)

Action Types Total Min Max Mean Total Min Max Mean

Communicative 75 2 7 4.7 112 7 39 10.4

Discursive 8 0 3 0.5 18 0 6 2.3

Instrumental 2 0 1 0.13 6 0 4 0.8

Influence Tactics Total Min Max Mean Total Min Max Mean

Rational Persuasion 32 1 5 2 52 2 18 6.5

Consultation 6 0 4 0.38 11 0 6 1.4

Validity Claims Challenged Total Min Max Mean Total Min Max Mean

Comprehensibility 2 1

Effectiveness 3 3

Efficiency 5 13

Relevance 1 1

6.2.2 Examples of SRDs of Fast Commits

I will now briefly discuss a few examples of Fast Commits to illustrate their communicative

dynamics. The empirical observations used in these illustrations were derived from the coding

and content analysis of the conversations during the SRDs. There are 16 cases of Fast Commits,

with a total of 59 participants in the SRDs of them. That is an average of 3.7 participants per

case, and a range between 2 to 6 participants per case. However, in 75% of the cases the SRDs

consisted of the proponent and one other participant, after which Dries approved them for

inclusion in the Drupal core software. The length of the SRD cycle is based on the number of

communication interactions in it. The 16 cases in this category had a total of 85 communication

interactions. Hence, there is an average of 5.3 communication interactions. Within the 16 cases,

it is observed that there were 75 communicative action types, aimed at established mutual

understanding, 8 discursive action types, which challenged validity claims, and 2 instrumental

action types, which were mostly enacted by Dries. Rational Persuasion and Consultation were

the primary influence tactics used in the deliberations of the 16 cases of Fast Commits. Rational

Persuasion was used 5 times more than Consultation. There are 32 empirical observations of

Rational Persuasion tactics and only 6 empirical observations of Consultation tactics in the

60

deliberations of the 16 cases. Of the 32 instances of the Rational Persuasion influence tactics

observed in the deliberations of Fast Commits, 29 were enacted by the initial proposer of the

innovation. Also, of the 6 instances of consultation tactics, 3 were enacted by the proposer as a

strategy for initiating the SRD process.

6.2.3 Illustrative Examples

The three Fast Commits I want to discuss are Cases 84, 78 and 76 whose basic characteristics are

summarized in Figure 6.6 below. Case 84 is a proposed fix in response to a bug report, and a low

complexity type innovation. The Proposer of the Bug Fix is Uwe Herman, and there are four

other participants in the deliberations, Morbus Iff, Stefan Nagtegaal, JonBob and Dries. In this

SRD process Uwe states; “I ran ispell over the whole Drupal code (including themes etc.). Here's

a patch with the fixes I (or ispell) found”. Morbus responds with a ‘+’ signaling support for the

Bug Fix, while Stefan responds with an interrogation; “Did you also run iSpell over the

helptexts?”. Uwe replies; “Which help texts? The ones embedded in any *.module oder *.inc

file: yes. I scanned all plain-text files.” At this point JonBob enters the deliberations supporting

the Bug Fix by stating; “I read through the patch, and all corrections appear to be... well...

correct. +1.” At this point Dries legitimizes the proposal stating; “Committed to HEAD.

Thanks!”, and assigns Uwe to implement the software update. Case 84 is legitimized after a short

rational deliberation which comprised communicative actions, a single clarification, and no

discursive challenges to validity claims (cf. Figure 6.7).

Figure 6-6 Summary of Characteristics of the Three Example Fast Commit Cases

Empirical Dimensions Case 84 Case 78 Case 76

Type of Innovation Bug Fix Bug Fix New Task

Complexity of Innovation Low Low High

Number of Actors in Deliberations 5 3 5

Number of Communications in

Deliberations

7 5 8

Number of Influence Tactics in

Deliberations

1 2 1

Case 78 is also a proposed fix in response to a Bug Report. The Bug Fix proposed by Killes is a

low complexity type innovation. There are two other participants in this SRD process, Uwe

Herman and Dries. Killes starts the legitimation process by stating; “Drupal emits an annoying

61

number of PHP notices. The attached patch fixes a few of them in tablesort.inc.” Uwe responds

to the proposal with corrections stating; “The patch looks broken, there's Email-Headers included

(probably erroneously cut'n'pasted there?)”. Killes responds; “Oops, thanks.” Dries legitimizes

the innovation proposal, stating; “Committed to HEAD”, and assigns Killes to implement the

software update. Case 78 is legitimized after a short rational deliberation comprising two

communicative actions, one discursive action challenging the effectiveness of the original

proposal, and a revision of it (cf. Figure 6.7).

Figure 6-7 Summary of Communicative Characteristics of the Three Example Fast

Commit Cases

Communicative Characteristics Case 84 Case 78 Case 76

Communications (Total) 7 5 8

Communicative 6 3 6

Discursive 0 1 1

Instrumental 1 1 1

Influence Tactics (Total) 1 2 1

Rational Persuasion 1 2 1

Consultation 0 0 0

Validity Claims Challenged (Total) 0 1 1

Comprehensibility 0 0 0

Effectiveness 0 1 0

Efficiency 0 0 1

Relevance 0 0 0

Finally, Case 76 is a New Task innovation type of high complexity proposed by Moshe

Weitzman. There are four other participants in this SRD process, Stefan Nagtegaal, Chx, Berkes

Kessels and Dries. Moshe proposes his innovation discussing in detail its purpose and

functionality:

62

--

January 26, 2005 - 14:18 : moshe weitzman

Attachment: http://drupal.org/files/issues/drdest.patch (11.05 KB)

Here is a patch I've been wanting to finish for a while. This patch assures that you end up

on the proper page after you edit/delete a node, comment, user, or url alias. This is true

no matter if you gothrough the usual interface or the admin interface. Further, if click the

'edit' link from 3rd page of a custom sorted view (e.g.

admin/comment&from=100&sort=asc&order=Author) you still are returned to the right

page.

The technique used here is generally available for module developers. I've minimally

enhanced drupal_goto() so that it will redirect to the url specified in a 'destination'

querystring parameter if such parameter exists. If it does not exist, we redirect just as

today. Nochanges are required to existing drupal_goto() calls. A new helper function,

drupal_get_destination() was added; it helps contruct the 'destination' string which is

appended to add/edit links.

The only downside I can see to this patch is that a few URLs are less pretty than before.

These urls are only shown to admins. This could only be avoided by having each admin

page implement its own way of passing a destination, or stashing the destination in the

$_SESSION. We recently tried storing referer in $_SESSION, and it was eventually

removed because of poor coordination when a user has multiple browser windows open.

In addition to the above,

- I cleaned up some 'destination' handling in user login code

- I assured that after adding a new taxo term, we arrive back on the

'Add' page. That restores prior behavior

--

Stefan responds in support of the proposed innovation, voting it ‘++ this patch in HEAD’ and

gives the following explanation;

--

January 26, 2005 - 16:44 : stefan nagtegaal

This is another great improvement when we look at usability! Moshe, you did a terrific

job on this..

63

After this patch is applied every submitted page drupal_goto()'s the page you expect it to

go..

This is really one of the best patches i'd seen and tested lately, so

++ for this patch in HEAD..

--

Dries then responds and requests additional input from the Drupal community. He sates; “The

code looks good, the functionality is handy but I'd like to hear other people's thoughts on this.”,

Chx then enters the deliberations in support of the innovation proposal, stating; “great one. +1”.

At this point Berkes Kessels, after scrutinizing the software code he makes some remarks,

supports the innovation proposal but also offering his opinion on how to improve the patch. He

states;

January 27, 2005 - 09:05 : B?r Kessels

It never really bothered /me/ that I was redirected to odd places, since I have a drupal-

sitemap printed in my head ;). However, asking some clients, learned me that this patch

would be greatly appreciated.

+1 from me.

One question though (not criticism!) why did you choose to do the testing inside

druopal_goto as

<?php

if ($destination = $_REQUEST['destination'] ? $_REQUEST['destination']

: $_REQUEST['edit']['destination']) {

?>

Seems odd to me to have a one-line-if inside another if.

--

Dries picks up on the challenge and offers a revision to the software code of the innovation

proposal. He states:

--

64

January 27, 2005 - 09:18 : Dries

Berkes: that line is a odd, indeed.

Actually, I'm not convinced that embedding this logic in drupal_goto() is appropriate.

Personally, I'd rather have us write:

<?php

drupal_goto($_REQUEST['destiation']);

?>

I'd like to believe it is more transparant.

--

Moshe then revises the software code of his proposal and Dries legitimizes it stating;

“Committed to HEAD. Thanks!” and assigned Moshe to implement the software update. The

entire deliberation comprised seven communications of six communicative actions and one

discursive challenge to the efficiency of the software code.

The SRD legitimation processes of these three examples of Fast Commits are indicative of this

category. The majority of proponents were able to achieve success in legitimization of their

innovation proposals by presenting them to the community and refining them based on the

community’s feedback. In other words, as opposed to some of the Slow Commits which involved

the collaborative design efforts of the Drupal community, the innovation proposals in this

category had a single proponent who designed and refined the innovation after obtaining

feedback.

65

6.2.4 An Example of a Slow Commit SRD

I will now briefly discuss an example of a Slow Commit to illustrate the communicative

dynamics of this category of innovation proposals. The empirical observations used in this

illustration were derived from the coding and content analysis of SRD communications on Case

12. The type of innovation proposal concerned is a Bug Fix of high complexity, and there are a

total of 9 participants in the SRD and a total of 49 communication exchanges. Of these 49

communications 39 are communicative actions, 6 are discursive actions, and 4 are instrumental

actions. During the SRD cycles rational persuasion was the most dominant influence tactic

enacted (18 instances) and Consultation was also used (6 instances). See Figure 6.8 below for a

summary of the primary communicative characteristics of slow commit Case 12. In the following

I present a portion of the 49 communications in context to illustrate the dynamics of the SRD.

Figure 6-8 Communicative Characteristics of Slow Commit Case 12

ISS Dimensions Slow Commit

(Case 12)

Action Types (Total) 49

Communicative 39

Discursive 6

Instrumental 4

Influence Tactics (Total) 24

Rational Persuasion 18

Consultation 6

Validity Claims Challenged (Total) 5

Comprehensibility 0

Effectiveness 2

Efficiency 3

Relevance 0

66

The SDR for Case 12 started with Pennywit employing a communicative action to make a bug

report on October 7, 2004, 15:23;

--

October 7, 2004 - 15:23 : pennywit

I have two problems with my upgrade at http://www.pennywit.com. First is that a

number of comments have the body turn to the number 3. It looks like this happens when

one of my users tries to edit his comments. The second is that in any nodes submitted

before I upgraded, I don't see a count of the comments already submitted. I'm echoing

this to the support forum ...

--

Pennywit later uses a consultation tactic in the following comment requesting information. This

comment is communicative in type

--

October 7, 2004 - 16:01 : pennywit

It says this has been fixed ... what do I need to do on my side?

--|PW|--

--

The next day (October, 8, 2004-09:11) Kessels responds with his rationale that that problem has

already been fixed elsewhere, and provides a link for the solution. This is a communicative

action pointing Pennywit to a potential solution;

--

October 8, 2004 - 09:11 : B?r Kessels

http://drupal.org/node/11316`was the bug. Update commment.module will

fix this problem.

--

However, a few days later (October, 17, 2004 -13:04) KPS enters the SRD pointing out that

problem persists (discursive action), challenging the effectiveness of Kessel’s solution:

67

--

October 17, 2004 - 13:04 : kps

This problem remains (in 4.5.0-rc 1/2 hour before this post):

... any nodes submitted before I upgraded, I don't see a count of the comments already

submitted.

The {node_comment_statistics} table is evidently not initialized correctly.

Justification for "critical": Since most people who install 4.5.0 will be users of older

releases, upgrading really ought to work before the release.

--

Less than an hour later KPS exerts a rational persuasion influence tactic by attaching a patch of

his own, directed at solving the problem at hand:

--

October 17, 2004 - 13:47 : kps

Attachment: http://drupal.org/files/issues/updc.php (1.26 KB)

Attached, raw and as-is, the script I used to initialize the {node_comment_statistics}

table.

--

A few more days go by before anyone else comments on the reported problem. Then Junyor

enters the SRD (October, 20, 2004 – 08:39), supporting KPS’s observations. Junyor further

explains the problem and provides some recommendations to solve the problem at hand:

--

October 25, 2004 - 08:39 : Junyor

kps is right, the update won't correctly populate the table. Here's (part of) update_105:

"INSERT INTO {node_comment_statistics} (nid, cid,

last_comment_timestamp, last_comment_name, last_comment_uid, comment_count)

SELECT n.nid, 0, n.created, NULL, n.uid, 0 FROM {node}n"

So, it's setting the comment_timestamp = node creation time, forgetting the

comment_creator, using the userid that created the node as the

68

last_comment_uid, and setting the comment count to 0. update_105 needs to be redone

and I'd recommend a new update be created for 4.5.1 that will correctly initialize the

node_comment_statistics table.

--

Several days later (November 12, 2004 - 10:02) Junyor suggests a new Bug Fix to the Drupal

community:

--

November 12, 2004 - 10:02 : Junyor

OK, here's two patches to solve the problem.

Issues fixed:

- Fixes node_comment_statistics table prefixing for PostGreSQL

- Drops CID column from node_comment_statistics and supporting code in

comment.module

- Initializes comments table with usernames (needed by node_comment_statistics table)

- Correctly initializing node_comments_statistics table

- Removed duplicate query for last_comment_name in node_comment_statistics query in

comment.module

Needs checking:

- I couldn't test this with PostGreSQL

- I'm no database expert, so the updates.inc changes need to be gone over with a fine-

toothed comb

- Do we need any special handling for comments with no 'name', i.e.truly anonymous

comments

These patches are for the DRUPAL-4-5-0 branch.

--

Junyor provides two more relevant patches which he discovered in the Drupal repository:

--

“November 12, 2004 - 13:01 : Junyor

Attachment: http://drupal.org/files/issues/node_comment_stats.patch (7.89 KB)

--

November 12, 2004 - 13:01 : Junyor

Attachment: http://drupal.org/files/issues/node_comment_stats2.patch (3.44 KB)

Actually attaching patches. :)”

--

69

Dries then enters the SRD (on November 14, 2004 - 21:10) using discursive action to challenge

the efficiency of Junyor’s solution. He expresses his reservations and suggests further testing

before the Bug Fix is legitimized and implemented into the Drupal core software. He states:

--

November 14, 2004 - 21:10 : Dries

 I'm not 100% sure but isn't the name field of the comments table supposed to be NULL,

unless the comment is an anonymous comment? Is it really required to initialize the

name field? What happens if you don't? I just checked drupal.org's database and only

post Drupal 4.5.0 comments have the registered user's name in the comment table.

 I'm a little nervous about committing database changes to stable branches (DRUPAL-4-

5) so please make sure this patch is well-tested.

 The patches don't apply against HEAD but I can port them once we/you ironed out the

last glitches.

Otherwise these patches look fine. Good job.

--

To this Junyor responds (November 14, 2004 - 23:41):

--

November 14, 2004 - 23:41 : Junyor

I don't know if it's necessary, but I'm just making sure it's consistent. Maybe the author

of the node_comment_statistics patch could comment? I'm also concerned about having

the name information for registered users outside of the users table.

I've tested this on a test site and I'll try testing on my production site once we have this

worked out.

--

To which Dries responds with another discursive action challenging the efficiency of the same

patch:

70

--

November 15, 2004 - 10:45 : Dries

I don't know whether the original author (ccourtne) is still around but it should be easy

enough to test whether it is necessary or not. From what I've seen, it isn't necessary. In

fact, your current patch might break things: like, what happens when somone changes his

or her username? AFAIK, the old username would be shown in the comments.

--

Junyor then responds with communicative action (November 15, 2004 - 11:03):

--

November 15, 2004 - 11:03 : Junyor

OK, I'll edit that bit and resubmit. You'd like this for HEAD only?

--

Junyor continues to develop the solution to the Bug Report and later submitted four software

patches for consideration:

--

“November 15, 2004 - 18:24 : Junyor

Attachment: http://drupal.org/files/issues/node_comment_stats-2.patch (7.24 KB)

New patch for database files.

--

November 15, 2004 - 18:25 : Junyor

Attachment: http://drupal.org/files/issues/node_comment_stats2-2.patch (3.46 KB)

New patch for comment.module.

--

November 22, 2004 - 11:31 : Junyor

 Attachment: http://drupal.org/files/issues/node-comment-statistics_head.patch (7.26 KB)

Patches for head.

--

November 22, 2004 - 11:31 : Junyor

Attachment: http://drupal.org/files/issues/node-comment-statistics_head2.patch (3.45

KB)”

--

After more experimenting and testing Dries invites further participation from other members of

the Drupal community :

71

--

November 23, 2004 - 23:24 : Dries

I'd like to move forward with this patch and include it in Drupal 4.5.1. I can't reproduce

this problem (it seems) so it would be much appreciated if those who can, can test it.

--

Some days pass and other members of the community respond, except for Junyor who again tries

to use rational persuasion to convince Dries and the community of the effectiveness of his

software innovation. He says:

--

November 29, 2004 - 00:42 : Junyor

It applied and works well on my 4.5.0 site. A lot of nodes were listed as not having

comments before, but they're working now. Dries alerted me to a drupal-support

message regarding the patch and I'll look into that tomorrow.

--

Then finally CRW enters the SRD using discursive action and challenges the effectiveness of

Junyor’s proposal. CRW states:

--

December 8, 2004 - 06:12 : crw

After applying the patch, approving new comments still does not update the

node_comment_statistics table, therefore the comment_count field is off and the number

of new comments does not show up on the main page of my site.

I'm currently troubleshooting this and will report my findings here.

--

December 8, 2004 - 06:13 : crw

I should point out that I applied the following patch: node-comment-

statistics_head2.patch And the problem described above still exists.

--

After some more testing and experimentation CRW appears to have found a solution to the

problem and makes a new proposal. Since CRW is posting a patch of his own, based on his

reasoning, thus he exerted a rational persuasion influence tactic:

--

72

December 8, 2004 - 06:25 : crw

Ok, headway.

Looks like submitting a comment triggers an updating of node_comment_statistics, but

editing a comment to publish/unpublish does not. Both should trigger the update, so I

just need to find out why it isn't working for the 'update' case.

--

December 8, 2004 - 07:22 : crw

Ok, I found the problem and came up with a solution. I've been manually approving

comments from anonymous users via the admin interface. comment_admin_edit() calls

comment_save(), but neither calls _comment_update_node_statistics. I inserted the

following two lines around line 952 of comment.module after the call to comment_save():

$nid = db_result(db_query('SELECT nid FROM {comments} WHERE cid =

%d',$edit['cid'])); _comment_update_node_statistics($nid);

Ideally, there'd be tests for all these. comment_save should produce a return value, and

comment_admin_edit() shouldn't go forward unless comment_save returns true.

Please excuse my lack of diff/patch-fu. :)

--

Junyor responds some hours later and challenges CRW’s proposal. He states:

--

 (December 8, 2004 - 09:58): Junyor

“Bah, that function should call comment_save(). All comment changes should go

through comment_save(). It would make life so much easier.

I'll try to come up with an updated patch soon, but probably not before this weekend.”

--

Dries then responds in support of Junyor and again ask for input from other Drupal community

members. He states:

--

(December 8, 2004 - 10:28): Dries

“I agree that all comment editing should go through comment_save(), yet that will

require a bit of refactoring. Also, there are two 'edit comment' forms (one for users, one

for administrators) that should be merged, much like we merged 'node edit' forms.

Anyone?”

--

A few more days pass then Junyor follows up with Dries on the status of the Bug Fix.

73

--

 (December 11, 2004 - 17:19): Junyor

“Dries: I see that you made a change to the updating of node_comment_statistics in CVS

HEAD. Do I still need to add an updated patch? Are there plans for a 4.5.2 that could

use this patch?”

--

An hour later someone new, Ax, enters the SRD. Ax reports on his own problems with the Bug

and his experimentation with Junyor’s Bug Fix. He supports Junyor’s proposal but has some

comments regarding the effectiveness of the patch in solving the problems and points out that

there are some other software modules which are affected. Ax says

--

(December 11, 2004 - 18:14): Ax

“i tried upgrading a 4.4 site to 4.5 yesterday and fell into the same trap as pennywit, kps,

junyor, and others: the update for the node_comment_statistics table only updates forum

comments and inserts num_comments 0 for all other node types. quite cheaty, this.

junyors 4.5 patches (node_comment_stats-2.patch, node_comment_stats2-2.patch) seem

to solve the problem for me. At least, i see proper "replies" counts in tracker and node

views now. I didn't try approving / publishing / unpublishing comments, though, nor did i

check other issues mentioned in the thread (user names postgresql, ...).

i applied the 2 patches to a 4.4 database / 4.5 code both before running update.php and

afterwards. in the first case, there is a small glitch in that update.php throws an error:

user error: Unknown table 'node_comment_statistics' DROP TABLE

{node_comment_statistics} because the patch removes "CREATE TABLE

{node_comment_statistics}" from update_105. this could be catched by changing to

"DROP TABLE IF EXISTS {node_comment_statistics}". this is definitely a critical bug,

and these patches should be applied to 4.5 as soon as possible, regardless of the "all

comment editing should go through comment_save()" issue.”

--

Another new entrant to the SRD, Jeremy also raises a challenge to the effectiveness of Junyor’s

proposal. Jeremy states

--

(December 11, 2004 - 20:53): Jeremy

“I've just run into this same bug, trying to upgrade from 4.4 to 4.5. It's a show stopper

for me. :(Ugh, so close.”

--

74

The SRD continued with more rounds of communications with three other participants joining

the deliberations until they were able to resolve the issues. Dries then legitimized the revised and

tested innovation proposal and assigned Junyor to implement it. In his final communication on

this issue Dries says:

--

(January 5, 2005 - 21:37): Dries

“I committed the patch to DRUPAL-4-5. I'm putting the HEAD version on hold until the

revisions patch landed. Please upgrade your Drupal 4.5 sites to DRUPAL-4-5 in

preparation of Drupal 4.5.2. Thanks.”

--

6.3 Concluding Summary

In this chapter I set out to illustrate the basic characteristics of the Structured Rational

Deliberations which I have hypothesized serve as the legitimation process for new innovation

proposal in the Drupal open source community. In this section I want to summarize some of the

key empirical observations from my data analysis. (1) The participants of the SRDs had a

preference for communicative action in all cases. By that I mean that communicative action

dominated the deliberations of committed as well an uncommitted innovation proposals.

Discursive actions were used as a means of challenging the validity claims of an innovation

proposal and vetting the quality of it. Very few instances of instrumental action have been

observed in the data analyzed. (2) The participants of the SRDs had a preference for rational

persuasion. This influence tactic was used by the participants to influence each other in the

following two distinct ways: (a) defending a validity claim of the innovation (eg. relevance); and

(b) in obtaining support from Dries or other key actors in Drupal. (3) The SRDs were always

open and anyone could participate. In many cases Dries (as well as other members) put out open

requests for participation in the deliberations. (4) A proposal succeeded (committed) or failed

(uncommitted) based on defense that the proposer could mount for it. Mounting a defense was

not a blind process, it often required the proposer redesigning and improving the proposal based

on feedback from the community.

75

7. Theoretical Discussion

The empirical analysis in the prior chapter illustrates how the innovators of Drupal used open

discourse to cultivate legitimacy for their innovations in order to obtain approval from Dries for

inclusion in the software. In this chapter I will offer a theoretical explanation of my empirical

observations on the dynamics of Drupal’s innovation legitimation processes from the perspective

of the ISS theoretical framework I outlined earlier in Chapter 3. The primary focus of my

discussion is to develop a theoretical explanation of Drupal’s innovation legitimation process

from the perspective of the concept of Situated Rational Deliberations (SRD) in the Ideal Speech

Situation (ISS) theoretical framework. However, before moving to that discussion I must first

provide a theoretical discussion of the social organization of Drupal open source community,

which has a different social structure to traditional software organizations. Therefore two

important issues require elaboration here: (1) the social and organizational context of Drupal and

(2) the dynamics of the innovation legitimation processes.

7.1 The Social and Organizational Context of Drupal

The Drupal Open Source Development (OSD) community is a non-profit altruistic organization

that is composed of members who donate their time and expertise to develop, innovate upon and

maintain software products for the public goods economy (Bergquist & Ljungberg, 2001;

Zeitlyn, 2003). Traditional profit-oriented software development organizations are different in

that they have allocated resources (people, money, time and expertise) and a defined hierarchy of

authority, roles and organizational policies and procedures oriented to their profit motive.

Further, traditional software organizations have reward and incentive schemes for motivating and

rewarding appropriate behavior of its members (Bitzer, Schrettl, & Schroder, 2007; Nelson &

Winter , 1982). However, the dominant philosophy of OSD is the free creation of software for

the public good, and anyone with the appropriate expertise and motivation is welcome to

contribute (Bonaccorsi & Rossi, 2003; Kogut & Metiu, 2001). In this regard, the Drupal OSD

community is no exception; anyone can submit new features, updates or patches to Drupal’s core

software (Drupal , 2013). There are no limitations on participation (proposing or criticizing

innovation proposals) on any of Drupal’s deliberation media, which are mainly the Issues Que

(online forums), Drupal IRC Channel (#drupal-contribute) and the developer mailing list

76

(Drupal, 2013). Further, the process for legitimizing an innovation proposal is open deliberative

discourse in which no limitation exists on who can comment during the deliberations. The

empirical observations from the 52 cases showed that for an innovation to be committed into

Drupal software the innovator must defend it against the scrutiny of the community. When a

Drupal member proposes an innovation for the software environment it is subjected to open

critique and approval is given only when the innovation receives support from a significant

number of the community members (ie. a ‘+’ rating). From this perspective Drupal’s innovation

legitimation processes can be viewed as a set of Situated Rational Deliberations and a voting

process. During the deliberation process Drupal members may criticize an innovation proposal

by: (1) challenging its validity; (2) suggesting changes to the innovation or offering alternatives;

or (3) outright rejection of the idea. This process will be discussed in more detail later in this

chapter.

Participation in the rational deliberations is highly valued and critical to the viability of Drupal.

The social structures of the Drupal community orients its members and endow them with rights

and responsibilities of participation in these SDRs that are the primary mean of critically

interrogating innovation proposals and achieving the goal of high quality software, which is at

the heart of Drupal’s philosophy. All “contributions are peer reviewed and then decided on by

Dries or another of the core committers” (Drupal , 2013). Further, status and recognition in

Drupal is achieved based of the contributions that members make to designing and programing

innovations, and engaging in deliberative discourse to improve the value of Drupal’s software

core capabilities.

7.2 Leadership, Roles and Rewards

Within the OSD community of Drupal there are four definable roles and responsibilities: (1) core

committer (Obligatory Passage Point), (2) maintainer, (3) branch maintainer, and (4) core

contributor. All roles defined in the Drupal project, except for OPP, are dynamic and changing

dependent upon continued participation in the Drupal community. Role fluidity was also

observed in other empirical studies of OSD projects conducted by (Tirole & Lerner, 2002).

However, this does not mean that OSD organizations are unstructured, anarchistic cultures that

lack leadership; on the contrary they usually have strong community values and strong leaders

77

(Bonaccorsi & Rossi, 2003). Often, the OSD community is started by a few individuals who

often rotate the leadership responsibility for the group; and in some cases the leadership role is

decided by community voting (O'Mahony S. &., 2007; O'Mahoney, 2008). In the case of Drupal,

Dries is the singular visionary who started the project of building the software and as the

community grew he assumed the role of OPP, encouraging and monitoring the deliberations and

giving final approval to innovation proposals after a significant number of members have voted.

Dries is also responsible for appointing community members to the various roles described

above (Drupal, 2013); on this account, I classified him in the role of OPP.

While Drupal’s environment might seem unstructured and unconstrained due to its social

organization, it is far from that. As found in Linux, Drupal has an undisputed leader, who voices

‘recommendations’, and even though the leader does not have the authority to obligate any

member to tasks these ‘recommendations’ are apparently followed by the majority of the

community. This is mainly because in open source projects there is certain trust between the

leader and the community that stems from the notion that the community will follow the

‘recommendations’ of the leader only if the leader respects the community’s input into the work

conducted (Tirole & Lerner, 2002). In other words, the recommendations will be translated into

code only if the community members feel that it is in the benefit of the software, and not an ego-

centric order from the leader. This also means that in order for the leader to be respected, he/she

must be able to entertain criticism and improvements to their recommendations (Tirole & Lerner,

2002).

The three (2-4) basic roles are conferred by Dries, and are temporary, based on a member’s

continued contributions to the Drupal software environment. This too is a common practice in

OSS communities; role specification results from the initiative of the volunteer (O'Mahoney,

2008; Krogh, 2003). At the time of this research there was 1 core committer, which was Dries,

10 branch maintainers, whom did not differ in responsibilities from ‘maintainers’, and an

unknown number of core contributors. A Core Committer has the responsibility of testing and

reviewing patches, writing tests, patching issues and documentation (Drupal , 2011). Dries is the

only permanent Core Committer and he is the only member that has access to all the software

code in the core depositary and the final authority in approving any changes to the software

78

(Drupal, 2013). The Maintainer has “informal responsibility” for a certain portion of the

software core (Drupal, 2013). The next role of core contributor is anyone who contributes to the

Drupal core software. As stated in Drupal.org, “Core contributors who have made substantive

contributions (particularly to a core component not individually maintained) may apply for

Maintainer status by writing to Dries. Dries may also individually invite them” (Drupal, 2013).

In addition to the Maintainer role, Dries also appoints the Branch Maintainer role to members

that have contributed substantially to certain modules of the Drupal core software. A Branch

Maintainer has update access to the core repository and is allowed to commit a patch, but only

to specific modules of the software (Drupal, 2006). The appointment of Maintainer and Branch

Maintainer is based on a member’s past contributions to the core software. While, any

community member can ‘apply’ for a formal role, such ‘applications’ are only successful if the

individual has a track record of contributions to the community. This observation is corroborated

in the literature by Ye (2003) and O'Mahony (2007) whom show that positional authority is

conferred in recognition of contributions to the community. In another report Bonaccorsi and

Rossi (2003) state that in open source software roles and authorities tend to grow naturally with

the software and are assigned on the basis of contribution to the code, as opposed to being

assigned from the beginning of the project.

Contributors receive no direct materialistic or monetary gain from contributing to the Drupal

OSS community. There are two types of rewards that are conferred on active long term

contributors to the Drupal community: (1) appointment to a specific role; (2) public recognition

of contributions in the Drupal member directory. The appointment to a role signals recognition

of continued commitment to the community and confers upon the appointee social capital and

status within the community (Bergquist & Ljungberg, 2001). These appointments also have a

value outside of the community as they signal to external organizations the competence and

expertise of the person. Contributions to successful Drupal initiatives has the potential to boost

an individual reputation, which in itself is a reward as it has the potential to give credit beyond

the Drupal community (Ljungberg, 2000; Zeitlyn, 2003). In the context of the Drupal project,

contributors gift their time and expertise, which result in a piece of code or a certain approach to

address a problem, and receive in return the credit and recognition of being the original

contributor of that piece of code or approach. The more popular the innovation becomes the

79

more recognition the original contributor of that innovation will receive. Also, in each member’s

profile in Drupal.org a counter measures the number of successful initiatives credited to each

member; the higher that counter, the more power that member’s opinion holds in future

discussions. Giving public recognition to a member for an innovation is an essential practice in

OSD (Tirole & Lerner, 2002). In the Drupal community each member’s profile lists all

innovations that member was responsible for, along with all projects and community events that

members attend.

7.3 The Dynamics of Structured Deliberations

While there are specified formal roles in the Drupal community the legitimation of innovation

proposals unfold as a set of open structured deliberations within a social structure that allows for

any of its members free and open participation. The empirical observations suggest that the

process for structured deliberations on innovation proposals at Drupal closely approximates the

Ideal Speech Situation (ISS) (Habermas, 1970), with its basic premise being the following:

 all participants have equal opportunity to engage in discourse

 all participants have equal opportunity to freely voice their opinion, and to challenge

others’, about any discourse in the context of the deliberations

 the discourse is free of constraints such as domination, manipulation and control

 all participants’ input must be equal in power

Empirical observations from the 52 cases of structured deliberations on innovation proposals

show that none of these basic criteria were violated. The structured deliberations took place in

Drupal’s open forums, its public communication system, to which all of its members subscribe.

At no time were any of the communications private (I have no way of knowing if they were back

channel communications between any of the members). At no time was any one admonished for

being overly critical of an innovation proposal; on the contrary, at times Dries often requested

more critical discussion on a proposal if there seemed to be a lack of interest in the discussion.

At no time was discussion shutdown or prevented from unfolding. Contributors had the option to

defend, modify or withdraw their innovation proposals in the light of the unfolding deliberations.

Other participants in the deliberations had the option to criticize, suggest modifications to or vote

80

for all innovation proposals under consideration. While Dries, the OPP, monitored the

deliberations and observed the voting he for the most part kept silent, allowing the Drupal

members to speak freely. These systematic empirical observations on the patterns of the

structured deliberations suggest the following theoretical proposition:

P1: When the social organization is heterarchical and the participants are oriented to

design excellence, their deliberations on innovations are likely to be open and unfettered.

This theoretical proposition is corroborated by the literature on design and policy studies. For

example, Wylant (2008) found that innovation flourished in organizational situations where open

discussions among designers are incentivized. Simons (1999) also found that top management

teams were more effective in strategic decision making when they encouraged diversity in ideas

and debate. Van Der amd Schoemaker (1992) illustrated the importance of open communication

to solving deep and seemingly intractable problems. Tjosvold, Tang and West (2004) argue that

open discussion improves a team’s problem solving capability and leads to better performance

outcomes. On the other hand, Marx (1991) illustrated how restricted discussion led to poor

strategic decisions in firms. Moreover, an early software development study by Ngwenyama

(1991) illustrated how modelling software design processes along the lines of ISS improved

collaborative action learning of software designers and led to better outcomes.

7.4 Communication Dynamics of Structured Deliberations

As observed in the empirical data, Drupal’s innovation legitimation process unfolds as open

SRDs in which Drupal community members critically interrogate each innovation proposal for

relevance, efficiency and effectiveness. The proponent of the innovation must present a

thoughtful argument for the innovation and defend it to his/her peers. The deliberations are

conducted in Drupal’s online forums and the innovation is only legitimized by Dries after

extensive critique and ascent of the community members. During the deliberations individuals

use rational persuasion and consultation techniques to influence each other on the suitability of

the proposed innovation for inclusion into the core software. My analysis of the conservations

reveals that both the innovators and critics try to indirectly influence Dries, the OPP, for all

changes to the core software. However, all Drupal community members understand that Dries is

81

not the only one to persuade, so a large network of influence can be observed in the

conversations.

When the structured deliberations on innovation proposals are examined from the perspective of

the ISS framework a pattern of communication is observed that is of importance to our

developing theoretical understanding of innovation legitimation processes in heterarchical

organizations. First I observe that the structured deliberations are dominated by communicative

actions; that is the orientation of the participants in these deliberations is in reaching

understanding. Second, the focus of critique of innovation proposals is on interrogating and

testing the implicit validity claims of efficiency, effectiveness and relevance of innovation

proposals. Third the preferred strategy for influencing each other was rational persuasion and

consultation. These patterns of communication are very different from traditional software

development organizations. The empirical observations from the analysis of the conversations

suggest the following proposition:

P2: When the social organization is heterarchical and the orientation of participants is on

building shared understanding for joint action, the participants will more likely use

communicative action and rational persuasion to influence each other.

The literature on communication and organizational influence support this finding. For example,

Innes & Booher (1999) discussed the central role that communicative action plays in consensus

formation in complex adaptive systems. Polanyi (2002) found that communicative action is an

efficient approach to building common ground and achieving consensus for joint action in large

group collaborations. Ngwenyama and Nielson (2013) found that when individuals in software

projects need the support of others over whom they have no authority they use soft influence

tactics of rational persuasion and consultation to enroll their support. Yukl, Falbe and Youn

(1993) conducted an empirical study on the effectiveness of different patterns of influence by

managers and suggest that rational persuasion and consultation are more effective forms of

influence when dealing with peers. Sussman and Vecchio (1997) found that individuals choose

different influence tactics dependent upon their position in the organization relevant to the target

of influence. Schriesheim and Hinkin (1990) also argue that rational persuasion is a more

effective influence strategy when dealing with peers. Other studies have found that

organizational members respond more favorably to the use of soft tactics because such tactics

82

emphasize trustworthiness and gives credibility to the target of influence (Barry & Shapiro,

1992). Furthermore, an organizational member’s behaviour depends on what they perceive to be

appropriate in a certain social setting (Cartwright & Zander, 1968). For example, individuals

working in settings of participative management tend to exercise rational communication and

rational persuasion, while individuals working for authoritative and hierarchical management

settings, often choose non-rational tactics such as blocking and upward appeal (Ansari & Kapoor

, 1987). Also, in a study measuring the effectiveness of different influence tactics, Falbe and

Yukl (1992) found that the rational persuasion influence tactic was much more effective when

used in combination with consultation.

7.5 Characteristics of Legitimation Processes

Empirical observations from the data analysis revealed two distinct categories of innovation

legitimation processes which I earlier referred to as Fast and Slow Commits. From a design

perspective, one distinguishing feature of Fast and Slow Commits is the complexity of the

innovation proposal and its potential implications (impact on other software code and future

maintenance) for the Drupal software environment. Therefore, complex innovation proposals

require significantly more deliberations and receive a higher frequency of challenges to

efficiency claims, resulting in slower (or longer) legitimation processes. Of the 24 legitimized

innovations in the empirical analysis, 16 are characterized as the Fast Commits, and 8 as Slow

Commits. Empirical findings from the content analysis of the 24 successful legitimation cases

illustrate the low complexity and straight-forward nature of those 16 innovation proposals

characterized as fast commits, while a much higher level of complexity is apparent for the 8

deliberations characterized as slow commits (Table 6.4). On the average the deliberation cycles

for slow commits were slightly more than 3 times as long as fast commits (5.3 and 17 comments

per case for fast and slow commits, respectively). Further, there are 11 instances of validity

claims challenged in fast commits, as opposed to 18 such instances in slow commits (mostly

challenging efficiency claims). Also, fast commits consisted of 37% bug reports, 25% new

features, and 37% new tasks, while slow commits consisted of 63% bug reports, 25% new

features, and 13% new tasks. (cf. Appendix E)

83

A fundamental difference between the two categories was that redeeming the validity claims

took more effort in slow commits than in fast commits as the innovator was often required to

convince opponents of the relevance, effectiveness, efficiency and implications of the proposed

innovation and in many cases are required to make modifications to it. When bug fixes, new

features, and new tasks are compared in terms of communicative action types, it becomes

apparent that out of those three types of innovations, bug fixes required the longest deliberations.

Empirical analysis of the deliberations on new features showed that, unlike bug fixes, they do not

entail modifying or eliminating existing code; rather they add features to the software with little

downstream impact. This allowed the deliberations to take a simpler form, and receive less

criticism from less people. It seems in the data that when attempting to address bug reports,

innovators needed to change some aspect of how a certain piece of the software operated, thus

dealing with the risk of change. In addition, even though Drupal operates on a modular design,

changing one aspect of the core software can potentially result in inconsistency or

interchangeability issues with the rest of the software. Facing one of these issues as a result of

addressing a bug report can ultimately deem a fix more expensive (in terms of resources). Thus,

in an attempt to adopt the most effective approach, Dries is observed to encourage a longer

deliberation in cases that address bug fixes.

P3: The type, complexity and implications of the proposed software innovation will

influence length and character of legitimation process.

P3a: When the proposed innovation is complex and has the potential for complex

impacts on the core modules the legitimation cycle will be long, as the innovator

must defend the relevance, effectiveness, efficiency, reputation and cost

implications of the proposed innovation to the OSS community.

P3b: When the proposed innovation is in response to critical bug fixes the

legitimation cycle will be long, as the innovator must defend the effectiveness,

efficiency, reputation and cost implications of the proposed innovation to the OSS

community.

84

The literature on software design and design theory support this finding. For example Waterman

(2013) have found that complexity of the software, that is, when functionality is high software

design is more costly in time and effort. Martin (2003) also argues that the more variety in the

functions of the software the higher cost to develop in terms of time and resources. This finding

about the cost of complexity has also been observed in other design domains such as product

design and manufacturing (Banker, 1990). Another dimension of importance here is

organizational structure and values in open source development (Crowston, K, Wei, Eseryel, &

Howison, 2007). Communication processes in virtual organizations are more time consuming

for several reasons (Kasper-fuehrera, 2001; Khalil, 2002). First, communication is asynchronous

as users are not face-to-face, this can lead to time delays in response and breakdowns in

communication which must be repaired (Bjorn & Ngwenyama, 2009). Members of virtual

organizations need to develop specific steering processes to ensure smooth and effective

communication (Bjorn P. N., 2010). Further, significant effort must be spent on overcoming

cultural differences and building trust when the team members are multi-cultural (Gallivan M. J.,

2001; Soderberg, 2013). Also, when the organization is oriented to maintaining its reputation

much more effort is put into making the best decisions concerning their products (Arvai, 2001;

Dijksterhuis, 2006). Reputation is highly valued in open source communities; it is what attracts

volunteers to donate their time and expertise to the OSD project (Stewart & Gosain, 2006;

O'Mahony S. , 2007). The orientation and identity of OSD volunteers is towards excellence in

software development (Blohm, Bretschneider, Leimeister, & Krcmar, 2011)

7.6 Use of influence Tactics in Structured Deliberations

Another important empirical observation here concerns the characteristics of the use of influence

processes during structured deliberations of innovation proposal. The organizational and social

norms of Drupal dictate that all innovation proposals be subjected to a collaborative code review

process and each proposal must obtain a majority of positive votes to be considered for inclusion

into the software platform by Dries. Consequently, in order to succeed the innovator must build a

persuasive case for the innovation and recruit support from a critical mass of the Drupal

community. But since the organization is heterarchical, and its members enjoy no formal

authority over each other or Dries (the OPP), innovators who wish to get their innovations

85

legitimized and included in Drupal core software have no option but to exert influence via the

process of structured rational deliberations. Based on the observations made in the empirical

analysis, members of the Drupal community realize that the organizational norms under which

they operate dictates that if they wish to legitimate an innovation, they must offer a persuasive

argument for it, while the rest of the community, including Dries, scrutinize it. Whether or not

the innovation can survive or adapt to the community’s scrutiny will dictate the innovation’s

fate. Moreover, Dries established collaborative code review as an essential process in the

legitimation of innovation proposals. This process usually starts when a member of the Drupal

community ‘consults’ openly or proposes an innovation that aims to address a specific problem

in the core software. The act of starting a conversation about a prospective innovation in the

Drupal forum is in essence an act of consulting the rest of the community. The deliberations then

unfold as a combination of the following types of communicative interactions:

- the innovator announcing and describing the proposed innovation

- members accepting the validity claims of the proposed innovation

- members challenging or rejecting the validity claims of the proposed innovation

- the innovator defending or shoring up the validity claims of the proposed innovation

- members presenting alternative approaches to ones already presented

- the innovator modifying the proposed innovation in response to community input

- Dries outlining outstanding legitimation processes needed

- Dries accepting the proposed innovation for inclusion in the core software

Empirical analysis of the 221 communicative interactions during the structured rational

deliberations of the 24 successful proposals reveal that on average 4.8 community members

participated in reviewing each innovation proposal. More specifically, that average is 3.7

contributors in fast commits and 5.9 contributors in slow commits. Within the 24 conversations,

Dries commented only 44 times, 25 of those comments were “committed”, and 9 comments were

requests for further input from the Drupal community. While Dries is the OPP for all innovation

proposals, he manages the Drupal project to encourage rational deliberations amongst the

community members, however from the innovator’s perspective Dries is a key target of

influence. Given the heterarchical organizational structure, the successful innovator must

skillfully use soft influence tactics to recruit a critical mass of support from the Drupal

86

community in order to influence Dries to legitimate and accept the innovation. Empirical

analysis reveals that rational persuasion and consultation are the dominant influence tactics used

in recruiting support in the Drupal community. The process almost always starts with the

innovator identifying a problem in the software and presenting a solution in the form of a patch

(out of the 24 cases, this happens 20 times, as opposed to 4 instances where conversations were

started with a direct consultation). It is empirically backed however that as deliberations unfold,

rational persuasion is used to achieve consensus or the appropriate number of ‘+’ votes on the

proposal. Requesting and accepting feedback from the community members and reasoning about

the details of proposals were used as strategies for recruiting further support. For example, in 6

cases where the innovators suggested an innovation and consulted the community for feedback, a

total of 20 responses included 15 alternative proposals from different community members,

deeming consultation a more effective tactics for when members have identified a problem but

not a solution. Another outcome of using consultation as an influence tactic is the potential for a

more collaborative design, in terms of more members contributing to the design of an innovation

as a result of an initiator, but even in this situation the acceptance of a certain innovation will be

ultimately be as a result of a rational persuasion tactic. A consultation tactic is used for when the

goal is to attract attention to a problem, where as a rational persuasion tactic is used for when the

goal is to convince the community of a solution.

The empirical analysis reveals that innovators have a preference for soft tactics (rational

persuasion and consultation) when interacting with other members of the Drupal community.

Thus, in Drupal, rational persuasion and consultation are the dominant influence tactics used

within the structured rational deliberations.

P4: When attempting to get their innovations legitimized, innovators must recruit the

support of other community members, whom have no obligation to abide by the

innovators rationale, by exerting lateral influences using soft tactics

This finding is replicated by Kipnis, Schmidt and Wilkinson (1980) whom together found that to

overcome resistance of co-workers change agents will use coalitions as an influence strategy. In

this case we see members of the Drupal community influencing each other to get their

87

innovations approved by Dries. The process of forming a coalition includes recruiting support

towards one’s proposal within the organizational setting (Yukl & Falbe, 1990). Resorting to

coalitions is helpful considering the lateral structure of the organization and peer relationships

among the community members (Mechanic, 1962). Kipnis, Schmidt and Wilkinson (1980) also

state that members of organizations who intend to introduce new ideas often use rationality

tactics, which encompass detailed explanations of the idea being proposed, and the rationale

behind the proposal. Innovators in Drupal solely use soft tactics when they implement their

influence processes because they realize that they possess no direct authority over members of

the community. In their study, Yukl and Tracey (1992) found that influence tactics need to

confirm to organizational norms and the influencer’s position in the organization. The innovators

within the Drupal deliberations realize that the heterarchical structure of Drupal made the use of

hard tactics inappropriate, mostly because the Drupal community members are not obligated to

abide by any rationale, and certainly not by hard tactics. Thus in an attempt to maximize their

chances of success, innovators always use soft tactics. Moreover, using hard tactics could result

in resistance, resilience or retaliation; soft influence tactics are more effective in open

communication where gaining trust is important (Drake & Moberg, 1986; Gattiker & Carter,

2010; Kotter, 2003). It is unlikely that the Drupal community will be supportive of a member

that is perceived untrustworthy, and as O'Mahony (2007) and Crowston et al (2007) put it, trust

is an essential value of OSD and community members do much to cultivate and sustain it.

88

8. Conclusion

A valid assessment of the research goal is important in evaluating the contribution of this thesis.

As stated in the introduction, this thesis set out with the goal to arrive at an understanding of the

legitimation processes of innovations in open source projects, but before propositions were made

on legitimation processes, the open deliberations in Drupal was analyzed. Habermas’s Ideal

Speech Situation (ISS) was used as a framework to view the Drupal deliberations from, and the

key aspects of the theory, Communicative Actions and Validity Claims were used together with,

Influence Tactics concepts to code and analyze the Drupal deliberations. HyperResearch was

used to code the deliberations, and to analyze the data. From the analysis, this thesis was able to

identify two different categories of innovation legitimation process, Fast Commits and Slow

Commits, each with different dynamics.

Before theoretical propositions were derived from the empirical analysis of the legitimation

processes, some more general findings were outlined and empirically supported. This study

found that when heterarchical organizations are oriented towards design excellence, the

deliberations on the innovations are likely to be open. Also, when participants in heterarchical

organizations aim to achieve shared understanding for joint action, the communicative action

type and rational persuasion influence tactic are most likely to be used by the participants.

In regards to the dynamics of innovation legitimation processes, this study was able to find that

legitimation processes of innovations in open source software were influenced by the type,

complexity and implications of the innovations on the rest of the community. More specifically,

innovation legitimation processes that constitute complex innovations that have potential

implications on the rest of the software will be long, as the innovator must defend the

innovation’s validity claims. Also, when innovations discuss critical bug fixes the legitimation

process will be long, as this type of innovation will require effort from the innovator to defend

the innovation’s validity claims.

Also, when attempting to get their innovations legitimized, innovators will attempt to influence

other participants in an open deliberation by exerting lateral influences using soft tactics.

89

Since there are no studies in the literature that study legitimation processes of innovations within

open source systems, the propositions of this thesis are original to the literature, and should be

used as a foundation to build future research on.

8.1 Implications of this Thesis

This study also has important implications for stakeholders of the software production industry.

Firstly, this thesis adds further understanding to the open source literature by offering an insight

into the dynamics of innovating within open source communities. The management of

innovation within open source communities can benefit from the findings of this study by

gaining a further understanding on the dynamics of open source software communities. This

understanding has the potential to offer insight that is transferable to other open source software

production projects in an attempt to foster innovation.

Also, stakeholders in traditional software development projects can benefit from this study’s

insight by gauging their community’s characteristics against Drupal’s community, which is

evidently capable of managing innovation.

8.2 Limitation

This study has some limitations that are worth noting. Firstly, had time not been a constraint in

this study, and uncommitted cases were followed until either committed or rejected, further

insight into the dynamics of legitimation processes in open source software could have been

exposed. If a significant amount of uncommitted cases were eventually committed, then the

sample size of the committed cases would have increased, this could have changed the dynamics

of the legitimation processes exposed. On the other hand, if the uncommitted cases were

eventually rejected, then the study could have explored dynamics of legitimation processes of

failed innovation in open source software. Secondly, this study addresses a total of 52 cases from

the Drupal open source project, a small percentage of the total cases available in the dataset. This

was due to time constraints. If this study were to consider a considerably higher amount of cases,

then the witnessed dynamics could have changed. Finally, this study addresses a set of cases

specifically from one open source project, Drupal and although the findings in this study helps

gain insight into the legitimation processes of innovations in other open source projects, applying

90

the research methodology of this study to another open source software project could result in

different dynamics. The more software projects that are examined using this thesis’s research

methodology, the better insight provided. Analyzing more open source software projects will

help gain further understanding on the innovation legitimation processes in open source software

projects, and solidify the findings of this thesis.

8.3 Recommendation for Future Research

One potential future research project based on this study would be a more comprehensive

empirical analysis of the uncommitted cases in this study. This could result in further insight

into the legitimation processes of innovations in open source software. Such research could be

conducted using the same research methodology and theoretical perspective of this study.

Additionally, a more in-depth empirical study of the 52 cases from the perspective of power and

influence theory has the potential to provide insights into the political and power dynamics of

deliberations in the Drupal open source software community. However, such study would require

further understanding of the social structure in Drupal, and also different theoretical frameworks

from the one used in this study might be needed. In addition, future research could potentially

address the legitimacy of the different roles within open source software, and how participants

are selected for certain roles in open source software communities.

91

Bibliography

Abrahamson, E. (1991). Managerial Fads and Fashions: The Diffusion and Refection of Innovations.

Academy of Management Review, 586-612.

Ansari, M., & Kapoor , A. (1987). Organizational Context and Upward Influence Tactics . Organizational

Behaviour and Human Decision Processes, 39-49.

Arvai, J. G. (2001). Testing a structured decision approach: Value-focused thinking for deliberative risk

communication. Risk Analysis, 1065-1076.

Ashforth, B., & Gibbs, B. (1990). The Double-edge of Organizational Legitimation. Organizational

Science, 177-194.

Ashton, J., & Oakley, A. (1997). The Gift Relationship: From human blood to social policy. London:

London School of Economics and Political Science.

Banker, R. D. (1990). Costs of product and process complexity . Measures of manufacturing excellence,

269-290.

Barry, B., & Shapiro, D. (1992). Influence Tactics in Combination: The Interactive Effects of Soft Versus

Hard Tactics and Rational Exchange . Journal of Applied Psychology, 1429-1441.

Bergquist , M., & Ljungberg, J. (2001). The power of gifts: organizing social relationships in open source

communities . Information Systems Journal, 305-320.

Bernard, C. (1938). The functions of the executive. Cambridge, MA: Harvard University Press.

Bies, R. J., Tripp, T. M., & Neale, M. A. (1993). Procedural Fairness and Profit Seeking: The percieved

ligitimacy of market exploration . Journal of Behavioral Decision Making, 243-256.

Bitzer, J., Schrettl, W., & Schroder, P. (2007). Instrinsic motivation in open source software development

. Journal of Comparative Economic , 160-169.

Bjorn, P. N. (2010). Technology alignment: a new area in virtual team research. IEEE transactions on

professional communication , 382-400.

Bjorn, P., & Hertzum, M. (2006). Project-based collaborative learning: negotiating leadership and

commitment in virtual teams. 5th conference on Human Computer Interaction in Southern Africa

(pp. 6-15). CHI: Cape Town.

Bjorn, P., & Ngwenyama, O. (2009). Virtual team collaboration: building shared meaning, resolving

breakdowns and creating translucence. Information Systems Journal, 227-253.

Blake, N. (1995). Ideal Speech Conditions, Modern Discourses and Education. Journal of Philosophy of

Education , 355-367.

92

Blohm, I., Bretschneider, U., Leimeister, J., & Krcmar, H. (2011). Does collaboration among participants

lead to better ideas in IT-Based idea competitions? An empirical investigation. International

Journal of Networking and Virtual Organisations, 106-122.

Bonaccorsi, A., & Rossi, C. (2003). Why open source software can succeed. Research Policy , 1243-

1258.

Bonaccorsi, A., & Rossi, C. (2003). Why open source software can succeed. Reseach Policy , 1243-1258.

Burger, T. (1976). Max Weber`s theory of concept formation: History, laws, and ideal types. Durham,

NC: Duke University Press.

Burleson , B., & Kline, S. (1979). Habermas' Theory of Communication: A Critical Explication . The

Quarterly Journal of Speech, 412-428.

Callon, M. (1986). Some elements of a sociology of translation: Domestication of the scallops and the

fisherman at St. Brieuc Bay. In J. Law, Power, Action and Belief: A New Sociology of

Knowledge? (pp. 196-233). London: Routledge.

Cartwright, D., & Zander, A. (1968). power and influence in groups. Group dynamics, 580.

Carver, B. (2005). SHARE AND SHARE ALIKE: UNDERSTANDING AND ENFORCING OPEN

SOURCE AND FREE SOFTWARE LICENSES. Berkeley Technology Law Journal.

Clark, D. (1988). The design philosphy of the DARPA internet protocols. Computer Communication

Review , 106-114.

Cooren, F. (2000). Toward another ideal speech situation: A critique of Habermas' reinterpretation of

speech act theory. quarterly journal of speech, 295-317.

Cramton, C. (2001). The mutual knowledge problem and its consquences for dispersed collaboration.

Organization Science , 346-371.

Crowston, K., & Scozzi, B. (2003). Open source software projects as virtual organizations: Competency

rallying for software development . IEE Proceedings software , 3-17.

Crowston, K., Annabi, K., & Howison, J. (2003). Defining open source software project success. Twenty-

fourth international conference on information systems, 2-14.

Crowston, K., K, L., Wei, K., Eseryel, ,. U., & Howison, J. (2007). Self-organization of teams for

free/libre open source software development. Information and Software Technology, 564-575.

Cukier, W., Ngwenyama, O., Bauer, R., & Middleton, C. (2009). A critical analysis of media discourse

on information technology: preliminary results of a proposed method for critical discourse

analysis. Info Systems Journal, 175-196.

Currie, W., & Parikh, M. (2005). A Critical Analysis of IS Innovations Using Institutional Theory.

Journal of Management, 317-356.

93

Cusumano, M. A. (1991). Japan's Software Factories . New York: Oxford University Press.

Cyert , R., & March, J. (1963). A behavioral theory of the firm . University of Illinois at Urbana-

Champaign's Academy for Entrepreneurial Leadership Historical Research Reference in

Entrepreneurship .

Dahlander, L. (2005). Appropriation and appropriability in open source software . international journal of

innovation management , 259-285.

David, P. A. (2000). A tragedy of the public knowledge "comons"? Stanford Institute for Economic

Policy Research.

Dijksterhuis, A. B. (2006). On making the right choice: the deliberation-without-attention effect. Science,

1005-1007.

Drake, B., & Moberg, D. (1986). Communicating inlfuence attempts in dyads. Academy of management ,

567-584.

Drupal . (2011). Drupal Core. Retrieved 2013, from Drupal .

Drupal . (2013). Core Developers . Retrieved 06 2013, from Drupal: https://drupal.org/node/21778

Drupal . (2013). Homepage. Retrieved 2013, from Drupal: https://drupal.org/home

Drupal. (2006). Two New Core Committers . Retrieved 2013, from Drupal: https://drupal.org/node/51536

Drupal. (2013). About Drupal. Retrieved 2013, from Drupal.org: http://drupal.org/about

Drupal. (2013). Community - member directory . Retrieved 2013, from Drupal : https://drupal.org/profile

Drupal. (2013). Contribute to development . Retrieved 6 2013, from Drupal:

https://drupal.org/contribute/development

Drupal. (2013). Core Developers . Retrieved 2013, from Drupal.org: http://drupal.org/node/21778

Drupal. (2013). Download and Extend. Retrieved 2013, from Drupal: https://drupal.org/project/drupal

Drupal. (2013). History. Retrieved 2013, from Drupal.org: http://drupal.org/about/history

Drupal. (2013). Patches. Retrieved 06 2013, from Drupal: https://drupal.org/patch

Falbe, C., & Yukl, G. (1992). Consequences for Managers of Using Single Influence Tactcs and

Combinations of Tactics . Academy of Management Journal, 638-652.

Fichman, R. (2004). Going beyond the dominant paradign of information technology innovatoin research.

Journal for the association of information systems , 314-355.

Fultner, B. (2002). On the Pragmatics of Social Interaction: Preliminary Studies in the Theory of

Communicative Action. MIT Press.

94

Gallagher, S., & West, J. (2006). Patterns of Open Innovation in Open Source Software . In Open

Innovation: Researching a New Paradigm. Oxford University Press.

Gallivan, M. (2001). Striking a balance between trust and control in a virtual organization: a content

analysis of open source software case studies. Information Systems Journal, 277-304.

Gallivan, M. J. (2001). Organizational adoption and assimilation of complex technological innovations:

development and application of a new framwork. The DATA BASE for advances in information

systems, 51-86.

Gattiker, T., & Carter, C. (2010). Understanding project champions' ability to gain intra-organizational

commitment for enviromental projects. journal of operations management, 72-85.

Gioia, D. (1986). Symbols, scripts, and sensemaking: Creating meaning in the organizational experience .

In D. Gioia, The Thinking Organization (pp. 49-74). San Francisco: Jossey-Bass.

Glass, R. L. (2006). Software creativity 2.0. Atlanta: Developer Books .

Golant, B., & Sillince, J. (2007). The Constitution of Organizational Legitimacy: A Narrative Perspective.

Organization Studies, 1149-1167.

Guba, E. G. (1990). The Paradigm Dialog. NewBury Park: SAGE.

Habermas, J. (1970). Towards a theory of communicative competence. Inquiry, 360-375.

Habermas, J. (1974). Theory and Practice . Boston: Beacon Press.

Habermas, J. (1975). Legitimation crisis. Boston: Beacon Press.

Habermas, J. (1985). The theory of Communicative Action: Volume 2: Lifeword and Sytem: A Critique of

Functionalist reason. Beacon Press.

Habermas, J. (1989). The structural transformation of the public sphere . Cambridge, MA: Massachusetts

Institute of Technology Press.

Hertel, G., Niedner, S., & Herrmann, S. (2003). Motivation of software developers in Open Source

projects: an Internet-based survey of contributors to the Linux kernel. Elsevier Science, 1159-

1177.

Innes, J., & Booher, D. (1999). Consensus building and comples adaptive systems. journal of american

planning association, 412.

Kaganer, E., Pawlowski, S., & Wiley-paton, S. (2010). Building Legitimacy for IT Innovations: The Case

Physian Order Entry System. Journal of the association of information systems , 1-33.

Kahneman, D., Knetsch , J. L., & Thaler, R. (1986). Fairness as a Constraint on Profit Seeking:

Entitlements in the Market. The American Economic Review, 728-741.

95

Kakabadse, A., & Parker, C. (1984). Power, Politics and Organizations: Abehavioural science view.

Chichester: Wiley and Sons.

Kasper-fuehrera, E. A. (2001). Communicating trustworthiness and building trust in interorganizational

virtual organizations. journal or management, 235-254.

Khalil, O. W. (2002). Information technology enabled meta-management for virtual organizations.

international journal of production economics, 127-134.

Kipnis, D., Schmidt, S. M., & Wilkinson, I. (1980). Interorganizational Influence Tactics: Exploration in

Getting One's Way. Journal of Applied Pyschology, 440-452.

Koch, S., & Schneider, G. (2002). Effort, co-operation and co-ordination in an open source software

project: GNOME. Information Systems Journal, 27-42.

Kogut, B., & Metiu, A. (2001). Open-Source Software Development and Distributed Innovation. Open-

Source Software Development and Distributed, 248-264.

Kotter, M. (2003). Negotiation of meaning and codeswitching in online tandems. language learning and

technology, 145-172.

Kramer, F. (1975). Policy analysis as ideaology. Public Adminstration Review, 509-517.

Krogh, G. v. (2003). Open-Source Software Development. MIT Sloan Management Review, 44(3).

Lakhani, K. R., & von Hippel , E. (2003). How open source software works: “free” user-to-user

assistance. MIT Sloan School of Management, 32(6).

leiner, b., cerf, v., clark, d., kahn, r., kleinrock, l., lynch, d., et al. (1997). the past and the future history of

the internet. communications of the ACM.

Lerner, J. (1995). Patenting in the shadow of competitors . Journal of Law and Economics .

Lerner, J., & Tirole, J. (2001). The open source movement: Key research questions. European Economic

Review, 819-826.

Ljungberg, J. (2000). Open source movements as a model for organising . European Journal of

Information Systems, 208-216.

Lyytinen, K. (1992). Information systems and critical theory . Sage Publications.

Lyytinen, K. J., & Ngwenyama, O. K. (1992). What does computer support for cooperative work mean? a

structurational analysis of computer supported cooperative work. Accounting management and

information technology, 19-37.

Maciel, C. &. (2007). Design and metric of a 'democratic citizenship community in support of

deliberative decision-making. In Electronic Government, 388-400.

96

Malhotra, A., & Majchrzak, A. (2004). Enabling knowledge creation in far-flung teams: Best practices for

IT and knowledge sharing . Journal of knowledge management , 75-88.

Malone, T. Y. (1987). Electronic markets and electronic hierarchies. Communication of the ACM, 484-

497.

Martin, R. (2003). Agile Software Development: Principles, Patterns, and Practices. Saddle River, USA:

Prentice Hall.

Marx, T. (1991). Removing the obstacles to effective strategic planning. Long Range Planning, 21-28.

Mazzoleni , R., & Nelson, R. R. (1998). Economic Theories about the Benefits and Costs of Patents.

Journal of Economic Issues, 32(4), 1031-1052.

Mechanic, D. (1962). Sources of Power of Lower Participants in Complex Organizations. Adminstrative

Science Quarterly , 349-364.

Mockus, A., Fielding, R., & Herbsleb, J. D. (2002). Two case studies of open source software

development: Apache and Mozilla. 22nd International Conference on Software Engineering, (pp.

309-346). Limerick, Ireland.

Mustonen, M. (2003). Copyleft-the economics of linux and other open source software. Information

Economics and Policy , 99-121.

Myers, M., & Klein, H. (2011). A set of principles for conducting critical research in information systems

. MIS Quarterly, 17-36.

Neilson, E., & Rao, M. (1987). The Strategy-Legitimacy Nexus: A Thick Description. Academy of

Management Review , 523-533.

Nelson , R. R., & Winter , S. G. (1982). An Evolutionary Theory of Economic Change . Harvard Collage .

Ngwenyama, O. (1991). The critical social theory approach to information systems. information systems

research.

Ngwenyama, O. (1993). Developing end users' system development competence . Information and

Management , 291-302.

Ngwenyama, O. (1998). Groupware, social action and organizational emergence: on the process dynamics

of computer mediated distributed work. Accounting, Management, and Information Technology ,

127-146.

Ngwenyama, O., & Lee , A. (1997). Communication Richness in Electronic Mail: Critical Social Theory

and Contexuality of Meaning . MIS Quarterly , 145-167.

Ngwenyama, O., & Lee, A. S. (1997). Communication Richness in Electronic Mail: Critical Social

Theory and the Contextuality of Meaning. MIS Quarterly, 145-167.

97

Ngwenyama, O., & Lyytinen, K. J. (1997). Groupware technologies as action constitutive resources: A

social action framework for analyzing groupware technologies . The journal of collaborative

computing , 71-93.

Ngwenyama, O., & Nielson, P. (2013). Using organizational influence processes to overcome IS

implementation barriers: Lessons from a longitudinal case study of SPI implementation .

European journal of information systems.

Oliver, C. (1991). Strategic Responses to Institutional Processes. Academy of Management Review, 145-

179.

Olle Persson, W. G. (2004). Inflationary Bibliometric Value: the role of scientific collaboration and the

need for relative indicators in evaluative studies. Scientometrics, 421-432.

Olson , G., & Olson, J. (2000). Distance Matters . Human-Computer Interaction , 139-178.

O'Mahoney, W. &. (2008). The role of participation architecture in growing sponsored open source

communities . Industry and Innovation .

O'Mahony, S. &. (2007). The emergence of governance in an open source community . Academy of

Management journal .

O'Mahony, S. (2007). The governance of open source initiativesL what does it mean to be community

managed? Journal of Management and Governance, 139-150.

Osterloh, M., & Rota, S. (2007). Open source software developement-just another case of collective

invention . research policy , 157-171.

Pattigrew, A. (1985). The awakening giant: Continuity and change in Imperial Chemical Industries. New

York, NY: Blackwell.

Pfeffer, J. (1981). Management as Symbolic Action: The Creation and Maintenance of Organizational

Paradigms . Research in organizational behaviour , 1-52.

Polanyi, M. (2002). Communicative action in practice: future search and the pursuit of an open, critical

and non-coercive large-group process. system research and behavioral scienec, 357-366.

Pondy, L. (1978). Leadership is a language game. In M. McCall, & M. lombardo, Leadership where else

can we go (pp. 88-99). Durham, NC: Duke University Press.

Roberts, E. (2007). Managing invention and innovation . Research Technology Management , 35-54.

Salancik, G., & Meindl, J. (1984). Corporate attribution: Strategic illusions of management control.

adminstrative science quarterly, 238-254.

Schriesheim, C., & Hinkin, T. (1990). Influence tactics used by subordinates. American Psychological

Association, 246-257.

Schumpeter, J. (1934). The Theory of Economic Development. Harvard University Press.

98

Scott, W. (2001). Institutions and Organizations . Thousand Oaks: Sage Publications.

Simons, T. P. (1999). Making use of difference: Diversity, debate, and decision comprehensiveness in top

management teams. Academy of management journal, 662-673.

Soderberg, A. K. (2013). Global software development: Commitment, Trust and Cultural sensitivity in

strategic partnerships. Journal of international management.

Stewart, K. J., & Gosain, S. (2006). The impact of ideology on effectivness in open source software

development teams. MIS Quarterly, 291-314.

Strang, D., & Macy, M. (2001). In Search of Excellence: Fads, Success Stories, and Adaptive . American

journal of sociology , 147-182.

Strang, D., & Soule, S. (1998). Diffusion in organizations and social movements: From Hybrid. Annual

review of sociology , 265.

Subramanyam, R., & Krishnan, M. (2003). Empirical analysis of CK metrics for object oriented design

complexity: Implication for software defects . IEEE Transactions on software engineering, 297-

310.

Suchman, M. (1995). Managing Legitimacy: Strategic and Institutional Approaches. The academy of

management review, 571-610.

Sussman, M., & Vecchio, R. (1997). A social influence interpretation of worker motivation. Univeristy of

Notre Dame Press.

Swanson, E., & Ramiller, N. (1997). The organizing vision in information system innovation .

Organization science, 458-474.

Tatikonda, M. R. (2000). Technology novelty, project complexity, and product development project

execution success: a deeper look at task uncertainty in product innovation. IEEE transactions on

Engineering Management, 74-87.

Terttu Luukkonen, O. P. (1992). Understanding Patterns of International Scientific Collaboration .

Science, Technology and Human Values .

Tirole, J., & Lerner, J. (2002). Some simple economics of open source . The Journal of Industrial

Economics , 197-234.

Tjosvold, D., Tang, M., & West, M. (2004). Reflexivity for team innovation in china. Group

Organization Management, 540-559.

Vainio, N., & Vaden , T. (2007). Free Software Philosphy and Open Source. Hershey, PA: Information

Science Reference .

Van Der, H., & Schoemaker, P. (1992). Integrating scenarios into strategic planning at royal dutch/shell.

MCB UP.

99

VanDyk, J. K., & Westgate, M. (2007). Pro Drupal Development . New York: Springer-Verlag.

von Hippel, E., & von Krogh, G. (2003). Open Source Software and the "Private-Collective" Innovation

Model: Issues for Organization Science. Organization Science, 209-223.

Waterman, M. J. (2013). the effect of complexity and value on architecture planning in agile software

development. Engineering and extreme programming, 238-252.

Wylant, B. (2008). Desinging thinking and the experience of innovation. Design Issues, 3-14.

Ye, Y. K. (2003). Towards an understanding of the motivation of open source software developers.

Software Engineering, 419-429.

Yukl, G., & Falbe, C. M. (1990). Influence Tactics and Objectives in Upward, Downward, and Lateral

Influence Attempts. Journal of Applied Psychology, 132-140.

Yukl, G., & Tracey, B. (1992). Consquences of influence tactics used with subordinates, peers, and the

boss. American Psychological Association, 525-535.

Yukl, G., Falbe, C., & Youn, J. (1993). Patterns of Influence Behavior for Managers. Group Organization

Management, 5-28.

Zeitlyn, D. (2003). Gift economies in the development of open source software: anthropological

reflections. Research policy, 1287-1291.

100

APPENDCES

APPENDIX A

The figure below illustrates the Drupal core software and modular design. The bold boxes

represent the core functions, while the rest of the boxes are added modules.

 (VanDyk & Westgate, 2007)

101

APPENDIX B

The table below illustrated examples of instrumental aaction in the Drupal Deliberations.

Data Type Case Empirical Evidence (Quote) Explanation

1 Instrumental

Action –

Community

Feedback

5 January 10, 2005 - 20:29 : Dries

Can someone review this please?

Dries wants further

feedback and code

review from the

community in order

to Commit this

patch.

2 Instrumental

Action –

Community

Feedback

12 November 23, 2004 - 23:24 : Dries

I'd like to move forward with this patch

and include it in Drupal 4.5.1. I can't

reproduce this problem (it seems) so it

would be much appreciated if those who

can, can test it.

Dries wants further

feedback and code

review from the

community in order

to Commit this

patch.

3 Instrumental

Action –

Community

Feedback

75 February 10, 2005 - 15:02 : Dries

I'll commit this patch when there is more

demand for it.

Dries is seeking

more interest for

this patch before he

commits it.

4 Instrumental

Action –

Technical

Input

12 December 15, 2004 - 21:33 : Dries

If possible provide a single patch against

DRUPAL-4-5 and a second patch against

HEAD. Looks like the patches are no

longer in sync.

Dries is requesting a

technical

modification to the

patch.

5 Instrumental

Action –

Technical

Input

31 Because of a bug in the project module,

you can't use '.inc' in the name of your

patch. Please rename and resubmit your

patch.

Dries

Dries requesting a

technical

modification to the

patch.

102

APPENDIX C

The table below shows examples of comments illustrating low complexity innovations and high

complexity innovations in the fast commit category. The purpose of this table is to illustrate the

criteria that differentiate low and high complexity innovations in this category.

Data Type Case Empirical Evidence (Quote) Criteria of complexity

Low

Complexity

Innovation

Thread

74

February 8, 2005 - 01:10 : drumm

Attachment:

http://drupal.org/files/issues/page.module_2.diff (1.56 KB)

The page module's long help text is a bunch of lies and

then it briefly explains it's permissions. IMO it should just

be taken out. I can't think of what help should be there.

Difficulty Simple, writing

text

Steps

required:

One step

Interaction

with rest

of

software:

none

Low

Complexity

Innovation

Thread

81

March 9, 2005 - 14:54 : Morbus Iff

The following patches clear up a number of minor

inconsistencies during a Drupal installation. Largely, this

is related to internal documentation and "where things go",

but should help organize, clearup, and ease the installation.

These aren't features, so they're eligible for a 4.6 commit.

Difficulty: Addressed

minor

inconsistencies,

mostly text.

Steps

required:

One step

Interaction

with rest

of

software:

None

Low

Complexity

Innovation

Thread

86

March 25, 2005 - 20:41 : JonBob

Attachment:

http://drupal.org/files/issues/descriptions.patch (18.88 KB)

We have tons of different ways of phrasing module

descriptions for the module listing page. This patch

rephrases them all to consistently use an active verb, and

cleans up some grammar and clarity issues.

Difficulty: Simply

rephrases

module

description

using active

verbs.

Steps

required:

One step

Interaction

with rest

of

software:

None

Low

Complexity

Innovation

Thread

85

March 28, 2005 - 14:24 : Uwe Hermann

Attachment:

http://drupal.org/files/issues/INSTALL.txt.patch (1.44 KB)

Difficulty: Tiny patch

Steps

required:

One step

103

Hi,

here's a tiny patch which fixes some issues in the

INSTALL.txt file.

Interaction

with rest

of

software:

None

Low

Complexity

Innovation

Thread

84

March 31, 2005 - 06:48 : Uwe Hermann

Attachment:

http://drupal.org/files/issues/spellcheck_0.patch (9.1 KB)

I ran ispell over the whole Drupal code (including themes

etc.). Here's a patch with the fixes I (or ispell) found.

Difficulty: Simply a spell

check

Steps

required:

One step

Interaction

with rest

of

software:

None

High
Complexity
Innovation

Thread

57

November 19, 2004 - 16:03 : jasper

1. "my account" link can not be given "weight"

2. If edited, "my account" link behaves strangely: appears

as separate menu in admin screen, disappears from

navigation menu, etc.

3. Subitems can't be added under my account, or, strange

things happen if you try to do that.

Difficulty More than one

issue, and

requires

trouble-

shooting.

Steps

required:

multi-step

solution

Interaction

with rest

of

software:

Many

High
Complexity
Innovation

Thread

76

January 26, 2005 - 14:18 : moshe weitzman

Attachment: http://drupal.org/files/issues/drdest.patch

(11.05 KB)

Here is a patch I've been wanting to finish for a while. This

patch assures that you end up on the proper page after you

edit/delete a node, comment, user, or url alias. This is true

no matter if you go through the usual interface or the

admin interface. Further, if click the 'edit' link from 3rd

page of a custom sorted view

(e.g.admin/comment&from=100&sort=asc&order=Author)

you still are returned to the right page.

Difficulty Intricate

Steps

required:

Multi step

solution

Interaction

with rest

of

software:

Many

High
Complexity
Innovation

Thread

83

Attachment:

http://drupal.org/files/issues/multi_db_connections.diff

(5.23 KB)

This patch allows multiple database connections to be used

within Drupal.

The method of specifying :

Difficulty This an

innovation that

allows drupal

to connect to

multiple

databases,

104

<?php

$db_url = "mysql://user:pass@localhost/dbname";

?>

will still work, it will create the 'default' connection.

However, if you need multiple connections.. you can

specify :

<?php

$db_url["default"]??????=

"mysql://user:pass@localhost/dbname";

$db_url["other_db"]?????=

"mysql://user:pass@localhost/other_dbname";

$db_url["other_server"] =

"mysql://user:pass@my.server.com/dbname";

?>

Steps

required:

Multi-step

solution

Interaction

with rest

of

software:

More than one

105

APPENDIX D

The table below shows examples of comments illustrating low complexity innovations and high

complexity innovations in the slow commit category. The purpose of this table is to illustrate the

criteria that differentiate low and high complexity innovations in this category.

Data Type Case Empirical Evidence (Quote) Criteria of complexity

High

Complexity

Innovation

Thread

14

December 30, 2004 - 16:41 : Morbus Iff

I recently upgraded from 4.4.2 to 4.5.1, and have

noticed that the poll block no longer displays the

"add new comment" or "# comments" link. This

is (was) important to me, as I usually ask for

comments whenever someone chooses the

negative option. Any idea where and why this

went?

You can still get to the comment form in a

roundabout way ("other polls", choose your poll,

whammo), but that's far too many clicks and

intellect points.

Difficulty Requires

troubleshooting

Steps

required:

Multi-step

Interaction

with rest of

software:

none

High

Complexity

Innovation

Thread

3

January 12, 2005 - 11:02 : Morbus Iff

The automated unpublishing is great for

stopping spam from being displayed, but it

doesn't stop spam from corrupting another

feature: my "recent posts" (tracker.module). I'll

regularly get bursts of 200 auto-unpublished

spams which make the "recent posts" page

useless – an unpublished spam still affects the

modification date of a node, which makes

"recent posts" display craploads of updates, even

though there really isn't any. Thus, the feature

request would be:

 - treat an unpublished spam as a deleted spam

 - when a spam is automatically unpublished,

revert the node

modification date to its previous value.

I'm not entirely sure how easily possible this is,

as you'd have to make sure the date is properly

set when someone says "nah, this unpublished

spam was actual ham", and then republishes it.

Difficulty: Problem

identified, but

intricate

Steps

required:

Multi-step

Interaction

with rest of

software:

few

106

High

Complexity

Innovation

Thread

77

February 14, 2005 - 08:51 : tangent

Attachment:

http://drupal.org/files/issues/settings-

session.patch (1.71 KB)

As discussed in this issue [1], it would be

desirable to move the session settings into

/sites/default/settings.php so that subsites can

have better control over them. One of the

advantages of the site specific settings.php file is

that it will never get overwritten during upgrades

and having these settings here should prove to

be more friendly. I have created a patch which

moves most of the PHP session settings from

.htaccess to /sites/default/settings.php with the

exception of "session.auto_start" because it must

not, as far as I know, be modified.

I have also added 2 additional commented

settings which I suspect are often needed as they

were in my case.

[1] http://drupal.org//node/2974

Difficulty: Problem

identified

Steps

required:

Multi-step

Interaction

with rest of

software:

Many, requires

moving functions

Low

Complexity

Innovation

Thread

85

October 21, 2004 - 20:42 : drumm

Attachment: http://drupal.org/files/issues/tmp

(42.68 KB)

The primary goal of this patch is to take the

'custom' and 'path' columns of the block

overview page and make them into something

understandable. As of Drupal 4.5 'custom' lacked

an explanation which wasn't buried in help text

and path required dealing with regular

expressions.

Every block now has a configuration page to

control these options. This gives more space to

make form controls which do not require a

lengthy explanation. This page also gives

modules a chance to put their block

configuration options in a place that makes sense

using new operations in the block hook.

The only required changes to modules

implementing hook_block() is to be careful

about what is returned. Do not return anything if

Difficulty: Problem

identified, but

solution is

complex

Steps

required:

Multi- step

Interaction

with rest of

software:

None

107

$op is not 'list' or 'view'. Once this change is

made, modules will still be compatible with

Drupal 4.5. Required changes to core modules

are included in this path.

An additional optional change to modules is to

implement the additional $op options added.

'configure' should return a string containing the

configuration form for the block with the

appropriate $delta. 'configure save' will come

with an additional $edit argument, which will

contain the submitted form data for saving.

These changes to core modules are also included

in this patch.

I have posted screenshots at

http://foo.delocalizedham.com/tmp/blocks/.

Additional work, such as further rearrangement

of the block overview page, is as always a task

for another patch.

Low

Complexity

Innovation

Thread

75

February 1, 2005 - 21:26 : kbahey

Attachment:

http://drupal.org/files/issues/contact.module-

subject.patch (1.93 KB)

I find it very undescriptive when I recieve a

message from Drupal with the subject "message

from username". This patch adds a "subject"

field for the contact.module which the user can

fill, and would tell you what they want right

away. Oh, and it helps group the 'conversation'

on Gmail into something meaningful. (Note, I

have not tested this since I do not have a CVS

installation at the moment. Appreciate if

someone can test it).

Difficulty: Problem

identified,

application is

simple

Steps

required:

One step

Interaction

with rest of

software:

None

http://foo.delocalizedham.com/tmp/blocks/

108

APPENDIX E

This table provides a summary of all characteristics for all 24 Committed Cases. This is to be

used for a high level view of the difference between the characteristics of fast and slow commits.

Characteristics Fast Commits Slow Commits

Number of Cases 16 8

Complexity of Innovation

High

Complexity
5 High Complexity 7

Low

Complexity
11 Low Complexity 1

Average Number of Actors in

Conversations
3.7 Actors 5.9 Actors

Range of Actors in

Conversations
2 to 6 4 to 9

Number of Influencing

Contributors in All Cases

1 Influencer 12 Cases 1 Influencer 3 Cases

2 Influencers 3 Cases 2 Influencers 2 Cases

3 Influencers 1 Cases 3 Influencers 1 Cases

4 Influencers 1 Cases

5 Influencers 1 Cases

Average Number of

Comments in Conversations
5.3 Comments Per Case 17 Comments Per Case

Range of Number of

Comments
2 to 8 Comments 9 to 40 Comments

Number of Communicative

Action Types

Action Type
Tota

l
Min Max Mean Action Type

Tota

l
Min Max Mean

Communicati

ve
75 2 7 4.7

Communicati

ve
112 7 39 10.4

Discursive 8 0 3 0.5 Discursive 18 0 6 2.3

Instrumental 2 0 1 0.13 Instrumental 6 0 4 0.8

Request for Input by Dries 2 Requests by Dries 7 Requests by Dries

Influence Tactics Used

Rational

Persuasion
32

Rational

Persuasion
52

Consultation 6 Consultation 11

Influence Tactics by

Conversation Initiators

Rational

Persuasion
29

Rational

Persuasion
28

Consultation 3 Consultation 3

Validity Claims Challenged

Comprehensibility 2 Comprehensibility 1

Effectiveness 3 Effectiveness 3

Efficiency 5 Efficiency 13

Relevance 1 Relevance 1

Type of Innovation

Bug Report 4 Bug Report 5

Feature Request 5 Feature Request 2

Task 4 Task 1

109

APPENDIX F

Reflection

In the summer of 2010 I was introduced to a thesis project that would examine the effects of

Software Process Improvement (SPI) on the quality of globally distributed software. I wrote a

proposal for this project, and frequently discussed with my thesis advisor the literature review,

method of data collection and interrogation, and theoretical frameworks to consider using.

Months later, at the same time that a proposal was developed and the study was about to enter

the data collection stage, I arrived at a crossroads. My thesis advisor had spoken to me about a

potential project that he was planning; it was to do with the innovations that develop within

virtual software production methodologies, open source software to be specific. The study would

examine the underlying dynamics of the legitimation processes of these innovations. I became

very interested in that project and found its potential more interesting to me than that of the

initial study, and after consulting with my thesis advisor I decided to abandon the initial study

and commence on to the open source field. It was not an easy decision due to the time already

invested in the initial study, but it seemed worth it when I thought about the yet to come

investment of time and effort into the thesis, I thought that the more interesting topic will allow

me to more effectively assimilate the concepts of the study. At that point I had to make a choice

between building a questionnaire to collect data for my first study, or embark on this journey and

decipher the content of the raw text file of the new study, I decided that I rather the latter.

Within 3 months, I had written a literature review, and had skimmed through the data file several

times, with the aim of better understanding the nature of the conversations. Although it was

intimidating to look at the text and think that not only will it be understood, but also analyzed

beyond the explicit meanings, a practice that I had no experience in yet, I felt more related to the

new project. I believe that due to my familiarity with online discussion threads on automobile

and technology forums, I was able to assimilate the concepts of the study effectively. I felt that

once I identify the beginning and end of each conversation, and the subject matter, the data will

analysis process will be feasible. Of course there was a learning curve once it was time to apply

the text against the Communicative Action and Influence Tactics theories, but after few iterations

of coding it felt familiar.

110

It was during that point of my thesis that I understood my supervisor’s advice to try and relate to

the text as much as possible, and I realized that understanding the data on a personal level will

provide with a smoother journey to assimilating and going beyond the explicit. I learnt that

empirical data takes the lion’s share of effort in the thesis, specifically the coding phase, and to

be able to best predict one’s level of comfort with a study, one must first either examine the data

at hand, or understand the nature of the data that is to be collected, to gauge the level of

familiarity with data. The more personally related and familiar a researcher feels towards the

data, the smoother the journey through the different phases of the study.

Also, another lesson I learnt from my experience in this project is that although one might be

tempted to study an interesting phenomenon, one must be careful not to include a bigger chunk

of a phenomena to study in an allocated time frame than one can afford because it may turn out

that the scope of the study is too large to complete in an allocated expense or time frame. Unlike

I knew when this project started; studying what could appear to be a simple social phenomenon

could end up being not so simple.

What I Learnt About the Field of Social Science

Firstly, I learnt that writing a thesis is not only about reporting findings and building a solid case,

but also about building an aesthetically pleasing thesis that will be less likely to intimidate

readers. I learnt this the hard way when my thesis advisor thought that my ‘Discussion of

Empirical Analysis’ chapter contained too many figure, tables and numbers and not enough texts

explaining those numbers. I restructured that chapter two times before I arrived to this version.

The Data Analysis

My thesis advisor was able to get his hands on text files that contained thousands of pages of

conversations between members of the Drupal community. The key words innovation, open

source and software production sparked my interest when I heard them. As I started to explore

the data and consult with my thesis advisor, it became apparent to me that I will eventually need

to gain a deep understanding of this raw text file that seemed many stages away from being in a

format that is ready for analysis, and although I acknowledged that it will take several stages of

coding to arrive at such stage, I did not anticipate the knowledge that I would gather during

coding cycles, and the effect that this knowledge would have on proceeding coding cycles. I

111

had initially spoken to Dr. Ngwenyama about the Communicative Action and the Influence

Tactic theories as appropriate aspects to interrogate the text; I anticipated that I would probably

conduct two cycles of coding, one for each framework and perhaps an additional cycle to ensure

the coherency of the coding. What followed was probably the part of the thesis that was most

challenging for me to get through, namely due to the unstructured and raw format of the original

text file, which was almost illegible during the first few times of viewing

I am still unsure what format the data was exported into the text file from, but it is most probable

that the contents of the file were copied from email conversation threads, and pasted into a

notepad format. Also, I had underestimated the amount of time it would take before I could

understand the social context of Drupal in order to appropriately code the conversations, to the

point that midway through the first round of coding I was still calibrating my judgement on how

to apply codes from the aspects of the frameworks onto the text and had to run through a second

cycle to make sure that the first portion of the coding was consistent with the rest.

In addition, as the coding for the first two aspects of the frameworks were done and I started to

get a clearer picture of the dynamics of the conversation and the legitimation processes, I decided

that I would need to study the explicit validity claims that were challenged to be able to explain

different scenarios. This added an extra round of coding to the data analysis.

The Literature Review

The key lesson I learnt about writing a literature review for my thesis was that material within a

discourse becomes easier to assimilate as one works on conceptualizing latter parts of thesis.

The literature review does not need to be completed before the rest of the thesis; in fact I would

frequently come back to the literature review to add components.

In my case this also proved to be the case for the Research Methodology chapter, which became

easier for me to explain as the thesis progressed. It is very important however to write the steps

that the data collection and analyses went through, because the details of the research processes

could be easily forgotten.

