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ABSTRACT

Young Jun Park

Time-Interleaved Pulse-Shrinking and All-Digital ∆Σ Time-To-Digital Coverters

Doctor of Philosophy, Electrical and Computer Engineering, Ryerson University, 2017

This dissertation deals with the design of sub-per-stage-delay time-to-digital con-

verters (TDCs). Two classes of TDCs namely pulse-shrinking TDCs and ∆Σ TDCs are

investigated.

In pulse-shrinking TDCs, a two-step pulse-shrinking TDC consisting of a set of coarse

and fine pulse-shrinking TDCs is proposed to increase a dynamic range without employing

a large number of pulse-shrinking stages. A residual time extraction scheme capable of ex-

tracting the residual time of the coarse TDC is developed. The simulation / measurement

results of the TDC implemented in an IBM 130 nm 1.2 V CMOS technology show that the

TDC offers 1.4 ns conversion time, 1 LSB DNL and INL, and consumes 0.163 pJ/step. To

further improve the conversion time, a time-interleaved scheme is developed to extract the

residual time of the coarse TDC and utilized in design of a two-step pulse-shrinking TDC.

Residual time extraction is carried out in parallel with digitization to minimize latency. The

simulation and measurement results of the TDC show that it offers 0.85 ns conversion time,

0.285 LSB DNL, and 0.78 LSB.

In ∆Σ TDCs, a 1-1 multi-stage noise shaping (MASH) ∆Σ TDC with a new differen-

tial cascode time integrator is proposed to suppress even-order harmonic tones and current

mismatch-induced timing errors. Simulation results show that the proposed TDC offers 1.9

ps time resolution over 48-415 kHz signal band while consuming 502 µW. Finally, an all-

digital first-order ∆Σ TDC utilizing a bi-directional gated delay line integrator is developed.

Time integration is obtained via the accumulation of charge of the load capacitor of gated

delay stages and the logic state of gated delay stages. The elimination of analog components
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allows the TDC to benefit fully from technology scaling. Simulation results show that the

TDC offers first-order noise-shaping, 10.8 ps time resolution while consuming 46 µW.
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Chapter 1

Introduction of Time-Mode Signal Processing

The rapid scaling of CMOS technology has resulted in the sharp increase of time

resolution and the continuous decrease of voltage headroom. As a result, time-mode circuits

where information is represented by the time difference between two rising edges of pulses

rather than the nodal voltages or branch currents of electric networks offer a viable and

technology friendly means to combat scaling-induced difficulties encountered in design of

mixed-mode systems. A time variable possesses a unique duality characteristic. Specifically,

it is an analog signal as the continuous amplitude of the analog signal is represented by the

difference between two rising edges of the pulses and it is also a digital signal as it only has

two largely distinct values. The duality of time variables enables them to conduct analog

signal processing in a digital environment. This unique characteristic is not possessed by

neither analog nor digital variables. Since information to be processed by time-mode circuits

is represented by the time difference of digital signals, these circuits are essentially digital

systems and perform mixed-mode signal processing in digital domain without using power-

greedy digital signal processing (DSP) blocks. This chapter examines the fundamentals of

time-mode circuits. The intrinsic advantages of time-mode signal processing are examined

in Section 1.1. The challenges encountered in time-mode signal processing are examined

in Section 1.2. Section 1.3 provides an overview of time-to-digital converters (TDCs), the

most important building block of time-mode systems. Section 1.4 presents the motivation

of this dissertation. Primary contributions of this dissertation is in Section 1.5. Dissertation

organization is detailed in Section 1.6. Finally, the chapter is concluded in Section 1.7.
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1.1 Why Time-Mode?

The performance of analog circuit continues to fall behind the rapid scaling of CMOS

technologies mainly optimized for digital circuits. Digitally assisted analog (DAA) circuits

have been used to leverage digital circuits to improve the performance of analog circuits

by adjusting the parameters of analog circuits so as to meet design specifications. The

addition of DAA circuits, however, has a detrimental impact on the performance of analog

circuits such as increasing the capacitance of the critical nodes through which high-frequency

signals propagate. The intrinsic gate delay of digital circuits, on the other hand, has been

the primary beneficiary of technology scaling. The improved switching characteristics of

MOS transistors offer an excellent timing accuracy such that the time resolution of digital

circuits has well surpassed the voltage resolution of analog circuits implemented in nano-scale

CMOS technologies. Since time-mode circuits perform analog signal processing in the digital

domain, not only the performance of these circuits scales well with technology, time-mode

circuits also offer a number of attractive characteristics including full programmability, the

ease of portability, and high-speed operation. As information to be processed by time-mode

circuits is represented by the time difference between the occurrence of digital events, time-

mode circuits are essentially digital circuits. The detrimental effect of technology scaling

on the performance of voltage-mode or current-mode analog signal processing vanishes in

time-mode circuits. The full programmability of time-mode circuits, attribute to their digital

realization, allows them to be deployed in a broad spectrum of applications where tunable

characteristics are mandatory. In addition to programmability, portability is of a critical

importance in order to minimize design turn-around time. The digital nature of time-mode

circuits allows them to be migrated from one generation of technology to another with

the minimum design time subsequently the lowest cost. As the intrinsic gate delay of digital

circuits benefits the most from technology scaling, time-mode circuits are capable of carrying

out rapid signal processing.
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1.2 Challenges in Time-Mode Signal Processing

Although it is evident from the preceding investigation that time-mode signal pro-

cessing possesses many desirable characteristics such as excellent scalability with technology,

full programmability, the ease of portability, and high-speed operation, a number of chal-

lenges are yet to be overcome in order for time-mode circuits to be deployed in a broad range

of applications. One of the most challenges in time-mode signal processing is the design of

time-mode arithmetic units, especially time integrators. The integration of a variable in the

voltage domain can be conveniently realized by representing the variable as a current and

integrating the current onto a capacitor. Withholding or storing a time variable, however, is

difficult due to the irretrievable nature of time. To implement time integrators, time-mode

arithmetic units such as time adders and time registers are critically needed in time-mode

signal processing.

1.3 An Overview of TDCs

TDCs that map a time variable to a digital code are the most important building

block of time-mode systems. Although the applications of TDCs in high-energy physics for

time-of-flight measurement in nuclear science dates back to 1970s [12], the deployment of

TDCs in analog-to-digital converters (ADCs) [13, 14, 15, 8, 16] and all-digital phase-locked

loops (ADPLLs) [17, 18] emerged recently. TDCs can be loosely classified into sampling

TDCs and noise-shaping TDCs. A sampling TDC digitizes a time variable using either a

high-frequency low-jitter reference clock and counting the number of the cycles of the clock

within the duration of the time variable or a delay line to count the number of the stages

of the delay line that the front edge of the time variable propagates before the arrival of

the rear edge of the time variable directly. Sampling TDCs include delay-line TDCs, vernier

delay-line TDCs, and pulse-shrinking TDCs, to name a few. A one-to-one mapping between

a time input variable and a corresponding output digital code exists in sampling TDCs since

for each time variable, there is a corresponding digital code generated by sampling TDCs.

The resolution of these TDCs is bound by quantization noise.
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Noise-shaping TDCs, on the other hand, suppress the quantization noise of TDCs

using system-level techniques such as ∆Σ operations that are capable of moving most of in-

band quantization noise to higher frequencies outside the signal band so that the displaced

excessive quantization noise can be removed effectively using a decimation low-pass filter in

a post-processing step, thereby achieving a large signal-to-noise ratio. As compared with

sampling TDCs, noise-shaping TDCs offer the key advantage of a better signal-to-noise ratio

(SNR). An example of noise-shaping TDCs is gated ring oscillator (GRO) TDCs that possess

first-order noise-shaping obtained by freezing the residual phase of one sampling phase and

ported it over to the next phase [13]. Although the in-band noise of noise-shaping TDCs is

lower than quantization noise, one-to-one mapping between input time variables and their

digital output codes is lost since the average of the output represents the input in ∆Σ

operations.

1.3.1 Delay-line TDCs

Delay-line TDCs quantize a time variable using a delay line. The simplified schematic

of delay line TDCs is shown in Fig 1.1. The signal, Start, is applied to the first delay cell

and delayed through the buffer delay chains. Each buffer considered as a reference time

difference ladder analogous to the reference resistor ladder in a flash ADC is comprised of

two inverters which have the minimum propagation delay in a circuit usually. Each buffer

chain is tapped to D input of each D-flip flop (DFF) which is used as a time comparator.

The signal, Stop, is fed to the clock pins of all DFFs. Finally, the thermometric outputs of

the DFFs are fed to a thermometer to binary decoder, not shown in the figure, generating

digital codes. The conversion time of a TDC is the amount of the time that the TDC needs

to complete the digitization of a time variable. The conversion time of the delay-line TDC

is Tin+τDFF where τDFF is the clock-to-Q propagation delay of the DFFs. One of the main

disadvantages of this architecture is that the time resolution is lower bound by per-stage

propagation delay.
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Figure 1.1: Delay-line TDCs [1], [2], [3].

1.3.2 Vernier delay-line TDCs

Vernier delay-line TDCs shown in Fig 1.2 are one of the older techniques that pro-

vide time resolution below per-stage delay. A vernier delay-line TDC adds an additional

buffer delay chain having a different delay in the Stop path. In this case, the effective time

resolution is the difference of the two propagation delays, τ1 − τ2, where τ1 and τ2 represent

the propagation delay of the buffers in Start path and the one of the buffer in Stop path,

respectively. Since τ1 is designed to have larger delay then τ2, Stop signal will catch up

Start signal even though it is launched late. Because the difference between two delay lines

is the effective time resolution, vernier delay-line TDC can have a much higher resolution

than that of the basic delay-line TDCs shown in Fig 1.1. The time instant at which a

catch-up takes place is determined from Tcatch = Nτ1 = Nτ2+Tin, where N is the number of

the stages that Stop signal propagates though before the catch-up takes place. For a given

Tin, we have N= Tin
(τ1−τ2)

. Since τ1 − τ2 is very small, Tin must be small in order to have a

manageable value of N. The dynamic range of vernier delay line TDCs is upper-bound by
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N(τ1 − τ2) and lower-bound by τ1 − τ2 theoretically. Improving time resolution is one of the

biggest advantages of this architecture. Long conversion time is one of the disadvantages

since the final thermometer output codes will be generated after Stop catches up Start. To

increase a dynamic range, it requires many stages at the cost of increased silicon and power

consumption.

Figure 1.2: Vernier delay-line TDCs [4].

1.3.3 Hierarchical vernier delay-line TDCs

The conversion time of vernier delay-line TDCs can be reduced while preserving the

resolution by using the 2-level hierarchical configuration shown in Fig.1.3[5]. Hierarchical
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vernier delay-line TDC consists of a coarse vernier delay-line TDC with a total of N stages and

N fine vernier delay-line TDCs. If τc and τf shown in Fig.1.3 represent the propagation delay

of the buffers in coarse delay-line and the one of the buffer in fine delay-line, respectively,

the conversion time of the coarse vernier delay-lines is Nτc. Since the digitization undertaken

by the fine vernier delay-line TDCs is carried out in parallel with that by the coarse vernier

delay-line TDC, the total conversion time of the hierarchical vernier delay-line TDC is the

same as that of the coarse vernier delay-lines, i.e., Nτc. If we assume that τc can be resolved

by the fine vernier delay-line TDCs with a total of M stages, τc= Mτf will hold. It should

be noted that the price paid for reducing conversion time is the increased silicon area.

Figure 1.3: Hierarchical vernier delay-line TDC [5].

1.3.4 Pulse-shrinking TDCs

Resolution finer than per-stage delay can also be achieved using pulse-shrinking TDCs

shown in Fig.1.4 [6, 7]. To set the resolution, Vc is set to VDD and per-stage shrinkage is at

the minimum. Tcal is then asserted. The width of Tcal is reduced stage-wise uniformly by ∆T .
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∆T is adjusted by Vc adjusting the discharge current J of the pulse-shrinking stages until

the pulse at the output of the last stage just disappears (DM = 0). Once this occurs, the

resolution of the TDC becomes ∆T = Tcal/M . M is the number of the pulse-shrinking stages.

Clearly if M is sufficiently large, Tcal/M can be made arbitrarily small. By adjusting time

resolution, calibration is also achieved. Increasing the number of pulse-shrinking stages,

though improving resolution, is at the cost of increased silicon and power consumption.

The detrimental effect of mismatches between pulse-shrinking stages deteriorates with the

increase in the number of pulse-shrinking stages. The conversion range of the pulse-shrinking

TDC is given by ∆T ≤ Tin ≤ N∆T or ∆T ≤ Tin ≤ Tcal. Although a large N is preferred

from a better resolution point of view, the effect of jitter and mismatch intensifies with the

increase in the number of the stages of pulse-shrinking TDCs, deteriorating the linearity of

pulse-shrinking TDCs in a similar way as that in delay line TDCs.

Figure 1.4: Pulse-shrinking TDCs [6, 7].

To improve the resolution of pulse-shrinking TDCs without employing a large number

of pulse-shrinking stages, cyclic pulse-shrinking TDCs were proposed, as shown in Fig.1.5
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[19]. A cyclic pulse-shrinking TDC consists of a delay line with stages 1, 2, ..., i− 1, i+ 1, ...

having the same dimension (homogeneous stages) and stage i having different dimensions

(inhomogeneous stage), a control logic block, and a counter. The control logic is designed in

such a way that when Tin is applied to the loop, the pulse will continue to circulate the loop

until its width reduces to zero. The inhomogeneity of ith delay stage gives rise to a reduction

in the width of the propagating pulse every time it completes a round trip. A counter is

used to record the number of the round trips that the pulse completes before it diminishes.

Since the number of the round trips that the pulse completes is directly proportional to Tin,

the content of the counter when the pulse vanishes yields the digital representation of Tin.

Cyclic pulse-shrinking TDCs exhibit a perfect linearity as the amount of cycle-to-cycle pulse

shrinkage remains unchanged. In addition, they do not need to be calibrated periodically as

the amount of pulse shrinkage is only set by the physical dimensions of the delay stages. One

drawback of cyclic pulse-shrinking delay line TDCs is that an input pulse can be applied

only after the previous one has vanished completely, resulting in a long conversion time.

Figure 1.5: Cyclic pulse-shrinking TDCs.

1.3.5 Gated ring oscillator TDCs

GRO TDCs are one of popular noise-shaping TDCs. The TDC shown in Fig.1.6 (A)

digitises time input Tin generated from two input signal, Start and Stop, by using a gated

rign oscillator (GRO) [8]. The operation of GRO is depicted as follows: A GRO is similar

to an ring oscillator (RO) except its delay stage has two additional transistors compared

to the normal inverter. One is transistor between PMOS transistor and the positive power

supply and the other is between NMOS transistor and the negative power supply. They act
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like switches. Oscillation is enabled only when Tin = 1 and disabled when Tin = 0. The

beauty of this structure is that when Tin = 0, the switch transistors are open. Oscillation

is suspended and the phase of the oscillator remains unchanged until next Tin. The residue

phase is transferred to the next Tin, i.e. ei[k] = ef [k − 1], where ef [k] is a residue phase

information in kTs, and ef [k-1] is a residue phase information in (k-1)Ts. Fig.1.6 (B) shows

a waveform based on the basic operation of GRO. The quantization error can be calculated

for a given measurement interval between kTs and (k-1)Ts, Terror is given by

Terror[k] = ef [k]− ef [k − 1]. (1.1)

The first-order noise shaping of quantization noise is evident in (1.1). In addition to the first-

order noise shaping of quantization noise, the effect of delay element mismatch is also first-

order shaped. The randomness of the initial phase of each sampling period also effectively

scrambles quantization error across different sampling periods so that it can be first-order

shaped. The resolution of GRO TDCs is lower bound by the oscillation frequency of the ring

oscillator of the TDCs, which is inversely proportional to the number of the delay stages of

the oscillator. The quantization error of GRO TDCs given by π/N where N is the number of

the stages of the oscillator is also inversely proportional to the number of the delay stages of

the oscillator. The larger the number of the stages of the oscillator, the lower the quantization

noise and the worse the resolution.

GRO TDCs suffer from missing count caused by the early reset of the counter at the

end of Tin while the edge-detection and transition detection are still in action [20]. They

also exhibit dead-zone behaviour if the period of the gating signal Tin is in the vicinity of an

integer multiple of the period of the oscillator [21].

1.3.6 ∆Σ TDCs

It is well understood that ∆Σ operation offers noise-shaping. However, the realization

of ∆Σ configurations in time-mode is rather difficult because of the lack of time-mode integra-
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Figure 1.6: GRO TDCs [8]. (A) Block diagram. (B) Waveform.

tors needed to achieve high-order ∆Σ modulators. As a result, ∆Σ TDCs are often realized

using a partial time-mode partial voltage-mode approach, more specifically, integrators using

OTAs are voltage-mode while quantizers are voltage-controlled oscillator (VCO)-quantizers.

Taillefer and Roberts proposed a ring oscillator voltage-to-time integrator consisting of two

voltage-controlled delay units [22]. Implementing high-order integrators using this approach

is rather difficult.

Fig.1.7(C) shows ∆Σ TDC using the time accumulator in [10]. Time accumulator

is evolved from the time adder proposed in [9] shown in Fig.1.7 (A). The core of time

accumulator is a time register using gated-delay cell (GDC) shown in Fig.1.7 (B) that holds

an input time variable and releases the held time variable on the arrival of a triggering a

signal, AWK. Time adder shown in Fig.1.7 (A) consists of two time-registers. The operation

of the time register can be briefly depicted as follows: assume CL1 is fully charged initially,

when IN1 arrives, Vmid1 starts to drop. When HLD1 arrives, the gated delay cell enters its

hold stage and Vmid1 remains unchanged. When AWK is asserted, the gated delay cell is re-

activated and Vmid1 starts to drop again. If there is another time register whose HLD input

and AWK are connected, the output of this time register can be a reference. Therefore, if we

compare the time difference between two time registers’ outputs, it should be the same as the

time input variable. The preceding time register can be utilized to construct a time adder

shown in Fig.1.7 (A). It should be noted that the second gated delay cell has a reversing

the order of the input data because of TOUT1 = Td-Tin1 and TOUT2 = Td-Tin2 leading to
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Figure 1.7: (A) Time adder [9]. (B) Gated delay cell [9]. (C) ∆Σ TDC [10]. (D) Waveform
of time adder.

TOUT=TOUT1-TOUT2=Tin1-Tin2 instead of Tin1+Tin2. To deal with this, the order of the input

is reversed as shown in Fig.1.7(A). Fig.1.7(D) shows a timing diagram of the time adder. Td

is a normal propagation delay of the GDC. The time accumulator consists of two back-to-

back connected time adders. Fig.1.7(C) shows the schematic of the time accumulator in [10].

In the time accumulator, one of time adders functions like a time register since the inputs

of the second time adder are tied together such that Tin2 becomes 0. Therefore, Tin1 + 0 =

Tin1, which is identical to z−1 function in discrete-time domain. The operation of the time

adder and time register performs y[n] =
n∑
k=0

Tin[k].

1.4 Motivation

TDCs with a sub-per-stage-delay resolution and a short conversion time are critical to

a number of applications. For applications such as ∆Σ modulators, conversion time directly

affects the oversampling ratio subsequently the performance of the modulators. Conversion

time is also of a great importance for phase-locked loops (PLLs) with a TDC phase detector.
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This is because conversion time in this case directly affects the speed of the TDC phase

detector subsequently the loop dynamics of the PLLs. Also resolution affects the phase

noise of PLLs. Vernier delay-line TDCs and hierarchical vernier delay-line TDCs are not

attractive for these applications due to their long conversion time and high power and silicon

consumption. Pulse-shrinking that also offer sub-per-stage delay are good candidates for

these application. To improve resolution, a large number of pulse-shrinking stages are needed.

Reducing the number of pulse-shrinking stages is highly desirable in minimizing nonlinearities

arising from stage mismatch. To reduce the number of stages without sacrificing resolution, a

two-step architecture is explored in this dissertation. A drawback of the two-step architecture

is long conversion time since it needs to extract the residue information then apply to the

fine stage. To combat this, a time-interleaved pulse-shrinking TDC is proposed in this

dissertation.

∆Σ modulation is an effective means to improve time resolution below per-stage delay.

∆Σ TDCs can be used along with a voltage-to-time converter to perform analog-to-digital

conversion. Currently analog-to-digital conversion utilizing time-mode techniques is most

realized using a voltage-controlled oscillator (VCO)-based quantizers. VCO-based quantizers

offer a number of attractive intrinsic advantages including built-in first-order noise-shaping,

inherent multi-bit quantization with a good linearity, fast quantization subsequently a large

over-sampling ratio, and full scalability with technology. To have a better signal-to-noise-

plus-distortion ratio (SNDR), a high-order OTAs based voltage-mode integrator is required

in the forward path in order to have an adequate loop gain to suppress the effect of the

nonlinearities and quantization noise as shown in Fig.1.8. These ADCs are therefore not

all-digital. As a result, their performance does not scale naturally with technology. As the

performance of voltage-mode integrators scales poorly with technology, time integrators with

a large in-band gain are critically needed for all-digital ∆Σ TDC.

Efforts have been made to replace OTA filters with time-mode filters such that entire

modulators can be realized digitally. Taillefer and Roberts proposed a ring oscillator voltage-

to-time integrator consisting of two voltage-controlled delay units (VCDUs) and a static

inverter [22]. Implementing high-order integrators using this approach is rather difficult.
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Figure 1.8: ∆Σ TDCs [6, 7].

The time accumulator proposed by Hong et al. consists of two back-to-back connected time

adders realized using four GDCs [10]. The core of the time accumulator is a time register

proposed capable of storing a time variable and reading out the stored variable [9]. Kim

et al. showed that a gated delay line (GDL) functions as a time register with the gating

signal consisting of the time variable to be stored and a trigger signal [23, 24]. A time adder

is realized using two GDCs, each has a large capacitor. The need for two GDCs, however,

increases power and silicon consumption. To minimize power and silicon consumption, a

new time integrator is proposed consisting of two new time adders using only one capacitor

in each time adder. In this dissertation, two time integrators realized using digital circuits

are proposed and are used to implement all-digital ∆Σ modulators.

1.5 Contributions

1) A silicon and power-efficient two-step pulse-shrinking TDC was proposed. The

TDC consists of a coarse TDC and a fine TDC with an efficient residual time extraction

technique. The proposed TDC in [25] and [26] allows rapid digitization of a time input with

the minimum silicon and power consumption without sacrificing time resolution.

2) A time-interleaved pulse-shrinking TDC was proposed to overcome the conversion

time inefficiency of the two-step pulse-shrinking TDC also developed in this study. Similar

to the preceding two-step pulse-shrinking TDC, the time-interleaved TDC in [27] and [28] is

composed of a coarse TDC but a pair of fine TDCs that operate in a time-interleaved manner

such that time synchronization logic and associated time latency existing in the preceding

two-step pulse-shrinking TDC are removed.
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3) A new all-digital time integrator consisting of a cascode time adder with a raised

threshold voltage and a time register is proposed. The developed time integrator is utilized in

the development of an all-digital 1-1 MASH ∆Σ modulator to realized an all-digital second-

order ∆Σ modulator. To the best of the knowledge of the author, this is the first all-digital

1-1 MASH ∆Σ modulator ever reported in [29], [30] and [31].

4) A novel power efficient time integrator utilizing a bi-directional gated delay line was

proposed. The open-loop characteristics of the proposed time integrator enables the rapid

integration of time variables without stability constraints and power consumption penalty.

The time integrator is utilized in the development of an all-digital first-order ∆Σ modulator

in [32]. The large loop bandwidth of the modulator benefited from the rapid integration

capability of the time integrator enables the modulator to digitize large bandwidth signals.

1.6 Dissertation Organization

This dissertation comprises of 5 chapters. Chapter 2 presents a time-interleaved

pulse-shrinking TDC consisting of a 16-stage coarse pulse-shrinking TDC and a pair of 16-

stage fine pulse-shrinking TDCs to overcome the conversion time issue present in two-step

pulse-shrinking TDC.

Chapter 3 deals with a 1-1 MASH ∆Σ TDC by using time integrator. It shows

a differential cascode time integrator. The differential cascode time integrator suppresses

second-order harmonic tone present in single-ended time integrators. The effect of the non-

idealities of the TDC, in particular, the delay uncertainty of the digital-to-time converter

functioning as a time summer and jitter due to device current noise and current mismatch

between the discharge paths of the time adder, are examined in detail.

The chapter 4 presents a low-power time integrator and its applications in an all-

digital first-order ∆Σ TDC. The time integrator is realized using a bi-directional gated delay

line with time variable to be integrated as the gating signal. The accumulation of the time

variable is obtained via the accumulation of the charge of the load capacitor and logic state
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of gated delay stages. Issues affecting the performance of the time integrator and TDC are

examined.

Finally, conclusions drawn from this study and further research that can be built

upon this dissertation are provided in Chapter 5.

1.7 Chapter Summary

In this chapter, we briefly examined technology scaling-induced challenges encoun-

tered in design of mixed-mode systems. We showed that although technology scaling results

in a reduced voltage accuracy, it sharply improves the switching accuracy of digital circuits

at the same time. As a result, analog signal processing can be performed using time-mode

approaches while taking the full advantages of technology scaling. The challenges encoun-

tered in design of time-mode circuits were explored. An overview of TDCs including sam-

pling TDCs such as delay-line TDCs, vernier delay-line TDCs, hierarchical vernier delay-line

TDCs, pulse-shrinking TDCs, and noise-shaping TDCs such as GRO TDCs and ∆Σ TDCs,

were briefly explored. The motivation and primary contributions of this dissertation were

discussed. Finally, the organization of the dissertation was outlined.
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Chapter 2

Time-Interleaved Pulse-Shrinking TDC

This chapter presents an area efficient time-interleaved pulse-shrinking TDC with

minimal conversion time. The TDC consists of a 16-stage coarse pulse-shrinking TDC with

per-stage shrinkage 4.8 ns and a pair of 16-stage fine pulse-shrinking TDCs with per-stage

shrinkage 296 ps. The fine TDCs are operated in a time-interleaved manner in parallel with

the coarse TDC so as to minimize conversion time. The remainder of the chapter is organized

as follows : Section 2.1 presents the architecture of a two-step pulse-shrinking TDC that can

be thought as a conventional approach to minimize the delay stages. The characteristics

of the TDC including mismatch and noise-induced timing errors, the timing error of delay

stages, conversion time, power, and silicon consumption are investigated in detail in Section

2.2. Section 2.3 presents the architecture of a time-interleaved pulse-shrinking TDC that

minimizes conversion time. The characteristics of the TDC including silicon consumption,

power consumption, mismatch-induced error, conversion time, and timing errors are investi-

gated in detail in Section 2.4. Section 2.5 presents the simulation and measurement results of

the two-step pulse-shrinking TDC and time-interleaved pulse-shrinking TDC implemented

in an IBM 130 nm 1.2 V CMOS technology. The chapter is concluded in Section 2.6.

2.1 Two-Step Pulse-Shrinking TDC

The two-step pulse-shrinking TDC shown in Fig.2.1 uses a coarse TDC with M

identical pulse-shrinking stages of per-stage shrinkage ∆T1 to quantize an input time variable
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Tin bound by ∆T2≤Tin≤M∆T1 and a fine TDC with N identical pulse-shrinking stages

of per-stage shrinkage ∆T2 = ∆T1/N to quantize the residual pulse of the coarse pulse-

shrinking TDC. The outputs of both the coarse and fine TDCs are read using D flipflops

(DFFs) implemented using TSPC (true-single-phase-clock) logic. A residual pulse extraction

block extracts the residual pulse of the coarse TDC and conveys it to the fine TDC. Fig.2.2

shows the residual pulse of a 4-stage pulse-shrinking TDC. It is seen that the residual pulse

Tres becomes available only at the falling edge of Tin. Also, the residual pulse is bound by

0 < Tres < ∆T1. If the residual phase is at the output of m stage, we will have Xm = 1 and

Xm+1 = 0 where Xm and Xm+1 are the output of mth and (m + 1)th stages, respectively.

Clearly Xm⊕Xm+1 can be used to determine the location of the residual pulse, specifically,

if Xm ⊕Xm+1 = 1, the residual pulse will exist at the output of mth stage. Otherwise, no

residual pulse will be present at the output of mth stage.

Fig.2.3 shows the simplified schematic of residual pulse extraction block. To illustrate

its operation, consider a time variable Tin that satisfies ∆T1 < Tin < 2∆T1, as shown

in Fig.2.3(c). Since Xc,1 = 1 and Xc,2−4 = 0, the residual pulse is located at Xc,1 as

Tin ⊕ Xc,1 = 1, Xc,1 ⊕ Xc,2 = 1, Xc,2 ⊕ Xc,3 = 0, and Xc,3 ⊕ Xc,4 = 0. Note that since

Xc,j subsequently Qc,j, j = 1, 2, 3, 4 assume their value at different times, in order for the

multiplexer to select the correct residual pulse using only one selection signal, Xc,j needs

to be delayed by ∆T1 prior to multiplexing. It is seen from Fig.2.3 that the residual pulse

extraction block is capable of extracting the residual pulse of the coarse TDC regardless of

the value of Tin.

Similar to one-step pulse-shrinking TDCs, the two-step pulse-shrinking TDC needs

to be calibrated prior to measurement. To calibrate the TDC, a known time variable Tcal,

typically a reference clock of known period, is applied to the TDC. The pulse propagates

through the pulse-shrinking stages of the coarse TDC. The per-stage shrinkage is adjusted

by varying Vb1 until the pulse just disappears at the output of the last stage of the coarse

TDC. This process can be automated using a delay-locked loop, similar to that used in [6, 7].

Once this is done, the calibration of the coarse TDC is completed and the resolution of the

calibrated coarse TDC is given by ∆T1 = Tcal/M . Once the coarse TDC is calibrated, the
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Figure 2.1: Simplified schematic of two-step pulse-shrinking delay-line TDC. All D flipflops
(DFFs) are positive edge triggered.

width of the pulse at the input of the last stage is exactly ∆T1. This pulse is then fed to

the fine TDC. The per-stage shrinkage of the fine TDC is adjusted by varying Vb2 until the

pulse propagating in the fine TDC just disappears at the output of the last stage of the fine

TDC. Once this occurs, the calibration of the fine TDC is completed and its resolution of

the calibrated fine TDC is given by ∆T2 = ∆T1/M = Tcal/(MN).
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Figure 2.2: Extraction of the residual pulse of coarse TDC. (a) 3∆T < Tin < 4∆T . (b)
2∆T < Tin < 3∆T . (c) ∆T < Tin < 2∆T . (d) 0 < Tin < ∆T .

2.2 Characteristics of Two-Step Pulse-Shrinking TDC

This section examines the characteristics of the two-step pulse-shrinking TDC. For the

purpose of comparison, a single-step pulse-shrinking TDC that provides the same resolution

and dynamic range as those of the TDC is utilized.

2.2.1 Mismatch-induced timing errors

Although ideally the resolution of a pulse-shrinking TDC is set by the per-stage

shrinkage ∆T and ∆T can be made sufficiently small if the number of the pulse-shrinking

stages is large enough, in reality, the lower bound of the resolution of pulse-shrinking TDCs

is set by the timing errors caused by mismatch between pulse-shrinking stages and the noise

of the TDC. To simplify analysis, we assume that mismatch between pulse-shrinking stages

is dominated by the mismatch of the discharge of the load capacitor. Since capacitance ratio

in standard CMOS technologies can be made accurately, the mismatch of the discharge of

the load capacitor is dictated by the mismatch of the discharge current. Let the mismatch

20



Figure 2.3: Simplified schematic of residual pulse selection and waveform. (a) Simplified
schematic. (b) 0 < Tin < ∆T . (c) ∆T < Tin < 2∆T . (d) 2∆T < Tin < 3∆T . (e) 3∆T < Tin <
4∆T .

between the discharge current of pulse-shrinking stages be ∆J . Assume that ∆J is normally

distributed with a zero mean µJ = 0 and a non-zero standard deviation σJ . If J is generated

by a nMOS transistor in saturation, the current of the transistor with the presence of a

dimension mismatch ∆(W/L) and a threshold voltage mismatch ∆VT is determined from

J =
1

2
µnCox

[
W

L
+ ∆

(
W

L

)]
(Vb − VT −∆VT )2. (2.1)
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Note that we have neglected the effect of channel length modulation and high-order effects.

Neglecting high-order terms, we obtain mismatch-induced current error ∆Jm

J≈Jo
(

1 +
∆(W/L)

W/L
− 2∆VT
Vb − VT

)
, (2.2)

where Jo = 1
2
µnCox

(
W
L

)
(Vb − VT )2 is the current without mismatch. Since ∆(W/L) and

∆VT are uncorrelated, we have power of mismatch-induced current : σ2
∆Jm

= σ2
∆JW/L

+σ2
∆JVT

where σ2
∆JW/L

≈
(

Jo
W/L

)2

σ2
∆(W/L) and σ2

∆JVT
≈
(

2Jo
Vb−VT

)2

σ2
∆VT

. Let us now calculate the timing

error ∆τm caused by the mismatch-induced current error ∆Jm. When ∆Jm is present, we

have

vx = VDD −
J + ∆Jm

Cx
t. (2.3)

At the threshold-crossing, vx = VT , we have

∆T + ∆τm =
(VDD − VT )Cx

J

1

1 + ∆Jm/J
. (2.4)

Making use of 1

1+ ∆Jm
J

≈ 1− ∆Jm
J

, we have ∆T + ∆τm ≈ ∆T
(
1− ∆Jm

J

)
where ∆T =

(VDD−VT )Cx

J
. It becomes evident that the mismatch-induced timing error is given by

∆τm ≈ −
(

∆T

J

)
∆Jm (2.5)

with its power σ2
∆τm

=
(

∆T
J

)2
σ2

∆Jm
. It is seen from (2.5) that mismatch-induced timing

error per pulse-shrinking stage ∆τm is directly proportional to per-stage shrinkage ∆T and

mismatch-induced current error ∆Jm, and inversely proportional to the discharge current J .
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Figure 2.4: Mismatch-induced timing error in pulse-shrinking stage. The timing error at
the output of a pulse-shrinking stage contains the timing error present at the input and that
induced by the mismatch of the pulse-shrinking stage.

Having derived the mismatch-induced timing error per pulse-shrinking stage, let us

now examine the propagation of mismatch-induced per-stage timing error in a pulse-shrinking

TDC. Refer to Fig.2.4. The input of the second pulse-shrinking stage, denoted by Tin,2, is

given by Tin,2 = Tin − (∆T + ∆τm,1) where ∆τm,1 denotes the timing error caused by the

mismatch of stage 1. Tin,2 is fed to the second pulse-shrinking stage that also has a mismatch

discharge current ∆Jm. The timing error of the output of the 2nd stage and the input of the

3rd pulse-shrinking stage, denoted by Tin,3, contains the timing error transmitted from that of

the input of the 2nd stage and the timing error induced by the mismatch of the 2nd stage, and

is given by Tin,3 = Tin,2−(∆T+∆τm,2) = Tin−2∆T−(∆τm,1+∆τm,2). Similarly, one can show

that the input of (k+1)th pulse-shrinking stage is given by Tin,k+1 = Tin−k∆T −
k∑
j=1

∆τm,j.

Since ∆τm,j, j = 1, 2, ..., are uncorrelated, the power of the timing error at the input of

(k + 1)th stage is obtained
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σ2
∆τm,k+1

=
k∑
j=1

σ2
∆τm,j

. (2.6)

If we further assume ∆τm,1, ∆τm,2, ... have an identical distribution profile, i.e.,

µ∆τm,1 = µ∆τm,2 = ... = 0 and σ2
∆τm,1

= σ2
∆τm,2

= ... = σ2
∆τm

, it follows from (2.6) that

σ2
∆τm,k+1

= kσ2
∆τm . (2.7)

It is important to note that Tin,k+1 decreases linearly with the increase in the number of pulse-

shrinking stages while σ2
∆τm,k+1

increases linearly with the number of pulse-shrinking stages.

The mismatch-induced timing error has the worst impact on the LSB of pulse-shrinking

TDCs.

For a single-step pulse-shrinking TDC with M stages, the worst-case output time

variable is given by Tin,M = Tin− (M − 1)∆T − (M − 1)∆τm. In order for the readout DFFs

to capture the output of the last pulse-shrinking stage without entering a meta-stable state,

Tin,M ≥ τsetup + τhold, where τsetup and τhold are the set time and hold time of DFFs

respectively is required. For a given pulse-shrinking TDC, if we neglect mismatch-induced

timing error, we will have

∆T ≤
Tin − (τsetup + τhold)

M − 1
. (2.8)

Eq.(2.8) gives the maximum per-stage shrinkage of the pulse-shrinking TDC for a

given Tin. If the mismatch-induced timing error is included, we will have
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∆T ≤
Tin − (τsetup + τhold)

M − 1
+ ∆τm. (2.9)

Since ∆τm is random, ∆T with mismatch is smaller as compared with that without

mismatch.

2.2.2 Thermal noise-induced timing errors

Mismatch-induced timing error is static while noise-induced timing error is dynamic.

Noise-induced timing error arises from device noise such as thermal noise and switching noise

with the former affecting individual stage and the latter impacting all stages. Let us first

consider the timing error caused by thermal noise. Refer to Fig.2.5, let vn denote the thermal

noise present at the voltage of the load capacitor with its power given by v2
n = kT/Cx where

k is Boltzmann constant and T is temperature in degrees kelvin [33]. It can be shown that

the power of noise-induced timing error ∆τn, denoted by σ2
∆τn

with the subscript n signifies

noise, is obtained from

σ2
∆τn =

(∆Tx)
2

V 2
DD

v2
n =

kT

Cx

(∆Tx)
2

V 2
DD

. (2.10)

Since Tx = CxVDD

J
, we have

σ2
∆τn =

kT

VDD

∆Tx
J

. (2.11)

The TDC has both coarse pulse-shrinking stages and fine pulse-shrinking stages with

∆T1 = N∆T2, we have ∆Tx1 = N∆Tx2. Since both have the same discharge current in order

to minimize power consumption, from (2.11), we have σ2
∆τn,c

= Nσ2
∆τn,f

, where σ2
∆τn,c

and

σ2
∆τn,f

are the power of the noise-induced timing jitter of the coarse and fine pulse-shrinking
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stages, respectively. Utilizing (2.7) and noting that noise-induced timing error in each pulse-

shrinking stage is uncorrelated, we obtain the overall jitter of the one step pulse-shrinking

TDC

σ2
1-step = (MN)σ2

∆τn,f
. (2.12)

Similarly, the overall jitter of the TDC is given by

σ2

proposed = Mσ2
∆τn,c

+Nσ2
∆τn,f

. (2.13)

We therefore arrive at

σ2

proposed = (M + 1)Nσ2
∆τn,f

(2.14)

A comparison of (2.12) with (2.14) reveals that the jitter of the TDC is comparable

to that of the 1-step pulse-shrinking TDC.

2.2.3 Switching noise-induced timing error

Switching noise is caused by the voltage drop across the bond wires of supply and

ground rails. It gives rise to on-chip supply voltage fluctuation and ground bouncing and is

the main source of the jitter of pulse-shrinking TDCs. The jitter of pulse-shrinking TDCs

caused by device noise such as thermal and flicker noise is uncorrelated while that induced by

switching noise is correlated. Since the rising edge of the output voltage of pulse-shrinking

stages governed by time constant RpCx where Rp is the ON-resistance of the PMOS transistor

and Cx is the load capacitance is much sharper as compared with its falling edge controlled
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Figure 2.5: Jitter of pulse-shrinking stages.

by the current source J , the jitter of the output of the pulse-shrinking stage is mainly due to

ground bounce-induced switching noise occurring during the discharge of the load capacitor.

Let the ground bouncing of the pulse-shrinking stage be represented by vsn. The

discharge current of the load capacitor is given by J ≈ Jo

(
1− 2vsn

Vb−VT

)
from which we obtain

ground bouncing induced current error ∆Jsn

∆Jsn = −
(

2Jo
Vb − VT

)
vsn. (2.15)

Utilizing (2.5), we obtain the per-stage ground bouncing induced timing error denoted

by ∆τsn

∆τsn =

(
∆T

J

)
∆Jsn. (2.16)

It follows that
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σ2
∆τsn =

(
∆T

J

)2

σ2
∆Jsn . (2.17)

Following the similar approach as that for computing the propagation of mismatch-

induced timing error in a pulse-shrinking TDC, we obtain the input of (k + 1)th pulse-

shrinking stage with ground bouncing considered only

Tin,k+1 = Tin − k∆T −
k∑
j=1

∆τsn,j. (2.18)

The jitter of each pulse-shrinking stage caused by ground bouncing is completely correlated

and therefore has the same distribution profile, i.e., σ∆τsn,1 = σ∆τsn,2 = ... = σ∆τsn . Eq.(2.18)

can be written as

Tin,k+1 = Tin − k∆T − k∆τsn. (2.19)

It follows that

σ2
∆τsn,k+1

= k2σ2
∆τsn . (2.20)

The difference between (2.20) and (2.7) is apparent.

The power of the timing error caused by the thermal noise of devices increases linearly

with the number of the pulse-shrinkage stages while that caused by switching noise arises

quadratically with the number of the pulse-shrinkage stages. Since ∆τm, ∆τn, and ∆τsn are

uncorrelated, the total timing error ∆τ is obtained from
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∆τ =
√

(∆τm)2 + (∆τn)2 + (∆τsn)2. (2.21)

and its power is given by σ2
∆τ = σ2

∆τm
+ σ2

∆τn
+ σ2

∆τsn
. If we assume that an input sinusoid

signal with an amplitude A, SNR (Signal-to-Noise) becomes

SNR =
A2/2

σ2
∆τ

. (2.22)

2.2.4 Timing error of delay stages

It was shown that for a pulse-shrinking TDC with M stages, a total of M delay

stages are needed to delay Xc,j, j = 1, 2, ...,M by ∆T1 prior to multiplexing. In this work,

each delay stage was implemented using a pair static inverters with a large capacitor load,

as shown in Fig.2.6. Although simple, this delay cell suffers from a high level of power

consumption. This is because the slowly rising and falling transients of the capacitor voltage

due to the large load capacitance give rise to a large time interval in which the short-circuit

current of the load inverter exists. To investigate the effect of the timing error of these delay

cells on the performance of the TDC, we assume that the delay error of the delay cell that

provides time delay ∆T1 be ∆τ1. Since the selection signal of the multiplexer does not go

through the delay cells, it is not affected by the delay error of the delay cells. Further, since

∆τ � ∆T1 while the space between the assertion of S4 = 1 and X∗
c,3 = 1 is ∆T1, the slight

variation of the delay provided by the delay cells, which only affects the assertion of X∗
c,3 = 1

has no effect on the extraction of the residual pulse, as evident in Fig.2.6.

2.2.5 Conversion time

If a single-stage pulse-shrinking TDC is used, since digitization starts at the rising

edge of Tin and completes at the falling edge of Tin, the conversion time measured from the
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Figure 2.6: The effect of the delay error of delay stages on the TDC.

availability of the input data, which is the falling edge of Tin, to the availability of the digital

output is given by τ1-step = τDFF , where τDFF is the delay of DFFs. For the TDC it is seen

from Fig.2.3 that the worst-case conversion time is given by τproposed = τMUX+∆T1+τDFF ,

where τMUX is the delay of the multiplexer. The conversion time of the TDC is therefore

slightly longer as compared with that of single-step pulse-shrinking TDCs. This result is

expected as the residual pulse of the coarse TDC will become available only at the falling

edge of Tin. The conversion time of the fine TDC is the duration of the residual pulse of the

coarse TDC with its worst value ∆T1.

2.2.6 Power consumption

The total power consumption of the pulse-shrinking stage in cycle is the sum of the

power consumption for charging Cx by VDD via the pMOS transistor, discharging Cx by

the current source, and charging and discharging Co. Since the average dynamic power
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consumption of an static inverter in an input period is given by P = CLV
2
DDf where CL is

the load capacitance of the inverter and f is the frequency of the input of the inverter, we

obtain the power for charging Cx : CxV
2
DDf/2 and that for charging and discharging Co:

CoV
2
DDf . To calculate the power for discharging Cx, since

vx = VDD −
(
VDD
∆Tx

)
t, 0 ≤ t ≤ ∆Tx, (2.23)

utilizing ∆Tx =
(
VDD

VT

)
∆T , we have the instantaneous power for discharging Cx

px = Jvx = J

(
VDD −

VDD
∆Tx

t

)
. (2.24)

The average power consumption for discharging Cx is obtained from

Px =
1

∆Tx

∫ ∆Tx

0

px(t)dt =
1

2
JVDD. (2.25)

The total power consumption of the pulse-shrinking stage is therefore given by

Ps = (CoV
2
DD +

1

2
CxV

2
DD +

1

2
JVDD)f. (2.26)

Because J1

Cx1
= VDD−VT

∆T1
and J2

Cx2
= VDD−VT

∆T2
, we arrive at ∆T1

∆T2
= Cx1

Cx2

J2

J1
= N . To minimize

power consumption, we choose J1 = J2 = J and Cx1 = NCx2 = NCx. The total power

consumption of the single-step pulse-shrinking TDC is obtained from

P1-step =

[(
Co +

Cx
2

)
V 2
DD +

1

2
JVDD

]
f(MN) (2.27)
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The total power consumption of the TDC is obtained from

Pproposed =

[(
Co +

NCx
2

)
V 2
DD +

1

2
JVDD

]
fM

+

[(
Co +

Cx
2

)
V 2
DD +

1

2
JVDD

]
fN (2.28)

It is evident from (2.27) and (2.28) that the TDC consumes significantly less power

as compared with the single-stage TDC of the same dynamic range and resolution. It should

be noted that the power consumption of the residual pulse extraction block including the

delay blocks is not included in the preceding analysis. In our design, a set of simple delay

blocks were used in order to extract the correct residual pulse of the coarse TDC. The simply

configuration of these delay blocks is at the cost of power consumption, as to be seen later.

2.2.7 Silicon area consumption

If a single-step pulse-shrinking TDC is used to achieve the same resolution and dy-

namic range as those of the TDC, a total of MN pulse-shrinking stages with per-stage

shrinkage ∆T2 will be needed. The TDC, on the other hand, only needs M + N pulse-

shrinking stages. Note that ∆T1 = N∆T2 is realized using J2 = J1 and Cx1 = NCx2. Let

the silicon consumption of the load capacitor of the coarse and fine pulse-shrinking stages be

Ax1 and Ax2, respectively. Further, let the silicon consumption of readout DFFs be ADFF .

Neglect the silicon consumption of other logic gates for simplicity. Since Ax1 = NAx2, we

have the total silicon consumption of the 1-step TDC

A1-step = (Ax2 + ADFF )MN. (2.29)

The total silicon consumption of the TDC is given by
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Aproposed = (NAx2 + ADFF )M + (Ax2 + ADFF )N

= (M + 1)NAx2 + (M +N)ADFF . (2.30)

It is seen that if ADFF is smaller as compared with Ax2, then the TDC will consume

comparable silicon as the 1-step TDC does. If ADFF is large, the TDC will consume less

silicon. It should be noted that if we choose Cx1 = Cx2 and Jf = NJc, ∆Tx1 = N∆Tx2 will

also hold. In this case, the silicon consumption of the TDC will be much lower as compared

with that of the single-stage TDC.

2.2.8 Gain mismatch

The TDC uses a 2-step approach to achieve an improved resolution while minimizing

silicon consumption. Similar to other TDCs, the TDC is subject to the gain error caused

by the mismatch of per-stage shrinkage. Since the fine TDC digitizes the residue of the

coarse TDC, the gain error of the coarse TDC will be reflected in the residue of the coarse

TDC, specifically, the input of the fine TDC contains both a normal residue and a residue

caused by the gain error of the coarse TDC. Clearly the latter will also be digitized by the

fine TDC. The gain error of the fine TDC will directly affect the output of the fine TDC.

Ideally the gain of the coarse TDC and that of the fine TDC should be identical. Any

mismatch between them will introduce an error. Since the gain error of the TDC is due to

the mismatch of per-stage shrinkage, minimizing the number of stage stages will reduce the

gain error. Increasing transistor size of pulse-shrinking stages will also lower the gain error.

To further minimize gain mismatch, the coarse and fine TDCs are calibrated separately to

achieve ∆T1 = N∆T2 where ∆T1 and ∆T2 are the resolution of the coarse TDC and that of

the fine TDC, respectively, and N is the number of the stages of the fine TDC.
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2.3 Time-Interleaved Pulse-Shrinking TDC

Two-step pulse-shrinking TDC is good for silicon and power consumption compared

to the one-step pulse-shrinking TDC. However, it has a disadvantage in the conversion time

explained in subsection 2.2.5. To improve the conversion time, a time-interleaved scheme is

developed. The TDC uses a coarse pulse-shrinking TDC with a total of M stages of per-

stage shrinkage ∆T1 to quantize input time variable Tin and a fine pulse-shrinking TDC with

a total of N stages of per-stage shrinkage ∆T2 with ∆T1 = N∆T2 to quantize the residual

pulse of the coarse pulse-shrinking TDC. The residual pulse of the coarse TDC will only

become available at the falling edge of Tin, as shown in Fig.2.7. The location and width of

the residual pulse Tres constrained by 0≤Tres≤∆T1 are therefore Tin-dependent.

Figure 2.7: Residual pulse of coarse TDC. The location and width of the residual pulse Tres
of the coarse TDC are determined by Tin and the residual pulse is only available at the falling
edge of Tin.

For an input ∆T2 < Tin < 4∆T1 in Fig.2.7, the pulse might vanish at the output of

any of the delay stages of the TDC. If we assume that the pulse disappears at the output
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of (m+ 1)th stage, we will have Xm = 1 and Xm+1 = 0 where Xm and Xm+1 are the output

of mth and (m + 1)th stages, respectively. A residual pulse will exist at Xm and become

available at the falling edge of Tin. This residue pulse needs to be extracted and fed to the

fine TDC for further digitization.

The simplified schematic of the time-interleaved pulse-shrinking TDC is shown in

Fig.2.8 (A) with the schematic of the generic pulse-shrinking TDC shown in Fig.2.8 (B).

The extraction of the residual pulse of the coarse pulse-shrinking TDC is performed by the

residual pulse extraction logic. To demonstrate the operation of the residual pulse extraction,

consider Fig.2.7(c) where the output of XOR gate with inputs X1 and X2 is 1 and others

are 0. We have Tin,f1 = Tin⊕X1 +X2⊕X3 = 0 and Tin,f2 = X1⊕X2 +X3⊕X4 = 1 where

⊕ is the exclusive-OR operator. Tin,f1 and Tin,f2 are time inputs for a fine TDC1 and fine

TDC2, respectively. For simplicity, we treat the data of Tin as a digital data although it is

a time domain variable. Similarly, one can show in other cases of Fig.2.7, Tin,f1 and Tin,f2

are non-overlapping. Fig.2.9 plots the waveform of Tin,f1 and Tin,f2 for Tin = 45 ns.

In order to route the output of the chosen fine TDC to the DFFs using OR2 gates,

the output of the other fine TDC needs to be set 0. This is achieved using the reset signal

generation logic that consists of a pair of inverters and 2-to-1 multiplexers with selection

signal Tin. When Tin is absent, both multiplexers select 0. Otherwise, MUX-1 selects Tin,f1

while MUX-2 selects Tin,f2. The output of the fine pulse-shrinking TDC is sampled by the

DFFs at the rising edge of strobe signal Tstrobe,f . Since the residual pulse of the coarse TDC

is only available at its falling edge of Tin, a minimum time interval from the falling edge of

Tin to the assertion of Tstrobe,f in order for the fine TDC to complete the digitization of the

residual pulse of the coarse TDC is required to ensure that the output of the fine TDC is

stable when Tstrobe,f is asserted.

The coarse and fine pulse-shrinking TDCs have 16 stages with ∆T1 = 4.8 ns and

∆T2 = 296 ps. To calibrate the TDC, a calibrating pulse of width 4.8 ns × 16=76.8 ns is

fed to the coarse pulse-shrinking TDC. Vbias,c is adjusted until a pulse width generated by

XORing the output of the first pulse-shrinking stage and that of 15th pulse-shrinking delay

stage becomes 72 ns. At this point, the coarse pulse-shrinking TDC is calibrated. With
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Figure 2.8: (A) Time-interleaved pulse-shrinking TDC. The pulse-shrinking stages of the
coarse and fine TDCs have the same transistor dimensions but distinct capacitor loads. The
load capacitance of the pulse-shrinking stages of the fine TDCs are from devices while that of the
coarse TDC is an external 402 fF MiM capacitor. (B) Configuration of pulse-shrinking TDCs.
The outputs of the coarse TDC are Qc,1, Qc,2, ..., Qc,M with the first subscript identifying
the coarse TDC and the second subscript identifying the delay stage of the TDC. Qin is the
input of the coarse TDC. The outputs of the fine TDC are Qf,1, Qf,2, ..., Qf,N with the first
subscript identifying the fine TDC and the second subscript identifying the delay stage of the
TDC.

Vbias,c kept unchanged, the fine pulse-shrinking TDCs are adjusted by varying Vbias,f1 and

Vbias,f2 until both pulse widths generated from the calibration block becomes 4.5 ns. This

process can be automated using a delay-locked loop, similar to that used in [6, 7].

2.4 Characteristics of Time-Interleaved Pulse-Shrinking

TDC

In this section we examine the characteristics of the TDC. To provide a quantita-

tive comparison, a single-step pulse-shrinking TDC that provides the same resolution and

dynamic range, is utilized.
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Figure 2.9: Non-overlapping waveforms of Tin,f1 and Tin,f2 for Tin=45 ns.

2.4.1 Silicon area consumption

We first examine the silicon consumption of the TDC. If a single-step pulse-shrinking

TDC is used to achieve the same resolution and dynamic range, a total ofMN pulse-shrinking

stages with per-stage shrinkage ∆T2 will be needed. The TDC, on the other hand, only needs

M + 2N pulse-shrinking stages, a significant reduction in silicon consumption is obtained

especially when the number of the pulse-shrinking stages is large. In addition to fewer pulse-

shrinking stages, fewer DFFs for readout are needed in the TDC. A total of MN readout

DFFs will be needed for the single-step pulse-shrinking TDC. The number of DFFs needed

for the TDC is only M + 3N . In the design presented in this work, M = N = 16. A total of

256 pulse-shrinking stages and 256 DFFs will be needed with an single-step pulse-shrinking

TDC while only 48 pulse-shrinking stages and 64 DFFs are needed with the TDC.
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2.4.2 Power consumption

For the purpose of simplicity, we neglect the effect of short circuit current that flows

between pMOS and nMOS transistors as the input signal changes and leakage current. We

will consider only one largest Tin case which is 76ns in this work. Therefore, we can assume

the dynamic power is dominant. The average dynamic power consumption of an static

inverter in an input period is given by P = αCLV
2
DDf where α is the activity factor, CL is

the load capacitance of the inverter and f is the frequency of the input of the inverter. In this

analysis, α is average number per clock cycle when the clock goes one from zero. Therefore,

α is 1 in the analysis. The time-interleaved pulse-shrinking TDC, especially fine TDC,

will be activated always when each pulse-shrinking stage in the coarse TDC is activated.

This is one of main differences compared to the conventional 2-step pulse-shrinking TDC

explained in the previous chapter [?] which generates the residual pulse after the falling

edge of Tin. Therefore, we can easily assume that this will consume more power than 2-step

pulse-shrinking TDC since it is unknown when Tin will end, the two fine TDCs should be

operated always. The total power consumption will be sum of the power consumption in the

coarse TDC and the one in the fine TDC times the number of pulse-shrinking stage in the

coarse TDC since the fine TDC is activated always.

Pproposedc = αcCcV
2
DDf. (2.31)

Pproposedf = αfCfV
2
DDf(M). (2.32)

Pproposedc and Pproposedf are the total power consumption in the coarse and fine TDC respec-

tively given in the largest Tin. Cc and Cf are the capacitance used in the coarse and fine

TDC respectively. M and N are the total number of pulse-shrinking delay cells used in the

coarse and fine TDC respectively. αc will be M and αf will be N since α is an activity factor

transitioning from zero to one in one period. M is the number of pulse-shrinking stage in

the coarse TDC. Therefore, the total power consumption in the architecture is
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Pproposed = (M)CcV
2
DDf + (N)CfV

2
DDf(M). (2.33)

In the single-stage TDC, the total dynamic power consumption is

P1-step = α1CfV
2
DDf. (2.34)

α1 will be MN. If we design Cf = Cc, then the singe-stage TDC will be (MN)Cf V
2
DD f and

the TDC will be (M+MN)Cf V
2
DD f. Therefore, the TDC will consume M times more. If

we design Cc = NCf , then the TDC will be 2MNCf V
2
DD f. However, in this case, the short

circuit current in the coarse TDC will be higher than the fine TDC since the input signal’s

slope applied to the coarse TDC will be lower causing longer transition time compared to

the fine TDC. Therefore, it will consume more power in either cases. This is the price pay

for the faster conversion time compared to the single-stage TDC.

2.4.3 Mismatch-induced timing error

Similar to delay line TDCs, the resolution of pulse-shrinking TDCs is affected by the

mismatch between pulse-shrinking stages. To simplify analysis, we assume that mismatches

between pulse-shrinking stages is dominated by that of the discharge of the load capacitor.

Since capacitance ratio in standard CMOS technologies can be made quite accurate, it is

reasonable to assume that the mismatches of the discharge of the load capacitor are domi-

nated by that the mismatch of the discharge current. With this in mind, let the mismatch

between the discharge currents of pulse-shrinking stages be ∆I with ∆I � I. Further let

∆I be normally distributed with a zero mean µI = 0 and a non-zero standard deviation σI .

In this case vx = VDD − I+∆I
Cx

t. At vx = VT , making use of 1/(1 + x) ≈ 1− x for |x| � 1, we
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have

∆T + δT ≈ ∆T

(
1− ∆I

I

)
(2.35)

where ∆T = (VDD−VT )Cx

I
. It becomes evident that mismatch-induced time error δT ≈

∆T
(

∆I
I

)
is directly proportional to ∆I and inversely proportional to I. If I is generated by

a nMOS transistor biased in saturation, the current error due to W/L and Vth mismatches

can be obtained as follows [34]

I =
1

2
µnCox

[
W

L
+ ∆

(
W

L

)]
(vGS − Vth −∆Vth)

2 (2.36)

where ∆(W/L) and ∆Vth are dimension mismatch and threshold mismatch, respectively.

Note that ∆(W/L)� W/L, ∆Vth � Vth, and ∆(W/L) and ∆Vth are assumed to be normally

distributed with zero means and non-zero variances. Neglecting high-order terms, we arrive

from (2.36)

I≈1

2
µnCox

(
W

L

)
(vGS − Vth)2

(
1 +

∆(W/L)

W/L
− 2∆Vth
vGS − Vth

)

We thus have ∆IW/L = I
(

∆(W/L)
W/L

)
and ∆IVth = −I

(
2∆Vth
vGS−Vth

)
where I = 1

2
µnCox

(
W
L

)
(vGS−

Vth)
2, ∆IW/L and ∆IVth denote the current error due to W/L-mismatch and Vth-mismatch,

respectively. The current error due to mismatches is given by

∆I =
√

(∆IW/L)2 + (∆Vth)2 (2.37)

To minimize ∆I, a large nMOS transistor with a large overdrive voltage should be

used to generate the discharge current I.

Let us now consider a pulse-shrinking delay line with an input Tin. Let the mismatch

of the discharge current of each pulse-shrinking stage be ∆I that is normally distributed

with mean µI = 0 and standard deviation σI . The mean of δT is given by µT = 0. The

40



variance of δT is given by σ2
T = (∆T )2 σ

2
I

I2 . The input of the second pulse-shrinking stage,

denoted by Tin,2, is given by Tin,2 = Tin − (∆T + δT1) where δT1 denotes the time error

caused by the current mismatch of stage 1. Tin,2 is fed to the second pulse-shrinking stage

that also has a mismatch discharge current ∆I. It can be shown that the output of the

second pulse-shrinking stage or the input of the 3rd pulse-shrinking stage, denoted by Tin,3,

is given by Tin,3 = Tin2 − (∆T + δT2) = Tin − 2∆T − (δT1 + δT2). Note δT1 and δT2 are

independent of each other. Continuing this process, one can show that the input of (m+1)th

pulse-shrinking stage, denoted by Tin,m+1, is given by Tin,m+1 = Tin −m∆T −∆m+1 where

∆m+1 = δT1 + δT2 + ...+ δTm. Since δTj, j = 1, 2, ..., are independent of each other, we have

the mean of ∆m+1 given by : µ∆m+1 = 0 and the variance of ∆m+1 given by :

σ2
∆m+1

= σ2
T1

+ σ2
T2

+ ...+ σ2
Tm (2.38)

If we further assume δT1, δT2, ... have the identical distribution profile, i.e., σT1 = σT2 = ... =

σTm = σT , it follows that σ∆m+1 = (
√
m)σT . The above results are similar to the jitter of ring

oscillators given in [35, 36]. It is important to note Tin,m+1 decreases with the increase in the

number of pulse-shrinking stages while σ∆m+1 increases with the number of pulse-shrinking

stages. As a result, stage-wise measurement accuracy drops. This is illustrated graphically

in Fig.2.10. The worst case is when all M stages of the coarse TDC and all N stages of

the fine TDC are used. In this case, σ∆M+N
=
(√

M +N − 1
)
σT . In order to minimize

mismatch-induced timing error, the number of pulse-shrinking stages should be kept at the

minimum.

2.4.4 Conversion time

Conversion time is the time between the end of the input time interval and the

moment when the measurement result is available at the TDC interface. If a single-stage

pulse-shrinking TDC is used and the average propagation delay per stage is τ , the worst-case

conversion time will be τ1-step = τDFF where τDFF is the delay of the DFF readout circuitry.

For the TDC, the residual pulse extraction logic operates in synchronization with the coarse

TDC, specifically immediately after the assertion of the rising edge of Tin, the rising edge of
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Figure 2.10: Mismatch-induced time error in pulse-shrinking TDCs.

Xc,j, j = 1, 2, ...,M becomes available along with the propagation of the rising edge of Tin

in the pulse-shrinking stages of the coarse TDC. As a result, the rising edges of Tin,f1 and

Tin,f2 also become available and the fine TDC is activated. The preceding analysis shows

that both the coarse and fine TDCs carry out the digitization of Tin simultaneously. This

differs fundamentally from 2-step TDCs such as the one explained in the previous chapter in

[?] where the residual pulse of the coarse TDC will only become available at the falling edge

of Tin then it needs to be fed to the fine TDC. The worst-case conversion time of the TDC is

therefore given by τproposed = max{Mτc, Nτf} + 2τDFF where τc and τf are the per-stage

propagation delay of the coarse and fine TDCs, respectively. Note that we have neglected

the delay of logic gates for extracting Tin,f1 and Tin,f2. Clearly, the conversion time of the

TDC is a little bit bigger as compared with that of the single-stage TDC especially since

it should consider DFF reset time and it has one more DFF groups. However, it is much

smaller as compared with that of 2-step TDCs explained in the previous chapter [?].
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2.4.5 Timing analysis

Tin,f1 and Tin,f2 in Fig.2.8 are the inputs of the fine TDCs. They should be non-

overlapping ideally as shown in Fig.2.11. Strobing signal Tstrobe,f1 and Tstrobe,f2 that read

the output of fine TDCs 1 and 2 should be asserted close to the falling edge of Tin,f1 and

Tin,f2 respectively. In Fig.2.11(a), Qf1,1−3 = 1 and Qf1,4−16 = 0 when Tstrobe,f is properly

asserted. If Tstrobe,f1 is asserted earlier (Fig.2.11b), Qf1,1−2 = 1 and Qf1,3−16 = 0. As

the output of the fine TDC is a thermometer code, Qf1 = 0...0︸︷︷︸
13

111 (no early strobing) and

Qf1 = 0...00︸ ︷︷ ︸
14

11 (early strobing). The locations and number of erroneous bits are therefore

set by the time displacement of the strobing signal.

Figure 2.11: Strobing the output of fine TDC1. (a) Proper strobing. (b) Early strobing.

Mismatches between the propagation delay of the logic generating Tin,f1 and Tin,f2

and the pulse shrinking stages of the coarse TDC give rise to overlapping between Tin,f1 and

Tin,f2. Consider the two cases shown in Fig.2.12 where Tstrobe,f2 is asserted at the same time

instant. It is seen in Fig.2.12(a) that Qf1,1−2 = 1 and Qf1,3−16 = 0 where in Fig.2.12(b),

Qf1,1−4 = 1 and Qf1,5−16 = 0.
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Figure 2.12: Strobing the output of fine TDC1 with Tin mismatch. (a) Tin,f1 has a mismatch-
induced delay. (b) Tin,f2 has a mismatch-induced lead.

Mismatch between the reset paths of the fine TDCs also introduces errors. Consider

Fig.2.13(a) where Rf2 has a mismatch-induced delay. Although Rf2 only affects the reset of

fine TDC 2, the delayed reset of fine TDC 2 might affect the overall output of the fine TDCs.

This is because Q∗
f = Q̂f1 + Q̂f2. In Fig.2.13(b) where Rf1 has a mismatch-induced delay.

It is seen that Rf1 affects the reset of fine TDC 1. The output in this case is Qf1,1−2 = 1

and Qf1,3−16 = 0 rather than the correct Qf1,1−3 = 1 and Qf1,4−16 = 0.

2.4.6 Jitter

To estimate the jitter of the output of a pulse-shrinking delay cell, we follow the

approach for the jitter analysis of ring oscillators presented in [33]. Refer to Fig.2.14, let

vn denote the noise stored in Cx driven by the previous stage of the pulse-shrinking stage.

For the purpose of simplicity, we neglect the effect of switching noise. The power of vn

denoted by v2
n is given by v2

n = kT/Cx where k is Boltzmann constant and T is temperature

in degrees kelvin. It can be shown that the jitter of vo or the variance of ∆Tj, denoted by

σ2
j , is obtained from
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Figure 2.13: Strobing the output of fine TDC1 with reset mismatch. (a) Rf1 has a mismatch-
induced delay. (b) Rf2 has a mismatch-induced delay.

σ2
j =

(∆Tx)
2

V 2
DD

v2
n =

kT

Cx

(∆Tx)
2

V 2
DD

(2.39)

Since ∆Tx = (Cx/I)VDD, we have

σ2
j =

kT

VDD

∆Tx
I

(2.40)

It is seen from (2.40) that σj is directly proportional to discharge time ∆Tx and

inversely proportional to discharge current I. ∆Tx of the coarse pulse-shrinking stage is larger

than that of the fine pulse-shrinking stage. Note that both have the same discharge current

in order to minimize power consumption. As a result, the jitter of the coarse TDC will be

larger as compared with that of the fine TDCs. If we assume that the jitter of pulse-shrinking

stages is uncorrelated and it contributes equally to the output jitter, the overall jitter of the

one step pulse-shrinking TDC that has a total of MN pulse-shrinking stages of per-stage

shrinkage ∆T2 is obtained from σ2
1-step = (MN)σ2

f . Similarly, the overall jitter of the TDC

is given by σ2

proposed = Mσ2
c + Nσ2

f where σ2
c and σ2

f are the power of the jitter of the

coarse pulse-shrinking stage and fine pulse-shrinking stage, respectively. Since the discharge
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Figure 2.14: Jitter of pulse-shrinking stages.

time in the coarse pulse-shrinking stage is N times that of the fine pulse-shrinking stage,

σ2
c = Nσ2

f follows. We therefore have σ2

proposed = (M + 1)Nσ2
f . For the TDC presented in

this work, M = N = 16, we have σ2

proposed = 272σ2
f and σ2

1-step = 256σ2
f = 0.94σ2

proposed.

The preceding results reveal that the jitter of the TDC is comparable to that of the 1-step

pulse-shrinking TDC.

2.5 Simulation and Measurement Results

A 4-bit two-step TDC consisting of a 4-stage coarse TDC with per-stage shrinkage

1 ns and a 4-stage fine TDC with per-stage shrinkage 250 ps and a 8-bit time-interleaved

pulse-shrinking delay-line TDC consisting of a 16-stage coarse pulse-shrinking TDC of per-

stage shrinkage 4.8 ns and two 16-stage fine pulse-shrinking TDCs of per-stage shrinkage 0.3

ns were designed in an IBM 130 nm 1.2 V CMOS technology. The chip photo of both pulse-

shrinking delay-line TDCs are shown in Fig. 2.15. A total of 18 and 20 bonding pads were

used in the two-step TDC and the time-interleaved TDC, respectively. The total silicon area

including the bonding pads is 1 mm × 1 mm both. The filling metals for satisfying density

design rules were configured in such a way that they formed a large decoupling capacitor

between VDD and VSS rails. MiM decoupling capacitors were also used between VDD and

VSS rails to minimize the effect of switching noise.
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Figure 2.15: Die micrograph of the 4 bit two-step pulse-shrinking TDC (left) and that of the 8
bit time-interleaved pulse-shrinking TDC including a thermometer-to-binary encoder (Right).
The core area of the two-step TDC : 145 µm x 155 µm. The core area of the time-interleaved
TDC : 450 µm x 220 µm.

2.5.1 Simulation results of two-step pulse-shrinking TDC

The simulated differential nonlinearity (DNL) of the two-step TDC in the nominal

process condition is shown in Fig.2.16(top). It is seen that in the normal process conditions,

the DNL is approximately 0.5 LSB. The DNL of the TDC at SS and FF process corners

is shown in Fig.2.16(bottom). It is seen that there is a missing code in SS corner. This is

because of a negative gain error in the coarse TDC. The resolution becomes larger than the

target resolution in SS corner. In this case, Tresidue can not be extracted properly due to

the fixed delay line between the coarse and fine TDC. For example, if the target ∆T1 is 1 ns

and the measured coarse TDC resolution is 1.2 ns, the transmission gate at the extraction

logic will be turned off 1.2 ns later. However, since the delay of the delay line is 1 ns, 0.2

ns time information can go to the fine TDC. If this is greater than the resolution of the fine

TDC, it will generate one LSB and cause a DNL error. The simulated integral nonlinearity

(INL) of the TDC in the nominal process condition and at SS and FF process corners are

shown in Fig.2.17. It is seen that in the normal process conditions, the INL is approximately

0.5 LSB. At the process corners, the INL drops to approximately 1 LSB. Fig.2.18 shows the

spectrum of the TDC. To simulate it, we designed a voltage-to-time converter by using a
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current-starved inverter [22] with input range 90 ps to 4 ns. The simulation results show

that ENOB is 3.16 bits. Fig.2.19 shows the results of Monte Carlo simulation with Tin set

to 2.2 ns.

Figure 2.16: Simulated DNL of the TDC (post-layout). Top - Normal process condition.
Bottom - SS and FF process corners.

The breakdown of the power consumption of the blocks of the TDC is : Delay block

: 105 µW. Fine pulse-shrinking stages : 17.9 µW. Coarse pulse-shrinking stages : 9.5 µW.

DFFs and reset : 29.8 µW. Residue pulse extraction : 20.2 µW. It is seen that a significant

portion of the power consumption of the TDC comes from the delay block. The reason

for the high level of power consumption of the delay block was explained earlier. Clearly

a better residual pulse extraction method that consumes less power needs to be developed

should power consumption is of a critical concern. The simulated conversion time is 1.4

ns. The conversion time of the TDC consists of three components : the delay of the 4-to-1

multiplexer τMUX , the delay of the DFFs τDFFs, and the maximum range of the input time

variable of the fine TDC ∆T1 = N∆T2. Since ∆T1=1 ns, τMUX + τDFF ≈ 0.4 ns.
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Figure 2.17: Simulated INL of the TDC (post-layout). Top - Normal process condition.
Bottom - SS and FF process corners.

2.5.2 Measurement results of two-step pulse-shrinking TDC

The designed chip was fabricated and packaged with surface-mount, 20 gull-wing leads

from Spectrum Semiconductor Materials Inc. The fabricated was mounted on a FR4 printed

circuit board. The test setup is shown in Fig.2.20. An Agilent B1130A pattern generator

was used to provide Tin. An Agilent 16851A logic analyzer was used to capture the digital

output of the TDC. The single-ended flying leads of the logic analyzer were connected to the

output of the TDC directly. DC voltages including supply voltage and tuning voltages of the

coarse TDC and that of the fine TDC were from a BK 9130 multi-channel DC power supply.

An Agilent 33250A arbitrary waveform generator was used to provide the reset signal for all

DFFs. Ideally the reset signal should be generated on chip directly with its source from the

pattern generator so as to avoid timing difficulty.

The TDC was calibrated manually. A known time variable from a precision pulse

generator was applied to the TDC. The difference between Q1c and Q3c of the coarse TDC

was measured using a logic analyzer. This value should be 2∆T1 ideally. If a difference was
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Figure 2.18: Simulated spectrum the TDC (post-layout). Input : Sinusoid of 5.176 MHz @fs
= 100 MHz.

Figure 2.19: Monte Carlo simulation results when Tin = 2.2 ns (200 samples).

observed, the per-stage time shrinkage of the coarse TDC was tuned by varying its biasing

voltage. Similarly, for the fine TDC, we measured the difference between Q1f and Q3f . This

value should be 2∆T2 ideally. If a difference was observed, the per-stage time shrinkage of

the fine TDC was tuned by varying its biasing voltage. Only when both the coarse and fine

TDCs were calibrated, the calibration of the TDC was completed.
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Figure 2.20: Test setup of the two-step pulse-shrinking TDC (PCB with SMA connectors for
connecting to test equipment not shown).

The measured pulse shrinkage of the coarse pulse-shrinking stage of the TDC on its

biasing voltage Vb2 is shown in Fig.2.21(top). It is seen that the influence of Vb2 on the amount

of pulse shrinkage diminishes when Vb2 exceeds 0.8V. This is because when Vb2 > 0.8V,

the nMOS transistor enters the triode mode of operation while when Vb2 < 0.8V, it is in

saturation. It is also seen that the minimum amount of pulse shrinkage is approximately 4.5

ns, well above 1 ns, the per-stage pulse shrinkage of the coarse TDC, indicating that a static

time offset of 4.5 ns exists. The static time offset is caused by the delay of the output buffer

for reading the output of the coarse TDC and associated PCB that connects the output

buffer to the test equipment. This static timing error can be removed via calibration. For

example, if we introduce a timing offset of 4.5 ns, the dependence of the pulse shrinkage of

the coarse pulse-shrinking stage on bias voltage is shown in Fig.2.21(bottom). It is evident

from Fig.2.21 that the per-stage shrinkage of the coarse TDC can now be tuned between

0 and 1 ns. Also observed is that the hyperbolic profile of the measured dependence of

the pulse shrinkage of the coarse pulse-shrinking stage on bias voltage. Due to the process

defects of the fabricated chip, especially in the delay line, we were unable to measure the

dependence of the pulse shrinkage of the fine pulse-shrinking stage on bias voltage. To have

an accurate delay line for accuracy, we can use a delay-locked loop (DLL) since it is good

for skew control. However, in this case, we need to consider increasing silicon and power
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consumption since DLL needs a reference clock signal and control logic to control enable /

disable DLL block.

Figure 2.21: Measured dependence of the pulse shrinkage of the coarse pulse-shrinking stage
on bias voltage. Top - Without offset calibration. Bottom - With 5ns offset calibration.

2.5.3 Simulation results of time-interleaved pulse-shrinking TDC

The simulated DNL and INL of the TDC in the nominal process condition are shown

in Fig.2.22 (A) and (B). The largest DNL and INL are found to be ±0.285 LSB and 0.785

LSB, respectively. Fig.2.22 (C) shows the results of Monte Carlo simulation with Tin set to

15 ns.

2.5.4 Measurement results of time-interleaved pulse-shrinking TDC

The designed chip was fabricated and was mounted on a FR4 printed circuit board.

The test setup is shown in Fig.2.23.
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Figure 2.22: (A) Simulated DNL (post-layout), (B) Simulated INL (post-layout), (C) Monte
Carlo simulation results when Tin = 15 ns (90 samples).

The measured transfer characteristics of the TDC over the input range 0-70 ns is

shown in Fig.2.24, along with the ideal transfer characteristic for reference. It is seen that the

measurement result of the output of the TDC generally agree with the desired characteristics

of the TDC. Two periodic abnormal increases, one by 16 and the other by 10 approximately,

exist in the measured output of the TDC. Both have a period of 9.6 ns approximately. The

increase of 10 occurs approximately at the mid-point between two increases of 16. These

irregularities are caused by the timing mismatches between Tin,f1 and Tin,f2 and that between

Rf1 and Rf2. We notice that the per-stage pulse-shrinkage of the coarse TDC is 4.8 ns and the

coarse TDC has 16 pulse-shrinking stages. The outputs of the residual extraction logic blocks

Tin,f1 and Tin,f2 are a total of eight 50% duty cycle non-overlapping pulses with period 9.6 ns

if Tin takes the full-range value of the input of the TDC (76.8 ns). The overlapping of Tin,f1

with Tin,f2 and that of Rf1 with Rf2 will cause Tin,f1 and Tin,f2 to deviate from their nominal

values at their rising or falling edges, 4.8 ns apart in the nominal condition. The variation

of Tin,f1 with Tin,f2 are digitized by the fine TDCs, resulting in the periodic irregularities in
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Figure 2.23: Test setup of the time-interleaved pulse-shrinking TDC. An Agilent B1130A
pattern generator was used to generate Tin and an Agilent 16851A logic analyzer was used
to capture the digital output of the TDC. Three DC voltages, namely Vbias,c, Vbias,f1, and
Vbias,f2 for tuning the discharge current of the coarse and fine TDCs so as to obtain the desired
per-stage pulse shrinkage are from a BK 9130 multi-channel DC power supply.

the transfer characteristics of the TDC. The overlaps of Tin,f1 with Tin,f2 and Rf1 with Rf2

are observed in Fig.2.25 (A) where the screen shot of the output of the logic analyzer that

captures the digital outputs of the TDC for Tin = 70 ns is shown. Since only one buffer was

designed and implemented for probing Tin,f1, only Tin,f1 is captured and shown in the figure.

The waveform of Tin,f1 has 8 pulses spaced by 9.6 ns approximately, indicating that the even

pulse-shrinking stages of the coarse TDC are also activated. The detrimental effect caused

by the overlapping of Tin,f1 and Tin,f2, and that of Rf1 and Rf2 reveals the importance that

any overlapping between Tin,f1 and Tin,f2, that between Rf1 with Rf2 should be removed.

This can be achieved using cross-coupled OR2 gates, i.e., a RS-latch whose outputs are Q

and Q and are non-overlapping. This non-overlapping prevention scheme, unfortunately, was

not implemented in our design. As a result, mismatch-induced errors exist in the output

of the TDC. Fig.2.25(B) shows the result of the multiple shots with oscilloscope’s infinite

persistence mode on.
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The pulse width of Tin,f1, fine1cal, and fine2cal in Fig.2.8 were measured using the

logic analyzer and the results are shown in Fig. 2.27. Signal A (Tin,f1) shows the pulse

width of the coarse TDC. fine1cal and fine2cal show the pulse width of the fine TDC1 and

fine TDC2 including 15 stages, respectively. We also measured a pulse width in the coarse

TDC by increasing Tin by 200 ps and measured the pulse width change of signal A, as shown

in Fig. 2.27. The results show that there is a systematic error caused by a voltage drop

due to the resistance of Vss line. Fig. 2.28 shows the mechanism of this systematic error.

Since each pulse-shrinking delay element is activated sequentially and the spacing between

pulse-shrinking delay elements is 30 um, the voltage drop due to the resistance of the Vss

line is not negligible. As a result, per-stage pulse shrinkage is not constant.

Figure 2.24: Measured transfer characteristics of TDC.

Major error sources are shown in Fig. 2.26. Error source [a] is a signal path mismatch

of generating signals A and B. In this test chip, tdA is greater than tdB. This error causes

non-uniform pulse-shrinkage in the coarse TDC shown in Fig. 2.27 (B) and MSB part error

that is related to the increase of output code by 16 shown in Fig.2.24. Error source [b] is
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Figure 2.25: Screen shot of logic analyzer with Tin = 70ns. (A) Single shot, (B) Multiple
shots with infinite persistence mode on.

a reset time mismatch between two fine TDCs. In this test chip, trst1 is larger than trst2.

This error combining with error source [c] which is Tstrobe,f timing error causes LSB part

error that is related to the increase of output code by 10 shown Fig. 2.24. Error source

[3] is a Tstrobe,f timing error. Error source [d] is a propagation delay mismatch error for the

residual signal fed to fine TDC1 or fine TDC2. Fig. 2.26 shows the output code when MSB

error and LSB error occurs.

The following Figure-of-Merit (FoM)

FoM =
P

2N × fs
. (2.41)

where N = Bits - log2(INL + 1) is the effective number of linear bits, P is the power

consumption, and fs is the conversion rate is used to quantify the performance of the TDC

on the basis of the amount of power consumption per conversion step [24]. Table 2.1 compares

the performance of the TDC with that of some reported pulse-shrinking TDCs.
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Figure 2.26: (A) Major error sources in the test chip. [a] Signal path mismatch. [b] Reset
time mismatch. [c] Tstrobe,f timing error. [d] Propagation delay mismatch between two fine
TDCs’ input. (B) MSB error. (C) LSB error.

2.6 Chapter Summary

An area-efficient time-interleaved pulse-shrinking TDC with minimal conversion time

was presented. The TDC consists of a 16-stage coarse pulse-shrinking TDC with per-stage

shrinkage 4.8 ns and a pair of 16-stage fine pulse-shrinking TDCs with per-stage shrinkage 296
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Figure 2.27: (A) Pulse width comparison. (B) Coarse TDC pulse shrinkage.

Figure 2.28: Vss line resistance.

ps. The fine TDCs digitize the residual time of the coarse TDC and are operated in a time-

interleaved manner. The analysis and design of a two-step pulse-shrinking TDC consisting of

a 4-stage coarse pulse-shrinking TDC with per-stage shrinkage 1 ns and a 4-stage fine pulse-

shrinking TDC with per-stage shrinkage 250 ps was also presented. The characteristics of

the both TDCs including mismatch and noise-induced timing errors, timing errors of delay

blocks, conversion time, power consumption, and silicon consumption were investigated in

detail. The TDC was implemented in an IBM 130 nm 1.2 V CMOS technology. Simulation

results show that the TDC offers 0.296-76.8 ns dynamic range, 850 ps conversion time, 0.285

LSB differential nonlinearity, and 0.78 LSB integral nonlinearity while consuming 7 mW

including output buffers. A distinct characteristic of the TDC is that both the coarse and

fine TDCs carry out the digitization of input time variables immediately from the arrival of

the rising edge of input time variables. This differs fundamentally from the two-step TDCs

where the residual pulse of the coarse TDC, i.e, the input of the fine TDC, will only become
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Table 2.1: Performance comparison of pulse-shrinking TDCs.

Parameters [7] [23] [37] [38] [39] This
Tech. 1.2 µm 0.065 µm 0.35 µm 0.065 µm 0.09 µm 0.13 µm
VDD 5 V 1.2 V 3.3 V 1.2 V 1.2 V 1.2 V
Conversion rate 10 KHz 200 MHz 10 Hz 250 MHz 180 MHz 12.88 MHz
Resolution 780 ps 3.75 ps 40 ps 1.12 ps 4.7 ps 296 ps (*)
Linearity 50 ps 2.3 LSB 0.6 LSB 1.7 LSB 1.2 LSB 0.78 LSB (*)
Bits 6 7 10(**) 9 7 8
Power 15 mW 3.6 mW 1.65 µW 15.4 mW 3 mW 7 mW (*)
FoM (pJ/conv.step) 249 0.463 258 0.325 0.287 3.79
Chip size (mm2) 7.25 0.02 0.025 0.14 0.02 0.099

* Resolution and Linearity results are coming from the simulation results. Power is the test
chip measurement result including output buffers.
** Bits are calculated from the input range and the resolution.

available at the falling edge of input time variables at which the digitization carried out

by the coarse TDC has already completed. The digitization of input time variables by the

coarse TDC and the residual pulse of the coarse TDC by the fine TDCs are carried out

simultaneously.
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Chapter 3

1-1 MASH ∆Σ TDC

This chapter presents a differential cascode time integrator and its application in

a 1-1 MASH ∆Σ TDC. The detrimental effect of the nonidealities of the modulator on

its timing accuracy is analyzed. The remainder of the chapter is organized as follows :

Section 3.1 introduces the proposed time integrator. Both single-ended and differential time

integrators are presented. Section 3.2 presents the design of a 1-1 MASH ∆Σ modulator

utilizing the proposed time integrator. In Section 3.3, the imperfections of the modulators

and their detrimental effects are examined in detail. Issues critical to the operation of the

proposed modulator are investigated in Section 3.4. The simulation results of a 1-1 MASH

∆Σ modulator realized in IBM 130 nm 1.2 V CMOS technology are presented in Section 3.5.

The performance of the TDC is compared with that of recently published TDCs. Finally,

the chapter is concluded in Section 3.6.

3.1 Time Integrator

3.1.1 Time adder

Time integration is realized using a pair of time adders that recursively accumulate

the time variable to be integrated over a time interval. Fig.3.1 shows the schematic of the

time adder [29]. The DFFs are reset when RST is asserted to ensure that the integration

capacitor is fully charged at the beginning of an addition operation. When STR1, STR2, or

both arrive, M2, M4, or both will operate in the saturation region and function as current
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source(s) due to a large vDS
1. STP1 and STP2 whose value is set to 0 initially by RST

are selected by the multiplexers. The discharge of the integration capacitor is halted once

STP1,2 = 1 are asserted. The two time inputs of the time adder Tin1 and Tin2 are the time

duration from the rising edge of STR1,2 to that of STP1,2, respectively, as shown in Fig.3.2.

Consider the case where Tin1 arrives first in [t1, t2]. It is followed by [t2, t3] where an

overlap between Tin1 and Tin2 exists and [t3, t4] where Tin1 ends while Tin2 continues. When

STR1 arrives, the integration capacitor will start to discharge via M1-M2 path in [t1, t2].

If channel modulation is not accounted for, the discharge current will be constant and vc

will drop at constant rate k = I/C where I is the discharge current when only one of the

two identical discharge paths is activated. When STR2 arrives in [t2, t3], the integration

capacitor will discharge via both M1-M2 and M3-M4 paths and vc will drop at rate 2k. At

t3 where STP1 = 1, discharge path formed by M1 and M2 will be disabled while that formed

by M3 and M4 will remain active. vc in this case will drop at rate k in [t3, t4]. Finally,

when STP2 = 1 is asserted at t4, Q2 = 0 will be set, eliminating discharge path M3-M4.

As a result, vc will remain unchanged. Discharge will resume once ACK1 = 1 is asserted at

t5. When vc drops below VDD/2, the threshold voltage of the load inverter, vinv = 1 is set,

marking the completion of one discharge cycle of the integration capacitor.

Figure 3.1: Time adder.

1vDS at the onset of the discharge of integration capacitor is VDD and that at the threshold crossing of
the load inverter is VDD/2.
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To assist analysis, let TFS be the time for vc to drop from VDD to VDD/2 when only

one of the two discharge paths is activated. In this work, TFS is set to 1/2 of the duration

of STR1, denoted by Ts. Let Tinv be the time duration from the assertion of ACK1 to the

time instant at which vinv = 1. Since v1 = VDD − kτ21 and v2 = v1− 2kτ32 where τij denotes

the duration of time interval [ti, tj], we have

v3 = v2 − kτ43 = VDD − k (Tin1 + Tin2) . (3.1)

It follows that

Tin1 + Tin2 =
1

k
(VDD − V3) . (3.2)

Tin1 + Tin2 is thus the amount of the time for vc to drop from VDD to v3 with only one

discharge path activated, as shown graphically in Fig.3.2. It is straightforward to show that

Tin1 + Tin2 = TFS − Tinv. (3.3)

Tin1 +Tin2 is marked by the rising edge of vinv and the falling edge of ACK1. Since the rising

edge of ACK1 lags that of STR1 by TFS, Tin1 + Tin2 is also marked by the rising edge of vinv

and that of STR1.

It should be noted that the rising edge of STR should lead that of STP, corresponding

to Tin > 0, in order for the time adder to function properly. If Tin < 0, a delay stage with

delay Tos > Tin needs to be employed to delay STP such that STR will lead ŜTP, the

delayed version of STP, as shown in Fig.3.3. The value of Tos should be set in such a way

that T̂in[n] = Tin[n] + Tos > 0, ∀n holds.

3.1.2 Time register

The preceding time adder can be utilized to construct a time register that stores the

input and exports the stored input upon a readout request. Specifically, if we ground one of

the two inputs of the time adder while routing the time input to the other input of the time
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Figure 3.2: Timing diagram of time adder.

Figure 3.3: Polarity of time variables. (a) Tin[n] > 0. (b) Tin[n] < 0. T̂in is measured from

the rising edge of STR to that of ŜTP.

adder, as shown in Fig.3.4, the time adder will function as a time register with the stored

time variable marked from the rising edge of vinv to that of STR1. The time register realizes

Tin1 + Tin2 = Tin1 + 0 = Tin1.
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Figure 3.4: Time register.

3.1.3 Single-ended time integrator

Integration of time variable Tin over K clock cycles performs
∑K

k=1 Tin[k]. Each

integration operation consists of a time addition operation that performs
∑j

k=1 Tin[k] =

Tin[j] +
∑j−1

k=1 Tin[k] and a time registration operation that stores
∑K

k=1 Tin[k]. Fig.3.5 shows

the schematic of the time integrator. Time addition is performed at the rising edge of STRa

and time registration is conducted at the falling edge of STRa. ACKa is a periodic pulse with

pulse width TFS and arising edge ahead of the falling edge of STRa by TFS. The duration

of ACKa = 1 is set to TFS that is sufficiently long such that the integration capacitor will

discharge to VDD/2 after ACKa = 1 is asserted. The integration capacitor of the time register

starts to discharge when STRa is asserted. Since the rising edge of STRa might lag that of

STPr, i.e., Tin[n] < 0 while the operation of the time adder requires a positive time variable,

an auxiliary delay cell with delay Tos > max{
∑n

k=1 Tin[k]} is employed to delay STPa such

that ŜTPa always lags STRa
2. ACKa is also delayed by Tos in order to accommodate STRa.

Since the duration from the rising edge of vinv,a to the falling edge of ÂCKa is Tos + Tin[n]

2When the time integrator is used in a ∆Σ modulator, the error signal Terr[n] = Tin[n] − TFB [n] to be
integrated can be either positive or negative.
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while the falling edge of ACKa is aligned with that of STRa, the duration between the rising

edge of vinv,a and that of STRa is Tin[n]. In the second half of STRa where STRa = 0, since

STRa lags vinv,a, vinv,a is delayed by Tos so that STRa leads ŜTPr, enabling the register to

function properly. The input of the time register is from the rising edge of STRa to that

of ŜTPr, which is Tos − Tin[n]. ACKr is also delayed by Tos accordingly. Since the falling

edge of ACKr is aligned with that of STRa while the rising edge leads the falling edge of

ÂCKr by the input of the register, i.e., Tos − Tin[n], the time difference between the rising

edge of STRa and that of vinv,r is Tin[n]. The preceding analysis shows that at the end of

nth cycle of STRa, Tin[n] is stored and is ready to be added to the next input Tin[n + 1] in

(n+1)th cycle of STRa. Since the result of addition operation is the time between the rising

edge of vinv and that of STR1 shown in Fig.3.2, the output of the time integrator is the time

bordered by the rising edge of vinv,a and that of STRa. The time offset of ACKa becomes

2Tos after the first cycle of the operation, due to the time duration of the time register.

Figure 3.5: Schematic of single-ended time integrator. The output of the time integrator is
the time interval bordered by the rising edge of vinv,a and that of STRa. The time offset of
ACKa changes from Tos to 2Tos after the first cycle of the operation, due to the time duration
of the time register.
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Figure 3.6: Timing diagram of single-ended time integrator. The time offset of ACKa changes
from Tos to 2Tos after the first cycle of the operation, due to the time duration of the time
register.

3.1.4 Differential time integrator

Single-ended time integrators suffer from a large second harmonic tone arising from

current mismatch of time adders. In this paper, we propose a differential time integrator

shown in Fig.3.7 that consists of two single-ended time integrators. Note the polarity of the

time variable to be integrated differs in the two single-ended time integrators.

Differential time input Tin[n] = T+
in[n]−T−

in[n] is generated using a differential voltage-

controlled delay line (VCDL) with a sinusoidal input, as shown in Fig.3.8. A differential

VCDL consists of two identical single-ended VCDLs. The output of the single-ended VCDLs

is the time bordered by the rising edge of CLK and that of the load inverter. Single-ended

VCDLs suffer from a high degree of nonlinearity, arising from the dependence of the discharge

current of the capacitor on vDS of the discharge transistor. The full differential configuration

suppresses even-order harmonics, as evident in Fig.3.9 where the output of single-ended

and differential time integrators is shown. It is seen that the input of the time integrator
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Figure 3.7: Differential time integrator.

generated using a differential VCDL does not have 2nd-order harmonic at 830 kHz. The

3rd-order harmonic tone at 1245 kHz, however, is large.

The output of the single-ended and differential time integrators is shown in Fig.3.9. It

is seen that the second harmonic is reduced from 22.9 dB of the single-ended time integrator

to 9.9 dB of the differential time integrator. The signal is increased by 7 dB. The differ-

ential time integrator consumes 189.2 µW while the single-ended time integrator consumes

101.6µW.

3.2 Time-Mode 1-1 MASH ∆Σ Modulator

The proposed time integrator is utilized to construct a 1-1 MASH ∆Σ TDC consisting

of two ∆Σ TDCs called TDC1 and TDC2, as shown in Fig.3.10. Since the output of TDC1

Do1 determines whether feedback Tfb1 should be added to or subtracted from the time input

of TDC1. The same holds for TDC2 as well. DTC2 extracts the quantization error of

TDC1. To extract the quantization error of TDC1, the output of DTC2 is subtracted from

the output of the differential time integrator of TDC1. The value of Tfb2 is determined based

on the maximum output of the time integrator of TDC1.
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Figure 3.8: Generation of differential sinusoidal time variable.

3.3 Timing Error

The timing error of the time integrator can be classified into random timing error and

deterministic timing error. The former is due to system noise such as switching noise and

device noise such as thermal and flicker noise while the latter is caused by the nonidealities

of the time integrator such as charge injection, clock feed-through, and current mismatch.

3.3.1 Random timing error

Device noise-induced timing error in charging phase

When RST is asserted, the integration capacitor is charged by the supply voltage

via the PMOS transistor. Since the PMOS transistor operates in the triode region, it can

be replaced with a resistor Rp and a thermal noise voltage source whose power is given by
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Figure 3.9: Spectrum of time integrators. Sampling frequency 25 MHz, input frequency 415
kHz, amplitude 50 ps. 1024 samples with Hanning window.

v2
np = 4kTRp∆f where k is Boltzmann constant, T is temperature in degrees kelvin, and

∆f is the frequency range over which the power is calculated. The total noise power at the

integration capacitor is given by v2
np = kT

C
. The resultant jitter is obtained from

τ 2
PMOS =

(
2TFS
VDD

)2
kT

C
. (3.4)

Making use

C ≈ 2ITFS
VDD

, (3.5)

we have

τ 2
PMOS =

kT

I

2TFS
VDD

. (3.6)

Device noise-induced timing error in discharging phase

Thermal noise and flicker noise of the channel current of the transistors in the dis-

charge paths with their power given by i2nt = 4kTγgm∆f and i2nf =
Kf I

f
∆f , respectively
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Figure 3.10: 1-1 MASH time-mode ∆Σ TDC.

give rise to uncertainty in the voltage of the integration capacitor, which in turn gives rise

to uncertainty ∆τn of the threshold-crossing time of the load inverter subsequently jitter of

the output of the time adder. Since

I + int + inf = C
dv

dt
, (3.7)

with

dv

dt
≈ VDD/2

TFS + τn
, (3.8)

we have

TFS + τn ≈
C

I + int + inf

VDD
2
. (3.9)
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Further making use (3.5), we arrive at

TFS + τn ≈
TFS

1 +
int+inf

I

. (3.10)

Since

1 +
int + inf

I
≈ 1− int + inf

I
(3.11)

as int, inf � I, we have

τ 2
n ≈

(
TFS
I

)2 (
i2nt + i2nf

)
. (3.12)

It is evident from (3.12) that the larger I, the smaller the timing error. This, however, is at

the expense of power consumption.

Supply voltage fluctuation induced timing error

The integration capacitor is initially charged to VDD prior to a discharge operation.

The fluctuation of the supply voltage arising from switching noise gives rise to uncertainty

in the threshold-crossing of the load inverter subsequently the timing error in the output of

the time adder, as shown in Fig.3.11(a). It can be shown that

∆τ 2
VDD

=

(
2TFS
VDD

)2

∆V 2
DD, (3.13)

where ∆VDD is the variation of the supply voltage VDD. The effect of switching noise is

minimized with the differential configuration of the modulator.

Threshold voltage fluctuation induced timing error

The fluctuation of the threshold voltage of the load inverter arising from switching

noise, denoted by ∆VT , gives rise to uncertainty in the threshold-crossing of the inverter

subsequently the timing error in the output of the time adder, as shown in Fig.3.11(b). It
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can be shown that

∆τ 2
VT

=

(
2TFS
VDD

)2

∆V 2
T . (3.14)

Figure 3.11: Timing error due to supply voltage fluctuation (left) and threshold voltage
fluctuation of load inverter (right).

3.3.2 Deterministic timing error

Current mismatch induced timing error

Although the two discharge paths of the integration capacitor are identical, the dif-

ference between the input time variable and accumulated time variable gives rise to a current

mismatch. To illustrate this, consider Fig.3.12 (ignore transistors M5 and M6 shown in light

color). The amount of the charge discharged by M3 and M4 is a function of both the dura-

tion of gating signals and the drain-source voltages vDS3 and vDS4 of the transistors. Let ∆I3

and ∆I4 represent vDS-induced currents of M3 and M4, respectively. Tin[n] is typically much

smaller as compared with
∑n−1

k=1 Tin[k], especially when approaching the end of integration

operation. As a result, Tin[n]-induced discharge process via M3 is much shorter as compared

with
∑n−1

k=1 Tin[k]-induced discharge process via M4. As a result, ∆vDS due to Tin[n] is much

smaller as compared with that due to
∑n−1

k=1 Tin[k]. We therefore have ∆I4 � ∆I3.
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Figure 3.12: Current mismatch.

To quantify current mismatch-induced timing error, we notice

τ21 =
C∆V1

I3 + I4 + ∆I3 + ∆I4

≈ C∆V1

I3 + I4

(
1− ∆I3 + ∆I4

I3 + I4

)
, (3.15)

where ∆V1 = VDD − V1. Timing error due to ∆vDS is therefore given by

∆τ21 ≈ −
C∆V1

(I3 + I4)2
(∆I3 + ∆I4) . (3.16)

Similarly one can show that

∆τ32 ≈ −
C∆V2

I2
4

∆I4, (3.17)

where ∆V2 = V1−V2. Since ∆I3 = vc/ro3 and ∆I4 = vc/ro4 where ro3 and ro4 are the output

resistance of M3 and M4, respectively,

∆τ21 ≈ −
C∆V1

(I3 + I4)2

(
1

ro3
+

1

ro4

)
vc. (3.18)

∆τ32 ≈ −
C∆V2

I2
4

vc
ro4

. (3.19)
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Since Tout = τ21 + τ32, we have timing error due to current mismatch denoted by ∆τ 2
I

∆τI = ∆τ21 + ∆τ32. (3.20)

To minimize vDS induced jitter, M5 and M6 can be added to form cascode, as shown

in Fig.3.12. Since the operation range of vc is from VDD to VDD/2, transistors M3-M6 mostly

operate in saturation. The cascode configuration effectively increases the output impedance

seen from the drain of M5 and M6 to (gm5ro5)ro3 and (gm6ro6)ro7, respectively. Eq.(3.18)

becomes

∆τ21 ≈ −
C∆V1

(I3 + I4)2

[
1

(gm5ro5)ro3
+

1

(gm6ro6)ro4

]
vc. (3.21)

∆τ32 ≈ −
C∆V2

I2
4

vc
(gm6ro6)ro4

. (3.22)

The effect of current mismatch is therefore reduced.

vDS-induced effect can be further lowered by increasing the threshold voltage of the

load inverter via proper transistor sizing such that the variation of the voltage of the inte-

gration capacitor is smaller than VDD/2. This is equivalent to lowering ∆V1 and ∆V2, which

will in turn lower ∆21 and ∆32, as evident in (3.21). It should be noted that since increasing

the threshold voltage also affects TFS whose value is set by system specifications, the value

of the integration capacitor needs to be adjusted accordingly to ensure that TFS remains

unchanged.

Charge Injection-induced timing error

Although the integration capacitor is initially charged to VDD, the turn-off of the

PMOS transistor will force the portion of the charge stored in the channel of the transistor

to be injected into the integration capacitor, resulting in an additional voltage ∆vQ added

to the initial voltage of the integration capacitor prior to the discharge operation. This is

similar to VDD fluctuation investigated earlier. If we assume that half of the channel charge

is dumped to the integration capacitor, then the resultant ∆vQ is given by ∆vQ = 1
2

Cg

C
VDD
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where Cg is the gate capacitance of the PMOS transistor. We therefore arrive at the timing

error due to charge injection denoted by ∆τQ

∆τQ =

(
Cg
C

)
TFS. (3.23)

It is seen from (3.23) that lowering Cgs7 reduces the timing error caused by charge injection.

Clock feed-through induced timing error

In addition to charge injection from the PMOS transistor, the voltage of the inte-

gration capacitor is also affected by the effect of clock feed through via Cgd of discharge

transistors with its amount give by ∆vφ =
Cgd

Cgd+C
VDD. The timing error due to clock feed

though denoted by ∆τφ is obtained from

∆τφ =

(
2Cgd

Cgd + C

)
TFS. (3.24)

It is seen from (3.24) that to minimize the timing error caused by clock feed through, C � Cgd

is required.

3.3.3 Total timing error

The total timing error of the time integrator can be obtained by considering both the

random timing error and deterministic timing error. Assume that jitter caused by the noise

sources of the time integrator is uncorrelated, we have the worst-case timing error

τmax =
√
τ 2
PMOS + τ 2

n + τ 2
VDD

+ τ 2
VT

+ |τI |+ |τQ|+ |τφ|. (3.25)
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3.3.4 Model of time integrator

Having analyzed the timing error of the time integrator, we now derive the model of

the time integrator. Fig.3.13 shows the block diagram of the time integrator where ea and

er denote the timing error of the adder and register, respectively. Note that ea < er as one

of the two discharge paths of the register is always disabled. Because the output of the time

adder is bordered by the rising edge of vinv,a and that of STRa with the former corrupted by

the effect of the nonidealities of the adder investigated earlier while the latter is the input of

the time integrator and is therefore assumed to be ideal, and the signal from the time adder

to the time register is vinv,a, timing error ea exists in both the output of the time integrator

and the input of the time register. Further, because the signal from the output of the time

register to the time adder, vinv,r, is also subject to the effect of the nonidealities of the time

register, er exists at the output of the time register. It can be shown that

Tout =
1

1− z−1

(
Tin + Ea + z−1Er

)
+ Ea. (3.26)

Since sTs � 1, we have 1− z−1 ≈ sTs and z−1 ≈ 1. As a result,

Tout ≈
1

sTs
(Tin + Ea + Er) + Ea. (3.27)

It is seen from (3.27) that the gain of the single-ended time integrator is 1
2π

fs
fin

.

Figure 3.13: Model of time integrator. Ea outside the loop will be shaped out when the
integrator is in a ∆Σ modulator.
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3.4 Discussion

In this section, we examine factors critical to the operation of the modulator.

3.4.1 Timing signal

It is seen from the timing diagram of the single-ended time integrator given in Fig.3.6

that the key signal that controls the operation of the time integrator is STRa. The operation

of time addition takes place at the rising edge of STRa while that of time registration occurs

at the falling edge of STRa, as shown graphically in Fig.3.14. Note that the sampling

frequency of the time input is given by fs = 1/Ts.

Figure 3.14: Timing of single-ended time integrator.

3.4.2 Sampling frequency

The minimum sampling period Ts is determined by the following constraints : (i)

T̂in = Tos + Tin > 0 must be satisfied in order to ensure the proper operation of the time

adder. Since ACKa is asserted in the middle of STRa, Tin + Tos < Ts/2 must be satisfied.

(ii) The time difference between the rising edge of ACKa and that of vinv,a must be smaller

than Ts/2.
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3.4.3 Offset time Tos

The deployment of the offset blocks with time offset Tos ensures the proper operation

of the time adder. As the only purpose of having Tos is to ensure T̂in > 0 when Tin < 0,

one can remove the offset blocks by employing a DFF to detect the polarity of Tin so as to

determine whether an addition or subtraction operation should be taken. If STR and STP

are routed to the data and clock inputs of the DFF, respectively, then Q = 1 when Tin > 0

and Q = 0 when Tin < 0, as shown in Fig.3.15. The time offset blocks shown in Fig.3.1 can

be removed. Fig.3.16 sketches the timing diagram of the single-ended time integrator with

the time offset blocks removed. It is evident that the removal of the time offset blocks will

significantly simplify the timing diagram, which in turn, allowing the reduction of Ts.

Figure 3.15: Positive time variable generation.

3.4.4 Gain of time integrator

Let the time input generated by the single-ended VCDL be Tin(t) = Tm cos(ωint)

where Tm and ωin are the amplitude and frequency of the input, respectively. The input

variable is sampled at the rising edge of STRa with sampling frequency fs = 1/Ts, the

sampled time input at t = nTs can therefore be written as Tin[n] = Tm cos(2πfinnTs). The

output of the time integrator is obtained from

Tout[n] =

∫ n

0

Tm cos(2πfinkTs)dk

=
Tm
2π

fs
fin

sin (2πfinnTs) . (3.28)
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Figure 3.16: Timing diagram of single-ended time integrator with offset time blocks removed.

The gain of the time integrator is therefore obtained

Tout[n]

Tin[n]
=

1

2π

fs
fin

=
OSR

π
, (3.29)

where ORS = fs/(2fin) is the oversampling ratio. Eq.(3.29), also derived earlier in (3.27),

shows that the gain of the time integrator is set by the ratio of the sampling frequency fs

to the frequency of the input fin. For a given input, both fs and Tm are fixed, the gain

of the time integrator can only be adjusted by varying sampling frequency. In the example

presented in this paper, fs = 25 MHz and fin = 317 kHz. The calculated and simulated

gain of the single-ended time integrator are 21.97 dB and 21.74 dB, respectively, as shown

in Fig.3.9. Fig.3.17 shows the waveform of the input and output of the time integrator. A

90 degree phase shift between the output and input is evident.

3.5 Simulation Results

To verify whether the proposed TDC functions properly or not, a behavioral analysis

was performed prior to schematic-level design. Specifically, a differential sinusoidal time

input Tin of frequency 415 kHz and amplitude 50 ps generated from a 415 kHz sinusoidal
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Figure 3.17: Waveforms of single-ended time integrator. Input : Tm = 15 ps, fin = 317 kHz.
Sampling frequency fs = 25 MHz.

voltage signal of amplitude 200 mV using the differential VCDL shown in Fig. 3.8 with clock

frequency fs = 25 MHz was fed to the TDC. For each cycle of the operation of the TDC,

Tin was obtained from the schematic-level simulation of the differential VCDL using Spectre

from Cadence Design Systems with BSIM4 device models. The input Terr1 and output Tin1

of the integrator of TDC1, the input of the TDC2 Terr2, and the input Terr3 and output Tint2

of the integrator of TDC2 were calculated and the results are tabulated in Fig.3.18. The

digital output of the TDC is shown in Fig.3.19. Fig.3.20 shows the spectrum of the output

of the TDC calculated using the preceding behavioral analysis. The TDC exhibits 2nd-order

noise-shaping outside the signal band. Also observed is the effect of the flicker noise at low

frequencies, arising from the generation of Tin using the differential VCDL. The SNR of the

TDC is 38.66 dB over 48 ∼ 415 kHz . The ENOB of the TDC is 6.13 and its resolution is

1.45 ps.

The preceding 1-1 MASH ∆Σ TDC was then designed in an IBM 130 nm 1.2 V

CMOS technology. The TDC was analysed using Spectre from Cadence Design Systems

with BSIM4 device models. The spectrum of the TDC is plotted in 3.19, together with

that from behavioral analysis for comparison. 1024 samples with a Hanning window were

used. It is seen that the TDC exhibits 2nd-order noise-shaping outside the signal band.

Also observed is that the in-band noise floor of the TDC is approximately 20 dB higher as
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Figure 3.18: Behavioral analysis of 1-1 MASH ∆Σ TDC.

Figure 3.19: Waveform of the output of 1-1 MASH ∆Σ TDC from behavioral analysis.

compared with that of the ideal TDC, revealing the detrimental effect of the imperfections

of the TDC examined earlier.

Fig.3.21 plots the spectrum of the TDC with the without cascode adders. It is seen

that the cascode configuration of the time adder not only lowers in-band noise floor as
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Figure 3.20: Spectrum of 1-1 MASH time-mode ∆Σ Modulator from both behavioral analysis
and schematic-level simulation (cascode time integrators with raised threshold voltage of load
inverter).

compared with that without cascode. It also improves the degree of linearity, manifested by

reduced harmonic tones. Cascode also improves the noise-shaping profile of the modulator.

The SNR is 36.25 dB over 48 ∼ 415 kHz. The ENOB of the TDC is 5.73 and its resolution

is 1.96 ps.

Fig.3.22 shows the spectrum of the TDC with the threshold voltage of the load inverter

raised from 0.6 V to 0.8 V. The improvement in noise-shaping profile is evident. No visible

reduction in both the in-band noise floor and harmonic tones is observed.

Table 3.1 compares the performance of recently published time-mode ∆Σ modulators.

The most relevant reference to which this work should be compared is [10] where a time

adder-based time integrator was used. All other references list in Table 3.1 uses an OTA-

based integrator. This work has better effective time resolution since it is the second-order

∆Σ modulator.
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Figure 3.21: Spectrum of 1-1 MASH time-mode ∆Σ Modulator.

Table 3.1: Performance comparison of ∆Σ TDCs.

Ref. Tech. Supply BW OSR Effective Power Order
(nm) (V) (Hz) Res. (ps) (mW)

[40] 130 1.5 1M 25 1 2.2-21 1st
[22] 180 1.8 400k 348 8.7 (*) 0.78 1st
[41] 130 1.2 100k 250 11 1.7 3rd
[10] 32 1.0 100k 50 4.4 0.25 1st
This 130 1.2 415k 30 1.9 (**) 0.5 2nd

* ENOB. ** Ideal digital filters used.

3.6 Conclusions

An all-digital 1-1 MASH ∆Σ TDC utilizing a differential cascode time integrator was

proposed. A cascode time adder with raised inverter threshold voltage was proposed to

minimize the deterministic jitter caused by the current mismatch of the two discharge paths

of the time adder. A differential time integrator consisting of a pair of identical single-ended

time integrators was proposed to minimize the effect of the nonlinearities of the single-ended
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Figure 3.22: Spectrum of 1-1 MASH ∆Σ TDC with both differential cascode time integrator
and different threshold voltage of load inverter. Blue : VT = 0.8V. Red : VT = 0.6V. Integra-
tion capacitor value is changed from 2.1 pF with 0.6V threshold voltage to 3.2 pF with 0.8V
threshold voltage.

time integrator. The random and deterministic timing errors of the TDC were analyzed in

detail. The simulation results of the proposed modulator demonstrated that the modulator

exhibits 40 dB noise-shaping. The cascode-configured discharge paths and raised threshold

voltage of the load inverter are effective in improving the linearity and improving noise-

shaping profile of the TDC. The TDC achieves 1.9 ps time resolution over 48 ∼ 415 kHz

signal band while consuming 502 µW.
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Chapter 4

∆Σ TDC with Bi-Directional Gated Delay Line
Time Integrator

This chapter presents a bi-directional gated delay line time integrator and its applica-

tions in an all-digital first-order ∆Σ TDC. Section 4.1 presents an operation of bi-directional

gated delay cell. Section 4.2 presents an operation of bi-directional gated delay line for a new

low-power time-mode integrator. The time integrator consists of a bi-directional gated delay

line with the time variable to be integrated as the gating signal. The accumulation of time

variables is obtained via the accumulation of the charge of the load capacitor and logic state

of gated delay stages. As compared with the reported time integrators, the proposed time

integrator is significantly simpler. An all-digital first-order single-bit ∆Σ TDC is explained

in detail in Section 4.3. Section 4.4 presents design considerations. Section 4.5 presents the

simulation results of the proposed all-digital first-order single-bit ∆Σ TDC implemented in

an IBM 130 nm 1.2 V CMOS technology. The chapter is concluded in Section 4.6.

4.1 Bi-Directional Gated Delay Cell

Consider the bi-directional gated delay line shown in Fig.4.1. The rising edge of a

digital signal can propagate from node 1 to node 2 (forward) if the gating signal Tin > 0 or

from node 2 to node 1 (reverse) if Tin < 0 in Fig.4.5 with the same per-stage delay. Consider

the case where the signal propagates from node 1 to node 2. The node 1 and node 2 are

initialized to VDD and ground, respectively before time t1 shown in Fig.4.1. Let the gating
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signal Tin be a pulse bounded by 0∼VDD in amplitude and [0, t] in time. The gated switch

is in triode region while that of the pMOS transistor of the inverter is in saturation region.

When vc increases above VSG-|Vthp|, the pMOS transistor will enter triode region eventually.

However, to simplify analysis, we assume that the pMOS transistor of the inverter is in

saturation region until vc arrives at VDD/2 in the velocity saturated short channel device

[42]. Therefore, in this analysis, we can ignore a nonlinear behaviour when vc goes above

VDD/2. Then the voltage of the load capacitor at the end of the time interval is given by

vc(t) =
1

C

∫ t

0

Idt ≈ I

C
Tin, (4.1)

Eq.(4.1) shows that the gating signal Tin is represented by the voltage variation of

the load capacitor. We now consider the case where the gating signal Tin is a train of pulses

in time interval [tk−1, tk], k = 1, 2, ..., K. The pulses can be either positive (Tin,k > 0) or

negative (Tin,k < 0). If a pulse is positive, the load capacitor is charged and the amount of

voltage increment is given by (4.1). Similarly, if a pulse is negative, the load capacitor is

discharged and the amount of voltage decrement is also quantified by (4.1). It is seen from

Fig.4.1 that

K∑
k=1

Tin,k =
C

I

K∑
k=1

∆vc,k (4.2)

holds. Eq.(4.2) reveals that the bi-directional gated delay cell performs the accumulation

(integration) of time variables by means of the accumulation of the voltage of the load

capacitor.
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Figure 4.1: Bi-directional gated delay cell.

4.2 Bi-Directional Gated Delay Line

If the load of a bi-directional gated delay cell is another bi-directional gated delay

cell whose threshold voltage is VT,GDL = VDD/2, the voltage range of the load capacitor is

only 0∼VT,GDL, limiting the number of Tin pulses that can be summed. Although one can

use a large load capacitor to handle a long train of positive or negative pulses, in order to

quantify the voltage of the load capacitor so as to yield the output of the time integrator, a

VTC is needed, contradicting our goal to perform time-mode integration in digital domain.

An alternative is to cascade multiple bi-directional gated delay cells to form a bi-directional

gated delay line, as shown in Fig.4.2. Load capacitance Ck is formed by device capacitances

only. No explicit capacitors are needed. When the voltage of the gated delay stage exceeds

VT,GDL, the output of the driven gated delay stage will be toggled. The use of the gated

delay line allow us to perform time accumulation over a large range. In order to handle

both positive and negative time variables, the left-half-side nodes from node M in Fig.4.2

are initialized to VDD and those in the right-half-side from node M are initialized to ground.

Also, the left-most gated delay cell is connected to VDD while the right-most gated delay cell

is grounded to transfer charges bi-directionally. By doing this, logic-1 can be shifted to the

right and logic-0 can be shifted to the left.
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Figure 4.2: Bi-directional gated delay line. When Tin is positive, the forward direction is
enabled, and Tin is negative, the reverse direction is enabled.

To demonstrate that the bi-directional gated delay line functions as a time integrator,

consider a train of 5 pulses, Tin,k, k = 1, 2, ..., 5 with Tin,1 = 1.2τ , Tin,2 = 1.5τ , Tin,3 = −1.1τ ,

Tin,4 = 0.7τ , and Tin,5 = −2.5τ where τ is the per-stage delay. Assume V1n = V2n = VM = 1

and V1p = V2p = 0 initially. The rate of change of the output voltage of gated delay cells is

VT,GDL/τ . With Tin,1 = 1.2τ , logic-1 at node M propagates through one stage in the forward

direction and charges C1p to 0.2VT,GDL. Similarly, with Tin,2 = 1.5τ , the signal continues to

propagate through 2 stage and charges C2p to 0.7VT,GDL. When Tin,3 = −1.1τ arrives, the

forward gated delay line is disabled while the reverse gated delay line is activated. Since

v3p = 0, the charge of C2p is discharged. The same for v1p. It becomes evident that the

bi-directional gated delay line performs the accumulation (integration) of Tin,k. To digitize

the result of the time integration, DFFs can be deployed at the output of each gated delay

stage. The output of the time integrator is a thermometer code in the form 1...10...0 with

the left-most 0 specifying the vanishing location of the node M.

It becomes apparent that the maximum quantization error of the time integrator,

denoted by ∆max, is τ . The actual quantization error, denoted by ∆k, is preserved in the

form of the voltage of the load capacitor vc,k of the stage whose right-adjacent stage has an

output of 1. Utilizing the relation between VT,GDL and τ , we arrive at

∆k =
vc,k

VT,GDL
τ. (4.3)
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Figure 4.3: Signal propagation in bi-directional gated delay line. The bold lines highlight the
path that the signal propagates. Gating signals are not shown for brevity.

4.3 All-Digital First-Order Single-Bit ∆Σ TDC

In this section, we utilize the preceding time integrator to construct an all-digital

first-order ∆Σ TDC with a single-bit time quantizer. To construct the time quantizer, we

notice that the output of the bi-directional gated delay line time integrator is a thermometer

code. If the output of the time integrator is larger than τ , i.e.,
K∑
k=1

Tin,k > τ , v1p will be set

to 1. Otherwise, it will be set to 0. Note that since ∆max = τ , 0 <
∑K

k=1 Tin,k < τ cannot

89



be detected. This observation reveals that the output of the delay stage right-connected to

node M provides the single bit quantization of the output of the integrator.

The subtraction of feedback time feedback, Tfb, from the input time variable Tin is

performed using a digital-to-time converter (DTC) shown in Fig.4.4(A). The multiplexers

are controlled by the output of the time comparator Dout. If Dout > 0, Tfb is subtracted

from Tin by delaying the leading edge A by Tfb. Otherwise, it is added to Tin by delaying

the leading edge B by Tfb. The resultant Terr, along with its polarity, are connected to |Tin|

block to make a negative input a positive input. 200 ps time offset Toff is added to generate

an enable pulse applied to the bi-directional gated delay line time integrator. The polarity

of Terr is determined using a DFF whose output is 1 if Terr > 0 and 0 otherwise.

Figure 4.4: (A) Digital-to-time converter [10], (B) Edge alignment block [11].

The all-digital first-order single-bit ∆Σ TDC shown in Fig.4.5 consists of a DTC a

30-stage bi-directional gated delay line time integrator, and a time comparator. All blocks

are realized using digital logic. To turn on/off PMOS and NMOS simultaneously for bi-

directional gated delay line time integrator, we used an edge alignment block shown in

Fig.4.4(B).
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Figure 4.5: All-digital first-order ∆Σ TDC with a single-bit time quantizer.

4.4 Design Considerations

In this section, we examine issues affecting the performance of the ∆Σ TDC. (i) As the

load capacitor of the gated delay stage is isolated from the gated MOS switching transistors

by either a PMOS or a NMOS transistor, the effect of charge injection from the switching

transistors and clock feed-through from Tin to the load capacitor is minimized. (ii) Gated

delay cells in forward and reverse directions should be identical such that if
∑K

k=1 Tin,k = 0,∑K
k=1 vc,k = 0 will follow, as illustrated in Fig.4.6. Should mismatches between forward and

reverse gated delay cells exist,
∑K

k=1 vc,k 6= 0 even though
∑K

k=1 Tin,k = 0. (iii) Similar to

delay-line TDCs, per-stage delay mismatch in either forward or reverse directions gives rise

to the nonlinearity of the time integrator and the degree of nonlinearity deteriorates with the

increase in the length of the gated delay line. (iv) The range of the output of the integrator is

set by both per-stage delay and the number of delay stages. In order for the time integrator

to have a large range without employing a large number of delay stages, the per-stage delay

can be gradually increased when moving away from the middle node of the delay line. Since

for ∆Σ TDCs, Terr is small in the steady state, a large per-stage delay of stages distance
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away from the middle node will not affect the performance of the modulator. Since we add

Toff shown in Fig.4.5 for XOR to make a pulse, we need to compensate it. This is simply

done by obtaining the final output of the 1 bit quantizer from the shifted location based on

Toff , not just taken from the middle location.

Figure 4.6: Effect of mismatch between forward and reverse gated delay cells.

4.5 Simulation Results

The all-digital first-order ∆Σ TDC was designed in an IBM 130 nm 1.2 V CMOS

technology and analysed using Spectre from Cadence Design Systems with BSIM4 models.

The bi-directional gated delay line has a total 30 stages. The outputs of the 15 stages to

the left from the node M were set to 1.2V and those of the 15 stages to the right from node

M were set to 0V in an initialization phase. A sinusoid time signal of frequency 232 kHz

and amplitude 430 ps was digitized by the proposed ∆Σ TDC. Fig.4.7 shows the spectrum

of the ∆Σ TDC obtained using FFT analysis with 2048 samples and a Hanning window.

First-order noise-shaping is evident.

In Table 4.1, the performance of recently published time-mode ∆Σ TDCs is compared

with this work. This work has advantage in terms of power consumption since it does not
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Figure 4.7: Spectrum of ∆Σ TDC. fin = 231.93 kHz, fs = 25 MHz. ENOB = 6.3 over
frequency band 36.62∼232 kHz.

Table 4.1: Performance comparison of ∆Σ TDCs.

Ref. Tech. VDD BW OSR Res. PWR Order
(nm) (V) (Hz) (ps) (mW)

[13] 130 1.5 1M 25 1 2.2-21 1st
[22] 180 1.8 400k 348 8.7 (*) 0.78 1st
[41] 130 1.2 100k 250 11 1.7 3rd
[10] 32 1.0 100k 50 4.4 0.25 1st
This 130 1.2 232k 54 10.8 (**) 0.046 1st

* This is the effective number of bits (ENOB).
** Raw resolution is 96ps.

consume any static power and spends power only during the enable time in the bi-directional

gated-delay time integrator.

4.6 Chapter Summary

A bi-directional gated delay line time integrator and its applications in an all-digital

first-order ∆Σ TDC were presented. The time integrator consists of a bi-directional gated
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delay line with the time variable to be integrated as the gating signal. The accumulation

of time variables is performed via the accumulation of the charge of the load capacitor

and logic state of the gated delay stages. Issues critically affecting the performance of the

integrator were examined. With a sinusoid time input of frequency 232 kHz with OSR 54 and

amplitude 430 ps, the ∆Σ TDC exhibits first-order noise-shaping and provides an effective

time resolution 10.8 ps which is lower than one inverter delay over frequency band 36.62∼232

kHz while consuming 46 µW.
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Chapter 5

Conclusions

5.1 Conclusions

This dissertation dealt with the design of sub-per-stage-delay TDCs to minimize

silicon consumption without sacrificing resolution and conversion time. Two classes of TDCs

namely pulse-shrinking TDCs and ∆Σ TDCs were studied.

In pulse-shrinking TDCs, a two-step pulse-shrinking TDC consisting of a set of coarse

and fine pulse-shrinking TDCs was proposed to increase a dynamic range without employ-

ing a large number of pulse-shrinking stages. A residual time extraction scheme capable of

extracting the residual time of the coarse TDC was developed. The simulation and measure-

ment results of the TDC implemented in an IBM 130 nm 1.2 V CMOS technology shows that

the TDC offers 1.4 ns conversion time, 1 LSB DNL and INL, and consumes 0.163 pJ/step. To

further improve the conversion time of the 2-step pulse-shrinking TDC, a time-interleaved

scheme was developed to extract the residual time of the coarse TDC. Residual time ex-

traction is carried out in parallel with digitization so as to minimize conversion time. The

simulation and measurement results of the TDC show that the TDC offers 0.85 ns conversion

time, 0.285 LSB DNL, and 0.78 LSB.

In ∆Σ TDCs, a 1-1 MASH ∆Σ TDC with a new differential cascode time integrator

was presented to suppress even-order harmonic tones and current mismatch-induced timing

errors. Simulation results show that the TDC offers 1.9 ps time resolution over 48-415 kHz
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signal band while consuming 502 µW. Finally, an all-digital first-order ∆Σ TDC utilizing

a bi-directional gated delay line integrator was developed. Time integration is obtained via

the accumulation of charge of the load capacitor of gated delay stages and the logic state of

gated delay stages. The elimination of analog components allows the TDC to benefit many

desirable characteristics of time-mode signal processing especially excellent scalability with

technology. Simulation results show that the TDC offers first-order noise-shaping, 10.8 ps

time resolution while consuming 46 µW.

5.2 Future Work

Bi-directional gated delay line integrator was proposed in this dissertation for the

very first time. In order to utilize this integrator in emerging applications such as all-digital

∆Σ modulators and ADPLLs, more work is needed. Below are some future research topics :

• Auto calibration : The per-stage-delay of gated delay cells in forward and reverse

directions should be identical such that if
∑K

k=1 Tin,k = 0,
∑K

k=1 vc,k = 0 will follow.

Should mismatches between forward and reverse gated delay cells exist,
∑K

k=1 vc,k 6= 0

even though
∑K

k=1 Tin,k = 0. Manual calibration is done in the dissertation work.

Automatic foreground calibration should be developed.

• Residue extraction : If we can extract the residue time information accurately, we can

build higher-order ∆Σ modulators using MASH to lower in-band quantization noise.

The residue time information can be extracted in a similar way as that used in [23].

However, since the bi-directional gated delay line integrator stores time information all

the time, it cannot be reset. New residue extraction methods that are different from

that in [23] are needed.

• Multi-bit quantization : The developed bi-directional gated delay line integrator can

be used as a multi-bit quantizer naturally since it is based on the GDLs whose output

constitutes a thermometer code. With multi-bit digital-to-time converters (DTCs), we
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can have lower quantization noise to per-stage-delay. As a result, in-band noise can be

further lowered via ∆Σ operation.

• Bi-directional gated delay line integrator can be used in ADPLLs to replace TDC

phase detectors and loop filters since it performs both accumulation and digitization

simultaneously, thereby significantly simplifying the design of ADPLLs.
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