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Abstract 

Nanoindentation Simulations for Large Atomic Systems: An Analysis of Molecular 

Dynandcs and Bridged Finite Element- Molecular Dynamics Methodologies .. 

Jonathan Vandersluis, Master of Applied Science, Aerospace Engineering 

Ryerson University, Toronto, 2009 

This thesis develops a molecular dynamics (MD) custom made con1putational tool to perform 

nanoindentation simulations on copper nanon1atetials, a Face Centred Cubic (FCC) metal. The 

Etnbedding Atotn Method (EAM) is used to n1odel the interatomic forces with the substrate. 

Further, a bridged finite elen1ent - molecular dynatnics (FE~MD) shnulation tool is also adapted 

to perform nanoindentation experimentation. Using this bridged FE-MD sitnulation tool, 

nanoindentations are perfonned much tnore effectively than the MD simulations while saving 

substantial computational simulation time. While the MD sitnulation experienced difficulties 

capturing the behaviour of the system during indentation especially at faster indentation speeds, 

the bridged FE-MD n1ethod is capable of reaching a state of equilibrium within a single step for 

each indentation depth interval analyzed throughout the nanoindentation. Although the hardness 

values for these simulations cannot be obtained without larger scale simulations using more 

pov1erful con1putational resources, the simulations provide insight into the behaviour of the 

copper nanon1aterial during nanoindentation. As a result, it is clear that the bridged FE-MD 

nanoindentation tool is much 1nore effective for executing nanoindentation simulations than the 

traditional MD tnethodologies. 

iii 



Acknowledgements 

I would like to take this opportunity to first thank my supervisor, Dr. Kamran Behdinan, and my 

co-supervisor, Dr. Zouheir Fawaz, who have both been very suppo1iive and provided much 

guidance throughout the past two years. I would also like to thank Dr. Kai-Uwe Bletzinger and 

Dr. Roman Lackner, who gave me the opportunityto study with them in Munich, Germany at the 

Technical University of Munich for four months during the sun1mer of 2008. I am very grateful 

for the privilege to be able to work on this research at this esteemed university and am thankful 

that I was welcomed there with . open mms. I would also like to thank all my friends and 

colleagues, for their guidance and helping n1e stay motivated with their words of encouragement. 

Lastly, I would like to thank my family, most notably my parents, for all their love and support 

throughout my life. They have always pushed 1ne to be the best that I could be and I am sure that 

I \vould not have been able to acco1nplish half as 1nuch without them. I would like to dedicate 

this thesis to tny Zaidy, who has recently passed away from pancreatic cancer. Despite being 

diagnosed with a tem1inal fonn of cancer, his continued work ethic and positive attitude was 

truly re1narkable. He has always been of great inspiration to tne and \Vill be sadly missed. 

iv 



Table of Contents 

1. Introduction ··············••o&&$$0000000&&&&0000 ·······•••oooooo~~······· ······················•••••oooo· o Goo••••••••••••••&&$$00000000. 1 

2. Molecular Dynamics N anoinde.11tation ueo•••oouu•uu•·········--oo····u .. oe••·····oouu•u····u·•u•u ..... 0000 4 

2.1. Molecular Dynamics Introduction .................................................................................. 4 

2.2. Embedding Atom Method for Interatomic Potential ....................................................... 5 

2.3. Custom Molecular Dynamics Code Nl_MD _V_7 _00 ..................................................... 7 

2.3.1. MATLABTM Function NI MD V 7 00 .................................................................... 7 - ---
2.3 .2. MATLAB TM . Crystal Structure Functions ............. ... ................................................... 8 

2.3.3. MATLABTM Function Indenter_Design_V _7 _00 .................................................... 13 

2.3.4. MATLAB™ Function Indenter Move V 7 00 ...................................................... 18 - ---
2.3.5. MATLAB™ Function Contact V 7 00 .................................................................. 18 ---
2.3.6. MATLABTM Function Contact Area V 7 00 ......................................................... 21 ----
2.3.7. MATLAB™ Function Force Sun1mation V 7 00 ................................................. 23 - ---

2.4. A1olecular Dynamics Periodic Boundary Conditions ...................... .. ........... .... ............ 23 

2.5. Additional Nanoindentation Theory ........................ .. ................................................... 25 

3. lVIolecular Dynanucs Nanoindentation Results ... m.oeeoo•• ... ••n••····.u········ou••·····•ooouum••ou 27 

3.1. Molecular Dynamics Nanoindentation Introduction ................ ,. .................................. 27 

3.2. Molecular Dynamics Sensiti-vity AnaZvsis ..................................................................... 28 

3.2.1. Temperature Sensitivity Analysis ........................... .................................................. 29 

3.2.2. Force Sensitivity Analysis ............................... .. ....................................................... 31 

3.2.3. Molecular Dynan1ics Displacen1ent Sensitivity Analysis ......................................... 33 

3.2.4. Clamping Sensitivity Analysis .................................................................................. 38 

3.3. Afolecular Dynamics Nanoindentation Sirnulation Conditions ...................... ......... ..... 39 

3.4. Molecular Dynamics Spherical Indenter Results ......................................................... 41 

3.5. Molecular Dynarnics Berkovich Indenter Results ..... ...... .............................................. 43 

3. 6. Molecular Dynamics Square Pyramidal Indenter Results ............................................ 45 

3. 7. Disc.ussion ...... ........ .. ........... ........... ... ......... .......... ..... ........ ...................... ... ................. .. 47 

v 



3. 8. Chapter Summary ......................................................................................................... 50 

4. Bridged Finite Element- Molecular Dynantics Nanoindentation .... ouu·······w····ooo•• .. no 51 

4.1. Bridged Finite Elernent- Molecular Dynamics Introduction ...... .......... .... .................. 51 

4.2. Traditional Finite Elements .Method Theory ...... ...... .............. ....... .... ...... .... .................. 52 

4.2.1. General Form of Finite Element Method Simulations .............................................. 52 

4.2.2. General Form of a FEM Stiffuess Equation ............................................................. 53 

4.2.3. Traditional FEM Discretization Scheme ........ .......................... .. .............................. 55 

4.3. Bridged Finite Element- Molecular Dynamics Theory ...... ,. ................ ,. ..................... 57 

4.3 .1. Bridged Finite Eletnent - Molecular Dynamics Discretization Scheme ................. . 57 

4.3.2. Embedding Atom Method Potentials in Bridged Finite Elements- Molecular 
Dy11a1nics .................................................................................................................. 61 

4.4. Custom Finite Elenzent-lvfolecular Dynamics Code FE_MD_V_7_00 ...................... 62 

4.5. Custom Finite Element- Molecular Dynamics Nanoindentation Code 
Nl FE MD V 7 00 .. ........ .. ..................................... ..... ......... ...... .... ......... .... ............... 63 

- - ---

4.6. ChapterSumntary ......................................................................................................... 65 

5. Bridged Finite Element - lVIolecular Dynamics N ano.indentation ooouooo ...... u. ••••• u .... uo •• 66 

5.1. Bridged Finite Element- Molecular Dynamics Nanoindentation Introduction .......... 66 

5.2. Bridged Finite Element -Molecular Dynamics Sensitivity Analysis ............ ........ ....... . 67 

5.2.1. Indenter Incretnent Size Sensitivity Analysis ........................................................... 67 

5.2.2. Indentation Depth Interval Size Sensitivity Analysis ......................................... ,. .... 69 

5.2.3. Bridged Finite Eletnent -Molecular Dynamics Displacement Analysis ....... .... ....... 70 

5.3. Bridged Finite Element -:A1olecular Dynamics Simulation Conditions ....................... 75 

5.4. Bridged Finite Elernent -.A1olecular Dynamics Spherical Indenter Results ................. 77 

5.5. Bridged Finite Element -Molecular Dynamics Berkovich IndenterResults ..... ., ......... 78 

5. 6. Bridged Finite Element -Jvlolecular Dynamics Square Pyramidal Indenter Results ... 79 

5. 7. Discussion and Comparison betvveen Bridged Finite Element -Molecular Dynamics 
Simulations and Molecular Dynamics Simulations ...................................................... 80 

5.8. Clza]Jter Summary ......................................................................................................... 82 

Vl 



Appendix A - Flowcharts for Molecular Dynamics Code ••m••••ooo•oeooo••••muo•••m••mou•m•mm· 88 

Appendix B - Flowcharts for Bridged FE-MD Code ••••••••••mm••••meoo•••••••m•m••••••m••u•••m••• 91 

vii 



Table of Figures 

Figure 1 -Traditional and Partial Unit Cells for HCP metals .............................................. .. .. ~ ... 12 

Figure 2- Three Dimensional and Overhead Views of a Berkovich Indenter .......... ....... .... ,. ...... 15 

Figure 3- Three Dimensional Vievv of Pyramidal Indenter ......................................................... 17 

Figure 4- Geometry of Spherical Indenter ................................. ,. ..................... ...... ......... ...... ... .. 21 

Figure 5 -Two-dimensional representation of Periodic Boundary Conditions ........................... 24 

Figure 6 - Saraev and Miller's Hardness Graph forCopper Substrates with Nickel Coating ..... 28 

Figure 7- Force vs. Indentation Depth Graph for 0 K to 600 !( ....................... ........ ...... ..... ..... ,.. 30 

Figure 8- Force vs Indentation Depth Graph for 600 K to 1300 K ............................... ..... ,. ....... 31 

Figure 9- Force Sumtnation Method Compatison ...... ....... .... ......... .......... ... ............. ................... 32 

Figure 10- Cotnparison of Clamping Techniques using MD Simulations ................... ..... .......... 39 

Figure 11- MD Results using Spherical Indenter with Diameter ofFourUnit Cells .................. 41 

Figure 12 -MD Results using Spherical Indenter with Diameter of Five Unit Cells .................. 41 

Figure 13- MD Results using Spherical Indenter with Diameter of Six Unit Cells .......... ,. ........ 42 

Figure 14- MD Results using Spherical Indenter with Diatneter of Seven Unit Cells .......... ,. ... 42 

Figure 15 - MD Results using Berkovich Indenter with Base of Length Four Unit Cells,. ......... 43 

Figure 16- MD Results using Berkovich Indenter with Base of Length Five Unit Cells ........... 43 

Figure 17 - MD Results using Berkovich Indenter with Base of Length Six Unit Cells ............. 44 

Figure 18 - MD Results using Berkovich Indenter with Base of Length Seven Unit Cells ......... 44 

Figure 19- MD Results using Pyramidal Indenter with Base Four by Four Unit Cells ........ ,. .... 45 

Figure 20- MD Results using Pyratnidal Indenter with Base Five by Five Unit Cells ............... 45 

Figure 21 - MD Results using Pyramidal Indenter with Base Six by Six Unit Cells ................... 46 

Figure 22 - MD Results using Pyramidal Indenter with Base Seven by Seven Unit Cells .......... 46 

Figure 23 - One dimensional two-node spring element ............................................................... 53 

Figure 24- Assembly of two-body potential linear spring elements .......... ....... ............... ........... 55 

Figure 25-- Bridged FE-MD discretization scheme for element centred about Node 3 ............... 58 

Figure 26 -Increment Size Sensitivity Test Applied Force Results ............................................. 68 

Figure 27 - Indentation depth Interval Size Sensitivity Analysis Applied Force Results ............. 69 

Figure 28- FE-MD Results using Spherical Indenter with Dian1eter of Four ·unit Cells ............ 77 

VHl 



Figure 29- FE-MD Results using Spherical Indenter with Diameter of Five Unit Cells ............ 77 

Figure 30- FE-MD Results using Berkovich Indenter with Base of Length Four Unit Cells ..... 78 

Figure 31 - FE-MD Results using Berkovich Indenter with Base of Length Five Unit Cells ..... 78 

Figure 32- FE-MD Results using Pyran1idal Indenter with Base Four by Four Unit Cells ........ 79 

Figure 33 -FE-MD Results using Pyramidal Indenter with Base Five by Five Unit Cells ......... 79 

Figure 34- Progran1 Execution Flowchati for MATLAB TM function NI_MD _ V _7 _ 00 ............ 88 

Figure 35 -Program Execution Flowchart for MATLAB™ function Indenter_ Design_ V _7 _00 

································································································ ······················································· 89 

Figure 36- Program Execution Flowchart for MATLAB TM function Contact_ V _7 _00 ............. 90 

Figure 3 7 -Program Execution Flowchart for MATLAB ™ function NI _FE_ MD_ V_7 _ 00 ...... 91 

ix 



Table of Tables 

Table 1 - Lattice Constants for Copper for Tetnperatures Ranging from OK to 1300K .............. 29 

Table 2- Atotnic Positions at Equilibrium Step #1 fron1 MD Simulations ................................. 34 

Table 3 -Atomic Positions after Indentation Step from MD Simulations ................................... 35 

Table 4 - Atotnic Positions at Equilibrium Step #2 from MD Simulations ................................. 36 

Table 5- Atomic Positions at Equilibrium Step #3 from MD Simulations .. ............................... 37 

Table 6- Atotnic Positions at Equilibrium Step #1 from Btidged FE-MD Simulations ............. 71 

Table 7 - Atomic Positions after Indentation Step frotn Bridged FE-MD Sitnulations ............... 72 

Table 8- Atomic Positions at Equilibrium Step #2 frotn Bridged FE-MD Sitnulations .......... ... 73 

Table 9- Aton1ic Positions at Equilibrium Step #3 from Bridged FE-MD Simulations ............. 74 

X 



Nomenclature 

English Symbols 

a Lattice constant of crystal 

aberk Width of Berkovich indenter base 

ai Indenter base, including the atomic radius 

apyr Width of square pyramidal indenter base 

ax(t) Acceleration of aton1 in x-direction at timet 

Ac Contact area of indenter 

b Square Pyramid indenter edge length 

c Height ofHCP unit cell 

C Compliance of a 1naterial 

d, a Differential Operators 

a1x Displacement of atom 1 in X -direction 

Ei Indenter elastic modulus 

Er Reduced elastic modulus 

E5 Substrate elastic tnodulus 

f1x Inten1al force on atom 1 in the x -direction 

F1x External force on atom 1 in the x-direction 

FPi Force on atom i in p-direction 

h Indenter height 

he Contact depth of indentation 

H Material hardness 

k Spring stiffness coefficient 

kb Boltztnann's constant 

K Stiffness tnatrix 

K Ei Kinetic energy on atom i 

Length of indenter base 

m Atomic mass 

Ntot Total nutnber of atoms 

xi 



P1 

rsphere 

s 
t 

T 

u1 
ui 
uij 

Utotal 

Vx(t) 

x(t) 

Xcen 

Greek Symbols 

f.Pij 

Ptotal,i 

¢ij 

tp 

() 

Vertex #1 for planar indenter design 

Distance between atoms i and j 

Cartesian vector on crystal lattice position #1 

Radius of spherical indenter 

Atomic radius 

Stiffuess of a n1aterial 

Tin1e 

Temperature 

Potential energy of element 1 

Potential energy of node i 

Potential energy of element between atoms i and j 

Total potential energy of an atomic system 

Velocity of atom in x-direction at timet 

X-coordinate at titne t 

Centre of indenter in x-direction 

Atomic position of atom i in x-direction 

Distance in the y-direction from the base to tip for Berkovich indenter 

Total potential energy of an atom i 

General pair potential between atotns i and j 

Poisson's ratio of indenter 

Poisson's ratio of substrate 

Increment operator 

Change in atomic position of node 1 

Energy density on atom i resulting from atom j 

Total energy density of atom i 

EAM pair potential between atotns i and j 

EAM etnbedding function 

Indenter Angle 

xii 



List of Acronyms 

AFM 

BCC 

DFT 

EAM 

FE 

FE-MD 

FEM 

FCC 

HCP 

MD 

PBC 

Atomic Force Microscopy 

Body Centred Cubic 

Density Functional Theory 

Etnbedding Atom Method 

Finite Elements 

Finite Element - Molecular Dynan1ics 

Finite Element Method 

Face Centred Cubic 

Hexagonal Close Packed 

Molecular Dynamics 

Periodic Boundary Conditions 

xiii 



List of Units 

A Angstroms (10-10 m) 

GPa Giga Pascals (109 Pa) 

K. Degrees Kelvin 

kg kilograms 

nN Nano-newtons (1 o-9 N) 

nm N anometres ( 1 o-9 m) 

m Metres 

s Seconds 

0 Degrees 

xiv 



liP Introduction 

Over the past two decades, nanomaterials have revolutionized the field of matetials. 

N anomaterials are defined by a grain size of less than 100 run in at least one coordinate. Due to 

their miniscule grain size, nanotnaterials have been found to exhibit superior properties to 

traditional materials. These superior properties include but are not limited to; in1proved hardness, 

higher tensile strength, longer fatigue life, and better ductility. Given these properties, 

nanomaterials are becoming increasingly popular for use in con1mercial products. Research 

studies focusing on nanomaterials have been successful in many areas including biomedicine, [l-
21 

gas detection,I31 and water disinfection.f41 

Due to the size of nanomaterials, . it can often be challenging to analyze nanon1aterials because at 

the nano-level, traditional experimentation often cannot be used. At the 1nacro-level, tensile tests 

are tnostly used in order to quantify the properties of a tnaterial. At the nano ... level, however, it is 

very expensive and difficult to perform these tests. As a result, nanoindentation has become one 

of the most popular methods used to determine nanomaterial properties such as elastic 1nodulus, 

hardness, and stiffness. A nanoindentation experitnent is perfonned by using an indenter to push 

down on a material at a constant speed. Based on the response of the material to this indentation, 

one can establish the properties of the material. Most commonly, in nanoindentation experitnents 

atomic force microscopy (AFM) is used to capture the response of the nanomateriaL These very 

high-resolution scanning probe microscopes provide excellent resolution even at a fraction of a 

nanotnetre and thus, can be used to accurately determine nanomaterial properties. [SJ 

Despite the success of nanoindentation expelitnents, the process is still tremendously expensive 

to perform. Therefore, tnany studies have been performed through the use of computational 

nanoindentation simulations. Using these computer simulations, users are able to drastically 

reduce costs and tnore efficiently investigate a wide array of tnaterials at various conditions. The 

most common method used to perfonn computational atomistic sitnulations is using molecular 

dynamics (MD) simulations. As a result, MD nanoindentation simulations have becotne quite 

popular as a more cost effective replacement ·to nanoindentation experimentation. MD 



nanoindentation simulations have been successful in studies dealing with a wide atTay of 

materials such as single walled carbon nanotubes, f6J poss materials, [7] silicon carbide, rs-91 and 

copper thin fihns.[IO] 

Prior to the comtnencen1ent of this research, an Embedding Atom Method (EAM) numerical 

fitting procedure for pure face-centred cubic (FCC) and body centred cubic (BCC} metals was 

developed by Narayan, Behdinan and Fawaz. This research employs the EAM fitting procedure 

using a custom-made MD software to successfully predict the thermal and elastic properties of 

pure copper. [Jl) Chapter 2 discusses the theory of the custom-made MD software developed by 

Narayan, Behdinan and Fawaz and its application for this research to execute nanoindentation 

simulations. In Chapter 3, this code is tested and large scale nanoindentations are performed 

using three different types of indenters. 

In recent years, multi-scale simulations have been implemented to improve the effectiveness of 

MD computer simulations. These tnulti-scale methods combine both nano-level and macro-level 

computational tools to more efficiently model the macro properties of large aton1ic systems. For 

example, a computational atomistic tool such as MD is en1ployed to model the behaviour of 

atotns or molecules at the nano level, and that information is then used to dete1mine the 

behaviour of the system at the micro and/or macro levels (often using the finite element method). 

These sitnulations have enabled users to greatly reduce computational tilne and resources while 

still . obtaining accurate results. Recent research using multi-scale methods have explored such 

areas as material science,P21 robotics, fl3J biomedicine)14
-
161 fractional kinetics, [l7J turbulence 

tnodeling,flS] and fluid dynamicsY 9
-201 Multi-scale sitnulations have also been applied to 

nanoindentation simulations as shown in research studying thin fihns/21
] cyclic indentation,£221 

plasticity, £231 and nanocavities"£241 

A novel bridged finite element - molecular dynatnics (FE-MD) 1nethod was previously 

developed by N m·ayan in his thesis entitled, "A numerical fitting procedure for the Embedding 

Atotn Method Interaton1ic Potential and a Bridged Finite Element - Molecular Dynamics for 

Large Atomic Systems." In this research, a unique discretization scheme was developed which 

enabled the atomic systems to be modeled more effectively. This bridged FE-MDtnethod was 

2 



found to produce ahnost identical results to traditional MD shnulations while requ1nng 

significantly less simulation time.£251 In this research, the blidged FE-MD code is adapted to 

perfotm nanoindentation simulations. Chapter 4 discusses the theory of the bridged FE-MD 

software, and the development of the FE-MD nanoindentation functions. In Chapter 5, the 

bridged FE-MD nanoindentation method is tested, full-scale simulations are perfonned, and the 

two simulation methods are then cotnpared. Finally, Chapter 6 concludes the thesis as the results 

are reviewed and future applications are discussed. 

3 



2. Molecular Dynamics N anoindentation 

2 .. 1$ Molecular Dynamics Introduction 

Even with today' s technology, it is still not possible to directly observe the behaviour of 

individual atoms within a large system. Therefore, computer programs have been developed to 

shnulate atotnic behaviour at the molecular level. The most common n1ethod used for atomistic 

simulations is tnolecular dynamics (MD). Molecular dynamics is a time-dependent tnethod that 

integrates equations of motion to simulate the behaviour of individual atoms for a variety of 

conditions. 

The basic algorithm of all molecular dynamics shnulations is as follows: 

1) Define the initial paran1eters of the simulation. 

2) Initialize the systetn (i.e. the initial positions and velocities of the atoms are defined). 

3) Calculate the forces on all aton1s. 

4) Integrate the equations of motion to determine new positions and velocities for the titne 

step. 

5) Record the relevant information. 

6) Repeat steps 3, 4 and 5 until all tin1e steps are completed. 

The force calculation is the most labour-extensive portion of most MD simulations. To calculate 

the force on a particular atom, one must consider the force contributions of all its neighbouring 

atoms. Therefore, one must first calculate the distance between all atoms. In n1ost MD 

simulations, a cut-off distance is used. If distances between atoms are found to exceed the cut-off 

distance, the forces are assumed to be negligible. A general form of the force between two atoms 

in the x-direction is shown in Equations 1-2, \Vhere u is the potential energy between two atotns, 

and r is the distance between those two atotns. 

4 



F (r) = _ au(r) 
Jx ax [1] 

F (r) = _ (:) au(r) 
Jx r ar 

[2] 

To more effectively model interatomic forces, several advanced methods have been developed. 

Today, n1ost commonly used interatomic potential functions include the Lennard-Jones pair

potential, the Tersoff potential, and the En1hedding Atom Method (EAM) potential functions. 

EAM potentials are the 1nost effective n1ethod with \Vhich multi-body metallic systems are 

modeled. [26
] In this research, only copper substrates were investigated. Since copper is a face 

centred cubic (FCC) metal, EAM potentials were used to model the interato1nic interactions in 

this research. The theory ofEAM potentials is discussed in greater depth in Section 2.2 below. 

In order to integrate the equations of motion, a Taylor series expansion is implemented. The x

component of a particle's position in space at titne tis referred to as x(t), while its velocity and 

acceleration in the x-direction are referred to as vx(t) and ax(t). Using the Verlet algolithm, one of 

the effective algoritluns, the following second order Taylor expansions are defined in their 

simplified fotm.[27
] Silnilarly, the equations can be applied in the same manner to the y and z

directions. The theory used in Equations 3 and 4 is the basis of the behaviour of the atoms 

throughout the code. 

llt 2 

x(t + llt) ~ x(t) + llt · Vx(t) + 2 ax(t) [3] 

l:lt 
Vx(t + L\t) ~ Vx(t) + Z [ax(t) + ax(t + L\t)] [4] 

2e2.. Embedding Atom Method for Interatomic Potential 

The Embedding Atom Method (EAM) is the most effective 1nethod for detennining interatomic 

potentials for metallic systems. EAM potentials are based on the Density Functional Theory 

(DFT), a quantutn n1echanics theory derived frotn the understanding that the energy of a 

collection of atotns can be expressed by a functional of their density. In n1ost interatomic 

5 



potential functions, the theory of pair potentials is used as the individual forces on atoms can be 

calculated and the total potential is simply the summation of the individual atomic forces. The 

total potential energy of an atotn, (/Ji, is a function of the distance between atoms i and}: 

N 

({J; = L (/J;j 

j=l 
j71=i 

[5] 

For tnetallic systems, the valence electrons are able to move freely throughout the system in \Vhat 

is often referred to as a 'sea of electrons'. As a result, rather than calculating the aton1ic forces as 

pair potentials, one must also look at metallic systen1s as multi-body potentials. The EAM 

potential function, proposed by Daw and Baskes,[28
-
291 and later used by Foiles, Daw and Baskes 

to determine the functions for specific Face Centred Cubic (FCC) metals,[3
0] combines the pair 

potential and the multi~body potential to determine the total potential energy of the system. They 

proposed that the total potential energy of a tnetallic systetn is a su1n of the en1bedding energy, 

Li Fi (Ph,i), and half the pair potential energy. The e1nbedding function, as shown in Equations 6 

and 7, is a function of the electron density. In Equation 7, the variable 

\f, known as the en1bedding function, refers to the required energy to embed a nucleus within the 

sea of electrons. 

Utotal = L F;(Ptotal,;) + ~L cf>(rij) 
i i,j 

[6] 

i=tj 

Utotal = ~ .[~ ~ cf>(ru) + '¥ tp(ru) ]•· 
J=f:.l j=ti 

[7] 
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2 . .3.. Custom Molecular Dynamics Code NI_MD_ V _7_00 

Prior to the cotnmencement of this research, extensive work was performed in the areas of 

tnolecular dynamics and bridged Hnite elements. The research performed in this thesis is largely 

based the research of Narayan, Behdinan and Fawaz in which EAM potential functions were 

fitted using a custom-made MD simulation tooL[Il] To enable nanoindentations to be perfotmed 

using this research, the aforementioned software was significantly altered. Despite these 

alterations, the essentials of the MD portion of the code were unchanged. The code was 

progrmnmed using MATLAB™, a comtnonly used engineering programming tool due to its 

ability to easily carry out matrix operations. Sections 2.3 .1- 2.3. 7 will outline significant 

alterations made to the original molecular dynamics code MD_ V _7 _ 00 to enable MD 

nanoindentation simulations to be perfonned. 

2 .. 3$1 .. MATLAB™ Function NI MD V 7 00 - --

In order to perform the nanoindentation process, a number of functions were developed. 

NI_ MD_ V _7 _00 is the principal function used to perfonn the nanoindentation procedure. As 

previously mentioned, this function is an adaptation of the previously designed function 

MD_ V _7 _ 00. While NI _MD_ V _7 _ 00 is unable to perfonn the entire nanoindentation process 

itself, it is the function that ties all other functions together. The n1ajor tasks that are perfonned 

in this function are as follows: 

1) Define the initial conditions for the simulation. 

2) Read the positions and velocities of the substrate as defined in the function 

FCC_ Gen_ V _7 _00, BCC_Gen_ V _7 _00, HCP_. Gen_ V _7 _00 or Dia_Gen_ V _7 _00. 

3) Calculate the distances between each atotn and its neighbouring atoms and store the 

distances that are less than the defined EAM potential cut off distance. Use the EAM 

potential function, BAM _potential_ V _7 _ 00, to determine the interatomic forces. 

4) Solve the forc.es on each of the atoms using the predetermined distances between each 

atom and its neighbouring atoms. 
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5) Calculate the current positions and velocities of each of the atotns using Taylor series 

expanstons. 

6) Apply the periodic boundary conditions to the system. 

7) Write relevant information, such as positions, velocities and forces. 

8) Repeat steps 2 through 7 for the required steps of the indentation procedure. 

In Step 5, calculating the change in positions, velocity and acceleration for the next tin1e step is 

discussed. During the indentation, for son1e atoms directly contacting the indenter, this step will 

not be included. Rather, for these atoms, their olientations will be dictated by contact analysis 

MA TLAB TM function Contact_ V _7 _ 00. This algorithm . will be discussed in detail in section 

2.3.5. 

Additionally, MATLAB ™ function NI _MD_ V _7 _ 00 simulates the multiple stages of a 

nanoindentation procedure. Prior to nanoindentation, the function executes time steps until the 

forces acting on the system are relatively unchanged and it is assumed that the systetn has 

reached equilibrium. At this point, the nanoindentation process is initiated. Once the indentation 

is complete, one can also sin1ulate a relaxation period· in ·· which an equilibrium step is first 

implemented while the indenter position is unchanged, followed by a final equilibrium step 

following the removal of the indenter. This process will be itnplemented in section 3.2.3 when 

the author investigates the effects of nanoindentation on individual atomic positions. For a 

flowchart outlining the complete process that MA TLAB TM function NI _MD_ V _7 _ 00 executes, 

the reader can consult Appendix A. 

2&3 .. 2 .. MA TLAB TM Crystal Structure Functions 

In the research conducted by Narayan, Behdinan and Fawaz, the geotnetries of Face Centred 

Cubic (FCC) and Body Centred Cubic (BCC) lattice crystals were definedP 11 FCC and BCC 

crystal structures are the crystal structures most conunonly found in nature and their inclusion in 

the research is expected. However, typically, most nanoindentation experiments use diamond 

indenters because of their superior hardness and resistance to scratching. Furthermore, to make 
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the code more all encompassing, the geometry of Hexagonal Close Packed (HCP) tnetals was 

investigated. Therefore, two additional functions were created to define the crystal structures for 

diamond and HCP metals. The functions defining each of the crystal structures dealt with in this 

research will be defined in detail in future sections. 

MATLABTM Functions FCC_Gen_ V _7_00, BCC_Gen_ V _7_00 

Since the two functions defining the geotnetries of FCC and BCC metals were established in the 

work of N·arayan, Behdinan and Fawaz, only a brief summary of the methodology used in 

constructing these functions will be discussed. The tnethodology for all crystal structure 

functions are as follows: 

1) Define the initial positions of a partial cell (in the case of FCC and BCC metals, one~ 

eighth cell was used). 

2) Duplicate the partial cell in the x, y and z-directions for the defined number of cells. 

3) Define the velocity of each of the atoms using a Gaussian probability density function. 

For the initial velocities of the atoms that are defined in these functions, Equations 8-10 were 

used. In these equations, 1n is the mass of each atotn, k8 is Boltztnann's constant, (1.3806503 x 

1 o-23 m2kg/s2K), T is the temperature of the system in degrees Kelvin, and Ntot is the total 

number of atotns in the system. Using these equations, the velocity distribution of the entire 

system is established. As one would expect, the kinetic energy of the system is largely dependent 

on the initial ten1perature of the system, as shown in Equations 11-13. 

f(vx) = ~exp(-;::;) 

f(vy) = ~exp(-7:::) 
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[13] 

i=1 

MATLABTM Function Dia Gen V 7 00 - ---

For the indentations that were performed throughout this work, a dirunond indenter was used to 

indent a copper substrate. The lattice sttucturefor diamond is dian1ond cubic crystal. This crystal 

structure, while first discovered in dian1ond, has also been found to be present in several 

elements in group IV of the periodic table, such as tin, silicon, and germanium. To model the 

lattice structure of diamond cubic crystal matetials, the function Dia _ Gen _ V _7 _ 00 was 

developed. Diamond cubic crystal lattice structure, while similar to that of FCC n1etals, is 

slightly more complex. For FCC and BCC metals, the lattice parameters were defined by first 

investigating a one-eighth cell. However, in a diamond cubic crystal structure, since the pattern 

that occurs in a one-eighth cell is not repeated throughout the lattice structure, a partial unit cell 

was determined to be a more effective option. The atmns that characterize this partial cell are 

defined in Cartesian coordinates as shown in Equation 14. 
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r; = [0 0 0] 

r; = [o a 
~] 2 

- [a r3 = 2 0 ~] 
~ [a a o] r4 = 2 2 

- [a a 
~] [14] 

rs = 4 4 

T6 = [3: 3a 
~] -

4 

~ [a 3a 34a] r7 = 4 -
4 

~ [3a a 3:J rs= 4 -
4 

In the Equation 14, 'a' is the defined lattice size of the diamond unit cell. Using this partial cell, 

the diamond cubic lattice stn1cture for the entire material can then be defined by replicating the 

eight atoms defined above and • translating them as necessary. These atomic positions are then 

stored in a text file to be accessed in future functions. 

To determine the velocities of atoms using the diamond cubic crystal structure, the process is 

identical to the one described above in section 2.3.2.1. For the nanoindentations performed in 

this thesis, the indenter was · assumed to be rigid. As a result, the atoms within the dian1ond 

indenter were assumed to · have no velocity or kinetic energy. A detailed explanation of this 

decision is discussed in Section 3.1. 

MA TLAB TM Function HCP _ Gen_ V _7 _00 

The last crystal structure dealt with in this research is Hexagonal Close Packed (HCP). The HCP 

lattice structure is observed in metals such as zinc, titanium, beryllium, and magnesium. As in 

the function Dia_Gen_ V _7 _00, a one-eighth unit cell could not be used to capture the nature of 
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the lattice structure for HCP tnetals. Since FCC and BCC lattice structures are cubic, the atoms 

can be modelled with respect to the x, y and z axes. However, the HCP unit cell is hexagonal in 

shape, hence the atoms are not easily defined by their relationships to the x, y and z axes. To 

overcome this problem, the unit cell for the HCP crystal structure was defined slightly 

differently. In HCP metals, the crystal structure is similar to that of FCC metals, but there is a 

shift in the positions of the atoms in each layer. Consequently, to orient the unit cell along the x, 

y and z axes, rather than looking at the entire unit cell, a smaller unit cell was constructed by 

creating a rectangular prism out of five atoms in the bottom row of the unit cell and the original 

height. A traditional HCP unit cell and the modified HCP unit cell are displayed in Figure 1. 

a 

Figure 1-Traditional and Partial Unit Cells for HCP metals 

The length of the n1odified unit cell is solved using the Pythagorean Theorem as shown in 

Equation 15. The distance between atoms in the y-direction in successive layers of atoms is 

calculated in Equations 16. 

l = 2 Ja2- (I/= ~a 

Ay=FG? 
[15] 

[16] 

Using the modified unit cell, a design process using a modified one-eighth cell was implemented, 

the positions of which are shown in Equation 17. 
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?I== [0 0 0] 

~ [a l o] rz == 2 2 

r; = [o -Lly il 
[17] 

~ [a l 
~] r4 = ·Z -- Lly 

2 

While creating a function to characterize the crystal sttucture of HCP metals will allow the 

softw-are to becotne more all-encompassing, in this research, simulations will not be performed 

using this crystal structure. For HCP metals, the potential functions are much more complex and 

therefore, significant work must be done to enable their itnplementation in future research. 

2.3.3. MA TLAB TM Function Indenter_ Design_ V _7 _ 00 

To perform nanoindentation sitnulations successfully, the construction of indenter is paramount. 

MA TLAB ™ function Indenter_ Design'-V _7 _ 00 deals with aU matters concerning the 

construction and design of the indenter. The first concen1 with respect to the indenter design is 

the material chosen for the indenter. Based on the nature of the function, indenters tnay be 

constn1cted using any of the four crystal sttuctures defined above in Section 2.3 .2. 

Once the lattice structure for the indenter is established using one of the crystal structure 

definitions discussed in Section 2.3.2, the indenter shape could then be characterized. While 

there are several different types of nanoindenters con1monly used today, three of the more 

popular nanoindenters used today are the spherical, Berkovich, and square pyratnid indenters. In 

this research, these three indenters are investigated. The geon1etry of the three indenters is 

defined by the following three functions; Spher_Geo _ V ___ 7 _ 00, Berk _Geo _ V _7 _ 00, and 

Pyr_Geo_ V _7 _OO. ·These functions sort through each aton1 individually to determine whether it 

fits within the geometry of that specific indenter. In the research of Narayan, Behdinan and 

Fawaz, MATLAB™ function CRACK_VOID_V_7_00 was used to create a residual function 

using sytnbolic MA TLAB TM to retnove atoms present in a specific geometry frotn the systetn. In 
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this function, the same theory is used to remove those atoms that are outside the specified 

geometry from the system. The functions designed for each of the indenter types are discussed 

future sections of this chapter. A flowchat1 illustrating the indenter design process can be found 

Appendix A. 

MATLABTM Function Spher_Geo_ V _7_00 

The first indenter geometry defined was the spherical indenter using MATLAB TM function 

Spher _ Geo _ V_7 _ 00. The geometry of the spherical indenter · is defined in Equation 18. The 

subscript 'cen' refers to the position of the centre of the sphere in the specified direction, while 

the variable i refers to the atom being investigated. 

[18] 

Using the geometry ofthe sphere, the function evaluates the position of each individual atotn to 

determine \Vhether it lies within the indenter. For large indenters, the contact analysis during 

nanoindentation is very time consutning process. As a result, to speed up the simulation, both the 

top half of the sphere and atoms in the centre of the sphere are also retnoved from the indenter. 

These atoms cam1ot contact the substrate and therefore, their removal does not negatively impact 

the simulation results. 

MATLABTM Function Berk Geo V 7 00 

Berkovich indenters are the most con1n1on indenters · used in modem nanoindentation 

experin1ents and simulations. A Berkovich indenter is a triangular pyramid in which the angle 

between the edge and the normal is 65.3 degrees. In Figure 2, diagrams of a Berkovich indenter 

in three-dimensional and overhead views are . displayed. In contrast to the process used to 

construct the spherical indenter, the approach for the Berkovich indenter was altered slightly due 

to the complexity of its geometry. In this case, it is not possible to define one equation that will 
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characterize the entire geometry of the indenter as was done for the spherical indenter. Instead, 

MA TLAB TM function Berk _ Geo _ V _7 _ 00 characterizes the geotnetry of Berkovich indenters by 

defining three planar equations. 

To determine the planar equations for each of the three faces of the indenter, the positions of 

each of the vertices ·were first identified. Using the overhead view of the Berkovich indenter as 

shown above in Figure 21
, the geometry of a Berkovich indenter was established. In Figure 2, ai 

is the width of the base, l is the length of the base, z is the distance in the y-direction from the 

base to the indenter tip, and h is the height of the indenter. These variable definitions are shown 

in Equations 19-21, belovv. Next, the four vertices for the Berkovich indenter were determined 

and are shown in Equation 22 belo\v. Finally, the equations of a plane were developed using 

Equations 23-27 as illustrated below. 

J3 
l=-

2ai 

a· 
Zberk = 2t tan 30o 

ai cos(65.3°) ai 
h= . =-----

2sin(65.30) 2 tan(65.3°) 

1 http:/ /www.hindawi.com/floats/742569/figures/742569.fig1.xht 

15 

[19] 

[20] 

[21] 



Pt = [0 0 0] 

Pz =[a 0 0] 

[a· 
P3 = -f o] 

[a · 
P4 = i Zberk h] 

Ax + By + Cz + D = 0 

A= Yt (zz- z3) + Yz(z3- z1) + y3(z1- z2) 

B = z1 (x2 - x3 ) + z2 (x3 - x1 ) + z3 (x1 - x2 ) 

C = X1 (Yz- Y3) + Xz(Y3- Yt) + X3(Y1- Y2) 

D = - [xl (yzz3 - Y3Zz) + Xz (y3z1 - Y1 z3) + X3 CY1 Zz - YzZt)] 

[22] 

[23] 

[24] 

[25] 

[26] 

[27] 

Using the three plane equations described above, the atoms are separated based on their locations 

relative to the boundaries of the three planes. If an atom was found to be outside the boundaries 

of the three planes it was removed from the system. As shown the above equations, the indenter 

tip was designed to be facing in the positive z~direction. In order to perform the indentation, the 

indenter is reflected so that the tip is facing tovvards the substrate. The manipulation of the 

indenter is discussed in more detail in Section 2.3 .4 below. 

MATLABTM Function Pyr~Geo_ V _7_00 

The third type of indenter used in this research is a square pyramidal indenter. A diagrrun of a 

square pyratnidal indenter is sho\vn in Figure 3. The approach used by MA TLAB TM function 

Pyr_Geo_V_7_00 \Vas quite similar to that ofMATLAB™ function Berk_Geo_V_7_00. Once 

again, a planar approach was used to define the ·indenter faces and any atotns outside the planar 

boundaries were determined not to be part of the indenter. 
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Figure 3 -Three Dimensional View of Pyramidal Indenter 

In Equations 28-30, the geometry of the square pyran1id indenter is studied. As shown in Figure 

32
, ai refers to the width of the indenter base, b refers to the length of the edge of the pyramid, l 

references the height along the face of the pyramid, and h refers to pyramid height. It is 

important to note that '(} ', the angle of the pyramid face, must be larger than 45°. As shown in 

Equation 30, if an angle of less than 45° is used, the height of the pyramid will be an imaginary 

number. In this research, the value of 8 used for the square pyramid design was 54.74°. As can 

be calculated using Equation 30, this angle produces an indenter with height equal to the width 

of its base. Using the geo1netry of the square pyramid, the five vertices present on the indenter 

were defined as shown in Equation 31. The planar equations, as shown above in Equations 23-

27, were then used in order to characterize the planes needed to construct the square pyramid. 

a· 
b = l 

2 cose 
[28] 

[29] 

[30] 

P1 = [0 0 0] [31] 

2 http:/ /www.analyzemath.com/Geometry_calculators/pyramid_l.gif 
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P2 = [ai 0 0] 

P3 = [ai ai 0] 

P4 = [0 ai 0] 

[a· ai h] Ps = j 2 

Again, as was done in MATLAB TM function Berk _ Geo _ V _7 _ 00, the indenter was designed with 

its tip in the positive z-direction. As a result, this indenter must be reflected so that its tip will be 

facing toward the substrate. 

2 .. 3.4 .. MA TLAB TM Function Indenter Move V 7 00 - ..... --

In order to orient the indenter as required, MA TLAB TM Function Indenter_ Move_ V _7 _ 00 is 

used. This function is very flexible as it allows the user to both move and reflect the indenter to 

any position or orientation in space. When Berkovich or square pyrmnidal indenters are used, the 

indenter must first be reflected. To do so, the centre of the indenter is first determined and for 

each atom, a new z-position is calculated that is of equal distance fi·on1 the centre of the indenter 

but on the opposite side of the centre. As well, this function is used to orient the indenter so that 

the centre of the indenter is directly above the centre of the substrate and that the nanoindentation 

will be perfotmed more effectively. Furthermore, when the indentation is taking place, it is used 

to lower the indenter into the substrate at the beginning of each time step. 

2 .. 3.5 .. MATLABTM Function Contact V 7 00 - --

The MA TLAB ™ function Contact_ V _7 _ 00 is the most important function for the indentation 

procedure. This function determines if contact occurs between the indenter and the substrate and 

any substrate atoms being contacted are displaced accordingly. To detetmine whether contact is 

occulTing, MA TLAB TM function Contact_ V _7 _ 00 looks at each indenter aton1 and calculates the 

distance between it and each individual substrate atotn. If the calculated distance is less than the 
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radii of the indenter and substrate atoms, the two atotns are detennined to be in contact with one 

another. 

In order to deal with the contact, MATLAB TM function Contact_ V _7 _ 00 separates all possible 

contact into three different scenarios. Each of these scenarios is dealt with differently and will be 

discussed in detaiL The three cases in which contact may occur are as follows: 

1) Contact between one substrate atom and one indenter atom. 

2) Contact between one substrate atom and two indenter aton1s. 

3) Contact between one substrate atom and tnore than t\vo indenter atotns. 

When dealing with contact, an iterative procedure was hnplemented using the bisection tnethod. 

The bisection method is a technique that iterates by cutting the bracketing interval in half. For 

every iteration, the tnidpoint is tested and if the required value is between the midpoint and the 

lower bound, the n1idpoint becotnes the new upper bound. Conversely, if the required value is 

between the midpoint and the upper bound, the midpoint becomes the new lower bound. This 

process is repeated until the value is within the required range for the iteration. This method is 

often criticized because numerous iterations are required for convergence. In this study, the 

bisection method is an excellent choice due to its simplicity and tremendous effectiveness. 

When only a substrate aton1 is being contacted by only one indenter atom, dealing with the 

contact is quite simple. Here, the function first determines the angle of contact and compares it to 

a pre-specified angle. If the angle of contact is less than this specified angle, the substrate atom 

will be displaced only in the z-direction. Othernrise, the substrate atom is displaced radially as 

would be expected for any inelastic contact. For this radial displacement, an iterative procedure 

is ilnplemented in which a displacement factor is varied until the distance between the atoms is 

within the required lilnits. The decision to only displace contacted atotns radially for atotns 

contacted at an angle was tnade to ensure that the simulation would be more realistic. If all 

contact resulted in radial displacement, the bonds between the substrate atoms that are directly 

contacting the indenter ·would eventually break as the atoms would be pushed apart as the 
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indenter is lowered. While it may be expected that this would occur during high speed 

indentations, it is not expected for the indentation speeds analyzed in this research. 

For the second case, the algoritlun is substantially tnore complex. This time, an iterative 

procedure is used to ensure that both indenter atoms are equidistant from the substrate atom as 

contact is occurring. Throughout the iterative process, the displacement of the substrate atom is 

calculated and stored in a temporary variable. If the distance between the substrate atom and an 

indenter atom· is less the contact distance, the substrate atom will be moved further from the 

indenter atom being examined. Similarly, if the distance between the substrate atom and an 

indenter aton1 exceeds the contact distance, the bounds of the bisection tnethod will be altered to 

ensure that the substrate atotn \Vill be moved closer to the indenter atom in question. Using the 

new position of the substrate of the atotn, the process is repeated until the distances between the 

substrate atotn and each of the two indenter atoms are within the specified range. Using this 

technique, aton1s may be tnoved signitl.cantly to ensure that the substrate atom would be 

equidistant fi·on1 the two indenter .atoms. Using this method, dislocations were found to ensue as 

atotns were displaced much faster than the indentation speed. Consequently, the displacement of 

the substrate atom was litnited so that it cannot exceed the indentation speed. 

When an atom is contacting more than two indenter aton1s at once, the algorithm used to deal -

with contact is quite straight-forward. It is assumed that when contacting three or more atoms, 

the substrate atom will be locked in place between the indenter atoms. Therefore, the only 

displacement that will occur while the indenter is moving in the z-direction will be in the same 

direction. Thus, MA TLAB TM function Contact_ V _7 _ 00 merely displaces a substrate atom by the 

indentation speed in the direction of contact if it is in direct contact with three or tnore indenter 

atoms. ·A flowchart describing the entire procedure undergone by MA TLAB TM function 

Contact_ V _7 _ 00 can be found in Appendix A. 
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2 .. 3 .. 6" MATLAB™ Function Contact Area V 7 00 

The process of detern1ining the hardness of a material through a nanoindentation simulation 

requires the identification of both the indenter's contact area and the force applied by the 

indenter on the substrate. MATLAB™ function Contact_ Area_ V _7 _00 was created to detennine 

the contact area at any point during the indentation procedure. Contact area is defined as a twoa 

dimensional projection of the area of the substrate that is being contacted by the indenter. The 

contact function, as described above, takes into account the radii of the diamond and copper 

atoms. When calculating the contact area, the radii of the diamond atoms are accounted for as 

well. Since the contact area is dependent on the geometry of the indenter, the calculations for the 

three types of indenters will be discussed independently in the sections below. 

Spherical Indenter Contact Area 

To calculate the contact area for the spherical indenter, 

the geometry of the sphere must first be understood. As 

can be shown in Figure 4/ the radius of the sphere and 

the radius of the cross-sectional axea form a right angle. 

If the indentation depth is known, the Pythagorean 

Theorem can be used to detem1ine the cross-sectional 

radius ·which can then be used to solve the area of the 

cross-section. In the calculations, the radius of the of Spherical Indenter 

diamond atoms is also taken into account. The process of calculating the contact area is shown 

below in Equations 32-34. 

r = rsphere + 1atm 

R = ~r2 - (r- h) 2 = ~h2 - 2rh 

Ac = nR 2 = rr(h2 
- 2rh) 

3 http://www.csm-instruments.com/fr/system/files/images/ab~25-photo7 .jpg 
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Berkovich Indenter Contact Area 

For a Berkovich indenter, by using Equations 19-21 as defined above in Section 2.3 .3.2, the two

dimensional projection of the contact surface can be solved as well. Since Berkovich indenters 

are triangulax in nature, by using the equation for the area of a triangle as shown in Equation 3 7, 

an expression for the contact area of the indenter was developed. 

l = lberk + 2ratm 

a·l -f3a· 2 
A =-t-= __ z._ 

c 2 4 

a· 
h= t 

2 tan(65.3°) 

Ac = 3{3h2 tan2 (65.3°) = 24.56197h2 

[35] 

[36] 

[37] 

[38] 

[39] 

Equation 39 is commonly found in literature with respect to Berkovich indenters. It should be 

noted that this equation is only valid before the indenter is completely submerged within the 

substrate. If the indenter is lo·wered further into the substrate, the indentation depth used in the 

calculation shovvn in Equation 39 will be that of the indenter height, rather than the actual 

indentation depth. In all simulations used in this research, indentations will be performed 

ensuring that the indenter is never completely subn1erged within the substrate. 

Pyramid Indenter Contact Area 

The contact area calculations for the square-pyrmnidal indenter are similar to that of the 

Berkovich indenter. The methodology used to calculate the contact area for a square pynunid 

indenter Cail be shown in Equations 40-44. 

ai = apyr + 2ratm 

Ac = ai2 
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ai~1 h=- -2 
2 cos 2 8 

2h 
a. = --;::::=;:::=== 

z ..Jsec2 8 - 2 

4h2 

A=----
c sec2 (}- 2 

[42] 

[43] 

[44] 

As can be shown in Equation 44, the contact area for a square pyramidal indenter is only 

dependent on the angle and height of the pyramid. However, as is the case with the other two 

indenters, this equation is only valid so long as the entire tip of the indenter is not submerged 

within the substrate. 

2 .. 3.7 .. MATLAB™ Function Fo:rce_Summation_ V_7_00 

To determine the forces acting on the system during nanoindentation, MA TLAB TM function 

Force_Summation_ V _7_00 was created. Since the above mentioned MATLAB™ function 

Contact_ V _7 _00 is displacement dependent, the force acting on the entire substrate is always 

preserved. As a result, alternative techniques to determine the applied force on the system during 

nanoindentation were developed. In Section 3.2.2 of this thesis, a thorough comparison of the 

differing force techniques is performed and the optimal force summation technique for the 

purposes of this research is determined. 

2 .. 4. Molecular Dynamics Periodic Boundary Conditions 

Despite the high-performance computing that is available today, it remains a challenge to 

simulate the large atomic systems that would be required to obtain the properties of a 

nanomaterial as would be usable for commercial manufacturing, as billions or even trillions of 

atoms must be si~ulated over long time periods. To enable such large simulations to be 

performed, a commonly used technique in MD simulations uses Periodic Boundary Conditions 

(PBC). Periodic Boundary Conditions enable the user to generate a few unit cells, and replicate 
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them as needed to simulate the remaining aton1s in the system. The behaviour of the original unit 

cells (usually known as the primary cells) is analyzed and the exact positions and orientations are 

reproduced for all the replica cells (usually known as image cells). A two-dimensional 

representation of the use of PBC cells is shown in Figure 54 below, 

Figure 5- Two-dimensional representation of Periodic Boundary Conditions 

In this research, PBC atoms are treated slightly differently than described above. Rather than 

duplicating the positions and velocities of each of the atoms of the primary cell for the image 

cells, all atoms in the image cells are treated as fixed atoms. As such, throughout the simulation, 

their positions remain fixed. For nanoindentation, this decision is greatly beneficial as one may 

use PBC • without having to replicate the int1uence of the · indenter for each of the image cells. 

Additionally, for those atoms that are further from the centre of the substrate, the applied forces 

as a result of the indentation are quickly diminished. Therefore, modeling PBC atoms as rigid 

still ensures that the results obtained from the nanoindentation will be accurate. 

4 http://matdl.org/repository/eserv/matdl:857/web_wiki2fez2465.jpg 
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2.5. Additional N anoindentation Theory 

One of the 1nost comtnon purposes of performing a nanoindentation test is to determine certain 

properties of the material. For example, the equations con1monly used to detennine properties 

such as hardness, reduced elastic modulus, stiffuess, compliance, projected area and contact 

depth are calculated using Equations 45-50. The hardness of a material is a tneasure of the 

pressure it is able to withstand prior to deformation. The reduced elastic modulus is a measure of 

a materials tendency to be deformed elastically. The stiffness of a material is the resistance of a 

material to elastic defonnation. The difference between the reduced elastic modulus and stiffuess 

of a material is that the former is an intrinsic property of a material while the latter is dependent 

on the shape and boundary conditions of that material. Cotnpliance is simply the inverse of 

stiffness and is helpful to know when perfon11ing instrument calibration at the beginning of a 

nanoindentation experiment. Finally the projected area and contact depth are both properties of 

the experiment and therefore, will often be defined by the user. 

F 
Hardness H= 

A he 
[45] 

-Jrr s 
Reduced Elastic Modulus Er = 2 -{if;; [46] 

A he 

Stiffness S= (dF) 2 
dh •·max = ~Er.j/f; [47] 

Compliance 
1 

[48] C=-s 
1[ 

Contact Area Ac = 
4E 2 C2 [49] 

r 

Contact Depth he = h- 0.75 F~ax [50] 

The above six equations are the basis for all nanoindentation equations.£311 Using Hertzian 

theory, the reduced elastic 1nodulus, Er, can also be studied due to its relationship with the elastic 

tnodulus, E, and Poisson's ratio, v, of the substrate and indenter. In cases where the indenter is 
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assumed to have infinite stiffness, the Young's Modulus, Ei, will equal infinity and therefore the 

second part of the equation will be cancelled out. [321 

[51] 

In this study, the tnajor focus will be to determine the hardness of the substrates investigated. 

Therefore, Equation 45 will be used almost exclusively. However, in further research, Equations 

46-51 will be very valuable as they may be used to investigate further nanotnaterial properties. 
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3GI Molecular Dynamics Nanoindentation Results 

3 .. 1., Molecular Dynamics Nanoindentation Introduction 

For each the simulations that are analyzed in this chapter, a copper substrate was indented using 

a diamond tip indenter. The copper substrate has been modelled using the EAM interatomic 

potential as discussed in Chapter 2. Traditionally, diamond indenters have been used in 

nanoindentation, due to their hardness and resistance to scratching. Using computer simulations, 

one can theoretically define an indenter with infinite stiffness. It has been found that modelling 

an indenter using infinite stiffness is in fact more accurate than a diamond indenter. It should be 

noted that using rigid indenters, rather than modelling the interatomic interactions, produces 

results that differ slightly from experimental results. [331 This difference originates from the 

deformation of the diamond indenter, while miniscule, during experimental nanoindentations. 

For theoretical nanoindentations using indenters with infinite stiffness, such a deformation does 

not occur and therefore the results are more accurate. Due to the improved accuracy of the 

hardness values when the indenter is modeled as rigid, the interatomic interactions between the 

diamond atoms as well as between the copper and diamond atoms are not modeled in this 

research. However, the lattice structure of the diamond atoms is still utilized in the simulations. 

Prior to performing nanoindentations, the research of Saraev and Miller was reviewed. [341 In their 

work, the impact of nickel coating on the hardness of copper substrates is investigated. Saraev 

and Miller employ the parallel n1olecular dynamics program PARADYN to perform their 

nanoindentation simulations. In their simulations, a 40 by 40 by 30 unit cell (approximately 14 

by 14 by 11 nm) copper substrates with differing thicknesses of nickel coating are indented using 

a diamond spherical indenter·. with diameter 17 unit cells (approximately 6 nm) at a speed of 5 

mls and at a temperature of 293 K. EAM potential functions are used to obtain the interatomic 

potentials as are used in this author's research. The hardness vs. indentation depth graph for 

copper and nickel-coated copper substrates is displayed in Figure 6. As shown in Figure 6, the 

baseline simulation in their research is a pure copper substrate as is studied in this thesis. In that 

case, the maximun1 recorded hardness value during nanoindentation is approximately 16 GPa. As 
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a result, in this research study, the results obtained can be compared with Saraev and Miller's 

results to ensure that the results are accurate. 

Due to the time constraints and computational limitations, simulations using similar size 

substrates as used by Saraev and Miller were not possible in this research. As a result, Saraev 

and Miller's results will be used as a guide this research to ensure that the results obtained by the 

bridged FE-MD MATLAB TM simulations are within reason. 

--- {I) pure Ni 
.~ :(U) 5 om of Ni over Cu 

- -- -- -- :{IU)2.5 nm ofNiov&rCu 
(IV) 1.8 nm of Ni over Cu 
(V) o.snmofNiovmCu 

- ··---- (VI) pure Cu 

0.5 1 

Indentation Depth (nm) 

Figure 6 - Saraev and Miller's Hardness Graph for Copper Substrates with Nickel Coating 

3.2.. Molecular Dynamics Sensitivity Analysis 

Prior to running full-scale simulations, several sensitivity analyses were performed to provide 

insight into the responsiveness of the nanoindentation software. Additionally, through these tests, 

one will be able to better understand the effect of certain changes to the initial conditions of the 

simulation on the hardness of a material. Four sensitivity analyses were performed prior to 

running full simulations. These tests will be discussed in Sections 3.2.1-3.2.4 below. 
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3 .. 2 .. 1 .. Temperature Sensitivity Analysis 

The first sensitivity analysis performed investigated the effect of temperature changes on 

nanoindentation results. By varying ten1perature while maintaining the initial conditions of the 

simulation, the effects of temperature on nanohardness could be ascertained. As discussed by 

Narayan, Behdinan and Fawaz, lattice constants are greatly dependent on temperature. In this 

research, a set of lattice constants were solved using the custom MATLAB TM MD software and 

were compared to experimental results. The lattice constants, when verified via this MD 

software, were found to be almost identical to those of the experimental results. [liJ In this work, 

the lattice constants of the experimental analysis were used for the temperature analysis and can 

be found in Table 1. 

Temperature (K) Lattice Constants (A)L35
J 

OK 3.603287 
25K 3.603287 
50K 3.603504 
lOOK 3.604806 
200K 3.609650 
293 K 3.615000 
400K 3.621579 
500K 3.628086 
600K 3.634846 
700K 3.641787 
800K 3.648945 
900K 3.656464 
lOOOK 3.664381 
1200K 3.681444 
1300K 3.690734 

Table 1-Lattice Constants for Copper for Temperatures Ranging from OK to 13001< 

Using the above lattice constants, the effect of temperature on the hardness of copper was 

analyzed. For the simulations, the following initial conditions were used: 
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Indenter Type 
Substrate Size 

Indenter Diameter 
Indent Speed 
Maximum Indentation Depth 
Clamping 

Spherical 
4 by 4 by 4 unit cells ( 14.46 A), PBCs in x, y
directions 
2 unit cells (7.134 A) 
25 mls 
sA 
Absolute clamping on all faces except the in 
the positive z-direction 

The simulations were performed using given temperatures and corresponding lattice constants 

shown in Table 1. A graph that compares the applied force to the indentation depth is shown in 

Figures 7 and 8. 

25 

20 
+ OK 

z o 25 K 
.5. 

(1.1 15 u ·$\ SOK 
L. 

.2 <, 100 K 
"C 

10 .! -
'ii 200 K 
a. 
<C 

5 <, 293 K 

,, 400 K 

0 •·· 500 K 

0 1 2 3 4 5 a 600 K 

Indentation Depth (A) 

Figure 7- Force vs. Indentation Depth Graph for 0 Kto 600 K 

As· shown in Figure 7, for temperatures ranging from 0 K to 600 K, changes in temperature and 

lattice size do not significantly affect the forces acting on the substrate and subsequently do not 

significantly affect the hardness of the material. It is noticed, however, that as the temperature 

increases, the forces are slightly increased during indentation. While these differences are quite 

marginal for a small scale simulation such as was performed in this temperature analysis, it 

would be expected that the differences would be slightly larger for simulations using large 

atomic systems. 
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For temperatures above 600 K, as shown in Figure 8, the same trends are not exhibited. Since the 

temperatures are so high, the kinetic energy within the system, and the corresponding atomic 

forces are quite large. As a result, the atoms are much more active and the atomic positions when 

contact occurs can be erratic. Therefore, it is expected that the nanohardness values obtained 

using the MD software becomes greatly less effective for temperatures in excess of 600 K. Thus, 

for large-scale simulations using temperatures higher that 600 K, further testing should be 

performed to ensure the results are accurate. 

3$2 .. 2 .. Force Sensitivity Analysis 

The second sensitivity analysis performed investigated differing force summation techniques. As 

previously mentioned, during nanoindentation the total force on the copper substrate is constant 

since a displacement dependent nanoindentation process is implemented. Therefore, using 

MATLAB ™ function Force_Summation_ V _7 _00, the following three force summation methods 

were analyzed: 
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1) Sun1mation of all atotns except those that are clatnped. 

2) Summation of all atoms except those that are clamped or adjacent to clamped atoms. 

3) Summation of only those atoms that are contacting the indenter. 

In order to test the three methods of force summation, a simulation was performed using the 

following initial conditions: 

Indenter Type 
Temperature 
Substrate Size 

Indenter Diameter 
Indent Speed 
Maximum Indentation Depth 
Clamping 

Spherical 
293 K 
6 by 6 by 6 unit cells (21.69 A), PBCs in x, y 
directions and negative z-direction. 
3 unit cells (1 0.845 A) 
20m/s 
sA 
Absolute clamping on all faces except the in 
the positive z-direction 

The three force summation methods produce drastically differing force vs. indentation depth 

plots as shown in Figure 9. For comparison, Saraevand Miller's results will be used to ensure 

that the force summation technique chosen produces results that are within reason. 
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Figure 9 - Force Summation Method Comparison 
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For the case when only the contact forces are used, the force plot is erratic and the forces acting 

on the copper substrate are much higher than expected. As well, for the force summation method 

in which the forces for both the clamped atom and the atoms adjacent to them are discounted, the 

forces were found to be too low as the indenter must be indent almost 3A into the substrate 

before the forces become positive values. Therefore, the most effective technique was 

determined to be the summation of all undamped forces. 

It should be noted, that for larger systems the difference between the first two force summation 

methods will be quite small as the forces adjacent to the clamped edges are expected to be 

miniscule for large atomic systems. For the nanoindentation simulations executed in this 

research, since the substrates used are not very large the forces near the edges . are still rather 

significant. Regardless, it was felt that the force summation method chosen would still be the 

most effective one as it is the n1ost accurate for the substrate sizes analyzed in this study. 

3.2.3. Molecular Dynamics Displacement Sensitivity Analysis 

The third sensitivity analysis perfonned studied the effect of nanoindentation on the atomic 

positions throughout the nanoindentation procedure. In this simulation, in addition to the 

equilibrium step prior to ·the nanoindentation ·and the indentation step itself, two more 

equilibrium steps have been included. Once the indentation is completed, a second equilibrium 

step is executed, followed by the removal of the indenter and a third equilibrium step. In this 

sin1ulation, the deformation of the copper substrate should be clearly illustrated. The following 

initial conditions were used in the simulation: 

Indenter Type 
Temperature 
Substrate Size 

Indenter Diameter 
Indent Speed * 
Maximum Indentation Depth 
Clamping 

Spherical 
293 K 
4 by 4 by 4 unit cells (14.46 A), PBCs in x, y
directions 
2 unit cells (7.134 A) 
10 m/s 
sA 
Absolute clamping on all faces except the in the 
positive z-direction 
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The copper substrate in this simulation consists of 365 aton1s. For the purposes of this test, only 

specific relevant atoms are highlighted. For clarity, the tables display the atomic positions 

ranking them by the value of their z-positions from largest to smallest. The percentage 

differences used in the tables refer only to the difference between the atomic positions in the z

direction from their starting positions to the cunent step. All tables display atomic positions in 

Angstroms (A). In Tables 2-5, significant atomic displacements from each of the steps 

throughout the nanoindentation process are presented. 

Starting Positions (A) After Equilibrium #1 (A) 

Atom# X-Position Y-Position Z-Position X-Position Y-Position Z-Position % Difference 

40 3.6150 7.2300 14.4600 3.5437 7.2300 14.3023 

60 7.2300 3.6150 14.4600 7.2300 3.5437 14.3023 

65 7.2300 7.2300 14.4600 7.2300 .2301 14.2414 

70 7.2300 10.8450 14.4600 7.2300 10.9164 14.3024 

90 10.8450 7.2300 14.4600 10.9163 7.2301 14.3023 

315 5.4225 5.4225 14.4600 5.3846 5.3846 14.2681 

320 5.4225 9.0375 14.4600 5.3845 9.0755 14.2681 

335 9.0375 5.4225 14.4600 9.0754 5.3846 14.2681 

340 9.0375 9.0375 14.4600 9.0755 9.0755 14.2681 

165 72300 5.4225 12.6525 7.2300 5.3719 12.5781 

169 7.2300 9.0375 12.6525 7.2300 9.0883 12.5782 

237 5.4225 7.2300 12.6525 5.3718 7.2301 12.5782 

257 9.0375 7. 12.6525 9.0882 7.2301 12.5781 

64 7.2300 7.2300 10.8450 7 01 10.8316 

63 7.2300 7.2300 7.2300 7.2240 

62 7.2300 7.2300 3.6150 7.2300 3.5836 
Table 2- Atomic Positions at Equilibrium Step #1 from MD Simulations 

As shown in Table 2, the atoms are not greatly displaced to reach equilibrium. In fact, only 

atoms whose z-positions are at a .maximum move in excess of one percent. For larger systems, 

the displacements are expected to be larger to reach equilibrium, as atoms in the centre of the 

substrate will not be as greatly affected by the clamping along the walls. In Table 3, below, the 

atomic positions at the conclusion of the indentation are shown. 
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Starting Positions (A) After Indentation (A) 

Atom# X-Position Y-Position Z-Position X-Position Y-Position Z-Position % Difference 

40 3.6150 72300 14.4600 3.4757 7.2300 12.8143 

60 7.2300 3.6150 14.4600 7.2300 3.4758 12.8143 

65 7.2300 7.2300 14.4600 7.2300 7.2301 9.2387 

70 72300 10.8450 14.4600 7.2300 10.9843 12.8143 

90 10.8450 7.2300 14.4600 10.9843 7.2300 12.8143 

315 5.4225 5.4225 14.4600 5.6488 5.6488 13.2466 

320 5.4225 9.0375 14.4600 5.6488 8.8113 13.2467 

335 9.0375 5.4225 14.4600 8.8112 5.6488 13.2466 

340 9.0375 9.0375 14.4600 8.8113 8.8113 13.2467 

165 7.2300 5.4225 12.6525 7.2300 5.2199 11.4435 

169 7.2300 9.0375 12.6525 7.2300 9.2401 11.4437 

237 5.4225 7.2300 12.6525 5.2199 7.2302 11.4436 

257 9.0375 7.2300 12.6525 9.2401 7.2302 11.4436 

64 7.2300 7.2300 10.8450 7.2300 7.2299 6.9723 

63 7.2300 7 7.2300 7.2298 7.2304 4.6090 

62 7.2300 7 3.6150 7.2301 7.2298 2.4543 

Table 3- Atomic Positions after Indentation Step from MD Simulations 

The atomic positions at the conclusion of the indentation are illustrated in Table 3. At this point, 

the greatest displacen1ent is found in atom 65 as it is the first atom contacted and is indented the 

full sA. Other atoms that are contacted directly by the indenter include atoms 40, 60, 70, 90, 315, 

320, 335 and 340. Interestingly, as a result of the indentation, all the atoms directly below the 

first aton1 indented, atom 65, are displaced significantly. As shown in Table 3, atoms 62, 63, and 

64 are each drastically displaced from their original z-positions. These displacements result from 

the compression of the substrate as atom 65 is pushed in the negative z-direction. · This 

compression of the substrate is also clearly seen, but to a lesser extent, in atoms 165, 169, 237, 

and 257. 
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Starting Positions (A) After Equilibrium #2 (A) 

Atom# X-Position Y-Position Z-Position X-Position Y-Position Z-Position % Difference 

40 3.6150 7.2300 14.4600 3.4757 7.2300 12.8143 

60 7.2300 3.6150 14.4600 7.2300 3.4758 12.8143 

65 7.2300 7.2300 14.4600 7.2300 7.2301 9.2387 

70 7.2300 10.8450 14.4600 7.2300 10.9843 12.8143 

90 10.8450 7.2300 14.4600 10.9843 7.2300 12.8143 

315 5.4225 5.4225 14.4600 5.7346 5.7347 13.1599 

320 5.4225 9.0375 14.4600 5.7346 8.7256 13.1602 

335 9.0375 5.4225 14.4600 8.7255 5.7347 13.1599 

9.0375 9.0375 14.4600 8.7254 8.7256 13.1602 

165 7.2300 5.4225 12.6525 7.2300 5.2108 11.3357 

169 7.2300 9.0375 12.6525 7.2300 9.2492 11 .3359 

5.4225 7.2300 12.6525 5.2108 7.2304 11.3358 

257 9.0375 7.2300 12.6525 9.2492 7.2304 11 .3358 

64 7.2300 7.2300 10.8450 7.2300 6.9499 

63 7.2300 7.2300 7.2300 7.2300 4.5482 

62 7.2300 7.2300 3.6150 7.2300 7.2300 2.3876 
Table 4 -Atomic Positions at Equilibrium Step #2 from MD Simulations 

The atomic positions after the second equilibrium has been reached are illustrated in Table 4. 

During this step, the equilibrium is established as the indenter is held in the position it had 

reached at the conclusion of the indentation step. Seeing as the atoms directly contacting the 

indenter .are · unable to move, there is no change in z-positions for any of the atoms that are 

directly contacting the indenter. However, for the atoms that becon1e compressed due to the 

indented atoms above them, there is still displacement in the negative z-direction. For each of the 

aforementioned atoms, the displacement in the negative z-direction continues as the system 

responds to the compression from the indented atoms above. Due to the speed of the 

nanoindentation, however, the system has been able to respond fairly well to the nanoindentation 

as the· indenter . is lowered into the substrate. As a result, to reach the second equilibrium step 

range the atomic displacements are quite small. 
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Starting Positions (A) After Equilibrium #3 (A) 

Atom# X-Position Y-Position Z-Position X-Position Y-Position Z-Position % Difference 

40 3.6150 7.2300 14.4600 3.5153 7.2300 14.2965 

60 7.2300 3.6150 14.4600 7.2300 3.5153 14.2965 

65 7.2300 7.2300 14.4600 7.2300 7.2300 10.8244 

70 7.2300 10.8450 14.4600 7.2300 10.9447 14.2965 

90 10.8450 7.2300 14.4600 10.9447 7.2300 14.2965 

315 5.4225 5.4225 14.4600 5.3063 5.3063 14.2512 

320 5.4225 9.0375 14.4600 5.3063 9.1537 14.2512 

335 9.0375 5.4225 14.4600 9.1537 5.3063 14.2512 

340 9.0375 9.0375 14.4600 9.1537 9.1537 14.2512 

165 7.2300 5.4225 12.6525 7.2300 5.4061 12.6583 

169 7.2300 9.0375 12.6525 7.2300 9.0539 12.6583 

237 5.4225 7.2300 12.6525 5.4061 7.2300 12.6583 

257 9.0375 7.2300 12.6525 9.0539 7.2300 12.6583 

64 7.2300 7.2300 10.8450 7.2300 7.2300 7.9159 

63 7.2300 7.2300 7.2300 7.2300 7.2299 5.7012 

62 7.2300 7.2300 3.6150 7.2300 7.2300 3.3763 
Table 5- Atomic Positions at Equilibrium Step #3 from MD Simulations 

Table 5 demonstrates the behaviour of the atoms after the indenter is ren1oved and a third 

equilibrium step is performed. In this table, it is evident that after letting the system relax, the 

defonnation still remains. It is noted however, that the system does partially expand once the 

indenter is removed. Interestingly, after the third equilibrium step is completed, significant 

displacements only remain in aton1s 62-65. For the remaining atoms, however, their positions 

are almost identical to their original equilibrium positions. One significant change in the atomic 

positions is observed in atoms 165, 169, 237, and 257. After the third equilibrium step is 

completed, these atoms actually exhibit displacements in the positive z-direction. While this may 

seem puzzling, these atoms are being pushed in the positive z-direction due to their proximity to 

atom 65. Through this analysis, it is evident that MD MATLAB™ function NI_MD_ V _7_00 

models the behaviour of a substrate undergoing nanoindentation effectively. 
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3 .. 2 .. 4 .. Clamping Sensitivity Analysis 

The final sensitivity analysis performed studied the effect of clamping on the nanohardness. 

When clamping a material, the software enables two different types of clamping to be 

performed; absolute clamping or relative clamping. Absolute clamping restricts motions of 

clamped atoms in all directions, while relative clamping restricts motion only in the direction 

that is being clamped. In this sensitivity analysis the following four methods of clamping were 

investigated: 

1) Relative clamping only on botton1 face 

2) Absolute clamping only on botton1 face 

3) Relative clamping on all faces except top face 

4) Absolute clamping on all faces except top face 

Using the following initial conditions, simulations using each of the clamping techniques were 

performed: 

Indenter Type 
Temperature 
Substrate Size 
Indenter Diameter 
Indent Speed 
Maximum Indentation Depth 

Spherical 
lOOK 
6 by 6 by 4 unit cells, PBCs in x, y-directions 
2 unit cells (7.134 A) 
20rnls 
sA 

Using these simulation conditions, nanoindentation were performed for each of the clamping 

techniques. The simulation results are shown in Figure 10. 
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Figure 10- Comparison of Clamping Techniques using MD Simulations 

From the graph, it is apparent that the difference between the clan1ping techniques is not drastic. 

As a result, the clamping technique implemented is not expected to have a great impact on the 

hardness of the material. However, the graph indicates that absolute clamping is more effective 

than relative clamping. Additionally, absolute clamping on all faces except the face that directly 

contacts the indenter requires significantly less time steps to reach equilibrium than absolute 

clamping on the bottom face only. 

3 .. 3.. Molecular Dynamics Nanoindentation Simulation Conditions 

In Sections 3.4-3.6, the simulations results are shown. Each simulation was performed using a 

10 by 10 by 10 unit cell (36.15 by 36.15 by 36.15 A) copper substrate with PBCs in the x andy

directions as well as · the negative z-direction. Simulations were performed using speeds ranging 

from 10 m/s and 30 rnls, while the indenter sizes used (before the indenter is trimmed) ranged 

from 4 by 4 by 4 unit cells (14.46 by 14.46 by 14.46 A) to 7 by 7 by 7 (25.3 by 25.3 by 25.3 A) 
unit cells. The simulation temperature is n1aintained at 293 K, and absolute clamping is used on 

all faces except the face coinciding with the maximum z-positions. 
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The indenters used for the simulations are quite unique and are each expected to produce distinct 

results. The spherical indenter's height is equal to its radius. The Berkovich indenter produces a 

height approximately equal to one-third of the length of the base. For the square pyran1idal, the 

angle used was 54.74°. As a result, the height of the pyramid will be equal to the width of the 

base or twice the height of the spherical indenter. As a result, the Berkovich indenter is expected 

to produce the smallest hardness values followed by the spherical and square pyramidal indenters 

respectively. In Figures 11-22, below, the simulation results are graphed. 
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3 .. 4.. Molecular Dynamics Spherical Indenter Results 
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Figure 11- MD Results using Spherical indenter with Diameter of Four Unit Cells 
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Figure 12 ~MD Results using Spherical Indenter with Diameter of Five Unit Cells 
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Figure 13- MD Results using Spherical indenter with Diameter of Six Unit Cells 
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Figure 14- MD Results using Spherical Indenter with Diameter of Seven Unit Cells 

42 



3.5.. Molecular Dynamics Be:rkovich Indenter Results 
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Figure 15- MD Results using Berkovich Indenter with Base of Length Four Unit Cells 
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Figure 16- MD Results using Berkovich indenter with Base of length Five Unit Cells 
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3*6.. Molecular Dynamics Square Pyramidal Indenter Results 
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Figure 19- MD Results using Pyramidal Indenter with Base Four by Four Unit Cells 
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Figure 21- MD Results using Pyramidal Indenter with Base Six by Six Unit Cells 
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Figure 22- MD Results using Pyramidal Indenter with Base Seven by Seven Unit Cells 
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3 .. 7.. Discussion 

In Figures 11-22, it can be observed that the hardness vs. indentation depth plot for the MD 

simulations never start right at an indentation depth of 0 A. Due to the algorithm used for the 

first equilibrium step, the indentation step is commenced once the change in applied force per 

time step is within the specified limits. As a result, the applied force on the system is still not a 

positive value. Due to the size of the copper substrate used for the MD simulations, the data 

shown in Figures 11-22 cannot be used to determine the hardness of copper metal nor can it be 

used in the design process of products using copper nanomaterials. However, the trends 

illustrated in the hardness graphs reveal valuable information with respect to nanoindentation. 

In Figures 11-14, the results of the spherical indenter nanoindentation sitnulations are illustrated. 

In these graphs, significant changes in the hardness vs. indentation depth plot can be observed 

when the indentation speed is altered. As the indentation speed increases, the hardness values 

increase quicker over indentation depth. Most notably, for the indentation speed of 10 tnls, the 

hardness responds very quickly to changes in indentation depth. This is expected as the 10 mls 

indentation speed allows significantly more titne for the system to defonn and for the forces to 

be transferred to the system. 

Interestingly, for the 10 m/s indentation, the spherical indenter plots all level off at indentation 

depths ranging between 4 A and 5 A. For the higher speed nanoindentation, however, this 

phenotnenon does not occur. At these speeds, the plots are only seen to level off when the 

indentation depth approaches the tnaximum indentation depth. For slower speeds, the atomic 

deformations are tnuch smaller and therefore, the other atoms are able to adjust as the indenter is 

moved down. For the faster speed indentations, the system is unable to adjust to the larger 

deformation as quickly. Therefore, for higher speed indentations, the hardness plots only reach 

their 1naximum as the indentation depth approaches the maxhnum indentation depth. 

An additional important result to note for sitnulations using spherical indenters is that the 

hardness decreases as the indenter size decreases. This trend is most clearly illustrated in the 

silnulations using the indentation speeds of 20 m/s and 30 m/s. Comtnonly referred to as the 
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"indenter size effect," the reduction of hardness values for larger indenter sizes is consistent with 

the findings of many other research studies.r36
] 

In Figures 15-18, it is evident that the simulations using the Berkovich indenter are not as 

effective as those using spherical indenter. For example, in Figure 15, the 10 m/s indentation 

reaches it tnaxin1um hardness at a indentation depth of approximately 1.5 A. Since the Berkovich 

indenter's height is much stnaller than its width, the majority of the indenter contacts the 

substrate very quickly in the simulation. As a result, prior to the system being able to react to the 

indentation, the indenter is cmnpletely submerged within the substrate. This is especially the case 

for the two stnaller indenters. One explanation for the irregularities that are observed for the 

smaller indenters lies within the method with which contact area is calculated. Since the contact 

area is calculated based on the geometry of the indenter rather than being based on the atoms 

actually used in the simulation, there are large discrepancies for such sn1all indenters. However, 

for larger indenters, as will be used for nanoindentations using large atomic systems, these 

discrepancies will be relatively insignificant. 

For the t"vo larger indenters, as shown in Figures 17 and 18, the hardness vs. indentation depth 

plots for the three indentation speeds appear to converge more effectively. The increased 

convergence is expected as for the larger Berkovich indenters, the indenter can be submerged 

further within the substrate than for the stnaller sized indenters. For the Berkovich indenters, the 

"indenter size effect" is not observed. It is expected that for simulations using larger substrates, 

the "indenter size effect" would indeed be observed, however, for such as small indentation 

depth, the system is unable to respond effectively to the indentation. 

For the square pyramidal indenters, shown in Figures 19-22, many of the same trends as shown 

for spherical and Berkovich indenters are observed. As in the simulations using spherical and 

Berkovich indenters, the hardness vs. indentation depth plots increase faster for slower 

indentation speeds. However, for square pyran1idal indenters, the three plots crossover each other 

much before the maxin1um indentation depth is reached. This trend was not observed for the 

other two indenter types. As well, the "indenter size effect" is not presented for square pyramidal 

indenters. If the indenters were to approach the n1aximun1 indentation depth, it is expected that 
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the "indenter size effect" would be illustrated in the results. However, for a substrate size of 10 

by 10 by 10 unit cells (36.15 by 36.15 by 36.15 A) as used, indent the substrate to such an extent 

is not advisable. In that case, the system would be challenged to respond so such a con1pression 

within the system and the results obtained would be inaccurate. 

When comparing the three indenter types, the most striking difference is the maximutn 

nanohardness observed in the different types of indenters. For spherical indenters, the maximum 

hardness is found to be between 18-20 GPa. This is consistent with the results of Saraev and 

Miller discussed Section 3.1. For the Berkovich indenter, the maximum hardness differs 

substantially between the different indenter sizes. Thus, it is concluded that for tnore effective 

results, testing tnust be perfonned using larger substrate and indenter sizes. For the square 

pyramidal indenter, the maxilnum hardness observed in the plots is between 35-40 GPa. While it 

was expected that the maxilnum hardness using a square pyramidal indenter would be larger than 

when using a spherical indenter, the difference between the two is much larger than expected. 

In all of the MD simulations performed, the ditTerence between the simulations perfotmed using 

indentation speeds of 10 m/s and the two faster indentation speeds of 20 nlls and 30 tn/s is quite 

substantial. Based on this, it is infened that in further studies, testing for intennediate speeds 

should be en1ployed. With the cmnpletion of further testing, it would be possible to detetmine 

the optitnal indentation speed with which to perform nanoindentation expetiments that would 

provide the best results while requiring the shortest simulation time. 
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3s8.. Chapter Summary 

This chapter describes MD simulations sensitivity tests perfo1n1ed and larger scale 

nanoindentation simulations. These tests were very effective, as expected trends were illustrated 

and the maximum hardness results for spherical indenters were found to be extremely similar to 

the results expected based on the research conducted by Saraev and Miller. It was evident, 

however, that the nanoindentation simulations in this research are tnerely the starting point to 

detennine the actual hardness of a copper nanotnaterial. For the nanohardness of copper to be 

determined, one must perfonn 1nuch larger scale simulations as performed in the aforementioned 

research while using a tnore appropriately sized indenter. In Chapter 4, a bridged finite eletnent

molecular dynamics (FE-MD) tnethod will be introduced. This bridged FE-MD tnethod will be 

used to performed nanoindentation experimentation more etiectively while significantly 

reducing sitnulation tilne. 
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4. Bridged Finite Element - Molecular Dynamics 
N anoindentation 

4 .. 1.. Bridged Finite Element- Molecular Dynamics Introduction 

Despite the success of MD simulations, recent studies have introduced revolutionary tnethods 

that enable nanosized materials to be analyzed more efficiently. These methods, comn1only 

referred to as multi-scale methods, couple the macro and nano scale to more effectively analyze 

the behaviour of large atomic systetns at the macro scale. Most tnulti-scale methods etnploy the 

use of both macro (such as FEM) and atomistic (such as MD) simulation tools to perform their 

experitnentation. In this chapter, a unique bridged method is introduced and applied to 

nanoindentation simulations. This method, developed by Narayan, combines the theories of finite 

eletnents method (FEM) and tnolecular dynamics (MD).(2SJ This tool signit1cantly reduces 

shnulation time required by traditional MD simulations while maintaining precision. Compared 

to the thousands of time steps that n1ay be required for MD simulations to reach equilibriutn~ it 

can be reached in only a few steps using the bridged FE-MD technique. 

The strength of this n1ethod lies with the novel discretization scheme utilized that allows the 

molecular dynamics equations of motion to be easily solved using traditional FEM techniques. 

This bridged method has proven extre1nely effective in the aforetnentioned work of Narayan. 

However, due to the tremendous size of the stiffness matrices produced for large atomic systen1s, 

significant computational resources are required to execute these sitnulations. Therefore, to fully 

explore the strength of the bridged FE-MD method and use it for tneaningful sin1ulations, more 

powerful computational tools than those available to this author must be employed. 

This chapter \vill examine the bridged FE-MD method in detail and the software created for the 

original MATLAB TM code FE_ MD_ V _7 _ 00 as well as its nanoindentation adaptation 

MA TLAB TM code NI FE MD V 7 00 will be discussed. 
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4 .. 2.. Traditional Finite Elements Method Theory 

Finite element method (FEM) is a very common numerical method used to solve many 

engineering problen1s. FEM simulations are most con1monly used for structural, them1al, 

electromagnetic, and fluid problems. A general overview of some relevant FEM theories will be 

discussed in this section; however, for a more detailed overview of basic FEM theory, the reader 

is urged to consult FE!vl reference materials. 

4 .. 2$1 .. General Form of Finite Element Method Shnulations 

While FEM solutions have been used for a wide scope of problems, the general algorithm used 

by all FEM tools is viliually identical. This general algorithm is defined by the following steps: 

1) Discretize the system and select element type - the nodes and elen1ents for the system are 

defined. 

2) Select a displacement function. 

3) Define the strain/displacement and stress/strain relationships. 

4) Derive the element stitiness equations and matrices. 

5) Assetnble the individual elemental stiffuess matrices to derive the global stiffness matrix 

or global equations. 

6) Introduce boundary conditions - these boundary conditions can be used to remove rows 

or columns from the global stiffness matrix and speed up the simulation. 

7) Solve for unknown degrees of freedom (in this case the only unknowns are nodal 

displacements) and elemental stress/strains. 

The eletnental stresses and strains as calculated using FEM are not relevant to the research being 

conducting in this study. Therefore, ·while the code solves for the elemental stresses and strains, 

those results will not be discussed in this thesis. In the coming sections, traditional FEM 

discretization methodology and stiffness matrices derivation will be discussed in tnore depth. 
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"t2o2 .. General Form of a FEM Stiffness Equation 

To detnonstrate the fon11ulation of the stiffness n1atrices used in FEM in its tnost general form, 

the tnost basic element in finite elements, the spring element, is discussed. A diagram of a one

dimensional spring element is shown in Figure 23. The nodal displacements for the spring 

eletnent are denoted by d1x and d2x, while F1x and F2x represent the external forces on those 

nodes. 

Figure 23- One dimensional two~ node spring element 

The internal energy of the element can be expressed with respect to the displacements as, 

[52] 

The internal forces of the element, / 1x and /zx' can be expressed in relationship to the internal 

energy of the eletnent as shown in Equations 53 and 54. Additionally, the total force acting on 

each node is total zero, shown in Equation 55. 

[53] 

[54] 

[55] 
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Using a multi-variable Taylor series expansion, the inten1al nodal force derivatives can be 

expressed with respect to the displacement in each node, 

[56] 

[57] 

By combining Equations 56 and 57, a stiffness matrix for the non-linear spring eletnent can be 

established. Equation 58, is given in standard FEM stiffness n1atrix [K]{d} = [F] as can be 

found in any traditional FEM resource. 

a2u 

o( d1x)
2 

d1x=O 
dzx=O 

[58] 
a2u I 

a(dlx)a( a2x) dtx=O 
dzx=O 

Fora system ofeletnents, a global stiffness matrix can be established by the same process. The 

general form of a global stiffness matrix is illustrated in Equation 59 for a one-dimensional non

linear system. It should be noted that for tnore complex elements such as those used in the 

btidged FE-MD software, the stiffness matrices constructed will much tnore intricate. This issue 

w·iU be discussed in more detail in Section 4.3 when the bridged FE-MD tnethodology is 

discussed. Additionally, as Equation 59 only displays a system of equations used to solve the 

unkno\vn degrees of freedotn in the x-direction, the size of the global stiffness matrix will be 

enlarged for each additional degree of freedom (additional displacetnents in y and z-directions, 

or rotations in all three directions) added to the system. 
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a2utot a2utot dlx au tot 
adlx 

2 aanxadlx d2x =[]- aalx 
[59] 

a2Utot a2utot au tot 
aalxaanx aanx 

2 anx aanx 

4.2.3 .. Traditional FEM Discretization Scheme 

In traditional FEM discretization schemes, linear spring elements are viewed as two-body 

potential, as elements are defined between each pair of nodes. In Figure 24, a seven element 

exan1ple using two-body potential has been created using five nodes. While elements 2, 4 and 6 

appear to be three-node elements, they are sitnply elements using two nodes that are not adjacent 

to one another. 

Figure 24- Assembly of two-body potential linear spring elements 

Since all elements in Figure 24 are defined as having only two nodes, the potential energy can be 

detined by the following linear spring equation which defines that between any two nodes, i and 

}, the potential energy is merely a function of the spring constant, k, and the distance between the 

two nodes. 

1 (A A )2 U·· = -k d· - d · •. !] 2 Lx Jx 
[60] 

Using the definition of potential energy as described in Equation 60, the element stiffness 

matrices for each of the seven elements can be determined as shown in Equations 61-67. 
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[ 1 

-1 0 0 

!l 
-1 1 0 0 

[K]1 = k1 ~ 0 0 0 [61] 
0 0 0 
0 0 0 

[Klz = k2[{1 
0 -1 0 

!l 
0 0 0 
0 1 0 [62] 
0 0 0 
0 0 0 

[Kh = k3[! 
0 0 0 

!l 
1 -1 0 

-1 1 0 [63] 
0 0 0 
0 0 0 

[Kh = k4[! 
0 0 0 

!l 
1 0 -1 
0 0 0 [64] 

-1 0 1 
0 0 0 

0 0 0 0 

!l 
0 0 0 0 

[K]s = ks 0 0 1 -1 [65] 
0 0 -1 1 
0 0 0 0 

[K]6 = k6 [! 
0 0 0 

{1] 
0 0 0 
0 1 0 [66] 
0 0 0 
0 -1 0 

[Kh = k7[! 
0 0 0 

~1] 0 0 0 
0 0 0 [67] 
0 0 1 
0 0 -1 
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If it is assumed that the stiffness coefficient, k, is constant throughout the matetial as will be 

done for all sin1ulations performed in this research, the seven elemental stiffness matrices can be 

summed to create a global stiffness matrix as shown in Equation 68. The complete stiffness 

system of equations is shown in matrix form in Equation 69. 

[ 2 

-1 -1 0 

Jl] -1 3 -1 ~1 

[ Klrotal == k ~ 1 -1 4 -1 
-1 -1 3 -1 
0 -1 -1 2 

[68] 

[ 2 

-1 -1 0 

Jl] 
a1x F1x 

-1 3 -1 -1 a2x Fzx 

kT -1 4 -1 a3x = F3x 
-1 -1 3 -1 

a4x F4x 
0 -1 -1 2 

dsx 
Fsx 

[69] 

4 .. 3.. Bridged Finite Element- Molecular Dynamics Theory 

In this section, the FEM theory specific to the bridged FE-MD method is discussed. While 

similar to the traditional FEM theory, a discretization schen1e that is unique to this btidged FE~ 

MD tnethod wiH be introduced. This discretization scheme is designed to be dynatnic in nature 

so that the theory of the Embedding Aton1 Method can be impletnented in the stiffness equations. 

4.3 .. 1.. Bridged Finite Elentent- Molecular Dynamics Discretization Scheme 

To demonstrate the discretization scheme used in the bridged FE-MD softvvare, the five node 

example used in the previous section was studied. However, in this case, the definition of an 

element is slightly altered. For this discretization scheme, rather than defining elements as two

node bodied, elements are defined as being centred at nodes. Figure 25 detnonstrates an eletnent 

established with node three as its centre. 
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Prlma.Jy 
Node. 

Figure 25- Bridged FE-MD discretization scheme for element centred about Node 3 

As shown for the element in Figure 25, node three is referred to as the primary node, as the 

elemental energy is n1erely the energy of only that node. The remaining four nodes are refeiTed 

to as secondary nodes, as their atomic energies do not factor in the total energy of the element. 

For this discretization scheme, secondary nodes include all atoms that the forces between the two 

nodes are significant. This is discussed in section 4.3 .2 when the EAM potential functions are 

included in the bridged FE-MD method. Due to this discretization method, the number of 

elen1ents used for a system will be identical to the number of nodes or atoms in that system. 

Therefore~ the stiffness tnatrices that are constructed using this method are more manageable 

than they would othenvise be. 

For this discretization scheme, the potential energy of an element is looked at differently. Here, 

the traditional equation for potential energy of an element can be altered to calculate the potential 

energies at each node of the elen1ent. If one assumes that the total potential energy of the element 

can be attributed equally to each node, Equation 60 can be reorganized, as sho\vn in Equation 70, 

to calculate the nodal potential energies. 

1 (A A )2 U·· =-k d· ~d· 
l} 2 lx Jx 

1 (,.. " )2 U· = U· = -k d· . - d· t ] 4 tx Jx 

[60] 

[70] 

For each of the five elements in the example given, assuming that the sphere of influence for an 

element is the distance between three adjacent nodes, the elemental energies for each of the five 

elen1ents in this system can be detennined as shown in Equations 71-75. 
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[71] 

[72] 

[73] 

[74] 

[75] 

Using the stiffness matrix shown in Equation 59, the stiffness tnatrices for each of the elements 

can be evaluated. For element 1, the stiffness tnatrix is formulated in Equation 76 and then 

evaluated for the five element example in Equation 77. 

[K]i = 

azui 
aanxaalx 

azui 
ad1xaanx 

azul 
adz aal X X 

azul 
ad 2 

Zx 

azul 
aa2xaa3x 

azul 
aa1xaa4x ad2xaa4x 

azutot azul 
adlxaasx ad2xaasx 

azul 
aa3xaalx 

azul 

azul 
aa4xaa1x 

azul 

azu1 
adsxadlx 

azul 
aa3xaaZx aa4xaa2x adsxaaZx 

azul azul azul 
ad z 3x 
azul 

aa3xaa4x 
azul 

aa3xaasx 

59 

aa4 ad3 X X 

azul 
ad 2 

4x 
azul 

aa4xaa5x 

adsxaa3x 
azul 

adsxaa4x 
azul 
ad 2 

Sx 

[59] 

[76] 



[ 

2 
k -1 

[K]1 = 2 T ~1 ~1 ~ o~o] 
0 0 0 
0 0 0 

[77] 

Similarly, for the remaining four elements, the elemental stiffness matrices can be easily 

evaluated as shown in Equations 78-81. 

[ 1 

-1 0 0 

!l 
k -1 3 -1 -1 

[Klz = 2 ~ -1 1 0 
-1 0 1 
0 0 0 

[78] 

[ 1 
0 -1 0 

{1] 
k 0 1 -1 0 

[Kh =2 T -1 4 -1 
0 -1 1 
0 -1 0 

[79] 

[0 
0 0 0 

],1] 
k 0 1 0 -1 

[K]4 = 2 ~ 0 1 -1 
-1 -1 3 
0 0 -1 

[80] 

[0 
0 0 0 

11] k 0 0 0 0 

[K]s = 2 ~ 0 1 0 
0 0 1 -1 
0 -1 -1 2 

[81] 

For the system, one can then determine the global stiffness tnatrix by summing the individual 

elemental matrices as shown in Equation 82. 
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[ 2 

-1 -1 0 

11] 
-1 3 -1 -1 

[K]rotal = k ~1 -1 4 -1 [82] 
-1 -1 3 -1 
0 -1 -1 2 

As hypothesized, the global stiffness tnatrices for each of the two discretization techniques are 

identicaL Therefore, it has been confinned that the bridged FE-MD discretization schetne indeed 

models the energy of the system effectively. This flnding indicates that there is great benefit to 

the proposed discretization model. Due to the co1nplexity of the EAM multi-body potentials, 

using this method enables the total energy acting on each node to be solved individually. In the 

coming section, the application of these EAM potentials to the stiffness equations will be 

discussed. 

4 .. 3 .. 2 .. Embedding Atom Method Potentials in Bridged Finite Elements -
Molecular Dynamics 

For the bridged FE-MD method, to calculate the forces on the atoms, the theory of tnolecular 

dynmnics is still ilnplemented. As done for the molecular dynamics simulations, EAM potentials 

are used to n1odel the interatomic forces. To model these forces as elemental forces, Equation 7 

determines the total force acting on each atotn resulting from all the surrounding atoms within 

specified the distance limits. 

N N 

u,;total "' ~ L rP c r,j) + '¥ L p( ru) [7] 
j=1 j=l 

For the total atomic force on a given aton1, or node for the bridged FE-MD sin1ulation, the 

derivative of the EAM potential energy equation is derived with respect to a given Cartesian 

coordinate p, as shovvn in Equation 83. 
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Fp. = - aui,EAM =- f [d<P(r;j) + ( d'P + d'l' ) dp(rij)] arij 
t api ~ drij dPtot,i dPtot,j drij api 

j=t:i 

[83] 

The variable rij references the distance between two atoms, i andj, as calculated in Equation 84. 

The first derivative of Equation 84 with respect to each Cartesian coordinate is shown in 

Equations 85-87. 

T;j = Jcx;- Xj)
2

- (Yi- Yj)
2

- (z;- Zj)
2 

arij = 8rij Xi - Xj 
axi - axj = rij 

arij 
-= 
ayi 

arij

azi -

arii Yi- Yi --=--.--..;.... 
ayj rij 

arij Zi- Zj = _ __;.._ 
azj rij 

[84] 

[85] 

[86] 

[87] 

Using the above equations, the EAM potential forces on each atom and in each Catiesian 

coordinate can be calculated and stored in the global force matrix. These calculations are 

completely independent of any boundary condition on the system. Therefore, the only unknown 

variables in the global stiffness are the nodal displacements. In the Sections 4.4 and 4.5, this 

theory is applied to MA TLAB TM function FE_ MD_ V _7 _ 00 and its nanoindentation adaptation 

MA TLAB TM function NI FE MD V 7 00. 

4e4.. Custom Finite Element _,. Molecular Dynamics Code FE_ MD_ V _7 _ 00 

In Narayan's research, the bridged FE-MD code FE_MD _ V _7 _00 was developed and three 

applications were analyzed using the software. These analyses were found to be extretnely 

effective, as the results were very sin1ilar to that of the molecular dynamics simulation in a 

fraction of the sitnulation time. 
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4 .. 5.. Custom Finite Element- Molecular Dynamics Nanoindentation Code 
NI FE MDV 7 00 

........ _...,., ---

For the purposes of perfonning a nanoindentation using the bridged FE-MD software, the code 

was altered. The major differences between MATLAB™ function NI FE MD V 7 00 and 
- - -- --

MATLAB TM function FE _:MD_ V _7 _00 lie in the inclusion of the indenter design and the contact 

analysis functions. Despite these additions, the theory of the bridged FE-MD software as 

designed for MATLAB TM function FE_ MD_ V _7 _00 is not adapted. A flowchart outlining the 

process undergone by MA TLAB TM function NI _FE_ MD_ V _7 _ 00 can be found in Appendix B. 

However, the tnajor tasks that are perfonned in MATLAB ™ function N1_ FE_ MD_ V _7 _ 00 are 

as follows: 

1) Define the initial conditions for the simulation. 

2) Read the positions and velocities of the substrate as defined in the function 

FCC_ Gen_V _7 _00, BCC_ Gen_ V _7 _00, HCP_Gen_ V _7 _00 or Dia_Gen_V _7 _00. 

3) Calculate the distances between each atom and its neighbouring atoms and use that 

information to discretize the system. 

4) Define the eletnent stiffness matrices. 

5) Assemble the global stiffness matrix by sumtning the individual element stiffhess 

matrices. 

6) Define the boundary conditions and apply them to the system. 

7) If the indentation step has com1nenced, add the nodal displacements obtained frotn 

MA TLAB TM function Contact_ V _7 _00 to the current positions of the contacted atoms 

and apply boundary conditions on those nodes to prohibit thetn from being displaced. 

8) Solve for all unknown nodal displacetnents and all con-esponding nodal forces. 

9) Write relevant infonnation, such as positions, forces. 

1 0) Repeat steps 3 through 9 for the required steps of the nanoindentation procedure. 

Although the substrate is analyzed using a bridged FE-MD simulation, the indenter is not 

designed to be included in the FEM displacement calculations. Rather, MA TLAB TM function 

Indenter_ Design_ V _7 _ 00 creates an indenter in identical fashion as described in Chapter 2. 
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Since the indenter is designed as a rigid atomic system, there is no need to apply the FE-MD 

code to the indenter design. Therefore, as with the MD simulations, the only influence of the 

indenter on the substrate is modeled using MA TLAB TM function Contact_ V _7 _ 00. However, for 

the bridged FE-MD simulations, the contact between the indenter and the substrate is dealt with 

in a slightly different manner than the method employed in Chapter 2. 

While rviD simulations are time-dependent, the bridged FE-MD code is completely time

independent. As a result, the contact analysis methodology was varied for MA TLAB TM function 

NI_FE_MD _ V _7 _00. In molecular dynamics sin1ulations, for each time step, the indenter is 

lowered by a predetennined indentation speed and the molecular dynamics sin1ulation is 

perfonned to determine the positions and velocities for each of the atoms in the system. In this 

case, the indenter is still lowered in sn1all increments, but the bridged FE-MD sitnulation is only 

performed at specified indentation depth intervals. 

For each incren1ental change in indenter position, the corresponding displacen1ents in the 

substrate are recorded and stored. At the conclusion of the indentation depth interval, the total 

nodal displacements resulting from the indentation are added to the current atomic positions of 

the substrate. Next, for each atotn that is displaced by the indenter, nodal boundary conditions 

are applied to prevent them frotn being displaced from their new positions. At this time, bridged 

FE-MD simulation is performed and the displacements on the remaining atoms are calculated. 

In this fashion, MATLAB TM function NI __ FE _MD_ V ___.7_00 is able to simulate the effect of the 

indenter being lowered incrementally without requiring the bridged FE-MD sitnulation to be 

executed for each incremental displacetnent of the indenter. Consequently, the simulation can be 

executed in a reasonable tin1e and is in fact still executed faster than in the MD simulations. For 

nanoindentations using this method, it is expected that there would be marginal differences in the 

results for the indenter incren1ents used. However, the indentation depth interval size used is 

presutned to have much more bearing on the simulation results. These hypotheses are examined 

in detail in Section 5.2. 
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4 .. 6.. Chapter Summary 

This chapter discussed a novel bridged FE-MD simulation tool for large atomic systems as 

presented in the research of Nm·ayan. The theory surrounding the bridged FE-MD method was 

summarized and the bridged FE-MD code was adapted to create MA TLAB ™ function 

NI _FE_ MD_ V _7 _ 00, which is specifically tailored towards perfom1ing nanoindentation 

sitnulations. In the next chapter, the aforementioned function will he used to perfo1n1 

nanoindentations and its effectiveness will be analyzed. 

65 



5. Bridged Finite Element - Molecular Dynamics 
N anoindentation 

5 .. 1.. Bridged Finite Element- Molecular Dynamics Nanoindentation 
Introduction 

In the previous chapter, the theory characterizing the bridged FE-MD MATLABTM software was 

described. In this chapter, the software is tested and large scale nanoindentation simulations are 

executed. As perfonned using molecular dynamics MA TLAB ™ code NI _MD_ V _7 _ 00, 

nanoindentations use rigid diamond indenters to indent copper substrates. Using each of the three 

designed indenter types; spherical, Berkovich and square pyramidal indenters, the sensitivity of 

the code is tested and larger scale simulations are perfonned. The bridged FE-MD sitnulation 

results are then analyzed and compared to MD results. 

For each of the tests conducted using the bridged FE-MD code, prior to the commencetnent of 

the indentation procedure, an equilibrium step is first completed. While this was done for the 

MD simulations, using the bridged FE-MD method for this process is n1uch more effective. For 

the bridged FE-MD n1ethod, an iterative method is executed until the maximum atomic 

displacetnent throughout the system is within required limits. For all the simulations in this 

research, for the system to be considered in a state of equilibrium, the tnaximum atomic 

displacement within the syste1n must be less than 0.1 A. As compared to the MD simulations 

when thousands of iterations are required for equilibrium, the bridged FE-MD sin1ulations 

discussed in Sections 5.4-5.6 require only six iterations to reach equilibriu1n. Furthennore, for 

the bridged FE-MD simulations, the applied force prior to indentation is 1neasured to be zero 

rather than the negative value that was calculated at the conclusion of the MD equilibrium step. 

Therefore, the bridged FE-MD method projects to be much more efficient than traditional MD 

simulations. 
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5.2. Bridged Finite Element -Molecular Dynamics Sensitivity Analysis 

Prior to nanoindentation simulations being executed, the sensitivity of MATLABTM function 

NI_FE_MD_ V _7 _00 is analyzed. In Sections 5.2.1-5.2.3, the sensitivity of the code is tested by 

analyzing the material response to indenter increment size changes and indentation depth size 

interval changes. Next, the atomic displacements of the system during nanoindentation are 

analyzed as previously tested for the MD analysis and the two results are compared. 

5.2 .. 1. Indenter Increment Size Sensitivity Analysis 

As described in Section 4.5, since the bridged FE-MD method is time independent, to simulate 

the effect of lowedng the indenter into the substrate, the indenter is moved incrementally into the 

substrate and the contact analysis is perforn1ed for each increment. It is expected that the 

increment size will not have a great effect on the results obtained from the simulation. In order to 

test this hypothesis, the indentation depth interval size is maintained constant at 0.1 A while the 

number of increments per indentation depth interval is varied from ten increments to one 

hundred increments. For these simulations, the following initial conditions are used: 

Indenter Type 
Temperature 
Substrate Size 
Indenter Diameter 
Maximum Indentation Depth 
Clamping 

Spherical 
293 K 
4 by4 by 4 unit cells (14.46 A) 
2 unit cells (7.134 A) 
sA 
Absolute clamping on all faces except the in 
the positive z-direction 

Simulations using the above conditions are performed for five different increment sizes. The 

recorded forces are graphed over indentation depth and are shown in Figure 26. In the legend 

used in Figure 26, the increment size is descdbed based on the number of increments that is used 

for the contact analysis per FEM intervaL 

67 



25 T 
20 +-~--------------

e~ 10 Increments 

• 20 Increments 

s 25 Increments 

e.. 50 Increments 

• 100 Increments 

0 1 2 3 4 5 

Indent Depth (A) 

Figure 26 -Increment Size Sensitivity Test Applied Force Results 

As shown in Figure 26, the applied force results are not greatly affected by the number of 

increments used per interval size. However, for the case when only ten increments are used per 

FEM interval, there are slight changes to the force results that indicate that the simulation is 

unable to effectively capture the true nature of the system. Additionally, when 100 increments 

are used per FEM interval, the applied force values differ slightly from the remaining increment 

size tests. In this case, the forces are slightly greater at the conclusion of the nanoindentation than 

the remaining increment sizes. However, it is found that due the algorithm used for MATLAB TM 

function Contact_ V _7 _00, the atoms are being pushed too quickly away from the indenter and 

the applied forces are again not true to the behaviour of the material. As a result, it is determined 

that each of the other three increment sizes would be adequate to perform the simulations 

effectively. For large scale simulations, having fewer increments per indentation depth interval 

could pose problems when many atoms are being contacted by the indenter simultaneously. 

Therefore, in this research, the optitnal increment size was chosen to be fifty increments per 

FEM interval (each incretnent lowers the indenter by 0.002 A), as this ensures that the behaviour 

of the material is captured effectively even for large scale simulations. 
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5 .. 2.2. Indentation Depth Interval Size Sensitivity Analysis 

Once the increment size sensitivity analysis is completed, it ·is necessary to investigate the 

indentation depth interval size to ensure that theinterval size used will effectively capture the 

material response to the nanoindentation. Using the same initial conditions as used in the 

incren1ent size sensitivity analysis, interval sizes ranging from 0.05 A to 0.2 A are studied. For 

each of these simulations, the increment size is maintained at 0.002 A, as determined in the 

previous section. The results from the interval size tests are graphed in Figure 27. 
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Figure 27 -Indentation depth Interval Size Sensitivity Analysis Applied Force Results 

Figure 27 illustrates that the interval size used in the analysis drastically affects the bridged FE

MD simulation results. For interval sizes of 0.05 A and 0.1 A, there is little change in applied 

force between the two sin1tHations. For the simulations using interval sizes of 0.15 A and 0.2 A, 
however, there are significantchanges fron1 the smaller interval sizes. This is particularly true for 

the 0.2 A interval size as the system is unable to respond to the large aton1ic displacements that 

result from the contactwith the indenter. In fact, it is shown in Figure 27 that the applied forces 

are calculated to be negative values when the indentation depth reaches approxin1ately 4.5 A. 
This occurs because atoms are pushed together so quickly that the distance between then1 is less 
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than the cut-off distance as specified by the EAM potential function. As a result, the code is 

unable to calculate the forces between the atoms and the total applied force on the system is 

skewed. Therefore, interval sizes of 0.05 A and 0.1 A could both be used to provide accurate 

results in nanoindentation simulations. However, the optimal size for the purposes of this 

research is an interval size of 0.1 A, as the minuscule added accuracy of the 0.05 A interval size 

does not warrant doubling the number of nanoindentation steps, and therefore, double the tin1e 

required for the simulations to be executed. 

5 .. 2 .. 3 .. Bridged Finite Element -Molecular Dynamics Displacement Analysis 

The final sensitivity analysis of the bridged FE-MD method investigates the displacement of 

atomic positions throughout the nanoindentation procedure. This sensitivity test compares the 

differences between the displacen1ents recorded in the MD and bridged FE-MD simulation 

techniques. For the simulation, just as was perfo1n1ed for the MD simulation, two equilibrium 

steps are investigated in addition to the first equilibrium step and the nanoindentation. A second 

equilibrium step is executed once the indenter reaches its · maxitnum indentation depth, followed 

by a third equilibrium step that . is executed after the indenter is removed. The following initial 

conditions are used in the simulation as was used in Section 3.2.3: 

Indenter Type 
Temperature 
Substrate Size 
Indenter Diatneter 
Maximum Indentation depth 
Clamping 

Spherical 
293 K 
4 by 4 by 4 unit cells (14.46 A) 
2 unit cells (7.134 A) 
sA 
Absolute clamping on all faces except the in the 
positive z-direction 

As in the MD displacement analysis, for the bridged FE-MD simulation, only specific atoms are 

highlighted. While a more detailed displacement analysis could be performed using more of the 

substrate atoms, the goals of this analysis are to compare the two simulation n1ethods and to 

ensure that the substrate does not merely return to its original form once the indenter is removed 

from the system. In Tables 6-9, the results from the displacement sensitivity analysis is shown. In 

addition to merely displaying those atoms that present large displacements, some atoms that were 
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discussed in Section 3.2.3 will also be included. This inclusion will allow the two methods to be 

better compared. 

Starting Positions (A) After Equilibrium #1 (A) 

Atom# X-Position Y -Position Z-Position X-Position Y-Position Z-Position % Difference 

40 3.6150 7.2300 14.4600 3.5407 7.2300 14.3007 

60 7.2300 3.6150 14.4600 7.2300 3.5407 14.3007 

65 7.2300 7.2300 14.4600 7.2300 7.2300 14.2371 

70 7.2300 10.8450 14.4600 7.2300 10.9193 14.3007 

90 10.8450 7.2300 14.4600 10.9193 7.2300 14.3007 

315 5.4225 5.4225 14.4600 5.3 5.3841 14.2651 

320 5.4225 9.0375 14.4600 5.3841 9.0759 14.2651 

335 9.0375 5 14.4600 9 5.3841 14.2651 

340 9.0375 14.4600 9. 9.0759 14.2651 

153 3.6150 9.0375 12.6525 9.0948 12.6424 

165 7.2300 5.4 12.6525 7. 5.3699 12.5769 

169 7.2300 9.0375 12.6525 9.0901 12.5769 

181 10.8450 12.6525 5.3652 12.6424 

237 5.4225 12.6525 7.2300 

241 5.4225 12.6525 10.9527 

253 12.6525 3.5073 

257 12.6525 9.0901 7.2300 

64 7.2300 

314 5.3648 

339 9.0952 

63 7.2300 7.2300 7.2230 

62 3.6150 7.2300 7.2300 3.5827 

at Equilibrium Step #l from Bridged FE-MD Simulations 

Table 6 lists starting atomic positions and conesponding equilibrium atomic positions prior to 

the start of the indentation. In this table, only the percentage difference of the displacement in the 

z-direction is calculated. As seen in Table 6, there are no significant aton1ic displacements for the 

system to reach a state of equilibrium. The most significant displacements are located on the face 

that coincides with the maximum z-position values where the displacements are slightly larger 

than one percent. These findings are consistent with the results of the MD displacement 

sensitivity analysis. 
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Starting Positions (A) After Indentation (A) 

Atom# X-Position Y-Position Z-Position X-Position Y-Position Z-Position % Difference 

40 3.6150 7.2300 14.4600 3.3289 7.3886 12.6988 

60 7.2300 3.6150 14.4600 7.3886 3.3289 12.6988 

65 7.2300 7.2300 14.4600 7.2300 7.2300 9.2371 

70 7.2300 10.8450 14.4600 7.0714 11.1311 12.6988 

90 10.8450 7.2300 14.4600 11.1311 7.0714 12.6988 

315 5.4225 5.4225 14.4600 5.3592 5.3592 10.6672 

320 5.4225 9.0375 14.4600 5.0340 9.4260 12.8889 

335 9.0375 5.4225 14.4600 9.4260 5.0340 

340 9.0375 9.0375 14.4600 9.1008 9.1008 

153 3.6150 9.0375 12.6525 2.9066 9.5392 

165 7.2300 5.4225 12.6525 7.6156 5.1833 11.0667 

169 7.2300 9.0375 12.6525 9.2767 11.0667 

181 10.8450 5.4225 12.6525 4.9208 12.3948 

237 5.4225 7.2300 12.6525 7.6156 11.0667 

241 5.4225 10.8450 12.6525 4.9208 11.5534 12.3948 

253 9.0375 3.6150 12.6525 2.9066 12.3948 

7.2300 12.6525 9.2767 6.8444 11.0667 

7.2300 10.8450 7.2300 7.0480 

5 10.8450 5.5774 8.3577 

9.0375 10.8450 8.8826 8.3577 

7.2300 7.2300 7.2300 4.8108 

62 7.2300 7.2300 3.6150 72300 2.6531 
Table 7- Atomic Positions after Indentation Step from Bridged FE-MD Simulations 

In Table 7, the atomic positions once the indentation has been completed are presented. At the 

conclusion of the indentation step, the aton1ic displacements in the z-direction for many of the 

atoms are quite substantial. As found in MD displacement sensitivity test, there are also 

significant displacements calculated in atoms that are compressed due to the indentation. 

h1terestingly, atoms 315 and 340 experience displacements of 26.2%, while those atoms are 

displaced with atoms 320 and 335 in the MD simulation. In the bridged FE-MD simulations, 

atoms 320 and 335 are also · displaced in the x and y-directions. It is found that these atoms are 

contacted by the indenter at more of an angle than was the case for atoms 315 and 340. Due to 

the equilibrium steps performed for each interval during the FE-MD simulation, the system 

responded to the indentation faster and therefore, atoms 315 and 340 are marginally displaced 

prior to being contacted by indenter atoms. 

72 



Additionally, the displacements in atoms 314, 339, and 62 differ significantly fron1 the MD 

simulation. While in the MD simulations, atoms 314 and 339 displaced only 2.2% in the negative 

z-direction at the conclusion of the nanoindentation, displacements using the bridged FE-MD 

method are calculated as 22.9% in the negative z-direction. Atom 62, in contrast, is not displaced 

for the bridged FE-MD simulations as significantly as observed for the MD simulations. These 

large differences can once again be attributed to the equilibrium steps implemented by the 

bridged FE-MD method. 

Starting Positions (A) After Equilibrium #2 (A) 

Atom# X-Position Y-Position Z-Position X-Position Y-Position Z-Position 

40 3.6150 7.2300 14.4600 3.3289 7.3886 12.6988 

60 7.2300 3.6150 14.4600 7.3 3.3289 12.6988 

65 7.2300 7.2300 14.4600 7.2300 7.2300 9.2371 

70 7.2300 10.8450 14.4600 7.0714 11.1311 12.6988 

90 10.8450 7.2300 14.4600 11.1311 7.0714 12.6988 

315 5.4225 5.4225 14.4600 5.3592 5.3592 10.6672 

320 5.4225 9.0375 14.4600 5.0340 9.4260 12.8889 

335 9.0375 5.4225 14.4600 5.0340 12.8889 

340 9.0375 9.0375 L4.4600 9.1008 10.6672 

153 3.6150 9.0375 12.6525 9.5373 12.3955 

165 .2300 12.6525 5.1833 11.0667 

169 12.6525 6.8444 9.2767 11.0667 

181 11.5554 4.9227 12.3955 

237 7.6156 11.0667 

241 11 .5554 12.3955 

253 2.9046 12.3955 

257 6.8444 11.0667 

64 10.8450 7.2300 7.2300 6.9977 

314 10.8450 5.5775 5.5775 8.3315 

339 9.0375 8.8825 8.8825 8.3315 

63 7.2300 7.2300 7.2300 4.7426 

62 7.2300 7.2300 7.2300 2.5836 

Table 8- Atomic Positions at Equilibrium Step #2 from Bridged FE-MD Simulations · 

Table 8 shows the atomic . positions at ·the conclusion of the second equilibrium step. As in the 

MD simulations, the indenter is held in place during this step and subsequently, the atoms 

directly contacting the indenter are unable to move. For the remaining atoms, there is almost no 
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displacement within the system. Due to the methodology of the bridged FE-MD code, the system 

is already in a state of quasi-equilibrium at the conclusion of the indentation. Therefore, for the 

equilibrium step to be completed, only one additional simulation step is required. As expected, at 

the conclusion of this additional step there is no significant change in the atomic positions 

throughout the system. 

Starting Positions (A) After Equilibrium #3 (A) 

Atom# X-Position Y-Position Z-Position X-Position Y-Position Z-Position % Difference 

40 3.6150 7.2300 14.4600 3. 13.8459 

60 7.2300 3.6150 14.4600 3. 82 13.8459 

65 7.2300 7.2300 14.4600 7.2300 7.2300 

70 7.2300 10.8450 14.4600 6.8761 10.7818 

90 10.8450 7.2300 14.4600 10.7818 6.8761 

315 5.4225 5.4225 14.4600 5.0184 5.0184 

320 5.4225 9.0375 14.4600 10.0427 

335 9.0375 5.4225 14.4600 4.4173 

9.0375 9.0375 14.4600 9.4416 12.1081 

153 3.6150 9.0375 12.6525 9.2095 14.0699 

165 7.2300 5.4225 12.6525 7.3158 5.4944 12.4538 

169 7.2300 9.0375 12.6525 7.1 8.9656 12.4538 

181 10.8450 5.4225 12.6525 12.4102 5.2505 14.0699 

237 5.4225 7.2300 12.6525 5.4944 7.3158 12.4538 

241 - 5.4225 10.8450 12.6525 5.2505 12.4102 14.0699 

253 9.0375 3.6150 12.6525 9.2095 2.0498 14.0699 

257 9.0375 7.2300 12.6525 8 7.1442 12.4538 

64 .2300 7.2300 10.8450 7.2300 7.2300 8.3538 

314 5.4225 5.4225 10.8450 5.6022 5.6022 10.0283 

339 9.0375 9.0375 10.8450 8.8578 8.8578 10.0283 

63 7.2300 7.2300 7.2300 7.2300 7.2300 6.1495 

62 7.2300 7.2300 3.6150 7.2300 7.2300 3.6088 
Table 9 -Atomic Positions at Equilibrium Step #3 from Bridged FE-MD Simulations 

The aton1ic positions after the third equilibrium ·step is completed are shown in Table 9. As was 

case for the MD simulation, the system again expands once the indenter is removed. For the 

bridged FE-MD simulation, the removal of the indenter has a greater effect on the system. For 

atoms 62-65, the movement after the indenter is removed is drastically greater. Aton1 62, after 

being indented by 27 .9%, returns to a position only 0.17% less than its starting position. 
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Similarly, the displacements of atoms 63-65 using the bridged FE-MD technique are greater than 

was found for the MD simulations. If additional steps were to be executed for the MD 

simulations, the atoms would eventually exhibit the same displacements; however, for the 

blidged FE-MD this process takes only a few steps. 

Atoms 153, 181, 241 and 253 are subjected to unique reactions due to the removal of the 

indenter. As shown in Table 9, these atoms are displaced by 11.2% in the positive z-direction. It 

is also seen that each of the atoms experience significant displacetnents either in the x or y

direction. It is evident that as the system expands, these Jour atoms are pushed too close to other 

atoms. As a result, the atomic forces acting on them are quite large and the atoms are pushed 

further in the z-direction and above their initial positions. 

For the remaining atoms, the displacements observed at the conclusion of the indentation step are 

reduced as the system expands. While similar to the results of the MD simulations, the aton1ic 

displacements at the end of the final equilibrium step are still larger for the bridged FE-MD 

simulation. Since the MD sin1ulation . is not as effective at modeling the system as it undergoes 

the indentation, the MD simulation never actually reaches a state of equilibrium. Therefore, 

when the indenter is removed, the atomic positions of all atoms except atoms 62-65 are returned 

to positions very similar to their initial positions. Using the bridged FE-MD method, as expected, 

the indentation leaves more of a long lasting effect on the system. As such, it is evident that the 

bridged FE-MD method is more effective than the MD sin1tdation method for nanoindentation 

experimentation. In the coming sections, this point will be further illustrated as full-scale 

nanoindentation simulations are performed and their results are compared to the MD simulations 

results. 

5.3. Bridged Finite Element -Molecular Dynamics Simulation Conditions 

For the bridged FE-MD simulations, .to intention was to perform simulations using the identical 

conditions as used for the MD simulations. However, because of computing constraints, 

modeling 10 by 10 by 10 unit cell sized copper substrates with PBC was not possible. Instead, 
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smaller copper substrates sized 8 by 8 by 6 unit cells were analyzed without PBC. While 

performing simulations using different substrate sizes for the two simulation techniques makes 

comparison more difficult, the purpose of this research is not to determine the exact hardness 

values for a copper nanomaterial. Rather, it aims to determine the effectiveness of the bridged 

FE-MD simulation tool in performing nanoindentation experiments. In Figures 28-33, the 

bridged FE-MD simulations results are graphed. For each of the simulations, in addition to 

plotting the bridged FE-MD results, the MD results for an indentation speed of 10 n1fs are also 

plotted on the same graph. At that speed, the systen1 is found to be capable of responding to the 

indentation most effectively. As such, comparison between the trends of each of the simulation 

methodologies is possible. 

For each of these tests, the simulation temperature used was 293 K, and absolute clamping is 

used on all faces except in the positive z-direction. As in the MD simulations, testing is 

performed using each of the three designed indenters: spherical, Berkovich, and square 

pyramidal. For the MD sin1tdations, four different indenter sizes were used. Due to the smaller 

substrate size used for the bridged FE-MD method, simulations using the two larger indenter 

sizes are not possible. Using theselarger indenter sizes, contact would occur almost adjacent to 

the clamped edges of the substrate and therefore, the clamping would interfere with the 

displacements due to contact. and the simulation results would be inaccurate. 
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5.4. Bridged Finite Element -Molecular Dynamics Spherical Indenter 
Results 
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Figure 28- FE-MD Results using Spherical Indenter with Diameter of Four Unit Cells 
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Figure 29- FE-MD Results using Spherical Indenter with Diameter of Five Unit Cells 
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5e5.. Bridged Finite Element -Molecular Dynamics Berkovich Indenter 
Results 
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Figure 30- FEuMD Results using Berkovich Indenter with Base of Length Four Unit Cells 
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Figure 31- fEaMD Results using Berkovich indenter with Base of Length Five Unit Cells 
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5e6o Bridged Finite Element -Molecular Dynamics Square Pyramidal 
Indenter Results 
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Figure 32- FE-MD Results using Pyramidal Indenter with Base four by four Unit Cells 
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Figure 33- FE~MD Results using Pyramidal Indenter with Base Five by Five Unit Cells 
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5 .. 7. Discussion and Comparison between Bridged Finite Element
Molecular Dynamics Simulations and Molecular Dynamics Simulations 

For the spherical indenter simulations, as shown in Figures 28-29, the bridged FE-MD results 

appear to follow the same trends as were found in the MD simulations. Due to the smaller 

substrate size for the bridged FE-MD simulations, the hardness values for the bridged FE-MD 

simulations are slightly less than those of the MD simulations. Interestingly, in both cases, the 

hardness values level off at approximately the same indentation depth. Additionally, the bridged 

FE-MD simulations exhibit the "indenter size effect," as was presented for the MD simulations. 

Furthermore, when comparing the results to those of Saraev and Miller, it is evident that the 

bridged FE-MD produces hardness values that more closely resemble Saraev and Miller's 

results. Based on this information, it is evident that the bridged FE-MD method is extremely 

successful for simulations using the spherical indenters. 

For the simulations using Berkovich indenters, the differences between the bridged·FE-MD and 

MD simulation results are more pronounced. While the MD simulations differ greatly as the 

indenter size is altered, the bridged FE-MD simulation results follow the satne trends despite 

indenter size changes. As shown in Figures 30-31, in both of the two hardness plots, the 

maximum hardness value occurs within an indentation · depth of 1 A. This peak in the hardness 

plot occurs as a large number of atoms contact the substrate very quickly during the indentation 

step of the simulation. Furthermore, for the bridged FE-MD simulations using Berkovich 

indenters, again the "indenter size effect" is exhibited in the results. Based on the information 

shown in Figures 30-31, it appears that the bridged FE-MD method is able to determine the 

hardness of a material much more effectively than the MD simulations. 

The bridged FE-MD technique produces more uniform results than the MD method for 

simulations using square pyramidal indenters as well. As shown in Figures 32--33, in the MD 

simulations the hardness plots differ significantly for changes in indenter size, while the bridged 

FE-MD simulations produce almost identical plots. Due to the geometry of the square pyramidal 

indenters, the two indenters used in the bridged FE-MD simulations are identical except for the 

additional atoms included in the base of the larger indenter. Therefore, it is expected that the 
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results will not differ greatly. Due to the size of the square pyramidal indenter and the substrate, 

the system is prohibited from responding properly to the nanoindentation. As a result, the 

hardness results obtained frotn the square pyramidal indentation in this research are not 

indicative of the actual hardness values that would be obtained from a simulation using a large 

atomic system. 

Overall, the bridged FE-MD simulation results are quite favourable. Despite the smaller substrate 

size used in the bridged FE-MD sitnulations, the results obtained in the bridged FE-MD 

sin1ulations are in fact much better than in the MD simulations. While the MD results all require 

significant indentation to occur before the applied forces are recorded as positive values, the 

iterative technique en1ployed by the bridged FE~ MD MA TLABTM function NI_FE _MD_ V _7 _ 00 

ensures that the recorded applied forces on the system are very close to zero prior to the 

commencement of the nanoindentation step. As a result, positive applied force and hardness 

results are recorded fro.m the very start of the nanoindentation procedure. 

While the MD simulations often were unable to capture the behaviour of the system due to the 

speed of nanoindentation, this is not an issue with the bridged FE-MD simulations. This is 

especially seen for the simulations using Berkovich indenters. Due to the smaller height of the 

Berkovich indenter, there were great difficulties in many of the MD sin1ulations performed in 

capturing the behaviour of the system as a result of the little tin1e the system has to respond to 

the indenter. As shown in Figures 28-33, the system does not appear to have any such 

difficulties when the bridged FE~MD method is implemented. 

Besides the increased accuracy of the nanoindentation simulation results using the bridged FE

MD method, significantly less simulation time is required for the simulations to be cmnpleted. 

For exan1ple, vvhile more than twenty-four hours is required to execute simulations using MD 

sin1ulations \Vith an indentation speed of 10 tn/s, the bridged FE-MD n1ethod simulations vvere 

completed in ten hours. While a portion of this difference ste1ns from the smaller substrate size 

used for the bridged · FE-MD simulations, the bridged FE-MD technique still saves several hours 

of simulation thne cmnpared to traditional MD simulation techniques. 
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5 .. 8.. Chapter Sun1mary 

In this chapter, the nanoindentation bridged FE-MD MA TLAB TM function NI _FE _MD_ V _7 _ 00 

was first analyzed through a variety of sensitivity tests. These tests were extremely effective as 

the optimal initial conditions with which to run the simulations were determined and the atomic 

displacements obtained from a bridged FE-MD nanoindentation simulation were found to be 

similar to those of the MD si1nulation. Next, larger scale simulations were performed using 

spherical, Berkovich, and square pyramidal indenters. These simulations were extren1ely 

successful as the results were found to be an irnprovement upon the MD si1nulation results. 
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6e Concluding Remarks 

In this research5 computational tools were implemented to study the behaviour of atomic systeJns 

undergoing nanoindentations. Using an adaptation of a pre-existing custom-made molecular 

dynamics code, nanoindentations vvere performed to analyze the behaviour of copper 

nanomaterials under a variety of conditions. The interatomic potential forces were tnodeled using 

the embedding atom potential function. Copper substrates were analyzed using three different 

rigid diamond indenter types, each of which was designed in four different sizes, and at three 

indentation speeds. Overall, these simulations were successful but at the faster indentation 

speeds, in particular, the system was not ahvays able to respond quickly to the indentations. 

To more efficiently model the behaviour of the system during nanoindentations, a bridged FE~ 

I\1D code adapted for the needs of this research. This bridged FE-MD method, proposed by 

Narayan, combines the theories of MD and FEM to allo\V the equations of motions found in MD 

to be solved using traditional FEl\1 theory. This method introduces a discretization scheme that is 

uniquely suited to modeling the interatomic forces in large atomic systems and enables the 

atomic displacements to be solved efiiciently. 

Using this bridged FE-MD simulation, large scale nanoindentation shnulations \vere performed. 

These sin1ulations are found to be tnore effective and less time consuming than the traditional 

MD sitnulation technique. MD silnulations were found to have great difficulties in reaching a 

state of equilibriutn, resulting in less accuracy \Vithin the results. The bridged FE~ MD simulation 

method, in contrast, reaches a state of quasi~equilibrium after each indentation depth interval and 

therefore, the simulations produce more accurate nanohardness results. While the bridged FE

MD shnulations were found to be extren1ely effective, further testing n1ust be done. Due to the 

computational constraints, the simulations investigated using the bridged FE-MD method were 

performed mainly to assess its effectiveness. Therefore, it will be necessary to conduct larger 

scale sin1ulations so that the results can be used cotnmerciaUy in the design process. 
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While this research impletnents the bridged FE-MD method for a very specific purpose, future 

research possibilities using the bridged FE-MD nanoindentation softvvare are vast. These 

possible avenues include but are not lilnited to: studying the effects of nanoindentation on alloys, 

and imperfect crystal structures; determining the optimal size of coatings on a material to ensure 

the greatest hardness values; analyzing the hardness of a material undergoing significant stress or 

experiencing fatigue or failure; determining the effect of nanoindentation experimentation on the 

fatigue life of a nanomaterial; etc. To ensure that the bridged FE-MD software can be used to 

explore other materials such as non-metals, powders, and alloys, additional potential functions 

must first be incorporated within the bridged FE-MD software. As this research group 

progresses, these adaptations to the bridged FE-MD software will be implemented to provide 

researchers with a comprehensive tool with which they will be able to significantly itnpact the 

field of nanomaterials. 
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Appendix A- Flowcharts for Molecular Dynamics Code 

Use MATLAB™ function 
EAM_Poly_Fit_ V _7_00 

to fit the EAM embedding 
function defined earlier 

Create indenter using 
MA TLAB TM function 

Indenter_Design_ V_7_00 
using the specified 

indenter size and type 

Define nanoindentation 

Define initial 
parameters for the 

system such as 
electron density 

and pair potential 
functions 

step initial conditions (for ~<~..all----"'"'1 
example, number of time ...., 

Advance 
nanoindentation 

step 
steps, movement of the 

indenter) 

Ca!IMATLAB™ 
function 

EAM_Range_ V _7_0 
0 to obtain tabulated 
EAM potentials for 

material 

NO 

All 
nanoindentation 

steps considered? 

YES 

Call desired crystal 
lattice structure 
function to define 
the initial positions 
and velocities of 
the system 

YES 
... 

H START 1 

STOP J 

If first equilibrium step is 
completed, move indenter 

using MATLAB™function 
Indenter _Move_ V _7 _ 00 and 

perform contact analysis 

All time steps 
completed? 

... 
Record all relevant 

information such as atomic 
positions, velocities, forces 
and contact area in text file 

between the indenter and the 
substmte using MATLAB TM 

function Contact_ V _7 _ 00 

Calculate the interatomic 
dist:!nces and tabulate 

NO 

those distances that are M""'-t--------;1
1 

Advance time stepJ l~<~~~B---------.... 
less than the upper cut-off I"' 

distance 

Using the tabulated NO All atoms 

'-

--in_t_e-ra-tl-JO,....l_J· c-d-is-t-an_c_e_s,-~""'-t----------tl1 Choose next atom11111 

11~...----Jonsidered? 
YES 

calculate the EAM ~ 
potential energy 

Use EAM potential 
derivatives to determine 

the atomic forces 

Calculate the acceleration 
of the atom using the 

EAM force 

Use Taylor series 
expansion to calculate the 

atomic position and 
velocity 

... 

MATLAB™ functions 
Contact_Area_ V _7 _ 00 and 
Force_Summation_ V_7_00 

are executed 

Update all positions and 
velocities. If contact 

analysis was performed, 
only the atomic position 

changes as determined by 
the contact analysis are 
applied to those atoms 

Figure 34- Program Execution Flowchart for MATLAB™ function NI_MD_V_7_00 
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Define initial conditions such as 
crystal structure, indenter type, 

and indenter size 

Calculate the trin1 
equations for the 
indenter geotnetry 

Evaluate the position 
of indenter atom 

Write atomic positions in 
excluded atoms text file 

Write atotnic positions in 
indenter geometry text file 

figure 35- Program Execution Flowchart for MATlAB™ fJJnction lndenter_Design_V_7_00 
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ls contact angle 
greater than 
maximum angle? 

Displacement in 
z-direction only 

Displacement in 
radial direction 

Calculate interatomic distances between 
substrate atom and indenter atoms 

Store substrate 
and indenter atom 
combinations in 
contact matrix 

NO 

Determine number of indenter atoms contacting 
substrate atom in question 

TWO 

Calculate distance between 
atom and first indenter atom and 
record corresponding 
displacement 

Calculate distance between 
atom and second indenter atom 
and record corresponding 
displacement 

Record atomic displacements 

NO 

NO 

THREE 

Displacement in 
z-directiori only 

Figure 36- Program Execution Flowchart for MATLABTM function Contact_V_7 _00 
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Appendix B - Flowcharts for Bridged FE-MD Code 

Call desired crystal lattice 
structure function to define the 
initial positions and velocities 

of the system 

Create indenter using 
MATLABTM function 

Indenter_Design_ V _7 _00 
using the specified 

indenter size and t}1Je 

Define nanoindentation step 
initial conditions (for example, 

number of increments used, 
displacement of the indenter) 

Define initial conditions oftb.e 
simulation (for example, if 
iterations are used, PBC) 

Lower indenter 
into substrate 
incrementally 

Perform contact analysis 
between the indenter and the 
substrate using MATLAB™ 
function Contact_ V _7 _oo 

NO 

Store contact 
displacements in 

temporary variable 

Apply atomic 
displacement 
from contact 

analysis to system 

START 

Advance 
nanoindentation 

step 

NO 

Calculate interatomic 
distances and tabulate 

those distances that are 
less than the upper cut

off distance 

Create elemental 
stiffness matrix that 
includes all forces 
within the cut-off 

distance from atom 

YES 

STOP 

Record all relevant 
information such as atomic 
positions, velocities; forces 
and contact area in text i1le 

MATLAB TM functions 
Contact_ Area_ V _7 _ 00 and 
Force_Summation_ V_7_00 

are executed 

Solve for all unknown 
displacements using FEM 

methodologies 

Using EAM force 
equations, calculate 

elemental forces 

Apply nodal boundary 
conditions to system 

(including those from the 
contact analysis) 

Sum all elemental 
stiffness matrices 

to torm global 
stiffness matrix 

Figure 37- Program Execution Flowchart for MATLAB™ function NI_FE_MD_V_7_00 
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