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Abstract 

SIGHT: A SOCIALLY INTERACTIVE GESTURE-AWARE HUMAN-FOLLOWING 
TRANSPORT SYSTEM 

 

Andrew D’Souza 
MSc, Computer Science, Ryerson University, 2012 

 
 

Moving a wheelchair is a task which requires both the physical and mental engagement of either 

an assistant pushing it, or the rider controlling it.  Pushing it can be physically demanding and 

limits the number of wheelchairs that can be moved, to one. Our research introduces a 

technology that may enable a wheelchair to independently follow the rider or assistant.  This will 

allow the rider to disengage from the task of moving the wheelchair, and allow for more riders to 

be assisted by an assistant at one time.  We have developed a Socially Interactive, Gesture-

Aware, Human-Following, Transport system (SIGHT) in order to provide more freedom of 

action to assistants who are providing the same level of service to riders with less effort.  Indeed, 

SIGHT allows for a human to interact with the wheelchair on a more social level.  By using 

gestures, such as waving, the assistant and wheelchair can communicate. 
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Chapter 1. Introduction 

1.1 Thesis Statement 

The goal of this thesis is to demonstrate that it is possible to form an artificial cooperative 

relationship between a sufficiently equipped “intelligent” wheelchair, and an external human 

“assistant” attempting to move the chair out.  The relationship is based on the chair’s ability to 

use sensed data and develop appropriate algorithmic responses implementing the desires of the 

human assistant to have the wheelchair follow at a distance that allows for interaction with a 

human “rider” being transported in the chair. 

 
1.2 Motivation 

In today’s world, robots can be found across a wide swath of domains.  They can be autonomous 

or remotely controlled.  They exist in factories and manufacturing plants, in people’s homes, 

schools, workplaces, and even in space.  Robots can look after jobs that may be too dangerous 

(or even too laborious) for humans to do.  Common examples are the use of robots for big jobs 

such as bomb disposal and weapon delivery [1], heavy transportation [2], and mass production 

 

Figure 1.1 – Overview 
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[3], to smaller jobs such as vacuuming [4], floor washing [5], gutter cleaning [6], or simply to 

entertain [7].   

 

These various types of robots can fall into one of three main categories: industrial robotics, 

professional service robotics, and personal service robotics [8] [9].  Personal service robots are 

those that perform some task for people directly, within social contexts, through physical means, 

with the main goal of rendering assistance.  These task-based robots, in close proximity to 

humans, are sometimes called socially assistive robots (SAR).  Common examples of SAR are 

robotic arm manipulators, walker-aides, and robotic shopping carts.  Closely related to SAR, are 

socially interactive robots (SIR).  These are “human-friendly” robots that are able to coexist with 

humans and support them effectively through direct interaction with them [10].  Examples of 

SIR are rehabilitation (physical and/or mental) robots, friendship/companion robots, and butler 

(serving) robots.   

 

The social relationships that humans have with SAR and SIR are deliberately intended to be 

similar to the social relationships humans have with each other.  It is social in the sense that there 

exists natural languages, gestures, mimicary, situation understanding, physical interactions, and 

coordination between the robot and it’s (human) user [11].  Social interaction, in a general sense, 

is the way people communicate with each other within the context of a social setting – including 

overt and implied rules for mutual engagement.  It can be defined as actions taken by an 

individual that relate to the behavior of others, and therefore dictate the individual’s further 

reactions and directions [12].   
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Social interaction can be decomposed into three main categories – social presence, social 

awareness, and connectedness.  Social presence itself can be defined by the relation of 

immediacy [13] and intimacy [14], where immediacy is a measure of psychological distance, 

e.g., smiling, nodding, and intimacy is the interpretation of interpersonal interactions.  

Immediacy behaviors are used to create and maintain intimacy, while enhancing social presence 

[15].  Social awareness is complimentary to social presence, and can be defined as an 

“understanding of the activities of others, which in turn provides a context for your own activity” 

[16].  A third important aspect of social interaction is connectedness.  This can be defined as the 

lingering after-effects of social presence; specifically as it is an “emotional experience, evoked 

by, but independent of, the other’s presence” [15].   

 

It is the combination of all three of these interaction pieces that define companionship: 

immediacy and intimacy, awareness, and connectedness.  We believe these types of social 

interactions can be found between a robot and a human.  For robots to be socially interactive, 

Breazeal [17] explains that their “behavior and actions must fully meet a person’s social model 

for it, whilst remaining active in the entirety of the humans environment”.  She expands on this 

by giving four distinct modes of interactions, between robots and humans, which define the 

social intelligence of a robot:  These interactions closely follow the criteria of social interactions 

discussed above.  They require that robots be: socially evocative, socially communicative, 

socially responsive, and sociable.  Socially evocative is a class that is effectively meant for the 

human side of the relationship – it encourages humans to anthropomorphize (personify) the 

robot.  This means that this mode of social interaction inspires humans to believe that a robot can 

possess human-like qualities, i.e. react to emotions.  Social communication is an interaction type 
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that says that robots should make contact and communication with a human more natural and 

familiar.  Interaction isn’t necessarily a one-way street from human to robot – the socially 

receptive class says that robots should also benefit from interactions with people, i.e. learning to 

physically move itself based on movements of a human.  The last class, the sociable class, 

encourages robots to engage and interact with humans in a social manner to not only benefit the 

person, but also to benefit itself, e.g. through learning.   

 

A robot that is able to follow a person is an important requirement for a socially interactive 

robotic companion [18].  Not only would such a robot be a physical presence to a person, but it 

would also act as an emotional presence as well.   

 

There are many possible applications where a robot being able to follow a human would be 

advantageous.  One such application might involve robots that carry heavy equipment for the 

people they are following, like soldiers, construction workers, and luggage handlers.  As there is 

a specific way that humans interact with each other, robots would necessarily have to fit into 

these social contexts in an appropriate way.  Another major application for people following 

robots occurs in medical and health care environments.  Robotic health monitors, or even beds, 

might be able to follow a healthcare practitioner from one location to the other, saving valuable 

time in finding the people to move the equipment around manually.  This also saves health care 

costs as a surprising number of health care workers become injured when trying to move patients 

and equipment around [19].  Arguably, one of the most critical applications for people following 

robots may involve wheelchairs.  In a 1994/95 U.S. census, 1.8 million people were found to use 

wheelchairs [20].  In 2002, this number grew to 2.7 million [21].  A year later, in 2003, the 
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number increased yet again to 3.3 million [22].  Figure 1.2 shows a graphical representation of 

this.  Clearly the number of people dependent on wheelchairs today has grown substantially.  In 

fact, the percentage of senior citizens in the population has increased dramatically because the 

first segment of the “baby boomer” generation are reaching the age of 65 and are becoming 

dependent on assistive technology such as wheelchairs [23].  The U.S. Administration of Aging 

predicts by the year 2050, 25% of the U.S. population will be 65 years or older [24].  With the 

advance of age comes the necessity for assistive tools; the dependency on wheelchairs will be 

higher than ever.  Adding a people following feature, (attached with a sense of social awareness), 

to these wheelchairs may greatly and positively impact the lives that depend on the wheelchairs. 

 

1.3 Objectives 

The purposes of this thesis are twofold.  The first objective is intended to demonstrate feasibility.  

We intend to demonstrate that a typical electric wheelchair can be modified to follow a person of 

interest (POI) through a human-occupied environment.  An important aspect of this thesis is to 

show that using common off the shelf (COTS) parts, a cheap vision tracking system could be 

implemented on any electric wheelchair.  Our second objective demonstrates social practicality 

for such a system.  It will be demonstrated that the wheelchair could have a rudimentary form of  

 
Figure 1.2 - Population of people in wheelchairs over time 
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social awareness – the chair will be able to interact with the assistant via gestures.  The 

wheelchair (from this point on, wheelchair, robot, and robotic wheelchair are used 

interchangeably) will employ a vision system in order to detect where the POI is, relative to 

itself, and move correspondingly in reaction to the POI’s movements. 

 

A method for visually tracking the POI will be examined and explained.  An algorithm will then 

be presented and tested to demonstrate that the robot is socially aware.  The various modes and 

terms of social interaction will be shown and applied to the system.  In particular, a gesture 

engine will be used to interact with the wheelchair.   

 

1.4 Contributions 

Several works have been documented in the field of robotics, social awareness, and people 

following (more detail to follow in chapter 2).  The research in this thesis aims to combine 

various tracking (vision) methods with social rules.  Most of the previous works done with 

people following robots satisfy only the simple ‘following’ goal – to follow an object of interest 

(OOI), or POI.  This thesis contributes by associating social aspects to the ‘following’ 

functionality.  This thesis also targets a more unique way of visually tracking the POI than most 

of the previous works do.  Our vision system can be run in real time, which is a necessity for use 

in the real world.   

 

Through social integration, our research may help provide users a form of companionship, 

connectedness, maneuverability, and freedom that they may not have seen in a long time.  This 

work, although targeted towards wheelchairs, can also be extended to other types of 
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transportation (like the ones already mentioned) without many modifications.  Our system is a 

Social Interactive Gesture-Aware Human-Following Transport (SIGHT).   

 

1.5 Thesis Outline 

This chapter serves as an introduction for this thesis.  It presents to the reader the motivations, 

objectives, and contributions of our work.  The following chapter will give an overview of 

existing practices, techniques, solutions, and results that address the objectives of this thesis.  In 

particular, chapter 2 will give the reader the background information necessary to understand our 

work.  It will discuss common vision techniques in detail so the reader can grasp later ideas.  It 

will also show the reader examples of robots who currently exhibit some form of social 

awareness.   

 

Chapter 3 describes in detail the methodologies used in creating a wheelchair to make it follow a 

POI and become socially aware via gestures.  Algorithms that visually track the POI will be 

explained.  The method of applying a social sense to the robot will also be discussed. 

 

Chapter 4 will outline the experiments that were conducted in order to prove the effectiveness of 

our work.  Any criteria or prerequisites used will be disclosed here.  Results that were obtained 

through the experiments will be presented.  Any strengths or weakness’ found will be described 

in this chapter. 

 

Finally chapter 5 will present to the reader a summary of the work done, the results achieved, 

and the research that is left for the future. 
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Chapter 2. Background and Related Work 

In this chapter we present the relevant background research related to vision, vision tracking, and 

social awareness.  This existing body of knowledge provides the foundation for our work. 

 

2.1 Tracking basics 

Tracking is defined [25] by the ability to estimate the trajectory of an object in an image scene as 

it moves around an environment.  In essence, it is the process of updating an objects position, 

motion, shape, and appearance over a period of time through space.  There are many artificial 

mechanisms that can be used to track objects, including sonar [26], radar [27], and infrared [28].  

However, the case for employing some form of machine vision to track remains compelling.  

Most other techniques provide only limited information about the target – usually limited to 

positional information.  Visual tracking holds the promise that it may be possible to detect 

variations in the target which can be used to enhance the ability to track and provide additional 

functionality within the tracking system.  There are many reasons why objects should be tracked 

using computer vision.  In the realm of situated and mobile robotics interacting with humans, 

machine vision may be the only practical means of detecting subtle signals given by humans 

during their interaction with other humans and the rest of the world.  For example, it is unlikely 

that a human head nodding in agreement will ever by detected by anything other than through 

visual observation.  Tracking itself is necessary in the human world because humans move.  

Keeping track of this movement is a necessary perquisite for almost all other interactions – if you 

do not know where a human is, you cannot interact with them.   
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Sighted humans are natural visual trackers.  For example take a baby, who only at a few months 

old, is able to gaze into a human’s face, and follow that human’s face as he or she moves around.  

Reproducing and describing a natural process is often a matter of “downhill design and uphill 

analysis” [29], where we can observe a phenomenon like tracking easily but not be able to 

explain what underlying mechanisms allow it to happen.  Inevitably, artificial visual tracking 

will remain an analog of the natural process but we can describe the problems in terms of what 

we can observe.  Some of the factors that can arise are related to noise in the image, fast object 

motion, smooth contours, occlusions, dynamic lighting, and general clutter [25] [30].  A primary 

step in tracking an object is to determine what kind of object it is.  The object can be physically 

represented by points, primitive geometric shapes, silhouettes and contours, articulated shape 

models, and skeletal models [25].  After determining an object type, it is important to determine 

the kinds of features this object has.  Typical features found in most kind of objects are color, 

edges, optical flow, and texture.  Methods for tracking an object can change if the object is in a 

static environment, (which means that only the object is moving, while the environment stays the 

same), versus if the object is in a dynamic environment, (which means that both the object and 

the environment can change). Figure 2.1 shows the swath of physical and feature representations 

of the object mentioned above.   

 

Point tracking [31] - [32], kernel tracking [33] - [34], silhouette tracking using contours [35] - 

[36], and silhouette tracking using matching shapes [37] - [38], are the three major tracking 

methods used in computer vision today.  This thesis uses a combination of all three types (point, 

kernel, and silhouette) to form a more robust (less failure-rates) tracking method.   
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2.2 Representing an Object 

One of the easiest ways to describe an object would be to describe its physical characteristics.  

For example, one can easily identify a human’s hand by noticing its shapes, curves, and 

contours.  The authors from [25] describes representation of an object in more detail.  They break 

representation into nine categories, as shown in Figure 2.2.  Figure 2.2(a) Points: shows the 

object represented by a centroid point [39], or Figure 2.2(b) a set of points [40].  This type of 

representation is useful for tracking small regions in an image. Figure 2.2(c) and Figure 2.2(d) 

Primitive Geometric Shapes: shows object shapes which are represented by a rectangle or ellipse 

[33].  In general, this type is good for tracking simple rigid objects; however it can still be used 

for tracking non rigid objects.  Figure 2.2(e) Articulated shape models: follows the primitive 

geometric shapes in the fact that many shapes are connected together by joints.  Figure 2.2(f) 

Skeletal models: this model describes the skeleton of an object by “applying medial axis 

transform to the object silhouette” [41], and is commonly used to track connected and rigid 

 
 

Figure 2.1 - Taxonomy of tracking methods [25] 
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objects [42].  Figure 2.2(g) and Figure 2.2(h) Object silhouette and contour: shows the contour 

or the boundary of an object.  The region inside the contour is called the silhouette of the object 

Figure 2.2(i).  Silhouette and contour object representation are good for tracking complex non 

rigid shapes [28] [43].   

 

Besides an object’s physical characteristics, there are several other ways of representing the 

appearance features of objects [25].  Two in particular are Probability densities, and Templates. 

Probability densities can be Gaussian [44], or a mixture of Gaussian [45], or even histograms 

[33].  Templates [46] use geometric shapes or silhouettes in a single view – they are good for 

tracking objects with static poses.  Selecting unique features of the object itself is a critical aspect 

of tracking an object.  There are four main visual features that are commonly used for tracking 

[25]: color, edges, optical flow, and texture [33] [47] [48]. 

 

2.3 Detecting an Object 

Being able to detect the object regardless of whether it is the first frame or the 𝑛𝑡ℎ  frame, is a 

necessity for any tracking method.  A general approach to detecting an object is to use frame 

 
Figure 2.2 - Object representations [25] 
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differencing – seeing what has changed in consecutive frames.  [25] discusses several object 

detection method types: Point Detectors, Background Subtraction, Segmentation, and Supervised 

Learning.  Point detectors are used to find interest points in images.  Interest points are features 

contained in an image that are detectable regardless of the image’s scale, noise, or illumination.  

They can be locations in an image where the signal changes two dimensionally, such as corners 

[49].  Commonly used interest point detectors include Moravec’s interest operator [50], Harris 

interest point detector [51], KLT detector [52], SIFT detector [53], and FAST detector [54] [55].  

[56] compares some of these detector methods in more detail.  Background subtraction is used to 

find any significant changes in two consecutive frames.  The area where the change occurred is 

further processed.  Work done by [57] [58] [59] [60] [61] explain more about background 

subtraction.  The segmentation method partitions the image into “perceptually similar regions” 

[25].  Some segmentation techniques used for tracking include mean-shift clustering [33] [62], 

graph-cuts segmentation [63] [64], and active contours [45] [65] [66].  Object detection using 

supervised learning works by learning different object views automatically from a set of 

examples by means of a supervised learning mechanism [25].  Learning methods include neural 

networks [67], adaptive boosting [68], decision trees [69], and support vector machines [70].   

 

2.4 Tracking an Object 

As mentioned above, the three main categories of tracking an object are Point, Kernel, and 

Silhouette tracking.  This section will go over what has been accomplished in these categories 

thus far. 
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2.4.1 Point Tracking 

Detecting the same point of an image across multiple frames falls into two categories: 

deterministic and statistical [25].  The authors from [39] explains that deterministic methods use 

“qualitative motion heuristics”, which means that certain constraints are applied to the tracking 

in order to form an optimal tracking set.  These constraints include proximity, which assumes the 

location of the object will not change notably from frame to frame, maximum velocity, which 

defines an upper bound on the object velocity, small velocity change, assumes a smooth motion 

of the object to be tracked, common motion which limits the velocity of objects near the object to 

be similar to the velocity of the object to be tracked, rigidity, which assumes that objects in the 

3D world are rigid, therefore the distance between any two points on the actual object will 

remain unchanged, and proximal uniformity, which is the combination of proximity and the 

small velocity change [25].   

 

The work done in [71] proposes an iterative algorithm that uses the small velocity change and 

rigidity constraints to track a point across multiple frames.  Their method cannot handle 

occlusions, entries, or exits.  The authors from [72] uses the proximity constraint to track an 

object.  They find the initial correspondence by computing optical flow in the first two frames.  

Their method does not handle entries or exits of objects, and if the number of detected points 

decreases, chance of occlusion or misdetection is increased.  In [73], the authors modify the work 

done by [72] to handle entries and exits by using background subtraction.  The work done by 

[39] introduces a new constraint, called the common motion constraint, which handles occlusion 

and midsection, but it does not allow for entries or exits.  This constraint is only suitable for the 

tracking of points that lie on the same object.    
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The second category of point tracking is the statistical method.   This method assumes an 

object’s path is not necessarily linear, therefore it expects uncertainties and noise across frames.  

It uses the state space approach to model properties of the object such as position, velocity, and 

acceleration [25].   These properties are defined by a sequence of states, as in Equation (2.1), 

where 𝑊𝑡: 𝑡 = 1,2, … is white noise. 

The relationship between the measurement properties and the state is specified by Equation (2.2), 

where 𝑁𝑡 is the white noise and is independent of 𝑊𝑡. 

In order to track an object, the state 𝑋𝑡 needs to be estimated given all the measurements up to 

that moment, or the Probability Density Function (PDF) needs to be constructed (Equation 

(2.3)). 

In scenarios where there is a single object to be tracked, and the noise involved has a Gaussian 

distribution, then Kalman Filters are used.  This filter is made up of two steps, prediction and 

correction.  The authors of [74] use Kalman filters for tracking an object across a sequence of 

noisy images.  The work done in [75] uses this filter for predicting the object’s position and 

speed.  For states that do not follow a Gaussian distribution, it is better to use Particle Filters 

[76].  The PDF at time 𝑡 is represented by a set of samples (or particles) as in Equation (2.4), 

where the weights define the importance of a sample [35]. 

𝑋𝑡 = 𝑓𝑡(𝑋𝑡−1) + 𝑊𝑡 (2.1) 

𝑍𝑡 = ℎ𝑡(𝑋𝑡,𝑁𝑡) (2.2) 

𝑝(𝑋𝑡|𝑍1,…,𝑡) (2.3) 
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Particle filters are comprised of three steps: selection, prediction, and correction [25].  Its 

algorithm will be further explained in Chapter 3.  The authors of [77] use particle filters along 

with Haar-like classifiers to track an object.  They are able to track an object well through enter 

and exit states, as well as occlusions, and illumination changes.  They however rely on finding 

Haar-like features on an object before tracking is done, and further rely on using Gentle 

AdaBoost, a machine learning algorithm.  In [78], the authors combine color-based image 

features with a particle filter.  The problem with their tracking method is if an object’s neighbor 

has a similar color, the tracking of the original object could be skewed.  The work done in [79] 

uses optical flow with particle filter to track an object.   

 

2.4.2 Kernel Tracking 

Being able to compute the motion of the object from frame to frame is known as kernel tracking.  

Template matching is useful to track single objects using a description of the region of the object 

in an image, such as image intensity or color features.  It is a brute force method of searching the 

image for a region similar to a template of the object, which was found in the previous frame.  

The new position of the object is calculated by a simple cross correlation equation.  The problem 

with template matching is that it is computationally expensive, as it performs a brute force search 

across each frame.  In [46], the authors find the mean color of pixels in a rectangular region, and 

use this as a template for matching.  They reduce the computing requirements by only searching 

for the object in eight neighboring locations.  The position which has the highest similarity to the 

mean color is deemed the correct location of the object.  The work done in [62] uses a weighted 

�𝑠𝑡
(𝑛):𝑛 = 1, … ,𝑁� 

(2.4) 
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histogram and a mean-shift tracker method, whilst [80] extends on this by using a joint spatial-

color histogram instead of just a color histogram.  Using a mean shift tracker takes away the 

computation power necessary for a brute force search, however it requires that a portion of the 

object has to be inside the region of interest upon initialization [25].  One of the more popular 

tracking methods that fall under the kernel tracking category, is the use of optical flow.  It works 

by generating dense flow fields by computing the flow vector of each pixel under the brightness 

constancy constraint [81].  The KLT Tracker [82] [83] tracks an object very well, however 

motion of an object is necessary.  If the motion stops or slows down enough, the object will less 

likely be tracked.  [84] makes use of optical flow combined with rigidity constraints to track 

vehicles.  In [34], the authors are able to track objects using a layering method.  They use the 

background as one layer and all other objects as a different layer.  Based on the objects previous 

motion and shape, tracking is computed.   

 

2.4.3 Silhouette Tracking 

Silhouette tracking is useful for tracking objects that do not necessarily have primitive shapes.  

To track an object, previous frames are used to generate an object model, and based on that 

model an object region is found in the current frame.  Silhouette tracking can fall under two 

categories: shape matching, and contour tracking [25].  Shape matching looks for a match of the 

object silhouette in the current frame to the initial frame.  Only translation (movement in a 

constant distance in one direction) of the object is assumed to take place in this method.   The 

main difference between point matching and silhouette matching is the object representations 

and the object models used – silhouette matching makes use of an objects appearance features, 

whereas point matching uses only motion and position-based features [25].  Normally edge-



17 
 

maps, or edge-based representations, of the objects, are used to find the silhouette of the object 

[37] [85] and background subtraction is generally used to track the silhouette.  Other methods to 

track the silhouette include the use of histograms [38] and optical flow [86].  Contour tracking 

iteratively evolves an initial contour in the previous frame to its new position in the current frame 

[25].  Because of the constant iterations, part of the object in the current frame must overlap with 

the object region in the previous frame.  Contour tracking can be accomplished by either using 

state space models such as the contour shape and contour motion, or using temporal image 

gradients by computing the optical flow of the contour.  Kalman or particle filters [87], Hidden 

Markov Model (HMM) [88], optical flow constraints [89] [47] [90] are used in contour tracking.  

Silhouette tracking is great for when tracking of the complete region of the object is necessary.  

It is especially useful for handing a large variety of shapes.  Its deficiencies are its poor handling 

of occlusions, and dealing with silhouette-objects that are whole at the beginning of a frame, but 

are split further down a frame. For example, the authors in [8] show that a person carrying an 

object is considered as one silhouette, but when the person drops that object, the silhouette is 

split.   

  

2.5 Social Interaction 

The authors of [91] classify the field of human-robot interaction into four “interaction 

paradigms” regarding the use of robots: used as a tool, a cyborg extension, an avatar, and a 

sociable partner.  In the first, the robot is used to simply perform a task for the human.  The 

second sees the robot physically merged with the human, i.e. robotic leg or arm.  In the third 

paradigm, the human uses the robot as its face – the person projects themselves through the robot 

in order to communicate with another from far away.  The last paradigm involves natural 
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interaction to exist between human and robots that mimics the interactions found between 

humans.  Social interaction is the way people communicate and correspond with one another.  It 

can be defined as actions taken by an individual that relate to the behavior of others, and 

therefore dictate the individual’s further reactions and directions [12].  It also can be described as 

a focused or unfocused interaction between two people [92], where focused interactions are 

considered to be obvious states of initial focus, such as eye contact, or voice tones [8].  After this 

initial focus stage, interaction is moved into an engagement phase which involves proximity of 

one speaker to the other, gestures, and mutual glances, and then onwards to a communication 

phase.  Social interactions between robots and humans should mimic these definitions.  As 

mentioned in the introduction of this paper, for robots to be socially intelligent, their behaviour 

and actions must fully meet a person’s social model for it, whilst remaining active in the entirety 

of the humans environment [17].  For robots to exist in this social model, they must follow four 

distinct modes of interaction, as explained in the introduction: they must be socially evocative, 

socially communicative, socially responsive, and simply sociable [17].  In [93], the authors point 

out that for social interaction to exist coherently between humans and robots, several questions 

need answering: What modes of communications should the robots employ? What is the role of 

the robot’s physical embodiment? How to integrate the a priori knowledge about the users into 

the robot system? How can the human-robot interaction design ensure safety? And how are 

friendly, familiar, usable, and effective interaction models with a robot to be designed?  The 

work done by [94] reinforces these questions by expressing that robots should show such 

characteristics as expressing or perceiving emotions, communicating with high-level dialogue, 

learning or recognizing models of other agents, establishing and maintaining social relationships, 

using natural cues such as gazes and gestures, exhibiting distinctive personalities and characters, 
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and learning or developing social competencies.  In [91], the authors list three advantages of 

having socially interactive robots: people would find working with them more enjoyable, and 

would therefore feel more competent doing so; communicating to robots would be easier; and 

teaching the robots “new tricks” through imitation or emulation, would be easier.   

 

2.6 Applications of Social Robotics 

The authors of [94] describe several components of a socially interactive robot: embodiment, 

emotion, dialog, personality, human-oriented perception, user modelling, socially situated 

learning, and intentionality.  In [12], the authors add several more properties to this list regarding 

categories that socially interactive robots fall in, as well as the tasks they should carry out.  In 

particular: the elderly, the disabled, those in special care (rehabilitation), and those in needs of 

friendships.  The authors of that paper also express that SAR should be task driven – especially 

in the areas of tutoring, physical therapy, daily life assistance, and emotional expression.  SAR 

should also be interactive in the sense they are capable of such things as speech, gestures, and/or 

direct input.  Some examples of interactive robots include robotic shopping carts [95], robotic 

health-care aides [94] [96] (Figure 2.3), walker-aides [97], and robotic manipulators [98].   
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2.6.1 Elderly 

Figure 2.4 shows the changing proportions in several countries.  According to the United 

Nations, the proportion of people 64 years and older in the population of a country exceeding 

7%, indicates an aging society, with the proportion exceeding 14% indicating an aged society 

[100].  Figure 2.5 - Figure 2.8 shows the increase in number of people aged 60 and older in the 

United States.  By 2050, it is projected that the population of the elderly will outnumber the 

younger population; seniors will account for 7.2% of the entire population of the United States.  

Assistive technologies can help seniors to “age in place” – it will allow them to stay in their 

homes for longer periods of times [101].  In fact, previous research has shown that senior 

Americans prefer to remain independent in their own house for as long as possible [102].  The 

health care costs associated with seniors are high – in America, Medicaid/Medicare pays for 

nearly 60% of the $132 billion annual nursing home bill [101].  Having technology that helps 

seniors at home can improve their Quality of Life (QOL ) as well as help save money.   

 
Figure 2.3 - Pearl the nursebot [99] 
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As mobility becomes a problem for the elderly, it is easy for them to fall into depression or 

become stressed [103].  Robots may act as companion robots to these people.  They can 

communicate and/or simply spend time with, and be active, around the seniors.  This will help 

them exercise their mind, thus lowering depression and stress levels.  Many elderly people 

require significant amount of time in order to physically get from point A to point B.  Instead of 

other humans walking alongside these seniors at a slow pace (thus holding them back from other 

tasks), a robot “walker” can be put into place.   

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.4 - Ratio of people 65 years old and over to the total 
population of the most advanced countries [100] 
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Figure 2.5 - Population Pyramid for the United States in 1950 [104] 

 
Figure 2.6 - Population Pyramid for the United States in 1990 [104] 

 
Figure 2.7 - Population Pyramid for the United States in 2010 [104] 
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[96] shows that it is possible and successful to place interactive robots into an environment 

where elderly people reside.  Since mobility is a problem for these seniors, it is harder for them 

to travel to health care facilities.  There is an added benefit in that these robots can act as virtual 

bodies for health care workers – they can act as an interface between the medical industry and 

the elderly, and thus improve the frequency of care and oversight [105].  One of the most 

positive interaction models is animal-human interaction.  The literature demonstrates that people 

who had animals as companions were better off in health and survival [106] [107] [108].   There 

are three main effects that animal assisted therapy has on people: psychological (relaxation, 

motivation), physiological (improvement of vital signs), and a social effect [109].  Paro (Figure 

2.9), the seal robot, was used among the elderly at a day service center and a health service 

facility over several weeks. The researchers found that interaction with Paro increased the moods 

of the elderly, making them more active and communicative with each other and caregivers, and 

reduced their stress levels [109].  Paro can act both in a proactive and reactive manner.  It can 

react to sudden simulation such as sudden loud sounds.  It is equipped with a sensor system that 

 
Figure 2.8 - Estimated Population Pyramid for the United States in 2050 [104] 
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imitates the four primary senses: sight (light sensor), sound (speech recognition, sound 

direction), balance, and a tactile sense.    

 

AIBO [111]  (Figure 2.10) is another pet-like robot, in the form of a dog.  It is able to learn and 

mature based on its experiences with its owner.  It is also equipped with a similar sensor system 

as the Paro.  Research has found that the elderly were able to touch and care for the dog, just like 

they would with a real one [112].  This was particular in cases where the AIBO was outfitted in a 

furry suit.  The system called PAMM, Personal Aid for Mobility and Monitoring provides 

physical support and guidance to a senior, whilst monitoring the person’s basic vital signs [113].   

 

 
Figure 2.9 - Paro, the seal robot [110] 



25 
 

 

2.6.2 Disabled and Rehabilitation 

In 2008, 19% of the United States population was found to have a disability.  11 million of those 

people, 6 years of age and older, need personal assistance with everyday activities [115].  Studies 

show that there are in excess of 730,000 strokes per year in the United States alone [116] [12].  

Rehabilitation robots [117] - [118] can help those who are disabled or those in convalescent care.  

They address problems that people may have with motor, hearing, speech, visual, and cognitive 

impairment [119].  They can help the severely disabled, whose movements are restricted, 

become mobile.  Control inputs on the face (i.e. joysticks controlled by the chin, or muscle 

movement in the face) can move a wheelchair [120].  Those with developmental disabilities 

(cognitive disorders), benefit from mobile robots because they are predictable, simple, and easy 

to comprehend [121].  The AURORA project showed how robots were used to teach children 

with autism basic interaction skills [122].  This project showed increased attention (visual 

contact, physical proximity) when children were paired with a robot as compared to children 

paired with a human mediator.  The Handy 1 robotic system is capable of assisting severely 

 
Figure 2.10 - AIBO, the robotic dog [114] 
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disabled people with functions such as eating, drinking, washing, teeth cleaning, shaving, and 

makeup applications [123].   

 

2.6.3 Human Friendships 

The application regarding human friendships is quickly rising in popularity – it is one that helps 

form relationships with others.  [124] proposes a model for estimating human friendships in the 

presence of a humanoid robot.  This is a very important idea for socially interactive robots, as it 

allows the robot to understand and recognize human friendships and relationships.  The authors 

of this paper conducted a study involving children in a classroom.  By using only visual, non-

verbal data, they found several important factors for friendship estimation: touch, gaze, co-

presence, and distance.  Using a robot called Robovie (Figure 2.11), interaction behaviours 

between robot and the children were based on three principles [124]: 1. Calling children’s names.  

2. Pseudo development – the robots interaction with a child increases proportionately to the 

child’s interaction with it.  3. Secret sharing – as a child’s interaction with the robot increases, 

the robot lets the child in on secrets.  This experiment resulted in interaction increasing between 

the children themselves.  The secrets children received became popular, and seemed to be sort of 

an anchor in building relationships.  This kind of social robotics can be extended to the problem 

of bullying.  As a robot learns about a child through interaction, it can act as a mediator in such 

places as the playground, or it can even inform a teacher, or parents, about possible bullying.  

[125] developed a storytelling robot for children.  Kids can teach the robot to act out emotions 

such as sad, happy, excited, and then write stories using a storytelling software and include these 

emotions in the story.  The story is then played out by the robot.  This helps motivate the 
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children and reach their therapy goals by exercising muscles or joints, or by reflecting on the 

expression of emotions. 

 

 

 

 

 

 

 

 

 

2.7 Designing Assistive Robots 

The basics of designing a robot, whether it be social or otherwise, still exist – cost, reliability, 

robustness, and availability are all important factors [127].  However there are added factors that 

should be applied towards social robots.  When it comes to designing a socially interactive robot, 

we can program them in two ways: biologically inspired, or functionally designed [94].  

Designing a robot using the first method essentially molds the cognitive, behavioral, 

motivational, motor, and perceptual systems of a robot, to mimic the same characteristics in 

humans and other living things.  The view of the second method is to design a robot that simply 

appears to be socially intelligent.  This means that its internals aren’t wired to be intelligent, i.e. 

through natural, human, or animalistic means.  Rather, it puts on a mask, and appears to be 

socially intelligent.   

 

 
Figure 2.11 - Robovie the communication robot [126] 
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Designing the physical structure of the robot is important also.  That is not to say that the robot 

should look exactly like a human.  Rather, the robot should be able to emulate a living thing that 

a human can relate to, i.e. think of a human’s relationship with animals, like a chimpanzee.  This 

is because characteristics of humans and animals, i.e. sight, hearing, should be a constant factor 

in the physical design.  [94] discusses several types of embodiment for interactive robots: 

zoomorphic, caricatured, and functional.  Zoomorphic robots are designed to imitate living 

creates.  This is meant to create robotic “companions”.  Caricatured robots are basically robots 

that look like an exaggerated or distorted version of an object, human, or other living thing.  It 

can give the relationship a lighter feeling, i.e. it can help the user focus or distract attention from 

certain features of the robot, or even the environment.  Functional robots are those that are built 

to reflect the environment they are situated in.  For example, wheelchair robots can have larger 

seat space, and cargo space for users to ride in.  These embodiment types can also be extended to 

personality types [94]: tool-like – robots that perform specific services, and pet-like – robots that 

exhibit entertainment like traits, i.e. Paro, AIBO.   

 

The programmatic design of interactive robots is an important step.  One of the most important 

features of assistive robots should be that they should have a (fast) real time response to events 

and actions that happen in an environment.  If a reaction by a robot is slow, even by a few 

seconds, it will throw off any possible interaction with a human.   [127] believes that low latency 

of an interactive social robot should be a primary requirement for social robots.  In addition to its 

latency, the robot must be equipped to exist in a dynamically changing environment.  This 

environment should be one that is comparable to an environment that a human is capable of 

being and working in.  It involves various, dynamically changing, objects, paths, lighting 
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conditions, and physical environment sizes.  In order to handle such an active setting, sensory 

systems must be endowed on the robot.  As a human being relies on the five primary senses, so 

must a robot have a system that can mimic visual, vestibular, auditory, and tactile sense [128].  

Some common sensor systems include: an odometry system, infrared/sonar receptors and 

emitters, laser range finders, imaging systems (i.e. camera), temperature sensors, and 

accelerometers and gyroscopes [129].   

 

The overall system should not just be a receptive system; rather it should give an output, i.e. 

feedback, based on the various inputs.  Given a human’s interaction, such as social cues or 

gestures, the robot should use its sensory system to understand those cues and gestures, and then 

output a meaningful response back to the human.  This response should be one that is 

understandable to the human, i.e. a nod, or an auditory “yes” or “no”.  [130] classifies two types 

of systems involving the role of a robot’s appearance and speech: a closed-loop, and an open-

loop system.  The closed-loop system receives feedback about the state of the system 

(environment), whereas the open-loop system does not use feedback, but instead relies entirely 

on the system model.  [127] expresses that social robotic systems must respond based on 

“hidden” states of goal, desire, and intent, rather than explicit actions.  This means that the 

designs of these systems should ideally respond to the intent of the human rather than the 

human’s explicit actions.  This definition forms the basis for any socially interactive or assistive 

robot.  [131] is a good example of this kind of system – it is an auditory dialogue system for a 

nursing home assistant.  A robot named Kismet [17] (Figure 2.12), is designed to be a robotic 

creature that can interact physically, affectively, and socially with humans in order to ultimately 

learn from them.  Kismet is equipped with skills and mechanisms to exist in even a complex 
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environment – it can tune its responses to a human, and give the human social cues, so that 

he/she is better able to tune him/herself to Kismet.  For example, Kismet has the ability to direct 

its attention to a reference by the human; it has the ability to give readable, expressive feedback 

to the human, the ability to recognize expressive feedback such as praise and prohibition, the 

ability to take turns to structure the learning episodes, and the ability to regulate interaction to 

establish a suitable learning environments [132] - [133].  

 

While responding to the user’s intent, the robot must be careful to minimize the stress to the user.  

One such way of doing this is to evaluate comfort levels of a human using a Galvanic Skin 

Response (GSR) [130].  The GSR is a type of biofeedback technique that basically measures the 

emotional states of a human.  Using techniques such as this allows the (emotional) interactions 

between humans and robots to be mapped, which results in designing the robot to be more aware 

and receptive of a person’s emotions, thus fine-tuning its responses.   

 

 

 

 
Figure 2.12 - Kismit, a robot that mimics and responds to human emotions [134] 
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2.8 Assistive Robotic Wheelchairs 

As mentioned in the introduction of this paper, between 1994-2005, there has been an increase of 

1.5 million people who are dependent on wheelchairs.  As the baby boomers reach the age of 65, 

the dependence on assistive tools such as wheelchair will grow higher.   Social and economic 

means are motivators of research into assistive robotics [135].  Social and economic forces can 

be related to the aging of society and the presence of physical impairment.  As a person’s 

emotions deteriorate, their need for companionship and social activity may increase.  Assistive 

robotic wheelchairs may help relieve those needs as well as the mobility constraints and stress-

related problems associated with a user’s mobile tasks [135].  Economically, with the increased 

use of interactive wheelchairs, the dependence on health care, and the costs associated with 

them, will decrease.  A wheelchair that is robotic and assistive does not mean that the wheelchair 

must be fully autonomous.  Rather, the human user can share control with the robot wheelchair.  

Using shared control, the strengths of humans and machines can be combined to reduce their 

weaknesses [135].  Extending the notion of interactive robots responding towards intent rather 

than explicit actions, is the fact that robot wheelchairs should infer the user’s plan from their 

actions and from the environment itself.  “Intent estimation” [136] [137] can be defined as 

inferring the actions taken by an actor into a goal, whilst organizing those actions in some sort of 

planned structure. 

 

An important concept that relates to this definition would be the behaviour of robots to naturally 

follow a person.  A study by [138] found that participants believed that a direction-following 

behaviour was significantly more human-like and more natural than a path-following behaviour.  

The direction-following behaviour means that the robot infers the individual’s direction based on 
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his/her actions, and thus reacts to follow in that direction.  A path-following type of robot does 

not care about the actions that happen in the environment, rather simply follows the path taken 

by the individual.  For example, every step, acceleration or deceleration, or turn, is mimicked 

exactly by the robot.  The experiments run in the same study [138], show that direction-

following robots were able to follow a person through doorways and around corners without 

collisions and turned the corners smoothly.  This is in contrast to the path-following robots – 

these robots had trouble turning corners, since they tried to use the exact same path as humans.  

If a human made a tight turn, which would be easy enough for him/her, the robot would try to 

follow this same path, and evidently would have trouble doing so.  Wheelesley [139], is a robotic 

wheelchair that can provide users with driving assistance.  It is equipped with an array of 

infrared and sonar sensors that are used to sense the environment.  If an object is in the way of 

the wheelchair, the system will not allow the chair to continue moving in that direction.  Work 

done by [140] (Figure 2.13) and [141] uses a vision system to direct the wheelchairs path.  What 

is interesting about this system is that the camera used is pointed at the rider, whilst the rider is 

driving it.  By using face recognition and facial directions, the wheelchair can move accordingly 

to the user’s intent.  In [140] when the user does get off the wheelchair, the user can aim the 

camera outwards to the scene ahead – the system will then look for the users face, and move 

accordingly to gestures provided by the user.  The problem with this method is primarily that the 

user has to face the wheelchair in order for it to follow him/her, and second, that in a cluttered 

environment, this method may not perform accurately.  [142] presents a wheelchair that is 

capable of navigating semi-autonomously within its workspace.  It functions by using sonars to 

find depth distance, and a 360 degree field of view camera.  This system uses a tri-histogram 

matching method to follow the person, by comparing the histograms of the head, torso, and legs, 
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to a pre-modelled histogram found in a database.  This method worked well, however it was not 

real time, but ran at 3 Hz.  It also failed in cases when moving persons wore the same colour 

clothes as the background.  MAid [143] (Figure 2.14), Mobility Aid for Elderly and Disabled 

People, is an intelligent robotic wheelchair whose task is to support and transport people with 

limited motion skills.  It is equipped with sonar and infrared cameras, as well as a 2D laser 

range-finder, which was used to estimate speed and direction of objects.  Based on the sensor 

data, MAid can avoid objects ahead of time, while navigating through a crowded area and 

adjusting its velocity.  Due to the range-finder, MAid is able to detect objects in approximately 

70 ms.  When the length of a sensor observation (the recording of the range image) is included, 

the cycle time increases to 0.3s.  This can cause an object to be misdetected, and for a collision to 

be imminent.  Other range-finder/sensor systems exist also, such as SENA [144] (Figure 2.15) 

and [145]. 

 

 

 

 
Figure 2.13 - A semi-autonomous robotic wheelchair [140] 

 
Figure 2.14 - MAid, the robotic wheelchair [143] 
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2.9 Summary 

This chapter provided the background information related to the fields of tracking an object and 

socially interactive robots.  It gave the reader a clearer understanding of representing and 

detecting an object, and the types of tracking methods that are commonly used.  The paradigm of 

social interaction was discussed, and its applications relating to the elderly, the disabled and 

those in rehabilitation, as well as friendships, were talked about.  Existing works done with 

assistive and socially robotic systems were described in length. 

  

 
Figure 2.15 - SENA, a robotic wheelchair [144] 
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Chapter 3. Methodology 

To adapt a transport system like an electric wheelchair to autonomously follow a person, various 

techniques were put together to form an algorithm.  This chapter will explain these techniques in 

detail, and will show the methods used to make the wheelchair socially interactive. 

 

3.1 Architecture of SIGHT 

Figure 3.1 depicts a high level layout of what the SIGHT system looks like.  The system is 

comprised of five main layers: the object, imaging, system, physical, and output layers.  The 

object layer decides on an OOI or POI to track/follow.  The imaging layer takes camera data as 

an input, processes it into something meaningful, and then sends that data into the system layer.  

The system layer correspondingly parses this data and runs it through the main SIGHT and 

gesture processing algorithms.  The algorithm then outputs motor control information to the 

physical layer, and subsequently the wheelchair, the output layer, is controlled.  These layers will 

be further discussed below.   

 

3.2 Object Layer 

SIGHT allows for an object (or person) of interest, to be selected manually or via the gesture 

system.  At the start of the system, during the initialization of the software, the person or object 

to be tracked should be at a comfortable tracking distance away from the transport.  This initial 

distance is important because it will be used by the transport as an acceptable distance to 

maintain following.  This means that if the person is 3 metres away from the transport at the time 

of initialization, the transport will always maintain a distance of 3 metres to the person, 

regardless of whether that person speeds up or slows down.  This distance will be referred to as 
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the Optimal Subjective Proximity (OSP).  Edward Hall’s Proxemics [146] gives four categories 

of interpersonal distances: intimate (0-0.46 metres), personal (0.46-1.22 metres), social (1.22-

3.66 metres), and public (>3.66 metres) [147].  The OSP in the SIGHT system should fall in 

Hall’s social distance category, however the theoretical distance limits for SIGHT are between 

1.5 – 6 metres. 
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Figure 3.1 - Architecture of SIGHT 
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There are two ways of initially setting an object to track – manually, via the computer’s mouse, 

or interactively, via the gesturing engine.  In both cases, it is important for the user or object to 

stand at their OSP.  If the manual method of choosing an OOI is used, then the system takes a 

snapshot of the object (the object must be at the OSP by this time) upon initialization, and then 

on that snapshot, the user creates a box, or region of interest (ROI), around a region of the object 

that is to be tracked.  In general, if the object is a person, a good region to select would be from 

the top of their head, to the mid region of their body, i.e. their belly button.   Figure 3.2 shows 

what an ROI manual selection looks like on a snapshot image of the POI.   

 

If the gesture engine is to be used, then calibration of the user using a third party application is 

necessary.  Once the calibration is complete, the user, standing at their OSP, does a pre-defined 

gesture, e.g. a hand wave motion, which would automatically create a ROI on the person.  The 

gesture that the person wants to use is set at the time of calibration.  Regardless of which method 

(manual or automatic), the outcome will look like Figure 3.2.   

                                                 
1 The ROI was taken of the front of the person’s body, however the same ROI can be taken of the back of the POI.  
This image was taken to easily demonstrate the selection of an ROI 

 

Figure 3.2 - An ROI selected on a POI 1 
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Since this system can be run in a real-time, clutter-independent, environment, the ROI can be 

selected without much restriction.  However, since part of the algorithm is based on color 

representations of the OOI, it is important that the colors the POI is wearing differs from the 

background.  This will ensure that the SIGHT tracking algorithm operates at a smooth and 

accurate rate.  Figure 3.3 shows a flowchart of the object layer subroutine.   

 

3.3 Imaging Layer 

One of SIGHT’s advantages is it’s adaptability to various cameras and vision devices.  One of its 

primary goals is to be able to use a fairly cheap, common, off-the-shelf camera for tracking.  

Two cameras used in particular were the Sony PlayStation 3 (PS3) Eye [148] (Figure 3.4), and 

 

Figure 3.3 - The object layer subroutine 
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the Microsoft Xbox Kinect [149] (Figure 3.5).  The PlayStation Eye was first used because of its 

high frame rate capabilities and the open source libraries that existed for it.  It could reach a 

frame rate of 60 Hz at a resolution of 640x480 pixels, and 120 Hz at a resolution of 320x240 

pixels.  This worked out great for real-time (around 25Hz or higher) usage – the PS3 Eye was 

able to track a selected object, in real-time, with few errors.  The main problem with it however, 

was its inability to perceive distance.  For distance to be known, complex mathematical 

calculations would have had to be made.  This slowed down the SIGHT algorithm enough that 

the tracking was no longer in real time, but lagged noticeably.   

 

 

 

The Xbox Kinect served well for the purposes of perceiving distance, as well as being able to 

maintain a suitable frame rate.  The Kinect is able to output the Red, Green, Blue (RGB) video at 

a frame rate of 30 Hz, at a resolution of 640x480 pixels.  It uses an infrared laser projector, 

combined with a monochrome CMOS sensor, to capture video data in 3D.  This 3D data, 

provides 11 bits of depth data, thus providing 2048 levels of sensitivity, which basically means 

that the depth sensor of the Kinect has a range of about 0.7 – 6 metres [150]. Two open source 

libraries exist for communicating with the Kinect: libfreenect [150], and OpenNI [151], attached 

with Primesense [152].  Both these libraries were used and tested with SIGHT.  OpenNI 

contained more features, especially relating to gestures, and was therefore chosen as the main 

 

Figure 3.4 - Sony PlayStation 3 Eye [148] 

 

Figure 3.5 - Microsoft Xbox Kinect [149] 
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Kinect library to be used with SIGHT.  By using both the RGB and depth data from the Kinect, 

we were able to provide a real-time, lag free, object tracking system.   

 

3.4 System Layer 

This layer contains the bread and butter of the algorithms in the SIGHT system.  The system 

layer receives camera data from the above imaging layer, processes that data, inputs that into the 

SIGHT algorithms and gesture processing engine, and finally outputs motor commands.  The 

camera communicates to the computer via USB, and uses the open source libraries, OpenNI and 

libfreenect, to provide a method of receiving and parsing this data in a trivial manner.  The 

programming language used in SIGHT is a mix of C and C++, with the inclusion of OpenCV 

[153] libraries.  RGB and depth data from the camera are stored into 8-bit matrices for RGB, and 

16-bit matrices for depth, of size 640x480x3 for the RGB, and 640x480x2 for the depth.  These 

matrices are converted into OpenCV specific structures for further use.  These data structures are 

sent into the SIGHT algorithms and the gesture processing engine to determine tracking and 

motor control.  The computing system used in this layer is a Fujitsu TH700 [154], equipped with 

an Intel Core i3-380M Processor, 4 GB DDR3 of memory, an onboard Intel HD Graphics video 

card, running the Ubuntu 10.10 operating system. 

 

At its highest level, the SIGHT system is two tiered (Figure 3.6) – it consists of a vision tracking 

algorithm, and a Proportional, Integral, Derivative (PID) algorithm to control the motors of the 

transport.  The vision tracking algorithm joins two tracking methods, particle filters and optical 

flow, and a FAST feature finding method, to form a more robust, adaptive tracking scheme.  The 
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PID algorithm itself is made up of two stages, one to control tuning the turning radius, and 

another to determine speed relative to distance to the OOI.   

 

3.4.1 Vision Tracking Algorithm 

Particle filters and optical flow techniques are applied and are run jointly to give a more accurate 

tracking measure.  When the tracking methods fail and the object is lost, a method for re-finding 

the object is presented.  This method is called FAST and BRIEF.  The following subsections will 

give a clearer understanding of each technique and how it’s used.   

 

3.4.1.1 Particle Filters 

Particles filters [35] [155] [156] [157] are used to estimate the position of an object using the 

distribution of the particles.  They are also known as the sequential Monte Carlo method, or a 

Sampling Importance Resampling (SIR) filter [77].  The idea behind them is to continually 

collect random samples (particles) from a scene, and compare them to a model.  To determine if 

a particle is successful or not would depend on how well that particle matches the model.  Each 

particle has a weight assigned to it, which is proportional to the probability of the particle being 

at the correct position of the object.  Particle filters use an intensity based approach that weighs 

particles higher based on a simple numerical comparison of its own weight, to a reference weight 

VISION TRACKING

PARTICLE 
FILTERS FAST & BRIEFOPTICAL FLOW

PID MOTOR CONTROL

PID FOR TURN PID FOR SPEED/
DISTANCE

 

Figure 3.6 - Two-Tiered High Level Architecture of SIGHT 
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of the object to be tracked.  This means that the higher the particle weight, the higher probability 

it has of being at the correct position of where the object is heading.  As explained in the 

previous chapter, particle filters are comprised of three steps: selection (sampling), prediction 

(importance), and correction (resampling).   Mathematically, a distribution (Equation (3.1)) of 

the state of the tracked object is approximated by maintaining a set of weighted particles 

(Equation(3.2)) over time, where each particle (Equation (3.3)) consists of its state vector 𝑥𝑡
𝑗  and 

an importance weight 𝜋𝑡
𝑗  [77]. 

The set of particles is updated from frame to frame using the same recursive procedure from 

[77]: First, a new sample set 𝑆𝑡 is drawn with replacement from the previous set 𝑆𝑡−1, where a 

sample 𝑠𝑡−1𝑖  from the old set is chosen with probability proportional to its weight 𝜋𝑡−1𝑖 .  Next, for 

each sample a new state 𝑥𝑡
𝑗  is determined by sampling from the motion model (Equation (3.4)).  

Finally, the measurement of the new frame 𝑍𝑡 is integrated by updating the importance weights 

𝜋𝑡
𝑗  with the likelihood of the observation (Equation (3.5)).   

𝑝(𝑋) (3.1) 

𝑆𝑡 = {𝑠𝑡
𝑗}, 𝑗 ∈ {1 … 𝐽} (3.2) 

𝑠𝑡
𝑗 = (𝑥𝑡

𝑗 ,𝜋𝑡
𝑗) (3.3) 

𝑝(𝑋𝑡|𝑋𝑡−1 = 𝑥𝑡−1𝑖 ) (3.4) 

𝜋𝑡
𝑗 = 𝑝(𝑍𝑡|𝑋𝑡 = 𝑥𝑡

𝑗 ,𝑍0,𝑍1 …𝑍𝑡−1) (3.5) 
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(For validity of these equations, the reader can look at [77] and [79]).  Since we want to track an 

object visually, it makes sense that the samples used in the particle filter method be of a physical 

nature, i.e. color representation.  In order to represent the colors of an object, color histograms 

are used.  A histogram is a representation of the distribution of data.  They are “collected counts 

of the underlying data organized into a set of predefined bins” [83]. The more bins that are used, 

the more detail the histogram will give.  Histogram’s are relatively invariant with translation and 

rotation about the viewing axis, and vary only slowly with the angle of view [158] [159].  A 

color histogram is a representation of the distribution of colors in an image.  They are mainly 

used for comparison purposes, whether it be comparing objects from scene to scene, or 

comparing each scene to a library of predefined objects.  Typically, after the image data is put 

into the various bins, the entire histogram is normalized, so that each individual bin represents 

the fraction of the total histogram.  In general use, the RGB color space is used to represent 

colors in an image.  Figure 3.7 shows the popular and standardized Lena RGB image.  The 

problem with detecting the RGB values of an object is that it can change depending on the 

lighting conditions and noise of the environment [160].  The Hue, Saturation, Value (HSV) color 

space is better suited for dynamic environments.  The Hue component represents the color’s hue 

angle (essentially it represents the color itself), the Saturation represents the color purity (how 

much color), and the Value component represents the brightness of the color.  In a dynamic 

setting, the Value component changes drastically, depending on light, whereas the Hue and 

Saturation values stay relatively constant. Because of this, the Value component is typically not 

used in a color histogram.  To build an HS (Hue-Saturation) histogram, it’s important to first 

note the range of values for the HS color space.  The Hue values range between 0-180 (units are 

in degrees) while the Saturation values range between 0-255°.  The number of bins commonly 
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used in an HS histogram would be 30 bins for the Hue values, and 32 for the Saturation.  This 

leaves each bin to hold 6 values of intensity for Hue, and 8 intensity values for the Saturation. 

Figure 3.8 shows what a Hue-Saturation histogram of the Lena image looks like, using 30 bins 

for Hue, and 32 bins for Saturation.  By comparing the bins of two histograms, similarity or 

differences between images or frames can be easily found.  There are five main histogram 

comparison methods: correlation, chi-square, intersection, Bhattacharyya, and the Earth Mover’s 

Distance (EMD) [83].   Intersection was found to work well for quick matches, chi-square and 

Bhattacharyya worked best for slower but more accurate matches, and the EMD method gave the 

most intuitive matches, but was much slower.  In this paper, the Bhattacharyya method was used 

to match histograms across frames.  Equation (3.6) shows the mathematical representation of this 

method [83]. 

 
Figure 3.7 - An RGB image of Lena 

 
Figure 3.8 - A Hue-Saturation Histogram of Lena 
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In order to assign weights to the color histogram samples, a color histogram of the selected ROI 

is taken and matched against.  The following algorithm forms the basis of particle filter tracking 

using color histogram samples: 

 

Initialization (Selection/Sampling): Create 𝑁 particles with an initial state of 0 (Equation 

(3.7)), where 𝑥0
(𝑛), 𝑤0

(𝑛), ℎ0
(𝑛), and 𝑑0

(𝑛) are the 𝑛𝑡ℎ position vectors, weights, histogram 

values, and dimensions (width and height) respectively. 

Step 1: For each particle, set the position and dimension to equal the ROI’s position and 

dimension values (Equation (3.8), Equation (3.9)). 

Step 2: For each particle, set the histogram value to equal the ROI’s histogram value 

(Equation (3.10)(3.9)). 

𝒅𝑩𝒉𝒂𝒕𝒕𝒂𝒄𝒉𝒂𝒓𝒚𝒚𝒂(𝑯𝟏, 𝑯𝟐) =  �𝟏 −� √𝑯𝟏(𝒊) ∙ 𝑯𝟐(𝒊)

�∑ 𝑯𝟏𝒊 (𝒊) ∙ ∑ 𝑯𝟐(𝒊)𝒊
𝒊

 (3.6) 

𝑠0
(𝑛) = 𝑥0

(𝑛),𝑤0
(𝑛),ℎ0

(𝑛),𝑑0
(𝑛) = 0,𝑛 = 1, … ,𝑁 (3.7) 

𝑥𝑡
(𝑛) = 𝑥𝑅𝑂𝐼 (3.8) 

𝑑𝑡
(𝑛) = 𝑑𝑅𝑂𝐼 (3.9) 

ℎ𝑡
(𝑛) = ℎ𝑅𝑂𝐼 (3.10) 
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Step 3: Prediction/Importance: Using a uniformly distributed random number, assign a new 

position for each particle, based on the particles last known position (Equation (3.11)). 

Step 4: Reset the weight of each particle (Equation (3.12)). 

Step 5: Update: For each particle, set a region of interest with the ROI width and height are 

equal to the target ROI’s width and height (Equation (3.13)).  Find the histogram value of the 

particle’s ROI (Equation (3.14)). 

Step 6: For each particle match the particles ROI histogram value to the target ROI histogram 

value using the Bhattacharyya method.  Set the weight to this matched value (Equation  

(3.15)) and then reset the particle’s ROI. 

Step 7: Correction/Resampling: Sort the particles by weight, with the heaviest weight at the 

beginning of the list.   

Step 8: Replace the 𝑁 particles with the top fifteen percent of the particles. 

Step 9: Estimate position: Calculate the weighted sum of the particles weights 𝑤𝑠 (Equation 

(3.16)), position 𝑥𝑠 (Equation (3.17)), and dimensions 𝑑𝑠 (Equation (3.18)), and determine 

the object’s new position 𝑥𝑜𝑏𝑗 (Equation (3.19)) and dimensions 𝑑𝑜𝑏𝑗 (Equation (3.20)) 

based on 𝑤𝑠 . 

𝑥𝑡
(𝑛) = 𝑟𝑎𝑛𝑑 % ℎ𝑅𝑂𝐼 (3.11) 

𝑤𝑡
(𝑛) = 0 (3.12) 

𝑑𝑡
(𝑛) = 𝑑𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑅𝑂𝐼 (3.13) 

ℎ𝑡
(𝑛) = ℎ𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑅𝑂𝐼 (3.14) 

𝑤𝑡
(𝑛) = Bhattacharyya (ℎ𝑡

(𝑛),ℎ𝑅𝑂𝐼) (3.15) 
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Appendix A shows a flowchart of the particle filter algorithm. 

3.4.1.2 Optical Flow 

Optical flow is the calculation of the translation of a pixels velocity vectors, based on brightness 

patterns across two frames.  Dense optical flow, as in the Horn-Schunck method [161], computes 

velocity for every pixel in the entire image.   Sparse optical flow, such as the Lucas-Kanade (LK) 

method [82] on the other hand, computes the optical flow on some subset of points, or 

feature/interest points, of the image.  This second tracking method used in SIGHT relies on the 

LK sparse optical flow method.  This method is applicable in the “sparse” sense, because it relies 

on local information that is derived from some small window surrounding each of the points of 

interest [83].  In the case where large motions cause the interest points to move outside of that 

small window, a pyramidal method called, which basically means the size of the window 

increases with each run. 

 

𝑤𝑠 = �𝑤𝑡
(𝑛)

𝑁

𝑖=0

 (3.16) 

𝑥𝑠 = �𝑥𝑡
(𝑛)

𝑁

𝑖=0

 (3.17) 

𝑑𝑠 = �𝑑𝑡
(𝑛)

𝑁

𝑖=0

 (3.18) 

𝑥𝑜𝑏𝑗 =
𝑥𝑠
𝑤𝑠

 
(3.19) 

𝑑𝑜𝑏𝑗 =
𝑑𝑠
𝑤𝑠

 
(3.20) 
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The LK algorithm is based on three assumptions or directions [83] (Figure 3.9): 1. Brightness 

constancy, 2. Temporal persistence or “small movements”, and 3. Spatial coherence.  The 

brightness constancy assumption tells us that the brightness of a tracked pixel does not change as 

it moves from frame to frame, or over time (Equation (3.21), Equation (3.22)) [83].  The 

temporal persistence argument states that the image motion of a surface patch changes slowly 

over time.  This means that frame to frame, the object does not move drastically – the change is 

differentially small.  The third rule, spatial coherence, declares that neighbouring points in a 

scene belong to the same surface, and thus have similar motion and projects to nearby points on 

the image plane.   

𝑓(𝑥, 𝑡) ≡ 𝐼(𝑥(𝑡), 𝑡) = 𝐼(𝑥(𝑡 + 𝑑𝑡), 𝑡 + 𝑑𝑡) 
(3.21) 

𝜕𝑓(𝑥)
𝜕𝑡

= 0 (3.22) 

 

Figure 3.9 - Lucas-Kanade Optical Flow Assumptions [83] 
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To determine the points of interest needed to use the LK optical flow method, we use points in 

the image that have corners.  To determine corners in an image, we use a method given by Harris 

[51]: we consider the autocorrelation matrix of the second-order derivatives images over a small 

window around each point.  Corners are places in the image where this matrix has two large 

eigenvalues.  This basically means that a corner is defined by edges going in at least two separate 

directions centered around a point.  Using corners of an image gives us the advantage of not 

worrying about rotation.  Shi and Tomasi extended the Harris corner finding method by stating 

that good corners are those who’s smaller eigenvalue (one of two values) is greater than some 

minimum threshold [52].   The Shi and Tomasi method is used in conjunction with the Lucas-

Kanade sparse optical flow method in SIGHT.  The following algorithm forms the basis of the 

optical flow and corner finding tracking method: 

 

Initialization: Create a list of 𝑀 points (x,y) (Equation (3.23)) with an initial state of 0, where 

𝑓0𝑚 is the original feature list position points. 

Step 1: Upon initial ROI selection, find good features to track on the ROI2, and update the 

feature list to equal the reference feature point positions found (Equation (3.24)). 

                                                 
2 Finding features in the ROI, and calculating optical flow, was accomplished using the built in 
functions from OpenCV. 

 

𝑓0
(𝑚) = 0,𝑚 = 1, … ,𝑀 (3.23) 

𝑓𝑡
(𝑚) = 𝑓𝑟𝑒𝑓𝑚  (3.24) 
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Step 2: Update: Upon receiving a new frame, use optical flow to find the new positions the 

feature points have translated to2. 

Step 3: Calculate the average position of the feature point positions found in the new frame 

(3.25)). 

Step 4: Set a ROI around the new point, with the ROI’s dimensions 𝑑𝑡
(𝑚) (width and height) 

equal to the original ROI width and height (Equation (3.26)). 

Step 5: Correction: Remove any outliers (features found outside the ROI) from the updated 

feature list. 

Step 6: Find the average position of the updated feature list not including the outliers. 

Step 7: Estimate position: Set a new ROI around the average position from Step 6.  The 

object’s new position is equal to the average position found in step 6 (Equation (3.27)), and 

its ROI equal to this ROI. 

 

3.4.1.3 Combination of PF and OF 

SIGHT uses a combination of both the particle filter and optical flow tracking methods.  The 

reason for doing this is so several common tracking issues such as camera motion, partial 

occlusions, clutter, and scale rotation and variations, can be dealt with by combining these two 

𝑥𝑡
(𝑚) = 𝑎𝑣𝑔(𝑓𝑡𝑚) (3.25) 

𝑑𝑡
(𝑚) = 𝑑𝑅𝑂𝐼 (3.26) 

𝑥𝑜𝑏𝑗 = 𝑎𝑣𝑔(𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑡𝑚) 
(3.27) 
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algorithms.  The following algorithm shows how the SIGHT system tracks an OOI using both 

particle filters and optical flow: 

Initialization: Select an ROI 

Step 1: Setup LK optical flow variables 

Step 2: Find and save features found in the ROI into a reference features list 

Step 3: Calculate and save the histogram of the ROI 

Step 4: Initialize particles 

Step 5: Predict particles 

Step 6: Update and resample particles 

Step 7: Estimate object position based on particles 

Step 8: Update features 

Step 9: Run correction on features 

Step 10: Estimate object position based on optical flow 

Step 11: Calculate histogram of ROI from step 7 

Step 12: Calculate histogram of ROI from step 10 

Step 13: Make sure both histograms from steps 11-12 are above a threshold 

Step 14: If the difference of histograms from Step 11-12 is greater than a threshold, then set 

the smaller histogram value to equal 0, and the larger to equal 1 (analytically compare hists) 

Step 15: Set the new object position to equal the average position of steps 7 and 10 

Step 16: Equate the reference feature list to the updated feature list 

Step 17: Repeat steps 2-15 
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Based on the positions found individually by the particle filter and optical flow methods, a more 

precise object position can be determined.  By comparing the histogram values of each of the PF 

and OF ROIs to a threshold, allows for error checking – making sure the new position definitely 

is the object’s new position, and not a misread, or mis-tracked position.  Also comparing the 

differences of the histograms for OF and PF allows for further error checking.  If the difference 

is greater than a threshold, then the one that weighs less (less because the smaller the histogram 

value the greater the chance of a match), is set to zero and used, and the one that weighs more is 

set to 1 and not used.  Finally, equating the reference feature list to a new set of features (step 

16), allows for the tracking program to adapt its view of the object over time, across various 

conditions such as lighting and orientation.  Appendix B shows a flowchart of calculating the 

object’s new position.   

 

3.4.1.4 FAST & BRIEF 

In instances where the tracking scheme fails, SIGHT will try to seek and find the lost object.  

This is a feature many of the systems discussed in the previous chapter do not have.  To do this 

we use a method called FAST (Features from Accelerated Segment Test) feature detection and 

matching, created by Edward Rosten [54].   FAST is a corner detection method that works by 

detecting features at a point 𝑝 if the intensities of at least 12 contiguous pixels are all above or all 

below the intensity of 𝑝 by some threshold 𝑡.  In the SIGHT system, the FAST corner detection 

method is run at the beginning, on the reference frame (where the ROI is first selected).  The list 

of the features is run through a keypoint or descriptor, extraction method called BRIEF (Binary 

Robust Independent Elementary Features) [162].  This extraction method takes the features 

found using the FAST corner detection, and calculates interest points around each feature.  Each 
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of the BRIEF descriptors is made up of a binary string 64 bytes long which is basically a 

representation of an image patch around each corner.  Although BRIEF is not designed to be 

rotationally invariant, its speed of detection beats other descriptor methods such as SURF [162].  

Both the reference features found by FAST and the keypoints extracted by BRIEF are saved in 

the beginning for comparison later.  When the object is deemed lost by the program, i.e. when 

the histogram value of either the particle filter or optical flow position is greater than a threshold, 

FAST corners and keypoints are again extracted from the frame at the time the object was lost, 

and using a brute force matching method, the positions for where the reference corners and 

keypoints match the best to the corners and keypoints are the current frame, is used for object re-

detection.  Upon re-detection of the object, SIGHT continues tracking the object as in the 

previous subsection.  Appendix C shows a clearer picture of how finding a lost object works 

using FAST and BRIEF.  Figure 3.10 shows how features are matched across two frames. 

 

 

3.4.2 PID Motor Control 

The second main tier of this system is SIGHT’s capabilities to control the transport’s motor 

speeds in relation to what it sees and to where the object is that it is tracking.  In order to do this, 

a PID control system is used.  A PID controller is essentially a feedback controller consisting of 

 
Figure 3.10 - FAST and BRIEF matching a POI 
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proportional (P), integral (I), and derivative (D) elements.  These three elements produce outputs 

with the following nature [163]: ‘P’ element: proportional to the error at the instant 𝑡, which is 

the “present” error; ‘I’ element: proportional to the integral of the error up to the instant 𝑡, which 

can be interpreted as the accumulation of the “past” error; and ‘D’ element:  proportional to the 

derivative of the error at the instant 𝑡, which can be interpreted as the prediction of the “future” 

error.  Taken together, this means that a PID controller takes errors in the past, present, and 

future into consideration [163].  Mathematically Equation (3.28) describes the PID controller 

(Figure 3.11), where 𝐾𝑃 is a proportional gain constant, 𝐾𝐼 is an integral gain constant, 𝐾𝐷 is a 

derivative gain constant, 𝑒 is the error between the setpoint and the process variable, and 𝑡 is the 

time at the present [164]. 

The set point is the point at where the control is stable at, and the error is anything subtracted 

from the set point.   

 

A general PID motor control algorithm looks like this: 

Initialization: Set setpoint variable. 

Step 1: Find the current position. 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝐼 � 𝑒(𝜏)𝑑𝜏 − 𝐾𝐷
𝑑
𝑑𝑡

𝑡

0
𝑦(𝑡) (3.28) 

 

Figure 3.11 - A graphical representation of a PID controller [165] 
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Step 2: Find proportional value (Equation (3.29)). 

Step 3: Find integral value (Equation (3.30)). 

Step 4: Find derivative value (Equation (3.31)). 

Step 5: Save the current proportional value as the previous proportional value (Equation 

(3.32)). 

Step 5: Find and limit error value (Equation (3.33)). 

Step 6: Add error value to motor speeds (Equation (3.34)) 

In order to make the wheelchair keep its pace and course with the target, a two stage PID control 

scheme was used, one for determining turning control, and another for maintaining distance to 

the object.   This seemed the most natural way of following an object – if one person were to 

follow another person, it would be logical that the person behind keep the same course as the 

person in front.  For example, if the person ahead were to turn left, so would the person behind.  

After keeping course, it would make sense for the person behind to preserve its distance to the 

person ahead.  This means that if the person ahead was to walk faster, or to slow down, the 

person behind would increase or decrease his or her speed in relation to the distance between 

𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 (3.29) 

𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 = 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 + 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 (3.30) 

𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 = 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 − 𝑝𝑟𝑒𝑣_𝑝𝑜𝑟𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 (3.31) 

𝑝𝑟𝑒𝑣_𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 = 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 (3.32) 

𝑒𝑟𝑟𝑜𝑟_𝑣𝑎𝑙𝑢𝑒 = (𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 ∗ 𝐾𝑃) + (𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 ∗ 𝐾𝐼) + (𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 ∗  𝐾𝐷) (3.33) 

𝑚𝑜𝑡𝑜𝑟_𝑠𝑝𝑒𝑒𝑑 = 𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑 + 𝑒𝑟𝑟𝑜𝑟_𝑣𝑎𝑙𝑢𝑒 (3.34) 
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him/her and the person in front.  The setpoint used in the PID turning method is the tracked 

objects position (the centre point of the object’s ROI), and the position used is half of the frame 

size x-axis, which is 320 (our frame size is 640x480 pixels, therefore the halfway point on the x-

axis would be 640 / 2 = 320).  This method allows for the control to react to all kinds of changes 

in motion, whether the object moves away from the centre of the frame regardless of its speed.  

After all the calculations, the error value is found and added to the left and right motors to give 

motor speeds.  This calculated value for the left and right motor speed is then sent into the 

second PID control loop – the PID distance control.  A third input, the depth from the camera to 

the object, is also added to this control method.  The left and right motor speeds from the PID 

turning control, are used as ratio’s to determine speed.  The setpoint in this method is the 

maximum distance, a constant set to define how far away the object is allowed to travel from the 

transport.  The position would be the depth outputted from the camera, identifying the distance 

from the camera to the OOI.  In this method, the error value is only used when the proportional 

value is less than a predefined constant.  This is because if the proportional value is low enough, 

it infers that the transport needs to make a steep turn, thus it does not need to move much in the 

z-axis (forward or backwards).   If this happens, the left and right motor speeds are multiplied by 

another predefined constant, in order to make the transport turn faster.  If the proportional 

constant is high enough, then that means the object is far away for the transport to be able to 

drive forwards, therefore the error value calculated is multiplied by the left and right ratio 

received by the PID turning control method, and then added to the left and right motors to 

produce the correct motor speeds.  The following algorithm forms the basis of the two stage PID 

control methods: 
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PID Turn: 

Initialization: Set the setpoint variable to the tracked objects ROI’s x-position (Equation 

(3.35)) 

Step 1: Set the 𝐾𝑃, 𝐾𝐼, 𝐾𝐷, and  𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑 constants 

Step 2: Find the proportional value (Equation (3.36)), where 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝐹𝑅𝐴𝑀𝐸𝑊𝐼𝐷𝑇𝐻/2, 

Step 3: Calculate the integral, derivative, prev_proportional, and error values using Equation 

(3.30) – Equation (3.33). 

Step 4: Calculate the left and right motor speeds using Equation (3.36) – Equation (3.37) if 

error_value is < 0, and Equation (3.38) – Equation (3.39) if error_value > 0. 

PID Distance: 

Initialization: Set the  𝑚𝑎𝑥_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 constant.  Equate the setpoint variable to this constant 

Step 1: Set the 𝐾𝑃, 𝐾𝐼, 𝐾𝐷, 𝑡𝑢𝑟𝑛𝑖𝑛𝑔_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑜𝑓𝑓𝑠𝑒𝑡 and  𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑 constants 

Step 2: Normalize the left and right speeds calculated from PID Turn using Equation (3.40) 

and Equation (3.41) respectively 

Step 3: Find the proportional value (Equation (3.29)), where 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑑𝑒𝑝𝑡ℎ𝑜𝑏𝑗 

𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 = 𝑥𝑅𝑂𝐼 (3.35) 

𝑟𝑖𝑔ℎ𝑡_𝑠𝑝𝑒𝑒𝑑 = 𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑 + 𝑒𝑟𝑟𝑜𝑟_𝑣𝑎𝑙𝑢𝑒 (3.36) 

𝑙𝑒𝑓𝑡_𝑠𝑝𝑒𝑒𝑑 = 𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑 (3.37) 

𝑙𝑒𝑓𝑡_𝑠𝑝𝑒𝑒𝑑 = 𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑 − 𝑒𝑟𝑟𝑜𝑟_𝑣𝑎𝑙𝑢𝑒 (3.38) 

𝑟𝑖𝑔ℎ𝑡_𝑠𝑝𝑒𝑒𝑑 = 𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑 (3.39) 
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Step 4: Calculate the integral, derivative, prev_proportional, and error values using Equation 

(3.30) – Equation (3.33). 

Step 5: If the proportional value is less than the 𝑡𝑢𝑟𝑛𝑖𝑛𝑔_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 constant, and the left 

ratio is less than the right ratio, then calculate the left and right motor speeds using Equation 

(3.42) and Equation (3.43).  If the left ratio is greater than the right ratio, then use Equation 

(3.44) and Equation (3.45) to find the left and right motor speeds respectively.  If the 

proportional value is greater than the 𝑡𝑢𝑟𝑛𝑖𝑛𝑔_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 constant, then calculate the left and 

right speeds by using Equation (3.46) and Equation (3.47) respectively. 

 

Appendix D shows a complete flowchart for following an object or person. 

 

𝑙𝑒𝑓𝑡𝑟𝑎𝑡𝑖𝑜 =
𝑙𝑒𝑓𝑡𝑠𝑝𝑒𝑒𝑑𝑃𝐼𝐷−𝑇𝑈𝑅𝑁

𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑
   (3.40) 

𝑟𝑖𝑔ℎ𝑡𝑟𝑎𝑡𝑖𝑜 =
𝑟𝑖𝑔ℎ𝑡𝑠𝑝𝑒𝑒𝑑𝑃𝐼𝐷−𝑇𝑈𝑅𝑁

𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑
   (3.41) 

𝑙𝑒𝑓𝑡𝑠𝑝𝑒𝑒𝑑 = 𝑜𝑓𝑓𝑠𝑒𝑡 ∗ 𝑟𝑖𝑔ℎ𝑡𝑟𝑎𝑡𝑖𝑜 
(3.42) 

𝑟𝑖𝑔ℎ𝑡𝑠𝑝𝑒𝑒𝑑 = −𝑜𝑓𝑓𝑠𝑒𝑡 ∗ 𝑟𝑖𝑔ℎ𝑡𝑟𝑎𝑡𝑖𝑜 
(3.43) 

𝑙𝑒𝑓𝑡𝑠𝑝𝑒𝑒𝑑 = −𝑜𝑓𝑓𝑠𝑒𝑡 ∗ 𝑙𝑒𝑓𝑡𝑟𝑎𝑡𝑖𝑜 
(3.44) 

𝑟𝑖𝑔ℎ𝑡𝑠𝑝𝑒𝑒𝑑 = 𝑜𝑓𝑓𝑠𝑒𝑡 ∗ 𝑙𝑒𝑓𝑡𝑟𝑎𝑡𝑖𝑜 
(3.45) 

𝑙𝑒𝑓𝑡𝑠𝑝𝑒𝑒𝑑 = 𝑒𝑟𝑟𝑜𝑟𝑣𝑎𝑙𝑢𝑒 ∗ 𝑙𝑒𝑓𝑡𝑟𝑎𝑡𝑖𝑜 
(3.46) 

𝑟𝑖𝑔ℎ𝑡_𝑠𝑝𝑒𝑒𝑑 = 𝑒𝑟𝑟𝑜𝑟𝑣𝑎𝑙𝑢𝑒 ∗ 𝑟𝑖𝑔ℎ𝑡𝑟𝑎𝑡𝑖𝑜 (3.47) 
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3.4.3 Gesturing Engine 

A big part of SIGHT’s features are its ability’s to interact with the user.  This is done through 

gesturing with the system.  The range of gestures that can be used with SIGHT is limited to any 

movements of any body parts.  If you can move a body part, you can essentially create a gesture.  

Typical gestures are waving a hand, extending an arm, using your hand in a certain motion like a 

clicking motion.  These gestures could be extended to practically anything that is obvious and 

uses your body parts.  For example, a gesture could be created for putting your right hand on 

your head.  Using gestures, you can do practically anything that you normally do with a 

computer.  Common examples of gesture systems include using your face as a mouse and your 

hands and fingers as a keyboard.  In SIGHT, these gestures can be programmed to the intent of 

the user.  By default, a remote control audio player is implemented.  When the user would like to 

start playing a playlist, he or she simply has to face the wheelchair, and wave at it in order to 

unlock the gesturing engine.  Once unlocked, the user can then start their playlist by extending 

their arm to the top right, above their head.  By extending the right hand from the belly button to 

as far as the hand goes right (at least past the right shoulder), the track can be skipped forward.  

Similarly, extending the left hand from the belly button to past the left shoulder, will skip the 

playlist backwards.  Pausing and playing can be controlled by extending the left arm to the top 

left, above the head.  Volume control can be adjusted also.  To unlock the volume control, the 

user must “click” the screen.  That means he or she must push their hand from their chest 

outwards to the screen.  Once unlocked, the volume can be tuned by moving their hand to the 

bottom right, besides the waist, and slowly moving it upwards (to raise volume) and back 

downwards (to lower volume). 
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Controlling music is just one of many possible applications that can be used with SIGHT.  Other 

possible applications could be starting up a video or audio chat, playing video files, browsing the 

internet, or reading documents. 

 

 

3.5 Physical and Output Layer 

The PID controller sends the appropriate motor speeds to the microcontroller, via a usb-serial 

line.  The microcontroller used in SIGHT is a Teensy board [166].  The usb-serial talks to the 

microcontroller at a baud rate of 19200 bits per second.  The motors of the wheelchair are 

connected to the microcontroller via a motor controller board made by Dimension Engineering 

[167].  A joystick is attached to the wheelchair for manual control.  The outputs from the joystick 

are also connected via serial to the microcontroller.  
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Chapter 4. Experiments and Results 

This chapter presents and discusses the experiments that were run as well as the obtained results 

for the methodologies presented in the previous chapter.  In particular, experiments 

demonstrating the strengths and weaknesses of the person-following algorithm will be presented. 

 

4.1 ROI Selection 

In order to track a person of interest, a region of interest must first be set.  Early on experiments 

were run to determine how to best select an ROI.  It would make most sense to select a region 

from the start of the persons head, to about their belly button.  This is because visually, the 

characteristics between these two points are the most unique compared to other persons.  The 

shape of a person’s head and shoulders can differ dramatically from person to person.  The 

centre point of the region should be around the mid chest area of the person.  This is because the 

centre point of the ROI is where the distance from the camera to the person is calculated.  Early 

tests showed that selecting only the person’s head and neck as the ROI proved insufficient, 

because although there were numerous distinctive features that worked well for tracking, it was 

too small an area for the distance to be consistently found.  What kept happening was that the 

centre point was found around the neck, and because the neck is narrower than the face, the 

centre point kept being found to the left and the right of the neck, effectively meaning that the 

centre point was not on the person itself, but behind the person.  This led to the distances being 

significantly incorrect.  Using just the person’s face as the ROI can work, however as the person 

increases walking speed and moves further away from the transport, the region around the face 

gets smaller and smaller.  Eventually the ROI gets too small, and features from the face are no 

longer found, thus leading to incorrect tracking and distances being found.  Selecting a region 
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from the top of the head, to about the belly button proved the best for tracking.  This is because 

the centre point of this region rarely gets “misplaced”, meaning it is always on the person.  Using 

this region, the centre point is normally around the mid chest area.  Using a narrower region of 

interest, but keeping the height the same (from the head to the belly button), works even better.  

This region starts at the top of the head, roughly where the person’s left eye is, and continues 

down to the belly button.  The reason this region works better is because the background doesn’t 

influence the features found on the person.  When using the head-shoulders-belly button region, 

there can be numerous features found around the persons head, which can completely throw off 

tracking.  Figure 4.1 shows how the various types of ROI selection would look like.  In Figure 

4.1(a) although the ROI envelops the entire area of the head, it is very small in comparison to the 

rest of the body, and therefore is very small in comparison to the rest of the background as well.  

As the person moves, this already small region can get even smaller, and the tracking can easily 

be skewed and misplaced.  Figure 4.1(b) shows what would be an obvious choice for a ROI 

selection, however it also shows the pitfalls of choosing this region.  Notice how much space is 

around the frame.  The software will not differentiate this space from the person itself, therefore 

whatever is behind the person at the time of the ROI selection will be thought of as part of the 

person themselves.  That means if there is an object that can be seen behind the person in the first 

frame (where the ROI is selected), then that same object will always be expected to be behind the 

person across future frames.  This will probably not be the case, therefore this choice of ROI 

selection is not the best.  Figure 4.1(c) shows the most ideal way to choose an ROI.  By selecting 

a narrower region of interest from the head to the belly button, there is a minimal chance of 

misdetection happening in future frames.  Whatever is seen in this ROI will be seen across future 
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frames as well – the background, or objects around the person in the first frame, will have no 

impact on tracking the person through future frames.  

 

The figures in Table 1 shows what the software actually sees for the three types of ROI’s.  

Notice how in selecting the head and shoulders as an ROI results in many false interest points 

(besides the head) for both the optical flow features and the particles.  The features found using 

just the head as the ROI results in many positive points, but a very small section of the entire 

frame (only about 2% of the entire frame).  The ideal ROI choice results in all positive detections 

and points. 

 

Before setting the ROI, the POI must stand at a social distance (see Chapter 3) perpendicularly 

away from the centre of the camera, somewhere between 1.22 – 3.66 metres.  This distance will 

be maintained by SIGHT throughout the life of the tracking run.  The reason for standing 

perpendicular to the centre of the camera is because for SIGHT to properly follow the POI, it 

must alter its course based on how far off centre the POI is to itself.  For example, if the POI is 

0.5 (m) to the left, SIGHT will output commands to the motors to swing left at an appropriate 

speed, so the POI is at the centre of the frame.    

   

(a) (b) (c)

 
Figure 4.1 – ROI selections: (a) choosing just the head, (b) choosing the top frame, (c) ideal ROI 
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After standing at an appropriate distance from the chair, the user can set an ROI using one of two 

ways – either manually or interactively.  The main difference between choosing a ROI manually 

versus interactively is that the manual method allows for the size and position of the ROI to 

change, whereas by choosing a ROI interactively, the size and position of the ROI remains fixed.  

At a frame size of 640x480 pixels, the fixed ROI size is 56x215 pixels, and is always at a fixed 

point of (292, 220).  The x-coordinate of the fixed ROI was found using Equation (4.1), and the 

y-coordinate was used because at the 215 pixel mark, the POI was always comfortably in this 

fixed ROI, while standing somewhere in the social distance bounds of 1.22 – 3.66 (m).  To give 

the user a better idea of where to stand, this fixed ROI was always displayed on the screen.  The 

user could then adjust his or her position so that they were found in the ROI. When the user felt 

ROI TYPE ROI O.F FEATURES P.F PARTICLES 

Head + 
Shoulders 

   

Head 

   

Ideal ROI 

    
Table 1 - Types of ROI Selections 
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that they were properly identified in the ROI, he or she could then set the ROI by waving their 

hand to the camera.  This would initiate the start of the system.   

If on the other hand, a manual ROI selection was preferred, then the user manually creates a 

region of interest on a still frame.  An example of where this would be used would be if the user 

wanted the chair to follow another person, while the user themself sat on the chair.  The person 

would be instructed to stand in front of the chair, at an appropriate social distance.  The user 

would then be able to load the next frame from the camera, and when happy with the frame, 

select a region of interest on that person.  Pressing enter, or “continue” on the screen, would 

initiate the system.  Regardless of which method is chosen, manual or interactive, the person to 

be followed must stand at an appropriate social distance away from the centre of the wheelchair.  

The ideal ROI size (Figure 4.1c) should be used in all cases for following to be the most robust.  

 

SIGHT allows for the user to adjust the number of corners and particles as they see fit.  These are 

set at execution time as program arguments.  As the number of corners increases, the number of 

matches that the optical flow method will try to match will increase.  Since the ROI is small 

compared to the size of the frame, (at the fixed ROI size, it is about 4% of the entire frame), 

setting the number of corners too high is pointless, as the corners found will eventually just 

overlap other existing corners, thus skewing future tracking.  However increasing the number of 

particles used can be beneficial, as the higher the number of particles are, the higher chance the 

particle filter matching method has of finding the POI or OOI.   The upper limit of the number of 

particles really depends on the computing system being used.  Since the histogram of each 

particle must be found, there is a direct correlation between the computing power and the number 

𝑥𝑅𝑂𝐼 =
𝑤𝑖𝑑𝑡ℎ𝐹𝑅𝐴𝑀𝐸

2
−
𝑤𝑖𝑑𝑡ℎ𝑅𝑂𝐼

2
 (4.1)  
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of particles: as the number of particles increases, so does requirements for the computing power.  

For the computing system used in this paper, the Fujitsu TH700, the maximum number of 

particles that could be used without slowing down the tracking system was found to be 75 

particles.  Figure 4.2 shows a graphical representation of how increasing the number of particles 

correspondingly increases the CPU load usage.  This graph shows a 12 second run of the 

program, using the same fixed ROI size of 56x215 pixels, for 5 different sets of particles: 50, 75, 

150, 250, and 500 (optical flow usage was turned off for this test).  Using 75 particles, an 

average CPU load of 83% was found.  This is high enough that it doesn’t cause instability in the 

tracking system.  Using a number of particles higher than 100 caused an average CPU load of 

90% and greater, and caused instability in tracking. 

 

     

 
Figure 4.2 - A representation of the CPU load percentage vs. time for various numbers of particles 
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4.2 Data Logging 

In order to run any experiments, data had to be properly collected and analyzed.  The Open 

Sound Control (OSC) is a type of messaging protocol widely used in the music and digital 

industry.  It was modified to use with the liblo [168] implementation in order to gather data.  

What is great about OSC is that messages can be sent across the network (or even through the 

localhost) to be dealt with by another process.  SIGHT uses this method to log data.  Using OSC, 

messages about what is happening is sent through the localhost, port 127.0.0.1, to another 

program which accepts the messages, and saves them to a file.  This is important because it 

makes sure the process running the SIGHT algorithms are not affected by saving data to a file – 

there is a separate process running that takes care of this instead.  So SIGHT can go on running, 

without errors due to writing to a file, or parsing messages.  If there are errors, then the separate 

process will take care of them.  A typical OSC message consists of a minimum 5 entities: a 

hostname, port, address, type, and value.  The hostname specifies the remote hostname, the port 

is the port that the hostname is listening on, the address is where the message should be sent to, 

and the types can consist of the various primitive data types, such as integers (32 or 64 bit), 

chars, strings, boolean values, or even NIL values.  An example of sending an OSC message to 

the localhost would be: oscsend localhost 7777 /address f 0.1234, where f is the identifier for a 

32 bit floating point number, and 0.1234 is the value of that floating point number.  The 

receiving end of the OSC message listens for what the address is, and sends the message to that 

specific address, in this case, the actual message would be the float value 0.1234, and the address 

would be /address.  The receiving end that is waiting at this address can take the value and do 

whatever is necessary with it.  In SIGHT, there are several values which are important to use for 

data analysis.  These values, at time 𝑡, are: depth (single float), the optical flow and particle filter 
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histogram values (two floats), the number of corners (single integer), how long (number of 

iterations) the POI was lost (single integer), and the motor values (two integers).  Using OSC and 

liblo, these values are sent across the localhost via the addresses /depth, /hists (k for optical flow 

histogram, and p for particle filter histogram), /corners, /lost, and /motors (l for left, and r for 

right) respectively.  A timestamp, in the form of “ticks”, or “iterations” is sent along with each 

message.  Using these 5 categories made it easier to see why and where the system failed.  Table 

2 shows an example of these values look like, while being sent across two frames. 

 

 

The receiving end listens for OSC messages, sends them to the correct function for the address, 

and each respective function parses the message and outputs the result to a file.  The results of 

the graphs found in the rest of this chapter are put together from the sorted output of this file. 

 

4.3 Static Tracking 

Tracking an object while remaining in a fixed or static position is very different than tracking an 

object while moving positions.  This is due to the background changing scenes from frame to 

frame.  Before running trials to see how well the combined particle filter and optical flow 

/depth t 0 f 1.69 
/depth t 1 f 1.698 
/hists t 0 k 0.167579 p 0.176756 
/hists t 1 k 0.257731 p 0.189961 
/corners t 0 92 
/corners t 1 82 
/lost t 0 0 
/lost t 1 0 
/motors t 0 l 62 r 193 
/motors t 1 l 64 r 191 

Table 2 - OSC messages used in SIGHT 
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tracking algorithm work in a dynamic environment, it was important to see how it tracks while 

remaining static.  Experiments were run in the NCART computer science lab at Ryerson 

University to test how well the system tracked a person while in a fixed position.   

 

 

Figure 4.3 shows how the lab looks like from the point of view of the wheelchair.  This area was 

chosen in particular because of how cluttered the background is.  Since there are many objects 

and various colors, it was an ideal area to test static tracking.  In this experiment, a user selected 

themself as an ROI using the manual selection method, and then walked in this area in various 

directions, to as far back as the red box on the floor (to the left of the red chair).  The area used 

was measured to be roughly 4x2 metres.  Using just optical flow and particle filters by 

themselves (without combining), led to many misdetections, with optical flow faring worse than 

particle filters.  Using the same stationary position, experiments were conducted for each 

method.  The misdetections were not found by the FAST-BRIEF lost-object algorithm because 

the histograms for the optical flow and particle filter positions did not rise above the threshold 

for losing an object.  Due to the fact that optical flow relies on movement, it makes sense that it 

would fare worse than particle filters.  On average, during three experiments roughly 70 seconds 

 
Figure 4.3 - NCART Lab 
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long, using just the optical flow method misdetected the person four times, whereas the particle 

filter method misdetected the person twice.  However combining the two methods together, 

using parameters of 75 particles and 100 corners, gave near perfect results.  The initial distance 

(the distance from the camera to the person at the time of the ROI selection) was roughly 1.6 m.  

Each run showed that the person was adequately tracked across frames for the entire time 

without being lost once.  Figure 4.4 shows a graphical representation of one of the runs.  The 

corners found throughout the 70 second run (roughly 700 ticks) had an average value of 82 

corners (out of a maximum 100), while the distances logged matched the distances travelled 

throughout the experiment.  The histogram values show the person was tracked very well 

through the run.  The optical flow histogram (histK) had an average of 0.2564, whereas the 

particle flow histogram (histP), had an average of 0.2335.  This is a very good number, as the 

lower the histogram values are, the more accurate the match is.  Analyzing this graph further, we 

see a steep decline for the corner values around the 530th tick.  The POI was not lost however, 

due to the fact that the histogram from the position returned by the particle filter algorithm 

outweighed the position of the optical flow algorithm.  Due to the difference between the 

histograms being over a threshold of 0.05, the particle filter’s histogram, and thus particle filters 

position, was used and the histogram and position found by the optical flow method was 

discarded.  This allowed the SIGHT algorithm to continue tracking the person at the correct 

position.  This can be seen in the graph by the histP values – as the number of corners dipped, the 

histK values went up, but the histP values remained low, thus showing that the person was still 

correctly being tracked.   
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Figure 4.4 - Corners, Depth, and Histogram vs. Time in a stationary position 

100 200 300 400 500 600
10

20

30

40

50

60

70

80

90

time (# ticks)

# 
of

 c
or

ne
rs

 d
et

ec
te

d

 

 

corners

0 100 200 300 400 500 600

1

1.5

2

2.5

3

3.5

4

time (# ticks)

de
pt

h 
to

 P
O

I (
m

)

 

 
depth

100 200 300 400 500 600

0.2

0.25

0.3

0.35

0.4

time (# ticks)

hi
st

og
ra

m
 v

al
ue

 

 
histK
histP



72 
 

In reality, there are many objects and obstacles that can exist in an environment where following 

an object or person occurs.  These objects and obstacles can cause the object to be lost by the 

target tracker.  Most tracking algorithms do not allow for re-finding an object after it is lost – 

once it is lost, either the software has to be reset, or manual interaction or influence is required.  

One of SIGHT’s main features is its ability to find the target object or person by itself, without 

any external interaction.  Using FAST and BRIEF interest and feature points, SIGHT is able to 

find the object when it is lost.  Testing this feature in a static environment was necessary to see 

how well it re-found a lost object.  In this experiment, SIGHT was started up with 75 particles, 

and 100 corners, and the ROI was selected on the POI roughly 1.6 m away from the centre of the 

camera.  The area used was the same static environment as above.  In the first run of the 

experiment, after initialization the POI left the scene on the left, and entered the scene again from 

the right.  The results showed that upon leaving the scene (on the left), the POI is no longer 

tracked, and the FAST-BRIEF algorithm starts.  A few seconds later the POI enters the scene (on 

the right) and the algorithm immediately finds the POI again.  This run ran for about 21 seconds, 

and the POI was originally at a distance of 1.75 m from the camera.  Figure 4.6 shows a 

graphical representation of this run.  You can see from the graphs that around the 27th iteration, 

SIGHT figured out that the object was no longer in the frame, and thus labeled it lost.  

Comparing this frame across graphs for corners, depth, and histograms, you can see that the 

object was indeed lost.  The number of corners and the depth detected at that timeframe dropped 

to zero, and the histogram values for the optical flow and particle filters climbed above the 

histogram threshold limit.  In the graph you can also see that the FAST-BRIEF algorithm spent 

roughly 60 iterations searching for the object.  When the POI was back in the frame, a few 

seconds later, all three parameter types continued to track the object as if nothing was changed.  
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In this run, the object returned to roughly the same depth as where it was lost – you can see this 

from the depth vs. time graph.  As soon as the person was re-found, the depth continued around 

the 1.8 m mark.  The same goes for the histogram and the corner values.  Another run tested for 

re-finding a POI after another object came in between the camera and the POI, so that the POI 

was completely blocked (occluded) from view.  In this run, the same stationary location was 

used except the wheelchair was centered more, and a chair was placed in the middle of the 

hallway (Figure 4.5).   

 
The blue chair placed in the middle of the hall was set about 4 m from the camera.  The chair 

was used as an object that blocked the POI from the view of the camera.  This experiment 

required the POI initialize the software by setting the ROI on them, and then walking behind the 

chair, and crouching behind the chair, so as to completely hide themself from the camera, and 

then after a few seconds, stand back up so he/she was back in the view of the camera.  The 

expected result was that the person would be deemed lost, and the FAST-BRIEF finder would 

start to look for, and then eventually find the person.  In the first run, the POI initialized the 

system manually by setting the ROI while standing about 2.5 m away.  Walking immediately to 

the left of the chair (from the camera’s point of view), the POI then hid behind the chair for 

about 3-4 seconds.  As expected, the person was lost by SIGHT and the FAST-BRIEF re-finding 

 
Figure 4.5 - View used for re-finding blocked objects 
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algorithm started.  Figure 4.7 shows a graphical representation of this run.  Due to the nature of 

the BRIEF algorithm not being rotationally invariant, the person was not found right away as he 

stepped back in view of the camera.  The person has to walk about 1 metre in front of the chair 

for the BRIEF algorithm to find his interest points, and for FAST to match them to the original 

feature points.  The result of walking closer to the camera in order to be re-found was seen across 

repeated experiments – the POI, upon re-entering the scene after being “lost”, was only “found” 

after he/she presented themselves to the camera in the same fashion they were in when the 

reference image was taken.  This means that if they were standing in a certain pose when the 

ROI was first set, they needed to stand in that same pose for the finding algorithm to work.  If the 

POI even maintained a similar pose, and was a reasonable distance off the starting distance (< 1 

m from where the ROI was first set), the finding algorithm would eventually find the POI, but it 

would take longer than if the POI returned to its starting depth, and recreated its pose.  In each 

experiment run, after losing the POI, returning to the original pose and distance resulted in 100% 

matches.  To increase accuracy of re-finding a lost object, it is again important to correctly set a 

proper ROI.  For the best chance of matching, an ROI should be selected on a surface where 

there are many features, i.e. letters, lines, markings, on a shirt, facial features.  In all experiments 

the ROI position and size was selected like Figure 4.1c.  In trials where the POI’s shirt was 

featureless, i.e. a mono colored shirt, the time it took to re-find the POI after being lost was 

significantly higher than when the POI’s shirt had features.  The “ideal ROI” from Table 1, 

shows how many features could be found whilst wearing a shirt with many markings.  Wearing 

just a mono colored shirt on the other hand, would result in features only being found on the face 

which decreases the chance of re-finding the object simply because of the size of the face 

compared to everything else in the frame. 
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Figure 4.6 – Re-finding an object: corners, depth, and histograms, vs. time 
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Figure 4.7 - Re-finding an object after occlusion of the object occurs 
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4.4 Dynamic Tracking and Following 

Experiments run while the wheelchair was in a stationary position showed that SIGHT’s tracking 

algorithm worked well when combining particle filters and optical flow, along with a re-finding 

method.  The next step was to run tests to see how well it maintained tracking while it was 

moving, thus how well tracking was preserved given that both the background, and the OOI/POI 

kept changing.  The experiments run in this stage were also used to tune the PID controller so 

that following a person or object was viable. 

 

Before the experiments started, the wheelchair motor speeds were capped at about 1 m/s, and a 

safety RF remote emergency-off switch was installed.  This made sure that in an emergency the 

wheelchair was able to be stopped right away.  A “course” was then set up outside the NCART 

lab at Ryerson so that testing was uniform.  The course consisted of a 32 metre track.  Figure 4.8 

shows the first half of the track.  From 2 m in front of the black tape (bottom of the figure) to just 

in front of the door at the end of the hall, 5 metre intervals were marked, for a total of a 17 m 

stretch.  At the 17 m mark, a turn was set up going left.  From the end of this hall (in track 1), to 

the end of the hall in track 2, a 15 m track was set up (again in 5 metre intervals).  Figure 4.9 

shows what the hall looks like from the end of the second hall (facing the end of the first hall).  

Figure 4.10 shows what the complete track looks like from the top down.  There were two 

primary types of experiments that were run on this course.  The first experiment was a straight 

run, it used only track 1.  The wheelchair would follow the person for 17 metres from the start to 

the finish, the program would be reset, and the wheelchair would follow the person from the 17 

m mark back to the start.  The second experiment used the complete track.  The person and 

wheelchair would walk the first 17 metres, then make the left turn at the end of the first hall, 
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continue 15 metres till the end of the second hall, and then while in the same run, make a 360 

degree turn, and continue back the way it came from – travelling 15 metres till the end of the first 

hall, turning right, and then walking 17 metres back to the beginning.  Using the complete track 

resulted in about a 64 metre distance, with one left turn and one right turn.   

Figure 4.8 - Track 1 
 

Figure 4.9 - Track 2 Figure 4.10 - Complete track 

 

Prior to running experiments on the full track, the PID controller was tuned by staying within the 

first 5 metres of the track.  Using the data captured by the data logger, the tuning was made 

accurate so that the wheelchair was able to turn fast enough to keep up with the POI.  It was 

decided that reversing the wheelchair was not a useful feature; instead the wheelchair had the 

capability of turning around in order to go the other way.   

 

For SIGHT to be used in the real world, it must be able to follow a person’s natural walking 

speed.  There were three types of walking speeds that were used in testing, a fast, medium 

(average), and slow walking speed.  Based on a study of pedestrian walking speeds [169], which 

found that the average walking speed for those younger than 65 was 1.25 (m/s), and 0.97 (m/s) 

for those over 65, the slow walking speed metric was set to about 0.97 (m/s), the medium to 1.25 
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m/s, and the fast to 1.5 (m/s).  Using these values gave a reasonable idea of how fast different 

age groups walk.   

 

For the first set of experiments, the straight path (from the start to the 17 (m) mark and back), 

was used.  For each walking speed, the POI initialized the ROI, and then walked straight to the 

17 (m) mark.  At the 17 (m) mark, the POI would stop and restart the system, reselect a new POI, 

and go back from the 17 (m) mark to the start.   Due to a change in the lighting conditions around 

the 14 (m) mark, SIGHT lost the POI once out of six times.  However in the other five runs, the 

system tracked and followed the POI perfectly.  Table 3 shows more detail of the six runs.  The 

depth is given as a metric as to give the reader an idea of the speed of the wheelchair – the 

further from the target the faster the speed of the wheelchair, and vice versa – the closer the 

target, the slower the wheelchair. 

SPEED Start -17m 
POI (sec) 

17m - start 
POI (sec) 

Start -17m 
WC (# ticks) 

17m - start 
WC (#ticks) 

Figure 

Fast 12.4 13.0  ~300 ~200 Figure 4.11, Figure 4.12 

Medium 15.8 16.0 ~240 ~220 Figure 4.13, Figure 4.14 

Slow 22.3 21.2 ~290 ~280 Figure 4.15, Figure 4.16 

Table 3 - Track 1 Testing 
 

Following the POI on a straight course worked well.  Even in the first case where the POI was 

lost, once the POI returned back in the view of the camera, it was re-found by the finding 

algorithm and following continued.  Based on the data, it is obvious that the wheelchair was able 

to keep up with the POI, more so in the medium and slow speed cases.  From the graphs, it can 

be seen that the initial acceleration was the greatest change of speed – this acceleration was 

necessary so the wheelchair could maintain the OSP distance throughout the run.  After this 
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initial jump of speed, the wheelchair kept its speed and distance relatively still, until the POI 

reached the end, at which time the wheelchair decelerated appropriately until it was a safe 

distance from the POI.  Notice how in the fast speed case the speed was steep for a longer period 

of time compared to the medium and slow cases.  This makes sense, as the wheelchair had to 

move faster in order to maintain the OSP distance.  The graph for the slow speed infers that the 

best tracking occurred here.  This makes sense - as the chair is moving slower, the camera is 

moving less, and therefore the optical flow and particle filter algorithms have more accurate 

readings.  The results from this experiment showed that even though the background is changing, 

the combined tracking algorithms that SIGHT uses, still works. 

 

The next experiment made use of the entire track, from the start to the 32 (m) mark, and back to 

the start.  As mentioned above, there are two turns involved, one left turn at the 17 (m) mark, and 

a right turn coming back at the same corner.  This experiment was interesting because it tested 

SIGHT’s capabilities in a more real-world environment.  In the second track, the lighting 

conditions really showed the drawbacks of this system.  The quick changes in lighting threw off 

the camera data, thus throwing off the tracking scheme.  The FAST-BRIEF finding algorithm is 

not able to re-find the object when lost, because the lighting conditions changed so drastically – 

the features and interest points that were stored about the POI were no longer applicable with the 

new light.  However once the chair was moved away from the light into an environment which 

better suited the original ROI lighting, the object was re-found and the tracking was continued.  

Of the three runs that were used in the complete track, only one run made it the entire way.  Both 

the other runs (one going at a fast speed, and one at a slow speed), got lost at the end of the 

second hall.  The main reason for it getting lost, besides the change in lighting, was due to the 
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person slowing down too much at the end and then making the turn around to head back.  

Because of the slowdown and the turn, the conditions for tracking deteriorated and the object 

was lost.  In the one run that worked well (at a medium speed), the speed was continued 

throughout the entire run, including the end of the second hall and the turn.  Because the speed 

was continuous, the lighting condition did not play as big a role as it did in the other two runs.  

Table 4 shows the metrics from this test.  You can tell from the graph (Figure 4.17) for the 

medium run, that around the 400th tick, the POI was making the turn at the 32 m mark in order to 

come back.  Figure 4.18 shows one of the runs that got lost at the end of the hall, just before the 

180 degree turn back.  Figure 4.19 shows the histogram values recorded on that run, you can see 

how at the end of the second hall, the values suddenly increased – showing that even though the 

object was in front of the wheelchair, the lighting conditions made it seem like it wasn’t.   

 

SPEED Start – 64m 
Finish  

POI (sec) 

Start - 64m 
Finish  

WC (# ticks) 

Figure 

Medium 75.0 ~600 Figure 4.17 

Table 4 - Complete Track testing 
 

The experiments that were run showed us that lighting plays a vital role in SIGHT’s ability to 

track and follow a OOI/POI.  In conditions where the entire route of the POI’s path has stable 

lighting, SIGHT was able to track with a very low “lost” rate.  However, in a route where the 

lighting changes were volatile, SIGHT did not perform as well.  From the experiments run, it can 

be seen that travelling at a speed of 1.25 (m/s) or slower, resulted in the best tracking.  Increasing 

the speed to about 1.5 (m/s) and higher does have a higher “lost” rate.  The FAST-BRIEF finding 

algorithm does work well when the lighting conditions do not change much from the 
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environment where the ROI was taken, and when the POI is able to maintain a similar pose to 

the original ROI.   
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Figure 4.13 - Start to 17m, medium speed 

 

 
Figure 4.11 - Start to 17m, fast speed 

 
Figure 4.12 - 17m to start, fast speed 
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Figure 4.14 - 17m to start, medium speed 

 
Figure 4.15 - Start to 17m, slow speed 

 
Figure 4.16 - 17m to start, slow speed 
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Figure 4.17 - Start to finish, medium speed 

 
Figure 4.18 - Start to finish - lost at the 32 m mark: depth values 

 
Figure 4.19 - Start to finish – lost at the 32 m mark: histogram values 
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Chapter 5. Conclusion and Future Work 

This thesis had a two-part objective – to demonstrate that it was possible to modify an existing 

wheelchair to allow it to follow a person and their path through a human-occupied environment, 

and to demonstrate social practicality for such a system.  We created a system called SIGHT, a 

Socially Interactive, Gesture-aware, Human-following, Transport.  What makes SIGHT special 

is that by using cheap off the shelf components, we were able to transform an electric wheelchair 

into a person following transport, for under $300 (not including the laptop).  Compare this to the 

robotic wheelchairs mentioned in the literature.  Most of those had expensive equipment and 

were not able to run in real time. 

 

The main contribution of this thesis is to demonstrate that two common tracking methods, 

particle filters and optical flow, could be successfully combined to form a more robust tracking 

method.  When these tracking methods failed and the object was deemed lost, SIGHT’s use of 

the FAST and BRIEF algorithms allowed it to re-search and possibly re-find the object.  

 

Social interaction, in a general sense, is the way people communicate and correspond with one 

another.  It can be defined as actions taken by an individual that relate to the behavior of others, 

and therefore dictate the individual’s further reactions and directions [12].  SIGHT is social in 

the sense that it uses gestures and coordination between the robot and its (human) user [11].  

Because of the gestures, a channel of communication is open between the user and the chair.  

With this functionality, companionship can exist also between the user and the chair.  This can 

lead to a sense of immediacy and intimacy, awareness, and connectedness that the user may feel 

towards the wheelchair.  Immediacy, which is a measure of the psychological distance, such as 
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smiling and nodding, can also be detected by the gesture engine we implemented.  The 

behaviours are used to create and maintain intimacy and social awareness.  Connectedness is the 

emotional experience felt by another’s presence.  The chair, acting as a social outlet to the user, 

can help the user feel more connected. 

 

5.1 Limitations 

Experiments were run to show how effective the SIGHT following system is.  Its major 

weakness is tracking an object or person under variable lighting conditions.  Due to the infrared 

nature of the camera being used in SIGHT, lighting changes from frame to frame could 

completely throw off the tracking, even though to the human eye, not much has changed between 

frames.  Re-finding the object will also not work because of the light variations.   

 

Another limitation is re-finding a lost object, regardless of the lighting.  In most trials, when the 

object was lost, he or she had to return to a similar distance and pose as to how they were when 

the ROI was first set.  Although in most cases, returning to a similar pose will result in a “find” 

by the algorithm, it can still be inconvenient for the POI to do so.   

 

Speed was a third factor which restricted SIGHT’s ability to follow a person.  If the person 

walked too fast, especially at the start of the system, the chances of losing the person increased. 

 

The fourth factor is the appearance of the person that is to be followed.  If there are other people 

or objects that are similar to the POI’s appearance (shirt color, features), SIGHT will become 

confused, and chances of losing the POI will increase. 
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A final limitation would be the colors of the POI.  Because the system relies on the histogram 

values of what colors it is seeing, colors that blend in with the background will fare poorly 

compared to colors that stand out.  The same goes with features on the person or object. 

 

5.2 Advantages 

Although limitations do exist, SIGHT can still work robustly in many scenarios.  The target 

audience for SIGHT is seniors who rely on having a wheelchair nearby, but can still manage to 

walk themselves slowly.  A senior’s pace would be around 0.97 m/sec [169] – at this pace 

SIGHT would find it much easier to maintain following.  Furthermore, SIGHT has the advantage 

of finding lost objects, a feature that many tracking robots do not have.  It deals well with 

occlusion because of this.  SIGHT also gives the user a stronger sense of control – whether the 

user wants to drive, or have the chair follow them, they can always be in control.  The gesture 

system allows for this to happen.  Although currently the gesture system is set up for a remote 

control media player, it can be modified to many other applications.  Other following robots do 

not have this feature.  Figure 5.1 shows how the wheelchair used in this thesis looks like with the 

attached camera. 

 
Figure 5.1 - SIGHT, an autonomous people-following gesture aware robotic wheelchair 
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5.3 Future Research 

The limitations mentioned above are a primary research focus for future work.  Lighting 

conditions is an important factor that needs to be remedied.  A better method for finding lost 

objects needs to be found.  This method should be rotationally variant, but yet not much more 

computationally costly.   

 

Since the primary target of this system are meant for seniors, more on board sensors on the 

wheelchair may be beneficial.  Bodily measures such as heart rate, blood pressure, or even 

oxygen levels, could be monitored directly from the chair.  The chair could then communicate 

autonomously with a hospital or health care worker.  This would be useful in emergency cases, 

where the user experiences a medical problem, and is not able to call for help themselves.  The 

chair will be able to detect a problem, and correspondingly call for help [170].   

 

We would also like to see a brain-wheelchair relationship.  This means that we would like the 

wheelchair to correspond to specific brain waves.  I.e., the chair would follow you while you are 

in a relaxed state of mind, and would stop following you while you are in a more stressed state of 

mind.  In fact, we have been awarded an NSERC grant in order to look more into this.  We look 

forward to making this an actual feature. 

 

What is probably the most important future feature is for the chair to be able to get from point A 

to point B based on a gesture or a social cue from the user.  Instead of following the user, the 

chair could instead learn over time where certain destinations are, so in the future if the user 

gives a cue that they want to go to a certain place, the wheelchair could take that person there by 
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itself, without any direction or interference by the user.  An example of this would be to learn 

where the kitchen or washroom is, and to take the user there upon receiving a signal that he or 

she wants to go there.   

 

5.4 Concluding Remarks 

The hope of this thesis is to ease the lives of people who are dependent on transportation 

vehicles, whether they are dependent on the transports to get them from point A to point B, or 

simply if it they depend on them to help in their day to day lives.  In particular, this thesis hopes 

that senior citizens who are alone and helpless can find comfort in this kind of technology.  Our 

work was demonstrated at the Ontario Science Centre’s “Robots Rule” event, in November 

2011, and was also featured in an article in the “Torontoist” [171].   We are optimistic that this 

sort of technology is heading in the right direction, and look forward to this research being 

continued and improved on in the future. 
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Appendices 

A. Particle Filter Flowchart 
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B. Calculate New Position Flowchart 
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C. Lost Object Flowchart 
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D. Complete SIGHT Flowchart 
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Nomenclature 

BRIEF - Binary Robust Independent Elementary Features   

COTS: Common Off The Shelf   

EMD - Earth Mover's Distance   

FAST - Features from Accelerated Segment Test   

GSR - Galvanic Skin Response   

HMM - Hidden Markov Model   

HSV - Hue, Saturation, Value Color Space   

LK - Lucas-Kanade Optical Flow Method   

MAid - Mobility Aid for Elderly and Disabled People   

OOI: Object Of Interest   

OSC - Open Sound Control   

OSP - Optimal Subjective Proximity   

PAMM - Personal Aid for Mobility and Monitoring   

PDF - Probablity Density Function   

PID - Proportional, Integral, Derivative   

POI: Person of Interest   

QOL - Quality of Life   

RGB - Red, Green, Blue   

ROI - Region of Interest   

SAR: Socially Assistive Robots   

SIGHT - Socially Interactive, Gesture-Aware, Human-Following, Transport   

SIR - Sampling Importance Resampling   
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SIR: Socially Interactive Robots   
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