
NOTE TO USERS

This reproduction is the best copy available.

®

UMI
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RESOURCE-AWARE TOPOLOGY ADAPTATION IN P2P

OVERLAY ADHOC NETWORK

By

Gabriel Lau

(Bachelor of Applied Science, University of Toronto, June 2001)

A thesis presented to Ryerson University

in partial fulfillment o f the requirements for the degree of

Master of Applied Science

in the program of Electrical and Computer Engineering

Toronto, Ontario, Canada 2004

© Copyright 2004, Gabriel Lau

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number; EC52962

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and Improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

UMI Microform EC52962

Copyright 2008 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PC Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Resource-Aware Topology Adaptation in P2P Overlay Adhoc Network
Gabriel Lau

Master of Applied Science
Electrical and Computer Engineering

Ryerson University
Toronto, 2004

With the emergence of wireless devices, service delivery for mobile ad hoc networks

(MANET) has started to attract a lot of attention recently. We believe that overlay

networks, particularly peer-to-peer (P2P) systems, is a good abstraction for application

design and deployment over ad hoc networks. The principal benefit o f this approach is

that application states are only maintained by the nodes involved in the application

execution and all other nodes only perform networking related functions. We propose a

P2P system for MANET, RAON, which performs query forwarding and overlay topology

adaptation based on link instability and power constraints. We evaluated and compared

the performance of RAON with an existing P2P system, Gia. Our simulation results

show that RAON improves the success rate and delay of query search as compared to Gia.

It, however, achieves this at the expense of higher energy consumption.

Ill

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to thank ray thesis supervisor Professor Muhammad Jaseemuddin and

co-supervisor Dr. Govindan Ravindran, for providing me direction and guidance during

this work. Special thanks to Professor Jaseemuddin, who gave me countless precious

advices and helped me clarify my ideas.

I also want to thank Dr. Yatin Chawathe of Intel Research and Dr. Scott Shenker of

UC Berkley for providing me the simulation code of Gia.

Finally, I want to express my gratitude to my family, who constantly supported and

encouraged me throughout the course of this thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

DECLARATION..II

ABSTRACT.. I l l

LIST OF FIG U RES... VIII

LIST OF TABLES.. XI

LIST OF ABBREVIATIONS ..XII

CHAPTER 1 INTRODUCTION..1

1.1. Motivation.................................... 2

1.2. Objective.. 4

1.3. Thesis Outline... 5

CHAPTER 2 BACKGROUND.. 6

2.1. MANET...6

2.1.1. MANET Unicast Routing Protocols..6

2.L 2 vtODF.. P

2.2. Peer-to-Peer Overlay Networks...11

2.2.1. Introduction to P2P file sharing systems...12

2.2.2. Unstructured P2P System — Gnutella...13

2.2.3. Stmctured P2P System — CAN ..15

2.2.4. Network Trajfic o f P2P File Sharing Systems....................................... 17

2.2.5. Comparison o f Unstructured and Structured P2P Systems................. 19

2.2.6. P2P fo r Multicast...20

2.2.7. P2P fo r Telephony Services (VoIP).. 22

2.3. Power Management Algorithms... 24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23.1. Suspend/Resume..26

2.3.2. Data Reduction... 27

2.4. Summary.. 28

CHAPTER 3 DESIGN... 29

3.1. A Scalable Gnutella-like P2P System — G ia ... 29

3.1.1. The reasons fo r Gia.. 29

3.1.2.' Gia Design.. 20

3.2. Resource-Aware Overlay Network..34

3.2.1. Gia s Adaptability to MANET.. 35

3.2.2. Neighbor Coloring Scheme..38

3.2.3. Proactive Neighbor Replacement... 42

3.2.4. Energy-Aware Topology Adaptation and Flow Control.......................47

3.3. Summary..49

CHAPTER 4 IMPLEMENTATION DETAILS..50

4.1. Packet-level Simulation..50

4.2. Prototype Overview..................... 51

4.2.1. RAON Application...52

4.2.2. RAON Agent.. 52

4.3. Forwarding Engine.. 53

4.4. Disconnect Protocol.. 54

4.5. PNR Implementation.. 56

4.6. Summary.. 60

CHAPTER 5 EVALUATION.. 61

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1. Simulation Setup..61

5.2. P2P Query Forwarding Performance...64

5.3. Network-level Analysis...73

5.4. Energy Consumption... 79

5.5. PNR Overhead... 82

5.6. MANET P2P Open Questions..83

5.6.1. Reverse path fo r responses..83

5.6.2 TCP or (/DP..g'/

5.6.3. Effectiveness o f Overlay Flow Control..85

5.7. Summary...-..............................86

REFERENCES... 91

APPENDIX A .. 96

V ll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 1.1: Example of single-hop and multi-hop wireless networks...................2

Figure 1.2: An example of overlay on top of MANET..................................... 3

Figure 2.1: Route Discovery process in AODV... 10

Figure 2.2: Searching for a file in a P2P network.. 13

Figure 2.3: Example of 2-dimensional CAN..17

Figure 2.4: Power state machine............................. ...24

Figure 3.1: An example of query search in Gia..37

Figure 3.2: The resulting topology of Figure 1.2... 41

Figure 4.1 : Overview of the RAON Prototype.. 51

Figure 4.2: The operations involved in a query search..53

Figure 4.3: Disconnect protocol state diagram.. 56

Figure 4.4: PNR flow diagram...57

Figure 5.1; Percent difference in colored links used by Gia and RAON for the

20:1000 scenario...66

Figure 5.2: Query Success Rate for Gia, (RAON - PNR), and RAON under

different MANET configurations.. 68

Figure 5.3: Query delay for Gia, (RAON - PNR) and RAON under different

MANET configurations... 68

Figure 5.4: Average query success rate and query delay by keeping the

simulation area constant in (a) and (b), while keeping the node speed

constant in (c) and (d)... 69

Figure 5.5: Histogram (bar) and CDF (line) of query delay distribution 72

V l l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.6: Query Success Rate for Gia, (RA.ON — PNR), and RAON under

different system configurations and network conditions after excluding

unacceptably liigh delay entries...73

Figure 5.7: Query delay for Gia, (RAON — PNR) and RAON under different

system configurations and network conditions after excluding

unacceptably high delay entries...73

Figure 5.8: AODV Route Failures for Gia, (RAON — PNR) and RAON under

different system configurations and network conditions............................ 75

Figure 5.9: Link failure example. The dotted lines represent virtual links, and

LFl and LF2 are link failures 1 and 2 respectively.....................................75

Figure 5.10: AODV Requests for Gia, (RAON — PNR) and RAON under

different system configurations and network conditions............................ 76

Figure 5.11: Average physical hop counts between the neighbors for Gia,

(RAON — PNR) and RAON under different system configurations and

network conditions..78

Figure 5.12: Standard deviation of physical hop counts between the neighbors

for Gia, (RAON — PNR) and RAON under different system configurations

and network conditions.. 78

Figure 5.13: Maximum physical hop counts between the neighbors for Gia,

(RAON - PNR) and RAON under different system configurations and

network conditions..78

Figure 5.14: Number of dead nodes for Gia, (RAON — PNR) and RAON under

different system configurations and network conditions............................ 80

IX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.15: Dead time for Gia, (RAON - PNR) and RAON under different

system configurations and network conditions.. 80

Figure 5.16: Normalized dead time for Gia, (RAON - PNR) and RAON under

different system configurations and network conditions............................ 80

Figure 5.17: Energy consumption pattern for all RAON nodes in the 20:1000

scenario with 50 peers...................................... 81

Figure 5.18: Isolating the energy consumption of one of the nodes in Figure

5.12... 82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 3.1: Conditions for changing a neighbor’s color. The symbols && and ||

refers to the logical AND and OR operations respectively......................... 40

Table 3.2: Node discovery methods. In each of the methods, it is assumed that

node n is the source... 44

Table 5.1: Network level simulation parameters..62

Table 5.2: P2P level simulation parameters.................... 64

Table 5.3: Average number of messages generated over all MANET scenarios

for Gia, (RAON - PNR), and PNR..77

XI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Abbreviations

ACK Acknowledgment

ACPI Advanced Configuration and Power Interface

AODV Ad-hoc On-demand Distance Vector routing

API Application Programming Interface

APM Advanced Power Management

AS Autonomous System

BIOS Basic Input Output System

CAN Content Addressable Network

CDF Cumulative Distribution Function

CPU Central Processing Unit

DHT Distributed Hash Table

DOS Denial Of Service

DSDV Destination-Sequence Distance-Vector routing

DSR Dynamic Source Routing

GPRS General Packet Radio Service

GPS Global Positioning System

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

MAC Medium Access Control

MANET Mobile Ad-hoc Network

NAT Network Address Translation

NCS Neighbor Coloring Scheme

Xll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

OS Operating System

P2P Peer-to-Peer

PC Personal Computer

PDA Personal Digital Assistant

PHY Physical

PMCP Power Management Control Protocol

PNR Proactive Neighbor Replacement

RAON Resource-Aware Overlay Network

RREQ Route Request

RREP Route Reply

RIP Routing Information Protocol

RTT Round Trip Time

TCP Transmission Control Protocol

TTL Time To Live

UDP User Datagram Protocol

USB Universal Serial Bus

VoIP Voice over IP

XIII

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1 Introduction

Wireless devices such as cellular phones, PDA’s, and laptops have become more and

more important in everyone’s life. These devices help people to communicate, organize,

and work at anytime and anywhere. In fact, cellular phones are no longer used for voice

communications only. Surveys have shown that cell-phone users are also interested in

other functionalities like checking emails, using location services, downloading ring

tones, taking and sending pictures, and playing games. On the other hand, PDA users

also want their handheld devices to support many extra features, such as playing music,

viewing albums, web browsing, and even word processing. These devices simply need

to get more and more powerful in order to stay in the market. One key element that is

highly demanded is to allow users to network and share contents with their peers.

In today’s cellular and wireless network, mobile hosts communicate directly with a

base station, and data are forwarded to the destination via the base station. This is

referred as the single hop model (See Figure 1.1(a)). In contrast, a mobile ad hoc

network (MANET) uses the multi-hop model where there is no central access point. A

MANET is basically a set of mobile hosts forming a private network that is

self-configurable. Due to limitation on radio propagation, these mobile hosts might

need to act as routers and forward data to the destination for other hosts in a multi-hop

fashion (See Figure 1.1(b)). This type of network is self-configurable and is viable for

situations where minimum or no infrastructure support is available (e.g. disaster recovery

operation, soldier communications in a battlefront, inter-vehicle notifications o f accidents

or traffic jams, etc.).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

\

, \
\

\

\ / A /
/

/

(a) Example of a single-hop network. The nodes (b) Example o f a multi-hop network. Node 2 must act
communicate»with each other via the base station. as router in order for the other nodes to communicate.

Figure 1.1: Example o f single-hop and multi-hop wireless networks

Mobile hosts have complete freedom in mobility, resulting in the network topology

being highly dynamic and unpredictable. Point-to-point communications rely on

multi-hop routing, but if one of the links along the path failed, then the connection would

be broken. For instance, in Figure 1.1(b), node 3 can communicate with node 4 via

node 2. If node 2 moves out of node 3’s transmission range, or node 4 moves out of

node 2’s transmission range, the connection would be broken. Also, wireless links

generally have lower capacity than wired links, and therefore, they may suffer from

congestion more frequently.

1.1. Motivation

Service Delivery on M A''ET has been a relatively under-explored area. It faces

many challenges posed by link instability, node transience, intermittent disconnection,

low battery power, and resource constrained nodes. We consider application-level

overlay network as a viable seiwice delivery architecture for MANET. An overlay

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

network is a set of nodes connected together forming a virtual network at the application

level, independent of the underlying network. Each connection between overlay nodes

is referred as a virtual link, and each link may consist of multiple physical hops. This

approach is especially attractive because only overlay nodes maintain service related

states. Hence, service delivery remains immune to the transience and instability caused

by other nodes. Figure 1.2 shows that overlay nodes are only aware of the overlay

topology, and any change in the underlying network topology is transparent to them. In

fact, overlay network has been an alternative solution for introducing new services that

are too difficult to deploy at the IP level (e.g. Multicast) [1],

MûjsETTcpcIoa^

Figure 1.2: An example o f overlay on top o f MANET. Overlay nodes do not need
to be aware of the intermediate nodes in the MANET topology.

Peer-to-Peer (P2P) is an overlay network architecture where each peer only

maintains information of its neighboring overlay nodes. These peers share their

resources and contents, and forward data on behalf of other peers. Every peer can act as

a server and provide services to other peers, thus there is no single point of failure.

Hosts may join and leave the P2P network anytime they want, resulting in rapid change

of the overlay network topology. P2P systems have been widely used for file sharing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

applications recently.Due to the similarities of dynamic topology and lack of

infrastructure between MANET and P2P, it is attractive to design an architecture upon

which P2P can adapt in the MANET environment. However, existing P2P systems are

designed for wired static hosts, thus problems such as link instability and constrained

power were not taken into account. The major challenges would be to locate the desired

content efficiently and deliver the content to the destination reliably under the MANET

environment.

1.2. Objective

The purpose of the project is to design a content delivery architecture that fits well in

the MANET environment. Due to the constrained resources of mobile hosts, hot spots

must be avoided in order to prevent congestion or node failure. Thus, the P2P overlay

architecture is chosen to serve this purpose. However, existing P2P systems are

designed for wired static hosts, thus problems such as link instability and constrained

power were not addressed. Also, some contents could be more popular than the others

(e.g. updated traffic and weather report), and the system should be aware of the

availability of these content to the users.

This thesis focuses on the issues of P2P adaptation to the dynamic environment of

MANET. ''rr design concentrates on providing content search service to the users.

We also propose content replication mechanisms to improve content delivery efficiency

and content availability through exposing node resource constraints to application-level

overlay network. The objective of these mechanisms is to ensure that popular content is

always available to the users through proactive replication. However, due to the design

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

space of this problem, they are not evaluated in this project. The following are the

objectives of the thesis:

1. Research on existing P2P systems and their adaptability to MANET

2. Design an overlay P2P architecture where peers are aware of any change on

their neighbors’ resources

3. Proactively change the overlay topology to adapt to the dynamic underlying

network topology

4. Perform packet-level simulation of the design

1,3. Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, we provide some

background information on MANET routing protocols, P2P systems and their

applications, and energy conservation algorithms. In Chapter 3, we address the design

issues of overlay P2P for MANET. Gia, an existing P2P system, as well as our proposed

system, RAON are described in this chapter. We then describe our the implementation

methodology of RAON in Chapter 4. Chapter 5 demonstrates simulation results and

evaluates the performance of both Gia and RAON over MANET. This chapter also

contains analysis of RAON over MANET. Finally, we conclude in Chapter 6 with a

summary of the thesis and with recommendations for future works.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2 Background

This chapter provides the fundamental knowledge of the teclmologies used in this

thesis. Section 2.1 gives an overview of MANET and MANET routing protocols.

Section 2.2 describes some of the existing P2P architectures used for file sharing

applications, and finally, Section 2.3 explains some proposed power conservation

techniques.

2.1. MANET

In the existing Internet, the router topology is usually static, despite the rare occasion

of network reconfiguration and router failures. On the contrary, MANET hosts, which

also serve as routers, are mobile, leading to highly dynamic network topology. Wireless

links are comparatively unstable than their wired counterparts due to the fading, noise,

and interference, resulting in higher congestion rate. Also, mobile hosts are constrained

in power as they typically rely on battery power [2]. All these characteristics have made

routing in MANET a very challenging task to achieve. The following subsections

discuss some of the existing unicast routing approaches, with a detailed description of the

AODV (Ad-hoc On-demand Distance Vector) routing protocol, as it is the protocol

chosen for this project.

2.1.1. MANET Unicast Routing Protocols

Among all the proposed routing protocols for MANET, they are generally

categorized into 2 classes: proactive and reactive [3]. Proactive (also known as.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

table-driven) routing protocols attempt to maintain a routing table with the most

up-to-date routes between any pair of nodes. Routing-update messages are propagated

periodically across the whole network such that each node can get a complete view of the

network topologv. This method enables mobile nodes to obtain routing information

before any data transmission takes place. However, it sometimes suffers from wasting

the limited wireless bandwidth, since every node ma.ntains routes to any destination even

if that route is never being used.

DSDV (Destination-Sequenced Distance Vector) [4] is a protocol that adopted the

proactive routing approach. It uses the classical Distributed Bellman-Ford (DBF) [5]

algorithm to construct the next-hop routing tables. Each node periodically advertises its

own routing table to all of its current neighbors in order to maintain the most up-to-date

information on the network topology. It also attaches a sequence number in every route

table entry such that nodes can distinguish new entries from the out-of-date ones. This

method can solve the well-known count-to-infrnity problem that occurs in RIP [6].

On the other hand, reactive (a.k.a. on-demand) routing protocols create routes only

when needed. A source node initiates a route discovery process for a specific

destination. Typically, it broadcasts a Route Request message to its neighbors, and once

the destination is found, it would receive one or more Route Reply messages. This route

entry is then maintained until the source no longer needs it or no route to the destination

exists. Therefore, the source does not need to waste bandwidth and energy to discover

and maintain a route that it does not need at all. The downside of this approach is that

when the source initiates a send request, there is a route setup time that it needs to wait

before it can actually transmit the data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DSR (Dynamic Source Routing) [7] is an example of the reactive routing approach.

When a node wants to discover a route to a destination, it broadcasts a Route Request

message to its current neighbors. Each Route Request is tagged with a unique Request

ID. This helps intermediate nodes to identify any duplicate requests and discard them

accordingly. On receipt o f a non-duplicate Route Request message, if the node does not

have a route to the destination, it appends its own address to the message and

rebroadcasts it to its neighbors. This process continues until the message reached the

V destination node or a node that has a route to the destination. That node would then

send back a Route Reply to the source with the complete list of intermediate nodes. The

reply is propagated back to the source via the reverse path, thus all the intermediate nodes

can record the complete hop sequence to the destination as well. And since the hop

sequence is known, the source can eliminate any loops in the route. When it begins

transmitting data to the destination, it includes the hop sequence in the packet header, and

intermediate nodes just need to forward the packet to its neighbor according to the hop

sequence.

DSR does not use any periodic update messages as in DSDV. A route is

maintained in the route cache and being used as long as all the links in the hop sequence

still exists. If one of the links were detected to be broken, the node that “owns” the link

would send a Route Error message back to the source. All the intermediate nodes along

the reverse path, as well as the source node, can remove any route that uses the broken

link. The source node would start a new route discovery process if there were still data

to be sent to the destination. Otherwise, it does not need to respond to the Route Error

message.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1.2. AODV

AODV (Ad-hoc On-demand Distance Vector) [8] is a reactive routing protocol that

combines ideas from DSDV and DSR. Similar to DSDV, each AODV node maintains a

routing table and a sequence number. Each route entry in the routing table stores the

hop count, next hop, and the greatest sequence number of the destination. There is also

an expiry time to indicate the validity of each route. The route entry is removed from

the routing table if it is not used or updated within that time.

On route discovery, the source broadcasts a Route Request message (RREQ). Each

RREQ has a broadcast ID, which is essentially same as the Request ID in DSR. Other

nodes can distinguish duplicate RREQs by examining the broadcast ID and the source

address. The RREQ also includes sequence number of the source itself and the

destination sequence number that is currently known by the source node. Wlren a node

receives a new RREQ, it updates the source sequence number and the next hop to the

source node in the routing table. If the receiving node does not have a route to the

destination, it rebroadcasts the RREQ to its neighbors. If it is in fact the destination or it

contains a valid route to destination with a sequence number that is greater or equal to the

one specified in the RREQ, it would respond with a Route Reply message (RREP). The

RREP is propagated back to the source via the reverse route, and intermediate nodes

would update the destination’s information in their routing tables. Thus, the forwarding

route is established and maintained by each intermediate node. If a node receives more

than one RREP for a specific RREQ, the destination sequence number in the RREP is

used for determining which route to accept. The node would either take the one with a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

higher sequence number or the one with smaller hop count if the sequence numbers were

the same, or else it would simply discard the RREP. Figure 2.1 displays an example of

the route discovery process, where the source (node 1) broadcasts an RREQ message and

received multiple RREP messages.

(a)Node 1 initiates a RREQ for node 9. Node 6 (b)Both nodes 6 and 9 send an RREP back to node
has a valid route, so no need to rebroadcast the
RREQ to nodes 7 and 8.

1. Node 1 records the one received from node 9
because it is fresher than the one from node 6.

Figure 2.1: Route Discovery process in AODV

In case o f a link breakage on a route, the node that detected it can notify all the

upstream nodes by sending an RREP message along the reverse path. This RREP

message should contain a higher sequence number than the one currently known, and a

hop count of infinity to the destination. When the source node receives this RREP

message, it can reinitiate a new route discovery process if it still needs to send data to the

destination. A newer version of AODV supports the Local Repair feature, i.e. if the

intermediate node that detected the link breakage is closer to the destination than the

source, it would initiate a RREQ and try to resolve a new route locally. Any data packet

that it receives in the meantime is queued at the node, and if a new route to the

destination is discovered, it flushes all the queued packets. If a nev route cannot be

found, it sends an RREP message along the reverse path as described above, and all the

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I
1 data queued at this node are dropped-

The main difference between AODV and DSR is how the next hop routing

information is determined. In AODV, this information is stored at the associated nodes

on the forwarding route, and thus, routing decisions are made independently at each node.

On the other hand, DSR inserts the complete hop sequence in the header of all data

packets. Routing decisions are solely made by the source. So if an intermediate node

found a better and more up-to-date route to the destination than the one known to the

source, AODV would be able to take advantage of that while DSR cannot. And since

reactive routing protocols can conserve more bandwidth and energy than proactive ones,

we decided to use AODV as the routing protocol for our project.

2.2. Peer-to-Peer Overlay Networks

Peer-to-Peer (P2P) is an overlay network architecture where each peer only

maintains information of its neighboring overlay nodes. These peers share their

resources and contents, and forward data on behalf of other peers. Hosts may join or

leave the P2P network anytime they want, resulting in rapid change of the overlay

network topology. This architecture can be used to run many kinds of networking

applications in a distributed fashion. Among all the applications, file sharing is the one

being used the most. In this section, we describe some of architectures designed for this

purpose. We also give an overview on some other applications that are deployed using

P2P, namely multicast and VoIP.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.1. Introduction to P2P file sharing systems

In recent years, P2P file sharing systems have been one of the most popular research

topics. By definition, P2P is a set of computers that join together to form an overlay

network, and file sharing is the most popular application of P2P. Napster [9] is the very

first P2P file sharing system. Although it is a file sharing system, it is not truly P2P,

since it uses a central server to store all the file indexes, where file index is a file pointer

that indicates where the file is located.

Even Napster is not a true P2P system, it started the P2P file sharing revolution,

which catches many researchers’ attention to start developing more advanced P2P

architectures. Typically, P2P file sharing applications allow users to share their files

with other end-users, which are referred as peers. Peers join together to form a network,

and they can find the desired files and download them directly from other peers. Figure

2.2 shows a simple example of searching for file in a P2P network. Each peer is a server

as well as a client, and there is no single point of failure. Nodes that have downloaded

the content become a content server themselves, thus servers are distributed all over the

network. This is in contrast to the traditional client-server model where one server

serves all clients. Hence, peers are sometimes referred as servents (SERVer + cliENT).

Different P2P systems are usually distinguished by how the P2P network is constructed

and how to search for the desired content within it. The actual file transmission

generally happens via a direct connection from the source to the destination.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.2: Searching for a file in a P2P network

Among the existing P2P systems, they can be classified into two categories:

unstructured and structured. Unstructured P2P systems, such as Gnutella [10], have no

specific way of finding the desired content, they usually do by network flooding to search

the entire network. On the other hand, structured P2P systems often use distributed hash

tables to directly locate the peers that contain the desired content. Thus, structured P2P

systems can conserve a lot of bandwidth when compared to unstructured P2P systems.

Some examples of structured P2P systems are CAN [11], Chord [12], Pastry [13], and

Tapestry [14]. In the next two subsections, we study both P2P approaches in detail.

2.2.2. Unstructured P2P System — Gnutella

Gnutella [10] is one of the real P2P networks. Users join the network and setup

coimections to some nodes as peers at random. Since the peers are randomly selected,

they form an unstructured overlay network. In order to locate a file, Gnutella floods the

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

network by bro ■ ‘. \sting a query message that contains the filename or a keyword.

Obviously, if . aery message travels too far away, it might overload the network.

Thus, a TTL value is set in the query message to limit the number of hops that message

can travel. Eaeh query message also has a universal unique identifier. When a node

receives a query message, it checks the message ID. If the node has received this

message before, it will drop the message. Otherwise, it continues broadcasting the

message to its neighbors.

If a node contains a file that matches the query, it sends a response message back to

the message originator along the reverse path, and keeps on forwarding the query to its

peers if the TTL value allows it to do so. The user then selects the file that he or she

wants and establishes a direct connection between the source and target node. One

disadvantage of Gnutella and other similar systems is that the TTL effectively segments

the Gnutella network into subnets, imposing on each user a virtual “horizon” beyond

which their message cannot reach [15]. However, if the TTL were removed, the

messages would be replicated in an exponential fashion throughout the network. This

suggests that the Gnutella network is faced with a scalability problem [12].

The more recent version of Gnutella uses the concept of SuperNodes or SuperPeers

to address the scalability issue. This concept was first proposed in the FastTrack

architecture [15], which is better knov/n by the popular client names KaZaA and

Morpheus. The idea is that nodes are dynamically assigned the task of servicing a small

subpart of the peer network by indexing and caching files contained in the part o f the

network they are assigned to [16]. Nodes with sufficient resources (bandwidth, memory,

and CPU power) are automatically elected as SuperPeers. Wlien a node wants to locate

14

Reoroduced with permission of the copyright owner. Further reproduction prohibited without permission.

ï

I

a file, it simply sends a query to its SuperPeer, and if the SuperPeer finds the file index

locally, it sends a reply back to the node. Otherwise, it forwards or broadcasts the query

to other SuperPeers. Thus, the SuperPeer acts like a local server. This architecture is

sometimes referred as partially decentralized unstructured P2P system, while the original

Gnutella is classified as purely decentralized unstructured P2P system.

2.2.3. Structured P2P System - CAN

The idea of Content-Addressable Networks (CAN) [11] is to construct a virtual

network that forms a J-dimensional Cartesian coordinate space. Each member, or node,

in a CAN is assigned a pair o f coordinates (x, y) and it “owns” a zone that (x, y) lies,

given that the CAN is 2-dimensional (in the case of 3-dimensional, then each member

would get (x, y, ■£) coordinates instead of (x, y)). This virtual space is used for storing

(key, value) pairs. Using a uniform hash function, a key K l can be deterministically

mapped to a point P within the CAN coordinate space. The key/value pair (Kl, V%) is

stored at the node that owns the zone in which P falls into. In order to retrieve this entry,

a node can use the same hash function and map K% to point P. If the key K represents a

filename of any file, and value V is the host that holds the file, then CAN is essentially a

distributed, intemet-scale hash table that maps filenames to their location in the network

[14]. In general, most structured P2P systems use the distributed hash table (DHT)

approach. Thus, structured P2P systems are sometimes referred as DHT-based P2P

systems.

When a new node wants to join the network, a new node must be added to the CAN.

Assuming' that some external CAN bootstrap nodes exist, a new node can then retrieve

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the IP addresses of the nodes in the existing CAN. The new node randomly chooses a (x,

,v) coordinates for itself and then sends a JOIN request to the node that owns (x, y). This

node will split its zone and assign one half of it to the new node. If a node leaves the

network, one of its neighbors merges with the departing node’s zone, given that the

merged zone is a valid single zone. If the merged zone is not valid, then one node will

temporarily handle 2 zones. Each node stores a list of (key, value) pairs. So when a

node joins and occupies a new zone, the node that previously owned that zone has to split

its list and sends the partial list to the new node. Similarly, when a node leaves, the

neighbor that is taking over the leftover zone has to get the list from the departing node.

To detect for node failures, each node is required to send periodic update messages

to all of it neighbors. This update message includes the node’s zone coordinates, as well

as the coordinates of its neighbors. If a node dies, all of its neighbors would stop

receiving the update messages from this node. All these neighbors will then start a

takeover mechanism and the neighbor with the smallest zone will merge with the leftover

zone. On a file search, the filename is mapped to a point in CAN, and a query message

is sent to the node that owns that point. The message can be routed to the destination

coordinates simply by forwarding it to a neighbor that is closer to the destination than

itself. That means, if the source is at (0,0), and it wants to send data to a node at (0,3), it

simply forwards it along the y-axis in the positive direction. Figure 2.3 shows an

example of the 2 dimensional CAN. Each box represents a zone, and each number is

the node that occupies it.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

4 1 2

5 6 (x,y)

Figure 2.3: Example o f 2-dimensionaI CAN

Some design improvements were proposed in [11] to help achieve better

performance. For example, by using a multi-dimensioned coordinate space, it increases

the size of the neighbor list of each node, but it reduces the routing path length of each

message. Also, since each node has more neighbors, the routing fault tolerance is

improved due to more potential next hop nodes. Another improvement is to increase the

number of realities, where a reality is defined to be a coordinate space. This results in

each node occupying a different zone in each coordinate space. Thus, the contents of

the hash table are replicated on every reality, which improves data availability. Another

way to improve data availability is to use multiple hash functions. Other improvements

include overloading coordinate zones, using better routing metrics, topologically sensitive

network construction, more uniform partitioning, and use of caching and replication

techniques.

I,

2.2.4. Network Traffic of P2P File Sharing Systems

In order to understand the P2P network traffic, tluee popular unstructured P2P

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

systems, Gnutella [10], FastTrack [17], and DirectConnect [18], were studied and

analyzed in [19] (DirectConnect is another P2P system similar to FastTrack). The

study in [19] was done by collecting 800 millions of flow-level records in a 3-month

period. Some interesting behaviors were observed.

First of all, the network traffic volume is mostly generated by small amount of users.

It is observed that the top 1-2% of the IP addresses account for more than 50%, and the

top 10% of the IPs account for more than 90%, of the total traffic [19]. This suggests

that the P2P search protocol should first find one of the popular hosts, such that the

search for popular objects will be found quickly and efficiently. For other uncommon

objects, the search might have to go through a large number of hosts in order to locate it.

It is also discovered that about 90% of the IP addresses have 10 or less connections with

other users, while only 1% of all the IP addresses have connections with 80 other IP

addresses. This implies that by routing packets via the heavy-hitter nodes can reduce

the number o f hops. On the other hand, it also implies that the network is highly

vulnerable to failures of these nodes.

Another rhajor observation is that most users do not stay in the network for long.

The on-time o f a host is defined to be the sum of all the connection durations over a

period of time, which can be used to characterize how long a host stays in the network.

It is observed that 60% of the IP addresses, 40% of network prefixes, and 30% of the

ASes (Autonomous Systems) stay for a total of 10 minutes or less per day [19]. This

suggests that the P2P network topology is highly dynamic, since users join and leave very

frequently. On the other hand, this also suggests that at the prefix and AS aggregation

levels, it is more stable and persistent. Thus, it might be useful to provide some

18

Reproduced wiih permission of the copyright owner. Further reproduction prohibited without permission.

indexing or caching nodes locally, such that when a node joins or leaves, this information

would not be propagated to the whole network.

Both of these observations are very important that P2P architects should consider

them when designing P2P systems. Due to the high level of system dynamics, it

becomes very challenging to make a large-scale structured P2P system practical. On the

other hand, it is suggested that by inserting indexing or caching nodes to the network, it

may help to reduce the effect of dynamism in the system [19]. Gia [20] is a system

similar to Gnutella, but take into account the two observations mentioned above, which

makes it more practical and scalable. The details o f the Gia design will be described in

Section 3.1, as it is the core of this thesis.

2.2.5. Comparison of Unstructured and Structured P2P Systems

Both structured and unstructured P2P systems have advantages and disadvantages.

In a purely unstructured system such as Gnutella, essentially nothing needs to be done for

maintaining the overlay network. Due to the behavior of P2P users, this in fact is a

better way to adapt to the dynamism of P2P systems. However, it creates problem when

one needs to locate some particular data, which it can only rely on flooding the network.

On the other hand, structured systems provide very efficient and robust query forwarding

techniques. By applying a predefined hash function to the desired content, the

requesting node can essentially determine which node can provide a match for its query

before actually sending out the message. Therefore, no real search is required, as a

query is forwarded to a specific destination, and the destination node would provide a

reply for the source node. This is accomplished by organizing the P2P nodes to form a

19 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

network in a virtual space where they follow a set o f common rules. However, this

approach is not easy to support keyword search, which is a very important feature in P2P

file sharing applications. Furthermore, it is not as adaptive as unstructured systems

when users join and leave. These problems will be revisited and discussed with more

details in Chapter 3.

It is interesting to note that neither structured nor unstructured systems consider

routing efficiency as a major factor when constructing the overlay. This is due to the

fact that P2P file sharing systems only use the overlay to direct the queries rather than

content, where queries are comparatively much smaller in size. Content is transferred

through a separate connection outside the overlay network. Thus, the routing efficiency

problem is not a big factor in P2P file sharing systems. However, this factor can be

significant for applications like multicast and telephony systems, as described in the

following subsections. Routing efficiency and robustness can greatly affect the

performance of these applications since data is transferred over the P2P links.

2.2.6. P2P for Multicast

Due to the lack of reliability, congestion control, flow control, and security of IP

multicast, application-level multicast has become an alternate solution to provide such

services. Since P2P is essentially an overlay network that is built at the application level,

it is feasible to support multicast service on top of it. Some proposed ideas for P2P

multicast are CAN-Multicast [21] and Scribe [22]. CAN-Multicast is based the CAN

^ design described earlier in Section 2.2.3, and Scribe is based on the Pastry [13] P2P

system. In short. Pastry is another structured P2P system that adopts the distributed

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hash table approach. It uses a circular 128-bit namespace, as compared to the

coordinate space used in CAN, and each node has a nodeld that is chosen randomly and

uniformly. Similar to CAN, keys are used to represent objects, and each node is

responsible for all the keys that are numerically closest to its nodeld. Each node also

maintains a list of neighbors with nodelds closest to itself. Thus, routing in Pastry is

simply forwarding the message to a neighbor with nodeld closer to the key than itself.

Since structured P2P systems provide some kind of routing mechanisms, they are more

suitable to provide multicast service than unstructured P2P systems.

There are mainly 2 approaches for P2P multicast; flooding-based and tree-based.

Flooding-based means for each multicast group, a separate P2P overlay is created. In

such cases, multicast is simply broadcasting to every node on the overlay. This

approach has the advantage that only group members need to maintain multicast

information as well as transmitting the data. However, constructing a new overlay per

group introduces more overheads to multicast group members. The CAN-Multicast

described in [21] uses the flooding technique. On the other hand, the tree-based

approach builds a spanning tree for each multicast group. Scribe in [22] adopts this

method and each member is connected to the root of the tree through multiple P2P

connections. There is a key called groupid that identifies each multicast group, and the

node that is responsible for this key becomes the root. When a node wants to join a

group, it sends a join message to the root. Any intermediate P2P node that receives this

message would add the source node into its children table for the specified group. It

would also regenerate a join message for itself and forward it towards the root, regardless

if it is a member or not. This way, a reverse path is established and data packets can be

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sent from the root to each group mernber. Scribe utilizes all nodes in the system,

including non-members, to help forward and duplicate packets for the group members.

Although CAN-Multicast and Scribe are proposed with different approaches, it is

suggested that multicast is independent of the P2P network structure [23]. This means

that the tree-based approach can be used in a CAN network, and the flooding approach

can be applied in a Pastry system. In [23], the authors made a head-to-head comparison

between the two multicast methods on both CAN and Pastry, with a total of four

combinations. It is discovered that tree-based approach outperforms the flooding

approach in terms of delay and overhead for either P2P systems. This is mainly due to

the expensive cost of overlay construction for the flooding method [23].

2.2.7. P2P for Telephony Services (VoIP)

Internet-based telephony services have been around for years. Some existing

telephony applications use a centralized server to maintain the directory of users and to

route each and every call [24]. That means, when a user wants to call a friend, it needs

to send a request to the server to lookup the IP address of that friend. Then when the

call is made, the voice packets need to go through the server again, which redistributes

them to the destination. With this approach, as the user base grows, the costs for these

servers scale proportionally, with the quality and reliability of the service degrade at the

same time. Another major problem of existing telephony applications is that clients that

are hiding behind a firewall or NAT (Network Address Translation) are very difficult to

reach, which makes the call-completion rates very low.

The founders of KaZaA has moved a step forward and decided to apply

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

voice-over-IP (VoIP) on top of the P2P network. They have deployed a P2P telephony

application, Skype [24], which is built upon the FastTrack technology used in KaZaA.

Recall that FastTrack uses the SuperNode concept, thus the user directory lookup

problem is solved automatically, which is essentially the same as filename lookup

procedure. As the number of users grows, the number of SuperNodes will grow

proportionally as well. Also, since the voice packets do not need to go through a

centralized server, instead they are sent directly between the callers, this approach again

solves the quality and reliability bottleneck problem. Skype uses a proprietary routing

algorithm to route the voice packets over the P2P network. This approach helps to solve

the Firewall problem, since clients that are not behind a firewall or NAT can now help to

route packets to those clients that are hidden. Since the P2P connections are established

when the clients join the network, no extra work needs to be done to route through

firewalls or NATs. Another advantage of the P2P approach is that it is not vulnerable to

denial-of-service (DOS) attack due to the fact that it does not have any central point of

failure. Furthermore, all data packets are encrypted, which is an essential feature since

all calls are routed tlmough the public Internet. Recently, Skype has added additional

features such as conference calls and PC-to-phone calls in the application.

Although Skype has shown success in supporting VoIP using an unstructured P2P

system, we should not ignore the potential of delivering this service with structured P2P

systems. As suggested in the previous subsection, structured P2P systems supports

some kind of routing mechanisms in the overlay, thus they are good for forwarding query

as well as data packets. Therefore, further studies should be made to explore the

possibility o f implementing telephony applications using structured P2P systems.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3. Power Management Algorithms

Power is the most valuable resource for any electronic device. For wireless devices,

this is a more critical issue since they often rely on batteries, so power is limited. There

are many power management techniques being proposed and they mainly focus on

non-communication components such as display, CPU, and disk. These peripherals

drain a lot of power when they are active. Thus the principle behind power management

is to suspend them whenever the user does not need them, and resume them when the

user wants to activate them. Several power states can be employed to define the

inactiveness of the machine. Figure 2.4 shows an example of such a state machine.

Idle > 5 minA ctiv t

I Resume
Cold Boot 4

\
Idle > 15 min

■HI

Standby

w arm B oot

Idle > 1 hr

Figure 2.4: Power state machine. Different actions can be done to save power at each
state, e.g. at “Standby” state, activate screensaver, spin down the hard disk, slow down
the CPU; and at “Suspend” state, turn off monitor and hard disk, and stop the CPU.

APM (Advanced Power Management) and ACPI (Advanced Configuration and

Power Interface) are two existing standards that applied this technique for laptop

computers [25]. In APM, the power management decisions are made by the BIOS,

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

while this is done at the OS level in ACPI. The major drawback of APM is that the

BIOS does not have any information on application-specific requirements, thus it might

misinterpret the users intention suspend a component where it is not supposed. It also

doesn’t have knowledge about USB and IEEE 1394 components. Therefore, ACPI

moved the power management module to the OS level instead.

This technique works very well for the components mentioned above, since the OS

can use different power states to gradually lower the power consumption rate as the user’s

inactive period increase. However, for communication components such as 802.11 and

bluetooth, the inactive period is not only determined by the local host, but also depends

on any remote host that is trying to communicate with it. There are two main

approaches that can be used for conserving power for communication. The first one is

to use the same suspend/resume cycle mentioned above. Communication components

need to be active in order to receive data, so the power management module is required to

determine when to suspend and how long to suspend really carefully. The second

approach is to reduce data size using techniques such as data compression, thus reducing

transmission time. However, this method must rely on application programmers to

provide this functionality. There are also other solutions that are implemented at the

hardware-level, specifically at the MAC (medium access control) or PHY (physical) layer.

The key disadvantage of this approach is that it has no information on application-

specific behavior. In the remaining of this section, we look into examples that employ

each of application-level approaches.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i-

2,3.1. Suspend/Resume

Kravets et al. [26] presents a power management control protocol (PMCP) that

achieves power management by offering functionality of suspending and resuming the

communication device at the transport layer. It provides an interface for applications to

define a policy that specifies how the suspend/resume routine should take place. This

protocol is designed based on the one-hop wireless model, i.e. mobile hosts communicate

with a base station. It further assumes that all point-to-point communications are done

tlrrough the same base station.

PCMP is a protocol that operates between a mobile host and a base station, where

the host is the master and the base station is the slave. When the master is suspended, it

sends a SLEEP message to the slave to notify it. In this state, any data that is targeted

for the master would be queued at the slave. The slave waits until it receives a

WAKE_UP message from the master, then it would forward all the data that it has

buffered to the master. This suspend/resume cycle results in an idle/bursty

communication routine between the host and the base station. If the suspension period

is too long, the bursty traffic can lead to unwanted retransmissions, which means

consuming more power. It also introduces higher latency to all transmissions. If the

period is too short, the power conserved might not be acceptable. Thus, there is a

tradeoff between battery life and transmission delay, and the application must specify

what kind of tradeoff is appropriate to it.

There are two timing-related parameters that PMCP need to determine: when to

suspend and the duration o f it. Both of these parameters are dependent on the

application. Ideally, whenever there is no traffic on the network, the communication

' 26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

devices should be suspended. Although this is impossible to accomplish, there is

usually a communication pattern for each application, which could help mobile hosts to

predict the idle periods. The host can listen to the medium for a period of time, and if

there’s no traffic within this time range, it can conclude that communication is idle and it

can suspend the device. This timeout period cannot be too long or too short, thus it

should be supplied by the application. After the device is suspended, it must determine

how long it should stay in that state. Since the acceptable level of delay and average

data size vary from one application to another, this parameter must be provided by the

application as well.

Simulation results suggest that this power management control protocol can

conserve up to 83% of communication power, using the communication pattern of a web

user. On the down side, it poses an extra delay of 0.4-3.1 seconds. This number might

be acceptable for web browsing applications, but absolutely not for real-time applications

such as video conferencing and multiplayer games. However, real-time applications

usually do not have too much idle time, thus PMCP would not be able to gain any

benefits, instead it would create more overhead due to additional control messages.

2.3.2. Data Reduction

It is known that for any wireless device, the power consumed is proportional to the

size of transmitted data. Therefore, reducing the data size is another method to cut

down the power consumption rate. In [27], Flinn et al. demonstrated how data fidelity

could affect the device’s battery life. They investigated 4 types of applications, namely

video player, speech recognizer, map viewer, and web browser. For each application,

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i

different levels of fidelity reduction methods are applied. For example, the video player

can achieve fidelity reduction by increasing the amount of lossy compression or

decreasing the display window's size of the video clip. Experimental results show that

lowering data fidelity does help to conserve energy, but the effectiveness o f it is vastly

dependent on the application type [27].

2.4. Summary

In this chapter, we reviewed some of the MANET routing protocols that are

commonly used, and focused on AODV, which is the protocol selected for this thesis.

We then provided an overview of several existing P2P systems used for file sharing

applications and compared their differences. We also described some other applications

that can be supported by P2P. At the end, we discussed some energy conservation

algorithms specifically designed for reducing the energy consumed by communication

components of wireless devices. In the next chapter, we discuss the design issues of the

thesis, and propose a solution that addresses those issues.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3 Design

The goal of the project is to design a P2P system that is suitable for deployment on

MANET. Due to the constraints and dynamism of MANET nodes, the P2P system must

be aware of the resources available and make adaptations to any change. Among the

existing P2P systems, Gia is the one that provides the features that MANET can take

advantage of. We decided to use Gia as the basis, and extend it to address the problems

that exist in MANET. We have also chosen to use reactive routing, specifically AODV,

as the underlying routing protocol. This chapter explains the motivation of Gia and the

approach that it took. It is accompanied by a detailed description of our MANET P2P

system, Resource-Aware Overlay Network.

3.1. A Scalable Gnutella-like P2P System - Gia

Gia is an unstructured P2P system that combines numerous schemes that were

proposed for improving the scalability and robustness of such system. This section

discusses the problems of unstructured P2P networks that Gia addresses, followed by the

design overview of Gia.

3.1.1. The reasons for Gia

As described in section 2.2.3, structured P2P systems use the concept o f distributed

hash tables, where all the file indexes are distributed evenly among the users. Thus, any

file in the network can be located simply by sending a query to the node that has the file

pointer, and the file pointer provides a mapping between the file and the location of it.

Although this technique is much more scalable than unstructured P2P systems, it only

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

supports exact-match queries, which means the identifier of the requested object (e.g.

filename) must be known. To allow keyword search in such systems, a typical approach

is to construct an index per keyword [28]. However, this method is very costly in terms

of maintenance due to frequent node join and leave.

Another disadvantage of structured systems is that it is very hard to maintain the

structure required for routing in a very transient node population, in which nodes may

join and leave at a high rate [29]. As discussed in section 2.2.4, P2P clients are

extremely transient, thus it causes a significant overhead for the system to maintain a

stable state. In case of abrupt node failure, it would take even more time and effort to

recover from the failure. This is because it takes time for the system to detect the node

failure (due to loss of refresh messages). After the failure is detected, the file pointers

that were previously stored in the failed node need to be retrieved and transferred to

another node or nodes. In contrast, both of these problems do not affect unstructured

systems like Gnutella at all. Thus, a new P2P file-sharing system, Gia, that is built upon

the Gnutella design is proposed in [20].

3.1.2. Gia Design

The most critical problem of Gnutella is scalability due to the flooding mechanism

used in the search protocol. The concept of SuperNodes used in the FastTrack

technology, as well as the more recent version of Gnutella, helps to improve Gnutella’s

scalability. Recently, instead of broadcasting the queries to all the peers, the idea of

random walk is also proposed in [30]. Although this method greatly reduces the number

of queries generated at each node, it is essentially a blind search that may increase the

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

search time significantly. Gia modified Gnutella to incorporate the ideas o f SuperNode

and random walk. The Gia design consists of four main components, i) dynamic

topology adaptation, ii) active flow control scheme, iii) one-hop replication of file

pointers, and iv) search protocol.

The topology adaptation algorithm is used for building the overlay topology. Each

node is assigned a capacity level, which is defined to be the number of queries the node

can handle per second. The number of connections a node makes to other nodes

depends upon its capacity level, the higher the capacity, the more connections it’ll make.

Neighbors inform each other about their capacity levels and current degree when the

connection between them is initially established. They also send periodic update

messages to notify each other on any degree change. Each node independently

computes a level o f satisfaction (S), which is a value between 0 and 1 that represents how

satisfied a node is with its current neighbors. A value of 0 means it is not satisfied at all

and it would look for new neighbors, while a value of 1 means it is fully satisfied and no

need to make new connections. This value is calculated by adding the capacities of all

the neighbors (normalized to their degrees) and divides the sum by the node’s own

capacity. This ensures that high capacity nodes have more neighbors than low capacity

nodes, in which they can act as SuperNodes in some sense. This number is also used to

determine the adaptation interval, which dictates the aggressiveness of the topology

adaptation algorithm.

In order to establish new connections, a Gia node (say X) must identify other existing

peers first. Node discovery can be achieved through contacting a well-known bootstrap

server or make use of ping-pong messages as described in the Gnutella protocol [31].

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After a list of existing peers is revealed, it keeps this list of peers in its cache (servent

cache), and X chooses a candidate from the list (say Y) with the highest capacity and tries

to connect to it. When Y receives a connection request, it would accept the connection

automatically if it has not reached its maximum number of neighbors (each node has a

parameter max_nbr that is determined by its capacity). Otherwise, it would compare

X’s capacity with its existing neighbors’ capacities, and if by allowing X to become a

new neighbor can help Y to be more satisfied, then Y would accept the request and drop

one of its neighbors. More details on whether to accept a new connection or not and

deciding which neighbor to drop can be found in [20].

In order to avoid overloading any node with queries, Gia included a flow control

scheme. Every node has a pool of tokens, and it periodically distributes them to its

neighbors proportional to their capacities. These tokens represent the amount of query

messages the node is willing to accept from its neighbors. Every time a node sends a

query to a neighbor, it consumes a token that it has received from that neighbor. If a

node uses up all the tokens from a particular neighbor, it cannot forward queries to that

neighbor until it receives a new set of tokens again. The token assignment algorithm is

based on Start-time Fair Queuing (SFQ), where the neighbor’s capacity is used as weight.

The tokens that were assigned to inactive neighbors are automatically redistributed

proportionally among the other neighbors. And as neighbors join and leave, the tokens

would be redistributed accordingly.

Gia also implements one-hop replication, where each node maintains an index of

content of all of its neighbors. Since the topology adaptation algorithm causes high

capacity nodes tend to have more neighbors, this leads them to contain a larger file index

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

list as well. Given this characteristics, Gia uses a biased random walk as its search

protocol, where a node forwards a query to the neighbor with the highest eapacity, given

that it has a valid token received from that neighbor. This protocol is based on the

intuition that high capacity nodes can often provide useful responses for large number of

queries. Each query has a globally unique identifier (QUID). If a node receives a

query that it has served before, then it would forward the query to a different neighbor.

Associated with each queiy are the parameters max_responses and TTL. ■ The TTL value

is decremented every time the query is forwarded, and max_responses is decremented

whenever a query hit is sent. A query is dropped if either of these values reaches zero,

thus they dictate how far a query can travel.

In summary, Gia is a system that takes advantage of the benefits of unstructured

systems, and improves the scalability at the same time by controlling how the network is

constructed. Due to the topology adaptation protocol and one-hop replication, Gia is

able to use a biased-random walk to provide a higher success rate in query search.

According to a research done at the University of Maryland where they compared the

performance of many existing unstructured P2P search methods, and it was discovered

that Gia is “a very good all-around solution, combining different ideas from other

schemes” [32]. Also, the topology adaptation protocol and the flow control mechanism

made the P2P topology and query forwarding to be aware of the nodes’ capacities.

Since resources are very limited in the MANET environment, we believe that Gia’s

design may fit well in it, so we decide to use Gia as the basis of our project.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2. Resource-Aware Overlay Network

P2P and MANET share the common characteristics of dynamic topology and lack of

infrastructure, thus we consider providing services for MANET users with the P2P

framework to be a feasible solution. Existing P2P systems are mainly designed for

stationary hosts that have reliable network connectivity, high processing power, and

virtually unlimited energy supply. Unfortunately, none of these assumptions is

applicable to MANET hosts. Therefore, we need to reevaluate these systems under the

new environment.

Structured P2P systems require each node to hold indexes for any node within the

network, despite that the index might be pointing to a node that is far away from itself,

both virtually and physically. If a node leaves the P2P network, the file indexes that it is

holding needs to be maintained by another node, and this operation is rather expensive.

And in case of a graceless failure, where a node crashes without any notice, the recovery

operation is even more expensive since neighbor nodes must first detect the failure, and

then retrieve the pointers that were stored in the failed node. In the MANET

environment, network connections can be disconnected instantaneously due to node

mobility and limited battery life. This poses a huge problem for structured P2P systems

since graceless failures can happen frequently. Furthermore, a node (say X) may have

steady connection with one neighbor (say Y), but fragile connection with another node

(say Z). This can cause a P2P network like CAN to go into an unstable state, where Z

thinks X has failed and attempts to takeover X’s zone. Z might eventually find out from

Y that X is still active, but valuable resources have already been wasted during the

takeover process. In contrast, node failures do not affect unstructured overlay networks

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that significantly. Therefore, we consider unstructured P2P systems to be a better

solution than structured ones.

Among all the unstructured P2P architectures that we explored, we believe that Gia’s

design may fit well in the MANET environment, although it is not specifically designed

for deploying on MANET. In this thesis we propose a P2P system for MANET,

Resource-Aware Overlay Network (RAON), which essentially uses Gia as the foundation,

and adds the features to address problems specific to MANET. In this section, we first

discuss some of the problems that Gia might face when running on MANET, followed by

a detailed description of the RAON design.

3.2.1. Gia’s Adaptability to MANET

The abstraction of capacity level of a node plays a significant role in all four design

features of Gia - topology adaptation, flow control, one-hop replication, and biased

random walk. Topology adaptation ensures that high capacity nodes are highly

connected, while low capacity nodes are not. The flow control mechanism uses tokens

to limit the number of queries a node can send to another, where the number of tokens

each neighbor receives is determined by its capacity. One-hop replication makes high

capacities nodes to contain more information. Finally, biased random walk increases the

probability of query hit by forwarding queries to high capacity nodes.

In Gia, capacity of a node is defined to be the number of queries it can handle within

a period of time (typically per second). This value is mainly determined by the CPU

speed, memory, and bandwidth of the node, which are usually constant for a static wired

node. Thus, the capacity level of a node remains constant in Gia throughout the node

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lifetime. However, this is only true for static wired nodes, where their location and

bandwidth do not change significantly, and they have unlimited power. In contrast,

MANET nodes have the characteristics of unpredictable mobility, link instability, and

limited power. These factors could affect both the node’s capacity and the overall

network performance.

The biased random walk algorithm forwards queries to high capacity nodes. This

method greatly reduces the number of queries caused by the flooding (broadcast)

algoritlim, but at the same time offers a higher probability of getting a query hit than a

pure random walk. This approach is favored for the MANET environment since it

greatly reduces the number of messages generated per query. However, since Gia is not

specifically designed for mobile networks, it does not take into account of the constrained

resources o f mobile nodes. In MANET, capacity is no longer a constant value, rather it

changes based on the underlying network condition.

Since the biased random walk always tends to forward queries to high capacity node,

the links to those nodes would experience more traffic than other links. If one of those

links were unstable, it would affect the performance of any query that passes through the

high capacity nodes. The performance of a query search is defined as the time required

for the query originator to receive a query hit response for a particular query. Unlike

flooding where many copies of the same query are generated on each search, only one

copy is generated in biased random walk. As link instability is not uncommon in

MANET, the performance of a query search can suffer badly if it is not aware of the

instability o f the links to high capacity nodes. As shown in Figure 3.1, link CA receives

more traffic than the link CB since A has a higher capacity (thus more neighbors) than B.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Likewise, link AG carries more query traffic than any other links to node A. Moreover,

a high capacity node usually processes more messages than low capacity nodes, which

causes it to expend power at a higher rate. Although we can safely assume that most of

the wireless devices are equipped with some kind of power regeneration system (e.g.

solar power), especially in the future, if the consumption rate were higher than the

recharging rate, then eventually the node would run out of power and fail.

Figure 3.1: An example o f query search in Gia. Peer D wants to look for file X,
which is sitting at peer I. As illustrated, C would always forward the query to A first
rather than B, and A would always forward to G first rather than any other neighbors,
assuming that the P2P topology does not change while this search is happening.

Taking into consideration of link instability and power constraints, RAON modifies

Gia’s design to adapt to those constraints in MANET. We keep the notion of Gia’s

constant capacity level of a node, but restrict it to only reflect the node’s computing

power, particularly CPU speed and memory. RAON uses a ranking system to classify

neighbors according to their dynamic properties, and tries to improve the overall network

performance by changing the overlay topology.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.2. Neighbor Coloring Scheme

The main aspect of the RAON design presented in this thesis relates to is to address

the problems that Gia did not, i.e. link instability and power consumption. We propose

that a RAON node keeps track of the delay it experiences with each of its neighbors and

the neighbors’ energy levels. Both of these values tend to change frequently over time,

so we define a ranking system, called the Neighbor Coloring Scheme (NCS), for each

node to categorize its neighbors into three different classes depending on their dynamic

attributes. The nodes are colored GREEN, YELLOW, and RED based on their ranks

ranging from High, Medium, and Low. The idea is to make the biased random walk

algorithm to also take neighbors’ colors into consideration when making a forwarding

decision in addition to the neighbors’ capacity levels. As in Gia, a RAON node requires

a token in order to forward a query to a neighbor, and it only forwards to neighbors that it

has not sent that query to before. Among the “available” neighbors, it groups them

according to their color and selects the one with the greatest capacity from the highest

color group. Thus, if neighbor A has a higher capacity but lower color than neighbor B,

the query would be forwarded to B instead of A.

Algorithm 3.1 shows the steps a node needs to take in determining which neighbor

to forward a query to. The addition of NCS to the biased random walk in RAON makes

it avoid using unstable links (to improve query search performance) and forwarding to

low-energy nodes (to increase the battery life of these neighbors). Therefore, the rank of

a neighbor is lowered if either the delay is high or the energy level is low. This way,

when a peer is running low in either bandwidth or power, its neighbors are aware of that

and forward queries to other neighbors that have more resources instead. Therefore, the

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

peers are not only sharing content, they are also sharing resources among themselves.

max_capacity <-

max node x

subset

Let Cali represent the color of neighbor i
Let Cap; represent the capacity of neighbor i
max color •<- RED

0 ,

i for every i in neighborSx such that x has tokens from /
and has not forwarded query with qid to i before

For all i in subset {
if (Coli > max_color)
or {{Coll = max_color) and {Capi > max_capacity')')
then {

max_color <- Coli

max_capacity Capi

max_node *- i

}
}
return i

Algoritlim 3.1: Node x receives a query with qid and determines wliich neighbor it
should forward it to.

Each node can determine the delay by probing the neighbors periodically and

measure the round trip time (rtt). The probe message can be a separate control message

or piggybacked to another message. If routing information such as hop count and link

layer failure detection is available to the application level, this information may benefit a

RAON node where it can have a clearer view of the underlying topology, and make more

accurate decisions when ranking its neighbors. However, this requires the routing agent,

such as AODV, to expose this information to the application layer, which is not supported

at the moment. After a node sent out a probe message to its neighbors, it sleeps for

probe_interval seconds and waits for an ACK message in the mean time. In case that it

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

does not receive an ACK when the timer expires, it would consider the previous probe to

be unsuccessful and assign a worst-case rtt (i.e. the updatejnterval) to that neighbor.

Energy level can be exchanged among neighbors periodically as well, but this means

update messages are sent even if the energy change is very minimal, which is a waste of

power. Also, the battery size usually varies from one device to another. For example,

as compared to a cellular phone, a laptop has a much larger display and many other

peripherals it needs to power up, so it requires a bigger battery. In such cases, the actual

energy level is not meaningful to the neighbors at all, and it might be misleading at times

as well. Therefore, we decided to use energy states instead of the actual value. Each

node monitors its energy level and determines its energy state relative to its battery size,

and updates its neighbors only when there is a transition. We define energy states of

HIGH, MEDIUM, and LOW, which correspond to the three colors defined in NCS. We

can also use the same technique to relate latencies to the colors by predefining the

threshold values for medium and high latency. Table 3.1 summarizes NCS by showing

the conditions for a node to change a neighbor’s color. Furthermore, the flow control

mechanism can be more adaptive to the MANET environment with the extra information

that NCS provides. More specifically, flow control can assign less tokens to neighbors

that are colored YELLOW, and even lesser for the ones that are RED, depending on the

neighbor’s energy level and/or link delay.

Neighbor’s Color Condition
GREEN ENERG Y=H IG H && LATENCY=LOW

YELLOW (ENERG Y = MEDIUM && LATENCY 1= H IG H) | |
(LA TEN C Y = MEDIUM && ENERGY ! = LOW)

RED ENERGY=LOW LA TEN C Y =H IG H

Table 3.1: Conditions for changing a neighbor’s color. The symbols && and
refers to the logical AND and OR operations respectively.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NCS provides a scheme for the forwarding algorithm to avoid using high delay

routes or consuming power of low energy neighbors. If the neighbor’s color is set to

RED because of low power, sending lesser queries to it can help extending its battery life

and hoping that eventually it can gain access to an energy source and recharge its power.

If it is due to high latency, avoiding queries to be forwarded to this neighbor might

improve the performance of the search, hoping that other nodes can lead to a hit as well.

High latency between two nodes can be caused by many reasons, and one of them is the

randomness of the MANET topology. Connection can become unstable if the

destination or any intermediate underlying node is congested, or one of the wireless links

along the route is broken or experiencing interference. Recall that the MANET

topology is transparent to the P2P network, thus an overlay node might remain connected

to a neighbor that is many hops away from it physically. The more number of hops

means a higher probability of encountering an unstable link along that route.

MANET Topology Overlay Topology

Figure 3.2: The overlay topology works well with the original topology (refer to
Figure 1.2), but poorly after some node movement. The connection between node 2
and 4 now consist o f 5 physical hops. There is also some overlapping routing
between node 2 and 3 as well.

We can visualize the above situation in Figure 3.2, which is the resulting topology of

Figure 1.2 in Chapter 1. Due to node mobility, the wireless nodes are moving freely

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

within the network, leading to many changes in the physical connections. However, the

overlay nodes are unaware of the physical changes and remain connected to their

neighbors as it was before. As illustrated in the diagram, the number of physical hops

between node 2 and 4 has increased from 2 to 5. Also, this route overlaps with the route

between node 2 and 3. The NCS causes node 2 to select node 1 or 3 over node 4 when

forwarding queries. It tries to achieve optimal query performance by selecting the best

available neighbor as the next hop without changing the overlay topology. Further

optimization can be achieved by creating new link in the topology. For instance, the

optimal solution in this situation is to establish a new connection between 3 and 4.

Therefore, a mechanism is needed to make the overlay topology adapts to the dynamics

of the underlying network. We propose Proactive Neighbor Replacement (PNR)

algorithm to achieve the necessary topology adaptation.

3.2.3. Proactive Neighbor Replacement

RAON uses a Proactive Neighbor Replacement (PNR) mechanism to further

improve the overall performance of NCS by changing the overlay topology adaptively.

If a node n measures the latency to be HIGH with one of its neighbors, it tries to form a

new neighbor relationship with an overlay node that is not currently a neighbor and is
I

reachable through a low latency MANET route. There are two major steps involved in

PNR; 1) search for a neighbor candidate; and 2) establish a new connection. Table 3.2

shows a list of node discovery methods that can be used in RAON. Each of these

methods returns a list of neighbor candidates to n, and the next step is to decide which

one it should connect to.

42

«%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Node Discovery
Method

Description

Ring Search n sends out a broadcast message to all the nodes within its
transmission range. Any node that is a P2P node would send a
reply back to it, otherwise, it broadcasts the message on behalf of n
again until the TTL expires
The message can include the existing neighbor list of n, such that
nodes that are already neighbors would not send a reply back
This method needs the underlying layers to provide APIs for the
application to perform this task, since at the application level, a node
cannot send a message without specifying the destination_______

Ping-Pong A sends a PING message through a link with the lowest latency.
The PING message should include «’s existing neighbor list.
Nodes that received a PING message check its own neighbor list,
and if there is one that is not in ?î’s neighbor list, then send a'PONG
message with that node’s information back to n via the reverse
route.
The PING message consists of a TTL value and it is decremented
every time it is forwarded, and the message is dropped when TTL
reaches zero.
By forwarding the message through low latency links continuously,
the probability of finding a node that n can establish a stable/low
latency connection with is higher_____________________________

GPS and GPRS > With the emergence of GPRS and GPS, we can assume that the
future mobile devices would mostly be equipped with these features
A mobile node can communicate with a server through GPRS and
update its physical location (according to GPS) periodically, the
server would then have the updated location of all the nodes that are
using the service
When node n needs to discover new nodes, it can send a request to
the server with its updated position. The server would then reply it
with a list of nodes that are physically close to it. The request
should also include n's existing neighbors, such that the server could
exclude those nodes in the reply
Two nodes that are physically close do not necessarily mean that the
connection between them is stable. The approach here is to hope
that node n would be able to find at least one node that it can
establish a stable connection, since we only need one to replace the
unstable one
The server can also keep track of the direction and velocity of each
node, so that it can reply with a list of nodes that are traveling
towards n (or exclude those that are traveling away from it)_______

Table 3.2; Node discovery methods. In each o f the methods, it is assumed that node n is the source.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The ideal solution is to select the one with the lowest delay, but this requires n to

probe every node in the list first. In order to probe a non-neighbor node, n would have

to establish a TCP connection with it, and before that happens, it needs to find a route to

that node. This process may consume substantial amount of bandwidth and power,

which are the resources that we aim to conserve in the first place. Thus, instead of

probing all the candidates, n chooses one with the highest capacity and probes it. If the

delay were found to be in the FIIGH state, n would send a P2P connection request to it.

If the connection were accepted, ?i checks the number o f neighbors it is maintaining at the

moment, and if it has exceeded the upper limit, it would simply drop the unstable

neighbor that it was trying to replace originally. If the connection were rejected, n

would choose another candidate from the list and repeats the above procedure.

Although this method might not find the best candidate, it avoids selecting one that is

unacceptable in terms of performance.

In case that no peer is returned in the node discovery process, or all the discovered

nodes have high round trip times, then n would keep original neighbor, but remains it

colored as RED. The node n continues probing this neighbor periodically, and if the

delay remains high, it would rerun PNR and try to find a replacement again. Note that if

the Ring Search teclinique is employed, then the first non-neighbor node that responds

the probe is practically the one with the smallest delay, so n can select the candidate in

the same sequence as it receives the replies. If the GPRS and GPS method is used, the

GPRS server can return the candidate list sorted in ascending order o f distance. This

way node n can use this order and try to establish connection one by one. Both of those

methods do not require any knowledge of the RAON network, thus they can be served as

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bootstrap mechanisms as well. However, they are both expensive operations, with ring

search flooding the network, and GPRS costing the user money to access the service.

Comparing to these two approaches, the Ping-Pong method is a much cheaper process, as

it uses existing connections to discover new nodes, so no new connection needs to be

established in advance. Therefore, RAON suggests using the Ping-Pong method to

discover new peers if the node is already connected to at least one peer. For

bootstrapping, GPRS is favored over ring search, since flooding is a very costly thing to

do. It does not only consume bandwidth and power of the source node, but all the nodes

within its TTL range. This contradicts with the main goal of the project. On the other

hand, GPRS allows the mobile node to contact a server at its own expense, and no need to

consume the valuable resources of other nodes. So providing that the GPRS service is

accessible by the user, this method should be used rather than ring search.

The remaining question is to decide when to start the PNR process. With the NCS

described in the previous section, the first requhement to trigger PNR is to have at least

one neighbor that is colored RED due to high latency. Since high latency can

sometimes be caused by temporary congestion or link failure, we should not drop a

neighbor just because it is experiencing a short-term problem. To accommodate this,

RAON nodes should record a recent history of probe results (e.g. 10 samples), and

compute the average latency for each of its neighbors. These samples are also examined

to see if there is an increasing pattern in latency or not. If this happens, it is likely that

the node is moving farther and farther away from the source node and thus increasing the

number of physical hops.

Another method to gain more accurate knowledge about the underlying network is

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to introduce some new update messages for neighbors to exchange their physical

locations, velocities, and traveling directions. If these data were available, they can be

used in combination with the average latency to decide if PNR should be executed or not.

Furthermore, rather than wasting bandwidth and power for sending regular updates, we

can piggyback the mobility information to the probe messages only when needed, i.e.

when latency is high. In summary, the conditions for a RAON node to replace an

unstable neighbor nbr are:

1. nbr is colored RED due to high latency

2. The average latency of nbr is high and it shows the tendency to grow; and if

nbr is physically far away, move in opposite direction and/or high speed (given

that mobility information is accessible)

Note that PNR can be used to replace multiple neighbors concurrently, as long as they

fulfill the two conditions listed above. In such cases, PNR would check if a candidate

list exists or not before it launches a node discovery process. In Chapter 4, we provide

the complete flow of the PNR algorithm, as well as the issues that we came across during

implementation.

Finally, we do not consider replacing RED neighbor just because it is running low in

energy. The main reason for replacing a neighbor is when the neighbor can affect the

overall performance of a query search. Since the low energy level does not affect the

existing query performance, it does not make a node candidate for neighbor replacement.

However, dropping neighbor relationship with nodes running at low energy level might

help conserve their energy that may prevent fliture query outage. It might also help the

node regain its energy level by reducing the number of nodes that can forward queries to

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

it. This idea is discussed in the next section.

3.2.4. Energy-Aware Topology Adaptation and Flow Control

Up to this point, we have discussed how RAON nodes deal with low-resource

neighbors, where both NCS and PNR operate on a per-Iink basis. The low-resource

nodes themselves can also adapt to the environment by limiting the features it provides

for other nodes. The main features of P2P file sharing applications are query search and

file download. The operation of downloading a file consumes much more resources

comparing to query search, since files are generally much larger than query messages in

terms of size. Therefore, when a node is running low in energy, it can start its power

conservation strategies by disabling the download feature first. Also, if the node is

running low in bandwidth (due to congestion, serving multiple download requests, or it is

downloading files from other nodes), it can temporarily stop accepting download requests

as well. However, file transfers are usually done through a separate connection, thus the

requester would not have any information about this node, and continue sending

download requests. There are three things that the receiver can do: 1) reject the request;

2) queue the request and serve it when it regain its resources; and 3) reply the requester

with a list of nodes that also possess the file. The simplest way to generate this list is to

remember the nodes that have previously downloaded that file.

After the download option is disabled, if the node is still suffering from a high

consumption of resources, it can also make use of topology adaptation and flow control to

reduce the consumption rate. We mentioned earlier that a node assign less tokens to a

neighbor that is not colored as GREEN. In fact, this can work both ways, where a low

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

resource node can assign smaller number of tokens to all o f its neighbors.

If reducing tokens still doesn’t help, the node can cut down its service even further

by dropping its neighbors one by one. By reducing the number of neighbors, it does not

only reduce the number of queries it would receive, but also the number of update

messages. This approach is targeted for conserving energy rather than bandwidth.

Due to the fact that if the low energy node drains all of its power, it would be

disconnected from the network anyway, so by gradually dropping the neighbors, it might

be able to extend its battery life for a little longer. When selecting which neighbor to

drop, it should choose the ones that are colored as RED first, especially the ones that are

low in power. The intuition of this approach is to keep as few connections as possible,

but if the remaining connections are unstable or expected to be disconnected very soon,

the node would have to look for replacements, which is an expensive operation as

discussed before. Therefore, it should target to keep the ones that are high in power

(more likely to stay in the network) with low latency (steady connection). And if the

mobility information of the neighbors is known, the decision can be based on it as well,

as we can expect that the nodes that are in close proximity and move in the same

direction at a comparable speed (showing synchronized motion) are likely to stay

connected. There should also be a minimum number of neighbors (e.g. 2) that each

node must keep, so that the chance of creating network partition is smaller.

3.3. Summary

In this chapter, we have proposed RAON, a P2P system for MANET, which is based

on the design of Gia. We addressed the conflicts between structured P2P systems and

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MANET, and we argued that it is not suitable for MANET. We also believed that Gia

might fit well in the dynamic environment of MANET. However, Gia is not specifically

designed for MANET, thus issues such as link instability and limited power were not

taken into account. Therefore, we modified the Gia design and added features in order

to be more adaptable to the MANET environment.

We introduced NCS in RAON, where each node monitors the conditions of the links

to its neighbors, as well as its neighbors’ energy levels. If a neighbor is found to be

unstable or running low in power, the node would avoid forwarding queries to this

neighbor until the link condition improves or the neighbor recharges its battery. RAON

also uses PNR that aims to restructure the overlay topology to adapt to the changes in the

underlying MANET topology. In the next chapter, we discuss some of the issues that

we encountered during implementation of our design.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4 Implementation Details

The design of RAON described in Chapter 3 addresses the issues of MANET P2P

systems. This chapter discusses the problems that we come across when implementing

the RAON prototype. In section 4.1 we provide the approach that we used in the

simulation, and then followed by a description of our prototype in section 4.2. In

sections 4.3, 4.4, and 4.5, we explain the implementation details of the forwarding

algorithm, the discormect protocol, and the PNR algoritlim respectively.

4.1. Packet-level Simulation

P2P system is an overlay network built at the application level. The process of

simulating a P2P system on top of a network simulator with packet-level details can be

very complex and time consuming. The complexity can be reduced by using detailed

flow-level models instead of packet-level network model [33], which is a more feasible

approach for simulating large-scale P2P systems. However, as suggested in [34],

integrating a flow-level model with a P2P analytic model is in itself a complicated task.

Furthermore, the packet-level details are especially important for any system that is

deployed on top of MANET, since the TCP throughput can be greatly affected by the

dynamic topology of the underlying network. Without the packet-level network model,

it is very difficult to study how node mobility and energy consumption can influence the

performance of a MANET P2P system. Therefore, we decided to use a packet-level

simulator to simulate our RAON design.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2. Prototype Overview

We implemented both Gia and RAON using the simulation framework provided in

[34]. Figure 4.1 illustrates the overview of our prototype implementation. The RAON

system is divided into two modules, namely the RAON Application (RaonApp) and the

RAON Agent (RaonAgent). The RaonApp is responsible for any user-level operations

that include establishing connections with neighbors (topology creation and adaptation),

generating queries and replies, assigning tokens (flow control), and maintaining the status

of neighbors. On the other hand, the RaonAgent interacts with the TCP socket layer,

implements the forwarding engine, transmits and processes messages. The rest of this

section describes the functionalities of the RaonApp and RaonAgent.

NS2 with I'CP socket
and P2P support

R A O N A gent
Socket Maintenance
Message Forwarding
Protocol Specific Message Parsing

RAON Application
Neighbor Management
Topology Adaptation
Flow Control
File Search

Figure 4 .1 : Overview o f the RAON Prototype

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.1. RAON Application

The RaonApp maintains a table of neighbor entries, where each entry contains the

following information about the neighbor: its address, capacity, degree, energy state,

recent rtt history, tokens received from the neighbor, and its file indexes. When a

connection between two nodes is established, each node sends initialization packets to the

other node, which contains all the information about the node needed by the other node in

forming the neighbor entry. In the subsequent update messages each node sends updates

to the other node for any change in its degree, energy state, and file indexes. Each node

also periodically sends token update messages to its neighbors every update_interval, and

waits for the ACK packet for the purpose of computing rtt.

Topology adaptation in RAON implements the same algorithm used in Gia, except

that it also keeps track of a list of neighbors that are candidates for replacement by PNR.

When a node needs to drop a neighbor, for instance because it exceeds open connections

with the maximum number of neighbors, it first checks whether the candidate neighbor

list is empty or not. If it is not empty, it selects the neighbor with the highest average rtt

value and drops it. Otherwise, it follows the algorithm of the pick_neighbor_to_clrop

function described in Gia [20] and selects a neighbor to drop.

4.2.2. RAON Agent

The RaonAgent is responsible for composing the corresponding packets and

transmitting them to the targeted neighbors. Upon receiving a message, the RaonAgent

first parses it and resolves the message type, and then notifies the RaonApp by calling the

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

corresponding API. The RaonAgent maintains a list of TCP sockets for the active

neighbors and these sockets are used for all communication activities. Sockets are

created and destroyed upon request by the RaonApp. The RaonAgent is also

responsible for forwarding query and ping messages. The query/ping forwarding and

socket maintenance are explained in the next two sections.

4.3. Forwarding Engine

Node A N o d e B N o d e C

RaonApp RaonApp RaonApp

RaonAgentRaonAgentRaonAgent

Forwarding Path

socket

Reverse Path

Figure 4.2: The operations involved in a query search. Node A sends a query to
node B, and it forwards the query to node C. The RaonAgent of node B maintains
the incoming and outgoing neighbors for each query. When node C sends back a
query hit, node B can forward it back to node A.

Each RAON node performs query and ping forwarding for other peers. Figure 4.2

illustrates an example of query forwarding in a RAON network. The application in

node A generates a query and passes the relevant information to the RaonAgent. The

RaonAgent creates the query packet and sends it to neighbor B through the TCP socket

that it has created before. When node B receives the packet its RaonAgent parses the

message and determines that it is a query message. It then consults the RaonApp, which

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

maintains all the file indexes. If the RaonApp cannot find the requested file, it informs

the RaonAgent which then forwards the query to another neighbor. The RaonAgent

stores the query ID in its cache, as well as the neighbor it has received the query from.

Thus a reverse path back to the query originator is established. Also, in order to avoid

sending the same query to neighbors that it has previously sent to, it stores the list of

outgoing neighbors for each query in its cache. The cache is periodically flushed after

every query_timeout, which is a configurable parameter. When node C receives the

query, it finds the file in its index list, so it sends back a query hit message via the reverse

path (i.e. to node B). When node B receives the query hit it simply forwards the

message back to node A. Ping messages also have unique identifiers and are forwarded

in the same fashion as queries, except that they are forwarded along low delay paths, as

described in Chapter 3.

4.4. Disconnect Protocol

The Gia implementation uses query keep-alive messages to detect for any query loss.

If the query originator does not receive any keep-alive message for some time, it

considers the query to be lost and generates the same query again. A query can be lost

for two reasons: I) a receiving node fails before it forwards the query to the next node; or

2) the reverse route is lost when a neighbor is dropped as a result of topology adaptation.

Gia uses keep-alive messages to deal with both situations. However, it also suggests an

alternative method that when a node selects a neighbor to drop the connection with the

neighbor, the connection should remain open for as long as a reverse route exists that

traverses the link. We implemented this method in RAON and describe the protocol

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

designed for this purpose in the following.

When a node X attempts to drop a neighbor Y, either due to Gia’s topology

adaptation or RAON’s PNR, the RaonApp of X deletes Y from its neighbor list and the

RaonAgent sends a DISCONNECT message to Y. The RaonAgent o f X keeps the

socket to Y in its socket list but changes its state to CLOSB_WAIT. Upon receiving a

DISCONNECT message the RaonApp of Y deletes X from its neighbor list and changes

the socket state to CLOSE_WAIT as well. Meanwhile, the RaonAgent checks if there is

any pending message in its cache that uses the link to X as the reverse route. If so, it

sends a DISCONN_REJ message back to X indicating that Y is not ready to close the

connection, otherwise it sends a DISCONN_OK message. A node that sends out a

DlSCONN_OK message implies that it is ready to close the socket.

If X receives a DISCONN_OK, it checks its own cache and if the connection to Y is

no longer needed, it closes the socket. If X receives a DlSCONN_REJ message or it

discovers that Y is still needed for a pending message in its cache, it keeps the socket

state in CLOSE_WA.IT state to use it for further communication. The socket in

CLOSE_WAIT state remains open until the RaonAgent flushes its cache, and in that case

X would send a DISCONN_OK message to Y for Y to close if it does not need the socket

anymore. If Y still needs the socket it would send back a DISCGNN_REJ message to X.

It repeats the above process when it flushes its cache.

It is possible for a node to reclaim the connection with its neighbor after it decides to

drop the neighbor and start the disconnect process. For example, node X can abolish the

disconnect process with Y once it discovers that the XY link resumes stable operation.

Similarly, in a different situation if X decides to replace another-neighbor and discovers

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that it has a good connection with Y, it is reasonable for X to reclaim its connection with

Y and put Y back into its neighbor list. To reclaim the connection X sends a connection

request to Y, and if Y accepts the request, both X and Y change their socket states to

CONNECTED. The state diagram in Figure 4.3 summarizes the disconnect protocol.

RaonApp command
or received

Connection/ ! ’NOTSCONNF.CT
accepted/ \ message

CONNECTED

Connection
accepted

Cr.OSR_WATTcr.osF.n

Received DISC()NN_REJ
message or socket still

needed for pending
messages

Received DTSCONN.OK
message and no pending

message rely on this socket

Figure 4.3: Disconnect protocol state diagram

4.5. PNR Implementation

In Chapter 3, we proposed PNR algorithm to improve the overall performance

of the RAON overlay network. We also discussed there the issues that PNR is designed

to solve, and described the general design of the algorithm. In this section we describe

our implementation of PNR in the simulation framework.

A node in RAON employs PNR algorithm to replace a neighbor reachable through a

high latency link Figure 4.4 shows the complete flow diagram of the PNR algoritlim in

our implementation. Wlien a node receives an ACK from its neighbor for its prior token

update message it measures the current rtt and records that in its rtt history. It then

computes a new average rtt using the samples from its rtt history for that particular

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

neighbor. If it does not receive an ACK from the previous update, it assigns a

worst-case rtt (e.g. updatejnterval) for that sample, such that it would be reflected when

computing the average rtt.

No
Receive ACK7.

Yes

No

Yes No

No

Yes

No

No
Receive ACK?

No
R T T eT H i?

Yes

Y esNo

Receives reply?

O an n o d e
discovery
^ start? /

iad neigbboi
list empty? ,

.vg RTT y
TH27 ^

'A n y valid'
servent in
-V cacbe?̂

M ark servent
as dead

Replace neighbor

A ssume w orst
case RTT

Assum e w orst
case RTT

Place neighbor in
bad neighbor list

Probe servent, and
wart for ACK

Start node
discovery, wait

for reply

Wait fo r the
update timer to

expire

Send periodic
update, and wait

for ACK

Rem ove neighbor
from bad neighbor
list if it exist there

Figure 4.4: PNR flow diagram

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Two predefined latency thresholds, THl and TH2, are used in NCS to determine the

MEDIUM and HIGH latency states, respectively. The PNR also uses these thresholds to

determine if a neighbor is a candidate for replacement or not. If the average rtt of a link

exceeds TH2, then PNR puts the neighbor in the candidate neighbor list and start

searching for a replacement. The values of the two tlrresholds determine the

aggressiveness of NCS and PNR. In our simulation that is discussed in Chapter 5, we

used the values of 1 second and 3 seconds for THl and TH2 respectively.

Each node has a servent cache, which is a list of known peers populated by the

bootstrap mechanism or the node discovery process. The term servent is described in

Chapter 2 (SERVer+cliENT), and we use it here in order to easily distinguish the peers in

the cache from the peers in the neighbor list. An entry in the servent cache contains the

address o f the servent and the last time it was contacted. A servent is marked as dead if

the node cannot contact that servent or a connection request is rejected in the previous

attempt. Any servent that is not marked as dead is considered as “valid”, and the PNR

sends a probe message to that servent. If the node receives a reply from the servent and

the average link rtt is less than THl, it sends a connection request and tries to establish a

P2P connection with the servent. If the node does not receive an ACK from the servent

after a timeout, or the rtt is high (e.g. greater than THl), or the comaection request is

rejected, then the node simply marks the servent as dead and tries to contact another

servent.

If there is no valid servent in the cache, the node begins a node discovery process.

In our implementation, the node uses the ping-pong protocol for node discovery if it has

at least one good neighbor. Otherwise, it sends a request to the bootstrap server to get a

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

potential neighbor address. In either case, the node has a list of servents, which the PNR

uses to probe the servents one by one as described above. Note that this process may

run into an infinite loop if all the nodes in the servent list are already marked dead.

Therefore, we added node_disc_interval parameter in the PNR algorithm that determines

how often the node discovery process can take place. If the node has previously

performed a node discovery within the past node_discJ.nterval period of time, the PNR

algorithm terminates and waits for the update timer to expire.

If the node finds a servent that accepts its connection request, it then drops the

neighbor with the highest delay in the candidate neighbor list and inserts the servent into

its neighbor list. Recall that the purpose of PNR is to find a node reachable through a

low latency link to replace a neighbor connected with a high latency link, hence the

chosen node might not be the best one at that moment. The PNR then checks if there is

another neighbor candidate for replacement, and repeats the above procedure as long as

the candidate neighbor list is non-empty. If no more neighbors need to be replaced, then

the algorithm just waits for the update timer to expire.

We suggested in the previous chapter that if a node is equipped with GPS, it may use

its physical location, speed, and direction to help making the decision of dropping a

neighbor as well as selecting a new neighbor. However, from our preliminary

simulation results we found that the delay between two nodes has no correlation with

their location and distance with each other. This is because we only have access to the

physical information of the overlay nodes and it is insufficient to make a good prediction.

In order to accurately predict the stability of a connection we need to have the mobility

information of all the intermediate nodes. However, this is impractical and infeasible as

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

those nodes are supposed to be transparent to the P2P nodes. Therefore, the mobility

information is not taken into account in our PNR implementation.

4.6. Summary

This chapter describes the simulation framework we used and addresses the question

of why we need to do simulation with packet-level details. We provide sufficient details

of our RAON prototype implementation including RaonApp, RaonAgent and forwarding

engine. We also describe the disconnect protocol and the parameters to better control

the PNR algorithm. In the next chapter, we evaluate the performance of RAON and

compare it with Gia.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5 Evaluation

We implemented the RAON prototype described in Chapter 3 and Chapter 4, as well

as Gia using C-M-. We simulated both systems using NS2 and compared their

performances. In this chapter, we first describe the simulation environment that we used

and our simulation objectives. We then provide the results that we obtained, along with

a detailed analysis and comparison.

5.1. Simulation Setup

We incorporated our RAON prototype with the Network Simulator NS2 [35]. NS2

is an open source simulator developed by the VINT project at the University of California

at Berkeley, with the mobile and wireless extensions contributed by the MONARCH

research group of Camegie-Mellon University. We also installed the TCP socket and

peer-to-peer extension developed by the Networking and Telecomm Group at Georgia

Institute of Technology. Our simulations are based on NS2 version 2.26 installeo ;

Redhat Linux 9. We use the IEEE 802.11 standard MAC layer. Each node is equipp

with an antenna that is 1.5m above the ground. We use the two-way ground propagation

model, with a transmission power of 281.8mW, which results in a transmission range of

approximately 250m. The energy model provided by NS2 is used to model the node’s

energy consumption and all nodes start with the same initial energy level. Node

movements are modeled with the random waypoint mobility model, where each node

chooses a destination randomly within the simulation area using a uniform random speed

between 0 and max_speed. When the node reaches the destination, it pauses for a fixed

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

amount of pause_time, which is set to 30 seconds in all the scenarios, and then move on

to another destination.

Our simulation objective is to study the behavior of RAON and Gia and evaluate

their performances under different system configurations and network conditions. We

simulated two RAON configurations. First, we refer to RAON the system

implementing both NCS and PNR. Second, we refer to (RAON - PNR) the system

implementing only NCS but not PNR. By varying the node density and the maximum

speed of mobile nodes, we generated MANET scenarios with various levels of dynamism.

Table 5.1 shows the network level simulation parameters. The maximum speeds of

2m/s, 5m/s, and 20m/s are used to model the movements of pedestrians, non-motorized

vehicles, and motor vehicles respectively. For node density, we keep the number of

mobile nodes constant, and use two different simulation areas; (500m x 500m) and

(1000m X 1000m), to achieve dense and sparse node distribution respectively. In the

rest of this chapter, we use the notion max_speed:dimension to refer to a scenario, where

dimension is the dimension of the simulation area (i.e. 500 and 1000). Thus, we

gf,nerated six scenarios for all combinations of speed and dimension. For example,

2:500, 5:500, 20:500, 2:1000, 5:1000, 20:1000 are scenarios 1 to 6 respectively.

Parameters Values
Simulation Period sim time 1000 sec

Number of mobile nodes 100
Simulation Area 500m X 500m, 1000m x 1000m

Maximum Speed max_speed 2m/s, 5m/s, 20m/s
Pause Time pause_time 30 sec

Table 5.1: Network level simulation parameters

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The simulation begins with a defined MANET topology where the nodes are

randomly placed over the simulation area. We used AODV as the underlying routing

protocol in MANET [8]. Our system implementation is independent of the underlying

protocol and should work with any routing protocol. However, its performance may

differ, which is an area of further investigation. We chose AODV because it is an

on-demand routing protocol with local route. repair, which is known for exhibiting

superior performance among protocols o f different classes [36]. At the P2P level, each

overlay node uses a uniform random number between [0, sim_time/T\ to determine when

to join the network. Therefore, no P2P topology is defined in the beginning of the

simulation. A virtual bootstrap server exists in the simulation that models the GPRS

bootstrap approach described in section 3.3.2. The server contains a complete list of

existing P2P nodes, so new nodes can leam about other P2P nodes by contacting it.

After a node is connected to the overlay network, it periodically exchanges with its

neighbors update messages every update_interval. Since the AODV implementation in

NS2 uses a value of 60 seconds as the lifetime for each discovered route, we decided to

set our update_interval to be 30 seconds.

Queries are generated at a minimum rate of 1 query per 10 seconds to model the

behavior o f aggressive P2P users. Each query contains a keyword which is represented

by an integer between [0, 99], and every keyword is mapped to a set o f files. The files

located on each node are generated randomly, but the number o f files and the file sizes

are dependent on the node’s capacity level. This is to reflect that different wireless

devices have different levels of resources, particularly storage space. However, in our

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

simulation, we use the same capacity level for every node. It is because we want to

focus on the effect of different MANET scenarios have on the performance of the P2P

systems, thus we need to limit the number of variables in our simulation in order to have

a better understanding. Table 5.2 summarizes all the simulation parameters used at the

P2P level.

Parameters Values
Number of peers 10,20,30,40,50

Start Time Uniform random between fO, 500]
Query Generation Interval Uniform random between [0, 10]

Number o f files stored at each peer Uniform random between [0, 80]
update_interval 30 sec
query_timeoiit 240 sec

Latency thresholds THl, TH2 1 sec,3 sec
Energy thresholds THl, TH2 5094, 20%6

max_responses 1
TTL 32

Table 5.2: P2P level simulation parameters

5.2. P2P Query Forwarding Performance

Both Gia and RAON use biased random v/alk to forward queries. The critical

difference between Gia and RAON is that the capacity level of a neighbor is the only

factor that biases the random walk in Gia. On the other hand, link color is also a factor

biasing the random walk in RAON, which is expected to improve the quality of

forwarding decision and as a consequence improves the query success rates and query

delays. The main performance metrics we used for evaluating the relative query

forwarding performance of Gia and RAON are query success rates and query delays.

But before discussing those measures we present the evidence of quality of forwarding

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decisions. In order to compare the quality of forwarding decisions, we implemented Gia

in a way such that each node monitors its rtt with its neighbors as in RAON. The only

difference is that Gia would not take the neighbor’s rtt into consideration when

forwarding queries. Thus, we can compare the quality of the links used by both

systems.

Recall that query responses are forwarded back to the originator via the reverse path.

Thus, if a query is sent using a green link, it is probable that when the response is routed

back to the query source, the link has changed its color to yellow or red. Therefore, we

have traced the link colors separately for forward and reverse paths. We then computed

the percentage of links used for each color. Since we want to compare the links chosen

by RAON to the ones chosen by Gia, we plotted the link percentage differences relative

to RAON for the average of all scenarios in Figure 5.1. This means that the curves in

the figure are computed by taking the percent of each color used in RAON and then

minus the percent of the corresponding color used in Gia. For example, the curve

labeled “Forward Green” in the graph means that the percentage of green links used for

forwarding in RAON is that amount more than Gia. And intuitively, a negative value

means Gia is using more links of that color than RAON. We also like to distinguish the

red links that are high delay and red links that are low energy, so we differentiated the

two by using red and pink curves in the graphs, which are labeled as Red(d) and Red(e)

respectively. Finally, the solid curves show the percentage of a particular colored link

being used for both forward and reverse paths.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40%
Forward Q'een — -* Total Q"een
Forward Yellcw
Forward Ftedfd)
Forward Ffed(e)

Total Yellcw
— w— Total Fted(d)
 1 — Total Fted(e)

S 30%

20%

10%

0%

■O -1 0 %

-20%

-30%
Nurrfcer of Peers

Figure 5.1: Percent difference in colored links used by Gia and RAON for the
20:1000 scenario

The above graph illustrates that in general RAON tends to use more green links than

Gia along the forward path. Another expected trend is that Gia uses more red links than

RAON, as expected. However, quite unexpectedly, the total number of red links used in

RAON is rather close to Gia. This indicates that RAON uses more red links for reverse

routes than Gia. Furthermore, since NCS only monitors the link every update_interval,

the node continues using the link as green and preferring this link over the others even if

the link latency increases shortly after the link is marked green. Although we can

decrease the value of updateJ-ntei-val to achieve better accuracy of the link conditions,

update messages are control messages, so they are part of the protocol overhead. By

sending update messages more frequently, this means introducing more overhead to the

protocol and also consumes more energy. Therefore, more investigation is needed in

order to select a good value for update_interval. We omitted the color link graph for

(RAON - PNR) here since it is very similar to the RAON one. This is because

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

forwarding decisions are solely based on NCS, which is implemented in both RAON and

(RAON - PNR). The actual color link graph for each system is provided in Appendix

A.

To evaluate the performance of a P2P system, we measure the success rate of query

search and the query delay. A query is considered successful if the query originator

receives at least one query hit response before the query timed out, and the query delay is

the time it takes for the originator to receive the query hit response. The overlay hop

count, which is the number of overlay hops that the query travels before finding a match,

is typically used as a performance measure [20]. Since the size of our network is much

smaller than the one used in Gia (50 comparing to 10,000), we found average overlay hop

counts that range from 1 to 1.12. This also shows that the files are well-replicated over

the network, since most queries are able to find a match with only one hop. Therefore,

we do not consider overlay hop count as one of our performance metrics. We first

examine the performance of Gia in different MANET environment, and then we compare

Gia, (RAON - PNR), and RAON under the same circumstances. In the next section, we

analyze the underlying network behavior and the impact it has on the P2P performance of

both systems.

We measure the query success rate and query delay with increasing number of peers.

The results of those two metrics are plotted in Figure 5.2 and Figure 5.3 for Gia,

(RAON - PNR) and RAON, we can make following observations about the results.

First, we notice that as the number of peers increases, the success rate in Gia tends to

drop while the query delay shows a rising trend. By increasing the number of peers, the

network becomes more unstable, which increases the chance of query loss, and

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

consequently drops the query success rate. The network traffic also increases with the

number of peers, which iiicreases the traffic load on every node and causes higher query

delay. We can visualize this situation by recalling Figure 3.2, where the mobile node

closest to node 2 is in fact responsible for all three P2P connections. Therefore, if that

node is congested, then any query that originates or destines at node 2 is at risk of being

dropped.

100% 100%

90% 90%

80%

70%

§ 60%

70%

60%

% 50%

8 40%

^ 30%

20%

10%

0%

50%

40%

30%
-+• • - 5:500

20%

10%

0%
10 20 40 5030

120:1000

Number of Peers

(a) Gia

20 30 40
Number of Peers

(b) R A O N -P N R

100%

90%

80%

70%

60%
IT

50%

X 40%
UJ 30%

20%

10%

0%

-• 2:500
- 2:1000

5:500
- 5:1000

20 30 40
Number of Peers

(c) RAON

Figure 5.2: Query Success Rate for Gia, (RAON — PNR), and RAON under
different MANET configurations

14

12

10

a
6

2 :i;i§§8
•201000

0
10 4020 30 50

Number of Peers

(a) Gia

14

12

10

8

O 4

2

0

14
2:500

12

10
8 8

I:
2

0
20 30 40

Number of Peers
20 30 40

Number of Peers

Figure 5.3; Query delay for Gia, (RAON
MANET configurations

(b) RAON - PNR (c) RAON

PNR) and RAON under different

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100%

2

30%

20%

10%
0%

10 20 30 40 50

14

12

10

i
I

8

6

4

2

0

N u r te r of Peers
10 20 30 40

Nixrbercf Peers

(a) Average query success rate of
various speeds

(b) Average query delay o f various
speeds

100%
90%

00%

70%
I 60%

3 50%

i *̂0%
3C%
20%

10%

0%

' — —Qa : 2TÏ 3

- — -R O C N a r ta
— (aarZOrrra
. .. 6 . R a 0 4 R « 3 > r f a .
— *— FVÆNaCrrts

10 20 30 40
r4jTt>er of Peers

14

a
I

5010 20 30 40
Nurrtxyof P e a s

(c) Average query success rate of
various dimensions

(d) Average query delay o f various
dimensions

Figure 5.4; Average query success rate and query delay by keeping the simulation
area constant in (a) and (b), while keeping the node speed constant in (c) and (d).

Second, by increasing the simulation area and the node’s maximum speed, the

performance degrades. However, the impact of node density on the relative

performance of Gia, RAON-PNR and RAON is noticeably higher than node speed.

This observation can be further confirmed in Figure 5.4. In Figure 5.4(a) and (b), we

computed the average query success rate and query delay respectively over all three

speeds for both 500m and 1000m network dimensions. Likewise, we computed the

average query success rate and query delay over the two dimensions for all three speeds.

However, for clarity we omitted the graphs for 5m/s as they do not show any different

trend and showed the graphs for 2m/s and 20m/s in Figure 5.4(c) and Figure 5.4 (d). We

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can observe from Figure 5.4 that the variation in average query success rates and query

delays are more pronounced for different network dimensions as compared to different

node speeds. Therefore, we can conclude tlrat node density has a liigher impact on the

performance than node speed.

Tliird, for the (500m x 500m) scenarios in Figure 5.4 the gaps between the average

query delays of the tliree systems increase with number of peers. This is less

pronounced for sparse network, i.e. (1000m x 1000m). Increasing number of peers in a

network of given size increases the network activities, which in turn increases the chance

of congestion. It seems that the congestion is a major cause of the gaps in delay than the

node mobility, because it is more pronounced in a dense network for high number of peer

nodes where mobility has smaller impact. This is fur1;her reinforced by the fact that the

average query delays for (500mx500m) become comparable with (lOOOmxlOOOm) as the

number of peers increases. In (lOOOmxlOOOm) both congestion and node mobility cause

increase in the query delays.

Fourth, RAON exhibits low variation in query success rate witli increasing number

of peers as compared to Gia as shown in Figure 5.2. For example in the highly dynamic

scenario of 20:1000, the query success rate for Gia varies from 72% to 48% whereas for

RAON it varies from 85% to 71%. The low variation in RAON is primarily due to the

quality of its forwarding decision. We have observed that the average overlay hop count

for both Gia and RAON is 1-2 hops. It means that the forwarding decisions made at the

soiuce node and by intermediate nodes along the queiy path have impact on the success

rate. In case of RAON the source does not generate queries unless it finds a good linlc.

In our discussion the good link is either green or yellow and the bad link refers to a red

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

link. Holding a query for a good linlc by the source may cause delay in query generation

time but it contributes to increase the chance of queiy success. When a node selects a

good link to forward a query it increases the chance of query hit because; (1) the chance

of query being dropped along the path to the next hop is low as it follows a stable route to

the next hop, and (2) it is more probable for the next hop to process and if necessary

forward the query instead of dropping the query as it has Irigher residual power to do so.

However, since RAON tends to use good links only in the forwarding path and does not

guarantee that when the reverse path uses the same links they remain good linlcs, we see

some drop in the query success rate. We also realize that if PNR is disabled (i.e. for

(RAON — PNR), NCS alone can still achieve better performance than Gia in terms of

query delay and success rate, however the pattern is not as stable as RAON that

implements PNR.

For query delay as shown in Figure 5.3, the RAON manages to have a slight

performance edge over Gia mainly due to the quality of its forwarding decision. However,

by choosing a green link for the forwarding does not necessarily yield a low delay

because o f no guarantee of good linlcs along the reverse path. The average delay of 10

seconds is still fairly high. It seems tliat RAON suffers similar performance hit due to

congestion and node mobility as Gia. In order to obtain more meaningful results, we plot

a histogram based on the query delays in Figure 5.5 for the 20:1000 with 50 peers in

RAON, and we discover that more than 40% of tire quen responses are received within

100ms, and about 80% of the queries are received less than 5s. The average delay

shown in Figure 5.3 is largely affected by some query delays that are unacceptably high

(more than 3 minutes).

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100%25%

90%

80%20%
70%

60%15%

50%

40%10%
30%

20%5%

■ 10%
0%

0.01-0.05 0.05-0.1 5.0-10.0 10.0-50.0 50.0-100.0 100.0-200.0 > 200 .0<0.01 1.0-5.00.1-0.5 0.5-1.0

Time Range (sec)

Figure 5.5: Histogram (bar) and CDF (line) o f query delay distribution

Practically, a user does not tend to wait too long for a query response. In fact, he or

she would think that no match is found and simply initiate another search with a new

keyword. Tiierefore, we decide that those high delay entries should be counted as query

misses instead of hits. We determine that a user usually does not have the patience to

wait for a response for too long, thus we exclude any query hit entry witli a delay more

than 60 seconds. This is in fact equivalent to changing the value query_timeout in the

simulation. The resulting graphs after countmg high delay query as misses are shown in

Figure 5.6 and Figure 5.7 both for query success rate and query delay respectively. As

expected, the query success rate dropped slightly for all three systems, since we have

defined more query misses. However, RAON still manages to maintain a relatively

stable success rate tlian the other u#o systems when .P2P network size changes, due to the

same reason discussed before. Meanwhile, the query delay drops dramatically for the

three systems, and RAON again has a slight advantage over Gia.

72

: Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100%
90%

100% 100%
90%

80%
90%

80%
70%

60%

70% 70%

60%I
I

50%

40%

50%

30%30%

20%
30%

20% 20%
s!iooo10%

0%
10%
0%

10%
0%

504040 50 3030 10 2020 30 40 50 10 2010
N um ber c f P e e s

(a) Gia
hijrrber cf Peers

(b) R A O N -P N R

Mrrber of Peers

(c) RAON

Figure 5.6; Query Success Rate for Gia, (RAON — PNR), and RAON under
different system configurations and network conditions after excluding
unacceptably liigli delay entries

5

4

2I
1

0
20 3010 40 50 30 40 50ID 20

5

4

3

r
1

0
5030 4010 20

Number of Peers

(a) Gia
Number of Peers

(b) R A O N -P N R

Number of Peers

(c) RAON

Figure 5.7: Query delay for Gia, (RAON — PNR) and RAON under different
system configurations and network conditions after excluding unacceptably high
delay entries

5.3. Network-level Analysis

In the previous section, we have evaluated and analyzed the query forwardmg

performance of both Gia and RAON using the data collected at the P2P level. In this

section, we evaluate their performance by examining the network-level details. A

virtual link between two overlay nodes is usually formed by a path consisting of multiple

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

physical hops in the underlying network. If a single mobile node along the path moves

from its current position, the virtual link (route) may break and causes AODV to resort to

a recovery process either by invokhig local repair mechanism or simply sending a

notification to all upstream nodes along the route, as described in Chapter 2.

Figure 5.8 shows the statistics o f the AODV route failures that the network

experiences in the simulation for Gia, (RAON — PNR), and RAON. The graphs show

that all three systems suffer approximately the same number of route failures in all

MANET scenarios. We notice that as the number of peers increases, the number of

route failures increases as well. This is because: (1) the latent failures are exposed, and

(2) the number of query foi-warding paths using a failed link increases. We explain the

two situations one by one using an example P2P network shown in Figure 5.9 where the

shaded nodes (A-C) are P2P nodes and two linlc failiues happen in the underlying

network. First, a link failure remains latent if the link is not along any query forwarding

path. For example, the link failure LFl remains latent as long as node 1 does not

become a P2P node. Therefore, as the number of peers increases (e.g. node 1 becoming

a P2P node), more routes are used for query forwarding, which consequently expose

more latent linlc failures. Second, the use of failed links increase for query forwarding

as the number of peers increases. For instance, the linlc failure LF2 was along the query

forwarding paths of AB and AC in Figure 5.9 before node 1 has joined the P2P network.

As node 1 becomes a P2P node the use of LF2 for query forwarding has increased as it

now lies along the forwarding paths of AB, BC, IB and 1C.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sooo8000

70007000

6000 6000

4000

3000 3000

- 2:030 _
-4-.....S:5C0
-«~-20;500— 2:1000 -

— aicoo-X—20:1000

< 2000
1000 1000

5020 30 4010 40 5010 20 30

8000

7000

6000

Ig 5000

- 4000I
3000

2000
1000

50403010 20
N L iT ter of P e a s

(a) Gia
NuTtief of Peers

(b) R A O N -P N R

rsLrrfcer of Peers

(c) RAON

Figure 5.8: AODV Route Failures for Gia, (RAON - PNR) and RAON under
different system configurations and network conditions

L F 2

L F l

Figure 5.9: Link failure example. The dotted lines represent virtual linlcs, and I FI
and LF2 are link failures 1 and 2 respectively.

Route failures may lead to congesting a node. This happens when an intermediate

node along the route detects a link failure; it starts the local repair process if it is closer to

the destination than the source. Diuring the local repair process, packets targeted for the

destination are queued at the node performing the local repair. Due to excessive delay

o f the queued packet source TCP may experience time out causing retransmissions.

Wlren the intermediate node finds a new path, it flushes all the queued data along the new

route, and thus the destination receives duplicate packets. Fuithennore, packets are

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dropped if the queue is full, which also causes retransmissions.

We plotted in Figure 5.10 the number of AODV route requests during the simulation

lifetime. From the graphs, we notice that generally RAON generates slightly more route

requests than Gia and (RAON — PNR), indicating that it explores more routes in the

underlying network. However, since AODV uses broadcast to discover a new route, the

small increase of route requests generates a large number of route request messages in the

network. Table 5.3 summarizes the average number of messages each system generates

in all MANET scenarios. It is worth noting that the number of messages generated in

(RAON — PNR) is comparable to Gia, which implies that NCS alone does not create any

significant overhead. On the other hand, RAON that implements PNR generates probe

messages to discover new neighbors, resulting in close to 5000 more AODV request

messages than Gia on average. This indicates that RAON introduces more overhead

and most o f them are caused by PNR, particularly for exploring routes to the neighbor

candidates.

6000 6000

m... - f . . 5 ; S C 0

- - 23 :5 0 0
50005000 5000

« 4000<2 4000 4000

30003000 3000

20002000 2000
1000 10001000

40 5030
NUnrtcr of Peets

2010 40 50 20 40 50 1020 30
Nurrber of Peers

10

(a) Gia (b) R A O N -P N R (c) RAON

Figure 5.10: AODV Requests for Gia, (RAON - PNR) and RAON under different
system configurations and network conditions

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Type of Message Gia R A O N -PN R RAON
All forwarding messages

(Query, Query Hit, Ping, and Pong)
10187.48 9504.60 7887.06

Token Updates + ACK 3886.42 4010/72 4084.76
Connection 161.54 166.57 159.82

Probe + ACK 0 0 87.72
Retransmissions

(Token Update and Query Hit)
1652.85 1582.40 1318.24

AODV request messages 33860.61 33947.09 38622.23
Total 49748.9 49392.66 52159.82

Table 5.3; Average number o f messages generated over all MANET scenarios for Gia,
(RAON - PNR), and PNR.

We also extracted information on physical hop counts to reflect the neighbor

relationship. Figure 5.11 illustrates the average hop coiuit between two neighbors, and it

shows that this value is dependent on neither the number of peers nor the node speed.

Rather, it is mainly affected by the node density of the area. Figure 5.12 shows the

standard deviation of the neighbor hop counts and again it is independent on the P2P

network size as well. In order to find out the worst case scenarios, we plotted the

maximum number of hops between two neighbors in Figure 5.13. It shows that some of

the neighbors are 20 or more hops away from each other. Connections that involve too

many physical hops do not only consume more bandwidth and energy of the network as a

whole, they also increase the chance of encountering linlc failures. Therefore, we

believe that if we were able to gain access to tire routing tables and learn about the

physical hop count to each neighbor, we can use this as supplementary information to

make better decisions in NCS and PNR.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5

I 1.5

I
- - 2:500
- - 5:500
- -2 0 :5 0 3

— — 2:1000 -ir— 5:1000 '
-H— 23:1000

0.5

4010 30 5020
Nurrfcer of Peers

(a) Gia

3.5

3

2 5
I
A

2

9 1.5
P)
< 1

0.5

0

25CX» ---------- 21C00
... ». 5:500
- - a ---- 20:500

— *•— 5:iuuu
— M— 20:1000

20 30 40
NurrfcerofPeere

3.5

25

5
I

0.5 -5 :500
-20 :5 0 0 ■20:1000

40 503010 20

(b) R A O N -P N R
Nbrrber of Peers

(c) RAON

2

§ 1.8
_L 1.6
£ 1.4
2 1.2

s 1
T3 OR

0.6
s 0.4

55 0.2
0

Figure 5.11: Average physical hop counts between the neighbors for Gia, (RAON -
PNR) and RAON under different system configurations and network conditions

- - 2:5005:330
- 20:500

- 2:1000
-6:1C00 _
- 20:1000

20 30 40
Nurrter of Peers

50

(a) Gia

2

1.8
X 1.6
5 1.4
1 1.2fis 1
M OR
&0.6

? 0.4

« 0.2
0

«► --2500
 5500B-— 20:500

- 2:1000
-5:10C0 —
- 20:1000

10 20 30 40
Ninber of Peers

(b) R A O N -P N R

2
1.8

1.6

1.4

1.2

1
0.8
0.6

a4
0.2

0
- - 2 :5 0 0 ■

--§^3 ■
- 2:1000

-iJtooo"
20 30 40

N u n tA f Of Peers

(c) RAON

Figure 5.12: Standard deviation o f physical hop counts between the neighbors for
Gia, (RAON — PNR) and RAON under different system configurations and
network conditions

25

20

I

•21000
■5:1000
20:1000

4010 30 5020
Nurrbsf Of P eas

(a) Gia

30

25

I 20

I

21000
•5:1000
20:1000

4010 20 30 50
N urter of Peers

(b) R A O N -P N R

25

20

I
1 10

• 21000
• giooo
•50:1000

40 5030
Nurrber of Peers

10 20

(c) RAON

Figure 5.13: Maximum physical hop counts between the neighbors for Gia,
(RAON - PNR) and RAON under different system configurations and network
conditions

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

•„

i-

__ergy Consumption

One of our design objectives is to conserve energy consumption. However, from

the simulation results, we realize that RAON is in fact consuming more energy than Gia,

and also creating more dead nodes. A dead node is a node that runs out of power and

failed before the simulation ends. Figure 5.14 shows the number of dead nodes, and

Figure 5.15 shows tire average time it takes for a node to run out of power (dead time).

The graphs show that the energy consumption rates for all tlrree systems are

approximately tire same. However, as shown in Table 5.3, the average number of

forwarding messages generated in each system is different (with RAON generating the

least), and all the other messages are simply overheads. So in Figure 5.16, we iromralize

the dead time by the number of forwarding messages and it shows that RAON generally

runs out of power much faster than the other two systems, which implies that it consumes

more energy. The only feature that would make RAON consumes more power is PNR,

and with the results of more AODV route request messages being generated as shown in

the previous section, we believe that our PNR implementation is too aggressive and needs

to be modified. We can control the aggressiveness of PNR by changing either the rtt

history size (such that PNR is not easily triggered by a small number of high ift samples)

or the values of the delay thresholds. However, a better approach might be to gather

more accurate information of the underlying network condition, such as to gain access to

the routing tables, as suggested in the previous section.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50
...j-----2:500

- - 5:500
—«--20:500

45

40
5:100020:1000 ——35

I 25
20

20 5010 30

5050
~{— 2:500
-4— 5:500
-=--20:500

2:500
5:500
20:500

4545

4040
5:10003535

3030I 252513
20

15
10

5
0

5020 30 4010
NiflTber of Peers

(a) Gia
Nurrbsf Of P eas

(b) R A O N -P N R

hirrber of Peers

(c) RAON

Figure 5.14: Number o f dead nodes for Gia, (RAON — PNR) and RAON under
different system configurations and network conditions

900

aoo
700

600

g 500
F 400

-H—2:500 _
— — 5:500

—20:500
 2:1000 ~
—A—5:1000 —K—20:1000-

300

200

100

10 20 40 5030

900

800

700

600

300 -4— 2500 ■
- 5:500 -«—20Æ0O -

— 21000
-A—5:1000 _

— 20:1000

200

100

0
10 20 40 5030

900

800

700

500

P 400

300 -4— —2500 —
— ssoo

-m- —20:500 —
—----210CO200

100
•20:1000

40 5010 20 30
Krrbe* of Peers

(a) Gia
Nurrber cf Peers

(b) R A O N -P N R

Nurrber of Peers

(c) R/vON

Figure 5.15: Dead time for Gia, (RAON - PNR) and RAON under different system
configurations and network conditions

900 900

800 800

TOO 700
600 600

I 500

F 400

n 300 300
-«•- - 5:500
-«—20:500200 200 -*--20:500 —

 2 1 0 »
-À—5:1000 —ICO 100

2010 30 40 60 20 40 6010 30
NUrber of Peers

(a) Gia
Mmber of Peers

(b) R A O N -P N R

900

800

700

600

600

300 -fu— 4 -- 2 :5 0 0 // 5:600
/ / •—— —20:500
/ 21CC0

200

ICO
0

20 30 40
Number of Peers

(c) RAON

Figure 5.16; NoiTnalized dead time for Gia, (RAON - PNR) and RAON under
different system configurations and network conditions

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We also plotted the energy consumption pattern of each mdividual node in the

20:1000 case with 50 RAON peers, which is shown in Figure 5.17. From the graph, we

notice that most of the nodes experience a Imear consumption rate. We then isolate one

node that does not experience quite a linear rate (see Figure 5.18), and notice that the

node joins the overlay network at around 500 seconds but by that time it has already

consumed 50% of the energy. This indicates that although a node does not generate

overlay traffic or forwarding any queries, it still consumes more power in RAON

comparable to other overlay nodes as it carries control messages. We also observed that

the node’s consumption rate slows down towards the end of the simulation time and it

remains alive, because as many nodes started to run out of power, the size of the overlay

network decreases resulting in lesser traffic flowing in the network. We suggested in

Chapter 3 that a node can save its energy by assigning lesser tokens to its neighbors, and

even dropping some neighbors in order to decrease the traffic flowing through the node.

However, the above observation shows that the energy saving scheme as proposed in

Chapter 3 has little benefit in saving energy as the traffic in the underlying can still drain

power of the overlay node.

100%

90%

40%

20 %

10%

0%

 h
-

- - — m x - ■

—X-----
X - -

- ■ ■- ~ - --mÆ --- -
——-— ^ —— --

'• — • -

j.__
100 200 300 400 000 700 000 1000

Tlf|Vî{SŒO

Figure 5.17: Energy consmnption pattern for all RAON nodes in the 20:1000
scenario with 50 peers

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100%

90%

70%

60%

50%

40%

30%

20%

10%

0%
1000100 800 9000 200 300 400 500 600 700

Tima(sa^

Figure 5.18: Isolating the energy consumption o f one o f the nodes in Figure 5.12

Another issue that concerns energy consumption is retransmission. TCP

retransmits packets that are not acknowledged after a thneout. This happens even if the

route to the destination is repairing or it no longer exists. Energy consumed in such

cases is unnecessary. If we could reduce the number of retransmissions, it may help to

lower the overall energy consumption of the network. We discuss this in more details in

Section 5.6.

5.5. PNR Overhead

In Section 5.3 we discussed that RAON initiates more AODV route requests and

consequently generate more AODV route request messages primarily due to the PNR’s

tendency of exploring and using significant number of more routes than Gia. Another

cost that we must consider is the high level of energy consumption by PNR, winch is

discussed in Section 5.4. Hence, the PNR algorithm should be treated as a

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

supplementary scheme for RAON and the decision of when and bow to use it should be

carefully evaluated considering its associated overhead.

5.6. MANET P2P Open Questions

The results we presented in this chapter give us a much better understanding on

MANET P2P systems. The observations that we made here lead us to three open

questions:

1. Reverse path for responses?

2. TCP or UDP?

3. How effective is application level Flow Control?

In this section, we discuss each of these questions, and provide our thoughts based on our

simulation results.

5.6.1. Reverse path for responses

From our simulation results, we notice that RAON experiences very high delay in

some of the queries, and most of them are due to unstable reverse paths. A link that is

marked green in the forward direction does not necessarily mean it is green in the reverse

direction as well. Also, it is possible that the node that generates the response (the

response node) can find a more stable route to the source than the one recorded by the

forwarding nodes. Therefore, we may reduce the query delay by sending replies directly

from the response node back to the query originator.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The problem with tliis approach is that the response node usually does not have an

existing route to the query source, and in such cases it must go through the route

discovery procedu~e first. Also, if the reverse path is in fact very stable, tins method

may seem redundant since it is trying to discover a route that already exists.

Furthermore, as the simulation results show that, if the number of peers is small (e.g. 10),

the query delay is generally very low. Therefore, there are situations where the reverse

patli is better, while there are other situations where setting up a new route may benefit

more. We may design a hybrid approach that can take advantage of the two metlrods,

and we elaborate on this idea in the next section.

5.6.2. TCP or UDP

k A C .î nodes are coiuiected using TCP connections. The choice of using TCP is

based on the fact that it is a reliable transport protocol, which helps us to reduce the risk

of losing a query or update message. However, under the dynamic environment of

MANET, a reliable protocol like TCP may become unreliable as well. Our simulation

results have shown that, as the number of peers increases, the network becomes unstable.

In such cases, retransmissions caused by TCP treate even more data flows to the network

that is aheady suffering from high traffic load.

Instead of TCP, maybe we can use UDP and implement retransmission support at the

application level, which gives complete control to the application on whether

retransmission should occur and how often. This approach has tluee advantages. First,

we can set the maximum number of times a node can retransmit a message, and we can

ftuther define a different maximum number for different messages. Secondly, when a

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

node is forwarding a query, it chooses the neighbor with the highest color known at that

moment. If it hims out that the selected neighbor is no longer in expected good

condition, it can choose a different neighbor and continue forwarding. The node can

even lower the color of the previously selected neighbor such that it would not heat that

neighbor as a high color neighbor anymore.

In the previous section, we suggested to use a hybrid approach for routing back

responses to the query source. If we use UDP as the transport protocol instead of TCP, it

may help us to accomplish this task. This is because with UDP, the retransmission

decision now shifts to the application level. If an overlay node along the query reverse

path realizes that the link to the next (overlay) hop become unstable (i.e. requires

retransmission), then the node can try to establish a route to the query source and send the

response directly. If a route cannot be found, the node would queue the response locally

and repeats the above sequence (reverse path then direct route) again later. The major

disadvantage of using the UDP approach is that it increases the application developer’s

responsibility.

5.6.3. Effectiveness of Overlay Flow Control

Gia implements a flow control mechanism in order to avoid overloading a node with

queries. However, flow control that is implemented at the application level is not

sufficient for a MANET node. In a wired network, all P2P nodes are assumed to be

end-hosts, where they do not need to do any routing. This is obviously not the case for

MANET nodes. As illustrated in section 5.4, the energy consumption rate of a non-P2P

node is comparable to a P2P node. Therefore, even if a P2P node assign very little

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tokens to its neighbors, it may still experience congestion due to high underlying traffic.

Hence, flow control support at a lower level maybe desired.

5.7. Summary

hr this chapter, we presented the simulation results o f Gia and RAON under certain

MANET scenarios. We discovered that RAON is able to achieve ’ performance gain

over Gia in terms of query success rate and query delay. We also studied the

packet-level details, which gave us a very good understanding on the behavior of

MANET P2P systems.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6 Conclusion and Future Work

The research in ad-hoc networking has been mainly focused on routing and Quality

of Service, delivery. Lately transport and application support issues have started

appearing in the research agenda. The research on application support is extremely

importaiu as the industry has started showing signs of interest in this technology for 4G

wireless system [37]. Lack of a good abstraction for application support necessitates

dealing with similar issues for each application design. In the Internet, overlay

networking approach have generated promising results in facilitating deployment of

various applications, such as P2P, multicast and to some extent VoIP. Our first major

contribution in this thesis is that we propose overlay networking as a good abstraction for

application design and deployment on ad-hoc networks. The principal benefit of this

approach is that the application states are only maintained by tire nodes involved in the

application execution and all other nodes only perform networking related functions.

This is a significant gain for ad-hoc networks where nodes join and participate in the

network routing for an unpredictable and transient time, and maintaining application

states in those nodes will obviously accrue huge cost in the application execution.

In this thesis we focused on P2P overlay network design on ad-hoc network. We

base our design on Gia, which is an unstructured P2P system giving superior performance

over other imstructured systems due to its flow control and biased random walk

forwarding schemes. We extended the design of Gia to address problems specific to

MANET. Our system, called RAON (Resource-Aware Overlay Network), makes

forwarding decisions taking into consideration, of the MANET characteristics of link

instability and power constraints. We added two new features to Gia’s basic biased

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

random walk forwarding: NCS (Neighbor Coloring Scheme) and PNR (Proactive

Neighbor Replacement). The NCS uses a ranking system that ranks neighbors

according to their available resources. It monitors the condition of the overlay links by

sending update messages and measuring the delay periodically. It colors the links eitlier

green, yellow or red depending upon the link latency and the neighbor’s residual power.

We also proposed a supplementary algorithm, called PNR, wliich attempts to find a better

node to replace a neighbor if tire connection to the neighbor is found to be imstable. We

evaluated the performance of RAON and Gia using NS2, which is a packet-level

simulator. Simulation results show that RAON is able to achieve more stable and

improved query success rate and query delay as compared to Gia under a variety of

topology and load conditions. It, however, achieves this at the expense of higher energy

consmnption. The overhead of control messages during a new neighbor search in PNR

is the major source of higher energy consumption. This can be controlled through more

prudent irse of PNR. We summarize our results with pointers to fiitrue work in the rest

of this section.

For query success rate, RAON manages to sustain a relatively stable performance,

with an improvement of 20-25% in the most extreme scenarios with high node speed and

low density. RAON is also able to achieve lower query delay than Gia. The above

performance gains are due to NCS, which avoids forwarding queries through unstable

links. PNR also helps to improve the performance in both query success rate and query

delay, but it is achieved at a higher cost. CuiTently, PNR makes its neighbor

replacement decisions based on information collected at the application level only, which

is not sufficient.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are also few general conclusions that we can draw from our work, which

provide an insight into the system design. First, we notice that tire search performance

is more dependent on underlying node density than speed considering realistic speed

values we used in our simulations. Second, we realize that the approach of using

reverse route to forward a query hit response back to the query originator might not be a

good choice in MANET. Our simulation results indicate that the query delay in RAON

is mainly caused by unstable links along the reverse path.

Third, flow control implemented at the application level is not sufficient to avoid

congesting a node. Instead, flow control may need to be implemented at a lower level in

order to achieve true flow contiol at all levels. True flow control can also help reduce

energy consumption of a node by limiting the number of flows.

We also observed that TCP is more restrictive in making response to packet loss

transparent to the application. Instead if the application is engaged in formulating the

response to packet loss it may take different actions depending upon the type of message.

Furthermore, out-of-order packet is not a real issue for P2P systems, since messages can

be processed despite of their order of arrival. We suggested a hybrid approach with

UDP that may resolve tire problem of using unstable reverse route that leads to high

query delay. However, application developer must implement a reliable version of UDP

in order to detect packet loss.

Further study needs to be taken in order to find out whether UDP is a better

approach than TCP for MANET P2P systems or not. It may also be helpful if the

application can gain access to the imderlying routing information like physical hop counts,

such that it can make better decisions (forwarding, connecting, dropping, etc.) based on

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

more accurate information. An nnderlying flow control system might be out the scope

of P2P design, but it is a feature that may benefit many other applications. Finally, file

sharing is only one of the applications that use the P2P technology. Other applications

may also exploit the results and observations that we presented in this thesis in their

design process.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[1] Yang-hua Chu, Sanjay G. Rao, Sriiiivasan Seshan and Hui Zhang, “A Case for End

System Multicast”, m. IEEE Journal on Selected Areas in Communication (JSAC),

Special Issue on Networhng Support for Multicast, 2002.

[2] J. P. Macker and M. S. Corson, “Mobile Ad Hoc Netwoiidng and the IETF”, lEFT

Mobile Ad Hoc Networks (MANET) WorJcing Group Charter,

http://www.ietf.org/html.charters/manet-charter.html

[3] E. Royer and C-K Toll, “A Review of Current Routing Protocols for Ad-Hoc Mobile

Wireless Networks”, in IEEE Personal Communications Magazine, pages 46-55,

April 1999.

[4] C. E. Perkins and P. Bhagwat, “Highly Dynamic Destination-Sequenced

Distance-Vector Routing (DSDV) for Mobile Computers”, in Proceedings o f the

ACM SIGCOMM’94 Conference on Communications Architectures, Protocols and

Applications, pages 234-244, August 1994.

[5] D. Bertsekas and R. Gallager, “Data Networks”, pages 297-333, Prentice-Hall, Inc.,

1987.

[6] C. Hedrick,“RFC 1058: Routing Information Protocol”, June 1988.

[7] D. B. Johnson and D. A. Maltz, “Dynamic Source Routing in Ad Hoc Wireless

Networks” in Moè//e Computing, 153-181. Kluwer Academic Publishers, 1996.

[8] C. E. Perkins and E. M. Royer “Ad-hoc On-Demand Distance Vector Routing”, in

Proceedings o f the 2"^ IEEE Workshop on Mobile Computing Systems and

Applications (WMCSA ’99), pages 90-100, February 1999.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ietf.org/html.charters/manet-charter.html

[9] “Napster”, http://www.napster.com.

[10] “Gnutella”, http://www.gnutella.com.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A Scalable

Content-Addressable Network”, hx Proceedings ofSIGCOMM2001, August 2001.

[12] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrislman, “Chord: A

Scalable Peer-To-Peer Lookup Service for Internet Applications”, in Proceedings o f

, August 2001.

[13] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object Location and

Routmg for Large-Scale Peer-to-Peer Systems”, in Proceedings o f ACM

International Conference on Distributed Systems Platforms (Middleware), pages

329-350, November 2001.

[14] B. Y. Zhao, J. Kubiatowicz, and A.D. Joseph, “Tapestry; An Infrastructure for

Fault-Tolerant Wide-Area Location and Routing”, Technical Report

UCB/CSD-01-1141, Computer Science Division, University o f California, Berkeley,

94720, April 2001.

[15] M. A. Jovanovich, “Modelling Large-Scale Peer-to-Peer Networks and a Case of

Study of Gnutella”, M aster’s thesis, Department o f Electrical and Computer

Engineering and Computer Science, University o f Cincinnati, June 2000.

[16] S. Androutsellis-Theotokis, “A Survey of Peer-to-Peer File Sharing Technologies”,

White Paper: Athens University o f Economics and Business, Greece, 2002

[17] “KaZaA”. http://www.kazaa.com.

[18] “DirectConnect”. http://www.neo-modus.com.

[19] S. Sen, and J. Wang, “Analyzing Peer-to-Peer Traffic Across Large Networks”, in

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.napster.com
http://www.gnutella.com
http://www.kazaa.com
http://www.neo-modus.com

Proceedings o f the ACM SIGCOMM Internet Measurement Workshop 2002,

November 2002.

[20] Y. Qiawathe, S. Ratnasamy, L. Breslau, N. Lanlaam, and S. Shenker, “Making

Gnutella-like P2P Systems Scalable”, in Proceedings o f SIGCOMM 2003, August

2003.

[21] S. Ratnasamy, M. Handley, R. Karp, and S. Shenlcer, “Application-level Multicast

using Content-Addressable Networks”, in Proceedings ofNGC, 2001.

[22] M. Castro, P. Druschel, A-M. Kennarrec and A. Rowstron, “SCRIBE; A large-scale

and decentralised application-level multicast infrastructure”, in IEEE Journal on

Selected Areas in Communication (JSAC), Vol. 20, No. 8, October 2002.

[23] M. Castro, M. B. Jones, A-M. Kermarrec, A. Rowstron, M. Theimer, H. Wang and A.

Wolman, “An Evaluation of Scalable Application-level Multicast Built Using

Peer-to-peer overlays”, in IEEE Infocom 2003, April, 2003.

[24] “Skype”. http://www.skype.com.

[25] S. Ethier, “Application-Driven Power Management: A framework for achieving

fine-grained control over the power consumption of pui-pose-specific mobile

devices”, QNX Software Systems Inc.

[26] R. Kravets and P. Krislinan, “Application-driven power management for mobile

communication”, in Proceedings o f the Fourth Annual ACM/IEEE International

Conference on Mobile Computing and Networking (MobiCom), pages 263-277,

2000.

[27] J. Flinn and M. Satyanarayanan, “Energy-aware adaptation for mobile applications”,

in Proceedings o f Symposium on Operating Systems Principles, December 1999.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.skype.com

[28] P. Reynolds, and A. Vahdat, “Efficient Peer-to-Peer Keyword Searching”, Technical

report, Duke University, Durham, NC, 2002

[29] Q. Lv, S. Ratnasamy, and S. Shenlcer, “Can Heterogeneity Make Gnutella Scalable?”,

in Proceedings o f the P ‘ International Worlcshop on Peer-to-Peer Systems

(IPTPS ’02). MIT faculty Club, Cambridge, MA, USA, March 2002.

[30] Q. Lv, P. Cao, E. Coline, K. Li, and S. Shenker, “Search and Replication in

Unstructured Peer-to-Peer Networks”, in Proceedings o f 16̂ '̂ ACM International

Conference on Supercomputing (ICS’02), November 2001.

[31] Gnutella Development Forum, “The Gnutella vO.6 protocol, 2001”,

http://groups.yalioo.com/group/the_gdf/files/.

[32] D. Tsoumakos andN. Roussopoulos, “Analysis and Comparison of P2P Search

Methods”, University o f Maryland, Dept, o f Computer Science Technical Report

November 3, 2003.

[33] Z. Ge, D. R. Fiegueiredo, S. Jaiswal, J. Kurose, and D. Towsley, “Modeling

peer-to-peer file sharing systems”, 'mIEEE Infocom 2003, April 2003.

[34] Q, He, M. Ammar, G. Riley, H. Raj, R. Fujimoto, “Mapping Peer Behavior to

Packet-level Details: A Framework for Packet-level Simulation of Peer-to-Peer

Systems”, in 2003, October 2003.

[35] “NS2”. http://www.isi.edu/nsnam/ns/.

[36] Sung-Ju Lee, Julian Hsu, Russell Hayashida, Mario Gerla, and Rajive Bagrodia,

“Selecting a Routing Strategy for Your Ad Hoc Network”, Computer

Communications, special issue on Advances in Computer Commimications and

Networks: Algorithms and Applications, Vol. 26, Issue 1, pages723-733. May 2003.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://groups.yalioo.com/group/the_gdf/files/
http://www.isi.edu/nsnam/ns/

[37] Petri Mâhônen and Janne Riihijaxvi, “Co-operative and Ad Hoc Networks”, Wireless

World Research Forum (WWRF) Working Group 3, Version 4, April 2004.

httn://www.wireless-world-research.org/general info/Documents/ChartersAVG3-Ch

arter-13Oct04.ndf.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.wireless-world-research.org/general

Appendix A

1
I
I

100%

90%

80%

70%

60%

50%

40%

30%
20%
10%
0%

4K— Forward Q - e e n *— Total Q'een
Forward Yellow Total Yellcw
Forward FW(d) — a— Total Fted(d)
Forward Fted(e) — A— Total f^d(e)

10 20 30
Number of Peers

4 0 50

Figure A. 1 : Percent difference in colored links used by Gia

1
I
b

■b
m

I
Û.

100%

90%
80%
70%

60%
50%

40%

30%

20%

10%
0%

-j* Forward Q-een -
• Forward Yellow

— ----- Forward f%d(d) -
HB------Forward F%d(e) -

- — Total Q'een
Total Yellcw

- — Total Fted(d)
■ — Total Ffed(e)

-3K

;-=: = = =Sf=̂

10 20 30 40
Ncmber cf Peers

50

Figure A.2; Percent difference in colored links used by (RAON - PNR)

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100%
— Forward Green — f-

- ' - Forward Yellcw :
— Forward l%d(d) — *

- m Fbrw? 1 Fted(e) — &

- Total Q'een
■ Total Yellcw
- Total F^d(d)
- Total % d(e)

90%

80%

-g 60%

b 50%

^ 40%

I 30%

Û- 20%

10%

0%
Number of Peers

Figure A.3: Percent difference in colored links used by RAON

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

