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Abstract

Analysis of Periodically Switched Nonlinear Circuits and
Nonlinear Oversampled Sigma-Delta Modulators
Quan Li
Master of Applied Science
Department of Electrical and Computer Engineering
Ryerson University

Toronto, Ontario, Canada, 2003

This thesis proposes a new method for time domain response and sensitivity analysis
of periodically switched nonlinear circuits and nonlinear oversampled sigma-delta, mod-
ulators. Using Volterra functional series and interpolating Fourier series, it extends
the sampled data simulation and two-step algorithm of linear circuits to periodically
switched nonlinear circuits. The method can handle the inconsistent initial conditions
encountered at switching instants. It is applied to the analysis of nonlinear oversam-
pled sigma-delta modulators. The efficiency and accuracy of the proposed method are
assessed using SPICE, brute-force, and the law of charge conservation on periodically
switched nonlinear circuits and nonlinear oversampled sigma-delta modulators. The
method does not require the costly Newton-Raphson iterations. It is most efficient
for analysis of circuits with mildly nonlinear characteristics and simulation over a long

period of time.
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Chapter 1

Introduction

1.1 Motivation

Switched circuits, such as switched capacitor and switched current networks, oversam-
pled sigma-delta modulators, and switching power supplies, are widely encountered in
telecommunication, instrumentation, and power electronics systems. Switched circuits
disti.nguish themselves from time-invariant circuits by including switches that are either
clocked externally or controlled internally. These circuits can be broadly categorized

into two classes as follows:

1. Circuits with internally controlled switches

Circuits in this category include rectifiers and switching voltage regulators that are
widely encountered in power electronics systems. Switches in these circuits take
the form of diodes and thyristors. Because the state of switches in these circuits
is determined by the network variables associated with the switches, the switching

instants are not known a priori, and can only be determined during simulation

1, 2].

2. Circuits with externally clocked switches



Typical examples in this category include switched capacitor networks and switched
current networks where switches are implemented using either NMOS transistors
or CMOS pairs. Unlike circuits with internally controlled switches, the state of the
switches in these circuits is solely determined by the state of the external clock and
is known a priori. These circuits are also known as periodically switched circuits,

attributive to the periodical operation nature of the switches in these circuits.

This thesis deals with the circuit of the second category, periodically switched nonlinear
circuits only.

Due to the aggressive reduction in both the feature size of MOS devices and the
supply voltage of modern CMOS technologies, and the continuous increase in signal fre-
quency, periodically switched circuits exhibit increasing nonlinear characteristics. These
nonlinear characteristics include junction capacitances, nonlinear channel current of
MOS devices due to velocity saturation and mobility degradation [3], finite slew rate
of operational amplifiers, clock feed-through and charge injection [4], to name a few.

The methods both for time domain and frequency domain analysis of periodically
switched linear circuits, such as those given in [5, 12], can not be employed to efficiently
analyze the periodically switched nonlinear circuits. General-purpose analog simulators,
such as PSPICE and Spectre [7], can be used to simulate the switched circuits in time
domain. They compute the time-domain response using linear multi-step predictor-
corrector (LMS-PC) algorithms [7, 8]. These algorithms are effective and robust in
handling both mildly and harsh nonlinearities. However, they suffer from a number of
drawbacks when analyzing periodically switched nonlinear circuits, particularly when

switches are modeled as an ideal device. These drawbacks include:

1. Periodically switched circuits are dual-time systems that contain rapidly varying



clocks and slowly varying signals. They have to be simulated over a large number

of clock cycles with fine steps in order to obtain their time domain characteristics.

. LMS-PC algorithm fail to locate the exact time at which switches change state.
Instead, switching time is approximated by a successive reduction in step size,

giving rise to both poor simulation accuracy and excessive computation time [1].

. Inability to handle inconsistent initial conditions caused by ideal switching [7].
Inconsistent initial conditions that occur at switching instants cause network vari-
ables to exhibit discontinuous characteristics that are difficult to be handled by

LMS-PC algorithms.

. Due to the complexity of the full model of switches, general-purpose analog sim-
ulators usually model switches as a voltage-controlled resistor with two largely
distinct resistances for the ON- and OFF- states. Such a model often leads to stiff

systems that require very fine steps to simulate.

. General-purpose analog simulators rely on Newton-Raphson iterations in every
step to find the correct solution. Not only the cost of Newton-Raphson is normally
high, the step size used in the predictor of these algorithms has also to be kept
small in order to provide a better starting point for Newton-Raphson iterations,

subsequently faster converging.

. The accuracy of general-purpose analog simulators is limited by the local trunca-
tion error (LTE) of the numerical methods. Due to stability constraints, the order
of numerical integration used by general-purpose analog simulators is low. Most
SPICE-like simulators employ only the first and second-order extrapolation algo-

rithms (backward Euler and Trapezoidal). High accuracy can only be achieved at



the expense of CPU time.

The combined effects of periodic switching and nonlinear characteristics give rise to a
large number of frequency components in the response of periodically switched nonlinear
circuits. As a result, frequency domain analysis of these circuits, such as harmonic
balance based methods, is not only complex but also computationally expensive.

In summary, new computational algorithms are required for time domain response
and sensitivity analysis of periodically switched nonlinear circuits. The main attributes

of new algorithms are accuracy and efficiency.

1.2 Objectives

Many circuits encountered in telecommunication systems have fixed DC operating points
and the signals to be processed are usually of small amplitude. In this case, these cir-
cuits only exhibit mildly nonlinear characteristics [9]. When the characteristics of the
nonlinearities are weakly nonlinear, Volterra functional series based methods [20, 21} can
be employed to effectively simplify frequency analysis and reduce the cost of computa-
tion. Methods based on this approach have been used successfully for nonlinear analysis
of power conversion systems [22], radio-frequency circuits [9], and general periodically
switched nonlinear circuits [6] in frequency domain.

In this thesis, we extend Volterra functional series based nonlinear analysis approach
from frequency domain to time domain, and present a new and efficient method for
analysis of the time domain response and sensitivity of periodically switched circuits
with mildly nonlinear characteristics. The method extends the sampled data simulation
of linear circuits given in [5] to periodically switched nonlinear circuits. In addition, it

extends the two-step algorithm for switched linear circuits given in [18] to periodically



switched nonlinear circuits. The proposed method handles general periodically switched
nonlinear circuits including switched capacitor networks, switched current networks, and

oversampled sigma-delta modulators.

1.3 Major Contributions

This thesis contains the original contributions for the time domain response and sensi-
tivity analysis of periodically switched nonlinear circuits. The major contributions of

this thesis are summarized as follows:

1. The sampled data simulation algorithm for linear circuits is extended to period-
ically switched nonlinear circuits. Time domain analysis of both response and
sensitivity of periodically switched nonlinear circuits is performed efficiently by

using the extended sampled data simulation.

2. The two-step algorithm for periodically switched linear circuits is extended to
periodically switched nonlinear circuits. The inconsistent initial conditions en-
countered at switching instants are correctly handled by the extended two-step

algorithm.

3. A new time domain sensitivity analysis method is proposed for periodically switched
linear circuits. The discontinuity problems at switching instants are correctly han-

dled for sensitivity analysis.

4. A new method for the time domain sensitivity analysis of periodically switched
nonlinear circuits is proposed. Time domain sensitivity analysis is performed with

response analysis efficiently and the discontinuity problems are correctly handled.



5. A new method for simulation of nonlinear oversampled sigma-delta modulators is

proposed to include general nonlinearities encountered in circuit level simulation.

All primitive results of this thesis were published in two conference proceedings [32,
33] and on IEEE Transactions on Circuits and Systems I - Fundamenial Theory and

Applications [31].

1.4 Thesis Organization

Chapter 2 reviews the sampled data simulation algorithm for time domain response
analysis of linear circuits and the two-step algorithm for handling the inconsistent initial
conditions of switched linear circuits. The time domain analysis algorithm for period-
ically switched linear circuits is obtained based on these two useful algorithmé. These
algorithms are efficient and accurate. They form the foundation of the algorithms for re-
sponse and sensitivity analysis of periodically switched nonlinear circuits in the following
chapters.

Chapter 3 reviews the Volterra functional series based methods for the time domain
analysis method of nonlinear circuits. A nonlinear example circuit is used to illustrate
the usefulness of the method.

In chapter 4, a new efficient algorithm for time domain analysis of periodically
switched nonlinear circuits is proposed. The algorithm is efficient for analysis of pe-
riodically switched nonlinear circuits because the new sampled data simulation method
is used instead of the computationally intensive Newton-Raphson iterations in each inte-
gration step. At the switching instants, the proposed algorithm handles the inconsistent
initial conditions for periodically switched nonlinear circuits correctly and efficiently

using the newly proposed extended two-step algorithm.



In chapter 5, time domain sensitivity analysis methods for linear circuits [15] are re-
viewed. We then propose a new time domain sensitivity analysis method for periodically
switched linear circuits. It can handle the discontinuities of sensitivity networks that
might occur at switching instants.

In chapter 6, we propose a new method for time domain sensitivity analysis of pe-
riodically switched nonlinear circuits. Inside the clock phases, time domain sensitivity
was obtained by summing up all the sensitivities of all the Volterra circuits of a nonlin-
ear circuit. At switching instants, the new method can correctly solve the discontinuity
problems that might occur at switching instants in sensitivity analysis of periodically
switched nonlinear circuits.

Chapter 7 applies the computer algorithms proposed in this thesis to the analysis of
nonlinear oversampled sigma-delta modulators. A new method is achieved to include
general nonlinearities encountered in circuit level simulation of nonlinear oversampled
sigma-delta modulators.

Chapter 8 summarizes the work of this thesis. It also discusses the directions for
further research in some related areas.

Finally, methods for computing M(T), P(T), P,(T) and their Derivatives are de-

tailed in Appendix A.



Chapter 2

Time Domain Response of
Periodically Switched Linear
Circuits

In this chapter, we will focus on time domain response analysis of periodically switched
linear circuits. First, in Section 2.1, we review the sampled date simulation algorithm for
time domain response analysis of linear circuits proposed in [5]. For periodically switched
linear circuits, discontinuity problems might occur at switching instants in their time
domain response. It is important that the algorithms for time domain response analysis
correctly handles the inconsistent initial conditions at switching instants. The two-step
algorithm given in [18] for handling the inconsistent initial conditions is revisited in
Section 2.2. A rigorous derivation of the two-step algorithm is also given in this section.
Numerical examples are given in Section 2.3 to demonstrate the effectiveness of these

algorithms. Finally, the chapter is summarized in Section 2.4.

2.1 Sampled Data Simulation of Linear Circuits

Consider a linear circuit with an input w(t). The circuit in time domain is depicted by



dv(t)

= dw(t)v V(t)‘t:O‘ = V(Oﬁ), (2'1)

where v(t) is the network variable vector, G and C are the conductance and capacitance
matrices, respectively, and d is a constant vector specifying the nodes to which the input

is connected. Using Laplace transform, we get

V(s) = A7(s)Cv(07) + A~ (s)dW (s), (2.2)

where A(s) = G + sC is the system matrix in s-domain and W (s) is the Laplace
transform of w(t). Without loss of generality, let the input be w(t) = e/**. Taking the
inverse Laplace transform of (2.2), we obtain the time domain response of the circuit at

t =T, where T is the time step,

where

M(T) = L7'[A7!(5)Cls=r,
d

s — jwo]t:T’

P(T)=L'[A7Y(s) (2.3)

and L£71[] is the inverse Laplace transform operator. Notice that M(T'), the transition
matrix, is independent of the input, and P(7"), the zcro-state vector, is input-dependent.
Both of them are functions of 7.

For lumped linear networks, any time point can be chosen as the time origin as long

as an appropriate initial condition is taken into account. Resetting the time axis to zero



is equivalent to updating the initial condition vector v(07) in equation (2.4) after each
time step. Generally, to calculate the response at t = nT'+ T, the time origin should be
shifted from ¢ = 0 to t = nT. Subsequently, the input becomes w(t) = e/**T+)  the

initial condition becomes v(n7~), and the circuit is depicted by,

dv(t ,
Gv(t) + C—V(—]—(IL—2 = de? T v (t)|mg = v(nT 7).

The time domain response can thereby be computed successively in a sampled data

manner

v(nT 4+ T) = M(T)v(nT) + P(T)e?"T. (2.4)

If the time step T is the same for each step, M(7T") and P(7T") are constant and need to
be computed only once. They can be calculated using the numerical Laplace inversion
technique, an A-stable high-order numerical integration method [16]. The computation
required for evaluating (2.4) in each time step is only one matrix-vector multiplication
and one vector addition. The response at equally spaced intervals of time can be com-
puted efficiently. The method is known as sampled data simulation. Unlike ordinary
integration methods, the time step 1" of the sampled data simulation is independent of
circuit time constant and has no effect on the accuracy of the simulation.

For a linear circuit with multiple exponential inputs wy(t) = e/“o+* k =1,2,---, K,

the response can be obtained from superposition

v(nT +T) = M(T)v(nT) + f: P (T)ewesnT (2.5)

k=1

10



where P(T) is the zero-state vector for the input w(t) and K is the total number of
inputs.

The use of complex exponential function as inputs is instrumental in obtaining the
simple relation given by (2.5). One special case of interest is when w, = 0, corresponding
to a step input. Sinusoidal inputs can also be handled easily. For example, the response

of the circuit to the input w(t) = sin(w,t) is given by

v(nT +T) = M(T)v(nT) + Im[P(T)e*"], (2.6)

where Zm[.] denotes the imaginary part of a complex argument. Similarly, the response
to the input w(t) = cos(w,t) is obtained by replacing Zm/[.] with Re[.] in (2.6), where

Re[.] denotes the real part.

2.2 Inconsistent Initial Conditions of Periodically
Switched Linear Circuits

Switched circuits distinguish themselves from time-invariant circuits by including switches.
These switches appear physically in the form of NMOS transistors, transmission gates,
diodes, etc. They can be characterized at various levels of abstraction, depending upon
the accuracy requirements. Among which, the full-transistor model, voltage-controlled
resistor model, and ideal switch model are the most often used. The full-transistor
model captures the rapidly changing transient characteristics of the time-domain behav-
ior and high-frequency behavior of the circuits. Simulation based on the full-transistor
model, however, is time consuming. The use of this model can only be warranted if a
detailed analysis is required. When the rapidly changing transient characteristics of the

time-domain behavior and high-frequency behavior of these circuits are not of a critical

11



concern, switches can be modeled as a voltage-controlled resistor that has two largely
distinct resistances with a small resistance in the ON state and a large resistance in the
OFF state. The large ratio between the ON and OFF resistance values often results
in stiff systems that are difficult to simulate. To avoid this drawback, the ideal switch
model that has zero resistance in the ON-state and infinite resistance in the OFF-state
can be employed. The difference between these two simplified models only manifests
in the transient response of circuits [12]. This transient portion requires many small
steps to control the error, and subsequeﬁtly excessive CPU time to simulate, usually up
to 90 % of total simulation time for the switch [10]. If the initial transient portion of
the response is not of a critical concern, it is advantageous computationally to model
switches as ideal devices. Ideal switching, however, may cause an abrupt change in nodal
voltages and gives rise to inconsistent initial conditions. The calculation of inconsistent
initial conditions is essentially important for analyzing switched networks with ideal
switches because at a switching instant ¢ = ¢y, a Dirac impulse current or voltage may
occur and the network variables become discontinuous. As a result, the initial conditions
immediately before switching (¢ = t5') and after switching (¢ = ¢}') may be different [18].
The two-step method that is based on numerical Laplace inversion was proposed in
[18] to correctly handle Dirac impulses and inconsistent initial conditions of switched
linear circuits. This is because computation is performed in the frequency domain where
Dirac impulses and inconsistent initial conditions can be conveniently represented.
Incorporating the two-step method into the preceding sampled data simulation, the
inconsistent initial conditions of periodically switched linear circuits can be handled.
Assume a switching occurs at ¢ = n7T" and the initial condition before switching is given

by v(nT~). The forward step from t = nT~ to t = nT~ + T calculates v(nT~ + T)

12



v(nT~ +T) = M(T)v(nT~) + P(T)el"". (2.7)

The step size 7" should be chosen such that no switching occurs at t = n7T + T and the
response is continuous, i.e. v(nT +7T) = v(nT~ +T) = v(nT*™ + T). Following the
forward step, an identical step size is taken from ¢t = nTT+T tot = nT* to compute the
response immediately after switching v(nT*). Reset the time origin to ¢t = nT'+T. The
initial condition is given by v(nT™ + T) and the input becomes w(t) = ewlnT+T)=4,
Laplace transform, however, can not be directly used in the backward step because
Laplace integral is from ¢ = 0~ to ¢ = +oco. This can be solved by employing the

transform

T = —1.

In 7-domain the origin is 7 = —(nT + T'), the initial condition is still v(nT* + T), but
the input becomes w(r) = e/ [=("T+TH7] a5 shown in Fig.2.1. Rewrite (2.4) for the

backward step in 7-domain

dv(T)
dr

Gv(r)+C =dw(r), V(T)|r=——@mr++1) = v(nTt +T).

Using Laplace transform for the backward step, we obtain the response immediately

after switching

v(nT?) = Mg(T)v(nTt +T) + Py(T)e 7w T+T) (2.8)

where

13



Backward Step

. N

-

0 nT mnT+T) ¢t

Backward Step

' 1

-(nT+T) -nT 0 T
Figure 2.1: Transform 7 = —% for backward step
MB(T) = E’l[A_l(S)C]T:T
= £'[ATs)C]
= M(_T)v
Py(T) = L7'[A7'(s) d ]
§ — JweiT=T
d
_ p-1]pa-1
= £7'[A (5)S_jwo]t:_T
— P(-T). (2.9)

Similar to M(T') and P(T'), if the step size T is not changed, Mg(T) and P g(T) are con-
stant and need to be computed only once for a given network topology. Fig.2.2 provides
a graphical view of the inconsistent initial conditions and the two-step algorithm.

The time domain response of periodically’ switched linear circuits can be solved, using
the algorithms described in this section. Inside each clock phase, the topology of the
circuit is not changed and the circuit is a linear time invariant circuit whose response

can be computed using the sampled data simulation presented in this chapter. At the
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0 nT nT+T t

Figure 2.2: Inconsistent initial conditions and two-step algorithm

switching instants, inconsistent initial conditions can be handled using the two-step

algorithm.
2.3 Numerical Examples

To verify the usefulness of the algorithms presented in the preceding sections, a com-
puter program has been written in Matlab. The algorithms have been implemented
in the computer program. Numerical examples of periodically switched linear circuits
with different forms of input are simulated. Simulation was performed on Sun Ultra-10

workstations with 440MHz CPU and 512MB RAM.

2.3.1 Non-inverting Switched-Capacitor Integrator with Unit
Step Input

The first example is a non-inverting switched-capacitor integrator shown in Fig.2.3. It

contains four externally clocked ideal switches. The clock phases are non-overlapping.
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Figure 2.3: A non-inverting switched-capacitor integrator

The clock frequency is 1 MHz. Each clock period has two phases of equal width. C; =
0.2nF and Cy = 3nF. Zero initial conditions are assumed for all capacitors. The
operational amplifier is assumed to be ideal. The input is a unit step voltage source,
Vi(t) = u(t).

The output voltage of the non-inverting switched-capacitor integrator, V,(t), is com-
puted and plotted in Fig.2.4. As shown in the figure, it is discontinuous at ¢t =
0.5us, 1.5us,2.5us, ..., where inconsistent initial conditions are encountered. It is contin-
uous at ¢ = 1.0us,2.0us, 3.0us, ..., where only consistent initial conditions are encoun-
tered. This observation demonstrates that algorithms can correctly handle both the

inconsistent and consistent initial conditions for periodically switched linear circuits.

16



1.5 T T T T T T T T

— input
— output

Vo [volf]

0 1 | L 1 I I L 1 1
[¢] 1 2 3 4 5 6 7 8 9 10

time fus]
Figure 2.4: Response of non-inverting switched-capacitor integrator

2.3.2 Inverting Switched-Capacitor Integrator with Sinusoidal
Input

The second example is an inverting switched-capacitor integrator, as shown in Fig 2.5.
The clock frequency is 100 kHz. Each clock period has two non-overlapping phases with
equal width. C; = 0.1nF and C; = 1nF. Zero initial conditions are assumed for all
capacitors. The operational amplifier is assumed to be ideal. The input to the integrator

is a voltage source of 1 kHz cosine wave with 0.1V amplitude,

Vi(t) = 0.1 cos(20007t) V.

The time domain response of the switched-capacitor integrator is simulated and its

output voltage, V,(t), is plotted as shown in Fig. 2.6.
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Figure 2.5: An inverting switched-capacitor integrator

2.4 Summary

Two useful simulation algorithms, sampled data simulation for analyzing the time do-
main response of linear circuits and two-step algorithm for handling the inconsistent
initial conditions of switched circuits, have been reviewed in this chapter. Combining
these two algorithms, we have obtained the time domain analysis algorithm for period-
ically switched linear circuits. These algorithms are efficient, accurate, and stable for
the time domain analysis of periodically switched linear circuits. Numerical examples

show the usefulness of the algorithms. We will extend these algorithms to response and

sensitivity analysis of periodically switched nonlinear circuits in the following chapters.
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Figure 2.6: Response of inverting switched-capacitor integrator
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Chapter 3

Volterra Series Representation of
Nonlinear Circuits

This chapter deals with the time domain analysis method of nonlinear circuits. A brief
introduction of the Volterra functional series based methods for analysis of nonlinear
circuits is given in Section 3.1. The Volterra circuits of nonlinear circuits are derived in
Section 3.2. In Section 3.3, a example circuit is used to illustrate the method. Practical
considerations for the use of the method in analysis of nonlinear circuits are given in

Section 3.4.

3.1 Introduction

Nonlinearities are widely encountered in analysis and design of integrated circuits. Non-
linear characteristics typically encountered in integrated circuits include the exponential
I-V characteristics of diodes and transistors, the square-law characteristics of the drain
current of MOSFETS, pn-junction capacitances, and other types of nonlinearities which
can be modeled using polynomials. These nonlinear characteristics are usually con-
tinuously differentiable and can be represented sufficiently by a finite number of their

Taylor series expansions at their DC operating point. When the input is small, the
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nonlinearities in this case are usually mild [9].

Nonlinear circuits are most often analyzed in time domain using linear multi-step
predictor-corrector (LMS-PC) algorithms where Newton-Raphson iterations are required
[7, 8]. These methods are robust and effective in handling circuits with both harsh and
mild nonlinearities. They are, however, computationally expensive mainly due to the
need for Newton-Raphson iterations in every step of integration.

Volterra functional series based methods [20, 21] can be employed to effectively sim-
plify the analysis and reduce the cost of computation. In frequency domain, methods
based on this approach have been used successfully for nonlinear analysis of power con-
version systems [22], radio-frequency circuits [9], and general periodically switched non-
linear circuits [6]. Volterra functional series based nonlinear analysis approach was also
extended successfully from frequency domain to time domain [11]. Tt was shown that,
using Volterra functional series, a nonlinear element can be characterized equivalently
as a linear element, along with a set of independent sources in which the nonlinear
characteristics are embedded. Consequently, the nonlinear circuit can be represented
equivalently by a set of linear circuits called Volterra circuits. The time domain solu-

tions of a nonlinear circuit are obtained by solving the Volterra circuits.

3.2 Volterra Circuits

For circuits with mildly nonlinear elements, we characterize the behavior of the nonlinear
elements using a finite number of terms of their Taylor series expansion at their DC

operating point. Using modified nodal analysis, the nonlinear circuit is depicted by

Gv(t) + €Y = du(t) + FIv(D], v(B)lieo = v(07), (3.1)
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where G and C are the conductance and capacitance matrices respectively. Their entries
are made of the coefficients of the linear elements and the first-order term of the Taylor
series expansion of the nonlinear characteristics. The higher order terms of the nonlinear
characteristics are embedded in the nonlinear function f[v(t)].

In [20] and [23], it was shown that the response of a nonlinear system y(t) to input

z(t) can be represented by the Volterra functional series

y(t) = i Ym (1),

m=1

where

) = [ o [ bt () (e,

ym(t) is the mth-order term of the Volterra series expansion of y(t) and A, (t, 71, -+, Tin)
is the mth-order Volterra kernel. When the input is changed from z(t) to ex(t), where

€ is a nonzero constant, the response becomes

v = 3 (0" )

Eq. (3.2) indicates that y(¢) is a polynomial in e. Expressing v(t) using (3.2), substi-
tuting the input ew(t) into (3.1), and equating the terms of the same order in ¢ lead to

the following set of linear differential equations

e+ ™~ 4 n0), Wl = w00,
v+ 02 = dp], vaOles = va(0)
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dvi(t)
dt

va(t) + C = dmfm[vl (t)ﬂ"z(t)a T Vm—l(t)]7 Vm(t)it:O‘ = Vm(07)7

(3.3)

where v,,(t) is the m-th order term of the Volterra series expansion of v(t), d,, is a
constant vector specifying the node to which the input f,,[vi(t),va(t), -, vim-1(t)] is
connected. The circuit depicted by the m-th equation in (3.3) is called Volterra circuit
of order m.

For the first-order Volterra circuit, its input given by f;(¢) = w(t) and its vector d, =
d, which are identical to the input and the vector d for the original nonlinear circuit, re-
spectively. The input for higher order Volterra circuits f,,[vi(t), va(t), -, Vm_1(8)], m =
2,3,---, is a nonlinear function of the solutions of lower order Volterra circuits. Note
that for the second and higher order Volterra circuits, the inputs are connected to the
same node. So the vectors d,,,, m = 2,3,---, are identical for higher Volterra circuits,

i.e.

d=dz=---=d, =---.

Each Volterra circuit is a linear time invariant circuit and can be solved using the
sampled data simulation given in Chapter 2 for both efficiency and accuracy. The time
domain solution of the nonlinear circuit is obtained by summing up those of Volterra

circuits

Vi) =3 valt). (3.4)



3.3 Examples

In this section, we use a simple nonlinear circuit shown in Fig. 3.1 to illustrate the
method described in Section 3.2 and to show how the Volterra circuits of a nonlinear

circuit are derived. In this example, the nonlinear conductor is characterized by

i(t) = gro(t) + g’ (t) + gsv°(t),

where g1, go, and g3 are constants. Using KCL we get

Go(t) + [g1o(t) + gov* () + gsv* ()] = w(?). (3.5)

Substituting Volterra series expansion

v(t) = v1(t)e + vy(t)€® + vs(t)e®
and input ew(¢) into (3.5), and equating the terms of the same order in €, we obtain
(G +gr)oi(t) = w(t)

(G + g1)v2(t) = folvi(?)]
(G + g1)vs(t) = falvr(t), va(t)],

where

falv1(t)] = —g207 (t)
{ Soloi (), v2(t)] = —[2g201 () (t) + gsv ()] (36)

The corresponding Volterra circuits of the nonlinear circuit are shown in Fig. 3.1. It is

seen that the input of the first-order Volterra circuit, w(t), is identical to the input of
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the original nonlinear circuit. The input of the second-order Volterra circuit, fo[v:(t)],
is a nonlinear function of the solution of the first-order Volterra circuit, v;(¢). The input
of the third-order Volterra circuit, fs[v1(t), v2(t)], is a nonlinear function of the solutions

of the first-order and the second-order Volterra circuits, v1(t) and vo(t).

3.4 Practical Considerations

For circuits with mildly nonlinear elements, the Volterra functional series based methods
are most effective and computationally efficient. This is because only low order Volterra
series expansion is needed. For circuits with harsh nonlinearities, such as comparators
and Schmitt triggers, a large number of Volterra circuits are required in order to provide
good accuracy. Implementation in this case becomes formidably complex and the cost of
computation also becomes excessive. In practice, usually maximum up to the 5th-order
Volterra series expansion is used. In the résearch of this thesis, up to the 3rd-order
Volterra series expansion is used.

The order of Volterra series expansion can be determined with reference to that of
the Taylor series expansion of nonlinear elements. For a given nonlinear function f(v),

its Taylor series expansion at the operating point vg is

fN(Uo)
2

. f(")('vo)

Fw) = flvo) + f (vo)Av + (Av)? + - (Av)™ +---,

where

Av = v — vy.

The nth-order truncation error of its Taylor series expansion bounded by
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[ (gAv)

(n+1)! (Ao)"™,

where 0 < £ < 1. It can be determined conveniently.

As an example, consider the nonlinear conductor

i(t) = qiv(t) + gov’ () + gsv®(2).

The corresponding Volterra circuits are given by

i(t) = g1 (t)

ia(t) = grva(t) + gov7(2)

i3(t) = givs(t) + 29201 (¢)va(t) + gavi(t) ) (3.7)
ia(t) = groa(t) + 29001 (£)v3(t) + gov2(t) + 3gsvi (t)v2(t)

The difference between employing the 3rd-order and the 4th-order Volterra series expan-
sions is the last equation in Eq. (3.7). If 44(t)<41(t), 92(¢), ¢3(t), the 3rd-order Volterra
series expansion is considered to be sufficient. The last equation in (3.7) provides a prac-

tical measure to quantify the error due to the truncation of Volterra series expansion.
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Figure 3.1: Nonlinear circuit and its Volterra circuits
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Chapter 4

Time Domain Response of
Periodically Switched Nonlinear
Circuits

This chapter proposes a new simulation algorithm for time domain analysis of periodi-
cally switched nonlinear circuits. The algorithm is implemented in a computer program
and assessed by comparing the results of numerical examples from our program with
those from PSPICE. Furthermore, the algorithm has the ability to correctly handle the
inconsistent initial conditions at switching instants for periodically switched nonlinear
circuits, which is verified by checking the charge conservation of the example circuits im-
mediately before and after switching. The primitive results of this chapter were reported
in [32], [33], and[34].

In this chapter, the problem of simulating periodically switched nonlinear circuits in
the time domain is divided into two parts. First, the algorithm for analysis of nonlinear
circuits inside a clock phase is presented in Section 4.1. Secondly, a new extended two-
step algorithm is proposed in Section 4.2 to handle the inconsistent initial conditions
at switching instants for periodically switched nonlinear circuits. The usefulness and

accuracy of the proposed algorithm are examined using numerical examples in Section
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4.3. Finally, the chapter is summarized in Section 4.4.

4.1 Time Domain Response of Nonlinear Circuits

As shown in Chapter 3, a nonlinear circuit with input w(t) = /' can be represented

using its Volterra circuits as follows:

Gvy(t) + Cdv;t(t) = e/t vi(t)|mo- = v1(07),
Gvy(t) + Cd—%t(—t) = dofo[vi(t)], Vva(t)|s=o- = v2(07),
va(t) + Cdvgt(t) = dmfm[vl (t)v V2(t)7 ) Vm—l(t)]v vm(t)|t:0_ = Vm(o_)7

(4.1)

Applying the sampled data simulation to each Volterra circuit and summing up the
responses of all Volterra circuits, the time domain response of the nonlinear circuits is
obtained. This leads to a new sampled data simulation method for nonlinear circuits.

The response of the first-order Volterra circuit in Eq. (4.1) is obtained from Eq. (2.4),

vi(nT +T) = M(T)vy(nT) + P(T)e?*" . (4.2)

To solve the second-order Volterra circuit, we need to know its input function fo(t).
From the solution of the first-order Volterra circuit at discrete time points v;(nT'), the
data of f,(t) at the discrete time points fo(nT) = f2[vi(nT)] is obtained. f,(¢) can be
approximated subsequently using an interpolating Fourier series [11] that interpolates
Jfo(nT). Interpolating Fourier series provides superior computational accuracy and nu-

merical stability as compared with other interpolation methods, such as Lagrange or
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Figure 4.1: Simulation window

Newton [25]. To implement Fourier series interpolation, we choose a simulation window
[0,(2N — 1)T] with width Ty, as shown in Fig. 4.1. It contains 2N equally spaced
data, f2(0), fo(T),---, fo[(2N — 1)T]. The input function fo(t) for ¢t € [0, (2N — 1)T1] is

obtained from

z

-1

fﬂt)%%’o + [ag’kcos(kwst) + bg,ksin(kwst)] + EQQ’—NCOS(Nwst), (4.3)
k=1
where w; = “" The coefficients [as] and [by] are determined from

a2.0
a21

ag N
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A (T
f|(2N = 1)T]
b2,
bo,o
[bo] = .
ba, N1
>(T)
Cnn| B0
fl2N = 1)T]
where
1 1 . 1
QIN.T) = % 1 COS((.:)ST) cos[(2N — Vw1 |
1 cos(Nw,T) --- cos[N(2N — 1w,T)]
:"?in(wsT) s%n(QwST) o s.in[(QN — 1wT)]
R(N.T) = _]1\7 sm(2:wsT) sm(4:wsT) sin[2(2N — Vw,T)]
Sin[(N — 1)w,T] sin[2(N = D T] -+~ sinf[(N = 1)(2N — D), T]

Neglecting the interpolation error, the behavior of the second-order Volterra circuit in

the simulation window is depicted by

= {@2’—0 + -(%-Aicos Nuwit) Z [aQ rcos(kwst) + bg,ksin(kwst)] }d2

dV2 (t)

GVQ (t) -+ C dt

It can be seen that the second-order Volterra circuit is a linear circuit with 2NV inputs.

Its response is obtained using the sampled data simulation and superposition
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where

2T +T) = M(T)vo(nT) + Re{%PO(T) +

(g N

2

Py (T)edNosnd

N-1

N—-1
+ Z (J,g’kPk(T)ejk‘”SnT} +Im{ Z bQ’kPk(T)ejkwsnT}, (4_4)
k=1 k=1

d;
s —jkws]t:T’

k=0,1,---,N,

P(T) = L7'[A7(s)

is the zero-state vector of the circuit to the input wy(t) = €/**. If the width of the

window Ty and the number of samples per window 2N are unchanged, Py(T), k =

0,1,---, N, will be the same for all Volterra circuits. For each order of Volterra circuit,

only one new set of coefficients [a,,] and [b,,] need to be computed. They can be obtained

efficiently using

[bm] =



Jm(T)
= R(N,T) J m(ZQT) . (4.6)
fml(2N = )T
Similarly, the behavior of the mth-order Volterra circuit in the simulation window is

depicted by

AV, (1) Umo QN
= 2 N
{ 5 + 5 2 cos(Nwst)
N—

1

+ [am rcos(kw,t) + bm,ksin(kwst)] }d2
=1

m=2,3,---.

el

The response of the mth-order Volterra circuits in the simulation window can be com-

puted in a similar manner

V(0T T) = M(T)vn(oT) + Re{ “B2P(T) + 52 (7)o

N-1

N—
—+ Z a,yn’kPk(T)ejkwsnT} +Im{ Z kPk eykwsnT}
k=1 ot

m=23---. (4.7)

The complete response of the nonlinear circuit in the simulation window is obtained by

summing up the response of all Volterra circuits

o
= > vy(nT)
m=1
For each simulation window, because M(T),Py(T),k =0,1,---, N,Q(N,T),and R(N, T)
are constant, the only computation required is to obtain the coefficients of the interpo-

lating Fourier series [a,,] and [b,,]. The response of the nonlinear circuit at equally
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spaced time points can therefore be obtained efficiently. Simulation proceeds window by

window until a given stop time is reached.

4.2 Inconsistent Initial Conditions of Periodically
Switched Nonlinear Circuits

Similar to switched linear circuits, inconsistent initial conditions may occur at switching
instants in switched nonlinear circuits. In Section 2.2, we have shown that the two-step
algorithm yields the consistent initial conditions for periodically switched linear circuits.
In this section, we propose a new extended two-step algorithm to handle the inconsis-
tent initial conditions of switched nonlinear circuits. Because the Volterra circuits of a
switched nonlinear circuit are a set of switched linear circuits, the two-step algorithm
can be applied to each Volterra circuit to yield the consistent initial conditions of these
circuits. At the switching instants, the initial condition of the switched nonlinear circuit
is obtained by summing up that of all Volterra circuits. We refer it as the new extended
two-step algorithm for periodically switched nonlinear circuits.

Suppose a switching occurs at t = nT and the initial conditions of Volterra circuits
before the switching instant are given by v,,(n7T~),m = 1,2, ---. The forward step from

t=nT" tot=nT" +Tyields v,,(nT" +T),m=1,2,---

vi(nT~ +T) = M(T)vi(nT ") + P(T)es¥"T

a

Vm(an + T) = M(T)Vm(nT‘) + Re{ ‘),0 PO(T) + am,N PN(T)eijsnT

N—-1 N-1
+ Z am’kPk(T)ejkwsnT} +Im{ z bm7kPk(T)€jkwsnT},

k=1 k=1
m=2,3,-- (4.8)

34



With v,,(nTt +7T) = v,,,(nT~ + T) in mind, the backward step from ¢t = nT* + T to

t =nT* yields v,,(nT1),m=1,2,---

vi(nTt) = Mg(T)vi(nTT 4+ T) + Py(T)e 3«0+ (4.9)

m am —iNw v
Vi (nTF) = Mg(T)vy(nTh +T) + Re{“—QﬁPBO(T) + T’NPBN(T)C JNws(nT+T)

= N-1
+ Z am7kPBk(T)e*jkws(nT+T)} +Im{ z bm’kPBk(T)evjkws(nT«f-T)},

k=1 k=1

m=2,3,--- (4.10)

where

Pu(T) = z—l[A‘l(s)S_jkw]t}T
= Pk("T)7
k=01,---,N

The initial conditions used in the backward step are v,,,(nT*+T) =v,,(nT~+T),m =
1,2, ---, provided that the time step 7' is properly chosen such that no discontinuity at

t =nT +T. Finally we obtain the initial conditions immediately after switching,

o0
v(nT) = > v (nT"). (4.11)
m=1
The width of the clock phase should be taken into account when choosing the width
of the simulation window, T,,, for the periodically switched nonlinear circuits. Each

clock phase should be divided evenly into several sub-phases and the simulation window

is set for each sub-phase. This arrangement ensures that a switchings occurs only at the
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edges of, but not inside the simulation windows. The extended two-step algorithm is
implemented only at the beginning of the first simulation window inside a clock phase,

as the switching instants are known a priori.

4.3 Numerical Examples

The proposed algorithms for computing the response of periodically switched nonlinear
circuits have been implemented in a computer program RSPSN (Response and Sensi-
tivity of Periodically Switched Nonlinear circuits) using MATLAB. In this section, the
response of example periodically switched nonlinear circuits is analyzed using RSPSN.
The time domain response from RSPSN is compared with that from PSPICE. Simulation

was performed on Sun Ultra-10 workstations with 440MHz CPU and 512MB RAM.
4.3.1 Switched Circuit with Nonlinear Conductors

O o1 2 o2 (3

wi(t) = u(t) Gi=18 = IF Co= IF

® =

/[9

v(t)

Ay
N |
/

i)

o1

Tok/2 Tei t

| | [

C

o2

Figure 4.2: Switched circuit with nonlinear conductor
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Figure 4.3: Response of switched nonlinear circuit

The first example is a switched nonlinear circuit shown in Fig.4.2 that contains two
externally clocked ideal switches. The clock phases are non-overlapping. The voltages
of the two capacitors are well defined inside either clock phases but may discontinue at
switching instants. The clock frequency of the circuit is 5 Hz. Each clock period has
two phases of equal width. G; =15, C), = 1F, and C; = 1F. Zero initial conditions are

assumed for all capacitors. The nonlinear conductor is modeled as

i(t) = g1v(t) + gov(t) + g30°(2),

where g1, g2, g3 are constants. In our simulation, they are chosen as

{g1, 92,95} = {1.0,0.5,0.25}.

The input is a unit step current source, w(t) = u(t). Up to the third-order Volterra
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Figure 4.4: Normalized difference of response between RSPSN and PSPICE

series expansion is used. To simplify simulation, the width of the simulation window is
set to be the same as that of the clock phase, i.e., 0.1s. The number of samples per
window is 20.

The voltages at all nodes are solved using RSPSN and the results for node 3 are
plotted in Fig.4.3. As shown in the figure, the voltage at node 3 is discontinuous at
t =0.1s,0.35,0.5s, ..., where inconsistent initial conditions are encountered. It is contin-
uous at ¢t = 0.2s,0.4s,0.6s, ..., where only consistent initial conditions are encountered.
This observation demonstrates that the proposed method can correctly handle both the
inconsistent and consistent initial conditions at the switching instants.

The results of PSPICE analysis is also plotted in the figure for comparison. They are
virtually indistinguishable from those from RSPSN. The normalized difference between
the results from RSPSN and those from PSPICE are measured. Two different situations

are considered. Inside each clock phase where no discontinuity occurs in the response,
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Figure 4.5: Charge conservation before and after switching instants
the normalized difference for time points exéept switching instants is defined as

v(nT) — o(nT)
v(nT)

Normalized difference = x100%,

where v(nT) and ¢(nT) are the responses from RSPSN and PSPICE, respectively. It
can be obtained directly from the responses, and is shown in Fig. 4.4. It is seen that the
maximum normalized difference is below 0.5%.

At the switching instants, a direct comparison of the results from RSPSN and
PSPICE is difficult. The reason is as follows: If a switching action causes a discon-
tinuity at £ — t,, although the inconsistent initial conditions immediately before and
after switching v(¢,) and v(¢J) can be obtained from RSPSN, they can not be ob-
tained from PSPICE. This is because, for traditional integration methods such as those

used in PSPICE, the continuity of network variables is required. In order to handle a
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Figure 4.6: Responses of switched nonlinear circuit and its Volterra circuits

rapid change in response, very small time steps must be taken to ensure the accuracy of
integration. No time point can be clearly defined as a “switching instant”.

At the switching instants, the initial conditions obtained from RSPSN are verified
by checking the charge conservation before and after switching. The total charge on
capacitors C; and C, immediately before and after switching is computed and plotted
in Fig. 4.5. It is seen that the total charge before switching is equal to the total charge
after switching, revealing that RSPSN handles the inconsistent initial conditions at the
switching instants correctly.

The responses of the first, second, and third-order Volterra circuits are shown in
Fig. 4.6, together with the complete response of the nonlinear circuit. It is evident
that the sum of the three Volterra circuits converges to the response of the periodically

switched nonlinear circuit.
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4.3.2 Switched-Capacitor Integrator with Nonlinear Opamp
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Figure 4.7: Nonlinear switched-capacitor integrator

The second example is a switched-capacitor integrator with a nonlinear opamp, as
shown in Fig 6.6. There are four externally clocked ideal switches. The clock frequency
is 100 kHz. Each clock period has two non-overlapping phases with equal width. The
input to the integrator is a voltage source of 1 kHz cosine wave with 0.1V amplitude, V; =
0.1¢cos(20007t)V. C; and Cy are 0.1nF and 1nF, respectively. Zero initial conditions

are assumed for all capacitors. The gain of the opamp is modeled as

Gain = ag + a1 (vy —v_) +ax(vy —v_)?,

where ag, a1, as are constants. In our implementation, they were chosen as
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Figure 4.8: Response of nonlinear switched-capacitor integrator

{CL(), ap, LLQ} = {10, —5, '—25}

The time domain output of the switched-capacitor integrator, V,, is calculated using
RSPSN and shown in Fig. 4.8. The output responses of the first, second, and third-

order Volterra circuits of the integrator are also shown in Fig. 4.9.

4.4 Summary

In this chapter, we have proposed a new efficient algorithm for time domain analysis
of periodically switched nonlinear circuits. In the algorithm, a nonlinear circuit is rep-
resented by its Volterra circuits and its time domain response is calculated window by
window. The algorithm is efficient for the analysis of periodically switched nonlinear
circuits because the sampled data simulation method is used instead of computationally

intensive Newton-Raphson algorithm in each integration step. At switching instants, the
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Figure 4.9: Responses of Volterra circuits of nonlinear switched-capacitor integrator

proposed algorithm handles the inconsistent initial conditions correctly and efficiently
using the extended two-step algorithm also developed in this chapter. The accuracy and
efficiency of the new algorithm have been assessed using example circuits. Inconsistent
initial conditions at the switching instants are correctly handled by RSPSN and verified

by the charge conservation of all capacitors before and after switching.
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Chapter 5

Time Domain Sensitivity of
Periodically Switched Linear
Circuits

Sensitivity analysis is required for the evaluation and optimization of circuit design.
This chapter presents a new method for time domain sensitivity analysis of periodi-
cally switched linear circuits. After a brief introduction of different sensitivity analysis
approaches in Section 5.1, the sampled data simulation based time domain sensitivity
analysis method for linear circuit given in [15] is reviewed in Section 5.2. In Section 5.3,
we propose a new time domain sensitivity analysis method for periodically switched lin-
ear circuits. It can handle the discontinuities of sensitivity networks that might occur
at switching instants. Numerical examples are given in Section 5.4. The chapter is
summarized in Section 5.5. The primitive results of this chapter were presented in [32]

and [33].
5.1 Introduction

Sensitivity is a mathematical measure of circuit performance. Sensitivity analysis pro-

vides an insight into the behavior of circuits. There are many reasons for sensitivity
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analysis in the circuits design. For example, it is used to evaluate the effect of parame-
ter variation on the response of circuits. It also plays an important role in the tolerance
analysis and design optimization of circuits.

In [16], various definitions of sensitivity for linear circuits were given both in frequency
and time domains. Different approaches were available for sensitivity analysis of linear
circuits. In the sensitivity network approach, the sensitivities of all variables with respect
to one circuit parameter are computed. In the adjoint network approach, the sensitivities
of one variable with respect to all parameters are calculated.

Some computer methods for frequency domain sensitivity analysis of periodically
switched linear circuits were developed in the last decade. In [12], an accurate frequency
domain method that is based on the sensitivity network approach to compute the sen-
sitivity of periodically switched linear circuits was proposed. Using the adjoint network
approach and Tellegen’s theorem, Yuan and Opal presented another efficient and accu-
rate computational method for sensitivity analysis of periodically switched linear circuits
in frequency domain [14].

In the time domain, based on the sampled date simulation and sensitivity network
approach, an efficient computational method was proposed in [15] for the sensitivity
analysis of linear circuits. Time domain sensitivity analysis method for general period-
ically switched linear circuits are needed and it is the subject of this chapter. Further
more, the time domain sensitivity method for periodically switched linear circuits devel-
oped in this chapter will be extended for periodically switched nonlinear circuits in the

following chapter.
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5.2 Time Domain Sensitivity of Linear Circuits

The time domain sensitivity of the response v(t) with respect to a circuit parameter x

is defined as

The time domain sensitivity z(t) is calculated by solving the sensitivity network, which
can be obtained by assuming the independence of the input w(t) on the circuit parameter

2 and differentiating Eq. (2.4) with respect to x

dz(t)  [0G aC dv(t)

Gz(t) + C—— v(t) + 5 dl |’ z(t)|s=0- = 2(07). (5.1)

d ~ lor

Equation (5.1) shows that the sensitivity network of a linear time invariant circuit is
still a linear time invariant system. The sensitivity network has the same topology and
components values as that of its original circuit. But its inputs are different. They
are functions of the response of its original circuit. The time domain sensitivities of all
variables with respect to a parameter z are obtained after solving the sensitivity network
depicted in Eq. (5.1).

It can be proven easily that the solution of the sensitivity network Eq. (5.1) can also
be obtained by directly differentiating the time domain response of its original circuit,

as shown in Eq. (2.4), with respect to z

OM(T)

z(nT+T) = —5—v(nT)+M(T) avéZT) + al;f) eJwont
= M,(T)v(nT) + M(T)z(nT) + P,(T)e"T (5.2)
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where

M,(T) = —M(T)
0

= a—xﬁ‘l [A_l (S)C]t:T

DA (s) .90
— -1 A7/ A 1 il
£ l Oz . (=) Oz ] t—T,

P(1) = < P(T)

= iE_l[A_l(s) d. ]
ox § — JWo |,

_ El[@A‘l(s) d }
0x S — jw, t:T'

We moved the partial differentiation operator — inside the brackets because z is inde-

oz
OA~(s)

X

pendent of both frequency s and the time step 7. Note that can be computed

efficiently using

where

oAG) oG oc
or Oz ox

Using the sampled data simulation given in Chapter 2, we can calculate the time domain

sensitivity of linear circuits from Eq. (5.2).
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5.3 Time Domain Sensitivity of Periodically Switched
Linear Circuits

In this section, a new method for time domain sensitivity analysis of periodically switched
linear circuits is presented. The two-step algorithm is applied to solve the discontinu-
ity problems that might occur at the switching instants in the sensitivity network of
periodically switched linear circuits.

The sensitivity networks of periodically switched linear circuits are also periodically
switched linear systems. Both sampled data simulation and two-step algorithm can be
applied to the sensitivity networks. The time domain sensitivity of periodically switched
linear circuits is obtained by solving the sensitivity networks.

Similar to the inconsistent initial conditions encountered in solving the periodically
switched linear circuits, the discontinuity problems may also be encountered at switching
instants in solving the sensitivity networks of periodically switched linear circuits. The
two-step algorithm used to handle the inconsistent initial conditions of response also
can be applied the sensitivity networks of periodically switched linear circuits to handle
the inconsistent initial conditions. Assume a switching occurs at £ = n’T’" and the initial
condition before switching is given by z(nT ). z(nTt +T) is computed using Eq. (5.2)
in the forward step. In the backward step, the sensitivity immediately after switching,

denoted by z(nT*), can be solved by differentiating Eq. (2.8) with respect to z

OMp(T) ov(inTt+T) 0Pp(T) _.
+ + jwo(nT+T)
z(nTT) a9 v(nT™ +T)+ Mp(T) 5 + P

= Mg, (T)v(nT" +T) + Mp(T)2(nT* +T) + Pp,(T)e 90T+ (5.3)
where
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Pp(T) = -Ps(T)

= P,(-T). (5.4)

Simifar to M(T), P(T), Mp(T), and Pg(T) for response analysis, M(T), P,(T),
Mp,(T), and Ppgs(T) for sensitivity analysis are constant if the time step 7" is not
changed. They need to be computed only once, and can be computed along with M(T),
P(T), Mg(T), Py(T) in a pre-processing step prior to the start of simulation. Once
these matrices and vectors are known, the time domain sensitivity at time points of an
equal interval can be obtained efficiently from two matrix-vector multiplications and one
vector addition.

The time domain sensitivity of periodically switched linear circuits is obtained by
solving the sensitivity. networks inside the clock phases. The discontinuities of sensitivity
that might occur at the switching instants are computed using the two-step algorithms

for the sensitivity networks described in this section.
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5.4 Numerical Examples

In this section, we use the inverting switched-capacitor integrator as an example to assess
the time domain sensitivity analysis algorithms for periodically switched linear circuits
presented in the previous sections. It is worthful to note that the algorithms of sensi-
tivity analysis presented in this chapter and the algorithms of response analysis used
in Chapter 2 for periodically switched linear are all implemented in the same computer
program RSPSN for the time domain analysis of periodically switched nonlinear circuits.
Since the time domain sensitivity simulation and response simulation are merged in the
same program, the sensitivity simulation can be done without too much extra compu-
tational effort along with response simulation. The results from RSPSN is validated by

comparing with those from the brute-force (BF) method.

5.4.1 Sensitivity of Inverting Switched-Capacitor Integrator

The example circuit for time domain sensitivity analysis is the same inverting switched-
capacitor integrator used for time domain response analysis in Chapter 2, as shown in
Fig. 5.1. Ideal operational amplifier is assumed in the integrator. The time domain
sensitivities of the output voltage V, with respect to capacitors C; and C are calculated
with the same settings as those used in response simulation. The results are plotted in
Fig. 5.2 and Fig. 5.3. In these figures, the definition of semi-normalized sensitivity is
used [16], which defines the sensitivity of function F' with respect to a parameter z as
Sy = x%g
The sensitivities of the output voltage V, with respect to capacitors C; and (s are also

computed using the brute-force method, which estimates the sensitivity of the response
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Figure 5.1: Switched-capacitor integrator with ideal opamp

v(t) with respect to a circuit parameter x using

du(t)  Awv(t)

Ox Ax

A
In our implementation of the brute-force method, 73: = 1% is used to calculate Av(t).
The results from BF are plotted in Fig. 5.4 and Fig. 5.5 together with those from RSPSN

for comparison. It is seen that the time domain sensitivities obtained from RSPSN and

BF match well.

5.5 Summary

In this chapter, we have presented the new method for time domain sensitivity analysis

of periodically switched linear circuits. The method is based on the combination of sam-
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Figure 5.2: Sensitivity of V,, with respect to C;

pled date simulation and two-step algorithm of Chapter 2. Inside the clock phases, the
time domain sensitivity is calculated by solving the sensitivity networks. The method
has the ability to handle the discontinuities of sensitivity that might occur at the switch-
ing instants. The time domain sensitivities of all variables with respect to one circuit
parameter are computed efficiently for periodically switched linear circuits. The method

was assessed using numerical examples.
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Figure 5.4: Sensitivity of V, with respect to C; from RSPSN and BF
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Chapter 6

Time Domain Sensitivity of
Periodically Switched Nonlinear
Circuits

The sensitivity analysis of nonlinear circuits is mostly performed in time domain, because
direct frequency domain sensitivity analysis for nonlinear circuits is not straightforward.
In this chapter, we propose a new method for time domain sensitivity analysis of period-
ically switched nonlinear circuits. The algorithm is implemented in a computer program
in Matlab and assessed using numerical examples. The primitive results of this chapter
were presented in [32] and [33].

First, a brief introduction of sensitivity analysis methods for nonlinear circuits is
given in Section 6.1. A Volterra circuits based time domain sensitivity analysis method
for nonlinear circuits [13] is reviewed in Section 6.2. In Section 6.3, we propose a new time
domain sensitivity method for periodically switched nonlinear circuits. It can handle the
discontinuity problems encountered in sensitivity analysis of these circuits. Numerical

examples are given in Section 6.4. Finally, the chapter is summarized in Section 6.5.
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6.1 Introduction

Sensitivity analysis of electronic circuits can be performed in either time or frequency
domains. For linear time invariant circuits and even periodically switched linear circuits,
both time domain and and frequency domain sensitivity analysis methods are available,
as described in Chapter 5. But it seems that the time domain sensitivity analysis
becomes the only possibility for nonlinear circuits and periodically switched nonlinear
circuits. This is because the frequency domain sensitivity analysis is not straightforward
and complicated in the nonlinear cases.

In addition to the response analysis of nonlinear circuits, efficient and accurate simu-
lation methods for sensitivity analysis of nonlinear circuits is needed. Based on Volterra
functional series and sampled data simulation, Yuan and Opal proposed an efficient time
domain sensitivity analysis method for mildly nonlinear circuits in [13]. But, to the best
knowledge of the author, time domain sensitivity analysis of periodically switched non-

linear circuits is not available. This becomes the subject of this chapter.

6.2 Time Domain Sensitivity of Nonlinear Circuits

Time domain sensitivity of the response with respect to a circuit parameter z is defined

as,

ov(t)
T

z(t) =

For a nonlinear circuit, its time domain sensitivity, at discrete time t = nT\,n=1,2, -,

can be represented as

o6



ov(nT)

z(nT) = 5

The response of a nonlinear circuit at ¢ = nT is obtained from its Volterra circuits, as

described in Chapter 4,

o0

v(nT) =Y vn(nT).

m=1

Define the time domain sensitivity of the m-th order Volterra circuit at discrete time

t =nT as,

OV (nT)

Zy(nT) = pe

For a nonlinear circuit, the time domain sensitivity of the response with respect to a

circuit parameter x, at discrete time ¢ = nT, is obtained

ov(nT)
ox

= Zm(nT) (6.1)

m=1
Eq. (6.1) shows that the time domain sensitivity of a nonlinear circuit is obtained by
summing up all the sensitivities of its Volterra circuits.

The sensitivity of the first-order Volterra circuit is obtained directly from Eq. (5.2),

z,(nT + T) = M,(T)vy(nT) + M(T)z,(nT) + P,(T)e*"". (6.2)
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To calculate the sensitivity of the m-th order Volterra circuit, we differentiate Eq (4.7)

0
(ngwsnT) — 0’

with respect to z and note that e
x

Zp(nT +T) = My(T)v,(nT)+ M(T)z,,(nT)

1 Oay,
+~2~Re{[am,OPOS(T) o Lpy(7)]
+[a P (T) 4 8am,,N PN(T)] eijsnT
m,NL Ns 833 7
N-1 da X )
- P s m, P.(T jhkwsnT
{kglakk T)+ E k( )}6 }
& 1 abmk jkwsnT
+Zm Z bk Prs(T) + 8:57 Pk(T)]‘f] 0
=1

[GUI-

m = 2,3, (6.3)

where M, (T), P,(T), and Py (T) were defined previously and

Py (T)
oz

0 d;
B axﬁ [ (S)S—jkwsLZT

- o aAml(S) d;
N 0r s — jkws|, 4

% (T) =

k=0,1,---,N.

3} 0
To calculate the partial derivatives of ég[am] and b;[bm] in Eq. (6.3), we differentiate

Eq. (4.5) and Eq. (4.6) with respect to x, respectively,

am,0

0 . 0 Q1
o™ = w|

Gm,N



3 m (T
fm[(QN_ 1)T]
bm,l
8 8 bm,?
at = oa|

bm,N—l

fm(T)

_ RW.T) Kkl fm(.2T)

Ful(2N = 1)T]

Since f,,(nT) is a function of v;(nT), i = 1,2, -- -, m—1, the partial derivative of f,,(nT)
with respect to x, %fm(nT), is a function of v;(nT) and z;(nT), i =1,2,---,m—1. It
can be computed once the responses v;(nT) and sensitivities z;(nT’) of the lower-order
Volterra circuits are available. Take the circuit shown in Fig. 3.1 as an example, from

Eq. (3.6), the partial derivatives are obtained

% f(nT) = {a%fg[vl(t)]}

t=nT

= —{2927)1(t)zl(t)}_
= —2gov1(nT)z1(nT).

%ﬁ(nT) = {%f:’, [v1(¢), UQ(t)]}

_ *{zgml ()0a(t) + 01(0)22(8)] + 35072 (t)}

= —2gy[21(nT)va(nT) + v1(nT) 2 (nT)] — 3g3v% (nT) 21 (nT).
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2, 0
It is seen that the the partial derivatives E f2(nT) and 9 f3(nT) are functions of
[vi(nT),z,(nT)] and [vi(nT),21(nT),vo(nT),zo(nT)|, respectively. They are readily

calculated from the responses and sensitivities of the low-order Volterra circuits.

6.3 Time Domain Sensitivity of Periodically Switched
Nonlinear Circuits

By means of the extended two-step algorithm presented in Chapter 2, we propose a new
method for time domain sensitivity analysis of periodically switched nonlinear circuits
in this section. The discontinuity problem that might occur at switching instants in
sensitivity analysis of periodically switched nonlinear circuits is solved correctly. Inside
the clock phases, a periodically switched nonlinear circuit is treated as a nonlinear time-
invariant circuit. Its time domain sensitivity is calculated using the method given in
Section 6.2. At the switching instants, the ’éwo-step algorithm is applied to obtain the
consistent initial conditions for sensitivity analysis of periodically switched nonlinear
circuits, as detailed below.

Assume a switching occurs at t = nT. In the forward step, we calculate the sensitivity
of the Volterra circuits at t = nT+ + T,z (nT+ +T),m = 1,2, - -, using Eq (6.2) and
Eq (6.3). In the backward step, we calculate the sensitivity of the Volterra circuits at

t = nT™ by differentiating Eq (4.9) and Eq (4.10) with respect to z,

z,(nTY) = Mpy(T)vi(nT* +T) +Mp(T)zy(nT" + T) + Py (T)e 3oTHT),

2, (nTY) = Mps(T)v(nTt +T) + Mp(T) 2 (nTt + T)
aam’o

oz

+%Re{ |am 0P 50s(T) + P 5(T)]
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where Mg (T), Pgs(T), and Pp,(T) were defined previously and

0P p(T)
ox

0 d
B azrrﬁ l (8)s~jkws}t:‘T

N L_l aAkl(S) dg
B 0x  s— jkws|,_ 1

= Pks(_T)a

k=101,---,N.

The sensitivity immediately after switching is obtained by summing up that of all

Volterra circuits

o0
z2(nT™) =) 2,(nT7).
m=1

6.4 Numerical Examples

The proposed method for computing the time domain sensitivity of periodically switched
nonlinear circuits is implemented in the same computer program RSPSN in MATLAB. In

this section, the time domain sensitivity of example circuits is analyzed using RSPSN.
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Figure 6.1: Switched circuit with nonlinear conductor

The results from RSPSN is validated by comparing with those from the brute-force

method.

6.4.1 Switched Circuit with Nonlinear Conductors

For the first example, we calculate the time domain sensitivity for the same periodically
switched nonlinear circuit used in Chapter 4. The example circuit is redrawn in Fig. 6.1.
Same settings are assumed as those used in response simulation before. The sensitivities
of all nodes with respect to conductor G; and capacitor C; are calculated using RSPSN.
The time domain sensitivities of the output voltage at node 3, z3(t), with respect to
G, and C; are investigated. They were also calculated using the brute-force method.
The time domain sensitivities from both RSPSN and BF are shown in Fig. 6.2 and
Fig. 6.3 together for comparison. It is seen that the time domain sensitivities calculated

from RSPSN and BF match well. To further assess the accuracy in sensitivity analysis,
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Figure 6.2: Sensitivity of v3(t) with respect to G

the normalized difference between the results from RSPSN and those from BF for 100
clock cycles are measured. They are plotted in Fig. 6.4 for G; and Fig. 6.5 for C,
respectively. As shown in the figures, the maximum normalized differences are less than
0.3% for both cases. It is evident that RSPSN yields correct time domain sensitivity

analysis results for periodically switched nonlinear circuits.

6.4.2 Switched-Capacitor Integrator with Nonlinear Opamp

The second example for the time domain sensitivity analysis of periodically switched
nonlinear circuits is a switched-capacitor integrator with nonlinear operational ampli-
fier, as shown in Fig. 6.6. It is the same example circuit used for time domain response
analysis of periodically switched nonlinear circuits in Chapter 4. Under the same condi-
tions, the time domain sensitivities of the output voltage V, with respect to capacitors

C; and Cy are simulated. The results are plotted in Fig. 6.7 and Fig. 6.8. The defini-
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Figure 6.3: Sensitivity of v3(t) with respect to C;

tion of semi-normalized sensitivity is used in these plots. The sensitivities of the output
voltage V,, with respect to capacitors C; and C; are also computed using the brute-force
method. —;— = 1% is used to calculate Av(t) for the implementation of the brute-force
method. The results from BF are plotted in Fig. 6.9 and Fig. 6.10 together with those
from RSPSN for comparison. An enlarged plot of Fig. 6.10 is redrawn in Fig. 6.11. Good
agreements are shown for the time domain sensitivities obtained from RSPSN and BF

in these figures.

6.5 Summary

In this chapter, a new method has been proposed for time domain sensitivity analysis of
periodically switched nonlinear circuits. Inside the clock phases, time domain sensitivity

is obtained by summing up the sensitivities of Volterra circuits of a nonlinear circuit.
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Figure 6.4: Difference between RSPSN and BF for sensitivity of v3(t) with respect to G4

Using the extended two-step algorithm presented in Chapter 4, the method can correctly
solve the discontinuity problems that might occur at switching instants for periodically

switched nonlinear circuits. Numerical results were given to assess the proposed method.
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Chapter 7

Analysis of Nonlinear Oversampled
Sigma-Delta Modulators

One of the important applications of the algorithms developed in preceding chapters
is the analysis of nonlinear oversampled sigma-delta modulators. In this chapter, we
present a new simulation method for nonlinear oversampled sigma-delta modulators.
The time domain response of sigma-delta modulator is analyzed using the proposed
method and the output spectrum of the sigma-delta modulators is obtained by taking
FFT on the time domain response.

In Section 7.1, the theory of oversampled sigma-delta modulation is briefly reviewed.
Challenges for analysis of nonlinear oversampled sigma-delta modulators are described
in Section 7.2. The new method for simulation of nonlinear oversampled sigma-delta
modulators is presented in Section 7.3. Numerical examples are given in Section 7.4.

The chapter is summarized in Section 7.5.

7.1 Introduétion

Oversampled sigma-delta modulation technique has become popular for achieving high

resolution in analog-to-digital and digital-to-analog data conversion. The most impor-
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tant advantage of this technique is that high resolution data conversion is achieved using
only low resolution, usually a 1-bit A/D converter and the precision required for the ana-
log processing circuits is much lower than the resolution of the overall data converter
[26]. Although the concepts of sigma-delta modulation have existed for many years, this
technique has become more attractive only after the recent development of the modern
VLSI technology, which has made it possible to process the digital signals in adequately
high speed.

There are two important techniques employed in oversampled sigma-delta modu-
lation. One is oversampling and the other is noise shaping. Most conventional A/D
converters, such as the successive approximation, sub-ranging, and flash converters,
sample the signals at, or slightly above the Nyquist rate. Consequently, they are often
referred to as Nyquist rate converters. For this kind of converters, the sampled signal
is quantized at the full precision or resolution of the converter. So the resolution of
these converters is limited by the technology in which the circuits are fabricated. It is
extremely difficult to attain high resolution for Nyquist rate converters. Oversampling
technique [27] improves the resolution by sampling the signal with a bandwidth of fp at
a frequency f, that is significantly higher than the Nyquist frequency fy = 2fp. In this
case, the same amount of quantization noise power is spread over a bandwidth of f,
which is much larger than the signal bandwidth fg. The amount of noise power fallen
in the signal band is only a small fraction of the total amount of noise power, which
is almost entirely inside the signal band for Nyquist rate conversion. The noise power
outside the signal band can be effectively attenuated using a low-pass filter. One limit
of oversampling technique is the maximum sampling frequency that can be realized in

a particular fabrication technique.
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To further improve the resolution, another technique known as noise shaping of
sigma-delta modulation has been used [26]. In this technique, different transfer charac-
teristics are applied to the input signal and the quantization noise, such that the signal
is left undisturbed but the noise power is shaped out of the signal band to allow a high
resolution of output. The process of noise shaping can be viewed as pushing the quan-
tization noise power form the signal band to other frequencies. In summary, to achieve
high resolution, oversampling reduces the quantization noise power in the signal band
by spreading the total amount of the quantization noise power over a bandwidth that is
much larger than the signal band and noise shaping further attenuates the noise inside
the signal band and amplifies it outside the signal band.

Oversampled sigma-delta modulation technique trades off speed for resolution and
shifts the complexity from analog circuitry to digital circuitry. The price paid for low
precision of analog circuitry and high resolution of data conversion is the increased com-
plexity of digital circuitry and low-to-medium signal bandwidth. The benefit brought
by low precision requirement, of analog circuitry is that the circuit can be fabricated in
a digital compatible technology.

Oversampled sigma-delta modulators can be implemented in either discrete-time or
continuous-time circuits. Discrete time implementations, especially switched-capacitor
sigma-delta modulators, gained most of the attention in the past. Switched-current and
continuous-time sigma-delta modulators have experienced rapid development in recent

years.
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7.2 Analysis Challenges

The difficulties associated with analysis of nonlinear oversampled sigma-delta modulators

are as follows:

1. Time domain analysis is the only possibility, because a harsh nonlinear component

- quantizer - is in the feedback loop of sigma-delta modulators.

[S]

. The circuit is a dual time system with a high frequency sampling clock and a low
frequency input signal. The results of a few signal cycles are obtained from the

simulation of thousands of clock cycles.

3. Because oversampled sigma-delta modulators are high resolution systems, high

simulation accuracy is required.

4. General circuit nonlinearities need to be handled.

Although SPICE type transistor level simulation tools, which are widely used for
circuit analysis, can be used in investigation of various circuit imperfections and non-
linearities, they reach their limits for simulation of oversampled sigma-delta modulators
[28]. Since both high accuracy and large amount of data are required, this kind of simula-
tion often results in extremely long CPU time, which might be counted in days. Efficient
simulation methods are needed for analysis of oversampled sigma-delta modulators, es-
pecially with the ability to investigate the circuit imperfections and nonlinearities.

Oversampled sigma-delta modulators are simulated in different model abstraction
levels. Tradeoffs between simulation time and accuracy are often made in different
phases during the design cycle. Block level simulation is fast and only used in conceptual

design phase [29]. Because it is highly abstract and no circuit implementation details are
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available, any circuit imperfection and nonlinearity can not be investigated in this level.
In circuit design phase, electrical circuit level simulation is used to consider the value of
circuit parameters, such as the value of resistors and capacitors and the gain of an opamp.
Because of their nonlinear nature, sigma-delta modulators are only simulated in time
domain. The sampled data simulation proposed in [5] was applied for fast and accurate
simulation of oversampled sigma-delta modulators. But it is based on the simulation
of linear circuits and only a restricted set of nonlinear elements, whose characteristics
changes only at switching instants, can be included. Many other circuit nonlinearities

can not be investigated.

7.3 Time Domain Simulation Method

Time domain simulation of nonlinear oversampled sigma-delta modulators demands for a
method that addresses the issues of efﬁciency.and accuracy simultaneously and possesses
the ability of handling general nonlinearities encountered in circuit analysis. The algo-
rithms presented in preceding chapters are efficient and accurate. They are applicable
to the simulation of nonlinear oversampled sigma-delta modulators.

To illustrate the simulation method, we take the first order switched-capacitor sigma-
delta modulator in Fig 7.1 for example. In this circuit, all the switches and the compara-
tor are controlled by a external clock with two phases. The circuit can be partitioned
into two parts. One part is a nonlinear switched-capacitor integrator, which is a typical
periodically switched nonlinear circuit. The other part is a clocked 1-bit quantizer or
comparator. Its output changes only at the clock edges based on its input at the same
time. It is modeled as a clocked nonlinear voltage controlled voltage source with two

distinct output levels.
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Figure 7.1: First order switched-capacitor sigma-delta modulator with nonlinear opamp

Time domain simulation of nonlinear'oversampled sigma-delta modulators proceeds
as follows. Inside a clock cycle, the integrator circuit is simulated using the proposed
algorithms for periodically switched nonlinear circuits. At the end edge of the clock,
the output of the integrator is sampled to update the state of the comparator, wHich
decides the feedback voltage level to the input of the integrator for the next clock cycle.
The feedback voltage level is not changed over a clock cycle even though the input of
the comparator might change. The output of the integrator is needed only at the clock
edges when the comparator samples its input. Between the clock edges, the output of
the integrator changes but does not affect the operation of the sigma-delta modulator.
During simulation, two types of input for the integrator are considered. The primary
input is the signal to be processed and it is normally a sinusoidal function. The secondary

input is the feedback voltage form the comparator. Since it is a constant over a clock
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cycle, it can be treated as a step input for the Cloc;k duration. After the simulation of
one clock cycle, same process is repeated for the next clock cycle.

The method can be used to investigate the effect of any circuit imperfection and
nonlinearity on the performance of nonlinear oversampled sigma-delta modulators, such
as nonlinear characteristics of circuit components, nonlinear gain of opamps, and the

integrator leakage effect [30].

7.4 Numerical Examples

The computer program RSPSN is used for time domain simulation of nonlinear over-
sampled sigma-delta modulators. In this section, we give the simulation results for a few
sigma-delta modulators to show the usefulness of the proposed method. The switched-
capacitor sigma-delta modulator are simulated with the assumption that all switches
are ideal and each clock period has two non-overlapping phases with equal width. Sim-
ulation was performed in Matlab on Sun Ultra-10 workstations with 440MHz CPU and

512MB RAM and the execution CPU time was measured under this conditions.

7.4.1 Switched-Capacitor Nonlinear Sigma-Delta Modulators
First Order Nonlinear Sigma-Delta Modulators

First, the first order switched-capacitor sigma-delta modulator shown in Fig 7.1 is sim-
ulated. All switches and the comparator is clocked at 1.024 MHz. The input signal is
a 1 kHz sinusoid of amplitude of 2 V. The values of capacitors are labeled in the figure

and zero initial conditions are assumed for them. The gain of the opamp is modeled as

Gain = ag + a1(vy — v_) + az(vy —v_)?,

where ag, a1, ao are constants. In our implementation, they were chosen as
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Figure 7.2: Time domain waveform at output of the integrator

{ag, a1, as} = {10000, —5000, —1000}.

The time domain output of the integrator is shown in Fig 7.2 for one signal cycle. The
spectrum at the output of the modulator is shown in Fig 7.3, which shows many tones
exist in the output spectrum of the first order sigma-delta modulator. These results are
obtained by simulating the circuit for 75776 clock cycles, discarding the first 10240 data
points to remove any circuit transient, and performing a FF'T on the remaining 65536

data points. It takes RSPSN 19.44 minutes of CPU time to simulate 75776 clock cycles.
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Figure 7.3: Output spectrum of the first order switched-capacitor sigma-delta modulator

Second Order Nonlinear Sigma-Delta Modulators

A second order switched-capacitor sigma-delta modulator shown in Fig 7.4 is simulated.
The clock frequency is 1.024 MHz and the input signal is a 1 kHz sinusoid of amplitude
of 1 V. The two opamps are modeled in the same way as that of the last example. Time
domain response at the output of the second integrator is shown in Fig 7.5. The spectrum
at the output of the modulator is shown in Fig 7.6, which shows the noise shaping
characteristics of the second order sigma-delta modulator. The results is obtained by
the same means used in the previous example. For the second order switched-capacitor
sigma-delta modulator, it takes RSPSN 34.70 minutes of CPU time to simulate 75776

clock cycles.
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Figure 7.4: Second order switched-capacitor sigma-delta modulator with nonlinear opamp

7.4.2 Continuous-Time Oversampled Sigma-Delta Modulators

Although it is mainly targeted on and used in the analysis of periodically switched non-
linear circuits, the proposed method is applicable to the simulation of continuous-time
oversampled sigma-delta modulators. The continuous-time second order sigma-delta
modulator shown in Fig 7.7 is originally used in [5]. In this circuit, the opamp is ideal,
the comparator is clocked at 1.024 MHz, and the input signal is a 1 kHz sinusoid of ampli-
tude of 2 V. The values of resistors and capacitors are labeled in the figure. This example
is simulated using RSPSN. Time domain response at output of the second integrator is
shown in Fig 7.8. The spectrum at the output of the modulator is shown in Fig 7.9,
which shows the noise shaping characteristics of the second order sigma-delta modula-
tor. For the continuous-time second order sigma-delta modulator, it takes RSPSN 23.2
seconds of CPU time to simulate 75776 clock cycles. Same results from RSPSN are ob-
tained as those published in [5]. This evidences the usefulness of the proposed method in

simulation of both switched and continuous-time oversampled sigma-delta modulators.
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Figure 7.5: Time domain waveform at output of the second integrator

7.5 Summary

In this chapter, a new simulation method for nonlinear oversampled sigma-delta modu-
lators has been proposed. Several oversampled sigma-delta modulators were simulated.
Efficiency and accuracy of the method have been evidenced by measuring the CPU time
and comparing some of the simulation results with the published results given in [5],

under the same conditions.

80



PSD [dB V]

-100+ ] i it

-120+

—140} ; 4

-160 7

-180
0

N
©
=S
2]
o
~
[
©

10
Frequency [kHz]
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Figure 7.7: Continuous-time second order sigma-delta modulator (V.5 = 2.5V)
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Figure 7.8: Time domain waveform at output of the second integrator
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Figure 7.9: Output spectrum of the continuous-time second order sigma-delta modulator
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Chapter 8

Conclusions

8.1 Summary of the thesis

A new and efficient time-domain response and sensitivity analysis method for period-
ically switched nonlinear circuits has been presented. By depicting the behavior of
these circuits using Volterra functional series and approximating the input of high-
order Volterra circuits using interpolating Fourier series, a new sampled data simulation
method for analysis of response and sensitivity of periodically switched nonlinear circuits
has been developed. To handle the inconsistent initial conditions encountered in anal-
ysis of these circuits, a new two-step algorithm has been proposed. The response and
sensitivity of periodically switched nonlinear circuits at equally spaced time points are
obtained efficiently and accurately. The superior computational efficiency of the method
is achieved by pre-computing a set of constant matrices, vectors, and parameters prior
to the start of simulation. Although the pre-processing step is costly, this initial cost
can quickly be amortized if the response and sensitivity over a long period of time are
needed. LMS-PC methods, however, not only can not handle inconsistent initial con-
ditions but also require computationally expensive Newton-Raphson iterations in each

step of integration, resulting in poor simulation accuracy and excessive CPU time.
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The method is most effective for periodically switched nonlinear circuits with mild
nonlinearities whose behavior can be characterized sufficiently using the low-order Volterra
series expansion of the network variables. The accuracy of the method depends on the
order of the Volterra series used in depicting the network variables of the nonlinear
circuits and the order of interpolating Fourier series.

One of the important applications of the method is simulation of nonlinear oversam-
pled sigma-delta modulators. Using this method, effects of general circuit nonlinearities
on the performance of oversampled sigma-delta modulators can be investigated in circuit

level.

8.2 Future Work

Many interesting subjects can be explored in this area. The work can be extended in
two major directions. One is the study of computational algorithms for time domain
noise analysis of periodically switched nonlinear circuits. Since noise normally is. very
small compared with the deterministic signals, efforts are needed to further improve the
accuracy of the computational algorithms for noise analysis. Another practical direction
is the investigation of various nonlinear effects on the performance of oversampled sigma-
delta modulators, such as nonlinear characteristic of circuit components, nonlinear gain
of the opamps, and the integrator leakage effect. During the design of oversampled
sigma-delta modulators, the stability and undesirable tones of the modulator are two
major concerns. They can not be studied only using the methods based on linear models.
Using the method proposed in this thesis an’d modeling the nonlinearity in circuit level,
many nonlinear effects can be investigated and useful information about these issues can

be gained for the design of oversampled sigma-delta modulators.
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Appendix A

Computation of M(T), P(T), P.(T),
and their Derivatives

Numerical Laplace inversion was used to compute M(T), P(T), Px(T), k =0,1,..., N,
and their derivatives with respect to circuit elements. Numerical Laplace inversion is
an A-stable high-order numerical integration technique [16]. It computes time-domain

response v(t) from its Laplace transform V(s)

where z; and K; are poles and residues of the Padé polynomial that approximates e in
the vicinity of the origin, and J is the order of numerical Laplace inversion. z; and K, are
calculated with high precision [16]. Padé polynomials and its applications in numerical
Laplace inversion have been covered extensively in [18, 19, 16]. Interesting readers
are referred to the cited references for details. Because L[§(t)] = 1 and L{u(t)] = %,
where §(¢) and u(¢) are Dirac impulse function and unit step function respectively, t};c
difficulties associated with discontinuities encountered at switching instants, which are

difficult to be handled by conventional numerical integration methods, can be handled

with ease in Laplace domain. In our implementation, the order of integration is 19. In
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addition, the multi-step numerical Laplace inversion algorithm given in [11] is extended
here to compute the derivatives of M(T'), P(T), Pr(T),k = 0,1,---, N with respect to
circuit elements. To minimize the error due to large displacement from the origin, as
shown in [16], we divide the step T into N subintervals of equal width At = T/N. It

was shown in [11] that

N{(n + 1)At] = Q*(At)N(AL).

Pl(n + 1)At] = P(At)e/™> + Q(AY)P(nAt), (A.1)

where

1 S _1( <
i=1

1 d - oA —1f Zi g

N(nAt) relates to M(nAt) by M(nAt) = N(nAt)C, and Q(At) = N, (At)C is constant,

if At is fixed. The derivatives with respect to = are obtained by differentiating (A.1) z

directly
ON[(n +1)A IQ(A ON(A
[(nai A _ e Q;x UN(aY) + QY Ay a(gj 23
GP[(na—Zl)At] _ aPa(TAt)emnAt N aQa(TAt)P(" A +Q(At)?_f’_(£iﬂ? (A.2)

It 1s seen that both the matrices and their derivatives are obtained in a recursive manner

efficiently.
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