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Abstract

Conditional Random Field based Image and Video Content Analysis, Xiaofeng Wang

Phd, Electrical and Computer Engineering, Ryerson University, 2010

Image and video content analysis is an interesting, meaningful and challenging

topic. In recent years much of the research effort in the multimedia field focuses

on indexing and retrieval. Semantic gap between low-level features and high-level

content is a bottleneck in most systems. To bridge the semantic gap, new content

analysis models need to be developed. In this thesis, algorithms based on a relatively

new graphical model, called the conditional random field (CRF) model, are developed

for two closely-related problems in content analysis: image labeling and video content

analysis. The CRF model can represent spatial interactions in image labeling and

temporal interactions in video content analysis. New feature functions are designed

to better represent the feature distributions. The mixture feature functions are used

in image labeling for databases with nature images, and the independent component

analysis (ICA) mixture function is applied in sports video content analysis. The

spatial dependence of image parts and the temporal dependence of video frames can

be explored by the CRF model more effectively using new feature functions. For image

labeling with large databases, the content-based image retrieval method is combined

with the CRF image labeling model successfully.
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Chapter 1

Introduction

1.1 Image and Video Content Analysis

Image and video content analysis is an interesting and challenging topic in the mul-

timedia signal processing field. In recent years, much of the research effort focuses

on multimedia indexing and retrieval. The main driving force of image and video

indexing and retrieval systems is their wide applications in many signal processing

and computer vision fields. Some example applications of indexing and retrieval and

content analysis related research are listed as follows.

• Image and video search. With the advance of World Wide Web and Internet

search engines such as Yahoo and Google, the indexing and retrieval of large

amount of information becomes more and more important. During the past

two decades, content-based image and video retrieval dominated the multimedia

signal processing research. The motivation is that the traditional keyword-based

search is no longer suitable for large amount and more varieties of multimedia
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content. A comprehensive content description of most content is nonexistent.

The current state-of-art algorithms in computer vision and signal processing

could not generate the kind of keywords automatically by computers. The

manual labeling is time consuming and subjective. The image and video search

systems using content-based information instead of keywords become the center

stage of multimedia research.

• Image and video editing. New kinds of media content come up nearly every

year, and new media interfaces encourage personalized and professional service

for ordinary people. The public needs personalized media now more than any

other time in the history. Personalized editing of multimedia content is one

important application of content analysis.

• Medical multimedia research. To effectively and efficiently detect a kind of

disease with new media tools is the goal of multimedia medical research. In

medical applications, it is important to understand the images or other kinds

of media for computer aided disease diagnosing. The new technology provides

much more information for medical professionals. How to help them store and

manage this information is critical to the advance of medical research. Medical

media search and indexing is interesting and beneficial to human beings.

• Security video search. Video surveillance is in the center of research in safety

and security due to its high importance applications. Usually, humans have

to monitor the closed-circuit television (CCTV) screens all the time and often

they need to pay full attention for 24 hours a day. It would be desirable to have

surveillance systems to do this task automatically. Therefore abnormal event

2



detection is one application oriented research in video content analysis.

• Robot vision and consumer electronics. With the development of three-dimensional

(3D) TV, the new media format beyond two dimensions gains the interest of

both professionals and general audience. Interesting applications such as room

decoration systems with 3D reconstruction are also appealing. The 3D signal

processing needs the content information to generate useful results automati-

cally.

Up to now, most systems have limit performance by using only a few low-level features

such as color, texture, shape, and motion. There is a huge semantic gap between low-

level features and high-level content. The most efficient and straightforward way to

narrow the semantic gap is to better understand the image and video content. It is

the task of content analysis.

Image and video content analysis is a combination and interconnection of many

subjects such as machine learning, image processing, natural language processing and

computer vision. Of primary interest in this thesis are two closely-related problems

in content analysis: image labeling and video content analysis. Fig. 1.1 shows two

examples of the problems that will be discussed in this thesis.

• Image labeling. Image labeling aims to automatically segment and recognize

objects or regions in images [85, 34, 11, 47, 68]. Different from image segmenta-

tion, labeling is a high-level vision, which not only segments the images but also

provides meaningful class labels to image pixels. For example, the indoor image

labeling is to classify every pixel of an indoor image into a semantic category

such as “floor”,“wall” and “ceiling”. It is very useful in image annotation and

further operations such as robot vision and 3D scene reconstruction [19, 84, 38].

3



Figure 1.1: An illustration of image and video content analysis problem.

• Video content analysis. Video content analysis is to find meaningful struc-

ture and patterns from visual data for the purpose of efficient indexing and

mining of videos. Video analysis tasks include video parsing, content indexing,

abstraction, and representation. Video parsing is to segment video to different

levels of segments. The early works focus on low-level parsing, i.e., the video

shot boundary detection [105, 31, 32]. An important and key technology in the

process of content indexing, abstraction, and representation is content classifi-

cation. After segmentation, camera shots need to be labeled, given meaningful

names, and classified into different categories. One kind of video classification is

video event classification, which classifies shots into different events. In recent

years, event classification in sports videos has become a popular research topic.

Our main interest is to automatically segment and recognize shot level events

4



or highlights in video sequences.

Although image labeling and video content analysis are two different problems, they

share common methodology and philosophy. Both of them are fundamental problems

of multimedia content analysis. For the image labeling problem, it is helpful to know

the content around the object we plan to recognize. For example, when there is

snow in an image, it is more likely to find a polar bear than a hippo. The images are

composed of spatial coherent areas. For the video content analysis problem, videos are

a series of images. The images before or after a current scene is helpful to determine

the class that the current image belongs to. The videos are composed in a temporary

coherent manner. Content recognition seems simple and straightforward for humans,

however, it needs a lot of effort to make computers finish this task automatically. If

images or videos could be well segmented effectively, one could have a better chance

of recognizing the objects or events in the scene. On the other hand, if objects, events

and their properties were known, one could segment the scene with better accuracy.

The content ambiguity of both problems is the main difficulty of ongoing research.

In this thesis, the conditional random field (CRF) model in machine learning is used

to tackle both problems, by taking spatial structure of images and coherent temporal

dynamics of videos into account.

1.2 Background Work in CRF for Image and Video

Content Analysis

The CRF model was first proposed by Lafferty for labeling 1D sequential data such

as speech [52]. It is a discriminant probabilistic graphical model which addresses

5



the limitations of a hidden Markov model (HMM). The CRF model finds success-

ful applications for classifying structured data in various applications such as speech

recognition [52, 29], diagram labeling [74], image labeling [85, 34, 28, 51], object

recognition [89], video content and event analysis [95, 78], and image content analysis

(recognizing manmade structures) [51, 50]. The CRF model incorporates neighbor-

hood interactions in the labels and observed data, so has many advantages over

traditional generative models. In most real and difficult cases the CRF model can

model both spatial and temporal structures with better accuracy than other existing

models because of its maximum entropy equivalence property [27].

There are spatial interactions in image labeling and temporal interactions in video

content analysis. The CRF model is a powerful and efficient graphical model which

can represent spatial or temporal interactions in these two problems. Also the CRF

model has training and discriminant advantages. When using CRF to solve semantic

content analysis problems, new models corresponding to different properties of dif-

ferent content analysis problems should be derived. This thesis does not discuss a

general solution for content analysis. Several image and video analysis problems are

formulated using a common CRF graphical model but with different feature functions.

New semantic content analysis algorithms are proposed for automatic processing of

images and videos. Nature images and sports videos exhibit strong spatial and tem-

poral dependence separately and modeling these dependencies using modern machine

learning and pattern recognition algorithms is crucial to achieve a good understanding

of these contents.

6



1.2.1 CRF in Image Labeling

In image labeling, an image is first divided into regular grids such as pixels or rect-

angular regions, then features of these grids are extracted. The features may include

color, texture and shape. The 2D grid is a graph where probabilistic graphical mod-

els could be applied. The current state-of-art CRF image labeling methods includes

several PhD thesis and papers [85, 34, 28, 51]. In [51], the two class image labeling

problem with CRF is presented and it is the baseline CRF in our discussion. In [85],

the recognition problem is formulated using CRF with many kinds of features and

potential functions. The complex multiscale CRF is discussed in [34]. The relative

location information is added in [28]. In image labeling, we discuss two problems, the

design of potential functions and the labeling of large databases.

Potential Functions in Image Labeling

The CRF model, which is a discriminant probabilistic graphical model, is built on

2D grid features and labels for training with association and interaction potential

functions [51, 50]. The association potentials represent the likelihoods of the node

label given the observation of the current node. The interaction potentials are the

likelihoods of the interaction between neighboring grid labels given the observation of

neighboring grid features. Both potentials may include many types of nonstructural

classifiers depending on applications and types of feature data structures. Usually

the potential functions in CRF are selected empirically and hand-tuned to achieve

better performance.

In image labeling and object recognition, the potentials are designed using arbi-

trary discriminant classifiers such as logistic [51], probit [74], boosting [89], neural

7



network [37][34], and the combination of many types [85]. But these forms of poten-

tials generally need hundreds of features to have reasonable results which makes the

training and inference difficult. It is the responsibility of the CRF training algorithm

to find the weights of different potentials. Sometimes the training fails to find the

right parameters because the initial point is not well chosen. How to design these

potential functions is essential to CRF image labeling.

Image Labeling for Large Labeled Databases

For large databases the problem becomes more complex. In image labeling for small or

specific controlled databases, researchers usually set up a database with several classes

under certain conditions. The performance is evaluated using specific databases, for

example, the MSRC benchmark [3] with 21 classes and the Corel and Sowerby [2]

with 7 classes. The generation of the database is generally troublesome and the hand

labeling process is time consuming. One problem is that in the real world there

are no such specific databases with limited classes to be used for classification and

building probabilistic models. When a very large labeled database such as Labelme

[83] is used, the image labeling result would not be effective because of the variety

of images, class labels and label ambiguities. Therefore, the key problem is how to

handle large labeled databases for the training and labeling with these ambiguities.

To reduce the content ambiguities, there is a growing trend to combine top-down

information and bottom-up labeling. The top-down means using the information

from high-level vision, for example, the object and the scene to infer pixel labels.

The bottom-up means the pixel labeling process from low-level raw pixel features.

Since the bottom-up is not accurate enough for image labeling, recently top-down
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cues such as object information is incorporated to improve performance. Even for

small database with only several categories the top-down content information is often

used. Usually a probabilistic model is built for the content or integrated in the labeling

model such as [35, 90, 56, 9, 30].

Figure 1.2: An example of hierarchical top-down model.

An example of hierarchical probabilistic model is shown in Fig.1.2. The model

divides the images into concepts. For example the images are classified into two

groups, indoor and outdoor. The indoor images could be further divided into several

concepts: office, living, kitchen and so on. The concepts are grouped based on a

tree-like structure. The concepts are then modeled with Bayesian or random field

probabilistic models. In [35], top-down category-based information is used to help

merge bottom-up segments into object components. The concept is reflected in the

content dependent mixture of CRF model [52, 51]. The method is highly complex and

used for small databases with a limited class size. The authors of [90] simplify the top-

down approach with a single CRF by including the global features. Papers [56] and

[9] combine the top-down example-based information and bottom-up segmentation
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information. In [30] object arrangement rules are adopted as top-down information in

the Bayesian model. Due to their purpose for limited controlled labeling databases,

these models are still far from being used for large labeled databases. For large

databases, the methods relying on content probabilistic modeling such as Fig. 1.2

do not work due to the complexity of the model structure and parameter learning.

How to reflect top-down information in CRF image labeling is important for image

labeling of large databases.

1.2.2 CRF in Video Content Analysis

Most of the previous research in video content analysis was based on video state mod-

els utilizing probabilistic graphical models such as a hidden Markov model (HMM)

[53]. There is a large amount of literature that discusses the HMM in video analysis

algorithms, e.g., [100, 99, 60, 97, 40, 45, 6, 43, 25, 46, 101, 103, 14, 59, 102, 22, 26, 67].

In [99], unsupervised classification based on color ratio and motion in soccer domain is

discussed and the observation model is Gaussian mixture. In [60], the audio features

such as applause and cheering are modeled as HMM. In [14], baseball highlights are

modeled as HMM using various kinds of features. It is extended to the maximum en-

tropy model [26] which puts several shot features together for classification and does

not use the useful temporal graph information. The hierarchical HMM presented in

[67] is a more complex HMM model. In [107], based on the non-Gaussian property

of visual features the ICA mixture [54] observation model is applied in HMM for golf

video event classification. As mentioned in the HMM tutorial paper [76], there are

certain limitations of HMM, the conditional independence of observations, the form

of observation distribution and the Markov chain interaction.
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CRF, which relaxes the conditional independence assumption of HMM, is more

suitable to video content analysis tasks. But the full labeling of training sequences’

states prevents it from applying to event analysis of videos directly. To solve this

problem hidden conditional random field (HCRF), which is proposed by Quattoni for

object recognition recently in [75] can be used. HCRF is a general extension of HMM

which relaxes the independent observation and generative assumption. It has been

applied to phone classification [29], gesture recognition [95] and meeting segmentation

[78]. Although mentioned in the book [27, 32], it has not been used in sports video

analysis.

1.3 New Approaches

To interpret the scenes contained in images or videos as a collection of meaningful

entities is the fundamental task of content analysis. It is to interpret the information

in the scene with different levels of meanings. For example in video analysis, we group

frames to shot, events and stories from bottom-up, segment video to different levels,

and recognize each levels from top-down. One may also be interested in understanding

different regions of a single frame, e.g., a person, a football or any thing in the scene

which is the task of image labeling and object recognition. The problem is both an

interesting and a challenging one.

Images are not random collections of pixels and videos are not random collections

of image frames as well. To analyze these contents, the contextual information in

the form of dependencies should be used. It is the main idea of this thesis. Various

discriminative and generative models are discussed and the CRF model is selected

for the image and video content analysis.
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Based on analysis of both the image labeling and object detection problems, we

apply the CRF model with new potential functions to image content analysis. For

image labeling with small specific databases we use the mixture functions to model

the features. We analyze the distributions of features of nature image parts and use

mixture (Gaussian Mixture or Laplacian Mixture) to approach these distributions

which reduces the number of features needed in CRF image labeling. The main

approach is to use new local potential functions in the discriminant manner. The

advantages are less training effort and better accuracy. With large databases we

successfully combine CBIR and CRF. Since content labeling ambiguities exist in large

labeled databases, we propose using CBIR to choose content similar images as the

new database used for labeling. The top-down information is reflected in the CBIR

process. The advantages of both CBIR and CRF are integrated to deal with the

image labeling problem with large databases.

Unlike HMM, CRF is less studied in video content analysis. For video event anal-

ysis, based on previous work in video content analysis, we formulated a new HCRF

model for event detection. HCRF is better than HMM because of its ability to model

the temporal content dynamics more efficiently. The main reason is that CRF relaxes

some strong assumptions of HMM model. The relaxations provide accuracy advan-

tage of HCRF in video content analysis. To further enhance the HCRF framework

for video analysis tasks, we model local observations as ICA mixtures.

In this work we present new CRF models with new feature functions to model

interactions in images and videos. We take a modern approach using training samples

(supervised learning) to build graphical models for image and video content analysis.
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1.4 Main Contributions

New contributions are summarized as follows:

1. A novel mixture CRF model to improve the image labeling accuracy according

to the feature analysis of small databases with nature images such as corel.

2. For a large image database such as LABELME, a new combination of CRF and

CBIR to tackle the top-down learning of image content analysis.

3. A novel video analysis framework with hidden CRF (HCRF) model based on

analysis of sport video frame features and their temporal structures.

1.5 Thesis Outline

As shown in Fig. 1.3 this thesis is structured as follows:

• The first part of the thesis (Chapter 2) which provides the background of the

CRF discussion of this thesis consists of an introduction, review, and brief the-

ory description of the CRF training and inference method, the insight of CRF’s

maximum entropy equivalence and modeling interaction in content analysis us-

ing CRF.

• In Chapter 3, we begin with image labeling of nature images. Based on an

analysis of traditional image labeling models and nature image features, a new

mixture CRF model is presented for supervised image labeling task with small

database.
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Figure 1.3: Road map of this thesis.

• In Chapter 4, we extend the image labeling discussion to the large and un-

controlled dataset which is often encountered in real circumstances. A new

approach combining the advantages of CBIR algorithm and CRF model is pre-

sented for this challenging task.

• In Chapter 5, we further our discussion to video content analysis. Hidden CRF

model with new mixture feature functions are given for better modeling the

coherent structure of the video content.

• Finally in the last chapter, the main contributions of this thesis are summarized
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with discussions on the challenges of image and video content analysis and their

future research directions.
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Chapter 2

CRF Model for Content Analysis

Problems of content analysis are usually solved using a two-step methodology:

1. Problems are analyzed and formulated using some rules or probability based

optimization criteria.

2. Optimal solutions that best meet the criterion are found by function optimiza-

tion or probabilistic reasoning.

The rule-based optimization, which is often called regularization, was originally de-

veloped by statisticians trying to fit models to data. The drawback is that the regu-

larization methods may severely limit the solution space. The probabilistic analysis

is performed on the probabilistic criterion to find the optimal solution. For example,

in the video shot classification problem, the criterion is the probability of a shot class

given the shot feature observations. Higher probability means there is a better chance

that the features fit the class. For image and video content analysis, the existence of

noise and uncertainty makes probabilistic models better suit the task.
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Suppose x = (x1,x2, . . . ,xN), xi ∈ X , are N input variables which represent our

observation knowledge, and y = (y1,y2, . . . ,yN), yi ∈ Y , are their corresponding

classes which we wish to predict, where X is all possible observations and Y is a set

of finite classes. In supervised learning, y is known for the training set and unknown

for the testing set. The problem of content analysis could be formulated as finding

the probability of class variables given observations P (y|x).

The organization of this chapter is as follows: First, the graphical models used

in machine learning and content analysis are discussed in Section 2.1. Second, we

focus on conditional random field (CRF) model formulation which is more suitable to

deal with complex image, video content analysis problems and discuss its maximum

entropy equivalence which leads to the success of the model in Section 2.2. Third,

the training and inference methods of CRF model and CRF with hidden states are

presented in details in Section 2.3 and Section 2.4. Finally, we discuss modeling the

spatial and temporal dependence in image and video content using the CRF model

in Section 2.5.

2.1 Graphical Models

2.1.1 Categories of Probabilistic Models in Machine Learn-

ing

Probabilistic models in machine learning could be divided into different categories

based on different criteria as shown in Table 2.1. Based on whether structural in-

formation is used, machine learning probabilistic models could be roughly divided to

two categories: nonstructural and structural methods.
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Table 2.1: Classification of probabilistic models in machine learning.

Nonstructural Structural (Graphical)

Generative

Naive Bayes Bayesian Network [42][86][15]
Gaussian Mixture[65][10][72] Markov Random Field [24][58][77]

Laplacian Mixture[4] Hidden Markov Model [76]
ICA Mixture[54]

Discriminative
Neural Network [21][62] Conditional Random Field [52][51]

Support Vector Machines [91][17][87] Hidden Conditional Random Field [75]

Nonstructural models assume no correlation between parts of variables, e.g., as-

sume observations are identical and independently distributed (IID). It is an appro-

priate assumption in some applications, for example in predicting the weights of a

group of people based on their heights. Non-structural methods include clustering,

neural networks, support vector machines and so on.

Structural methods refer to graphical models. The graphical models are highly

advantageous by using diagrammatic representations of probability distribution for

applications which involves spatial or temporary interaction between class variables

and observations. Because images are composed of spatial coherent parts and videos

are composed of temporary coherent frames, their structural information provides

additional useful information in their content analysis.

Based on the probability expression of the problem solution, the probabilistic

models could be classified into discriminative models and generative models. A gen-

erative model is a full probabilistic generative process of all observations from the

class variables, while a discriminative model targets only class variables conditional

on the observations.

The generative models are based on the Bayes rule formulation P (y|x) ∝ P (y,x) =

P (x|y)P (y), [8]. The model captures the causal process by which the observations are
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generated by class variables. The generative models such as the hidden Markov model

(HMM) are widely used traditionally because the conditional probability P (x|y) is

easier to model than the posterior probability P (y|x) and there are well-established

and well-engineered algorithms such as the expectation-maximization (EM) algorithm

[20] and Baum-Welch (BW) algorithm [98]. However, there are several disadvantages

to these generative models. To make the model tractable, the observation features are

usually treated as independent components. However, it is unrealistic in most cases.

More precisely, the observation at any given instance only depends on the label at

its location. Another drawback of generative models is that full observations are ex-

pected for the model parameter learning because of the excessive modeling of P (x|y).

The generative models must enumerate all observation cases. The effort is wasted in

modeling the observation probability P (x|y) which is very complex sometimes.

The discriminative model models the conditional probability P (y|x) directly. One

advantage of the discriminative model is that it does not waste effort on modeling

observation and samples of observation that could be used for the training. It is

similar to the maximum entropy model which only models the known variables and

assumes the unknown variables as uniform as possible.

2.1.2 Definition of Graphical Models

One key idea of the new machine learning developed in recent years is the probabilistic

graphical model, which is an interplay between probability and graph theory and plays

a central role in uncertain and complex engineering problems [1, 93, 8, 71].

Graphical models originated from physics have broad applications in machine

learning, image processing and computer vision. There are several advantages in
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using probabilistic graphical models over the nonstructural methods:

• The use of graphs provides a simple way to visualize the structure of the prob-

abilistic model. Its graphical visualization provides a useful way of designing

and constructing new models.

• By carefully inspecting the graph representation the insight of conditional in-

dependence could be specified.

• The computational complexity could be reduced based on insight of these in-

dependence conditions. Sum and product rule [64][49] could be easily applied

according to the graph node and edge structure.

A graph G(V,E) comprises nodes V and edges E. Nodes are random variables,

and edges/links represent relationships between these variables. Absence of an edge

between two nodes represents conditional independence between them. Two random

variables x1 and x2 are called conditional independence given a third random variable

x3, if they are independent in their conditional probability distribution, formally

p(x1,x2|x3) = p(x1|x3)p(x2|x3). A graph can capture the interactions of the random

variables, so the joint distribution of these random variables can be expressed in term

of a product of factors. Conditional independence of nodes in a graph can be used

to decompose complex probability distribution P (x) into a product of factors, each

consisting of a subset of corresponding random variables. A probabilistic graphical

model is a diagrammatic representation of a probability distribution with factorized

terms as follows,

P (x) =
1

Z

∏

S⊂G

ΨS(xS), (2.1)
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where S denotes a subset of the graph G = (V,E), ΨS is a subset of factors, and xS

is a subset of observations. The normalization factor is

Z =
∑

x∈XN

∏

S⊂G

ΨS(xS), (2.2)

where N is the number of all nodes in the whole graph. It should be noted that for

all possible subsets S, each element in xS belongs to the observation set X and the

normalization factor Z is summed over all possible xS. For simplicity, it is denoted

as x ∈ XN , where x = (x1, . . . ,xN). This expression also applies for the summation

of yC of y in the rest of the thesis.

The graphical models could also be classified based on whether its nodes have

parents or not. This means the arc of the graph have a direction or not. In the

directed graphical model, (also called Bayesian network), edges of the graph have a

particular direction indicated by arrows. The undirected graphical model, such as the

Markov random field model, does not have direction on the graph. The directions on

the graph denote the causal relationship of nodes. If no direction exists there are only

soft constrains between the nodes. Or in other words, the directed models is just a

subset of undirected models with one way interaction.

2.1.3 Directed Graphical Models

General graphical models are formulations for compactly expressing different types

of conditional independences between an ensemble of random variables. The directed

graphical models are those graphical models in which all the inter-node connections

have a direction, usually indicated by an arrowhead. If a joint distribution P (x) of

a graphical model can be factorized to the product of distributions for each node i,
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i.e.,

P (x) =
∏

i∈V

P (xi|xπ(i)), (2.3)

where the distribution of each node is conditioned on its set of parent nodes π(i),

this graphical model is called directed graphical models or Bayesian networks (Bayes

nets).

2.1.4 Markov (undirected) Graphical Models

The most widely-used probabilistic model in the signal processing field is the Markov

network also referred to the Markov graphical model. In Markov graphical models, a

probability distribution can be represented by an undirected graphical model using a

product of non-negative functions of the maximal cliques of G = (V,E). This section

introduces the Markov random field and its extension–conditional random field. Both

of them could be formulated with hidden states.

For classification problems, vertexes V = X ⋃Y are depicted by circles in an

independency graph G. Here X is the set of input observations and Y is the set of

output labels. In this thesis, as in Fig. 2.1,X and Y are denoted by shaded circles

and empty circles, respectively.

Markov Property and Factorization

In graphical models, the graph G can be used to impose constraints on random

variables in two different ways: Markov property and factorization.

• Markov property. Observations x are Markov with respect to the graph G, if

xA and xB are conditionally independent given xS, where S separates A and

B. Here S, A and B are nodes in the graph G.
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• Factorization. The distribution P (x) can be factorized according to the graph

G, if it can be expressed as a product over cliques:

P (x) =
1

Z

∏

C∈C
ΨC(xC). (2.4)

The factors ΨC > 0 are so-called potential functions of the random variables

xC within a clique C ∈ C, where C is the set of all cliques. The normalization

factor is

Z =
∑

x∈XN

∏

C∈C
ΨC(xC). (2.5)

The relationship of Markov property and factorization could be described in the

following theorem [7].

Theorem 2.1. (Hammersley Clifford) Suppose p is a strictly positive distribution,

and G is an undirected graph that indexes the domain of p, then p is Markov with

respect to G if and only if p factorizes according to G.

It gives necessary and sufficient conditions that a positive distribution satisfies

the Markov property with respect to an undirected graph. It means that a positive

distribution has Markov properties according to an undirected graph if and only if

its density can be factorized over the cliques of the graph.

Markov Random Field

Markov random field (MRF) [24], an undirected graphical model, is popular in the

physics and vision field. The traditional MRF model in a classification problem can
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be formulated using the posterior probability as

P (y|x) =
P (x,y)

P (x)

∝ P (x|y)P (y)

=
N
∏

i=1

P (xi|yi) ·
1

Z

∏

C∈C
ΨC(yC). (2.6)

Fig 2.1 shows an example of a 2D MRF model and its factor graph representation.

Shaded circles are the observed features at nodes, and empty circles represent labels.

The interactions between these random variables are shown as edges. Factors are

denoted by empty rectangulars in the factor graph expression.

(a) (b)

Figure 2.1: An example of 2D MRF model (a) and its factor graph representation (b)

MRF models incorporate both prior knowledge and local spatial relationship.

Their performance can be evaluated in a natural way. MRF methods are based on

pixels or regular shape neighbors and are widely explored in theoretical and practical

research [58]. Note that the MRF assumes that the observations are conditionally

independent of each other given the current labels. MRF makes the unwarranted in-

dependent assumption, which is not desirable for real-world applications with multiple
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interacting features and long range dependencies.

Conditional Random Field

The CRF model [52] is an extension of MRF model. Fig. 2.2 shows an example of

a 2D CRF model and its factor graph representation. Interactions between observa-

tions at nodes and their neighboring nodes’ labels are displayed by dashed lines in

Fig. 2.2. It relaxes the observation independence assumptions of MRF. There are

interactions between the current observation and neighboring observations, so the

conditional probability P (x|y) can not be written in the form of
∏N

i=1 P (xi|yi) as

equation (2.6) above. Moreover, since the labels y are related to observations x with-

out the assumption of independence which is often the case in real-world applications,

the expression of the prior probability P (y) as 1
Z

∏

C∈C ΨC(yC) in equation (2.6) is

not appropriate here.

(a) (b)

Figure 2.2: An example of 2D CRF model (a) and its factor graph representation (b)

The definition of CRF is as follows [52][94],
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Definition 2.1. Let G = (V,E) be a graph and the random variables y = (yi)i∈V , so

that y is indexed by the vertices of G. Then (x,y) is a conditional random field in

case when conditioned on x, the random variables y obey the Markov property with

respect to the graph. P (yi|x,yV\i
) = P (yi|x,yNi

), where V\i is the set of all nodes in

the graph except the node i, Ni is the set of neighbors of the node i in G.

The general model formulation of CRF models is

P (y|x) =
1

Z(x)

∏

C∈C
ΨC(yC ,xC), (2.7)

where the normalization factor is

Z(x) =
∑

y
′∈YN

∏

C∈C
ΨC(y

′

C ,xC) (2.8)

and y
′
is all possible y. The CRF model performs better than other graphical models

in most real-world applications because it does not make the unwarranted independent

assumption. Its theory has a equivalence to maximum entropy model.

2.2 The Maximum Entropy Original of CRF Model

The maximum entropy model [41][33] comes from two basic ideas.

• The first idea is to keep unknown variables as uniform as possible. A mathe-

matical measurement of uniformity of a conditional distribution of P (y|x) is a

conditional entropy

H(P ) ≈ −
∑

x∈XN ,y∈YN

P̃ (x)P (y|x) logP (y|x), (2.9)

where P̃ (x) is statistical (empirical) distribution of training samples, and N is

the number of nodes in the graph G.
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• The second idea is to keep the model factor comply with the known factor

distribution of training samples,

P (fk) = P̃ (fk) k = 1, . . . , K, (2.10)

where K is the total number of factors, {fk} are feature functions of random

variable x and y. Feature functions could be any kind of factor such as color

and texture. Here P (fk) and P̃ (fk) are,

P (fk) ≈
∑

x∈XN ,y∈YN

P̃ (x)P (y|x)fk(x,y), (2.11)

P̃ (fk) =
∑

x∈XN ,y∈YN

P̃ (x,y)fk(x,y). (2.12)

To find a solution to this constrained problem, one can define a Lagrange function

with the Lagrange multipliers {λk} as follows,

L(P,λ) = H(P ) +
K
∑

k=1

λk(P (fk)− P̃ (fk)), (2.13)

where λ = {λ1, . . . , λK}. To get the optimal solution, one can calculate the partial

derivative of L(P, λ) with respect to P and set the value to zero, i.e.,

∂L(P,λ)

∂P
= −P̃ (x) logP (y|x)− P̃ (x)P (y|x)

1

P (y|x)
+

K
∑

k=1

λkP̃ (x)fk(x,y)

= −P̃ (x) logP (y|x)− P̃ (x) +
K
∑

k=1

λkP̃ (x)fk(x,y)

= 0. (2.14)

The distribution becomes,

P (y|x) = exp(−1 +
K
∑

k=1

λkfk(x,y)). (2.15)
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To comply with normalization of the distribution, i.e.,

1 =
∑

y∈YN

P (y|x)

=
∑

y∈YN

exp(−1 +
K
∑

k=1

λkfk(x,y)), (2.16)

one can have

e−1 =
1

∑

y∈YN exp(
∑K

k=1 λkfk(x,y))
. (2.17)

The distribution that maximizes the Lagrangian function L(P,λ) is,

P (y|x) = exp(−1 +
K
∑

k=1

λkfk(x,y))

= e−1 · exp(
K
∑

k=1

λkfk(x,y)))

=
exp(

∑K

k=1 λkfk(x,y)))
∑

y∈YN exp
∑K

k=1 λkfk(x,y))
. (2.18)

Let Z(x) =
∑

y∈YN exp(
∑K

k=1 λkfk(x,y)), the posterior probability in the maximum

entropy model is

P (y|x) =
exp(

∑K

k=1 λkfk(x,y))

Z(x)
. (2.19)

According to Theorem 9.1 of [27], the maximum entropy (ME) model is equivalent

to the conditional random field (CRF) model, and this is uniquely determined [73],

Pme = PCRF . (2.20)

Therefore, the CRF model can be factorized as,

P (y|x; w) =
1

Z(x)

∏

C∈C
ΨC(yC ,xC)

=
1

Z(x)

∏

C∈C

∏

k∈KC

exp (wkfk(yC ,xC)) , (2.21)
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where KC ⊂ {1, 2, . . . , K} is the index set of factors for the clique C, w is the weight

coefficient vector of factors, and totally there are K factors. The normalization factor

is:

Z(x) =
∑

y
′∈YN

∏

C∈C

∏

k∈KC

exp
(

wkfk(y
′

C ,xC)
)

. (2.22)

Here one assume factors f = (f1, . . . , fK) does not change across the cliques.

2.3 CRF Training and Inference

2.3.1 Training of CRF Models

For all types of CRF models, the maximum-likelihood training method can be used

to estimate parameters w of the model [94, 48, 88, 92]. Suppose the training set is T

and the estimation can be done by maximizing the following log-likelihood L(T ,w)

with parameters w = {w1, . . . , wK}, which is

L(T ,w) =
∑

(x,y)∈T
logP (y|x; w)

=
∑

(x,y)∈T
log

(

1

Z(x,w)

∏

C∈C

∏

k∈KC

exp (wkfk(yC ,xC))

)

=
∑

(x,y)∈T
log

∏

C∈C
∏

k∈KC
exp (wkfk(yC ,xC))

∑

y
′∈YN

∏

C∈C
∏

k∈KC
exp

(

wkfk(y
′

C ,xC)
) . (2.23)

To avoid overfitting, a penalty term −∑K

k=1
w2

k

2δ2 is added [16, 48]. The log-

likelihood L(T ,w) becomes

L(T ,w) =
∑

(x,y)∈T
log

(

1

Z(x,w)

∏

C∈C

∏

k∈KC

exp (wkfk(yC ,xC))

)

−
K
∑

k=1

w2
k

2δ2

=
∑

(x,y)∈T

∑

C∈C

∑

k∈KC

wkfk(yC ,xC)−
∑

(x,y)∈T
logZ(x,w)−

K
∑

k=1

w2
k

2δ2
,
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where δ2 is a constant chosen to trade off between exact fitting of observation factors

and squared norms of the weight vector w [48, 63]. The smaller the values are the

smaller the weights are forced to be, so that the chance that few high weights dominate

is reduced. Denote

L1(T ,w) =
∑

(x,y)∈T

∑

C∈C

∑

k∈KC

wkfk(yC ,xC),

L2(T ,w) =
∑

(x,y)∈T
logZ(x,w). (2.24)

Gradient descent algorithm can be used in the training of CRF models, with an

arbitrary initial values of the weight vector w0. To update weights in each iteration,

we need to calculate the partial derivatives of L(T ,w) with respect to the weight wk,

k = 1, . . . , K. The partial derivative of the first term with respect to wk is

∂L1(T ,w)

∂wk

=
∑

(x,y)∈T

∑

C∈C
fk(yC ,xC). (2.25)

The partial derivative of the second term with respect to wk is

∂L2(T ,w)

∂wk

=
∑

(x,y)∈T

1

Z(x,w)

∂Z(x,w)

∂wk

=
∑

(x,y)∈T

1

Z(x,w)

∑

y
′∈YN

(

∏

C∈C

∏

k∈KC

exp
(

wkfk(y
′

C ,xC)
)

)

·
∑

C∈C
fk(y

′

C ,xC)

=
∑

(x,y)∈T

∑

y
′∈YN

(

1

Z(x,w)

∏

C∈C

∏

k∈KC

exp
(

wkfk(y
′

C ,xC)
)

)

·
∑

C∈C
fk(y

′

C ,xC)

=
∑

(x,y)∈T

∑

y
′∈YN

P (y
′ |x) ·

∑

C∈C
fk(y

′

C ,xC). (2.26)

At last, the partial derivative of the third term with respect to wk is

∂

∂wk

(

−
K
∑

k=1

w2
k

2δ2

)

= −wk

δ2
. (2.27)

The partial derivative of the first term with respect to wk in equation (2.25) is the
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empirical distribution of a feature fk, i.e.,

Ẽ(fk) =
∑

(x,y)∈T

∑

C∈C
fk(yC ,xC). (2.28)

The partial derivative of second term with respect to wk in equation (2.26) is the

expectation under the model distribution, i.e.,

E(fk) =
∑

(x,y)∈T

∑

y
′∈YN

P (y
′|x) ·

∑

C∈C
fk(y

′

C ,xC). (2.29)

Therefore, the partial derivative of the log-likelihood L(T ; w) with respect to wk can

be calculated as

∂L(T ,w)

∂wk

= Ẽ(fk)− E(fk)−
wk

δ2
. (2.30)

The empirical distribution of feature functions is supposed to be equal to its expected

value on the model distribution. Denote the partial derivative ∂L(T ,w) as ∆wk, the

weight wk of the CRF model is updated as wk−∆wk after each iteration in the process

of training, k = 1, . . . , K. The iteration process of estimating the weight vector w

stops when all differences {∆wk} are less than a predetermined threshold.

In CRF training, it is not possible to calculate
∑

y
′∈YN P (y

′|x) ·∑C∈C fk(y
′

C ,xC)

in equation (2.26) directly, because of huge number of possible labels. For a general

graph, even if all parameters w and factors f are known, one can only obtain an

approximate value of it. In a general CRF, one can use the loopy belief propagation

algorithm. For a special form of a CRF, the linear chain structure similar to hidden

Markov model (HMM), the standard backward-forward algorithm can be used. Both

algorithms are presented in the following section for the inference of CRF models.
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2.3.2 Inference of CRF Models

There are three principle algorithms for probabilistic inference of graphical model

[93], namely exact algorithm, sampling algorithm, and variational algorithm.

Exact inference algorithms include the elimination algorithm, the sum-product

algorithm [64], and the junction tree algorithm [39]. They compute marginal prob-

ability by systematically exploiting the graphical structure. When the tree width is

small exact algorithms are practical. HMM is an algorithm of this kind. Once the

tree width is overly large, these algorithms are not viable.

Sampling algorithms, such as the Markov chain Monte Carlo [80, 81], provide a

general methodology for inference. We can find solutions by approximating distribu-

tion such as Gibbs Sampling [27].

The general idea behind the variational algorithm is to characterize a probabil-

ity distribution by solving a perturbed optimization problem. In early applications,

it is formulated as the solution of Kullback-Leibler(KL) divergence. It can also be

obtained using other ways such as mean field approach. The Bethe approximation

approach involves retaining only consistency relations that arise from local neigh-

borhood relationship in graphical model. Surprisingly the Bethe approximation is

equivalent to the sum product algorithm for trees and for graph with loops [104].

Since this thesis is not about the fundamentals of machine learning theory, we

only focus on one popular variational algorithm (loopy belief propagation) and the

backward-forward inference algorithm for linear chain CRF models. Before introduc-

ing these two inference algorithms, the expression of CRF models in edge and node

factors is presented here. The CRF can be expressed in the following edge and node

32



factors [50],

P (y|x) =
1

Z(x)

∏

(i,j)∈E

Ψ(i,j)(y,x)
∏

i∈V

Ψi(y,x). (2.31)

where Ψ(i,j)(y,x) is the contribution of edge (i, j), and Ψi(y,x) is the contribution

of node i as shown in the factor graph of Fig. 2.2. Suppose the set of all nodes is S,

and the set Ni ⊂ S is neighboring sites of the site i, the posterior probability P (y|x)

in equation (2.31) usually is written as

P (y|x) =
1

Z(x)
exp{

∑

i∈S

ϕi(yi|x) +
∑

i∈S

∑

j∈Ni

ψij(yi, yj|x)}, (2.32)

where ϕi(·) is the association potential between the observation data and the label of

site i, and ψij(·) is the interaction potential between current site i and its neighboring

site j given the observed features. As shown in Fig. 2.2 usually ϕi represents the

prediction of the label yi based on the local feature vector xi at site i and ψij predicts

the label yi based on local compatibility between neighboring labels and features.

The Loop Belief Propagation Inference of CRF Model for General Graph

For graphs with loops such as those in image labeling, there is no exact inference

algorithm. The inference can be done using approximate loopy belief propagation

(BP) [104], and gradient descent [92] can be used as the training method.

When the CRF model is expressed in the form of equation (2.31), the belief

propagation algorithm can be applied for model inference. Denote a message variables

such as mij(y,x) from node i to node j. It can be intuitively understood as a message

from a node i to a node j about what node j should be like. It is proportional to how

likely node i thinks that node j will be of certain value. In the BP algorithm, that

belief at a node i is proportional to the product of the local evidence at that node
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ψi(y,x) and all message coming into node i, i.e.,

bi(y,x) = kΨi(y,x)
∏

j∈Ni

mji(y,x) (2.33)

where k is a normalization constant to force the summation of beliefs to be 1. The

messages are determined self-consistently by the message update rules as follows,

mji(y,x) =
∑

yj∈Y
Ψi(y,x)Ψ(j,i)(y,x)

∏

k∈Nj\i
mkj(y,x), (2.34)

where Nj \ i denotes the neighboring set of node j except the node i. Here we take

the product of all messages going into node j except the one coming from node i as

shown in Fig. 2.3. The summation is done by all possible labels of node j. It is easy

Figure 2.3: An illustration of message updating rules in belief propagation. The sum
indicate summation of all messages coming to node j except the one from
i.

to testify the BP updating rule in graph without loops as shown in Appendix A. For

a graph with loops, it may not converge with some parameter setting. However, the

BP has already been used in graphs with loops successfully in many applications such

as computer vision and error control coding.

The Backward-forward Inference of Linear Chain CRF Model

For graphs without loops, e.g., the CRF model structured as a linear chain, there

are exact inference algorithms exist such as the dynamic programming [48]. Here the
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commonly-used linear chain CRF model, which is a counterpart of HMM model, is

discussed. In the linear chain CRF model, the posterior probability can be simplified

as

P (y|x) =
1

Z(x)

T
∏

t=1

Ψt(yt, yt−1,x), (2.35)

where t is an index of time, T is the length of the sequence, xt denotes a vector which

include observation features at time t, yt denotes the label at time t, and the factor

at time t is

Ψt(yt, yt−1,x) = exp

(

K
∑

k=1

wkfk(yt, yt−1,x)

)

. (2.36)

Define the forward and backward variables for CRF as follows,

αt(j) ∝ P (yt = j|x<1...t>)

=
∑

y<1,...,t−1>∈Yt−1

Ψt(j, yt−1,x)
t−1
∏

t′=1

Ψt′(yt′ , yt′−1,x), (2.37)

αt+1(j) =
∑

i∈S

Ψt(j, i,x)αt−1(i), (2.38)

βt(i) ∝ p(yt = i|x<t+1...T>)

=
∑

y<t+1,...,T>∈YT−t

T
∏

t′=t+1

Ψt′(yt′ , yt′−1,x), (2.39)

βt(i) =
∑

j∈S

Ψt+1(j, i,x)βt+1(j) (2.40)

and the initial points,

βT (end) = α0(start) = 1, (2.41)

where x<1,...,t> denotes {x1, . . . ,xt}. One can compute the margin probability needed

in gradient computation as

P (yt−1, yt|x) ∝ αt−1(yt−1)Ψt(yt, yt−1,x)βt(yt). (2.42)

So, the calculation of E(fk) in equation (2.30) can be implemented efficiently as
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follows,

E(fk) =
∑

(x,y)∈T

∑

y
′∈YN

P (y
′ |x)

∑

C∈C
fk(y

′

C ,xC)

=
∑

(x,y)∈T

1

Z(x)

T
∑

t=1

∑

(i,j)∈E

∑

i∈V

fk(j, i,x)αt−1(i)Ψt(j, i,x)βt(j). (2.43)

Also the normalize factor can be efficiently formulated as backward or forward as

Z(x) = β0(start) = αT (end). (2.44)

Therefore, the most probable assigned labels y∗ are those that maximize the posterior

probability P (y|x), i.e.,

y∗ = arg max
y∈YN

P (y|x). (2.45)

Dynamic programming is applied here to obtain the optimal label solutions. Define

a quantity δt(i) as the highest score along a path at time t given observations,

δt(i) = max
y<1,...,t−1>∈Yt−1

P (y<1,...,t−1>, yt = i|x). (2.46)

A Viterbi algorithm is used to calculate the optimal labels. Here ξt is used to keep

track the label values. Steps of the Viterbi algorithm are listed as follows:

• Initialization:

δ1(i) = Ψ1(i, start,x), (2.47)

ξ1(i) = start; (2.48)

• Induction:

δt(i) = max
j
δt−1(j)Ψt(j, i,x), (2.49)

ξt(i) = arg max
j
δt−1(j)Ψt(j, i,x); (2.50)
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• Calculating probability:

P (y|x) ∝ max
j
δT (j). (2.51)

y∗
T = arg max

j
δT (j); (2.52)

• Path backtracking: choosing the optimal path using the track keeping values

γt. The optimal solution at time t is

y∗t = ξt+1(y
∗
t+1). (2.53)

2.4 HCRF and its Training and Inference

2.4.1 HCRF Models

Recently there has been a growing interest in CRF with latent variables. Original

works on CRF focus fully on observed training data which is difficult in cases such

as video content analysis. Additionally it is a troublesome work to label all states

manually. The introduction of the hidden states in graphical model simplifies the

complex joint distribution by breaking them into simpler components. Similar to

hidden Markov model (HMM) that is a 1D chain Markov random field with hidden

variable, hidden conditional random field (HCRF), a relative new graphical model,

is chain CRF with hidden variables [75]. Similar to HMM which is widely used in

event detection e.g., [14, 25, 43] the HCRF has been developed for event and object

recognition e.g., [29, 95].

An illustration of the HMM, CRF and HCRF model is shown in Fig. 2.4. As

shown in Fig. 2.4, for video event detection using HMM, a specific model should

be set up for each specific event y. For example in the golf event detection, there

37



are three events: the full swing (event 1), the non-full swing (event 2), and others

(event 3), so y ∈ Y = {1, 2, 3}. There are three models corresponding to three events.

During the training, the parameters are learned for each model. The class label for

testing a sequence is inferred by finding the most probable model for a sequence.

Figure 2.4: An illustration of HMM, CRF and HCRF model structure for video con-
tent analysis.

CRF can also be used for video event analysis. It is similar to HMM except that

there are links between current label and neighboring observations. CRF needs labels

for all hidden states for the training set, and it is difficult and time consuming. In

HCRF video event analysis, there is only one model and weights of different factors
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to serve as coefficients to classify the sequences. During the training process, weights

w are learned from training sequences. Estimated parameters are used to label the

events in the testing process.

There are several differences between the two models.

1. There are direct links between y and hidden states sequence in HCRF, while

HMM does not have this useful structure.

2. Links of HMM have direction. This is the generative nature of the model. Ob-

servations are “children” of states, and generated by states. So full observation

is needed for the training. The HCRF relaxes this assumption.

3. In HMM the observations are independent and only depend on their own state.

A HCRF model can have links between the current observation and other states

beside its current state.

These properties make HCRF a better tool for complex video event detection prob-

lems.

The HCRF formulation is as follows,

P (y|x) =
1

Z(x)

∑

h∈HN

∏

C∈C
ΨC(yC ,hC ,xC). (2.54)

Unlike the node labels y, the unknown hidden states h is summed over in the equation.

The normalize factor is,

Z(x) =
∑

y
′∈YN

∑

h∈HN

∏

C∈C
ΨC(y′

C ,hC ,xC), (2.55)

where y
′
are possible labels for a sequence.
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2.4.2 HCRF and its Inference and Training

The training and inference can be done similarly to the ordinary CRF model except

the summation of hidden variables,

L(T ,w) =
∑

(x,y)∈T
logP (y|x; w)

=
∑

(x,y)∈T
log

∑

h∈HN

P (y,h|x; w)

=
∑

(x,y)∈T
log

1

Z(x,w)

∑

h∈HN

∏

C∈C
ΨC(yC ,hC ,xC). (2.56)

Similarly to CRF models, there is a penalty term −∑K

k=1

w2
k

2δ2 that is added to avoid

overfitting. The function becomes

L(T ,w) =
∑

(x,y)∈T
log

1

Z(x,w)

∑

h∈HN

∏

C∈C
ΨC(yC ,hC ,xC)−

K
∑

k=1

w2
k

2δ2

=
∑

(x,y)∈T

∑

h∈HN

exp

(

∑

C∈C

∑

k∈KC

wkfk(yC ,xC)

)

−
∑

(x,y)∈T
logZ(x,w)

−
K
∑

k=1

w2
k

2δ2
. (2.57)

Let Ll(T ,w) denote the lth term of the log-likelihood L(T ,w), l = 1, 2, 3. The

partial derivative of the first term with respect to wk is,

∂L1(T ,w)

∂wk

=
∑

(x,y)∈T

∑

h∈HN

P (h|y,x; w)
∑

C∈C
fk(yC ,hC ,xC). (2.58)

The partial derivative of the second term with respect to w is,

∂L2(T ,w)

∂wk

=
∑

(x,y)∈T

∑

y
′∈YN

∑

h∈HN

P (y
′

,h|x; w)
∑

C∈C
fk(y

′

C ,hC ,xC). (2.59)
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Therefore, the partial derivative of the log-likelihood (with a penalty) with respect

to wk is

∂L(T ,w)

∂wk

=
∑

(x,y)∈T

∑

h∈HN

P (h|y,x; w)
∑

C∈C
fk(yC ,hC ,xC)

−
∑

(x,y)∈T

∑

y
′∈YN

∑

h∈HN

P (y
′

,h|x; w)
∑

C∈C
fk(y

′

C ,hC ,xC)

− wk

δ2
. (2.60)

This requires calculation of two marginalized distribution which can be calculated

using belief propagation. For linear HCRF models, the backward-forward inference

algorithm can be used in its inference process also.

2.5 Modeling Spatial and Temporal Interaction with

CRF Model

2.5.1 The Interaction in Image and Video Content

In image labeling, the interactions include the smoothness of the region labels and

the complex interaction of the observed features. In video shot classification, the

interactions include the smoothness of shot frame labels and the interactions of the

observed features of frames. Smoothness of labels means that the neighboring sites

tend to have similar labels except at the group boundary. The complex interactions

of features tend to regulate the labels. The features and label of one site depends on

its neighbors’ labels and features. In the ideal case, we would like to find a model

that can incorporate these interactions and learn the dependence in a consistent way

using the training data in the supervised learning.
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2.5.2 Modeling the Interaction using CRF

These proceeding properties make graphical models in particularly CRF idea to solve

the content analysis problem. The CRF model relaxes the independent assumption

of observation data which is more suitable to model the complex date and label inter-

actions in image and video content. When modeling the interactions of this content,

it is also important to take the statistical variations of the feature observations in

each class and other uncertainties such as noise into account. In the following chap-

ters, we present new CRF models with new feature functions according to different

characteristics of specific content analysis problems. The task is to infer the labels or

classes using CRF models with coefficients learned from training samples.

In this chapter, we provide the mathematical formulation of the conditional ran-

dom field model which is fundamental to the following discussion. Graphical models

are very popular for content analysis due to their many advantages over non-structural

models. The HMM is one widely used graphical model. The HMM has many limita-

tions such as conditional independence of observations and only tractable for limited

types of distributions. CRF is proposed to overcome these problems. The training

of CRF could be done efficiently by maximizing the log-likelihood of training data.

The loopy belief propagation is an approximate inference method that is effective for

general graphs of CRF. For linear chain CRF the backward and forward method could

be applied the same as HMM. HCRF is a direct extension of CRF and HMM which

is favorable for observations with hidden states. The training and inference could be

performed the same as CRF with the summation of all possible hidden states. We

will discuss how to use these mathematics in real content analysis tasks, e.g., image

labeling and video content analysis in the following chapters.
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Chapter 3

Mixture Conditional Random Field

for Image Labeling

A new conditional random field (CRF) model based on mixture feature functions is

proposed for multi-class image labeling in this chapter.

In image labeling, an image is first divided into a grid of pixels or rectangular

regions, and then features of these grids are extracted. These observed features may

include color, texture and shape. The 2D grid of an image is a graph where the

probabilistic graphical model can be applied. The CRF image labeling model is built

on the 2D grid with association and interaction potential functions [51, 50] as in

Equation (2.32). The association potential for each site i, ϕi(yi|x), represents the

log-likelihoods of the label yi at site i given the observation feature vector xi, i.e.,

ϕi(yi|x) = logP (yi|xi). (3.1)

The interaction potentials ψij(yi, yj|x) at two neighboring sites i and j are the log-

likelihoods of the interaction between neighboring grid labels yi and yj given the
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observation feature vectors xi and xj, i.e.,

ψij(yi, yj|x) = logP ′(yi, yj|xi,xj). (3.2)

Using multiple features, both potentials can be factorized into the weighted feature

function forms, i.e.,
∑

k wkfk(y|x). It is the responsibility of the CRF training algo-

rithm to find the weights {wk} for different potential feature functions.

In image processing, image features can be modeled as mixtures [72, 70]. In [85],

many potentials are used and the color association potentials of CRF are modeled

as Gaussian mixtures. Based on the distributions of features of different classes in

nature images (nature images mean images with nature scene), we present a new

nature image labeling method in this chapter, based on the mixture CRF model that

chooses a Gaussian or Laplacian mixtures as feature functions {fk(·)}. By using

Gaussian or Laplacian mixtures to approach the distributions of features of nature

image parts, the number of features needed in the CRF image labeling can be reduced.

Instead of modeling many potentials differently, all potentials are placed on a common

form of Gaussian or Laplacian mixtures [70, 4]. By taking advantage of the feature

distribution properties, the number of features needed for CRF is greatly reduced.

To evaluate the performance we apply the new model to the nature image labeling

problem. The performance of Gaussian and Laplacian mixture CRF is evaluated

with commonly used 7 class Corel database. The Laplacian mixture is a suitable

choice for nature images because the distributions of their features can be better

approximated by a Laplacian distribution than by a Gaussian distribution [70]. The

experimental results show that the new model with Laplacian mixture achieves best

labeling accuracy, compared with the Gaussian mixture CRF, the baseline CRF [51,

28] and the nonstructural SVM model, with the same number of features. The new
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model with only several features shows comparable results with the state-of-the-art

CRF models with at least around 100 features and complex potential structures.

The chapter is organized as follows. The solution of image labeling problem by

CRF is formulated in Section 3.1. Then a new CRF model based on (Gaussian

and Laplacian) mixture feature functions is introduced in Section 3.2. After that

in Section 3.3, detail steps of the mixture model for image labeling are given. In

Section 3.4, the new image labeling model is applied to 7 class Corel database and

the simulation results are shown. This chapter ends with some discussions in Section

3.5.

3.1 Formulation of CRF for Image Labeling

A CRF model is used to learn the conditional distribution over the class labels given

an image [85]. CRF image labeling is a supervised learning process. The parameters

w of CRF are learned from training images with known labels and feature functions.

With these parameters, the labels of an input image with unknown node labels can be

inferred. Here the features are node and edge features, which could be any meaningful

filter response of the site, such as color, texture and shape. The interaction and

association are defined on the graph. The task of CRF image labeling is to infer the

most probable labels given an input image based on the model parameters which are

learned from the training images.

Let x = {xi}i∈S denote the observation data (features) from the input image. S

is a set of image sites which could be pixels or a group of adjacent pixels with regular

or irregular shapes. The observation at the site i, xi is a set of observation features.

The image has a corresponding labels y = {yi}i∈S where yi ∈ Y is the label for site i.
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Here Y is a set of all possible labels. For example the binary image labeling problem,

Y = {−1, 1}, 1 represents the object and −1 the background. The labeling problem

is to infer the underlying labels y given the image features x and parameters of the

model. The probabilistic expression of the problem is to maximize the conditional

probability P (y|x).

3.2 New Mixture CRFs

3.2.1 Mixture CRFs

The potentials in CRF are usually nonstructural discriminative classifiers such as

boosting and logistic. To let the features select themselves simplifies CRF design

routine. But it usually needs hundreds of features to converge to a reasonable result

and the convergence speed becomes slower with more features. Since most weights

of these features are zero or near zero, we could safely select features and feature

functions to reduce the complexity and improve the labeling accuracy. Selecting

feature functions in potentials that better reflect the distribution of the dominant

features could reduce the need for more features and increase the convergence speed.

In image processing, mixture models are widely-used nonstructural classifiers. The

use of mixture models as potentials for CRF image labeling has not been widely

investigated. In this chapter we discuss a new mixture potential solution, namely

mixture CRFs, for nature image labeling.

The potentials P (y|x) of Equation (2.32) could be factorized in following feature
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function forms,

ϕi(yi|x) =
∑

k∈Ki

wikfik(yi|x), (3.3)

ψij(yi, yj|x) =
∑

k∈Kij

wijkfijk(yi, yj|x),

where k is the index of features, wik and wijk are weights for these mixtures, Ki and

Kij are numbers of mixtures. In this chapter we choose one mixture for each feature.

The features are represented by log-likelihood functions, i.e.,

fik(yi|x) =
∑

l∈L
δ(yi − l) log

∑

m∈M

amyi
Pi(xik|yi,m),

fijk(yi, yj|x) =
∑

l∈L

∑

l′∈L
δ(yi − l)δ(yj − l′)

· log
∑

m∈M

amyiyj
Pij(xik, xjk|yi, yj,m), (3.4)

where m is the index of the mixture component, and M is the number of components.

Here ayim and ayiyjm are mixture coefficients. The function

δ(y − l) =











1 if y = l,

0 otherwhere,

where l ∈ L is the index of image classes, and L is the set of all classes. For a

Laplacian mixture, the conditional probabilities are

Pi(xik |yi,m) =
exp(− |xik

−µyim|
byim

)

2byim

, (3.5)

Pij(xik , xjk
|yi, yj,m) =

exp(− |(xik
−xjk

)−µyiyjm|
byiyjm

)

2byiyjm

. (3.6)
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While for a Gaussian mixture, these probabilities are

Pi(xik |yi,m) =
exp(− (xik

−µyim)2

2σ2
yjm

)
√

2πσyjm

, (3.7)

Pij(xik , xjk
|yi, yj,m) =

exp(− (xik
−xjk

−µyiyjm)2

2σ2
yiyjm

)
√

2πσyiyjm

. (3.8)

In the following mixture parameter learning discussion we discuss only the associ-

ation potential ϕi(yi|x), and the interaction potential ψij(yi, yj|x) can be derived in

a similar manner. For a simple expression, parameters byim, µyim, ayim, and σyim are

replaced by bm, µm, am, and σm, respectively.

Features in nature images follow certain statistical distributions. An example is

shown in Fig. 3.1. The rows are 7 classes in the Corel image database and the

columns are five different features: 3 Lab colors and 2 positions (horizontal and

vertical offset from the image center). Although they are different, it could not be

classified correctly using traditional non-structural classifiers. Any distribution could

be approximated using a mixture of Gaussian [5], so one can use Gaussian mixtures as

feature functions, but usually more mixture components are needed if the distribution

is far from Gaussian. From Fig. 3.1, we find that the Lab color and location feature

distribution of nature image are more likely to be Laplacian mixture rather than a

Gaussian mixture.

Assume that there are N training features used in mixture parameter estimation,

{x(1), · · · , x(n), · · · , x(N)}, where x(n) could be one feature or a set of several features.

The class labels {yi}, in equation (3.4), for each site i of the training images are known.

The index of sites i and features k in equation (3.4) are omitted to simplify expression.

Based on the experimental distributions of color and location features, we suppose

these features follow Gaussian mixture distributions, i.e., x(n)|m ∼ N (µm, σm), or
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Figure 3.1: Feature distribution of 7 classes of Corel image database. The columns
correspond to five different features: Lab colors (L: lightness, A,B: color-
opponent dimensions) and positions (H: horizontal and V: vertical offset
from the image center), from left to right.
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Laplacian mixture distributions, i.e., x(n)|m ∼ L(µm, bm), where m = 1, . . . ,M , N (·)

and L(·) denote Gaussian and Laplace distribution, respectively. Parameters of the

Gaussian distributions θm include the mean µm and the variance σm. Parameters of

the Laplacian distribution θm include the mean µm and the scale parameter bm. For

each training features x(n), suppose the hidden variable z(n) = (z
(n)
1 , . . . , z

(n)
m , . . . , z

(n)
M )

, n = 1, . . . , N . If the data is generated from the mth component of the mixture, all

elements of z(n) are zeros except the mth element, which equals one.

To find the most probable parameters for a certain number of mixtures, the log

likelihood of the joint distribution needs to be maximized. In most cases when the pa-

rameter learning process with joint distribution is not tractable, the EM (Expectation-

Maximization) algorithm provides an effective solution. The EM algorithm is an

iterative process with two steps in each iteration: expectation calculation step (E-

step) and maximization step (M-step). We formulate EM algorithm [20] to estimate

Gaussian and Laplacian mixture parameters as follows (The calculation details of

Laplacian mixture parameter estimation is shown in Appendix B). The detail steps

using EM algorithm for parameters training in a Gaussian mixture can be found in

[65][10].

• E-step. In this step likelihood functions are calculated with initial guess of

parameters or from previous maximization step,

P (x(n)|z(n)
m = 1; θm) =











exp(− (x(n)−µm)2

2σ2
m

)
√

2πσm
Gaussian;

exp(− |x(n)−µm|
bm

)

2bm
Laplacian.

m = 1, . . . ,M and n = 1, . . . , N , and then the expectation values of z
(n)
m with
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respect to likelihood function are calculated as follows,

〈z(n)
m 〉 =

P (x(n)|z(n)
m = 1; θm)am

∑M

j=1 P (x(n)|z(n)
j = 1; θj)aj

, (3.9)

where 〈·〉 represents the expectation.

• M-step. In this step parameters that maximize the expectation are found,

µ̂(l)
m =



















∑N
n=1〈z

(n)
m 〉x(n)

∑N
n=1〈z

(n)
m 〉

Gaussian;
∑N

n=1〈z
(n)
m 〉 x(n)

|x(n)−µ̂
(l−1)
m |

∑N
n=1〈z

(n)
m 〉 1

|x(n)−µ̂
(l−1)
m |

Laplacian.











σ̂m =
∑N

n=1〈z
(n)
m 〉(x(n)−µ̂

(l)
m )2

∑N
n=1〈z

(n)
m 〉

Gaussian;

b̂
(l)
m =

∑N
n=1 〈z

(n)
m 〉|x(n)−µ̂

(l)
m |

∑N
n=1 〈z

(n)
m 〉

Laplacian.

â(l)
m =

1

N

N
∑

n=1

〈z(n)
m 〉,

where m = 1, . . . ,M , l = 1, . . . , L, and L is the number of iterations. The

parameter µ̂
(l)
m is the estimation of µm after the lth iteration, based on the

estimate value µ̂
(l−1)
m after the previous (l − 1)th iteration. The E-step and M-

step are performed alternatively until the parameter estimation has converged.

With known class labels for each site of the training images, one can group the

features of the same label and use the EM algorithm to calculate parameters of

the label. When class labels are known for one site and its neighboring site, the

parameters can be learned for their label interaction. Knowing these parameters

the feature function of the model can be calculated using the Equation (3.4) for both

training and inference of CRF. Once these functions are known, the belief propagation

(BP) inference and stochastic gradient descent (SGD) weight learning can be applied

in this new model.
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3.2.2 Mixture CRF Training and Inference

The belief propagation and stochastic gradient descent are used for inference and

training of the new model. In the belief propagation algorithm [104], the exp(ϕi(yi|x))

and exp(ψij(yi, yj|x)) are the node belief and the edge belief of the message passing,

respectively, these both depend on labels. The parameters of each mixture for different

labels are known before CRF training. As long as the weights w = {wik, wijk} are

given, the beliefs for each type of features can be calculated .

All weights of the CRF model w are obtained using stochastic gradient descent.

Here all weights are assumed the same for all sites, this approach is a tangible training

solution. Since the new model is log-linear, one can use the stochastic gradient descent

to maximize the conditional log-likelihood (CLL). The parameters are updated based

on a batch of training examples each time. In our experiment, the number of training

images in a batch is set to be 3. There is one weight for each mixture in the new CRF

model. The partial derivative of the conditional log-likelihood logP (y(n)|x(n); w)

with respect to the weight wk (that could be wik or wijk) is calculated as follows [23].

∂

∂wk

logP (y(n)|x(n); w)

= fk(x
(n),y(n))− ∂

∂wk

logZ(x(n),w)

= fk(x
(n),y(n))

− 1
Z(x(n),w)

∑

y(n)′
∂

∂wk′
exp

∑

k′ wk′fk′(x(n),y(n)′)

= fk(x
(n),y(n))

−∑y(n)′ fk(x
(n),y(n)′)

exp
∑

k′ wk′fk′ (x
(n),y(n)′)

∑

y(n)′′ exp
∑

k′′ wk′′fk′′ (x
(n),y(n)′′)

= fk(x
(n),y(n))− 〈fk(x

(n),y(n)′)〉P (y(n)′|x(n);w). (3.10)

Here n is the current training example and both y(n)′ and y(n)′′ represents the possible
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labels. The fk(·) (fik(·) or fijk(·)) are the feature functions in the equation (3.4)

and P (y(n)′|x(n); w) is the conditional probability of label y(n)′ given the weights w

and features x(n). According to this partial derivative, the weights wk are updated

iteratively as

wk − η(fk(x
(n),y(n))− 〈fk(x

(n),y(n))〉), (3.11)

where η is the learning rate. The weight change is proportion to the value of the

feature function for the known label y(n) minus the average value of the feature func-

tion for all possible labels y(n)′. Here a penalty term should be added as in Equation

(2.27). Since the belief propagation method is used for inference, the probability of

all alternatives y(n) for each node and edge can be obtained during this process.

3.3 Mixture CRF based Image Labeling

Based on previous analysis, the new CRF model with a Gaussian or Laplacian mix-

ture can be applied in image labeling tasks. Since the CRF model is computational

intensive, this new model is apply on superpixels instead of pixels, to reduce the com-

plexity. Images are first oversegmented to superpixels. Then features are generated

for both training images and the image to be labeled. Distribution parameters are

learned from training features, and the feature functions are calculated for training

data. Then weights are learned using stochastic gradient descent, and the feature

functions are generated for test images. The image label inference is done with belief

propagation.
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Figure 3.2: An example of superpixel.

3.3.1 Superpixel

The task of image labeling is to find an appropriate content label for every image

pixel. This approach is highly redundant, since most likely a pixel belongs to the same

object category as the neighboring pixel. Here the mixture CRF model is built on

small homogenous segments called superpixels [34, 36, 28], which is a composition of a

small group of neighboring similar pixels [79, 66]. Bottom-up normalized cut, which

is an oversegmentation of images, is utilized to generate this image representation

by multiple superpixels. With a large number of small regions, the potential error

induced by such a oversegmentation is relatively small. Although the superpixel graph

of an image is irregular in nature (see an example in Fig. 3.2(a)), this model is built

by making the pairwise relationship compatible with the irregular shape. Fig. 3.2(b)

shows that the superpixel 17 has six neighbors 13, 15, 16, 22, 23 and 25. These six

superpixels form the set of neighbors for superpixel site 17. Although a superpixel

is still a small part of a image, the number of nodes of the graphical model used is

greatly reduced. After reducing the number of node used in the graphical model, the

computational burden of the CRF training and inference is much relaxed.
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3.3.2 Steps of Mixture CRF Image Labeling

The basic steps of image labeling using a mixture model are listed as follows.

• Step 1: generating the training data superpixel graph and features. Training

images are oversegmented to superpixels and features of each superpixel are

generated. Various kinds of features are used. Of particular interests are those

features that can be modeled by a Gaussian or Laplacian mixture. In nature im-

ages, many features such as color and position follow a mixture model especially

the Laplacian mixture as shown in Fig. 3.1.

• Step 2: learning mixture parameters. Superpixel features are grouped by train-

ing data superpixel classes. EM algorithm is used to compute the parameters

of Gaussian and Laplacian distributions. After obtaining features from training

images, the mixture parameters for each class and neighboring class combina-

tion can be calculated. Parameters of the mixture for each class are used to

calculate the associate potential feature functions. Parameters for each class

combination are for interaction potential feature functions. Parameters of these

mixtures are learned by the EM algorithm from the training data before the

CRF training. Each feature function for each class of association potential is

represented by two component mixtures. Each feature function of each neigh-

boring class combination for interaction potential is also represented by two

component mixtures.

• Step 3: training the CRF. The potential feature functions are calculated by

using parameters learned in Step 2. In this step the stochastic gradient decent

training is performed iteratively. The CRF weight parameters for potential
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feature functions are learned.

• Step 4: generating superpixel graph and features of testing images. The poten-

tials are computed using mixture parameters learned from Step 2 for inference.

• Step 5: performing the inference of the testing image superpixel labels using

belief propagation. In belief propagation, the messages are passed from one

node to another based on the probability calculation of nodes and edges.

3.4 Experimental Results

To evaluate the performance of this new CRF model with Gaussian and Laplacian

mixtures, image labeling experiments were conducted on the commonly-used 100-

image subset of the Corel image database [2]. There are seven classes, rhino/hippo,

polar bear, water, snow, vegetation, ground, and sky. The task is to recognize and

segment these 7 classes. The database has 100 images, the images have 180 × 120

pixels. In the experiment, the database is divided randomly to 50 training and 50

testing. Due to the fact that the pixel-based CRF is computationally intensive, the

new mixture CRF is built on superpixels, similar to [34, 28]. Each image is segmented

to roughly 60 superpixels. The number of superpixels is chosen for all image labeling

experiments in this thesis because of the image size used. The number affects the

performance [28] but it does not affect our comparison.

The features used in the new model are constructed from low-level descriptors.

For each superpixel, a feature vector with five components (Lab color and locations)

is computed. The exact feature value of a superpixel is the mean over all pixel

feature values of this superpixel. A bias term 1 is always added to the feature vector.
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Altogether the association potential has six original features. The interaction feature

vector is calculated as the absolute difference of the two neighboring superpixels’

features. Adding the bias term, it is also a original feature vector with six components.

With the original superpixel features of the training images, parameters of mixtures

for both association and interaction potentials can be calculated accordingly.

With these estimated mixture parameters, the mixture CRF training and inference

are performed for image labeling. Here the learning rate η is fixed to be 0.0001.

Starting with random weights, the stochastic gradient descent algorithm converges

after about 10 iterations for the Laplacian mixture CRF. Table 3.1 shows the confusion

matrix of the new model comparing to the baseline CRF using logistic potential

feature functions and SVM classifier with the same number of features [50]. Note

that in the baseline CRF the quadratic expansion of the features is used and has

desirable results. For every class, the performance of the Laplacian mixture CRF is

better than the Gaussian mixture CRF and the baseline CRF.

Fig. 3.3 shows the receiver operating characteristic (ROC) curve comparison

between the mixture CRFs and the baseline CRF. The ROC curves plot the false

positive rate versus the true positive rate. True positive rate is the rate of classifying

positive instances correctly among all positive samples available during the test. False

positive rate is the rate of classifying negative instances wrongly among all negative

samples. Note that average values of detection rates for multiple classes are used in

ROC computation for this multi-class case. If the true class and predicted class are

the same, it is called a match. Suppose for the lth (l = 1, . . . , 7) class of images with

7 classes,

• the number of correct matches (classification) is the true positives Tpl,
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Table 3.1: Confusion matrix of new mixture CRF model on Corel dataset

rh/hi pb wa sn ve gr sk

rhino/hippo

79.9 0 5.6 0 4.3 10.2 0
{70.4} {0} {0.6} {0.4} {11.4} {8.6} {0}
(73.2) (3.6) (14.8) (1.9) (2.8) (3.7) (0)
[48.7] [0] [14.1] [1.9] [25.2] [10.3] [0]

polar bear

0 72.5 0 14.8 5.1 7.6 0
{0} {71.6} {0} {14.0} {0.9} {5.5} {0}
(1.7) (56.8) (5.1) (17.3) (9.8) (9.3) (0)
[1.0] [0] [8.3] [16.7] [5.6] [68.5] [0]

water

5.8 0.2 67.6 3.7 13.0 7.4 2.3
{15.1} {1.9} {65.5} {4.6} {6.3} {3.9} {2.8}
(6.5) (0.7) (62.3) (14.1) (12.7) (0.5) (3.2)
[2.4] [0] [46.7] [21.7] [13.2] [16.0] [0]

snow

0.2 0.9 8.2 86.1 2.7 1.7 0.2
{3.4} {1.1} {13.2} {77.6} {3.2} {1.4} {0}
(0.2) (0.7) (21.1) (71.9) (0.3) (0.5) (5.3)
[0] [0] [12.2] [76.0] [3.8] [6.9] [0.1]

vegetation

4.6 1.9 4.9 6.7 67.4 11.7 2.8
{14.2} {2.7} {5.3} {9.6} {59.6} {5.9} {2.5}
(6.1) (3.4) (13.8) (9.6) (54.5) (7.3) (5.3)
[3.2] [0] [4.3] [7.8] [74.1] [8.1] [2.6]

ground

6.4 4.1 4.7 3.9 12.5 67.9 0.5
{21.5} {5.5} {4.2} {6.7} {10.5} {51.5} {0.1}
(12.4) (6.6) (12.3) (11.5) (9.4) (47.1) (5.7)
[3.8] [0] [4.3] [9.6] [10.1] [72.3] [0]

sky

0 0 0 0 10 3.3 86.7
{0} {0} {0} {0} {20.0} {0} {80.0}
(0) (0) (0) (0) (11.8) (2.0) (86.2)
[0] [0] [0] [38.5] [15.4] [0] [46.2]

Note: Accuracy of the Laplacian mixture CRF on the 7-class Corel database. The
confusion matrix shows the pixel-wise recall accuracy (%) for each class and is row
normalized. Row labels are the true classes and column labels are the predicted
classes. The second number in braces in each cell shows the Gaussian mixture CRF
result. The third number in parentheses in each cell shows the baseline CRF re-
sult. The fourth number in square bracket in each cell shows the nonstructural SVM
classifier result.
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• the number of matches that were not correctly detected is the false negatives

Fnl,

• the number of non-matches that were not correctly rejected is the false positives

Fpl,

• the number of non-matches that were correctly rejected is the true negatives

Tnl.

Then the average true positive rate and false positive rate are

Tp =

∑7
l=1 Tpl

∑7
l=1(Tpl + Fnl)

, (3.12)

Fp =

∑7
l=1 Fpl

∑7
l=1(Fpl + Tnl)

. (3.13)

The average accuracy rate of this image labeling task is defined as the percentage

of image pixels assigned to the correct labels for all seven classes in the Corel database,

i.e.,

Ac =

∑7
l=1(Tpl + Tnl)

∑7
l=1(Tpl + Fnl + Fpl + Tnl)

. (3.14)

With only 5 features the overall accuracy classification rate of our Laplacian mixture

model is 75.4% which is comparable with the state-of-the-art results (in the range of

70%−80%) in [85, 34, 28]. Previous papers usually have at least around 100 features

and many different types of potential feature functions which prevents efficient learn-

ing and increases the difficulties for reproducing the results. With the same number

of features the accuracy of the baseline CRF is 64.6% and Gaussian mixture mode is

68.04%. The classification performance of support vector machine (SVM) using LIB-

SVM [13] which is one of the best nonstructural model is also known. The accuracy

of SVM classification is 61.7% which is less than CRF structural model. This proves
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the performance advantage of applying CRF graphical model in image labeling over

nonstructural model. The results indicate that the use of Laplacian mixture and CRF

significantly improves the classification performance.
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Figure 3.3: ROC curve of the Laplacian mixture CRF, Gaussian mixture CRF, and
the baseline for Corel 7-class database.

In Fig. 3.3, the red solid curve indicates the ROC of the Laplacian mixture CRF,

the black dotted curve indicates that of the Gaussian mixture CRF, and the blue

dashed curve shows that of the baseline CRF. It is evident from Fig. 3.3 that the

ROC plot of the Laplacian mixture CRF is closest to the upper left corner than that of

the Gaussian mixture CRF and the baseline CRF. Therefore, the Laplacian mixture

CRF model has a highest overall accuracy. The AUCs (Area under ROC curve) of

these three methods are: Laplacian mixture CRF, 93.65%, Gaussian mixture CRF,

90.95%, and Baseline CRF, 89.91%. AUC is the area under the ROC curve which is a
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usually used performance indicator. It means the probability that when we randomly

pick one positive and one negative example, the classifier will assign higher score to

the positive example than the negative example. It can also be observed from Fig.

3.3 that the performance of the Gaussian mixture CRF is better than that of the

baseline CRF.
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Figure 3.4: Learning curves of the Gaussian mixture CRF, Laplacian mixture CRF
and the baseline CRF, using Corel 7-class database.

Fig. 3.4 compares the learning curves of the Laplacian mixture CRF (red solid

curve), the Gaussian mixture CRF (black dotted curve), and the baseline CRF (blue

dashed curve). The learning curves show the test errors as a function of iterations in

the training process. The Laplacian mixture CRF achieves lower test errors after 4

iterations compared with the baseline CRF and Gaussian mixture CRF.

To have a qualitative analysis, the performance is shown in Fig. 3.5. These figures

show that with the same features both qualitative and quantitative results of both the

Laplacian mixture CRF and the Gaussian mixture CRF perform better than those
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of the baseline CRF.

(a) original image (b) groud truth (c) baseline CRF (d) Gaussian mixture CRF (e) Laplacian mixture CRF
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Figure 3.5: Some labeling results for nature images in the Corel dataset using the
Gaussian mixture, Laplacian mixture and baseline CRF.

To demonstrate the effectiveness of the new feature selection, performances of

using Lab color feature only (green dashed curve), position feature only (black dotted

curve) and all features (red solid curve) are compared in Fig. 3.6. The Lab color

features are more useful than the position features in the image labeling of nature

images. Obviously, the combination of two kinds features are better than any single

set of features.
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Figure 3.6: ROC curve of the Laplacian mixture CRF with different features for Corel
7-class database.

The better performance of the Laplacian mixture model are due to three reasons.

First, the nature image features most likely follow Laplacian mixture distribution as

shown in Fig. 3.1. Second, the EM algorithm effectively extracts the parameters of

the distribution. Third, the feature selection is effective. Both the class and class

combination feature functions contribute the increasing accuracy of classification. The

combination of Laplacian mixture and CRF provides effective and efficient solution

for image labeling.

3.5 Discussions

A new image labeling model based on mixture CRFs is introduced in this chapter.

After analyzing the distribution of features of nature images, we apply Gaussian

or Laplacian potential feature functions to model associations and interactions in

CRF. The model takes advantage of both the unstructured Gaussian or Laplacain
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feature distribution and structural discriminative CRF model. The combination of

the two provides a new framework for nature image labeling. Also instead of modeling

different potential feature functions in CRF differently we represent all potential

feature functions in the mixture format. The training of the new CRF is performed

by stochastic gradient descent. Belief propagation inference is used to infer the most

probable labels. To test the effectiveness of the new model it is applied to nature image

labeling of seven class Corel database, with the same number of features as the new

Laplacian mixture CRF shows performance improvement over the Gaussian mixture

CRF and the baseline CRF. Our model with only several features shows comparable

result with the other CRF models with hundreds of features. Although the results are

preliminary, not superior to other complex models and more simulations need to be

done for other databases, the new mixture CRFs put the image labeling problem in

a new way which is not seen in other literatures as far as we know. The new mixture

CRF model is a general framework with the advantage of classification accuracy

rate and training simplicity, which can be applied to other applications related to

multimedia content analysis. Future works include improving the performance by

incorporating more relevant features, testing the method for other more complex

databases and further reducing the overall computational complexity by using other

approximate learning algorithms.

64



Chapter 4

CIBR-Based CRF Model for Image

Labeling of Large Database

In this chapter, the problem of image labeling with large training databases is inves-

tigated. A new image labeling approach that implicitly incorporates top-down in-

formation using content-based image retrieval (CBIR) with conditional random field

(CRF) model is presented.

While providing more information, large labeled training databases with various

kinds of images posses new challenges such as content ambiguities. It is difficult

to extract content probabilistic model from a large image database. To reduce the

content ambiguities and increase the recognition accuracy, large image databases are

reduced to small relevant ones by using the content-based image retrieval (CBIR)

models in this thesis.

CBIR is a querying system using image content such as low-level features and

high-level semantic content [82, 57, 12, 18]. It finds applications in computer vi-

sion and becomes popular because it could be applied in mining digital images in
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large databases. The CBIR system provides a solution by examining image content.

Content-based analyzes of the content that can be found from the image itself and

may refer to colors, shapes, textures, or other information. It overcomes disadvan-

tage of the traditional search, which is based on metadata such as keywords and is

laborious, expensive and sometimes subjective.

The proposed method in this chapter is devised for large labeled training databases

by learning the top-down content information with CBIR and integrating CBIR re-

trieval information with the CRF model. This system has two parts: CBIR image

retrieval and CRF image labeling classifier.

• A small content similar training set for CRF labeling is built using retrieved

CBIR matches from a large image database. The top-down content information

is learned using CBIR features, and the content of the input image is used to

select the several most probable content similar images in the labeled database.

Since the search is content-based, the top-down information is reflected in the

image retrieval results. Content similar images are used as the training set for

the image labeling process. The retrieval scores (similarity measure) are used

as weights for the global factor in the CRF labeling model in order to reflect

the scene similarity.

• In CRF-based image labeling, each node represents a random variable whose

labels is to be inferred, and each edge represents a dependency between two ran-

dom variables, labels and observations. To achieve global consistency of image

labeling, we present a novel superpixel-based CRF probabilistic model with a

revised global factor. The use of superpixels reduces the bottom-up calculation

burden. The loopy belief propagation [104, 69] and stochastic gradient descent
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[92] are the inference and training algorithm used in our experiments.

The new image labeling framework based on CBIR and CRF is tested using the

Labelme database which has a very large number of images, these images where

labeled by other researchers under a uncontrolled environment. Test results show

that the new image labeling model based on CBIR and CRF demonstrates promising

results, compared with the CRF approach without retrieval.

This chapter is organized as follows. First the idea of applying CBIR to image

labeling is presented in Section 4.1. Then in Section 4.2 we propose a new superpixel

CRF model which incorporates CBIR top-down information from Section 4.1. After

that simulation results are given to prove our analysis in Section 4.3. Finally we

conclude the chapter with discussions and future research directions in Section 4.4.

4.1 CBIR for Image Labeling

In image labeling, the content of the training database plays a central role for ac-

curately labeling the input image. For simplicity the layout and precisely labeled

images are in a small and specific database, it is appropriate to let the learning meth-

ods understand the content themselves. For large and uncontrolled circumstances,

the problem becomes troublesome because of the content ambiguities and training

image labeling errors. With the increase of the database size, the semantic meaning

of the content gets more ambiguous and the labeling error increases. There are two

ways to deal with this problem. The first is to build a superior machine learning

algorithm. This approach is not realistic based on the current technology because of

the computational complexity. The secondary is to select a subset of relevant train-

ing images to train the image labeling model. In this chapter we take the second
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approach. We present a new method in which CBIR is used to choose the relevant

images.

Traditional retrieval methods are based on text search, e.g., keyword search. For

example, if one wants to label the floor area of an input image from a large database,

the “floor” is the keyword in the database search. Keyword search usually returns a

lot of images, sometimes over thousands, from a large database, and most of them

are different from the input image to be labeled. If all images chosen by the keyword

search are used to train the image labeling classifier, parameters learned will be far

from the model that the input image actually belongs to or the model is too complex

to be inferred. The keyword search provided is a high level that includes concept

ambiguities. Keyword could mean something totally different such as the floor lamp.

Even with the same meaning the floor has different appearances and follows a different

model in different kinds of scenes in large databases. For example, the floor in the

kitchen is different from the floor in the hallway. Traditionally the topic or the

scene content is retrieved and a (Bayesian or random field) probabilistic model with

a hierarchical structure is built to solve the content ambiguity [35, 90, 56, 9, 30].

However, this kind of method is highly complex and only useful for small databases

with limited classes.

Without dealing with a very high level abstract concept, we present a new ap-

proach to provide a better training set for image labeling of a large image database.

A new retrieval system for content-based image retrieval (CBIR) that reflects top-

down information, is built for the purpose of improving labeling accuracy. The CBIR

system takes a single input image, retrieves content similar images from the database,

and uses these images as the training set for the image labeling. The search by the
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CBIR system is based on the content information of the images. Since the large la-

beled image database also has the keyword information, one can use keyword search

as the preprocessing step of a CBIR system for image labeling. A CBIR system can

be divided into two components: signature extraction to describe an image math-

ematically and similarity measure to assess the similarity of two images given the

abstracted expression of the images.

Signature Extraction

In this chapter, color, texture and salient features are used in the CBIR system.

• Color features. The color histogram of red, green, and blue (RGB) color space

is applied in our system. With 10 bins for each color there are 30 color features.

Although RGB may not be effective as other color spaces with respect to other

applications, in large database it exhibited good global indicator for similarity

of images.

• Texture features. We first transform a RGB image to gray scale, then apply

the Leung-Malik (LM) filters [55], then take mean response of the image, to

get texture features. The LM filter bank set is 48 filters in multiple scales and

multiple orientations. It includes first and second derivatives of Gaussians at

6 orientations and 3 scales which makes a total of 36, 8 Laplacian of Gaussian

(LOG) filters, and 4 Gaussians. Altogether there are 48 texture features.

• Interest point features. We use the scale invariant feature transform (SIFT) [61]

feature vector which is proved to be very useful in object recognition. Each

interest point has a SIFT feature of the size 128. The principle components
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are obtained using principle component analysis (PCA) [44] to indicate interest

point features. For an image we have a salient point feature vector with 128

elements.

Altogether there are 206 features used in the CBIR system. Color features are de-

signed to define the overall color distribution of the images. Texture features are used

to reflect the global texture of the images. Interest point features are used to gain the

support of object recognition. These features carry top-down meaning of the whole

image. CBIR finds the meaning of the content information implicitly. Given an input

image, the feature vector needs to be computed and compared with the signatures of

images in the database.

Similarity Measure

A multivariate Gaussian similarity measure (retrieval score) as in paper [18] is used in

the CBIR system. In the CBIR retrieval system, given an input image feature vector

vI , a retrieval score for each image in the database is defined as

D(v) = exp (−(v − vI)
TΣ(v − vI)

2
) (4.1)

where v is the global feature vector for an image in the image database, and the

superscript T denotes the transpose of a vector. Here Σ is the similarity matrix with

the adjustable weights on specific color, texture and salient features. The retrieval

score D(v) is a multivariate Gaussian distance measure that reflects the similarity

between retrieved images and the input image. If the retrieved image is the same as

the input image, the retrieval score will achieve its highest score, i.e., 1. Each feature

in the vector is normalized to zero mean before the distance calculation to reduce the

disparity among features. In our experiment the Σ is set to be the inverse covariance
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matrix of features. For each feature we assume the feature of vI is the mean value.

The Σ is calculated based on sample images from the database. The Gaussian like

distance measure is easy to be applied to CRF-based image labeling presented in the

next section.

With the feature extraction and similarity measure the CBIR system can find the

content similar images in the database based on the ranking of distance measures.

Images with highest retrieval scores are retrieved from the large database and used

in the labeling process. The number of images can be determined by the distance

or percentage. For example, top ten percents of retrieval results are selected as the

matched image data set for labeling. The training set is now determined by CBIR.

4.2 A New Superpixel CRF Model with CBIR Top-

down Information

The conditional random field (CRF) model is widely used in image labeling. To

solve the labeling problem with large database, we present a new CRF image labeling

model to incorporate the CBIR similarity score as a weight for the new global factor.

To further reduce the complexity of pixel-based CRF, the new model is built on small

homogenous segments called superpixels, which is introduced in Section 3.3.1.

4.2.1 A New Superpixel CRF Model with Global Feature

weighted by CBIR Score

Both top-down information from CBIR and other superpixel information are used in

a new CRF model to merge superpixels into semantic meaningful labeled segments.
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Since the similarity between the retrieved image and the input image for labeling is

relevant to labeling task, a new global factor is added accordingly in the CRF model

to reflect the global similarity. Adding a new term to equation (2.32), the posterior

probability in the new CRF model becomes

P (y|x) =
1

Z(x)
exp

(

∑

i∈S

ϕi(yi|x) +
∑

i∈S

∑

j∈Ni

ψij(yi, yj|x) +
∑

i∈S

ψv(yi|x)

)

, (4.2)

where ψv(·) is the new global factor based on CBIR retrieval scores. This new model

reflects both the local and the global factor of the image in the retrieved group.

The unary, pairwise and global factors in the new CRF model are defined as

follows in factorized form,

ϕi(yi|x) =
∑

k∈Ku

wukfik(yi|x), (4.3)

ψij(yi, yj|x) =
∑

k∈Kp

wpkfijk(yi, yj|x), (4.4)

ψv(yi|x) =
∑

k∈Kv

wvkfvk(yi|x). (4.5)

The {fik(·)} and {fijk(·)} are feature factors corresponding to association potentials

and interaction potentials, respectively. The k is the index of features, Ku, Kp and Kv

are sets of all possible indexes k for unary, pairwise and global feature functions. The

unary, pairwise and global feature factors have Ku, Kp and Kv features, respectively.

The wuk, wpk, wvk are weights for the three kinds of factors.

Color and texture features are used in local unary factors, and the difference of

two neighboring superpixels’ color and texture are used in local pairwise interaction

functions. For a binary classification problem, define the label set as Y = {−1, 1},

the featured functions can be defined as fik(yi|x) = yixik for i ∈ S and k ∈ Ku, and

fijk(yi, yj|x) = yiyj · |xik − xjk
| for (i, j) ∈ E and k ∈ Kp. Variables xik and xjk

are

kth features of site i and site j, respectively. To avoid training diverge problem, a
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constant scalar 1 is included in the feature vector x, which is replaced by (1,x) then.

The new global factor fvk is based on location potential in the new CRF model.

It is proved that location is one very useful feature globally [28]. Our global feature

is defined as

fvk(yi|x) = D(v)Hk(yi, li), (4.6)

where li represents the normalized position of the superpixel inside the image. The

function Hk(yi, li) is the global position potential which is the possibility of the super-

pixel belonging to a certain class given the position. It is calculated from the training

data. Fig. 4.1 shows an example of estimated position potential function H for four

classes: floor, window, ceiling and wall. The D(v) is the similarity measure used in

the CBIR. This function is used to weight the global factor for the purpose of better

training the model. The global factor is more important during the training for the

image which is similar to the input image we want to label. The function fvk(·) indi-

cates the scene similarity affects the confident of the location potential global factor.

floor window ceiling wall

Figure 4.1: Position potentials.

The new CRF model is a linear weighted summation of all local unary, pairwise
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interaction and global feature factors as follows in a log-linear form,

P (y|x; w) =
1

Z(x,w)
exp{

∑

i∈S

∑

k∈Ku

wikfik(yi|x)

+
∑

i∈S

∑

j∈Ni

∑

k∈Kp

wijkfijk(yi, yj|x)

+
∑

i∈S

∑

k∈Kv

wvkfvk(yi|x)}. (4.7)

The Z(x,w) is a normalizing factor

Z(x,w) =
∑

y′∈YN

P (y′|x; w), (4.8)

with the weight vector w = (wik wijk wvk) to be learned for the feature factors, where

N is the number of superpixels in the input image.

The weights are learned from the training set, a subset of large image database, in

which all retrieved images have higher retrieval scores relative to other images in the

database. For the irregular graph, the problem is ill-posed if the weights are different

for different sites since the graph structure is different from one image to another. To

approach a tangible solution we assume all weights are the same for all sites. Since

the model is assumed log-linear, the stochastic gradient descent algorithm is used to

maximize the conditional log-likelihood (CLL) [23] in the CRF model. Parameters

are updated based on a batch of training examples for each iteration. There is one

weight for each feature in CRF. The partial derivative of the log-likelihood function

with respect to each weight wk is calculated as

∂logP (y|x; w)

∂wk

=
∑

(x,y)∈Ts

(

fk(y,x)− 〈fk(y
′,x)〉P (y′|x;w)

)

, (4.9)

where Ts is a subset of the observation set T . Here y′ represents the possible labels and

P (y′|x; w) is the conditional probability of label y′ given the weights and features.

The feature function fk(·) can be fik, fijk, or fvk depending whether the index k
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belongs to the set Ku, Kp or Kv.

The weight updating rule is as follows,

wk ← wk − η
∑

(x,y)∈Ts

(

fk(y,x)− 〈fk(y
′,x)〉P (y′|x;w)

)

, (4.10)

where η is the learning rate. The weight changes according to partial derivative of the

feature function for the known label minus the average value of the feature function for

all possible y′. The probability of all alternative y′ for each node and edge is obtained

in the belief propagation inference. Note that a penalty term should be added also

as in Equation (2.27) to overcome overfitting here. The parameter learning is done

iteratively.

4.2.2 Steps of CBIR-based CRF Image Labeling

The new labeling approach based on CRF and CBIR provides a better solution for

labeling large labeled databases. A flowchart of this algorithm is shown in Fig.4.2.

First, the CBIR algorithm, which implicitly provides top-down information for CRF

and is performed for the input image. The content search is based on features of

both the input image and images in the large training set. The top retrieved matches

are served as the real training set for CRF labeling. Second, a new superpixel CRF

labeling model is used as classifier to label the input image. The new model is different

from the traditional CRF model by adding a position potential global feature. The

position potential is weighted by the similarity measures from CBIR and reflects

how the similarity affects the global information in CRF. In this way the similarity

information is integrated into the CRF model, and the model is simplified to a log-

linear form with many feature factors. The parameters of the model are learned from

training sets using gradient descent. The general model can be used in common image
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Figure 4.2: Flowchart of CBIR-based CRF image labeling.

labeling tasks.

Besides, the new CBIR-based CRF model can also incorporate the method pre-

sented in the previous chapter, by representing all potential feature functions in a

Laplacian or Gaussian mixture format.
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4.3 Simulation Results

The proposed model is applied to floor area labeling of indoor images. Automatic

detection of the floor area is useful for scene understanding and 3D reconstruction

of room setting [19, 96]. We evaluate the model using the commonly used Labelme

database. The keyword “floor” is used to set up a new smaller database. The new

database has 1124 images in total, which have the floor area labeled by other re-

searchers.

The performance of the new CBIR-based CRF model is compared with a tradi-

tional CRF model without CBIR. If all 1124 images are used as a training set for

the CRF model without CBIR, the CRF training fails to learn parameters properly

because of the varieties of database contents. Only 53 representative images are se-

lected as the training set for the traditional CRF learning without retrieval. Some

sample images of the new database are shown in Fig. 4.3.

4.3.1 CBIR Results

The CBIR is used in searching the large database to retrieve content similar images.

Fig. 4.4 shows four examples of retrieved images using CBIR. Images at the first

column are input images. The retrieved top 4 matches are shown accordingly with

the similarity score listed above. The similarity matrix Σ is estimated based on 53

images, the top 10 images are used for CRF training. From these examples, one can

see that the hallway and room concepts are separated implicitly in the retrieved set.

Therefore, it is unnecessary to build a probabilistic model to learn these concepts

separately. The top-down information is learned through the CBIR system.
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Figure 4.3: Sample images from Labelme database with keyword floor.

4.3.2 CBIR-Based CRF Labeling Results

Fig. 4.5 shows image labeling results of four input images using the new CBIR-based

CRF model. The first column contains the four test input images. The second column

contains the ground truth segmentation results, which is labeled by other researchers

using Labelme [83] tool. The third column contains the CRF labeling result using

all 53 images for training. The fourth column contains the CBIR-based CRF result,

which uses the CBIR retrieved images for training. The fifth column contains the

CBIR-based Laplacian mixture CRF result. The features used in CRF models are

the same which includes CIELab color features, edge percentage of the superpixel,

as texture features for both the unary and pairwise feature factor. For CRF models

combined with CBIR, additional position potential weighted by CBIR retrieval scores

78



0.97268 0.91368 0.82224 0.80785

0.88892 0.87778 0.8718 0.87064

0.76269 0.70854 0.6746 0.66509

0.74869 0.73245 0.72865 0.68916

(b) Top 4 Retrieved Matches(a) Input Images

Figure 4.4: Example CBIR results and corresponding retrieval scores.

is used as a global feature. Fig. 4.5 also shows the superpixel structures. The number

of sueprpixels in each image is set to be around 60. The number of iterations for

training is set to be 100, and the learning rate η is 0.001.

The results prove that using the CBIR to select a small training set improves the

image labeling accuracy. With 53 images to train the model it could not find the floor

area for two of four images. For all four images, the performance of the new method

is better than the CRF model without CBIR.

The average accuracy rate of the new CBIR-based CRF model for 1124 images,

as shown in Table 4.1, is much higher than the average accuracy without CBIR. The

average accuracy of floor means the percentage of floor pixels that is correctly labeled

as floor. The labeling error is significantly reduced by using CBIR-based selective
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(a) original image (b) groud truth (c) CRF (d) CBIR+CRF (e) CBIR+Laplacian CRF

Figure 4.5: Example results of floor labeling.

training and weighted global factor. By introducing Laplacian mixture into the CRF

model, the performance of CBIR-based Laplacian CRF model is further improved,

especially for the third input figure shown in Fig. 4.5.

Fig. 4.6 shows the learning curve of CRF labeling for input image 1 of the Fig.

4.5. Start from random weights, the initial error rate is high, and after several it-

erations the error rate of both methods reduces to a stable level. This also proves

the convergence and effectiveness of the log-linear simplification. The CRF training

finds a model with better parameters for input image using CBIR than the method
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Table 4.1: The confusion matrix of 1124 images for floor area labeling using CBIR-
based CRF (in bold) and CRF without CBIR (in parentheses) with 53
images for training.

floor other

floor
79.34% 20.66%
(52.94%) (47.06%)

other
12.71% 87.29%
(10.98%) (89.02)

Note: Row labels are the true classes and column labels the predicted classes.

without CBIR. Based on the results, it is reasonable to believe that the top-down

information could be learned by CBIR and the new labeling model based on CBIR

and CRF could have better performance for large image labeling database.
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Figure 4.6: Learning curve of an example image.

Although the new CBIR part is added in the new algorithm, The computational

cost of CRF with CBIR is not much higher than the one without CBIR. It is because

we find a smaller training set for CRF. With smaller and similar training set, the
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efficiency of CRF is increased. The computational cost could be further reduced by

efficient CRF training algorithms and increased CBIR retrieval speed.

4.4 Conclusion

A new CRF image labeling framework for large labeled database which incorporates

top-down information from CBIR-based retrieval was presented. The method is more

suitable to deal with large labeled databases in real circumstances with a large number

of ambiguous concepts. The main difference between the new approach and previous

methods was that no hierarchical probabilistic model was built explicitly for an image

labeling problem with specific and well controlled image database. CBIR is used to

reduce top-down content ambiguities for large databases. CBIR provides a smaller

content similar database for the purpose of input image labeling. Due to the content

similarity of the retrieved matches, the new CRF model is better for the input image

labeling task. By combining the top-down and bottom-up approach by transferring

the scores from the retrieval part to the CRF model, the model is simplified to a

log-linear form to reduce the computational complexity of inference and training.

The stochastic gradient descent training and belief propagation inference are applied

accordingly. To test the new method, a floor area labeling task was performed using

the Labelme database. The new image labeling framework demonstrates better results

than the one without CBIR, which proves our analysis. Though the simulation result

are not complete, it can be believed that the retrieval based method is suitable to deal

with content ambiguities in image labeling in large real-world databases. Future work

may include finding the optimal retrieval threshold, adding more relevant features to

the CRF model and combining CBIR and CRF more effectively and efficiently.
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Overall, there are three new contributions of this chapter.

1. CBIR is applied to find a better and smaller training set for image labeling, and

is useful for labeling using large uncontrolled image database such as Labelme.

2. The new CRF model incorporates CBIR retrieval scores as weights to strengthen

global factor based on scene similarity. CBIR similarity measure is naturally

integrated into the CRF model as a global weight factor which reflects the

training image’s similarity with the input image in the data set.

3. The new CBIR-based CRF model is simplified in a log-linear form to help reduce

the training complexity.
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Chapter 5

Hidden Conditional Random Field

for Video Analysis

The previous two chapters discussed the image labeling problem using CRF model

with new potential functions and CBIR selected training set. In content analysis,

videos and images are two closely related problems. The temporal interactions of

video frames are similar to spatial interactions in images. To deal with these interac-

tions, the same principle can be applied to these two problems. This chapter extends

the discussion to video content analysis. To improve the performance, a formulation

is developed to solve the video problem using hidden CRF and design new potential

functions following the same methodology as in image labeling.

Videos have rich structural information that can be explored for the usage in in-

dexing and retrieval. Video content analysis finds meaningful structures and patterns

from visual data for the purpose of efficient indexing and mining of videos. The

primary focus of this chapter is the video event classification and its application in

sports event detection. The first aspect of video content analysis is modeling the
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temporal dynamic of video sequence using graph connections. The second aspect is

the statistical modeling of local observations which is related to potential function

selection.

The HMM is widely used for temporal interaction modeling in the literatures

[100, 99, 60, 97, 14, 59, 102, 26, 67]. Unlike the HMM, the hidden CRF (HCRF)

is a discriminative model that does not depend on the conditional independence

assumption of observations, this makes it more suitable for video content analysis.

For complex interactions in sports video frames, HCRF can be applied to model sports

event and improve the classification accuracy rate compared with HMM. The HCRF

has been applied to phone classification [29], gesture recognition [95] and meeting

segmentation [78]. The later two papers are related to video. In [95], the gesture

recognition problem is modeled using a HCRF. Relevant features are generated from

gesture videos accordingly and then applied to gesture classification. In [78], multi-

modal features are extracted and a HMM like backward and forward algorithm is

applied in HCRF to meeting event segmentation.

To address the local observation statistical modeling, the Gaussian mixture equiv-

alent is employed in HMM and HCRF in [29] and [78]. However in sports videos the

observations of features usually follow distributions other than Gaussian and Gaus-

sian mixture, so it is more suitable to use the independent component analysis (ICA)

mixture model [54] rather than the Gaussian mixture model. In [107], based on the

non-Gaussian property of visual features, the ICA mixture observation model can be

applied in HMM for golf video event classification.

This chapter presents a new ICA mixture HCRF (ICAMHCRF) model for sports

video analysis. This new model takes advantage of discriminant power of HCRF
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and the representing power of nonstructural ICA mixture model. The likelihoods of

ICA mixture components are used as feature functions in the new model. The new

ICAMHCRF is applied to bowling and golf event detection, and simulation results

show that it has better performance than existing HMM models. It is also tested with

one high activity sport hockey and simulation results show that it has comparable

performance with existing HMM models.

This chapter is organized as follows. First, Section 5.1 presents a brief introduction

of HCRF and formulates the video analysis problem using HCRF. Then the new

HCRF model based on ICA mixture local observation is given in Section 5.2. Section

5.3 outlines general steps of the video content analysis using the ICAMHCRF model.

In Section 5.4, the new ICAMHCRF model is applied to three kinds of sports (bowling,

golf and ice hockey) video analysis, and numerical performance is given. Finally this

chapter is concluded with summaries and future research directions in Section 5.5.

5.1 Hidden Conditional Random Field

5.1.1 Problem Formulation

The task of video content analysis is to assign the chunks of digital video data to

content categories such as sports highlight, news anchor and snow mountain land-

scape. For a given video, the objective is to first identify the event boundaries and

then classify each video segments into one of the possible known events. To simplify

the problem, we assume that the beginning and ending frame of a video event are

located at the shot boundaries. A video segment (one or a group of video shots)

consists of a sequence of video frames which follows a chain structure. This is similar
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to HMM, HCRF graphical model that can be applied to address this problem. Un-

like gesture and meeting segmentation in which the backgrounds are simple, sports

event detection with real scene settings is more challenging. Fortunately sports videos

that consist of a set of predefined actions in a certain order fit the requirement of

probabilistic graphical models.

For a video event sequence with video frames, we define each frame as a node in a

graphical model. A linear chain graph is formed by linking nodes in the video playing

order. A feature vector xi ∈ X with several features is extracted from i-th video frame

in a video sequence. The feature vector is one observation of a frame in the multiple-

dimensional feature space X . A video event is defined as the meaning of one video

segment (one or a group of video shots in our discussion) with several consecutive

video frames. Let y ∈ Y denote a possible event where Y is all possible event set

of a certain kind of sports video. The video event analysis task is to find the most

probable y for the given observation sequence x. The problem could be formulated as

the conditional probability P (y|x; θ) where θ is the underlying parameter vector of

the model. Here θ instead of w is used to conform with the traditional expression in

HCRF. The highest conditional probability P (y|x; θ) means that the video sequence

most likely belongs to the event class y.

We formulate the video analysis problem using the hidden conditional random

field (HCRF) model, an extension of conditional random field (CRF) model. The

linear chain CRF model, shown in Fig. 5.1 is a commonly-used graphical model

for labeling sequential data in computer vision. The structural interaction between

different components of the data is reflected by a graph. The probabilistic model is

build on the graph. In Fig. 5.1 the shaded circles are the observed features at nodes.
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Figure 5.1: An example of 1D CRF model and its factor graph representation for
video analysis.

Empty circles represent labels, which are unknown for the testing data and known

for the training data. The interactions between these random variables are shown

as edges. The corresponding probabilistic function of the model could be factorized

to node and edge factors. Fig. 5.1(b) is the factor graph [49] representation of the

model shown in Fig. 5.1(a).

Video event analysis estimates the probability P (y|x; θ) for a segment of video

with a sequence of frames given the model parameter vector θ. CRF needs a label hi

for every node (frame), it prevents a CRF model from being directly applied to video

content analysis. A hidden CRF model that does not require labeling for every node

is applied to video analysis in the next section.

5.1.2 A New HCRF-Based Video Content Analysis Frame-

work

In the video shot event classification, usually the states of nodes (frames) are hidden.

It is a troublesome work to label all states manually. We formulate the video event
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analysis task using HCRF, which is a better alternative to hidden Markov model for

video event detection.

The hidden CRF (HCRF) model is first developed for object recognition [75].

Assume the observation variable x = {xi}i∈V has an associated labels h = {hi}i∈V ,

where hi is the label for site i ∈ V . The labeling problem is to infer the underlying

labels h given the image features x and parameters of the model. In video event

detection it is a troublesome work to label all states h in a sequence of video frames

manually. Since we want a label for the whole sequence, we let labels of all sites

be unknown hidden states. Therefore the formulation of the posterior probability

P (h|x,w) in a CRF model is replaced by P (y|x,θ) in a hidden CRF model as in

equation (2.54), which is a summation of exponentials of potential functions over all

possible labels h as follows,

P (y|x; θ) =
1

Z(x,θ)

∑

h

exp{Ψ(y,h,x,θ)}, (5.1)

with potential functions

Ψ(y,h,x,θ) =
∑

i∈V

ϕ(y, hi,x,θ) +
∑

(i,j)∈E

ψ(y, hi, hj,x,θ).

Here y ∈ Y is a label for a whole sequence, and Y is the set of all possible labels. For

example, in the binary event detection, Y = {−1, 1}, where 1 represents the existence

of the event and −1 nonevent. In a hidden CRF model, the observation-dependent

normalization factor becomes

Z(x,θ) =
∑

y′∈Y

∑

h

exp{Ψ(y′,h,x,θ)}, (5.2)

where y′ is a possible label for the sequence.

Here a restricted form of the function Ψ(y,h,x,θ), as shown in factor graph Fig.
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5.2, is chosen for video event analysis,

Ψ(y,h,x,θ) =
∑

i∈V

[φ(y,xi)θ(hi) + δ(y, hi)θ(y, hi)]

+
∑

(i,j)∈E

δ(y, hi, hj)θ(y, hi, hj), (5.3)

where φ(y,xi) is an observation function vector with the label y at site i, δ(y, hi)

equals 1 if the label y and hidden state hi occur together else 0, and δ(y, hi, hj) = 1 if

the label y and hidden state hi and hj occur together else 0. Here θ(hi) is a param-

eter vector for associate potential of the hidden state hi, θ(y, hi) is a compatibility

parameter vector of the sequence label y and the hidden state hi, and θ(y, hi, hj) is

a compatibility parameter vector of the label and the interaction edges. In equation

(5.3), the first term φ(y,xi)θ(hi) + δ(y, hi)θ(y, hi) is a simplification of ϕ(y, hi,x; θ),

and the second term δ(y, hi, hj)θ(y, hi, hj) is an implementation of ψ(y, hi, hj,x; θ).

The task of the HCRF training is to learn parameters θ = [θ(hi) θ(y, hi) θ(y, hi, hj)],

and the task of the inference is to find the label for a given input using these param-

eters which is also the main purpose of video content analysis.

Figure 5.2: Factor graph of the new HCRF model for video analysis.
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The observation feature function vector φ(y,xi) is a feature statistics vector, i.e.,

φ(y,xi) = [f1(y,xi), · · · , fk1(y,xi), · · · , fK1(y,xi)],

which is weighted by the parameter vector

θ(hi) = [θ1, · · · , θk1 , · · · , θK1 ]

in a HCRF model. Here K1 is the total number and k1 is the index of the feature

function. The functions fk1(·) could be features themselves or functions of features.

Note that we only consider the local observations xi and the sequence label y in

feature functions.

Similarly the function Ψ(y,h,x; θ) in equation (5.3) could also be written in the

following feature function form,

Ψ(y,h,x; θ) =
∑

i∈V

∑

k1∈K1

θk1fk1(y,xi)

+
∑

i∈V

∑

k2∈K2

θk2fk2(y, hi)

+
∑

(i,j)∈E

∑

k3∈K3

θk3fk3(y, hi, hj), (5.4)

where fk2(y, hi) is one node feature function which represents δ(y, hi), and fk3(y, hi, hj)

is one edge feature function which represents δ(y, hi, hj) for general expressions.

The θk1 , θk2 and θk3 are the node and edge coefficients included in θ. The sets

K1 = {1, . . . , K1}, K2 = {1, . . . , K2} and K3 = {1, . . . , K3} are sets of all possible

indexes k1, k2 and k3 of feature functions. This form is a linear expression so it

simplifies the processe of training and reference.
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5.2 ICA Mixture Hidden Conditional Random Field

Model

In the traditional form, the feature vector xi is directly used as the observation

function φ(y,xi) at site i in HCRF. It usually includes hundreds of features which

make the learning process slow, and in addition the algorithm may not find the

optimal value in a reasonable time period. In image analysis, mixture models are

widely used in nonstructural classifiers. The usage of mixture models as observation

functions for a HCRF model is not widely investigated except the Gaussian mixture

mentioned in [29, 78]. In this chapter a new independent component analysis (ICA)

mixture HCRF (ICAMHCRF) model for video event classification is developed. The

feature function f(·) is defined as the log likelihood of the feature xi belonging to

a mixture model component. Since the log likelihood carries certain probabilistic

meanings, the function could better reflect the local observation model.

5.2.1 From Gaussian Mixture to ICA Mixture for Local Ob-

servation Function

A mixture model, that commonly uses Gaussian distributions as kernel functions, is

more expressive than a non-mixture. Mixture means the observation could be divided

into mutual exclusive components, and obviously a mixture model can be applied to

video analysis since video frames are often comprised in an interlaced manner. A mix-

ture of Gaussian can approximate any distribution [5]. If the observation show non-

Gaussian characteristics, however, more Gaussian mixture components are needed to

fit the distribution. In this case, the distribution would better be decomposed into
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independent mixture components.

Suppose observation xi be expressed as a ICA mixture, i.e., xi ∈ Ck where Ck

denotes the kth component of the mixture, k ∈ {1, 2, . . . , K}. Write

xi = M ksk + µk, (5.5)

where M k is the mixing matrix, sk are independent sources for kth component of

mixture, and µk is the bias. Then the conditional probability of seeing observation

xi given the sequence label y can be expressed as

P (xi|y) =
K
∑

k=1

P (xi|y, Ck)P (Ck|y) (5.6)

=
K
∑

k=1

P (Ck|y) exp[logP (sk)− log(|M k|)],

where |M k| denotes the determinant of the matrix M k.

5.2.2 HCRF Model with ICA Mixture Feature Function

The log likelihood of each observation belongs to a mixture component is chosen as

a feature function,

fk1(y,xi) = logP (Ck|y)P (xi|y, Ck), (5.7)

i ∈ V and k = 1, 2, . . . , K is the index of the mixture component. Here xi is rep-

resented by conditional probability P (xi|y) locally, and the feature functions are

computed using mixture components. The number of feature functions K1 is greater

than that of mixture component K, since several groups of features such as color and

texture can be included in a feature vector xi. In our experiments, only one group

of feature is used so the number of feature functions K1 is equal to the number of

mixture components K.
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The probability P (Ck|y) in equation (5.7) is a mixture coefficient for the kth

component. During a training process, the given class label y, parameters of ICA (sk,

M k and µk) and mixture components P (Ck|y) and P (xi|y, Ck) can be learned using

a modified standard ICA algorithm presented in [54]. Major steps of this iterative

algorithm are listed below,

• Compute log-likelihood of the data xi given mixture component, as a function

of current estimations of parameter sk and M k,

logP (xi|y, Ck) = logP (sk)− log(|M k|). (5.8)

• Calculate the probability P (Ck|y, xi) with known observations xi and the pre-

vious estimated mixture coefficient P (Ck|y),

P (Ck|y,xi) =
P (xi|y, Ck)P (Ck|y)

∑K

k=1 P (xi|y, Ck)P (Ck|y)
, (5.9)

and the new estimate of P (Ck|y) is

P (Ck|y) =
1

N

∑

i∈V

P (Ck|y,xi), (5.10)

where N is total number of observation nodes.

• Estimate the change of the mixing matrix M k,

∆M k =
P (xi|y, Ck)P (Ck|y)

∑K

k=1 P (xi|y, Ck)P (Ck|y)
∂ logP (xi|y, Ck)

∂Mk

, (5.11)

and new bias

µk =

∑

i∈V P (Ck|y,xi)xi
∑

i∈V P (Ck|y,xi)
. (5.12)

The new ICAMHCRF model derived above provides a new way to model both the

local and temporal interactions for sequence labeling tasks. ICA mixture is used in

both training and testing processes. Unlike the Gaussian assumption [29, 78], a non-

Gaussian model is used as local feature functions for observations. This new function
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better represents complex distributions of complex features such as those in video

frames. Since real scenes such as sports video consist of non-Gaussian components,

which could not be represented by Gaussian mixture with only a few components

[107], the proposed ICA mixture feature function is more suitable for video content

analysis. When ICA mixture is combined with a HCRF model, it can adapt to

statistical and temporal probabilistic structure of the data simultaneously.

5.3 ICAMHCRF based Sports Event Classifica-

tion

The video event detection includes model identifications and calculating the condi-

tional likelihood of an event. Semantic video events are represented as model pa-

rameters learned from the training video shots with known classes. This is used to

train the model using video events with known labels. The parameter vector θ is

learned from the training process. After obtaining these parameters, it was possible

to calculate the probability of each input video event segment belonging to a certain

kind of event. In order to compute the likelihood of each event given the model

P (y|x; θ). The sequence is classified as an event, whose probability produces the

largest likelihood.

The new ICAMHCRF video event detection system with training and testing is

shown in Fig. 5.3. In the preprocessing step, videos are divided to shots using shot

boundary detection technique [106]. During training, features of frames are extracted,

then ICA-based feature dimension reduction is used to reduce the computational

complexity. Then compact features are modeled as a ICA mixture using the ICA

95



algorithm in [54] and with the assumption of Laplacian source, and parameters of

the ICA mixture are learned. The log likelihood of each feature or feature group

belonging to a mixture component is then calculated as the feature function in the

HCRF model. Parameters of the HCRF model are learned to maximize the following

likelihood objective function,

L(T ; θ) =
∑

(x,y)∈T
L(θ|y,x)− ‖θ‖

2

2δ2
, (5.13)

where

L(θ|y,x) = logP (y|x; θ) (5.14)

= log

∑

h∈H exp{Ψ(y,h,x; θ)}
Z(x; θ)

.

Here T is the training data set, ‖θ‖2 denotes the square of the 2-norm of θ, i.e.,

‖θ‖2 =
∑K1+K2+K3

d=1 θd, and δ is the standard deviation of parameters θ. The objec-

tive function L(T ; θ) is the summation of log-likelihood of all training data minus

a regulation factor. The term L(θ|y,x) is the log-likelihood of one training data

belonging to the model with parameter θ. The second term in equation (5.13) is

a regulation factor when parameters are assumed to be Gaussian distributed with

variance δ2.

The gradient descent method [75, 95] is used for training. The optimal estimation

of the parameter θ is

θ∗ = arg max
θ
L(T ; θ). (5.15)

The details of training process are presented in Appendix C.

During testing, the compact features are computed and log-likelihood feature func-

tions are calculated using the parameters from ICA mixture learned during training.

Therefore using belief propagation method [104], the most probable class label y∗ of
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Figure 5.3: The flowchart of ICAMHCRF model for video event classification.

the testing sequence is

y∗ = arg max
y∈Y

P (y|x; θ∗). (5.16)

5.4 Simulation Results

The new ICAMHCRF system is applied to two types of video content analysis tasks.

One is low activity sports including bowling activity recognition and golf video event

analysis. The other is one high activity sport, ice hockey. In both cases, ICAMHCRF,

Gaussian Mixture HCRF (GMHCRF), ICAMHMM and Gaussian mixture HMM

(GMHMM) are compared. Note choosing the number of mixture components and

97



that of hidden states of HMM and HCRF are both non-trivial. However both of

them could be optimized using training or validation set. In our experiment, the

numbers are initially chosen in the range from 2 to 4 and the numbers, which max-

imize the classification accuracy rate in these methods, are selected. Because of the

existence of hidden states, the optimization is no longer convex. So best result with

random parameter initialization is chosen.

Sports videos are first segmented to shots before shot event classification. The

ICA dimension reduction is applied to 256 illumination-invariant color histogram of

frame features to reduce the feature vector to 2 dimension for each frame, which is also

used in the event classification as original features. The cuts and gradual transitions

detection is performed on this ICA subspace using an iterative clustering algorithm

based on adaptive thresholding as in [106].

5.4.1 Bowling Activity Detection

(a) Event 1: a bowling shot event

(b) Event 2: other events

Figure 5.4: An example selected frames of bowling events. There are two events, (a)
bowling shot event and (b) other event (an advertisement event is shown).

An ICAMHCRF model is used to recognize the bowling shot event and compared
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with GMHCRF, ICAMHMM and GMHMM. A 30 minutes professional bowling TV

program is used in the experiment. The video is divided to 232 video shots, in

which there are 65 shots containing bowling shot events. Other irrelevant shots are

comments, commercials, player’s preparation and players after the shot.

An example bowling shot event sequence is shown in Fig. 5.4(a). The event

consists of the following activities: bowler preparing to release his ball toward the

pins, bowler dropping the ball on the lane, the ball striking the pins and finally the

camera turning back to the player.

ICA mixture parameters and HCRF parameters are learned from one training

shot of both events (bowling and irrelevant). Two hidden states and two mixture

components are used in the experiment. Mixture components of an bowling shot

event and irrelevant event are shown in Fig. 5.5 (a) and (b), respectively. The

mixture components shown in Fig. 5.5 provide the possible feature distribution of

these two categories of events in the ICA subspace.

Fig. 5.6 shows the receiver operating characteristic (ROC) curves of final event

detection using Gaussian mixture HMM (blue dashed curve), ICA mixture HMM (red

dotted curve), Gaussian mixture HCRF (green dash-dotted curve) and ICA mixture

HCRF (black solid curve). The ROC curves plot the false positive rate versus the

true positive rate. It can be observed from Fig. 5.6 that the ROC plot of the ICA

mixture HCRF is closest to the upper left corner than that of the Gaussian mixture

HCRF, Gaussian mixture HMM and ICA mixture HMM, so the ICA mixture HCRF

model has a highest overall accuracy rate of detection than the other three models.

The AUCs (Area under ROC curve) of those four methods are: ICA mixture HCRF,

86.04%, ICA mixture HMM, 82.95%, Gaussian mixture HCRF, 81.15%, and Gaussian
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mixture HMM, 78.29%.

The confusion matrices of these two events, using the ICA mixture HCRF (shown

in bold) and ICA mixture HMM (shown in parentheses), are given in Table 5.1. The

rows are the true classes and the columns are detected classes.

Table 5.1: The confusion matrix for bowling event classification using ICA mixture
HCRF (in bold) and ICA mixture HMM (in parentheses).

bowling shot other event

bowling shot
49 16
(36) (29)

other event
18 149
(21) (146)

Note: Row labels are the true classes and column labels the predicted classes.

The accuracy rate is defined as the ratio between the correctly labeled event and

the total number of events. The detection accuracy rate using an ICAMHCRF model

is given in Table 5.2. The performance of ICAMHCRF is about 7.4% better than the

GMHCRF, 6.8% better than the ICAMHMM and 9.4% better than the GMHMM.

Table 5.2: Classification accuracy rate of bowling event classification.

Method Accuracy
ICA mixture HCRF 85.28%
Gaussian mixture HCRF 77.92%
ICA mixture HMM 78.45%
Gaussian mixture HMM 75.86%
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5.4.2 Golf Event Classification

In the process of golf video event detection, an hour long professional golf video

from the authors of [107] is used. The procedure was identical to the bowling except

one event consists of three shots, for fair comparison with ICAMHMM and better

representation of golf event. Three example events are shown in Fig. 5.7. These three

events are used for training the model, the total number of events was 202. These

events where manually annotated to three categories, full swing, non-full swing and

other irrelevant events. The event where very recognizable with recurrent patterns as

in Fig. 5.7. The golf shot includes activities: Player prepares for the shot, followed

by a player hitting the ball, then the camera follows the ball quickly. The final scene

features the golf court and/or players with low activity.

The mixture components of a full swing shot, non full swing shot, and other event

are displayed in Fig. 5.8 (a), (b) and (c), respectively. The mixture components

shown in Fig. 5.8 provide the possible feature distribution these three categories of

events in the ICA subspace.

The confusion matrices of these three events, using ICA mixture HCRF (shown

in bold) and ICA mixture HMM (shown in parentheses), are shown in Table 5.3.

The ICA mixture HCRF is better than ICA mixture HMM in both full swing and

non-full swing classification. However, the performance of ICA mixture HCRF is not

better than ICA mixture HMM for other irrelevant events, because only one training

sample from the other event may not be representative for the other event class. The

reasoning is that only one training sample is used here is to provide a fair comparison

with results of ICA mixture HMM presented in paper [107]. Detection performance

of golf event classification might be improved when more training samples are used.
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Table 5.3: The confusion matrix for golf event classification using ICA mixture HCRF
(in bold) and ICA mixture HMM (in parentheses).

full swing non full swing others

full swing
33 20 1
(26) (27) (1)

non full swing
16 109 7
(23) (104) (5)

others
2 8 6

(2) (1) (13)

Note: Row labels are the true classes and column labels the predicted classes. The
ICAMHMM results shown in parentheses for comparison are cited from paper [107].

The overall accuracy rate of ICAMHCRF is 2.5% better than ICAMHMM as

shown in the third row of Table 5.4.

Table 5.4: Classification accuracy rate of golf event classification.

Method Accuracy
ICA mixture HCRF 73.28%
Gaussian mixture HCRF 64.68%
ICA mixture HMM 70.79%
Gaussian mixture HMM 56.93%

5.4.3 Ice Hockey Event Classification

Ice hockey event classification was used to test the proposed model in high activity

sports video. A 30 minutes professional ice hockey game is used in this study. The

ice hockey video is divided to 235 video shots. Three events: ice hockey shooting,

ice hockey non-shooting and other irrelevant. The ice hockey shooting is usually a

sequence of frames, which features following activities: the player catching the puck,

102



Table 5.5: The confusion matrix for ice hockey event classification using ICA mixture
HCRF (in bold) and ICA mixture HMM (in parentheses).

shooting non-shooting others

shooting
22 3 3
(22) (6) (0)

non-shooting
15 127 20
(45) (117) (0)

others
25 0 20
(5) (8) (32)

Note: Row labels are the true classes and column labels the predicted classes. The
ICAMHMM results shown in parentheses for comparison.

the player shooting the puck toward the net, the goaltender trying to catch the puck,

the camera focusing on the goaltender or goal net and then the global situation of

the arena. The ice hockey non-shooting includes other activities in a hockey play.

Irrelevant event sequences include commercial advertisements, the scene of audience,

etc. There are 28 hockey shooting events, 162 hockey non-shooting events and 45

irrelevant events in the selected video.

The classification confusion matrices of these three events, using ICA mixture

HCRF (shown in bold) and ICA mixture HMM (shown in parentheses), are shown

in Table 5.5. The ICA mixture HCRF is better than ICA mixture HMM in non-

shooting event classification. And it is the same as ICA mixture HMM in shooting

event classification. However, the performance of ICA mixture HCRF is not better

than ICA mixture HMM for other irrelevant events. One possible reason is only one

training sample from the irrelevant event may not be representative for the irrelevant

event class.

Although for high activity video the overall accuracy of ICAMHCRF is a little

lower than the accuracy with ICAMHMM as shown in Fig. 5.6, the performance of the

103



new model is still comparable with ICAMHMM model. That is mainly because the

quick activity of ice hockey is reflected by interactions of hidden states. The complex

hidden states and label interaction does not play the main role. The ICA mixture

HMM captures the main factors in hockey events. To improve the performance of

ICAMHCRF model for high activity sports, we need to include more features or

change the graph model structure.

Table 5.6: Classification accuracy rate of ice hockey event classification.

Method Accuracy
ICA mixture HCRF 71.91%
Gaussian mixture HCRF 58.72%
ICA mixture HMM 72.77%
Gaussian mixture HMM 59.15%

5.4.4 Discussion

In golf and bowling event classification cases, the new ICAMHCRF exhibits higher

classification accuracy rate than HMM models, this is due to two main factors. First,

the ICA mixture can approach the non-Gaussian distribution of compacted features

of video frames. As shown in Fig. 5.5 and Fig. 5.8, a strong non-Gaussian character

of compacted video features is observed. Second, comparing with HMM the relaxed

assumption of HCRF model is more effective with limited training data. The feature

distribution is characterized by ICA mixture and the chain temporal information is

captured by HCRF. The new ICAMHCRF combines the good properties of the two

and shows good performance in two low activity sports vent detection tasks over

existing HMM models. It also shows comparable results for high activity sports video
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event analysis. In term of computational cost, the new HCRF framework is 2 times

slower than the traditional HMM in my implementation without optimization. With

better approximate training and inference algorithms, the computational efficiency is

expected to be increased for the new HCRF model.

5.5 Conclusion

A new HCRF model is formulated for sports event classification in this chapter. With

non-Gaussian property, the local observations of each event category are modeled as

ICA mixtures. By introducing a new kind of feature function we successfully combine

ICA mixture with HCRF. It is proved by experiments with bowling and golf event

classification that the new model has better discriminant power than other HMM-

based methods for low activity videos. The results also demonstrate the advantage

of using ICA mixture over Gaussian mixture for non-Gaussian features. Future work

may include extending the method to multi-modality and other kinds of features,

adding links between current observation and other hidden states and investigating

new model structures for high activity sports.
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Figure 5.5: Two ICA mixture components for bowling shot event and irrelevant event.
Axes (IC1 and IC2) are two ICA features of compacted feature space.
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Figure 5.6: ROC performance of bowling shot classification.

(a) Event 1: a full swing shot

(b) Event 2: a non full swing shot

(c) Event 3: other event

Figure 5.7: An example selected frames of golf events. There are three events, (a)
full swing, (b) non-full swing, (c) other event.
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Figure 5.8: Three ICA mixture components of a full swing event, a non full swing
event and other event, in golf video. Axes (IC1 and IC2) are two ICA
features of compacted feature space.

108



Chapter 6

Conclusion

This thesis addressed the image and video content analysis problem based on their

spatial and temporal dynamics, motivated by the importance of content analysis.

Multimedia signal processing research is experiencing rapid surge because of the ad-

vance of new consumer electrical devices and the Internet, the indexing and retrieval

research is dominant in this area. Most systems have limited performance, this is due

to that fact that they are only using a few low-level features such as color, texture,

shape, and motion. The reasoning is that there has semantic gap between high-level

meanings and low-level features. The direct solution of this problem is to understand

the multimedia content and bridge the semantic gap.

Image and video content analysis using graphical models especially the CRF model

is the main focus of this thesis. CRF models are used for their ability to encapsulate

the spatial and temporal structure of the multimedia content, the graphical model is

the best solution to content analysis problems. The CRF was applied to two main

content analysis problems, image labeling for both specific and general uncontrolled
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databases and video shot classification. By analyzing the feature distribution of im-

age regions in image labeling for specific databases, a new mixture feature function

was introduced for better representation of the local association and interaction po-

tential function of CRF. The new mixture CRF image labeling model was tested

with commonly used Corel database, which showed superior performance than the

baseline CRF. Then the discussion was extended to image labeling for large labeled

databases. To reduce the content ambiguity and incorporate top-down information, a

novel method combined the CBIR and CRF. The new method with CBIR was tested

with the Labelme database to solve the floor labeling problem in real circumstances.

The results and visual effects verified our theory analysis that the new CRF with

CBIR provides better labeling accuracy. Video analysis was discussed with the same

methodology as in image labeling and modeled temporal interactions in videos using

hidden CRF. A new HCRF model with ICA mixture feature functions was applied

to golf, bowling and hockey shot analysis with promising results.

The main contributions of this thesis include new feature functions for both CRF

and HCRF, the formulation of the video content analysis problem with HCRF and the

combination of CBIR and CRF for image labeling with large databases. Image and

video content analysis is a large area which deserves more attention for its applications

and importance for advancing human knowledge. For computers to achieve the same

kind of intelligence of human being, there is much work to be done. Several challenges

of image labeling and video content analysis are listed as follows:

• How to reduce the computational complexity of CRF? Although the computer

technique has advanced to a level we could not have expected, but still needs

extensive effort to reduce the complexity of the CRF model for the purpose of
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effective use. The CRF model is built based on many features and graph struc-

tures. More features mean more complexity for CRF training and inference.

Complex graph structure also means higher computational cost. Selecting good

features and building a reasonable simplified graph structure will reduce the

computation burden and achieve better accuracy.

• Image labeling for large databases with uncontrolled environment still needs

more investigation. Most current systems have limited performance because

of the limitation of feature representation and complexities of the real scene.

Though graphical model such as CRF could incorporate spacial interactions, it

is still limited to small database and simple graph structure. For small database

such as Corel, the best model could only achieve accuracy of around 80% with

fully labeling of image parts. The problem of large database image labeling is

extremely difficult. Our initial work combining CBIR and CRF on floor area

labeling is promising. But it still needs more research effort on other databases

and multiple classes.

• How to build a generic model for all sorts of videos? Every kind of sports video

is different from others. Building a generic graphical model that is appropriate

to all kinds is a challenging task. The problem is still laying on the better

understanding of the videos.

• How to define event categories of video content for real problems? This is an

application driven problem. Each problem has its own characters. We can not

find a common definition of events for all of them. It is also involves other

branches of science such as psychology.
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• How to combine multiple features of videos for analysis? Multimedia is a com-

bination of multiple form of content. Multi-modality needs to be investigated

thoroughly for representing video content. It is also very important to under-

stand the role of each feature and modality for combining them naturally in

graphical models.
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Appendix A

Formulation of Belief Propagation

for Conditional Random Field

We apply belief propagation (BP) to CRF inference. The CRF formulation is as

follows,

p(y|x) =
1

Z

∏

(i,j)∈E

Ψ(i,j)(y,x)
∏

i∈V

Ψi(y,x). (A.1)

In BP, we estimate marginal probabilities called beliefs. In BP algorithm, mes-

sages are updated until convergence, then calculate beliefs. The standard BP is the

application of the sum-product rule to estimate marginals. The standard BP solution

for CRF problem is,

bi(y,x) = kΨi(y,x)
∏

j∈Ni

mji(y,x), (A.2)

mji(y,x) =
∑

yj

Ψi(y,x)Ψ(j,i)(y,x)
∏

k∈Nj−i

mkj(y,x). (A.3)

Given the message-update rule mji and belief bi, we could compute the exact

marginal probability if CRF is singly connected (That means the graph of CRF has
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no loop).

An example is shown in Fig. A.1 It is not difficult to show that the message-update

Figure A.1: Example of BP.

rule gives the exact marginal probability for node 1 as follows for the example,

b1(y,x) = kΨ1(y,x)
∑

y2

Ψ21(y,x)Ψ2(y,x)
∑

y3

Ψ32(y,x)Ψ3(y,x)
∑

y4

Ψ42(y,x)Ψ4(y,x).

(A.4)

It is also easy to convince that BP gives the exact marginal probability for all nodes

in CRF without loop.

In classic point of view, for graphs with loops, the exactness of the BP breaks

down. There is no restriction that forbids us to use BP for graph with loops. There

are some circumstances the algorithm fails to converge. But it has been used in many

research areas successfully. Because it is equivalent to an approximation of Bethe free

energy of statistical physics [104]. When there is no loop, BP gives exact solution the

same as dynamic algorithm such as Viterbi. For graph with loops, BP provides an

approximate (but usually good) solution.
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Appendix B

The EM Algorithm for Laplacian

Mixture

The problem of parameter learning in Laplacian mixture model is to estimate model

parameters µm and bm as well as the prior probability am. Denote θ = {θm}Mm=1

and M is the number of features, where θm = (µm, bm, am), the problem is to find

the optimal θ that maximizes the likelihood L(θ) =
∏N

n=1 p(x
(n); θ) where N is the

number of training data. When the parameters θ known, it is most likely the data

could be generated by this model. Since there has no close-form mathematical solution

for the problem of this likelihood maximization of likelihood, the EM algorithm is

applied in this case.

In the EM algorithm, instead of trying to maximize the likelihood L(θ), one

maximizes the likelihood of the joint distribution Lc(θ) = log
∏N

n=1 p(x
(n), z(n); θ),
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which can be written as

Lc(θ) = log
N
∏

n=1

p(x(n), z(n); θ) (B.1)

= log
N
∏

n=1

M
∏

m=1

[p(x(n)|z(n)
m = 1; θm)p(z(n)

m = 1)]z
(n)
m

=
N
∑

n=1

M
∑

m=1

z(n)
m log p(x(n)|z(n)

m = 1; θm)

+
N
∑

n=1

M
∑

m=1

z(n)
m log am (B.2)

Taking the expectation in term of z, one can get

〈Lc(θ)〉 =
N
∑

n=1

M
∑

m=1

〈z(n)
m 〉 log p(x(n)|z(n)

m = 1; θm)

+
N
∑

n=1

M
∑

m=1

〈z(n)
m 〉 log am, (B.3)

in the E-Step, where the probability

p(x(n)|z(n)
m = 1; θm) =

1

2bm
e−

|x(n)−µm|
bm . (B.4)

In the M-Step, parameters θ maximize the expectation of complete log-likelihood

〈Lc(θ)〉 as defined in equation (B.3) are optimal solutions for the Laplacian mixture

model.
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B.0.1 Learning Parameter µm

Take a partial derivative of Lc(θ) with respect to µm and let it equal to zero, one can

have

0 =

∑M

m=1

∑N

n=1 〈z
(n)
m 〉∂log p(x(n)|z(n)

m = 1; θm)

∂µm

=

∑N

n=1 〈z
(n)
m 〉∂(− |x(n)−µm|

bm
− log 2bm)

∂µm

=

∑N

n=1 〈z
(n)
m 〉∂(|x(n) − µm|)
∂µm

. (B.5)

A close-form solution does not exist. Replacing |x(n)−µm| by (x(n)−µm)2

|x(n)−µ̂m| , where µ̂m is

the estimated value of µm at previous iteration, then one has

0 =

∑N

n=1 〈z
(n)
m 〉∂( (x(n)−µm)2

|x(n)−µ̂m| )

∂µm

=
N
∑

n=1

〈z(n)
m 〉

(x(n) − µm)

|x(n) − µ̂m|
. (B.6)

From equation (B.6), one has

N
∑

n=1

〈z(n)
m 〉

x(n)

|x(n) − µ̂m|
=

N
∑

n=1

〈z(n)
m 〉

µm

|x(n) − µ̂m|
. (B.7)

The estimation of µm after the lth iteration is

µ̂(l)
m =

∑N

n=1〈z
(n)
m 〉 x(n)

|x(n)−µ̂
(l−1)
m |

∑N

n=1〈z
(n)
m 〉 1

|x(n)−µ̂
(l−1)
m |

, (B.8)

where µ̂
(l−1)
m is the estimation of µm after the (l − 1)th iteration.
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B.0.2 Learning Parameter bm

By setting the partial derivative of Lc(θ) with respect to the parameter bm, one can

have

0 =

∑M

m=1

∑N

n=1 〈z
(n)
m 〉∂log p(x(n)|z(n)

m = 1; θm)

∂bm
. (B.9)

Substituting the probability p(x(n)|z(n)
m = 1; θm) in equation (B.4) into the equation

(B.9), one has

0 =

∑N

n=1 〈z
(n)
m 〉∂(− |x(n)−µm|

bm
− log 2bm)

∂bm

=
N
∑

n=1

〈z(n)
m 〉(
|x(n) − µm|

bm
2 − 1

bm
),

then the estimation of bm is

b̂m =

∑N

n=1 〈z
(n)
m 〉|x(n) − µ̂m|

∑N

n=1 〈z
(n)
m 〉

, (B.10)

where µ̂m is the estimation value of µm in the current iteration.

B.0.3 Learning Parameter am

The optimal parameter am is the solution of the following constrained maximization

problem,

max
am

〈Lc(θ)〉

s .t .
M
∑

m=1

am = 1. (B.11)

The constraint is added to ensure that the summation of prior probability equals 1.

Denote a Lagrange multiplier as λ, the Lagrangian function is

L′
c(θ) = 〈Lc(θ)〉 − λ(

M
∑

m=1

am − 1). (B.12)
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Calculate the partial derivative of L′
c(θ) with respect to am and let it equal to zero,

one can have

0 =
1

am

N
∑

n=1

〈z(n)
m 〉 − λ

=
N
∑

n=1

〈z(n)
m 〉 − λam, (B.13)

m = 1, . . . ,M . Summing over all M possible mixtures, one has
M
∑

m=1

N
∑

n=1

〈z(n)
m 〉 − λ

M
∑

m=1

am = 0,

then

λ =
∑

m

∑

n

〈z(n)
m 〉

= N.

Therefore, the optimal parameter am is

am =
1

N

N
∑

n=1

〈z(n)
m 〉. (B.14)

To estimate parameters µm, bm and am, one needs to calculate the expectations

〈z(n)
m 〉, which is

〈z(n)
m 〉 = p(z(n)

m = 1|x(n); θ)

=
p(x(n)|z(n)

m = 1; θm)am
∑M

j p(x(n)|z(n)
j = 1; θj)aj

. (B.15)

m = 1, . . . ,M and n = 1, . . . , N .
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Appendix C

HCRF Training

The training of HCRF model could be done the same as the ordinary CRF model

except the summation of hidden variables.

L(T ,θ) =
∑

(x,y)∈T
L(θ|y,x)− ‖θ‖

2

2δ2

=
∑

(x,y)∈T
logP (y|x; θ)− ‖θ‖

2

2δ2

=
∑

(x,y)∈T
log
∑

h∈H
P (y,h|x; θ)− ‖θ‖

2

2δ2

=
∑

(x,y)∈T
log

∑

h∈H exp{Ψ(y,h,x; θ)}
Z(x; θ)

−
K
∑

k=1

θ2
k

2δ2
,

where we suppose there are K parameters in penalty term −∑K

k=1

θ2
k

2δ2 added to

avoid overfitting. It includes all parameters in θ. There are three components of
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Ψ(y,h,x; θ), two node terms and one edge term, as follows,

Ψ(y,h,x; θ) =
∑

i∈V

∑

k1∈K1

θk1fk1(y,xi)

+
∑

i∈V

∑

k2∈K2

θk2fk2(y, hi)

+
∑

(i,j)∈E

∑

k3∈K3

θk3fk3(y, hi, hj), (C.1)

Note that this function is a general form and it is formulated in this way for simplicity.

To estimate parameters θ, one can take a partial derivative of L(θ|x, y) with

respect to each parameter θk, k = 1, . . . , K1 +K2 +K3. For the parameter θk1 only

appearing in the node term of Ψ(y,h,x; θ), the partial derivative is

∂L(θ|y,x)

∂θk1

=
∂log

∑

h∈H exp{Ψ(y,h,x;θ)}
Z(x;θ)

∂θk1

=
∂log

∑

h∈H exp{Ψ(y,h,x;θ)}
∑

y′∈Y

∑

h∈H exp{Ψ(y′,h,x;θ)}

∂θk1

=
∂log

∑

h∈H exp{Ψ(y,h,x; θ)}
∂θk1

−
∂log

∑

y′∈Y
∑

h∈H exp{Ψ(y′,h,x; θ)}
∂θk1

.

The first term of the above partial derivative is

∂log
∑

h∈H exp{Ψ(y,h,x; θ)}
∂θk1

=
∑

h∈H

{

exp{Ψ(y,h,x; θ)}
∑

h∈H exp{Ψ(y,h,x; θ)}
∂Ψ(y,h,x; θ)

∂θk1

}

=
∑

h∈H

{

P (y,h|x; θ)
∑

i∈V

fk1(y,xi)

}

=
∑

s∈H

∑

i∈V

P (y, hi = s|x; θ) · fk1(y,xi). (C.2)

Here s ∈ H is a hidden state and the
∑

s∈H is the summation of all possible states of

hi at site i, i ∈ V .
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Similarly the second term of the above partial derivative is

∂log
∑

y′∈†
∑

h∈H exp{Ψ(y′,h,x; θ)}
∂θk1

=
∑

y′∈H

∑

h∈H

{

exp{Ψ(y′,h,x; θ)}
∑

y′∈Y
∑

h∈H exp{Ψ(y′,h,x; θ)}
∂Ψ(y′,h,x; θ)

∂θk1

}

=
∑

y′∈Y

∑

h∈H

{

P (h|y′,x; θ)
∑

i∈V

fk1(y
′,xi)

}

=
∑

y′∈Y

∑

s∈H

∑

i∈V

P (hi = s|y′,x; θ) · fk1(y
′,xi). (C.3)

Therefore, the partial derivative of L(θ|x, y) with respect to θk1 is

∂L(θ|x, y)
∂θk1

=
∑

s∈H

∑

i∈V

P (y, hi = s|x; θ) · fk1(y,xi)

−
∑

y′∈Y

∑

s∈H

∑

i∈V

P (hi = s|y′,x; θ) · fk1(y
′,xi)

= gk1(y,h,x; θ).

Similarly, for the parameter θk2 only appearing in the node term of Ψ(y,h,x; θ),

the partial derivative is

∂L(θ|x, y)
∂θk2

=
∑

s∈H

∑

i∈V

P (y, hi = s|x; θ) · fk2(y, hi = s)

−
∑

y′∈Y

∑

s∈H

∑

i∈V

P (hi = s|y′,x; θ) · fk2(y
′, hi = s)

= gk2(y,h,x; θ).

Similarly, for the parameter θk3 only appearing in the edge term of Ψ(y,h,x; θ),
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the partial derivative is

∂L(θ|x, y)
∂θk3

=
∑

s∈H

∑

s′∈H

∑

(i,j)∈E

P (y, hi = s, hj = s′|x; θ)

·fk3(y, hi = s, hj = s′)

−
∑

y′∈Y

∑

s∈H

∑

s′∈H

∑

(i,j)∈E

P (hi = s, hj = s′|y′,x; θ)

·fk3(y, hi = s, hj = s′)

= gk3(y,h,x; θ).

Since belief propagation is used in this algorithm, all four probabilities P (y, hi =

s|x; θ), P (hi = s|y′,x; θ), P (y, hi = s, hj = s′|x; θ) and P (hi = s, hj = s′|y′,x; θ)

can be found straightforward.

Parameter are updated as follow,

θ
(l)
k1

= θ
(l−1)
k1
− µ∂L(T ,θ)

∂θk1

∣

∣

∣

θ=θ(l−1)

= θ
(l−1)
k1
− µ







∑

(x,y)∈T
gk1(y,h,x; θ(l−1))− θ

(l−1)
k1

δ







,

θ
(l)
k2

= θ
(l−1)
k2
− µ∂L(T ,θ)

∂θk2

∣

∣

∣

θ=θ(l−1)

= θ
(l−1)
k2
− µ







∑

(x,y)∈T
gk2(y,h,x; θ(l−1))− θ

(l−1)
k2

δ







,

θ
(l)
k3

= θ
(l−1)
k3
− µ∂L(T ,θ)

∂θk3

∣

∣

∣

θ=θ(l−1)

= θ
(l−1)
k3
− µ







∑

(x,y)∈T
gk3(y,h,x; θ(l−1))− θ

(l−1)
k3

δ







,

where l is the index of iterations, and θ(l) is the lth estimation of the parameter vector

θ.
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