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Abstract

Conditional Random Field based Image and Video Content Analysis, Xiaofeng Wang
Phd, Electrical and Computer Engineering, Ryerson University, 2010

Image and video content analysis is an interesting, meaningful and challenging
topic. In recent years much of the research effort in the multimedia field focuses
on indexing and retrieval. Semantic gap between low-level features and high-level
content is a bottleneck in most systems. To bridge the semantic gap, new content
analysis models need to be developed. In this thesis, algorithms based on a relatively
new graphical model, called the conditional random field (CRF) model, are developed
for two closely-related problems in content analysis: image labeling and video content
analysis. The CRF model can represent spatial interactions in image labeling and
temporal interactions in video content analysis. New feature functions are designed
to better represent the feature distributions. The mixture feature functions are used
in image labeling for databases with nature images, and the independent component
analysis (ICA) mixture function is applied in sports video content analysis. The
spatial dependence of image parts and the temporal dependence of video frames can
be explored by the CRF model more effectively using new feature functions. For image
labeling with large databases, the content-based image retrieval method is combined

with the CRF image labeling model successfully.
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Chapter 1

Introduction

1.1 Image and Video Content Analysis

Image and video content analysis is an interesting and challenging topic in the mul-
timedia signal processing field. In recent years, much of the research effort focuses
on multimedia indexing and retrieval. The main driving force of image and video
indexing and retrieval systems is their wide applications in many signal processing
and computer vision fields. Some example applications of indexing and retrieval and

content analysis related research are listed as follows.

e Image and video search. With the advance of World Wide Web and Internet
search engines such as Yahoo and Google, the indexing and retrieval of large
amount of information becomes more and more important. During the past
two decades, content-based image and video retrieval dominated the multimedia
signal processing research. The motivation is that the traditional keyword-based

search is no longer suitable for large amount and more varieties of multimedia



content. A comprehensive content description of most content is nonexistent.
The current state-of-art algorithms in computer vision and signal processing
could not generate the kind of keywords automatically by computers. The
manual labeling is time consuming and subjective. The image and video search
systems using content-based information instead of keywords become the center

stage of multimedia research.

Image and video editing. New kinds of media content come up nearly every
year, and new media interfaces encourage personalized and professional service
for ordinary people. The public needs personalized media now more than any
other time in the history. Personalized editing of multimedia content is one

important application of content analysis.

Medical multimedia research. To effectively and efficiently detect a kind of
disease with new media tools is the goal of multimedia medical research. In
medical applications, it is important to understand the images or other kinds
of media for computer aided disease diagnosing. The new technology provides
much more information for medical professionals. How to help them store and
manage this information is critical to the advance of medical research. Medical

media search and indexing is interesting and beneficial to human beings.

Security video search. Video surveillance is in the center of research in safety
and security due to its high importance applications. Usually, humans have
to monitor the closed-circuit television (CCTV) screens all the time and often
they need to pay full attention for 24 hours a day. It would be desirable to have

surveillance systems to do this task automatically. Therefore abnormal event



detection is one application oriented research in video content analysis.

e Robot vision and consumer electronics. With the development of three-dimensional
(3D) TV, the new media format beyond two dimensions gains the interest of
both professionals and general audience. Interesting applications such as room
decoration systems with 3D reconstruction are also appealing. The 3D signal
processing needs the content information to generate useful results automati-

cally.

Up to now, most systems have limit performance by using only a few low-level features
such as color, texture, shape, and motion. There is a huge semantic gap between low-
level features and high-level content. The most efficient and straightforward way to
narrow the semantic gap is to better understand the image and video content. It is
the task of content analysis.

Image and video content analysis is a combination and interconnection of many
subjects such as machine learning, image processing, natural language processing and
computer vision. Of primary interest in this thesis are two closely-related problems
in content analysis: image labeling and video content analysis. Fig. [1.1 shows two

examples of the problems that will be discussed in this thesis.

e Image labeling. Image labeling aims to automatically segment and recognize
objects or regions in images [85, 34,11, 47, 68]. Different from image segmenta-
tion, labeling is a high-level vision, which not only segments the images but also
provides meaningful class labels to image pixels. For example, the indoor image
labeling is to classify every pixel of an indoor image into a semantic category

such as “floor”,“wall” and “ceiling”. It is very useful in image annotation and

further operations such as robot vision and 3D scene reconstruction [19, 84, 38].

3



Image Labeling

Polar Bear Hippopotamus

Sniow Water

Video Content Analysis

Advertisement Play Commentary

Figure 1.1: An illustration of image and video content analysis problem.

Video content analysis. Video content analysis is to find meaningful struc-
ture and patterns from visual data for the purpose of efficient indexing and
mining of videos. Video analysis tasks include video parsing, content indexing,
abstraction, and representation. Video parsing is to segment video to different
levels of segments. The early works focus on low-level parsing, i.e., the video
shot boundary detection [105, 31, 32]. An important and key technology in the
process of content indexing, abstraction, and representation is content classifi-
cation. After segmentation, camera shots need to be labeled, given meaningful
names, and classified into different categories. One kind of video classification is
video event classification, which classifies shots into different events. In recent
years, event classification in sports videos has become a popular research topic.

Our main interest is to automatically segment and recognize shot level events



or highlights in video sequences.

Although image labeling and video content analysis are two different problems, they
share common methodology and philosophy. Both of them are fundamental problems
of multimedia content analysis. For the image labeling problem, it is helpful to know
the content around the object we plan to recognize. For example, when there is
snow in an image, it is more likely to find a polar bear than a hippo. The images are
composed of spatial coherent areas. For the video content analysis problem, videos are
a series of images. The images before or after a current scene is helpful to determine
the class that the current image belongs to. The videos are composed in a temporary
coherent manner. Content recognition seems simple and straightforward for humans,
however, it needs a lot of effort to make computers finish this task automatically. If
images or videos could be well segmented effectively, one could have a better chance
of recognizing the objects or events in the scene. On the other hand, if objects, events
and their properties were known, one could segment the scene with better accuracy.
The content ambiguity of both problems is the main difficulty of ongoing research.
In this thesis, the conditional random field (CRF) model in machine learning is used
to tackle both problems, by taking spatial structure of images and coherent temporal

dynamics of videos into account.

1.2 Background Work in CRF for Image and Video
Content Analysis

The CRF model was first proposed by Lafferty for labeling 1D sequential data such

as speech [52]. It is a discriminant probabilistic graphical model which addresses

5



the limitations of a hidden Markov model (HMM). The CRF model finds success-
ful applications for classifying structured data in various applications such as speech
recognition [52, 29|, diagram labeling [74], image labeling [85] (34, 28, 51], object
recognition [89], video content and event analysis [95, 78], and image content analysis
(recognizing manmade structures) [51, 50]. The CRF model incorporates neighbor-
hood interactions in the labels and observed data, so has many advantages over
traditional generative models. In most real and difficult cases the CRF model can
model both spatial and temporal structures with better accuracy than other existing
models because of its maximum entropy equivalence property [27].

There are spatial interactions in image labeling and temporal interactions in video
content analysis. The CRF model is a powerful and efficient graphical model which
can represent spatial or temporal interactions in these two problems. Also the CRF
model has training and discriminant advantages. When using CRF to solve semantic
content analysis problems, new models corresponding to different properties of dif-
ferent content analysis problems should be derived. This thesis does not discuss a
general solution for content analysis. Several image and video analysis problems are
formulated using a common CRF graphical model but with different feature functions.
New semantic content analysis algorithms are proposed for automatic processing of
images and videos. Nature images and sports videos exhibit strong spatial and tem-
poral dependence separately and modeling these dependencies using modern machine
learning and pattern recognition algorithms is crucial to achieve a good understanding

of these contents.



1.2.1 CRF in Image Labeling

In image labeling, an image is first divided into regular grids such as pixels or rect-
angular regions, then features of these grids are extracted. The features may include
color, texture and shape. The 2D grid is a graph where probabilistic graphical mod-
els could be applied. The current state-of-art CRF image labeling methods includes
several PhD thesis and papers [85, 34,28, 51]. In [51], the two class image labeling
problem with CRF is presented and it is the baseline CRF in our discussion. In [85],
the recognition problem is formulated using CRF with many kinds of features and
potential functions. The complex multiscale CRF is discussed in [34]. The relative
location information is added in [28]. In image labeling, we discuss two problems, the

design of potential functions and the labeling of large databases.

Potential Functions in Image Labeling

The CRF model, which is a discriminant probabilistic graphical model, is built on
2D grid features and labels for training with association and interaction potential
functions [51, 50]. The association potentials represent the likelihoods of the node
label given the observation of the current node. The interaction potentials are the
likelihoods of the interaction between neighboring grid labels given the observation of
neighboring grid features. Both potentials may include many types of nonstructural
classifiers depending on applications and types of feature data structures. Usually
the potential functions in CRF are selected empirically and hand-tuned to achieve
better performance.

In image labeling and object recognition, the potentials are designed using arbi-

trary discriminant classifiers such as logistic [51], probit [74], boosting [89], neural



network [37][34], and the combination of many types [85]. But these forms of poten-
tials generally need hundreds of features to have reasonable results which makes the
training and inference difficult. It is the responsibility of the CRF training algorithm
to find the weights of different potentials. Sometimes the training fails to find the
right parameters because the initial point is not well chosen. How to design these

potential functions is essential to CRF image labeling.

Image Labeling for Large Labeled Databases

For large databases the problem becomes more complex. In image labeling for small or
specific controlled databases, researchers usually set up a database with several classes
under certain conditions. The performance is evaluated using specific databases, for
example, the MSRC benchmark [3] with 21 classes and the Corel and Sowerby [2]
with 7 classes. The generation of the database is generally troublesome and the hand
labeling process is time consuming. Omne problem is that in the real world there
are no such specific databases with limited classes to be used for classification and
building probabilistic models. When a very large labeled database such as Labelme
[83] is used, the image labeling result would not be effective because of the variety
of images, class labels and label ambiguities. Therefore, the key problem is how to
handle large labeled databases for the training and labeling with these ambiguities.
To reduce the content ambiguities, there is a growing trend to combine top-down
information and bottom-up labeling. The top-down means using the information
from high-level vision, for example, the object and the scene to infer pixel labels.
The bottom-up means the pixel labeling process from low-level raw pixel features.

Since the bottom-up is not accurate enough for image labeling, recently top-down



cues such as object information is incorporated to improve performance. Even for
small database with only several categories the top-down content information is often
used. Usually a probabilistic model is built for the content or integrated in the labeling

model such as 35,90, 56, 9, 30].

Images

Indoor Qutdoor

TR

Kitchen| | Office | |Livingroom| | Bedroom

Figure 1.2: An example of hierarchical top-down model.

An example of hierarchical probabilistic model is shown in Figll.2. The model
divides the images into concepts. For example the images are classified into two
groups, indoor and outdoor. The indoor images could be further divided into several
concepts: office, living, kitchen and so on. The concepts are grouped based on a
tree-like structure. The concepts are then modeled with Bayesian or random field
probabilistic models. In [35], top-down category-based information is used to help
merge bottom-up segments into object components. The concept is reflected in the
content dependent mixture of CRF model [52, 51]. The method is highly complex and
used for small databases with a limited class size. The authors of [90] simplify the top-
down approach with a single CRF by including the global features. Papers [56] and

[9] combine the top-down example-based information and bottom-up segmentation



information. In [30] object arrangement rules are adopted as top-down information in
the Bayesian model. Due to their purpose for limited controlled labeling databases,
these models are still far from being used for large labeled databases. For large
databases, the methods relying on content probabilistic modeling such as Fig.
do not work due to the complexity of the model structure and parameter learning.
How to reflect top-down information in CRF image labeling is important for image

labeling of large databases.

1.2.2 CRF in Video Content Analysis

Most of the previous research in video content analysis was based on video state mod-
els utilizing probabilistic graphical models such as a hidden Markov model (HMM)
[53]. There is a large amount of literature that discusses the HMM in video analysis
algorithms, e.g., [100, 99, 60, 97,40, 45,6, 43,25, 46, 101, 103, 14, 59, 102, 22, 26, 67].
In [99], unsupervised classification based on color ratio and motion in soccer domain is
discussed and the observation model is Gaussian mixture. In [60], the audio features
such as applause and cheering are modeled as HMM. In [14], baseball highlights are
modeled as HMM using various kinds of features. It is extended to the maximum en-
tropy model [26] which puts several shot features together for classification and does
not use the useful temporal graph information. The hierarchical HMM presented in
[67] is a more complex HMM model. In [107], based on the non-Gaussian property
of visual features the ICA mixture [54] observation model is applied in HMM for golf
video event classification. As mentioned in the HMM tutorial paper [76], there are
certain limitations of HMM, the conditional independence of observations, the form

of observation distribution and the Markov chain interaction.
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CRF, which relaxes the conditional independence assumption of HMM, is more
suitable to video content analysis tasks. But the full labeling of training sequences’
states prevents it from applying to event analysis of videos directly. To solve this
problem hidden conditional random field (HCRF'), which is proposed by Quattoni for
object recognition recently in [75] can be used. HCRF is a general extension of HMM
which relaxes the independent observation and generative assumption. It has been
applied to phone classification [29], gesture recognition [95] and meeting segmentation
[78]. Although mentioned in the book [27,32], it has not been used in sports video

analysis.

1.3 New Approaches

To interpret the scenes contained in images or videos as a collection of meaningful
entities is the fundamental task of content analysis. It is to interpret the information
in the scene with different levels of meanings. For example in video analysis, we group
frames to shot, events and stories from bottom-up, segment video to different levels,
and recognize each levels from top-down. One may also be interested in understanding
different regions of a single frame, e.g., a person, a football or any thing in the scene
which is the task of image labeling and object recognition. The problem is both an
interesting and a challenging one.

Images are not random collections of pixels and videos are not random collections
of image frames as well. To analyze these contents, the contextual information in
the form of dependencies should be used. It is the main idea of this thesis. Various
discriminative and generative models are discussed and the CRF model is selected

for the image and video content analysis.
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Based on analysis of both the image labeling and object detection problems, we
apply the CRF model with new potential functions to image content analysis. For
image labeling with small specific databases we use the mixture functions to model
the features. We analyze the distributions of features of nature image parts and use
mixture (Gaussian Mixture or Laplacian Mixture) to approach these distributions
which reduces the number of features needed in CRF image labeling. The main
approach is to use new local potential functions in the discriminant manner. The
advantages are less training effort and better accuracy. With large databases we
successfully combine CBIR and CRF. Since content labeling ambiguities exist in large
labeled databases, we propose using CBIR to choose content similar images as the
new database used for labeling. The top-down information is reflected in the CBIR
process. The advantages of both CBIR and CRF are integrated to deal with the
image labeling problem with large databases.

Unlike HMM, CRF is less studied in video content analysis. For video event anal-
ysis, based on previous work in video content analysis, we formulated a new HCRF
model for event detection. HCRF is better than HMM because of its ability to model
the temporal content dynamics more efficiently. The main reason is that CRF relaxes
some strong assumptions of HMM model. The relaxations provide accuracy advan-
tage of HCRF in video content analysis. To further enhance the HCRF framework
for video analysis tasks, we model local observations as ICA mixtures.

In this work we present new CRF models with new feature functions to model
interactions in images and videos. We take a modern approach using training samples

(supervised learning) to build graphical models for image and video content analysis.
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1.4 Main Contributions

New contributions are summarized as follows:

1. A novel mixture CRF model to improve the image labeling accuracy according

to the feature analysis of small databases with nature images such as corel.

2. For a large image database such as LABELME, a new combination of CRF and

CBIR to tackle the top-down learning of image content analysis.

3. A novel video analysis framework with hidden CRF (HCRF) model based on

analysis of sport video frame features and their temporal structures.

1.5 Thesis Outline

As shown in Fig. [1.3 this thesis is structured as follows:

e The first part of the thesis (Chapter 2) which provides the background of the
CRF discussion of this thesis consists of an introduction, review, and brief the-
ory description of the CRF training and inference method, the insight of CRF’s
maximum entropy equivalence and modeling interaction in content analysis us-

ing CRF.

e In Chapter 3, we begin with image labeling of nature images. Based on an
analysis of traditional image labeling models and nature image features, a new
mixture CRF model is presented for supervised image labeling task with small

database.
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Figure 1.3: Road map of this thesis.

e In Chapter 4, we extend the image labeling discussion to the large and un-
controlled dataset which is often encountered in real circumstances. A new
approach combining the advantages of CBIR algorithm and CRF model is pre-

sented for this challenging task.

In Chapter |5, we further our discussion to video content analysis. Hidden CRF
model with new mixture feature functions are given for better modeling the

coherent structure of the video content.

Finally in the last chapter, the main contributions of this thesis are summarized
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with discussions on the challenges of image and video content analysis and their

future research directions.
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Chapter 2

CRF Model for Content Analysis

Problems of content analysis are usually solved using a two-step methodology:

1. Problems are analyzed and formulated using some rules or probability based

optimization criteria.

2. Optimal solutions that best meet the criterion are found by function optimiza-

tion or probabilistic reasoning.

The rule-based optimization, which is often called regularization, was originally de-
veloped by statisticians trying to fit models to data. The drawback is that the regu-
larization methods may severely limit the solution space. The probabilistic analysis
is performed on the probabilistic criterion to find the optimal solution. For example,
in the video shot classification problem, the criterion is the probability of a shot class
given the shot feature observations. Higher probability means there is a better chance
that the features fit the class. For image and video content analysis, the existence of

noise and uncertainty makes probabilistic models better suit the task.
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Suppose € = (%1, s, ..., Ty), T; € X, are N input variables which represent our
observation knowledge, and y = (yy,Y,,...,Yyn), Y; € Y, are their corresponding
classes which we wish to predict, where X is all possible observations and ) is a set
of finite classes. In supervised learning, y is known for the training set and unknown
for the testing set. The problem of content analysis could be formulated as finding
the probability of class variables given observations P(y|x).

The organization of this chapter is as follows: First, the graphical models used
in machine learning and content analysis are discussed in Section 2.1. Second, we
focus on conditional random field (CRF) model formulation which is more suitable to
deal with complex image, video content analysis problems and discuss its maximum
entropy equivalence which leads to the success of the model in Section [2.2. Third,
the training and inference methods of CRF model and CRF with hidden states are
presented in details in Section [2.3| and Section [2.4. Finally, we discuss modeling the
spatial and temporal dependence in image and video content using the CRF model

in Section 2.5]

2.1 Graphical Models

2.1.1 Categories of Probabilistic Models in Machine Learn-
ing

Probabilistic models in machine learning could be divided into different categories

based on different criteria as shown in Table Based on whether structural in-

formation is used, machine learning probabilistic models could be roughly divided to

two categories: nonstructural and structural methods.
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Table 2.1: Classification of probabilistic models in machine learning.

Nonstructural Structural (Graphical)
Naive Bayes Bayesian Network [42][86][15]
Generative Gaussian Mixture[65][10][72] Markov Random Field [24][58][77]
Laplacian Mixture|[4] Hidden Markov Model [76]
ICA Mixture[54]
Discriminative Neural Network [21][62] Conditional Random Field [52][51]
Support Vector Machines [91][17][87] | Hidden Conditional Random Field [75]

Nonstructural models assume no correlation between parts of variables, e.g., as-
sume observations are identical and independently distributed (IID). It is an appro-
priate assumption in some applications, for example in predicting the weights of a
group of people based on their heights. Non-structural methods include clustering,
neural networks, support vector machines and so on.

Structural methods refer to graphical models. The graphical models are highly
advantageous by using diagrammatic representations of probability distribution for
applications which involves spatial or temporary interaction between class variables
and observations. Because images are composed of spatial coherent parts and videos
are composed of temporary coherent frames, their structural information provides
additional useful information in their content analysis.

Based on the probability expression of the problem solution, the probabilistic
models could be classified into discriminative models and generative models. A gen-
erative model is a full probabilistic generative process of all observations from the
class variables, while a discriminative model targets only class variables conditional
on the observations.

The generative models are based on the Bayes rule formulation P(y|x) o< P(y,x) =

P(z|y)P(y), [8]. The model captures the causal process by which the observations are
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generated by class variables. The generative models such as the hidden Markov model
(HMM) are widely used traditionally because the conditional probability P(x|y) is
easier to model than the posterior probability P(y|x) and there are well-established
and well-engineered algorithms such as the expectation-maximization (EM) algorithm
20] and Baum-Welch (BW) algorithm [98]. However, there are several disadvantages
to these generative models. To make the model tractable, the observation features are
usually treated as independent components. However, it is unrealistic in most cases.
More precisely, the observation at any given instance only depends on the label at
its location. Another drawback of generative models is that full observations are ex-
pected for the model parameter learning because of the excessive modeling of P(x|y).
The generative models must enumerate all observation cases. The effort is wasted in
modeling the observation probability P(x|y) which is very complex sometimes.

The discriminative model models the conditional probability P(y|x) directly. One
advantage of the discriminative model is that it does not waste effort on modeling
observation and samples of observation that could be used for the training. It is
similar to the maximum entropy model which only models the known variables and

assumes the unknown variables as uniform as possible.

2.1.2 Definition of Graphical Models

One key idea of the new machine learning developed in recent years is the probabilistic

graphical model, which is an interplay between probability and graph theory and plays

a central role in uncertain and complex engineering problems [1, 93, 8,/71].
Graphical models originated from physics have broad applications in machine

learning, image processing and computer vision. There are several advantages in
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using probabilistic graphical models over the nonstructural methods:

e The use of graphs provides a simple way to visualize the structure of the prob-
abilistic model. Its graphical visualization provides a useful way of designing

and constructing new models.

e By carefully inspecting the graph representation the insight of conditional in-

dependence could be specified.

e The computational complexity could be reduced based on insight of these in-
dependence conditions. Sum and product rule [64][49] could be easily applied

according to the graph node and edge structure.

A graph G(V, E) comprises nodes V' and edges E. Nodes are random variables,
and edges/links represent relationships between these variables. Absence of an edge
between two nodes represents conditional independence between them. Two random
variables @1 and x5 are called conditional independence given a third random variable
a3, if they are independent in their conditional probability distribution, formally
p(x1, T2|3) = p(x1|X3)p(22|X3). A graph can capture the interactions of the random
variables, so the joint distribution of these random variables can be expressed in term
of a product of factors. Conditional independence of nodes in a graph can be used
to decompose complex probability distribution P(x) into a product of factors, each
consisting of a subset of corresponding random variables. A probabilistic graphical
model is a diagrammatic representation of a probability distribution with factorized

terms as follows,

P(x) = % IT vs(zs). (2.1)
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where S denotes a subset of the graph G = (V, E), Ug is a subset of factors, and xg

is a subset of observations. The normalization factor is

Z=>Y TJ slzs), (2:2)

xcXN SCG
where N is the number of all nodes in the whole graph. It should be noted that for

all possible subsets S, each element in xg belongs to the observation set X and the
normalization factor Z is summed over all possible xg. For simplicity, it is denoted
as € € XN, where = (x1,...,zy). This expression also applies for the summation
of y- of y in the rest of the thesis.

The graphical models could also be classified based on whether its nodes have
parents or not. This means the arc of the graph have a direction or not. In the
directed graphical model, (also called Bayesian network), edges of the graph have a
particular direction indicated by arrows. The undirected graphical model, such as the
Markov random field model, does not have direction on the graph. The directions on
the graph denote the causal relationship of nodes. If no direction exists there are only
soft constrains between the nodes. Or in other words, the directed models is just a

subset of undirected models with one way interaction.

2.1.3 Directed Graphical Models

General graphical models are formulations for compactly expressing different types
of conditional independences between an ensemble of random variables. The directed
graphical models are those graphical models in which all the inter-node connections
have a direction, usually indicated by an arrowhead. If a joint distribution P(x) of

a graphical model can be factorized to the product of distributions for each node 1,
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1.€.,

P(z) = | | P(@ilew). (2.3)
eV
where the distribution of each node is conditioned on its set of parent nodes (i),

this graphical model is called directed graphical models or Bayesian networks (Bayes

nets).

2.1.4 Markov (undirected) Graphical Models

The most widely-used probabilistic model in the signal processing field is the Markov
network also referred to the Markov graphical model. In Markov graphical models, a
probability distribution can be represented by an undirected graphical model using a
product of non-negative functions of the maximal cliques of G = (V, E). This section
introduces the Markov random field and its extension—conditional random field. Both
of them could be formulated with hidden states.

For classification problems, vertexes V. = X (J) are depicted by circles in an
independency graph GG. Here X is the set of input observations and ) is the set of
output labels. In this thesis, as in Fig. 2.1, X and ) are denoted by shaded circles

and empty circles, respectively.

Markov Property and Factorization

In graphical models, the graph G can be used to impose constraints on random

variables in two different ways: Markov property and factorization.

o Markov property. Observations @ are Markov with respect to the graph G, if
x4 and xp are conditionally independent given xg, where S separates A and

B. Here S, A and B are nodes in the graph G.
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e Factorization. The distribution P(x) can be factorized according to the graph

G, if it can be expressed as a product over cliques:

1
P(x) =~ I ve(zo). (2.4)
The factors ¥ > 0 are so-called potential functions of the random variables

x o within a clique C € C, where C is the set of all cliques. The normalization

factor is

Z=>Y ] %c(eo). (2.5)

xeXN CeC

The relationship of Markov property and factorization could be described in the

following theorem [7].

Theorem 2.1. (Hammersley_Clifford) Suppose p is a strictly positive distribution,
and G 1is an undirected graph that indezxes the domain of p, then p s Markov with

respect to G if and only if p factorizes according to G.

It gives necessary and sufficient conditions that a positive distribution satisfies
the Markov property with respect to an undirected graph. It means that a positive
distribution has Markov properties according to an undirected graph if and only if

its density can be factorized over the cliques of the graph.

Markov Random Field

Markov random field (MRF) [24], an undirected graphical model, is popular in the

physics and vision field. The traditional MRF model in a classification problem can
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be formulated using the posterior probability as

Plyle) = Tt

x P(zly)P(y)

- H P(z|y;) - % H Ve(ye)- (2.6)

cec
Fig shows an example of a 2D MRF model and its factor graph representation.

Shaded circles are the observed features at nodes, and empty circles represent labels.
The interactions between these random variables are shown as edges. Factors are

denoted by empty rectangulars in the factor graph expression.

(a) (b)

Figure 2.1: An example of 2D MRF model (a) and its factor graph representation (b)

MRF models incorporate both prior knowledge and local spatial relationship.
Their performance can be evaluated in a natural way. MRF methods are based on
pixels or regular shape neighbors and are widely explored in theoretical and practical
research [58]. Note that the MRF assumes that the observations are conditionally
independent of each other given the current labels. MRF makes the unwarranted in-

dependent assumption, which is not desirable for real-world applications with multiple
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interacting features and long range dependencies.

Conditional Random Field

The CRF model [52] is an extension of MRF model. Fig. shows an example of
a 2D CRF model and its factor graph representation. Interactions between observa-
tions at nodes and their neighboring nodes’ labels are displayed by dashed lines in
Fig. It relaxes the observation independence assumptions of MRF. There are
interactions between the current observation and neighboring observations, so the
conditional probability P(x|y) can not be written in the form of Hf\il P(x;|y,;) as
equation above. Moreover, since the labels y are related to observations x with-
out the assumption of independence which is often the case in real-world applications,
the expression of the prior probability P(y) as %Hoec Vo(ye) in equation (2.6) is

not appropriate here.

Figure 2.2: An example of 2D CRF model (a) and its factor graph representation (b)

The definition of CRF is as follows [52][94],
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Definition 2.1. Let G = (V, E) be a graph and the random variables y = (y,)icv, SO
that y is indezed by the vertices of G. Then (x,y) is a conditional random field in
case when conditioned on x, the random variables y obey the Markov property with
respect to the graph. P(yi|az,yv\i) = P(y;|z,yy,), where Vi, is the set of all nodes in

the graph except the node i, N; is the set of neighbors of the node i in G.

The general model formulation of CRF models is
1

Z(ZB) H\PC(yCWmC)? (27)

ceC

P(ylz) =

where the normalization factor is

Z@) = Y ] Yelwe =) (2.8)

y eyN CeC

and y' is all possible y. The CRF model performs better than other graphical models
in most real-world applications because it does not make the unwarranted independent

assumption. Its theory has a equivalence to maximum entropy model.

2.2 The Maximum Entropy Original of CRF Model

The maximum entropy model [41][33] comes from two basic ideas.

e The first idea is to keep unknown variables as uniform as possible. A mathe-
matical measurement of uniformity of a conditional distribution of P(y|x) is a

conditional entropy

H(P)~- Y P(x)P(ylz)log P(ylz), (2.9)

xc XN ycyN

where P(x) is statistical (empirical) distribution of training samples, and N is

the number of nodes in the graph G.
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e The second idea is to keep the model factor comply with the known factor

distribution of training samples,
P(fs) =P(fi) k=1,..., K, (2.10)

where K is the total number of factors, {f;} are feature functions of random
variable & and y. Feature functions could be any kind of factor such as color

and texture. Here P(f) and P(fy) are,

P(fe) = Y. Px)Pylz)fi(.y), (2.11)
xc XN ycyN

P(fi) = Y Py fulz.y). (2.12)
xe XN ye YN

To find a solution to this constrained problem, one can define a Lagrange function

with the Lagrange multipliers {\;} as follows,

K
L(P,X) = H(P)+ Y M(P(fx) = P(fy), (2.13)

k=1
where A = {\1,...,A\g}. To get the optimal solution, one can calculate the partial

derivative of L(P, \) with respect to P and set the value to zero, i.e.,

TR = P@lesPlule) ~ P@Pwie) o+ Y AP e )
— —P(x)log P(y|o) — P(@) + > _ MP(x) fi(z,y)
k=1
= 0. (2.14)
The distribution becomes,
P(yl@) = exp(—=1+ > Aefu(@,y)). (2.15)
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To comply with normalization of the distribution, i.e.,

1 = > Pyl

yeyN
K
= Z eXp<_1+Z)\kfk(w7y>>> (2.16)
yeyN k=1
one can have
1
el = (2.17)

> yeyn Py Aefi(@,y)

The distribution that maximizes the Lagrangian function L(P,A) is,

P(yle) = exp(—1+ Y \fu(w,y))

k=1

= e L. exp(z A fe(,y)))

_ exp(szzl Aefe(@,y))) (2.18)

Zyeyzv exp Zf:l Mefr(T,y)) '
Let Z(z) =3, cyn exp(31, Mefi(x,9)), the posterior probability in the maximum

entropy model is

exp(szzl A fi(T,Y)) '

70 (2.19)

P(ylx) =

According to Theorem 9.1 of [27], the maximum entropy (ME) model is equivalent

to the conditional random field (CRF) model, and this is uniquely determined [73],
P.. = Popp. (2.20)

Therefore, the CRF model can be factorized as,

Plyfeiw) = o ][ Yelye.zo)
CceC
1

= —H H exXp (wk:fk(ycawc’))» (2'21)

Z(w) CeCkeKe
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where Ko C {1,2,..., K} is the index set of factors for the clique C, w is the weight
coefficient vector of factors, and totally there are K factors. The normalization factor
is:

= > 11 II e (wkfk(y/c,flfc)>- (2.22)

yleyN CeCkeKe

Here one assume factors f = (f1,..., fx) does not change across the cliques.

2.3 CRF Training and Inference

2.3.1 Training of CRF Models

For all types of CRF models, the maximum-likelihood training method can be used
to estimate parameters w of the model [94, 48, 188,92]. Suppose the training set is 7°

and the estimation can be done by maximizing the following log-likelihood £(7, w)

with parameters w = {wy, ..., wg}, which is
L(T,w) = Z log P(y|x; w)
(x,y)eT
- 3 o I IT ot
(2, y)eT CeCkeKe

_ Z log HCec erKC exp (Wi fr (Yo, xco))

- . (2.23)
(wy)ET ZyleyN [Teec erKc exp (wkfk:(ycv "L'C))

To avoid overfitting, a penalty term —Zszl % is added [16, 48]. The log-
likelihood £(7, w) becomes

K o

w

LT w) = ) 1og< ) [T I exv (wkfk(yCamC’))> -5
(x,y)eT CeC keKe =1

K 2

= k

- Z ZE:wkfkyC»wC g log Z(x, w) — E 5
(z,y)eT CeCkeKc (zy)eT P
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where §2 is a constant chosen to trade off between exact fitting of observation factors
and squared norms of the weight vector w [48,63]. The smaller the values are the
smaller the weights are forced to be, so that the chance that few high weights dominate

is reduced. Denote

LT, w) = Y > > wfilye ze),

(z,y)eT CeC keKc

Lo(T,w) = Z log Z(x, w). (2.24)
(z,y)eT

Gradient descent algorithm can be used in the training of CRF models, with an
arbitrary initial values of the weight vector wgy. To update weights in each iteration,
we need to calculate the partial derivatives of £L(7,w) with respect to the weight wy,

k=1,..., K. The partial derivative of the first term with respect to wy is

OLUT, w) = 3 Y filye zo). (2.25)

C dw,
k (z,y)eT CeC

The partial derivative of the second term with respect to wy, is

0Ly (T, w) Z 1 0Z(x,w)
Z(

8wk — T, 'lU) 8wk

- T Z (H I] e (wkfk Yo, To )) D filye, o)

:13 y ET Yy e)}N CeCkeKe cecC

. Z( - )HHexp(wkfkyc,wc)> > filyes @)

(e, y)eT y ' cYyN CeCkeK¢o ceC

= Y. > Pl filye,zo) (2.26)

(2,y)€T o cyN cec

At last, the partial derivative of the third term with respect to wy, is

0 & wk Wi

The partial derivative of the first term Wlth respect to wy, in equation (2.25) is the
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empirical distribution of a feature fy, i.e.,

E(fi) = Z ka(yc,wo)- (2.28)

(w,y)€T CeC

The partial derivative of second term with respect to w; in equation (2.26) is the

expectation under the model distribution, i.e.,

E(fi)= >, > PWl®) > filyo zc). (2.29)

(2,Y)€T o eYN CcecC

Therefore, the partial derivative of the log-likelihood £(7; w) with respect to wy, can

be calculated as

OL(T,w)
ﬁwk

= E(f) - E(fi) — 5 (2:30)
The empirical distribution of feature functions is supposed to be equal to its expected
value on the model distribution. Denote the partial derivative 0L(7, w) as Awy, the
weight wy, of the CRF model is updated as w;, — Awy, after each iteration in the process
of training, k = 1,..., K. The iteration process of estimating the weight vector w
stops when all differences {Awy} are less than a predetermined threshold.

In CRF training, it is not possible to calculate ) s v Py'|z) > cce fr(ye zo)
in equation (2.26) directly, because of huge number of possible labels. For a general
graph, even if all parameters w and factors f are known, one can only obtain an
approximate value of it. In a general CRF, one can use the loopy belief propagation
algorithm. For a special form of a CRF, the linear chain structure similar to hidden

Markov model (HMM), the standard backward-forward algorithm can be used. Both

algorithms are presented in the following section for the inference of CRF models.
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2.3.2 Inference of CRF Models

There are three principle algorithms for probabilistic inference of graphical model
93], namely exact algorithm, sampling algorithm, and variational algorithm.

Exact inference algorithms include the elimination algorithm, the sum-product
algorithm [64], and the junction tree algorithm [39]. They compute marginal prob-
ability by systematically exploiting the graphical structure. When the tree width is
small exact algorithms are practical. HMM is an algorithm of this kind. Once the
tree width is overly large, these algorithms are not viable.

Sampling algorithms, such as the Markov chain Monte Carlo [80, 81], provide a
general methodology for inference. We can find solutions by approximating distribu-
tion such as Gibbs Sampling [27].

The general idea behind the variational algorithm is to characterize a probabil-
ity distribution by solving a perturbed optimization problem. In early applications,
it is formulated as the solution of Kullback-Leibler(KL) divergence. It can also be
obtained using other ways such as mean field approach. The Bethe approximation
approach involves retaining only consistency relations that arise from local neigh-
borhood relationship in graphical model. Surprisingly the Bethe approximation is
equivalent to the sum product algorithm for trees and for graph with loops [104].

Since this thesis is not about the fundamentals of machine learning theory, we
only focus on one popular variational algorithm (loopy belief propagation) and the
backward-forward inference algorithm for linear chain CRF models. Before introduc-
ing these two inference algorithms, the expression of CRF models in edge and node

factors is presented here. The CRF can be expressed in the following edge and node
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factors [50],

( J)EE lGV

where W, j)(y, ) is the contribution of edge (,7), and ¥;(y,x) is the contribution
of node i as shown in the factor graph of Fig. Suppose the set of all nodes is .5,
and the set N; C S is neighboring sites of the site ¢, the posterior probability P(y|x)

in equation (2.31 usually is written as

P(y‘.’,l)) exp{z ©i yl|£1: + Z Z wm yzayj’w (232)

€S jEN;

where @;(-) is the association potentla,l between the observation data and the label of
site 4, and 1;;(-) is the interaction potential between current site ¢ and its neighboring
site j given the observed features. As shown in Fig. 2.2 usually ¢; represents the
prediction of the label y; based on the local feature vector x; at site ¢ and 1);; predicts

the label y; based on local compatibility between neighboring labels and features.

The Loop Belief Propagation Inference of CRF Model for General Graph

For graphs with loops such as those in image labeling, there is no exact inference
algorithm. The inference can be done using approximate loopy belief propagation
(BP) [104], and gradient descent [92] can be used as the training method.

When the CRF model is expressed in the form of equation (2.31), the belief
propagation algorithm can be applied for model inference. Denote a message variables
such as m;;(y, ) from node i to node j. It can be intuitively understood as a message
from a node 7 to a node j about what node j should be like. It is proportional to how
likely node ¢ thinks that node j will be of certain value. In the BP algorithm, that

belief at a node ¢ is proportional to the product of the local evidence at that node
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¥;(y, ) and all message coming into node 1, i.e.,

bi(y, ) = kVy( H m;i(y, T (2.33)

JEN;

where k is a normalization constant to force the summation of beliefs to be 1. The

messages are determined self-consistently by the message update rules as follows,

mii(y,x) = > Ui(y, @ z) [[ muiy. ), (2.34)

y; €Y keN;\i

where N; \ ¢ denotes the neighboring set of node j except the node i. Here we take
the product of all messages going into node j except the one coming from node ¢ as

shown in Fig. [2.3. The summation is done by all possible labels of node j. It is easy

j i lj i
: S _ s

Figure 2.3: An illustration of message updating rules in belief propagation. The sum
indicate summation of all messages coming to node j except the one from
i

to testify the BP updating rule in graph without loops as shown in Appendix|Al For

a graph with loops, it may not converge with some parameter setting. However, the

BP has already been used in graphs with loops successfully in many applications such

as computer vision and error control coding.

The Backward-forward Inference of Linear Chain CRF Model

For graphs without loops, e.g., the CRF model structured as a linear chain, there

are exact inference algorithms exist such as the dynamic programming [48]. Here the
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commonly-used linear chain CRF model, which is a counterpart of HMM model, is
discussed. In the linear chain CRF model, the posterior probability can be simplified

as

T
1
P(y|w) R TRY Qt(ytuytfl7w>7 (235)
Z(x) t[[l
where t is an index of time, 7" is the length of the sequence, x; denotes a vector which

include observation features at time ¢, y; denotes the label at time ¢, and the factor

at time ¢ 1s

K
\I’t(yt,yt—law) = €xp (Z wkfk(ytayt—law)) . (2-36)
k=1

Define the forward and backward variables for CRF as follows,
a(j) oo Py = jlocis>)

- Z J Yi—1, T qut’ Yo Yp—1, L )7 (237)

,,,,, t—1>€EYtL t'=1

a1 () = Z‘Pt (7,4 @) a1 (1), (2.38)

5t(Z) o< p(y :i‘w<t+1...T>)

T
= > IT @y por, o), (2.39)

Y<tql,.., r>EYTtT/=t+1

Bii) = > Wia(,i, )61 ()) (2.40)
jeSs

and the initial points,
Br(end) = ag(start) = 1, (2.41)

¢~ denotes {x1,...,x;}. One can compute the margin probability needed

.....

in gradient computation as

P(ye—1,yele) o v 1(ye—1)Velye, ve1, ) Be(ye)- (2.42)
So, the calculation of E(fy) in equation (2.30) can be implemented efficiently as
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follows,

E(fy) = Z Z y|w)2fk<y/c>w0)

(@y)eT o YN cec
- Z Z Z ka gy, )1 (1)V(j, 49, 2) B (j).  (2.43)
(mvy)GT =1 (i,j)€E i€V

Also the normalize factor can be efficiently formulated as backward or forward as
Z(x) = Po(start) = ar(end). (2.44)

Therefore, the most probable assigned labels y* are those that maximize the posterior

probability P(y|x), i.e.,
y" = arg max P(y|x). (2.45)
yeyN

Dynamic programming is applied here to obtain the optimal label solutions. Define

a quantity d;(i) as the highest score along a path at time ¢ given observations,
a(1) = max  P(y<i,..i1>,Y = i|T). (2.46)

A Viterbi algorithm is used to calculate the optimal labels. Here &; is used to keep

track the label values. Steps of the Viterbi algorithm are listed as follows:

e Initialization:

0 (1) = Wy(i,start, x), (2.47)
& (i) = start; (2.48)
e Induction:
B0 = ()W), (2.49)
&(i) = argm?X5t_1(j)\I/t(j,i,w); (2.50)
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e (Calculating probability:

P(yle) oc maxdr(j). (2.51)

J

*

yp = argmaxop(j); (2.52)
J

e Path backtracking: choosing the optimal path using the track keeping values

v;. The optimal solution at time ¢ is

Yr = &ir1(Yis1)- (2.53)

2.4 HCRF and its Training and Inference

2.4.1 HCRF Models

Recently there has been a growing interest in CRF with latent variables. Original
works on CRF focus fully on observed training data which is difficult in cases such
as video content analysis. Additionally it is a troublesome work to label all states
manually. The introduction of the hidden states in graphical model simplifies the
complex joint distribution by breaking them into simpler components. Similar to
hidden Markov model (HMM) that is a 1D chain Markov random field with hidden
variable, hidden conditional random field (HCRF), a relative new graphical model,
is chain CRF with hidden variables [75]. Similar to HMM which is widely used in
event detection e.g., [14, 25, 43] the HCRF has been developed for event and object
recognition e.g., [29, 95].

An illustration of the HMM, CRF and HCRF model is shown in Fig. 2.4. As
shown in Fig. for video event detection using HMM, a specific model should

be set up for each specific event y. For example in the golf event detection, there
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are three events: the full swing (event 1), the non-full swing (event 2), and others
(event 3), soy € Y = {1,2,3}. There are three models corresponding to three events.
During the training, the parameters are learned for each model. The class label for

testing a sequence is inferred by finding the most probable model for a sequence.

Figure 2.4: An illustration of HMM, CRF and HCRF model structure for video con-
tent analysis.

CRF can also be used for video event analysis. It is similar to HMM except that
there are links between current label and neighboring observations. CRF needs labels
for all hidden states for the training set, and it is difficult and time consuming. In

HCREF video event analysis, there is only one model and weights of different factors
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to serve as coefficients to classify the sequences. During the training process, weights
w are learned from training sequences. Estimated parameters are used to label the
events in the testing process.

There are several differences between the two models.

1. There are direct links between y and hidden states sequence in HCRF, while

HMM does not have this useful structure.

2. Links of HMM have direction. This is the generative nature of the model. Ob-
servations are “children” of states, and generated by states. So full observation

is needed for the training. The HCRF relaxes this assumption.

3. In HMM the observations are independent and only depend on their own state.
A HCRF model can have links between the current observation and other states

beside its current state.

These properties make HCRF a better tool for complex video event detection prob-

lems.

The HCRF formulation is as follows,

Plylz) = %hg;vgc\lfc(yc,hc,mg). (2.54)

Unlike the node labels y, the unknown hidden states h is summed over in the equation.

The normalize factor is,

Z@)= > > ] Yl he ), (2.55)

y eyN henN Cec

where ¢y are possible labels for a sequence.
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2.4.2 HCRF and its Inference and Training

The training and inference can be done similarly to the ordinary CRF model except
the summation of hidden variables,

L(T,w) = Z log P(y|z; w)

(z,y)eT

= Z log Z P(y, h|x; w)

(z,y)eT hEHN

= 2 log ———= Z (@, w) Z [T Yelye he o). (2.56)

(z,y)eT heHN CeC
Similarly to CRF models, there is a penalty term — Zk:l ﬁ that is added to avoid

overfitting. The function becomes

K w?
L(T,w) = Z log Z H\Pc(y@hc,wc ZT’“
(@, y)eT ,w) heHN CeC k=1
C Y Y e (z S wi y>
(x,y)€T heHN CeC keKe
— Z log Z(x, w)
(x,y)eT
K 2
- 22—5’;. (2.57)
k=1

Let £;(7,w) denote the lth term of the log-likelihood L£(7,w), | = 1,2,3. The

partial derivative of the first term with respect to wy, is,

M = Z Z h|y,w;w)2fk(yoahc7wc)- (2.58)

ow
k (z,y)€T heHN cecC

The partial derivative of the second term with respect to w is,

0Ly (T, /
2awkw > D > P hlmw))  fulye he o). (2.59)

(x,Y)€T o cyN heHN cec
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Therefore, the partial derivative of the log-likelihood (with a penalty) with respect

to wy, 1s

IL(T, w) — Z Z h|y,a:;w)ka(’yc>hc,$C)

awk (x,y)€T heHN ceC
- > > > P hlmw) Y filye he.zc)
(2,y)€T o cyN heHN cec
Wy,
- = (2.60)

This requires calculation of two marginalized distribution which can be calculated
using belief propagation. For linear HCRF models, the backward-forward inference

algorithm can be used in its inference process also.

2.5 Modeling Spatial and Temporal Interaction with
CRF Model

2.5.1 The Interaction in Image and Video Content

In image labeling, the interactions include the smoothness of the region labels and
the complex interaction of the observed features. In video shot classification, the
interactions include the smoothness of shot frame labels and the interactions of the
observed features of frames. Smoothness of labels means that the neighboring sites
tend to have similar labels except at the group boundary. The complex interactions
of features tend to regulate the labels. The features and label of one site depends on
its neighbors’ labels and features. In the ideal case, we would like to find a model
that can incorporate these interactions and learn the dependence in a consistent way

using the training data in the supervised learning.
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2.5.2 Modeling the Interaction using CRF

These proceeding properties make graphical models in particularly CRF idea to solve
the content analysis problem. The CRF model relaxes the independent assumption
of observation data which is more suitable to model the complex date and label inter-
actions in image and video content. When modeling the interactions of this content,
it is also important to take the statistical variations of the feature observations in
each class and other uncertainties such as noise into account. In the following chap-
ters, we present new CRF models with new feature functions according to different
characteristics of specific content analysis problems. The task is to infer the labels or
classes using CRF models with coefficients learned from training samples.

In this chapter, we provide the mathematical formulation of the conditional ran-
dom field model which is fundamental to the following discussion. Graphical models
are very popular for content analysis due to their many advantages over non-structural
models. The HMM is one widely used graphical model. The HMM has many limita-
tions such as conditional independence of observations and only tractable for limited
types of distributions. CRF is proposed to overcome these problems. The training
of CRF could be done efficiently by maximizing the log-likelihood of training data.
The loopy belief propagation is an approximate inference method that is effective for
general graphs of CRF. For linear chain CRF the backward and forward method could
be applied the same as HMM. HCRF is a direct extension of CRF and HMM which
is favorable for observations with hidden states. The training and inference could be
performed the same as CRF with the summation of all possible hidden states. We
will discuss how to use these mathematics in real content analysis tasks, e.g., image

labeling and video content analysis in the following chapters.
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Chapter 3

Mixture Conditional Random Field

for Image Labeling

A new conditional random field (CRF) model based on mixture feature functions is
proposed for multi-class image labeling in this chapter.

In image labeling, an image is first divided into a grid of pixels or rectangular
regions, and then features of these grids are extracted. These observed features may
include color, texture and shape. The 2D grid of an image is a graph where the
probabilistic graphical model can be applied. The CRF image labeling model is built
on the 2D grid with association and interaction potential functions [51, 50| as in
Equation (2.32). The association potential for each site i, ¢;(y;|®), represents the

log-likelihoods of the label y; at site ¢ given the observation feature vector x;, i.e.,

pi(yilz) = log P(yi|x;). (3.1)
The interaction potentials 1;;(y;, y;|x) at two neighboring sites ¢ and j are the log-

likelihoods of the interaction between neighboring grid labels y; and y; given the
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observation feature vectors x; and x;, i.e.,

Vi (i, yjl) = log P'(ys, yj|ai, @;). (3.2)
Using multiple features, both potentials can be factorized into the weighted feature
function forms, i.e., Y, wy fi(y|x). It is the responsibility of the CRF training algo-
rithm to find the weights {wy} for different potential feature functions.

In image processing, image features can be modeled as mixtures [72, 70]. In [85],
many potentials are used and the color association potentials of CRF are modeled
as Gaussian mixtures. Based on the distributions of features of different classes in
nature images (nature images mean images with nature scene), we present a new
nature image labeling method in this chapter, based on the mixture CRF model that
chooses a Gaussian or Laplacian mixtures as feature functions {fi(-)}. By using
Gaussian or Laplacian mixtures to approach the distributions of features of nature
image parts, the number of features needed in the CRF image labeling can be reduced.
Instead of modeling many potentials differently, all potentials are placed on a common
form of Gaussian or Laplacian mixtures [70, 4]. By taking advantage of the feature
distribution properties, the number of features needed for CRF is greatly reduced.
To evaluate the performance we apply the new model to the nature image labeling
problem. The performance of Gaussian and Laplacian mixture CRF is evaluated
with commonly used 7 class Corel database. The Laplacian mixture is a suitable
choice for nature images because the distributions of their features can be better
approximated by a Laplacian distribution than by a Gaussian distribution [70]. The
experimental results show that the new model with Laplacian mixture achieves best
labeling accuracy, compared with the Gaussian mixture CRF, the baseline CRF [51,

28] and the nonstructural SVM model, with the same number of features. The new
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model with only several features shows comparable results with the state-of-the-art
CRF models with at least around 100 features and complex potential structures.
The chapter is organized as follows. The solution of image labeling problem by
CRF is formulated in Section Then a new CRF model based on (Gaussian
and Laplacian) mixture feature functions is introduced in Section [3.2] After that
in Section (3.3, detail steps of the mixture model for image labeling are given. In
Section the new image labeling model is applied to 7 class Corel database and

the simulation results are shown. This chapter ends with some discussions in Section

3.5.

3.1 Formulation of CRF for Image Labeling

A CRF model is used to learn the conditional distribution over the class labels given
an image [85]. CRF image labeling is a supervised learning process. The parameters
w of CRF are learned from training images with known labels and feature functions.
With these parameters, the labels of an input image with unknown node labels can be
inferred. Here the features are node and edge features, which could be any meaningful
filter response of the site, such as color, texture and shape. The interaction and
association are defined on the graph. The task of CRF image labeling is to infer the
most probable labels given an input image based on the model parameters which are
learned from the training images.

Let @ = {z;};cs denote the observation data (features) from the input image. S
is a set of image sites which could be pixels or a group of adjacent pixels with regular
or irregular shapes. The observation at the site i, x; is a set of observation features.

The image has a corresponding labels y = {y; }ics where y; € ) is the label for site i.
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Here Y is a set of all possible labels. For example the binary image labeling problem,
Y ={—1,1}, 1 represents the object and —1 the background. The labeling problem
is to infer the underlying labels y given the image features & and parameters of the
model. The probabilistic expression of the problem is to maximize the conditional

probability P(y|x).

3.2 New Mixture CRF's

3.2.1 Mixture CRFs

The potentials in CRF are usually nonstructural discriminative classifiers such as
boosting and logistic. To let the features select themselves simplifies CRF design
routine. But it usually needs hundreds of features to converge to a reasonable result
and the convergence speed becomes slower with more features. Since most weights
of these features are zero or near zero, we could safely select features and feature
functions to reduce the complexity and improve the labeling accuracy. Selecting
feature functions in potentials that better reflect the distribution of the dominant
features could reduce the need for more features and increase the convergence speed.
In image processing, mixture models are widely-used nonstructural classifiers. The
use of mixture models as potentials for CRF image labeling has not been widely
investigated. In this chapter we discuss a new mixture potential solution, namely
mixture CRFs, for nature image labeling.

The potentials P(y|x) of Equation (2.32) could be factorized in following feature
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function forms,

vilyilz) = Zwikfik<yi|w)a (3.3)
keK;
Vij(Yi, yjile) = Zwijkfijk(yiayjlw)y
keK;;

where k is the index of features, w;, and w;j;;, are weights for these mixtures, K; and
K;; are numbers of mixtures. In this chapter we choose one mixture for each feature.

The features are represented by log-likelihood functions, i.e.,

falwil) = D 6y —1)log Y apmy, Pil(wilyi,m),

lel meM
Fir(yoryile) = Y > oy = Ddly; = 1)
leL el
log Z amyiyjpij(xikamjﬂyi?yjam)a (34)
meM

where m is the index of the mixture component, and M is the number of components.

Here ay,,,, and a,,,.» are mixture coefficients. The function
J

1 ify =1,
oy —1) =
0 otherwhere,
where | € L is the index of image classes, and L is the set of all classes. For a

Laplacian mixture, the conditional probabilities are

‘l'i - ,iml
Pws lym) = () (3.5)
i\t | Yis 2bylm )
- ‘(xlk *xjk)*,uzyiyjm|
P eXp( by;y;m )
ij(xik7xjk|yi7yj7m) = 2 . (3'6)
Yiy;m
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While for a Gaussian mixture, these probabilities are
exp(— Tt
Pi(@i |y m) = \/ﬂoyjin 7 (3.7)
exp(— (x4, —f;fjg—uyiyij )

Pij(i, Tjlyi yjm) = Nor i . (3.8)
Yiy;m

In the following mixture parameter learning discussion we discuss only the associ-
ation potential ¢;(y;|x), and the interaction potential 1;;(v;, yj|x) can be derived in
a similar manner. For a simple expression, parameters by,m, fly,m, Gy;m, and oy, are
replaced by b,,, fim, G, and o,,, respectively.

Features in nature images follow certain statistical distributions. An example is
shown in Fig. The rows are 7 classes in the Corel image database and the
columns are five different features: 3 Lab colors and 2 positions (horizontal and
vertical offset from the image center). Although they are different, it could not be
classified correctly using traditional non-structural classifiers. Any distribution could
be approximated using a mixture of Gaussian [5], so one can use Gaussian mixtures as
feature functions, but usually more mixture components are needed if the distribution
is far from Gaussian. From Fig. [3.1, we find that the Lab color and location feature
distribution of nature image are more likely to be Laplacian mixture rather than a
Gaussian mixture.

Assume that there are N training features used in mixture parameter estimation,
{x® o 2™ o 2 where 2™ could be one feature or a set of several features.
The class labels {y; }, in equation (3.4), for each site i of the training images are known.
The index of sites ¢ and features k in equation (3.4) are omitted to simplify expression.
Based on the experimental distributions of color and location features, we suppose

these features follow Gaussian mixture distributions, i.e., 2 |m ~ N (fim, o), or
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Figure 3.1: Feature distribution of 7 classes of Corel image database. The columns
correspond to five different features: Lab colors (L: lightness, A,B: color-
opponent dimensions) and positions (H: horizontal and V: vertical offset
from the image center), from left to right.
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Laplacian mixture distributions, i.e., 2™|m ~ L(tiy, by), where m = 1,..., M, N(-)
and L£(-) denote Gaussian and Laplace distribution, respectively. Parameters of the
Gaussian distributions 8,, include the mean pu,, and the variance o,,. Parameters of

the Laplacian distribution 8,, include the mean p,, and the scale parameter b,,. For

each training features 2™ suppose the hidden variable 2™ = (zin), ceey 2in ), ey z](\Z))
,n=1,...,N. If the data is generated from the mth component of the mixture, all

elements of z(™ are zeros except the mth element, which equals one.

To find the most probable parameters for a certain number of mixtures, the log
likelihood of the joint distribution needs to be maximized. In most cases when the pa-
rameter learning process with joint distribution is not tractable, the EM (Expectation-
Maximization) algorithm provides an effective solution. The EM algorithm is an
iterative process with two steps in each iteration: expectation calculation step (E-
step) and maximization step (M-step). We formulate EM algorithm [20] to estimate
Gaussian and Laplacian mixture parameters as follows (The calculation details of
Laplacian mixture parameter estimation is shown in Appendix B). The detail steps
using EM algorithm for parameters training in a Gaussian mixture can be found in

165][10].

e E-step. In this step likelihood functions are calculated with initial guess of

parameters or from previous maximization step,

_ (z(n) —Hm)2

exp( 2
——m (Gaussian;
P(™ |20 = 1;6,,) = g
eXp(f‘I b*ld‘m‘ X
CT— Laplacian.
m=1,...,M and n =1,..., N, and then the expectation values of zﬁ,?) with
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respect to likelihood function are calculated as follows,
() Pz = 1;6,,)a,
z =
m M n )
Zj:l P(x(n)|zg(‘ ) = 1;6;)a,

where (-) represents the expectation.

e M-step. In this step parameters that maximize the expectation are found,

SN )z

N, Gaussian;
~( n= " n
Al = ) =
() {1, Lanlaci
ST . aplacian.
R FOR )
. N (n)y(.(n) _ (Y2 .
Om = 2”21;}; >(<x(n)> fo) Gaussian;
n=1 Zm
() _ T e il :
by, = ==l o Laplacian.
Zn:l <Zm >
N
1
A0 — n)
am - N <zm >7
n=1

where m = 1,..., M, [ = 1,...,L, and L is the number of iterations. The
parameter ﬂ%) is the estimation of pu,, after the [th iteration, based on the
estimate value [Af;” after the previous (I — 1)th iteration. The E-step and M-

step are performed alternatively until the parameter estimation has converged.

With known class labels for each site of the training images, one can group the
features of the same label and use the EM algorithm to calculate parameters of
the label. When class labels are known for one site and its neighboring site, the
parameters can be learned for their label interaction. Knowing these parameters
the feature function of the model can be calculated using the Equation (3.4) for both
training and inference of CRF. Once these functions are known, the belief propagation
(BP) inference and stochastic gradient descent (SGD) weight learning can be applied

in this new model.
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3.2.2 Mixture CRF Training and Inference

The belief propagation and stochastic gradient descent are used for inference and
training of the new model. In the belief propagation algorithm [104], the exp(¢;(y:|x))
and exp(1;;(yi, yj|x)) are the node belief and the edge belief of the message passing,
respectively, these both depend on labels. The parameters of each mixture for different
labels are known before CRF training. As long as the weights w = {wy, w;;x} are
given, the beliefs for each type of features can be calculated .

All weights of the CRF model w are obtained using stochastic gradient descent.
Here all weights are assumed the same for all sites, this approach is a tangible training
solution. Since the new model is log-linear, one can use the stochastic gradient descent
to maximize the conditional log-likelihood (CLL). The parameters are updated based
on a batch of training examples each time. In our experiment, the number of training
images in a batch is set to be 3. There is one weight for each mixture in the new CRF
model. The partial derivative of the conditional log-likelihood log P(y™|x™); w)

with respect to the weight wy, (that could be wy, or w;;x) is calculated as follows [23].

0
Dwn log P(y"™[2"™); w)

0
fk(w Y ) _3wk og (.’L‘ ’w)
= fk(a:("),y("))
=T~ P /
_Z(w(iw,w) Zyw)/ afk, exp > wk/fk,(m(n), y™ )

_ fk(ac("), y(n))

(n) q4(n)’
_ (n) 4y(n)’ exp 2 wyr S (@ ™)
Zy(n), fk (33 ’ y ) Zy(”)” exp Zk’/ wk//fk// (a:(")ay(n)//)

/

Here n is the current training example and both y(”)/ and y(")” represents the possible
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labels. The fi(-) (fix(-) or fijx(-)) are the feature functions in the equation
and P(y(")llw("); w) is the conditional probability of label y™' given the weights w
and features (™. According to this partial derivative, the weights wy, are updated

iteratively as

wi = n(fe(@™, y™) = (fu(@™, y™))), (3.11)
where 7 is the learning rate. The weight change is proportion to the value of the
feature function for the known label ™ minus the average value of the feature func-
tion for all possible labels y(”)/. Here a penalty term should be added as in Equation
(2.27). Since the belief propagation method is used for inference, the probability of

all alternatives y™ for each node and edge can be obtained during this process.

3.3 Mixture CRF based Image Labeling

Based on previous analysis, the new CRF model with a Gaussian or Laplacian mix-
ture can be applied in image labeling tasks. Since the CRF model is computational
intensive, this new model is apply on superpixels instead of pixels, to reduce the com-
plexity. Images are first oversegmented to superpixels. Then features are generated
for both training images and the image to be labeled. Distribution parameters are
learned from training features, and the feature functions are calculated for training
data. Then weights are learned using stochastic gradient descent, and the feature
functions are generated for test images. The image label inference is done with belief

propagation.
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(a) (b)

Figure 3.2: An example of superpixel.

3.3.1 Superpixel

The task of image labeling is to find an appropriate content label for every image
pixel. This approach is highly redundant, since most likely a pixel belongs to the same
object category as the neighboring pixel. Here the mixture CRF model is built on
small homogenous segments called superpixels 36, 28], which is a composition of a
small group of neighboring similar pixels [79, 66]. Bottom-up normalized cut, which
is an oversegmentation of images, is utilized to generate this image representation
by multiple superpixels. With a large number of small regions, the potential error
induced by such a oversegmentation is relatively small. Although the superpixel graph
of an image is irregular in nature (see an example in Fig. [3.2(a)), this model is built
by making the pairwise relationship compatible with the irregular shape. Fig. [3.2(b)
shows that the superpixel 17 has six neighbors 13, 15, 16, 22, 23 and 25. These six
superpixels form the set of neighbors for superpixel site 17. Although a superpixel
is still a small part of a image, the number of nodes of the graphical model used is
greatly reduced. After reducing the number of node used in the graphical model, the

computational burden of the CRF training and inference is much relaxed.

o4



3.3.2 Steps of Mixture CRF Image Labeling

The basic steps of image labeling using a mixture model are listed as follows.

o Step 1: generating the training data superpizel graph and features. Training

images are oversegmented to superpixels and features of each superpixel are
generated. Various kinds of features are used. Of particular interests are those
features that can be modeled by a Gaussian or Laplacian mixture. In nature im-
ages, many features such as color and position follow a mixture model especially

the Laplacian mixture as shown in Fig.

Step 2: learning mixture parameters. Superpixel features are grouped by train-
ing data superpixel classes. EM algorithm is used to compute the parameters
of Gaussian and Laplacian distributions. After obtaining features from training
images, the mixture parameters for each class and neighboring class combina-
tion can be calculated. Parameters of the mixture for each class are used to
calculate the associate potential feature functions. Parameters for each class
combination are for interaction potential feature functions. Parameters of these
mixtures are learned by the EM algorithm from the training data before the
CRF training. Each feature function for each class of association potential is
represented by two component mixtures. Each feature function of each neigh-
boring class combination for interaction potential is also represented by two

component mixtures.

Step 3: training the CRF. The potential feature functions are calculated by
using parameters learned in Step 2. In this step the stochastic gradient decent

training is performed iteratively. The CRF weight parameters for potential
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feature functions are learned.

e Step 4: generating superpixel graph and features of testing images. The poten-

tials are computed using mixture parameters learned from Step 2 for inference.

o Step 5: performing the inference of the testing image superpizel labels using
belief propagation. In belief propagation, the messages are passed from one

node to another based on the probability calculation of nodes and edges.

3.4 Experimental Results

To evaluate the performance of this new CRF model with Gaussian and Laplacian
mixtures, image labeling experiments were conducted on the commonly-used 100-
image subset of the Corel image database [2]. There are seven classes, rhino/hippo,
polar bear, water, snow, vegetation, ground, and sky. The task is to recognize and
segment these 7 classes. The database has 100 images, the images have 180 x 120
pixels. In the experiment, the database is divided randomly to 50 training and 50
testing. Due to the fact that the pixel-based CRF is computationally intensive, the
new mixture CRF is built on superpixels, similar to [34, 28]. Each image is segmented
to roughly 60 superpixels. The number of superpixels is chosen for all image labeling
experiments in this thesis because of the image size used. The number affects the
performance [28] but it does not affect our comparison.

The features used in the new model are constructed from low-level descriptors.
For each superpixel, a feature vector with five components (Lab color and locations)
is computed. The exact feature value of a superpixel is the mean over all pixel

feature values of this superpixel. A bias term 1 is always added to the feature vector.
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Altogether the association potential has six original features. The interaction feature
vector is calculated as the absolute difference of the two neighboring superpixels’
features. Adding the bias term, it is also a original feature vector with six components.
With the original superpixel features of the training images, parameters of mixtures
for both association and interaction potentials can be calculated accordingly.

With these estimated mixture parameters, the mixture CRF training and inference
are performed for image labeling. Here the learning rate n is fixed to be 0.0001.
Starting with random weights, the stochastic gradient descent algorithm converges
after about 10 iterations for the Laplacian mixture CRF. Table[3.1 shows the confusion
matrix of the new model comparing to the baseline CRF using logistic potential
feature functions and SVM classifier with the same number of features [50]. Note
that in the baseline CRF the quadratic expansion of the features is used and has
desirable results. For every class, the performance of the Laplacian mixture CRF is
better than the Gaussian mixture CRF and the baseline CRF.

Fig. (3.3 shows the receiver operating characteristic (ROC) curve comparison
between the mixture CRFs and the baseline CRF. The ROC curves plot the false
positive rate versus the true positive rate. True positive rate is the rate of classifying
positive instances correctly among all positive samples available during the test. False
positive rate is the rate of classifying negative instances wrongly among all negative
samples. Note that average values of detection rates for multiple classes are used in
ROC computation for this multi-class case. If the true class and predicted class are
the same, it is called a match. Suppose for the [th (I =1,...,7) class of images with

7 classes,

e the number of correct matches (classification) is the true positives T},
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Table 3.1: Confusion matrix of new mixture CRF model on Corel dataset

rh/hi | pb wa sn ve gr sk
79.9 |0 5.6 0 13 102 |0
. {704} | {0} | {06} | {04} | {114} | {86} | {0}
thino/hippo | za'ol | (36 | (14.8) | (1L9) | (28) | 3.7) | (0)
48.7] | [0] [14.1] | [19] | [252] |[10.3] |[0]
0 72.5 |0 148 | 5.1 7.6 0
Colarbear | (0) [ {716} | {0} | {140} | (0.9} | {55} | {0}
(1.7) | (56.8) | (5.1) | (17.3) | (9.8) | (9.3) | (0)
1.0 | o] 8.3 | [16.7 |[5.6] | [685] |[0]
5.8 0.2 67.6 | 3.7 130 |74 2.3
. {15.1} | {1.9} | {655} | {4.6} | {63} |{3.9} | {2.8}
warer (6.5) | (0.7) | (62.3) | (14.1) | (12.7) | (0.5) | (3.2)
2.4] | [0] 46.7) | [21.7] | [13.2] | [16.0] | [0]
0.2 0.9 8.2 86.1 |27 1.7 0.2
(34} | {11} | {132} | {77.6} | {32} | {14} | {0}
SHOW 0.2) | (0.7) | (21.1) | (71.9) | (0.3) | (0.5) | (5.3)
0] 0] 12.2] | [76.0] |38 |69 |[0.1]
46 1.9 49 6.7 67.4 | 117 |28
i {14.2} | {27} | {53} | {0.6} | {59.6} | {5.9} |{2.5}
vegetation (6.1) | (3.4) | (13.8) | (9.6) | (54.5) | (7.3) | (5.3)
3.2] | [0] [4.3] | [7.8] | [741] |[8.1] | [2.6]
6.4 41 47 3.9 125 |67.9 |05
1 (215} | {55} | {42} | {6.7} | {105} | {515} | {0.1}
groun (12.4) | (6.6) | (12.3) | (11.5) | (9.4) | (47.1) | (5.7)
3.8 | [0] 43] | [9.6] | [101] | [72.3] |[0]
0 0 0 0 10 3.3 86.7
Sky {oy | {o} |{o} {0} |{20.0} | {0} |{80.0}
(0) (0) (0) (0) (11.8) | (2.0) | (86.2)
0] 0] 0] 38.5] | [15.4] | [0] [46.2]

Note: Accuracy of the Laplacian mixture CRF on the 7-class Corel database. The
confusion matrix shows the pixel-wise recall accuracy (%) for each class and is row
normalized. Row labels are the true classes and column labels are the predicted
classes. The second number in braces in each cell shows the Gaussian mixture CRF
result. The third number in parentheses in each cell shows the baseline CRF re-
sult. The fourth number in square bracket in each cell shows the nonstructural SVM

classifier result.
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e the number of matches that were not correctly detected is the false negatives

Fnb

e the number of non-matches that were not correctly rejected is the false positives

F

ply

e the number of non-matches that were correctly rejected is the true negatives

T

Then the average true positive rate and false positive rate are

7
T,
T, = 7Zl=1 L (3.12)
21:1 (Tpl + Fnl)
7
F
o= =ty (3.13)

" 217=1(Fpl+Tnl).

The average accuracy rate of this image labeling task is defined as the percentage
of image pixels assigned to the correct labels for all seven classes in the Corel database,

1.e.,

_ ZZ:l(Tpl + Tnl)
217:1 (Tpl + P+ Fpl + Tnl)

With only 5 features the overall accuracy classification rate of our Laplacian mixture

(3.14)

C

model is 75.4% which is comparable with the state-of-the-art results (in the range of
70% — 80%) in [85, 34, 28]. Previous papers usually have at least around 100 features
and many different types of potential feature functions which prevents efficient learn-
ing and increases the difficulties for reproducing the results. With the same number
of features the accuracy of the baseline CRF is 64.6% and Gaussian mixture mode is
68.04%. The classification performance of support vector machine (SVM) using LIB-
SVM [13] which is one of the best nonstructural model is also known. The accuracy

of SVM classification is 61.7% which is less than CRF structural model. This proves
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the performance advantage of applying CRF graphical model in image labeling over
nonstructural model. The results indicate that the use of Laplacian mixture and CRF

significantly improves the classification performance.
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Figure 3.3: ROC curve of the Laplacian mixture CRF, Gaussian mixture CRF, and
the baseline for Corel 7-class database.

In Fig. 13.3] the red solid curve indicates the ROC of the Laplacian mixture CRF,
the black dotted curve indicates that of the Gaussian mixture CRF, and the blue
dashed curve shows that of the baseline CRF. It is evident from Fig. [3.3 that the
ROC plot of the Laplacian mixture CRF is closest to the upper left corner than that of
the Gaussian mixture CRF and the baseline CRF. Therefore, the Laplacian mixture
CRF model has a highest overall accuracy. The AUCs (Area under ROC curve) of
these three methods are: Laplacian mixture CRF, 93.65%, Gaussian mixture CRF,

90.95%, and Baseline CRF, 89.91%. AUC is the area under the ROC curve which is a
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usually used performance indicator. It means the probability that when we randomly
pick one positive and one negative example, the classifier will assign higher score to
the positive example than the negative example. It can also be observed from Fig.
3.3 that the performance of the Gaussian mixture CRF is better than that of the

baseline CRF.
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Figure 3.4: Learning curves of the Gaussian mixture CRF, Laplacian mixture CRF
and the baseline CRF, using Corel 7-class database.

Fig. compares the learning curves of the Laplacian mixture CRF (red solid
curve), the Gaussian mixture CRF (black dotted curve), and the baseline CRF (blue
dashed curve). The learning curves show the test errors as a function of iterations in
the training process. The Laplacian mixture CRF achieves lower test errors after 4
iterations compared with the baseline CRF and Gaussian mixture CRF.

To have a qualitative analysis, the performance is shown in Fig. [3.5. These figures
show that with the same features both qualitative and quantitative results of both the

Laplacian mixture CRF and the Gaussian mixture CRF perform better than those
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of the baseline CRF.
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() original image (b) groud truth (c) baseline CRF  (d) Gaussian mixture CRF (e) Laplacian mixture CRF

- snow

Figure 3.5: Some labeling results for nature images in the Corel dataset using the
Gaussian mixture, Laplacian mixture and baseline CRF.

To demonstrate the effectiveness of the new feature selection, performances of
using Lab color feature only (green dashed curve), position feature only (black dotted
curve) and all features (red solid curve) are compared in Fig. [3.6. The Lab color
features are more useful than the position features in the image labeling of nature
images. Obviously, the combination of two kinds features are better than any single

set of features.
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Figure 3.6: ROC curve of the Laplacian mixture CRF with different features for Corel
7-class database.

The better performance of the Laplacian mixture model are due to three reasons.
First, the nature image features most likely follow Laplacian mixture distribution as
shown in Fig. (3.1 Second, the EM algorithm effectively extracts the parameters of
the distribution. Third, the feature selection is effective. Both the class and class
combination feature functions contribute the increasing accuracy of classification. The
combination of Laplacian mixture and CRF provides effective and efficient solution

for image labeling.

3.5 Discussions

A new image labeling model based on mixture CRFs is introduced in this chapter.
After analyzing the distribution of features of nature images, we apply Gaussian
or Laplacian potential feature functions to model associations and interactions in

CREF. The model takes advantage of both the unstructured Gaussian or Laplacain
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feature distribution and structural discriminative CRF model. The combination of
the two provides a new framework for nature image labeling. Also instead of modeling
different potential feature functions in CRF differently we represent all potential
feature functions in the mixture format. The training of the new CRF is performed
by stochastic gradient descent. Belief propagation inference is used to infer the most
probable labels. To test the effectiveness of the new model it is applied to nature image
labeling of seven class Corel database, with the same number of features as the new
Laplacian mixture CRF shows performance improvement over the Gaussian mixture
CRF and the baseline CRF. Our model with only several features shows comparable
result with the other CRF models with hundreds of features. Although the results are
preliminary, not superior to other complex models and more simulations need to be
done for other databases, the new mixture CRFs put the image labeling problem in
a new way which is not seen in other literatures as far as we know. The new mixture
CRF model is a general framework with the advantage of classification accuracy
rate and training simplicity, which can be applied to other applications related to
multimedia content analysis. Future works include improving the performance by
incorporating more relevant features, testing the method for other more complex
databases and further reducing the overall computational complexity by using other

approximate learning algorithms.
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Chapter 4

CIBR-Based CRF Model for Image

Labeling of Large Database

In this chapter, the problem of image labeling with large training databases is inves-
tigated. A new image labeling approach that implicitly incorporates top-down in-
formation using content-based image retrieval (CBIR) with conditional random field
(CRF) model is presented.

While providing more information, large labeled training databases with various
kinds of images posses new challenges such as content ambiguities. It is difficult
to extract content probabilistic model from a large image database. To reduce the
content ambiguities and increase the recognition accuracy, large image databases are
reduced to small relevant ones by using the content-based image retrieval (CBIR)
models in this thesis.

CBIR is a querying system using image content such as low-level features and
high-level semantic content [82, 57, 12, 18]. It finds applications in computer vi-

sion and becomes popular because it could be applied in mining digital images in
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large databases. The CBIR system provides a solution by examining image content.
Content-based analyzes of the content that can be found from the image itself and
may refer to colors, shapes, textures, or other information. It overcomes disadvan-
tage of the traditional search, which is based on metadata such as keywords and is
laborious, expensive and sometimes subjective.

The proposed method in this chapter is devised for large labeled training databases
by learning the top-down content information with CBIR and integrating CBIR re-
trieval information with the CRF model. This system has two parts: CBIR image

retrieval and CRF image labeling classifier.

e A small content similar training set for CRF labeling is built using retrieved
CBIR matches from a large image database. The top-down content information
is learned using CBIR features, and the content of the input image is used to
select the several most probable content similar images in the labeled database.
Since the search is content-based, the top-down information is reflected in the
image retrieval results. Content similar images are used as the training set for
the image labeling process. The retrieval scores (similarity measure) are used
as weights for the global factor in the CRF labeling model in order to reflect

the scene similarity.

e In CRF-based image labeling, each node represents a random variable whose
labels is to be inferred, and each edge represents a dependency between two ran-
dom variables, labels and observations. To achieve global consistency of image
labeling, we present a novel superpixel-based CRF probabilistic model with a
revised global factor. The use of superpixels reduces the bottom-up calculation

burden. The loopy belief propagation [104, 69] and stochastic gradient descent
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[92] are the inference and training algorithm used in our experiments.

The new image labeling framework based on CBIR and CRF is tested using the
Labelme database which has a very large number of images, these images where
labeled by other researchers under a uncontrolled environment. Test results show
that the new image labeling model based on CBIR and CRF demonstrates promising
results, compared with the CRF approach without retrieval.

This chapter is organized as follows. First the idea of applying CBIR to image
labeling is presented in Section|4.1. Then in Section 4.2/ we propose a new superpixel
CRF model which incorporates CBIR top-down information from Section [4.1. After
that simulation results are given to prove our analysis in Section 4.3. Finally we

conclude the chapter with discussions and future research directions in Section

4.1 CBIR for Image Labeling

In image labeling, the content of the training database plays a central role for ac-
curately labeling the input image. For simplicity the layout and precisely labeled
images are in a small and specific database, it is appropriate to let the learning meth-
ods understand the content themselves. For large and uncontrolled circumstances,
the problem becomes troublesome because of the content ambiguities and training
image labeling errors. With the increase of the database size, the semantic meaning
of the content gets more ambiguous and the labeling error increases. There are two
ways to deal with this problem. The first is to build a superior machine learning
algorithm. This approach is not realistic based on the current technology because of
the computational complexity. The secondary is to select a subset of relevant train-

ing images to train the image labeling model. In this chapter we take the second
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approach. We present a new method in which CBIR is used to choose the relevant
images.

Traditional retrieval methods are based on text search, e.g., keyword search. For
example, if one wants to label the floor area of an input image from a large database,
the “floor” is the keyword in the database search. Keyword search usually returns a
lot of images, sometimes over thousands, from a large database, and most of them
are different from the input image to be labeled. If all images chosen by the keyword
search are used to train the image labeling classifier, parameters learned will be far
from the model that the input image actually belongs to or the model is too complex
to be inferred. The keyword search provided is a high level that includes concept
ambiguities. Keyword could mean something totally different such as the floor lamp.
Even with the same meaning the floor has different appearances and follows a different
model in different kinds of scenes in large databases. For example, the floor in the
kitchen is different from the floor in the hallway. Traditionally the topic or the
scene content is retrieved and a (Bayesian or random field) probabilistic model with
a hierarchical structure is built to solve the content ambiguity [35, 90, 56, 9, 30].
However, this kind of method is highly complex and only useful for small databases
with limited classes.

Without dealing with a very high level abstract concept, we present a new ap-
proach to provide a better training set for image labeling of a large image database.
A new retrieval system for content-based image retrieval (CBIR) that reflects top-
down information, is built for the purpose of improving labeling accuracy. The CBIR
system takes a single input image, retrieves content similar images from the database,

and uses these images as the training set for the image labeling. The search by the
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CBIR system is based on the content information of the images. Since the large la-
beled image database also has the keyword information, one can use keyword search
as the preprocessing step of a CBIR system for image labeling. A CBIR system can
be divided into two components: signature extraction to describe an image math-
ematically and similarity measure to assess the similarity of two images given the

abstracted expression of the images.

Signature Extraction

In this chapter, color, texture and salient features are used in the CBIR system.

e Color features. The color histogram of red, green, and blue (RGB) color space
is applied in our system. With 10 bins for each color there are 30 color features.
Although RGB may not be effective as other color spaces with respect to other
applications, in large database it exhibited good global indicator for similarity

of images.

o Texture features. We first transform a RGB image to gray scale, then apply
the Leung-Malik (LM) filters [55], then take mean response of the image, to
get texture features. The LM filter bank set is 48 filters in multiple scales and
multiple orientations. It includes first and second derivatives of Gaussians at
6 orientations and 3 scales which makes a total of 36, 8 Laplacian of Gaussian

(LOG) filters, and 4 Gaussians. Altogether there are 48 texture features.

o Interest point features. We use the scale invariant feature transform (SIFT) [61]
feature vector which is proved to be very useful in object recognition. Each

interest point has a SIFT feature of the size 128. The principle components
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are obtained using principle component analysis (PCA) [44] to indicate interest
point features. For an image we have a salient point feature vector with 128

elements.

Altogether there are 206 features used in the CBIR system. Color features are de-
signed to define the overall color distribution of the images. Texture features are used
to reflect the global texture of the images. Interest point features are used to gain the
support of object recognition. These features carry top-down meaning of the whole
image. CBIR finds the meaning of the content information implicitly. Given an input
image, the feature vector needs to be computed and compared with the signatures of

images in the database.

Similarity Measure

A multivariate Gaussian similarity measure (retrieval score) as in paper [18] is used in
the CBIR system. In the CBIR retrieval system, given an input image feature vector

vy, a retrieval score for each image in the database is defined as

('v—'vI)TE('v—'v[)) (4.1)

D(v) = exp (- 5

where v is the global feature vector for an image in the image database, and the
superscript T denotes the transpose of a vector. Here X is the similarity matrix with
the adjustable weights on specific color, texture and salient features. The retrieval
score D(v) is a multivariate Gaussian distance measure that reflects the similarity
between retrieved images and the input image. If the retrieved image is the same as
the input image, the retrieval score will achieve its highest score, i.e., 1. Each feature
in the vector is normalized to zero mean before the distance calculation to reduce the

disparity among features. In our experiment the ¥ is set to be the inverse covariance
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matrix of features. For each feature we assume the feature of vy is the mean value.
The X is calculated based on sample images from the database. The Gaussian like
distance measure is easy to be applied to CRF-based image labeling presented in the
next section.

With the feature extraction and similarity measure the CBIR system can find the
content similar images in the database based on the ranking of distance measures.
Images with highest retrieval scores are retrieved from the large database and used
in the labeling process. The number of images can be determined by the distance
or percentage. For example, top ten percents of retrieval results are selected as the

matched image data set for labeling. The training set is now determined by CBIR.

4.2 A New Superpixel CRF Model with CBIR Top-
down Information

The conditional random field (CRF) model is widely used in image labeling. To
solve the labeling problem with large database, we present a new CRF image labeling
model to incorporate the CBIR similarity score as a weight for the new global factor.
To further reduce the complexity of pixel-based CRF, the new model is built on small

homogenous segments called superpixels, which is introduced in Section 3.3.1.

4.2.1 A New Superpixel CRF Model with Global Feature

weighted by CBIR Score

Both top-down information from CBIR and other superpixel information are used in

a new CRF model to merge superpixels into semantic meaningful labeled segments.
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Since the similarity between the retrieved image and the input image for labeling is
relevant to labeling task, a new global factor is added accordingly in the CRF model
to reflect the global similarity. Adding a new term to equation (2.32), the posterior

probability in the new CRF model becomes

Z(la:) exp <Z i (yilz) + Z Z Yii(yi, yjlze) + Z@%(%@)) , (4.2)

ieS i€S JEN; €S

Pylz) =

where 1), (-) is the new global factor based on CBIR retrieval scores. This new model
reflects both the local and the global factor of the image in the retrieved group.
The unary, pairwise and global factors in the new CRF model are defined as

follows in factorized form,

%’(?Ji|1') = Zwukfzk(yz|m)a (4-3)
ke

Vij(Yi, yjle) = prkfijk<yiyyj|m)a (4.4)
ke,

wv(yi@) = Zkaka(yi‘w>’ (4-5>
ke,

The {fix(-)} and {fi;x(-)} are feature factors corresponding to association potentials
and interaction potentials, respectively. The £ is the index of features, IC,, K, and K,
are sets of all possible indexes k for unary, pairwise and global feature functions. The
unary, pairwise and global feature factors have K, K, and K, features, respectively.
The wyk, Wpk, Wy, are weights for the three kinds of factors.

Color and texture features are used in local unary factors, and the difference of
two neighboring superpixels’ color and texture are used in local pairwise interaction
functions. For a binary classification problem, define the label set as Y = {—1,1},
the featured functions can be defined as fix(y;|x) = vy, for i € S and k € K, and
fiie(Yi, yile) = viy; - |zi, — ;.| for (i,7) € E and k € K,. Variables z;, and x;, are
kth features of site ¢ and site j, respectively. To avoid training diverge problem, a
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constant scalar 1 is included in the feature vector @, which is replaced by (1, ) then.
The new global factor f,; is based on location potential in the new CRF model.
It is proved that location is one very useful feature globally [28]. Our global feature

is defined as

for(yil®) = D(v) Hi (i, Li), (4.6)
where [; represents the normalized position of the superpixel inside the image. The
function Hy(y;, ;) is the global position potential which is the possibility of the super-
pixel belonging to a certain class given the position. It is calculated from the training
data. Fig. [4.1 shows an example of estimated position potential function H for four
classes: floor, window, ceiling and wall. The D(v) is the similarity measure used in
the CBIR. This function is used to weight the global factor for the purpose of better
training the model. The global factor is more important during the training for the
image which is similar to the input image we want to label. The function f,(+) indi-

cates the scene similarity affects the confident of the location potential global factor.

ol 1 P

floor window ceiling wall

Figure 4.1: Position potentials.

The new CRF model is a linear weighted summation of all local unary, pairwise
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interaction and global feature factors as follows in a log-linear form,

Pylz;w) = mexp{z Z Wi fir (yil )

i€S keky

+Z Z Z wijk fij (Yi> yj|T)

i€S jEN; kek,

30D wafulyl@)}. (4.7)

i€S kek,
The Z(x,w) is a normalizing factor

Z(x,w) = Y Py|mw), (4.8)
y'eyN

with the weight vector w = (w;; wyji woi) to be learned for the feature factors, where
N is the number of superpixels in the input image.

The weights are learned from the training set, a subset of large image database, in
which all retrieved images have higher retrieval scores relative to other images in the
database. For the irregular graph, the problem is ill-posed if the weights are different
for different sites since the graph structure is different from one image to another. To
approach a tangible solution we assume all weights are the same for all sites. Since
the model is assumed log-linear, the stochastic gradient descent algorithm is used to
maximize the conditional log-likelihood (CLL) [23] in the CRF model. Parameters
are updated based on a batch of training examples for each iteration. There is one
weight for each feature in CRF. The partial derivative of the log-likelihood function

with respect to each weight wy is calculated as

QePWw) - S () - (W piom) . (09)

Ow (x,9)€7s

where 7, is a subset of the observation set T'. Here gy’ represents the possible labels and
P(y'|x; w) is the conditional probability of label ¢y’ given the weights and features.

The feature function fi(-) can be fi, fijk, or fur depending whether the index k
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belongs to the set K, K, or K,,.

The weight updating rule is as follows,

wem = S (fu@) — (Y @) pla) (4.10)

(z,y)€Ts

where 7 is the learning rate. The weight changes according to partial derivative of the
feature function for the known label minus the average value of the feature function for
all possible y’. The probability of all alternative ¢y’ for each node and edge is obtained
in the belief propagation inference. Note that a penalty term should be added also
as in Equation (2.27) to overcome overfitting here. The parameter learning is done

iteratively.

4.2.2 Steps of CBIR-based CRF Image Labeling

The new labeling approach based on CRF and CBIR provides a better solution for
labeling large labeled databases. A flowchart of this algorithm is shown in Fig/4.2.
First, the CBIR algorithm, which implicitly provides top-down information for CRF
and is performed for the input image. The content search is based on features of
both the input image and images in the large training set. The top retrieved matches
are served as the real training set for CRF labeling. Second, a new superpixel CRF
labeling model is used as classifier to label the input image. The new model is different
from the traditional CRF model by adding a position potential global feature. The
position potential is weighted by the similarity measures from CBIR and reflects
how the similarity affects the global information in CRF. In this way the similarity
information is integrated into the CRF model, and the model is simplified to a log-
linear form with many feature factors. The parameters of the model are learned from

training sets using gradient descent. The general model can be used in common image

5



Labelme

Input Image Database
Keyword
Search
A A h
CRF CBIR CBIR
Feature Feature Feature
Extraction Extraction Extraction

Y

Content Based Image

h 4

Retrieval
Content Similar
etrieval Result
CBIR Similarity L
Scare CRF
Feature
Extraction
vV v
CRF |, CRF
Inference |~ Training
Output

Labeled Image

Figure 4.2: Flowchart of CBIR-based CRF image labeling.

labeling tasks.
Besides, the new CBIR-based CRF model can also incorporate the method pre-

sented in the previous chapter, by representing all potential feature functions in a

Laplacian or Gaussian mixture format.
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4.3 Simulation Results

The proposed model is applied to floor area labeling of indoor images. Automatic
detection of the floor area is useful for scene understanding and 3D reconstruction
of room setting [19, 96]. We evaluate the model using the commonly used Labelme
database. The keyword “floor” is used to set up a new smaller database. The new
database has 1124 images in total, which have the floor area labeled by other re-
searchers.

The performance of the new CBIR-based CRF model is compared with a tradi-
tional CRF model without CBIR. If all 1124 images are used as a training set for
the CRF model without CBIR, the CRF training fails to learn parameters properly
because of the varieties of database contents. Only 53 representative images are se-
lected as the training set for the traditional CRF learning without retrieval. Some

sample images of the new database are shown in Fig.

4.3.1 CBIR Results

The CBIR is used in searching the large database to retrieve content similar images.
Fig. 4.4/ shows four examples of retrieved images using CBIR. Images at the first
column are input images. The retrieved top 4 matches are shown accordingly with
the similarity score listed above. The similarity matrix ¥ is estimated based on 53
images, the top 10 images are used for CRF training. From these examples, one can
see that the hallway and room concepts are separated implicitly in the retrieved set.
Therefore, it is unnecessary to build a probabilistic model to learn these concepts

separately. The top-down information is learned through the CBIR system.

7



Figure 4.3: Sample images from Labelme database with keyword floor.

4.3.2 CBIR-Based CRF Labeling Results

Fig. shows image labeling results of four input images using the new CBIR-based
CRF model. The first column contains the four test input images. The second column
contains the ground truth segmentation results, which is labeled by other researchers
using Labelme tool. The third column contains the CRF labeling result using
all 53 images for training. The fourth column contains the CBIR-based CRF result,
which uses the CBIR retrieved images for training. The fifth column contains the
CBIR-based Laplacian mixture CRF result. The features used in CRF models are
the same which includes CIELab color features, edge percentage of the superpixel,
as texture features for both the unary and pairwise feature factor. For CRF models

combined with CBIR, additional position potential weighted by CBIR retrieval scores
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Figure 4.4: Example CBIR results and corresponding retrieval scores.

is used as a global feature. Fig. [4.5 also shows the superpixel structures. The number
of sueprpixels in each image is set to be around 60. The number of iterations for
training is set to be 100, and the learning rate n is 0.001.

The results prove that using the CBIR to select a small training set improves the
image labeling accuracy. With 53 images to train the model it could not find the floor
area for two of four images. For all four images, the performance of the new method
is better than the CRF model without CBIR.

The average accuracy rate of the new CBIR-based CRF model for 1124 images,
as shown in Table[4.1} is much higher than the average accuracy without CBIR. The
average accuracy of floor means the percentage of floor pixels that is correctly labeled

as floor. The labeling error is significantly reduced by using CBIR-based selective
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Figure 4.5: Example results of floor labeling.

training and weighted global factor. By introducing Laplacian mixture into the CRF
model, the performance of CBIR-based Laplacian CRF model is further improved,
especially for the third input figure shown in Fig.

Fig. 4.6/ shows the learning curve of CRF labeling for input image 1 of the Fig.
4.5. Start from random weights, the initial error rate is high, and after several it-
erations the error rate of both methods reduces to a stable level. This also proves
the convergence and effectiveness of the log-linear simplification. The CRF training

finds a model with better parameters for input image using CBIR than the method
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Table 4.1: The confusion matrix of 1124 images for floor area labeling using CBIR-
based CRF (in bold) and CRF without CBIR (in parentheses) with 53

images for training.

floor other
79.34% | 20.66%
(52.94%) | (47.06%)
12.71% | 87.29%
(10.98%) | (89.02)

floor

other

Note: Row labels are the true classes and column labels the predicted classes.

without CBIR. Based on the results, it is reasonable to believe that the top-down
information could be learned by CBIR and the new labeling model based on CBIR

and CRF could have better performance for large image labeling database.
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Figure 4.6: Learning curve of an example image.

Although the new CBIR part is added in the new algorithm, The computational
cost of CRF with CBIR is not much higher than the one without CBIR. It is because

we find a smaller training set for CRF. With smaller and similar training set, the
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efficiency of CRF is increased. The computational cost could be further reduced by

efficient CRF training algorithms and increased CBIR retrieval speed.

4.4 Conclusion

A new CRF image labeling framework for large labeled database which incorporates
top-down information from CBIR-based retrieval was presented. The method is more
suitable to deal with large labeled databases in real circumstances with a large number
of ambiguous concepts. The main difference between the new approach and previous
methods was that no hierarchical probabilistic model was built explicitly for an image
labeling problem with specific and well controlled image database. CBIR is used to
reduce top-down content ambiguities for large databases. CBIR provides a smaller
content similar database for the purpose of input image labeling. Due to the content
similarity of the retrieved matches, the new CRF model is better for the input image
labeling task. By combining the top-down and bottom-up approach by transferring
the scores from the retrieval part to the CRF model, the model is simplified to a
log-linear form to reduce the computational complexity of inference and training.
The stochastic gradient descent training and belief propagation inference are applied
accordingly. To test the new method, a floor area labeling task was performed using
the Labelme database. The new image labeling framework demonstrates better results
than the one without CBIR, which proves our analysis. Though the simulation result
are not complete, it can be believed that the retrieval based method is suitable to deal
with content ambiguities in image labeling in large real-world databases. Future work
may include finding the optimal retrieval threshold, adding more relevant features to
the CRF model and combining CBIR and CRF more effectively and efficiently.
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Overall, there are three new contributions of this chapter.

1. CBIR is applied to find a better and smaller training set for image labeling, and

is useful for labeling using large uncontrolled image database such as Labelme.

2. The new CRF model incorporates CBIR retrieval scores as weights to strengthen
global factor based on scene similarity. CBIR similarity measure is naturally
integrated into the CRF model as a global weight factor which reflects the

training image’s similarity with the input image in the data set.

3. The new CBIR-based CRF model is simplified in a log-linear form to help reduce

the training complexity.
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Chapter 5

Hidden Conditional Random Field

for Video Analysis

The previous two chapters discussed the image labeling problem using CRF model
with new potential functions and CBIR selected training set. In content analysis,
videos and images are two closely related problems. The temporal interactions of
video frames are similar to spatial interactions in images. To deal with these interac-
tions, the same principle can be applied to these two problems. This chapter extends
the discussion to video content analysis. To improve the performance, a formulation
is developed to solve the video problem using hidden CRF and design new potential
functions following the same methodology as in image labeling.

Videos have rich structural information that can be explored for the usage in in-
dexing and retrieval. Video content analysis finds meaningful structures and patterns
from visual data for the purpose of efficient indexing and mining of videos. The
primary focus of this chapter is the video event classification and its application in

sports event detection. The first aspect of video content analysis is modeling the
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temporal dynamic of video sequence using graph connections. The second aspect is
the statistical modeling of local observations which is related to potential function
selection.

The HMM is widely used for temporal interaction modeling in the literatures
[100, 99, 60, 97, 14, 59, 102, 26, 67]. Unlike the HMM, the hidden CRF (HCRF)
is a discriminative model that does not depend on the conditional independence
assumption of observations, this makes it more suitable for video content analysis.
For complex interactions in sports video frames, HCRF can be applied to model sports
event and improve the classification accuracy rate compared with HMM. The HCRF
has been applied to phone classification [29], gesture recognition [95] and meeting
segmentation [78]. The later two papers are related to video. In [95], the gesture
recognition problem is modeled using a HCRF. Relevant features are generated from
gesture videos accordingly and then applied to gesture classification. In [78], multi-
modal features are extracted and a HMM like backward and forward algorithm is
applied in HCRF to meeting event segmentation.

To address the local observation statistical modeling, the Gaussian mixture equiv-
alent is employed in HMM and HCRF in [29] and [78]. However in sports videos the
observations of features usually follow distributions other than Gaussian and Gaus-
sian mixture, so it is more suitable to use the independent component analysis (ICA)
mixture model [54] rather than the Gaussian mixture model. In [107], based on the
non-Gaussian property of visual features, the ICA mixture observation model can be
applied in HMM for golf video event classification.

This chapter presents a new ICA mixture HCRF (ICAMHCRF) model for sports

video analysis. This new model takes advantage of discriminant power of HCRF
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and the representing power of nonstructural ICA mixture model. The likelihoods of
ICA mixture components are used as feature functions in the new model. The new
ICAMHCREF is applied to bowling and golf event detection, and simulation results
show that it has better performance than existing HMM models. It is also tested with
one high activity sport hockey and simulation results show that it has comparable
performance with existing HMM models.

This chapter is organized as follows. First, Section|5.1 presents a brief introduction
of HCRF and formulates the video analysis problem using HCRF. Then the new
HCRF model based on ICA mixture local observation is given in Section Section
5.3 outlines general steps of the video content analysis using the [ICAMHCREF model.
In Section'5.4, the new ICAMHCRF model is applied to three kinds of sports (bowling,
golf and ice hockey) video analysis, and numerical performance is given. Finally this

chapter is concluded with summaries and future research directions in Section 5.5.

5.1 Hidden Conditional Random Field

5.1.1 Problem Formulation

The task of video content analysis is to assign the chunks of digital video data to
content categories such as sports highlight, news anchor and snow mountain land-
scape. For a given video, the objective is to first identify the event boundaries and
then classify each video segments into one of the possible known events. To simplify
the problem, we assume that the beginning and ending frame of a video event are
located at the shot boundaries. A video segment (one or a group of video shots)

consists of a sequence of video frames which follows a chain structure. This is similar
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to HMM, HCRF graphical model that can be applied to address this problem. Un-
like gesture and meeting segmentation in which the backgrounds are simple, sports
event detection with real scene settings is more challenging. Fortunately sports videos
that consist of a set of predefined actions in a certain order fit the requirement of
probabilistic graphical models.

For a video event sequence with video frames, we define each frame as a node in a
graphical model. A linear chain graph is formed by linking nodes in the video playing
order. A feature vector x; € X with several features is extracted from ¢-th video frame
in a video sequence. The feature vector is one observation of a frame in the multiple-
dimensional feature space X'. A video event is defined as the meaning of one video
segment (one or a group of video shots in our discussion) with several consecutive
video frames. Let y € ) denote a possible event where ) is all possible event set
of a certain kind of sports video. The video event analysis task is to find the most
probable y for the given observation sequence . The problem could be formulated as
the conditional probability P(y|x;@) where 8 is the underlying parameter vector of
the model. Here 0 instead of w is used to conform with the traditional expression in
HCRF. The highest conditional probability P(y|x; @) means that the video sequence
most likely belongs to the event class .

We formulate the video analysis problem using the hidden conditional random
field (HCRF) model, an extension of conditional random field (CRF) model. The
linear chain CRF model, shown in Fig. (5.1 is a commonly-used graphical model
for labeling sequential data in computer vision. The structural interaction between
different components of the data is reflected by a graph. The probabilistic model is

build on the graph. In Fig. [5.1/the shaded circles are the observed features at nodes.
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(a)

O Label of a frame

O Observation of a frame

] Factor

(b)

Figure 5.1: An example of 1D CRF model and its factor graph representation for
video analysis.

Empty circles represent labels, which are unknown for the testing data and known

for the training data. The interactions between these random variables are shown

as edges. The corresponding probabilistic function of the model could be factorized

to node and edge factors. Fig. [5.1(b) is the factor graph [49] representation of the

model shown in Fig. [5.1(a).

Video event analysis estimates the probability P(y|x; @) for a segment of video
with a sequence of frames given the model parameter vector 8. CRF needs a label h;
for every node (frame), it prevents a CRF model from being directly applied to video
content analysis. A hidden CRF model that does not require labeling for every node

is applied to video analysis in the next section.

5.1.2 A New HCRF-Based Video Content Analysis Frame-

work

In the video shot event classification, usually the states of nodes (frames) are hidden.

It is a troublesome work to label all states manually. We formulate the video event
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analysis task using HCRF, which is a better alternative to hidden Markov model for
video event detection.

The hidden CRF (HCRF) model is first developed for object recognition [75].
Assume the observation variable @ = {x;};cy has an associated labels h = {h; };cv,
where h; is the label for site ¢ € V. The labeling problem is to infer the underlying
labels h given the image features & and parameters of the model. In video event
detection it is a troublesome work to label all states h in a sequence of video frames
manually. Since we want a label for the whole sequence, we let labels of all sites
be unknown hidden states. Therefore the formulation of the posterior probability
P(h|z,w) in a CRF model is replaced by P(y|x, ) in a hidden CRF model as in
equation (2.54), which is a summation of exponentials of potential functions over all

possible labels h as follows,

P(y|x;0) = > exp{¥(y,h,z,0)}, (5.1)

Z(x,0)

with potential functions

\Pyahx 0 Z()O Yy, hi,x, 0 + Z wyvh'7h]'>w70)'

eV (i,J)eE

Here y € Y is a label for a whole sequence, and ) is the set of all possible labels. For
example, in the binary event detection, ) = {—1, 1}, where 1 represents the existence
of the event and —1 nonevent. In a hidden CRF model, the observation-dependent

normalization factor becomes

0)=> > exp{¥(y h,z.0)} (5.2)

yeY h

where 3/ is a possible label for the sequence.

Here a restricted form of the function ¥(y, h, x, ), as shown in factor graph Fig.
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5.2, is chosen for video event analysis,

eV

+ > 6y, hi hy)O(y, b hy), (5.3)

(i,5)EE

where @(y,x;) is an observation function vector with the label y at site i, d(y, h;)
equals 1 if the label y and hidden state h; occur together else 0, and §(y, h;, h;) = 1 if
the label y and hidden state h; and h; occur together else 0. Here @(h;) is a param-
eter vector for associate potential of the hidden state h;, 8(y, h;) is a compatibility
parameter vector of the sequence label y and the hidden state h;, and 6(y, h;, h;) is
a compatibility parameter vector of the label and the interaction edges. In equation
(5.3), the first term ¢ (y, x;)@(h;) + (y, h;)O(y, h;) is a simplification of p(y, h;, x; ),
and the second term &(y, h;, h;)@(y, h;, h;) is an implementation of ¢ (y, h;, h;, z; 0).
The task of the HCRF training is to learn parameters 8 = [0(h;) 0(y, h;) 0(y, hi, h;)],
and the task of the inference is to find the label for a given input using these param-

eters which is also the main purpose of video content analysis.

Figure 5.2: Factor graph of the new HCRF model for video analysis.
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The observation feature function vector ¢(y, x;) is a feature statistics vector, i.e.,

¢(y7wz) = [fl(y>wi)7 T 7fk1(yawi)7 T 7fK1<y7wi)]7

which is weighted by the parameter vector
O(hz) — [917 e 70k17 e 70K1]

in a HCRF model. Here K; is the total number and k; is the index of the feature
function. The functions fg, (-) could be features themselves or functions of features.
Note that we only consider the local observations x; and the sequence label y in
feature functions.

Similarly the function ¥(y, h, x; ) in equation (5.3) could also be written in the

following feature function form,

\Ij(yahaw79) = Z Z eklfkl(yawi)

i€V k1€Ky

+ Z Z 9k2fk2(y> hl)

1€V ko€Ko

+ Z Z eksfka(% hi7 hj)? (54)

(i,))eE k3s€Ks

where fy, (y, h;) is one node feature function which represents é(y, h;), and fi, (v, hi, h;)
is one edge feature function which represents 0(y, h;, h;) for general expressions.
The 0y,, 0k, and 0y, are the node and edge coeflicients included in 6. The sets
Ki=A{1....,Kq}, Ko = {1,..., Ky} and K3 = {1,..., K3} are sets of all possible
indexes k1, ko and k3 of feature functions. This form is a linear expression so it

simplifies the processe of training and reference.

91



5.2 ICA Mixture Hidden Conditional Random Field

Model

In the traditional form, the feature vector x; is directly used as the observation
function ¢(y, x;) at site i in HCRF. It usually includes hundreds of features which
make the learning process slow, and in addition the algorithm may not find the
optimal value in a reasonable time period. In image analysis, mixture models are
widely used in nonstructural classifiers. The usage of mixture models as observation
functions for a HCRF model is not widely investigated except the Gaussian mixture
mentioned in [29, 78]. In this chapter a new independent component analysis (ICA)
mixture HCRF (ICAMHCRF) model for video event classification is developed. The
feature function f(-) is defined as the log likelihood of the feature x; belonging to
a mixture model component. Since the log likelihood carries certain probabilistic

meanings, the function could better reflect the local observation model.

5.2.1 From Gaussian Mixture to ICA Mixture for Local Ob-

servation Function

A mixture model, that commonly uses Gaussian distributions as kernel functions, is
more expressive than a non-mixture. Mixture means the observation could be divided
into mutual exclusive components, and obviously a mixture model can be applied to
video analysis since video frames are often comprised in an interlaced manner. A mix-
ture of Gaussian can approximate any distribution [5]. If the observation show non-
Gaussian characteristics, however, more Gaussian mixture components are needed to

fit the distribution. In this case, the distribution would better be decomposed into
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independent mixture components.
Suppose observation x; be expressed as a ICA mixture, i.e., x; € Cy where Cy,

denotes the kth component of the mixture, k € {1,2,..., K'}. Write
x; = Mysy + py, (5.5)

where M, is the mixing matrix, s, are independent sources for kth component of
mixture, and g, is the bias. Then the conditional probability of seeing observation

x; given the sequence label y can be expressed as

P(xily) = Y P(mily, C)P(Cily) (5.6)

— Z P(Crly) expllog P(si) — log(|My])],

where | M| denotes the determinant of the matrix M.

5.2.2 HCRF Model with ICA Mixture Feature Function

The log likelihood of each observation belongs to a mixture component is chosen as

a feature function,

fe(y, ) = log P(Cily) P(xily, Cy), (5.7)

1€ Vand k= 1,2,..., K is the index of the mixture component. Here x; is rep-
resented by conditional probability P(x;|y) locally, and the feature functions are
computed using mixture components. The number of feature functions K is greater
than that of mixture component K, since several groups of features such as color and
texture can be included in a feature vector x;. In our experiments, only one group
of feature is used so the number of feature functions K; is equal to the number of

mixture components K.
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The probability P(Cly) in equation (5.7) is a mixture coefficient for the kth
component. During a training process, the given class label y, parameters of ICA (s,
M, and ;) and mixture components P(Cyly) and P(x;|y, Cy) can be learned using
a modified standard ICA algorithm presented in [54]. Major steps of this iterative

algorithm are listed below,

e Compute log-likelihood of the data x; given mixture component, as a function

of current estimations of parameter s, and M,
log P(x;|y, Ck) = log P(sk) — log(|My]). (5.8)

e Calculate the probability P(Ckl|y,x;) with known observations x; and the pre-

vious estimated mixture coefficient P(Cyly),

P(x;|y, Cr) P(Cily)

P(Cyly, x;) = , (5.9)
S P(xily, Cy) P(Cily)
and the new estimate of P(Cyly) is
1
P(Cyly) = 7 2_ P(Culy, @), (5.10)
eV
where N is total number of observation nodes.
e Estimate the change of the mixing matrix My,
Pa:,,C’PC 810P$1,0
> w1 P(zily, Co) P(Cly) k
and new bias
Ziev P(Ck|y;mz‘)mz‘ (5 12)

wy, = :
Y Yiev P(Cily, )
The new ICAMHCREF model derived above provides a new way to model both the

local and temporal interactions for sequence labeling tasks. ICA mixture is used in
both training and testing processes. Unlike the Gaussian assumption [29, 78], a non-

Gaussian model is used as local feature functions for observations. This new function
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better represents complex distributions of complex features such as those in video
frames. Since real scenes such as sports video consist of non-Gaussian components,
which could not be represented by Gaussian mixture with only a few components
[107], the proposed ICA mixture feature function is more suitable for video content
analysis. When ICA mixture is combined with a HCRF model, it can adapt to

statistical and temporal probabilistic structure of the data simultaneously.

5.3 ICAMHCREF based Sports Event Classifica-
tion

The video event detection includes model identifications and calculating the condi-
tional likelihood of an event. Semantic video events are represented as model pa-
rameters learned from the training video shots with known classes. This is used to
train the model using video events with known labels. The parameter vector @ is
learned from the training process. After obtaining these parameters, it was possible
to calculate the probability of each input video event segment belonging to a certain
kind of event. In order to compute the likelihood of each event given the model
P(y|x;0). The sequence is classified as an event, whose probability produces the
largest likelihood.

The new ICAMHCRF video event detection system with training and testing is
shown in Fig. (5.3l In the preprocessing step, videos are divided to shots using shot
boundary detection technique [106]. During training, features of frames are extracted,
then ICA-based feature dimension reduction is used to reduce the computational

complexity. Then compact features are modeled as a ICA mixture using the ICA
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algorithm in [54] and with the assumption of Laplacian source, and parameters of
the ICA mixture are learned. The log likelihood of each feature or feature group
belonging to a mixture component is then calculated as the feature function in the
HCRF model. Parameters of the HCRF model are learned to maximize the following

likelihood objective function,

0 — 161*
LT:0)= ) LOly.x)— o (5.13)
(z,y)eT
where
L(Oly,z) = logP(y|z:0) (5.14)
log ZheH exp{V(y,h,z;0)}
Z(x;0) '
Here 7 is the training data set, ||@]|*> denotes the square of the 2-norm of 8, i.e.,
10> = SRR g, and § is the standard deviation of parameters 8. The objec-

tive function £(7;6) is the summation of log-likelihood of all training data minus
a regulation factor. The term L(0|y,x) is the log-likelihood of one training data
belonging to the model with parameter #. The second term in equation (5.13) is
a regulation factor when parameters are assumed to be Gaussian distributed with
variance 02

The gradient descent method [75,95] is used for training. The optimal estimation

of the parameter 0 is
0" = arg max L(T;0). (5.15)

The details of training process are presented in Appendix
During testing, the compact features are computed and log-likelihood feature func-
tions are calculated using the parameters from ICA mixture learned during training.

Therefore using belief propagation method [104], the most probable class label y* of
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Figure 5.3: The flowchart of ICAMHCRF model for video event classification.

the testing sequence is

* = arg max P(y|x; 07).
y g max P(y|a; 87)

5.4 Simulation Results

The new ICAMHCREF system is applied to two types of video content analysis tasks.
One is low activity sports including bowling activity recognition and golf video event
analysis. The other is one high activity sport, ice hockey. In both cases, ICAMHCRF,

Gaussian Mixture HCRF (GMHCRF), ICAMHMM and Gaussian mixture HMM

(GMHMM) are compared. Note choosing the number of mixture components and
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that of hidden states of HMM and HCRF are both non-trivial. However both of
them could be optimized using training or validation set. In our experiment, the
numbers are initially chosen in the range from 2 to 4 and the numbers, which max-
imize the classification accuracy rate in these methods, are selected. Because of the
existence of hidden states, the optimization is no longer convex. So best result with
random parameter initialization is chosen.

Sports videos are first segmented to shots before shot event classification. The
ICA dimension reduction is applied to 256 illumination-invariant color histogram of
frame features to reduce the feature vector to 2 dimension for each frame, which is also
used in the event classification as original features. The cuts and gradual transitions
detection is performed on this ICA subspace using an iterative clustering algorithm

based on adaptive thresholding as in [106].

5.4.1 Bowling Activity Detection

&’Qhw

(b) Event 2: other events

Figure 5.4: An example selected frames of bowling events. There are two events, (a)
bowling shot event and (b) other event (an advertisement event is shown).

An ICAMHCREF model is used to recognize the bowling shot event and compared
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with GMHCRF, ICAMHMM and GMHMM. A 30 minutes professional bowling TV
program is used in the experiment. The video is divided to 232 video shots, in
which there are 65 shots containing bowling shot events. Other irrelevant shots are
comments, commercials, player’s preparation and players after the shot.

An example bowling shot event sequence is shown in Fig. [5.4(a). The event
consists of the following activities: bowler preparing to release his ball toward the
pins, bowler dropping the ball on the lane, the ball striking the pins and finally the
camera turning back to the player.

ICA mixture parameters and HCRF parameters are learned from one training
shot of both events (bowling and irrelevant). Two hidden states and two mixture
components are used in the experiment. Mixture components of an bowling shot
event and irrelevant event are shown in Fig. (a) and (b), respectively. The
mixture components shown in Fig. 5.5/ provide the possible feature distribution of
these two categories of events in the ICA subspace.

Fig. [5.6 shows the receiver operating characteristic (ROC) curves of final event
detection using Gaussian mixture HMM (blue dashed curve), ICA mixture HMM (red
dotted curve), Gaussian mixture HCRF (green dash-dotted curve) and ICA mixture
HCRF (black solid curve). The ROC curves plot the false positive rate versus the
true positive rate. It can be observed from Fig. that the ROC plot of the ICA
mixture HCRF is closest to the upper left corner than that of the Gaussian mixture
HCRF, Gaussian mixture HMM and ICA mixture HMM, so the ICA mixture HCRF
model has a highest overall accuracy rate of detection than the other three models.
The AUCs (Area under ROC curve) of those four methods are: ICA mixture HCRF,
86.04%, ICA mixture HMM, 82.95%, Gaussian mixture HCRF, 81.15%, and Gaussian
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mixture HMM, 78.29%.

The confusion matrices of these two events, using the ICA mixture HCRF (shown
in bold) and ICA mixture HMM (shown in parentheses), are given in Table 5.1l The

rows are the true classes and the columns are detected classes.

Table 5.1: The confusion matrix for bowling event classification using ICA mixture
HCREF (in bold) and ICA mixture HMM (in parentheses).

bowling shot | other event
. 49 16
bowling shot (36) (29)
18 149
other event (21) (146)

Note: Row labels are the true classes and column labels the predicted classes.

The accuracy rate is defined as the ratio between the correctly labeled event and
the total number of events. The detection accuracy rate using an [ICAMHCRF model
is given in Table[5.2. The performance of ICAMHCRF is about 7.4% better than the
GMHCRF, 6.8% better than the ICAMHMM and 9.4% better than the GMHMM.

Table 5.2: Classification accuracy rate of bowling event classification.

Method Accuracy
ICA mixture HCRF 85.28%
Gaussian mixture HCRF | 77.92%
ICA mixture HMM 78.45%
Gaussian mixture HMM | 75.86%
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5.4.2 Golf Event Classification

In the process of golf video event detection, an hour long professional golf video
from the authors of [107] is used. The procedure was identical to the bowling except
one event consists of three shots, for fair comparison with I[CAMHMM and better
representation of golf event. Three example events are shown in Fig. [5.7. These three
events are used for training the model, the total number of events was 202. These
events where manually annotated to three categories, full swing, non-full swing and
other irrelevant events. The event where very recognizable with recurrent patterns as
in Fig. The golf shot includes activities: Player prepares for the shot, followed
by a player hitting the ball, then the camera follows the ball quickly. The final scene
features the golf court and/or players with low activity.

The mixture components of a full swing shot, non full swing shot, and other event
are displayed in Fig. 5.8/ (a), (b) and (c), respectively. The mixture components
shown in Fig. (5.8 provide the possible feature distribution these three categories of
events in the ICA subspace.

The confusion matrices of these three events, using ICA mixture HCRF (shown
in bold) and ICA mixture HMM (shown in parentheses), are shown in Table [5.3.
The ICA mixture HCRF is better than ICA mixture HMM in both full swing and
non-full swing classification. However, the performance of ICA mixture HCRF is not
better than ICA mixture HMM for other irrelevant events, because only one training
sample from the other event may not be representative for the other event class. The
reasoning is that only one training sample is used here is to provide a fair comparison
with results of ICA mixture HMM presented in paper [107]. Detection performance

of golf event classification might be improved when more training samples are used.
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Table 5.3: The confusion matrix for golf event classification using ICA mixture HCRF
(in bold) and ICA mixture HMM (in parentheses).

full swing | non full swing | others
full swing 33 20 1
(26) (27) (1)
. 16 109 7
non full swing (23) (104) (5)
2 8 6
others 2) (1) (13)

Note: Row labels are the true classes and column labels the predicted classes. The
ICAMHMM results shown in parentheses for comparison are cited from paper [107].

The overall accuracy rate of ICAMHCRF is 2.5% better than ICAMHMM as

shown in the third row of Table[5.4.

Table 5.4: Classification accuracy rate of golf event classification.

Method Accuracy
ICA mixture HCRF 73.28%
Gaussian mixture HCRF | 64.68%
ICA mixture HMM 70.79%
Gaussian mixture HMM | 56.93%

5.4.3 Ice Hockey Event Classification

Ice hockey event classification was used to test the proposed model in high activity
sports video. A 30 minutes professional ice hockey game is used in this study. The
ice hockey video is divided to 235 video shots. Three events: ice hockey shooting,
ice hockey non-shooting and other irrelevant. The ice hockey shooting is usually a

sequence of frames, which features following activities: the player catching the puck,
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Table 5.5: The confusion matrix for ice hockey event classification using ICA mixture
HCRF (in bold) and ICA mixture HMM (in parentheses).

shooting | non-shooting | others
shooting 22 3 3
(22) (6) (0)
. 15 127 20
non-shooting (45) (117) (0)
25 0 20
others (5) (8) (32)

Note: Row labels are the true classes and column labels the predicted classes. The
ICAMHMM results shown in parentheses for comparison.

the player shooting the puck toward the net, the goaltender trying to catch the puck,
the camera focusing on the goaltender or goal net and then the global situation of
the arena. The ice hockey non-shooting includes other activities in a hockey play.
Irrelevant event sequences include commercial advertisements, the scene of audience,
etc. There are 28 hockey shooting events, 162 hockey non-shooting events and 45
irrelevant events in the selected video.

The classification confusion matrices of these three events, using ICA mixture
HCRF (shown in bold) and ICA mixture HMM (shown in parentheses), are shown
in Table The ICA mixture HCRF is better than ICA mixture HMM in non-
shooting event classification. And it is the same as I[CA mixture HMM in shooting
event classification. However, the performance of ICA mixture HCRF is not better
than ICA mixture HMM for other irrelevant events. One possible reason is only one
training sample from the irrelevant event may not be representative for the irrelevant
event class.

Although for high activity video the overall accuracy of ICAMHCREF is a little

lower than the accuracy with ICAMHMM as shown in Fig. [5.6, the performance of the
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new model is still comparable with ICAMHMM model. That is mainly because the
quick activity of ice hockey is reflected by interactions of hidden states. The complex
hidden states and label interaction does not play the main role. The ICA mixture
HMM captures the main factors in hockey events. To improve the performance of
ICAMHCREF model for high activity sports, we need to include more features or

change the graph model structure.

Table 5.6: Classification accuracy rate of ice hockey event classification.

Method Accuracy
ICA mixture HCRF 71.91%
Gaussian mixture HCRF | 58.72%
ICA mixture HMM 72.77%
Gaussian mixture HMM | 59.15%

5.4.4 Discussion

In golf and bowling event classification cases, the new ICAMHCRF exhibits higher
classification accuracy rate than HMM models, this is due to two main factors. First,
the ICA mixture can approach the non-Gaussian distribution of compacted features
of video frames. As shown in Fig. 5.5 and Fig. [5.8, a strong non-Gaussian character
of compacted video features is observed. Second, comparing with HMM the relaxed
assumption of HCRF model is more effective with limited training data. The feature
distribution is characterized by ICA mixture and the chain temporal information is
captured by HCRF. The new ICAMHCRF combines the good properties of the two
and shows good performance in two low activity sports vent detection tasks over

existing HMM models. It also shows comparable results for high activity sports video
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event analysis. In term of computational cost, the new HCRF framework is 2 times
slower than the traditional HMM in my implementation without optimization. With
better approximate training and inference algorithms, the computational efficiency is

expected to be increased for the new HCRF model.

5.5 Conclusion

A new HCRF model is formulated for sports event classification in this chapter. With
non-Gaussian property, the local observations of each event category are modeled as
ICA mixtures. By introducing a new kind of feature function we successfully combine
ICA mixture with HCRF. It is proved by experiments with bowling and golf event
classification that the new model has better discriminant power than other HMM-
based methods for low activity videos. The results also demonstrate the advantage
of using ICA mixture over Gaussian mixture for non-Gaussian features. Future work
may include extending the method to multi-modality and other kinds of features,
adding links between current observation and other hidden states and investigating

new model structures for high activity sports.
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(c) Event 3: other event

Figure 5.7: An example selected frames of golf events. There are three events, (a)
full swing, (b) non-full swing, (c) other event.
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Chapter 6

Conclusion

This thesis addressed the image and video content analysis problem based on their
spatial and temporal dynamics, motivated by the importance of content analysis.
Multimedia signal processing research is experiencing rapid surge because of the ad-
vance of new consumer electrical devices and the Internet, the indexing and retrieval
research is dominant in this area. Most systems have limited performance, this is due
to that fact that they are only using a few low-level features such as color, texture,
shape, and motion. The reasoning is that there has semantic gap between high-level
meanings and low-level features. The direct solution of this problem is to understand
the multimedia content and bridge the semantic gap.

Image and video content analysis using graphical models especially the CRF model
is the main focus of this thesis. CRF models are used for their ability to encapsulate
the spatial and temporal structure of the multimedia content, the graphical model is
the best solution to content analysis problems. The CRF was applied to two main

content analysis problems, image labeling for both specific and general uncontrolled
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databases and video shot classification. By analyzing the feature distribution of im-
age regions in image labeling for specific databases, a new mixture feature function
was introduced for better representation of the local association and interaction po-
tential function of CRF. The new mixture CRF image labeling model was tested
with commonly used Corel database, which showed superior performance than the
baseline CRF. Then the discussion was extended to image labeling for large labeled
databases. To reduce the content ambiguity and incorporate top-down information, a
novel method combined the CBIR and CRF. The new method with CBIR was tested
with the Labelme database to solve the floor labeling problem in real circumstances.
The results and visual effects verified our theory analysis that the new CRF with
CBIR provides better labeling accuracy. Video analysis was discussed with the same
methodology as in image labeling and modeled temporal interactions in videos using
hidden CRF. A new HCRF model with ICA mixture feature functions was applied
to golf, bowling and hockey shot analysis with promising results.

The main contributions of this thesis include new feature functions for both CRF
and HCRF, the formulation of the video content analysis problem with HCRF and the
combination of CBIR and CRF for image labeling with large databases. Image and
video content analysis is a large area which deserves more attention for its applications
and importance for advancing human knowledge. For computers to achieve the same
kind of intelligence of human being, there is much work to be done. Several challenges

of image labeling and video content analysis are listed as follows:

e How to reduce the computational complexity of CRF? Although the computer
technique has advanced to a level we could not have expected, but still needs

extensive effort to reduce the complexity of the CRF model for the purpose of
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effective use. The CRF model is built based on many features and graph struc-
tures. More features mean more complexity for CRF training and inference.
Complex graph structure also means higher computational cost. Selecting good
features and building a reasonable simplified graph structure will reduce the

computation burden and achieve better accuracy.

Image labeling for large databases with uncontrolled environment still needs
more investigation. Most current systems have limited performance because
of the limitation of feature representation and complexities of the real scene.
Though graphical model such as CRF could incorporate spacial interactions, it
is still limited to small database and simple graph structure. For small database
such as Corel, the best model could only achieve accuracy of around 80% with
fully labeling of image parts. The problem of large database image labeling is
extremely difficult. Our initial work combining CBIR and CRF on floor area
labeling is promising. But it still needs more research effort on other databases

and multiple classes.

How to build a generic model for all sorts of videos? Every kind of sports video
is different from others. Building a generic graphical model that is appropriate
to all kinds is a challenging task. The problem is still laying on the better

understanding of the videos.

How to define event categories of video content for real problems? This is an
application driven problem. Each problem has its own characters. We can not
find a common definition of events for all of them. It is also involves other

branches of science such as psychology.
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e How to combine multiple features of videos for analysis? Multimedia is a com-
bination of multiple form of content. Multi-modality needs to be investigated
thoroughly for representing video content. It is also very important to under-
stand the role of each feature and modality for combining them naturally in

graphical models.
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Appendix A

Formulation of Belief Propagation

for Conditional Random Field

We apply belief propagation (BP) to CRF inference. The CRF formulation is as

follows,

plyle) = H iy, o) [[Vily, = (A1)

(i,5)EFE eV

In BP, we estimate marginal probabilities called beliefs. In BP algorithm, mes-
sages are updated until convergence, then calculate beliefs. The standard BP is the

application of the sum-product rule to estimate marginals. The standard BP solution

for CRF problem is,

bz(yu - k\Ij H m]l y: 7 (A2)
JEN;
m]z Yy, x Z\D Yy, ')(y>w) H mkj(y>w>' (AB)
keN;—i

Given the message—update rule mj; and belief b;, we could compute the exact

marginal probability if CRF is singly connected (That means the graph of CRF has
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no loop).

An example is shown in Fig. [A.1]Tt is not difficult to show that the message-update

Figure A.1: Example of BP.

rule gives the exact marginal probability for node 1 as follows for the example,

by, @) = kVi(y, @)Y Vo (y,z)Vs(y,2) > Va(y, ) Vs(y,z) Y Vaa(y, ) Va(y, ).
Y2 ys Ya

(A.4)
It is also easy to convince that BP gives the exact marginal probability for all nodes
in CRF without loop.

In classic point of view, for graphs with loops, the exactness of the BP breaks
down. There is no restriction that forbids us to use BP for graph with loops. There
are some circumstances the algorithm fails to converge. But it has been used in many
research areas successfully. Because it is equivalent to an approximation of Bethe free
energy of statistical physics [104]. When there is no loop, BP gives exact solution the

same as dynamic algorithm such as Viterbi. For graph with loops, BP provides an

approximate (but usually good) solution.
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Appendix B

The EM Algorithm for Laplacian

Mixture

The problem of parameter learning in Laplacian mixture model is to estimate model
parameters u,, and b, as well as the prior probability a,,. Denote 8 = {Bm}%zl
and M is the number of features, where 0,, = ({4, b, @), the problem is to find
the optimal @ that maximizes the likelihood £(8) = [T'_, p(z(); 8) where N is the
number of training data. When the parameters 8 known, it is most likely the data
could be generated by this model. Since there has no close-form mathematical solution
for the problem of this likelihood maximization of likelihood, the EM algorithm is
applied in this case.

In the EM algorithm, instead of trying to maximize the likelihood £(8), one

maximizes the likelihood of the joint distribution L£.(0) = log HnNzl p(z™, 2 9),
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which can be written as

N
L(0) = log[]p™,=";0)
n=1

N M
(n)
= log [T [TIp™ 1= = 1:0,)p( = 1]

n=1m=1

N M
= > ) A logp(a™zl) = 1;6,,)

n=1 m=1

N M
—l—ZZzﬁ?) log a,,

n=1 m=1

Taking the expectation in term of z, one can get

N M
(L(0)) = (z0) log p(z™[20) = 1;6,,)
n=1m=1
N M
+ Z Z (20 log apm,
n=1m=1

in the E-Step, where the probability

1 e

M0 — 1.9 )= o5
Pz’ = 1:0m) = 5 —e

(B.2)

(B.3)

(B.4)

In the M-Step, parameters @ maximize the expectation of complete log-likelihood

(L£.(0)) as defined in equation (B.3)) are optimal solutions for the Laplacian mixture

model.
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B.0.1 Learning Parameter u,,

Take a partial derivative of £.(0) with respect to u,, and let it equal to zero, one can

have
SN SN (A olog p(a ™2 = 1:6,,)
Otim
SN (ol og 2,,)
Ot
SN ()02 = )

- S . (B.5)

$(n)—ltm)2

A close-form solution does not exist. Replacing |2 — p,,| by (|x<n>—ﬂm| , where fi,, is

the estimated value of p,, at previous iteration, then one has

n x(m) — m)2
SN (D)o

‘x(n)_ﬁml
0 —
Olhm
N n
= Yyt ®.6
— |z — i,
From equation (B.6), one has
N x(n) N n
n) = (m)y___Fm B.7
;<Zm >|x(n)_ﬂm| ;<Zm >|$(n)_lam| ( )

The estimation of u,, after the [th iteration is

N (n) (n)
Zn:1<zn? >‘m(n)iﬂ%—1)|
N (n) 1
Zn=1<ZT’:’L >‘w(n)_ﬂg;1)|
(1-1)

where [i,  is the estimation of p,, after the (I — 1)th iteration.

A0 _

[l , (B.8)
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B.0.2 Learning Parameter 0,

By setting the partial derivative of £.(8) with respect to the parameter b,,, one can

have

SMS G alog p(z™] 25 = 1;6,,)
0= ) : (B.9)

Substituting the probability 10(917(”)|z,(fl1 ) = 1;0,,) in equation into the equation

(B.9), one has
Sons (s )(= ] — log 2b,,)
Obyy,

- | 1
:Z —WE),

=1

S

then the estimation of b, is

N n n ~
b D (2™ — i (B.10)
: INC U |

where [i,, is the estimation value of yu,, in the current iteration.

B.0.3 Learning Parameter a,,

The optimal parameter a,, is the solution of the following constrained maximization

problem,

max  (£:(6))

M
D =1 (B.11)
m=1

The constraint is added to ensure that the summation of prior probability equals 1.

Denote a Lagrange multiplier as A, the Lagrangian function is

L(0) = (Lc(0)) = A am — 1). (B.12)
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Calculate the partial derivative of £.(0) with respect to a,, and let it equal to zero,

one can have

1N
0 = — )y — A
=3
N
= Y (=) = A, (B.13)
n=1
m=1,..., M. Summing over all M possible mixtures, one has
M N M
(zMy — X Zam =0,
m=1 n=1 m=1

then

Therefore, the optimal parameter a,, is

N
1
m = Z (z)y. (B.14)
n=1
To estimate parameters ji,,, b, and a,,, one needs to calculate the expectations

(zq(f: )>, which is

() = p(zl =1]z;0)

(n) 72;”:1-9
- &F : Op ) (B.15)
> p(a™|z" =1;0;)a;

J J

m=1,....Mandn=1,...,N.
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Appendix C

HCRF Training

The training of HCRF model could be done the same as the ordinary CRF model

except the summation of hidden variables.

L(T,0) = LBy, ) — o1°
( ) ) - Z 2(52
(x,y)eT
, IS
= > logP(yla;6) — 557
(x,y)eT

0 2
= Y log) Py hlz;0 ”25!

(z,y)eT heH

Y nen exp{¥(y,h,x;0)} K 67
Z log < (513,9 Z?

(xz,y)eT k=1
2
where we suppose there are K parameters in penalty term —Zszl 2% added to

avoid overfitting. It includes all parameters in 6. There are three components of
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U(y, h,x;0), two node terms and one edge term, as follows,

Uy, hw;0) = > > O, fr, (v, @)

i€V k€K,

+ Z Z 9k2fk2(y> hl)

1€V koo
+ Z Z ek‘sfk‘s(% hi7 hj)a (Cl)
(i,j)eE k3€Ks

Note that this function is a general form and it is formulated in this way for simplicity.
To estimate parameters 6, one can take a partial derivative of L£(0|x,y) with
respect to each parameter 0, k = 1,..., K; + Ky + K3. For the parameter 0, only
appearing in the node term of W(y, h, x; @), the partial derivative is
oL(Bly,w)  Olog =reep il
00y, B 00y,

> nern exp{¥(y,h,x;0)}
810g Yyrey nen exp{¥ (Y h,z;0)}

00,
Olog Y e exp{¥(y, h,x;0)}
00,
Jlog Zy'ey Y onen xp{¥(y, h,x;0)}
00, '

The first term of the above partial derivative is
Olog > ey exp{¥(y, h,x;0)}
00,
{ exp{¥(y, h,z;0)} 3‘P(y>h,w;9)}
heH ZheH eXp{\I/(y, hv €&, 0)} aekl

=3 {P(y, hlz;0) ) fr (v, fl?z‘)}

heH eV
seH i€V

Here s € 'H is a hidden state and the ) __, is the summation of all possible states of

h; at site 7, i € V.
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Similarly the second term of the above partial derivative is
Olog Zy’ET Y ohenexp{¥(y', h,x;0)}

96,
5> exp{¥(y', h,x;6)} OV (y, h,x;0)
Zy’ey ZhE'H eXP{\I’(:y/? h'7 T; 0)} Gﬁkl

y'€H heH

= >y {P(h\y',flﬁ;e) kal(ylvwi)}

y'€Y heH eV
= 2 D) Phi=sly @:0) fi(y. ). (C.3)
y' €Y seH i€V
Therefore, the partial derivative of £(0|x,y) with respect to 6, is
L0z, y)
00,
= 2D Py hi=slwi6) - fiu(y, )

seH i€V

= NS Pl = sl %:0) - fu (Y x)

y'€Y seH eV

= g (y,h,x;0).

Similarly, for the parameter 6, only appearing in the node term of ¥(y, h, x; ),

the partial derivative is
OL(6|z,y)
00y,
= D Ply.hi = sla:0) - fun(y,hi = s)

seH i€V

— YOS S Pl =sly@:0) - fuly b= s)
y' €Y seH i€V

= Gk, <y7 h7 € 9)

Similarly, for the parameter 6y, only appearing in the edge term of ¥(y, h, x;0),
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the partial derivative is

OL(O]z, y)
sy

= 2.2 > Plwhi=sh=5x0)

se€H s'€H (i,j)EE

'fk?, (ya hz =S, h] - S/)

— ZZZ Z (hi = s,h; =45y, x;0)

y'€Y s€H s'cH (i,j)€E

Sy, hi = s,h; = §)
= Oks(y, h,x;0).
Since belief propagation is used in this algorithm, all four probabilities P(y,h; =
slz; 0), P(h; = sly',x;0), P(y,h; = s,h; = s'|x;0) and P(h; = s,h; = sy, x;0)
can be found straightforward.

Parameter are updated as follow,

IL(T, 0)

0 _ pl-1) _
491:1 - 8}@1 89k1 ‘9:9(5_1)

- 9(5—1)
= 0 —pd Y gy b 60Y) - 5 (-
(x,y)eT
W~ - BT
ko ko aekg 9=001-1)
(1-1) elsrl_l)
= ekz — K Z Gks <y7 h’v Z; e(l—l)) - QT ;
(z,y)eT
0~ e QLT
k3 ks 89k3 9=001-1)
(1-1) el(cl_l)
01{:3 —H Z ks (y7 h7 Z; 0(171)) - 37 ;

(z,y)eT

where [ is the index of iterations, and 8% is the [th estimation of the parameter vector

0.
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