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Abstract 

 The microcirculation can be differentiated from the surrounding tissue 

using high frequency ultrasound subharmonic imaging. This imaging technique 

relies on the detection of energy scattered from ultrasound contrast agents at half 

the transmit frequency due to their resonant oscillations. The current contrast 

agents and the subharmonic imaging parameters have not been optimized for high 

frequencies. Moreover, the origin of subharmonic generation from submicron 

bubbles is not well-understood. The size distribution of Definity™ phospholipid-

shelled microbubbles was altered to find the optimal bubble size to be resonant 

over a wide range of high frequencies. The resonant behaviour of bubbles was 

investigated through in vitro attenuation measurements. The transmit frequency 

and pressure were varied to optimize the backscattered subharmonic signal. 

Alteration of Definity™ population significantly improved the scattering for 

subharmonic imaging at 20 MHz. A peak negative pressure between 400 to 600 

kPa is suggested for this frequency range. 
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Chapter 1 

Introduction 

1.1 Blood flow in microcirculation  

 

 The mammalian microcirculation is a network, consisting of many 

arterioles and its major branches, the metarteriols (Figure 1-1). The metarteriols 

are connected to capillaries through precapillary sphincters. The capillaries, 

forming an extensive network, are 5 to 10µm in diameter and less than 1mm in 

length. These are located close enough to cells (less than 60-80µm) to enable the 

diffusion of gas and nutrients through the single layer of epithelial cells of their 

wall. Small venules are formed when these capillaries reach together and then 

become the collecting venules (Li 2004).  

 Blood is a suspension of erythrocytes (Red Blood Cells, RBCs), 

leukocytes (White Blood Cells, WBCs) and thrombocytes (platelets) in plasma. 

The viscosity of blood is 4.5 to 5 times that of water which changes with shear 

flow rate (Szabo 2004). The blood flow in the microcirculation depends on the 

overall function of the organ, containing these microvessels. Reynolds number is 

used to identify the different flow regimes such as laminar (characterized by 

smooth, constant fluid motion) with a low Reynolds number and turbulent 
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(characterized by random eddies, vortices) with a high Reynolds number. 

Reynolds number is defined by: 

 

 

Figure 1-1 Microcirculation looks like a network; Blood velocity increases in the large 

vessels (replicated from Karchakdjian 2001).  

 

 e
dR ρν

η
=  (1.1) 

ρ, is the density of blood, ν , is the mean blood velocity (ms-1), d, is the diameter 

of the blood vessel (m) and η is the blood viscosity (m2s-1) (Li 2004). Reynolds 

number ranges from 0.003 in capillaries compared to 0.03 for a 100µm arteriole. 

Blood flow in the microcirculation is assumed to be steady. In order to simplify a 
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model for veins, they can be modeled as long rigid tubes with a changing 

diameter in which blood circulates with a steady flow as an incompressible1 

Newtonian fluid2. Under these assumptions, the fluid velocity increases by a ratio 

of the squared radii. Figure 1-1 shows the blood velocities ranges from less than 

1mm/s in the capillaries to 20 mm/s in the large vessels (Karchakdjian 2001). 

 

1.2 Angiogenesis and tumour microcirculation 

 

 Tumour angiogenesis research has become one of the most attractive areas 

of clinical oncology since 1980. The term “tumour angiogenesis”, first used by 

Shubik (Greenblatt and Shubik 1968), means simply the unregulated development 

of new vasculature. Folkman was the first person who hypothesized that the 

tumour angiogenesis has a critical role in the development and metastatic spread 

of tumours. He also believed that tumours can be treated with antiangiogenetic 

drugs (Folkman 1971). Research in treating tumours by blocking tumour 

                                                 
1 The density of the fluid does not change. Liquids can often be modeled as incompressible fluids, 

whereas gases cannot. 
2 For a Newtonian fluid, the viscosity depends only on temperature and pressure (and also the 

chemical composition of the fluid if the fluid is not a pure substance), not on the forces acting 

upon it. 

  

3



 

angiogenesis or targeting endothelial cells of newly developed vasculature has 

been a topic of increasing interest (Skalak 2005). 

 The chaotic growth of tumour vessels can be characterized by abnormal 

branching, loops, large avascular areas, irregularity in the diameters of tortuous 

vessels and dead ends (Jain 1988). The microvessel density is high and non 

uniform in a given microscopic area of tumour growth. The complex pattern of 

blood flow is temporally and spatially heterogeneous and even oscillating in these 

newly-developed vessels. This allows the tumour vessels to be distinguished from 

the vasculature of healthy tissues (Figure 1-2).  
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Figure 1-2: A Scanning Electron Microscopic (SEM) image of the microvessels of 

normal tissue and angiogenic vessels. The normal tissue has organized arrangement of 

arterioles, capillaries and venules (Left).  The tumour microvasculature shows an 

unregulated complex pattern (replicated from McDonald and Choyke 2003). 

 

1.3 Research Motivation 

 

 It is thought that the study of blood flow in tumours can be used to assess 

the success of tumour treatments. Antiangiogenic and antineovascular therapies 

target abnormal tumour blood vessels. Changes in the blood flow and volume can 

be considered as positive clinical responses to therapy. This is a better alternative 

diagnostic biomarker compared with monitoring the tumour shrinkage as a 

response to therapy. The reason is that the tumour shrinkage is believed to be a 
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slower response to the antiangiogenic therapy compared with chemotherapy 

(Hlatky 2002).  

 High microvessel density as a result of tumour angiogenesis is a sign of 

many cancers. This sign is typically found at the surface of the tumour since the 

center of the tumour can become necrotic as the tumour grows. Therefore, 

invasive techniques such as taking biopsy samples to monitor the vessels density 

which requires comparable samples may not be reliable. Imaging modalities such 

as x-ray computed tomography (CT), magnetic resonance imaging (MRI), 

positron emission tomography (PET), single photon emission computed 

tomography (SPECT), ultrasound and near-infrared optical imaging can image the 

tumour vessels not only noninvasively but also over larger volumes (Miller 2005 

and Miles 1999). 

 MRI is usually limited by the instrument availability and expenses. MRI 

estimate of hemodynamic data is not quantitative since the signal strength 

changes nonlinearly with the concentration of MRI contrast agents. Moreover, 

one of the major problems with MRI contrast agents (for instance, gadolinium 

GD-DTPA) is that they can pass through the vasculature and leak to surrounding 

tissues. 

 CT has the advantage of the best spatial resolution images amongst all the 

current imaging modalities. Its image intensity changes linearly with the 

concentration of the contrast agent. However, a high concentration of CT contrast 
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agent is usually required because of poor sensitivity of CT imaging. A relatively 

high dose of radiation and CT contrast agents limit the use of this modality 

because of its associated toxicities (Miller 2005). 

 PET and SPECT can detect and provide quantitative data using very low 

concentration of the tracer molecules. However, both techniques have lower 

resolutions compared with MRI and CT. In addition, PET can only be used at 

locations, having specialized facilities such as cyclotron and chemical 

laboratories. The reason is that PET tracers are radionuclides of very short half-

life (Rohren 2004 and Miller 2005).     

 Optical imaging is still new and has not become widely accepted. 

Orthogonal polarization spectroscopy, one of the optical techniques, uses 

Indocyanine green that fluoresces at near infrared wavelength to image tumour 

vessels (Ntziachristos 2000, Cuccia 2003 and Miller 2005). Optical Coherent 

Tomography (OCT) which can provide a resolution of 1 to 15µm but only within 

a depth of 2 to 3 mm has not become a common imaging modality yet (Huang et 

al. 1991).   

 Ultrasound is portable, safe and inexpensive. Its soft tissue contrast which 

is generally lower than CT and MRI, can be improved using Ultrasound Contrast 

Agents (UCAs) and new imaging techniques. Ultrasound contrast agents do not 

leak to the surrounding tissue (unlike MRI contrast agents). These agents are 

insonified by nonionizing ultrasound beams and they do not cause any toxicity (as 
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opposed to CT). Ultrasound contrast microbubbles can be labelled with an agent 

in order to bind to angiogenic markers for molecular imaging of tumour 

microvasculature (Ellegala 2003). 

 

1.4 High frequency ultrasound 

 

 Ultrasound has been widely used as a reliable diagnostic tool since the 

1970s. Medical ultrasound imaging is based on the transmission of sound 

(typically 1-15MHz) into the body and the reception, processing and display of 

returning echoes from tissues. The clinical popularity of ultrasound is because it 

provides high resolution images of soft tissues using contrast agents (as well as 

being real-time, safe, portable and inexpensive). The imaging resolution increases 

with ultrasound frequency, although there is a trade-off with the depth of 

penetration.  

 The use of high frequency ultrasound (10MHz up to 100MHz) to image 

tissues and cellular microstructures dates back to Sokolov in the 1930s, when he 

proposed the first acoustic microscope (Sokolov 1935). Imaging living tissue at 

microscopic resolution (as small as 15µm) has a great benefit of noninvasively 

studying the tissue growth as a function of time. The penetration of ultrasound 

allows visualization of subsurface planes which are inaccessible to optical 
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techniques. Three important clinical applications of high frequency B-mode 

imaging are in ophthalmology at 40- to 60-MHz range (Pavlin et al. 1990; Sherar 

et al. 1989), dermatology (Hoffmann et al. 1989 and 1990) and intravascular 

ultrasound at 20-MHz range (Bom et al. 1989, Meyer et al. 1988, Nissen et al. 

1990 and Yock et al. 1989).  

 Research on applications of high frequency ultrasound in the fields of 

developmental and cancer biology has attracted a great deal of attention. Direct 

manipulation of mouse embryos in utero is now possible with ultrasound guided 

injection techniques. Moreover, the mouse provides a system for studying 

mammalian development. Animal studies can provide extensive genetic 

information. Transgenic and gene targeting techniques also have been developed 

to manipulate the mouse genome (Foster 2000). 

 Studying the blood flow in microcirculation is very promising at high 

frequencies; with a resolution of 50 μm at 50 MHz, the blood flow in the 

microvessels can be distinguished using color flow imaging (Kruse and Ferrera 

2002)  and integrated pulsed-wave Doppler (PWD)/color flow imaging (Goertz et 

al. 2000 and 2002). 
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1.4.1 Limitations of conventional ultrasound imaging 

 Ultrasound echocardiography is one of the main applications of ultrasound 

which can be done using B-mode and Doppler imaging. In B-mode imaging of 

heart, the goal is to identify the boundaries of blood and the wall of cavities. 

Identification of the margins of the endocardium in the left ventricle and 

microvessels of the myocardium has a great clinical importance. However, this 

identification becomes impossible because the reverberations of ultrasound 

between the transducer, the chest wall and ribs cause some artefacts3 to appear 

within the cavity. Ultrasound contrast agents can be used to increase the echoes 

from the blood above these artefacts. However, the conventional use of contrast 

agents to enhance the echoes from small blood volumes is not beneficial (for 

instance, in the myocardial vessels). The reason is that the heart muscle itself 

produces a strong acoustic backscatter signal. This problem can be overcome by 

using subharmonic and pulse inversion imaging techniques (Becher and Burns 

2000), which is described below. 

 One of the major limitations of echocardiography using Doppler imaging 

techniques is that there must be sufficient velocity or signal strength of the blood 

flow in the vessel to detect the vessels. It means that as the blood flow decreases 

with the increasing rate of bifurcation in the microvasculature network, the 

vessels become invisible. Therefore, it produces a lower Doppler shift. If the flow 

  

10



 

is fast but the blood volume is small (e.g. in a stenotic jet) or when there is a fast 

tissue motion around the vessel (e.g. fast motion of myocardium) the Doppler 

shift can not be detected.  

 The conventional Doppler imaging with or without using contrast agent 

relies on using the high pass (wall) filters in order to separate the relative high 

velocity of blood flow compared to the tissue motion. A new Doppler modality 

must be developed based on the harmonic imaging techniques such as 

subharmonic imaging in order to detect the fast movements of the myocardium 

and its slow microcirculation (Becher and Burns 2000). 

 

1.4.2 Scattering of objects 

 There are three categories of scattering based on the relative scale of 

incident ultrasound wavelength, λ, compared to the size of objects: specular, 

diffusive and diffractive scattering. When the scatterer is much larger than the 

wavelength, specular scattering occurs in which the wave is reflected due to the 

acoustic impedance mismatch between the surrounding medium and the object. 

Acoustic impedance of materials is defined by the product of their density by the 

speed of sound: 

 .Z cρ=  (1.2) 

                                                                                                                                     
3 Spurious echoes  
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where Z is the acoustic impedance, c is speed of sound and ρ is the density of the 

object. The reflected wave is a replica of the incident wave but reduced in 

amplitude by a reflection factor (RF). The reflection factor can be calculated as 

follows: 

 2

2 1

1Z ZRF
Z Z

−
=

+
 (1.3) 

where Z1 and Z2 are the acoustic impedances of the surrounding medium and the 

scatterer respectively (Szabo 2004).  

 “Rayleigh” scatterers which are much smaller than the wavelength of 

incident wave cause diffusive scattering. In this regime, the scattering cross 

section which is a ratio of the total power scattered divided by the incident 

intensity is defined by Lord Rayleigh (Rayleigh 1945): 
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where  is the radius of the scatter, a λπ /2=k is the acoustic wavenumber, ρ and 

ρ0, and K and K0 are the densities and bulk moduli of the object and the medium 

respectively. The bulk modulus is defined by: 

 dpB V
dV

= −  (1.5) 

where V is the volume of the object, and dp, is the change in pressure from the 

equilibrium value as a result of volume changes, dV. The reciprocal of the bulk 
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modulus is termed the “compressibility”. The most compressible materials are 

gases. The scattering cross section of Rayleigh scatterers increases with the 4th 

power of transmit frequency and the 6th power of the object diameter.  

 The last category of scattering regimes is called Mie or diffractive 

scattering in which the size of objects is comparable to the incident wavelength. 

This scattering regime results in certain frequencies being scattered preferentially 

compared to the other frequencies (Szabo 2004). While the mathematical 

formulation is complex, solutions exist for simple geometries (Falou 2006). 

 

1.4.3 Scattering from Blood 

 There are about 5×106 RBCs (~95µm3), ~6000 WBCs (~300µm3) and 

300,000 platelets (~15µm3) in one millilitre of human blood. Plasma contains 

some large-molecular weight proteins. Scattering from blood is demonstrated by 

the contribution of scattering from RBCs because of small number of WBCs and 

small scattering volume of platelets compared with the number and volume of 

RBCs. In mammalian species, the red blood cells are of the same size and less 

than 10µm. The sizes of their capillaries are in the same order of magnitude. 

RBCs look like discs, concave on the top and bottom and are of about 7µm in 

diameter and 2 µm in thickness. Considering the small size of RBCs compared 

with the wavelength of clinical ultrasound, they can be modeled as Rayleigh 
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scatterers with the backscattering proportional to the forth power of the transmit 

frequency (Cobbold 2007). 

 RBCs can aggregate and group as rouleaux, which are long chains of 

stacked cells. This kind of cell arrangement increases the degree of anisotropy and 

the directional dependence of backscatter. Furthermore, backscattering is flow 

dependent (Fontaine and Cloutier 2003). The backscatter was found to be lower in 

the vena cava than in the aorta in which blood flow is faster (Wang 1997 and 

Szabo 2004).  

 Backscattering is a frequency dependent phenomenon. Most tissues have 

f1.0-2.0 frequency dependence (Cobblod 2007). Arterial walls exhibit f1.1 to f1.4 

dependence in the clinical range (Lockwood, Ryan et al. 1991), while the 

myocardium has an f3 dependence (Shung and Thieme 1993). In the clinical 

frequency range, the scattering from disaggregated blood is very weak, -30dB 

below the scattering signal from soft tissue (Cobbold 2007). At 7.5 and 10 MHz, 

blood echogenicity is increased as shear rate decreases and consequently, as the 

blood viscosity increases (Shung et al. 1984 and Sigel et al. 1982). RBCs 

aggregate at decreasing shear rate, showing f1.2 frequency dependence. These 

rouleaux disperse when increasing the shear rate, showing f4 frequency 

dependence for frequencies below 65MHz (Fung 1997, Foster, Pavlin et al. 2000). 

Cyclic changes of echogenicity during the cardiac cycle were observed by De 
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Kroon et al. and were related to changes in the shear rate dependent state of RBC 

aggregation (De Kroon et al. 1991).  

 At higher frequencies, absorption of blood approaches to that of tissue as 

the wavelength (40 to 20 µm for 35 to 65 MHz) approaches the dimension of 

RBCs. Figure 1-3 shows ultrasound backscatter coefficients for a variety of 

tissues in the 20 to 100 MHz range. High echogenicity of blood at high 

frequencies causes difficulties in differentiation lumen from arterial wall. 

Therefore, it complicates imaging the morphology of the arterial wall (Lockwood 

et al. 1991).    
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Figure 1-3 A comparison of ultrasound backscatter coefficients for different tissues over 

20 to 100 MHz. At lower frequencies, the backscatter from blood with a low shear rate of 

0.16 s-1 is higher than that with a high shear rate 32 s-1. At higher frequencies, the 

differentiation between the backscatter signal of blood and that of other tissues becomes 

very difficult (replicated from Foster, Pavlin et al. 2000).  

 

1.4.4 Nonlinear Propagation of Ultrasound 

 Ultrasound is a longitudinal wave which propagates in the same direction 

as the regions of compression (positive pressure) and rarefaction (negative 

pressure). The linear wave equation assumes a linear propagation of ultrasound 

with a constant speed of sound in the medium. However, the density and pressure 
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of the medium only satisfy the linear wave equation4 in the limit of very low 

transmit pressure amplitude. In fact, the speed of sound is not constant and 

depends on the pressure at each spatial point. Sound travels faster in regions of 

high pressure and slower in regions of low pressure. Therefore, a continuous 

sinusoidal wave will be distorted and cause the harmonics of the transmit 

frequency to propagate in the medium (Figure 1-4). After traveling a certain 

distance, the waveform becomes saw-tooth, generating even stronger harmonics 

(Duck 2002).  

 The interest in harmonic imaging based on the nonlinear propagation of 

ultrasound has increased since 1996. Images are formed by using the second 

harmonic of the transmit frequency (Averkiou 1997). 

 

                                                 
4 Any parameter ε, a function of position x and time t, which satisfies 

2 2
2

2 c
t x2

ε ε∂ ∂
=

∂ ∂
 propagates as 

a wave at a speed c in x-direction. 
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Figure 1-4 Harmonics are generated due to the distortion of a sinusoidal pulse. After 

traveling a certain distance, the waveform becomes saw-tooth and its energy will be 

absorbed in the medium (replicated from Muir 1980). 

 

1.5 Ultrasound Contrast Agents 

1.5.1 Applications of contrast agents in medical ultrasound 

imaging  

 Ultrasound contrast agents are preliminary designed as blood tracers that 

enhance the backscatter signals in small vessels and tissues at greater depths. At 

low frequencies, the echoes coming from blood are much weaker than the 
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scattered sound from the surrounding tissues, typically 30 to 60 dB weaker. Using 

contrast agents can increase the information content of echoes from underlying 

blood. Whereas, the intensity of backscattered signals from tissues and blood are 

the same at higher frequencies (as described in section 1.4.3). Therefore, 

differentiating between tissues with similar properties and blood is very 

challenging at higher frequencies. This problem can be overcome by injection of 

ultrasound contrast agents in vessels (Becher and Burns 2000). Increasing the 

signal from the blood to surrounding tissue ratio can improve the quality of 

ultrasound imaging. Studying the motion of blood-filled cavities and blood flow 

in small vessels and volumes is not feasible without using contrast agents.  

 In addition, one of the main applications of ultrasound contrast agents is to 

study blood perfusion or the amount of blood delivered into a local volume of 

tissue per unit time. Any abnormalities in blood supply to an organ, caused by 

occluded vessels, can cause a serious disease (Becher and Burns 2000 and Hoff 

2001). Recently, developing a new generation of contrast agent, known as 

targeted agents has been a focus of great attention. The targeted agents contain 

tiny particles that can bind to pathological tissue in order to enhance and image 

the echoes coming from these tissues (Lanza 1996 and 1998). 
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1.5.2 History of ultrasound contrast agents 

 For the first time, Gramiak and Shah used free air microbubbles to image 

the aorta. These bubbles which were produced following the injection of saline 

into aorta had very short lifetime, poor efficacy and safety (Gramiak and Shah 

1968).  Free air bubbles are the most efficient sound scatterers. However, they can 

not survive in the body long enough to image the structures. Therefore, an 

important design goal for microbubbles is to have them persist and not to dissolve 

quickly. There are two means to stabilize the bubbles: to encapsulate them with 

shells which prevent dissolution of the gas across the gas-liquid interface; to fill 

the bubbles with a gas of higher molecular weight with low solubility and 

diffusivity (Szabo 2004). The encapsulated agents have been developed since 

1980. Carroll et al. imaged tumours in the rabbit thigh using encapsulated 

nitrogen bubbles in gelatine. However, these bubbles were too large for the 

intravenous administration (Carroll et al. 1980).  

 Current ultrasound contrast agents are microbubbles filled with gas and 

shelled with a biodegradable material (Table 1-1). The shell is made of protein, 

lipid or a polymer. These agents are injected intravenously and they are small 

enough to mimic the size of red blood cells in order to pass through the capillaries 

of lungs and microvessels, usually ranging from 1-7 µm. Albunex™ 

(Mallinckrodt Medical Inc., St. Louis, MO) was developed as the first commercial 

encapsulated agent with the comparable size to the diameter of a red blood cell. 
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These air bubbles were encapsulated by the human serum albumin. They could 

survive passage through the vessels and were made based on Fenstein’s work in 

1984 (Feinstein et al. 1984). Echovist™ (Schering AG, Berlin, Germany) was the 

first contrast agent which was approved by the health care authorities in 1991. 

Levovist™ which is a suspension of Galactose microparticles in sterile water was 

made by the same company. 

 The second generation of microbubbles are filled with low solubility gases 

such as perfluorocarbon with a longer life time. A typical amount of gas injected 

clinically is on the order of 20-100 µl (Cosgrove 1998). This gas will diffuse out 

depending on the solubility of the gas shortly after the injection and be carried 

along by blood and will be filtered out by lungs. Optison™ (Mallinckrodt 

Medical Inc., St. Louis, MO) is a perfluoropropane-filled albumin-shelled agent. 

Echogen™ (Son US Inc. Bothell WA) is filled with dodecafluoropentane and 

stabilized by a surfactant. More recently, phospholipid-shelled agents have been 

developed such as Sonovue™ (Bracco Inc., NJ) filled with sulphur hexafluorane. 

Definity™ (Dupont Inc., Boston MA) is filled with perfluoropropane and shelled 

with phospholipid shell of three different phospholipids. The mean bubble size of 

Definity™ is 1.5µm with a range of 1µm to 10 µm (>90% of the population is of 

less than 1 to 2 µm diameter). This agent contains a significant subpopulation of 

submicron bubbles which make it suitable for imaging at higher frequencies.  
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 Polymer-shelled agents have been recently developed; A study by 

Wheatley and Forsberg was shown that a polymer-shelled agent (Poly Lactic-co-

Glycolic Acid, PLGA) can be manufactured with a narrow size distribution of 

1.2µm. Using this novel agent, power Doppler images of rabbit kidney were taken 

in vivo (Wheatley et el. 2006). biSpheres™ (Point Biomedical, San Carlos, CA) 

are thick-shelled bubbles whose inner polymer layer is intended for structure 

stability and the outer layer is included for biocompatibility. These bubbles are 

resistant to the acoustic pressure and therefore, they can be used to carry their 

contents to a specific site. Then high acoustic pressures can be used to disrupt 

these bubbles for localized drug delivery purposes.  

 

Table 1-1 Commercial Ultrasound Contrast Agents (replicated from Szabo 2004) 
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1.5.3 Scattering from ultrasound contrast agents 

 Although the size of bubbles (1-7µm) is much smaller than the wavelength 

of ultrasound (~40 µm at 40 MHz), Rayleigh scattering is not a suitable model to 

describe a bubble in an acoustic field. Yet it can be used to show that bubbles are 

extremely strong scatterers. Table 1-2 shows the contribution of densities and 

bulk moduli of various objects which are modeled as Rayleigh scatterers (Kinsler 

et al. 1982). The difference in densities of the medium and the object cause the 

scatterer to undergo a back and forth motion, called dipole scattering. The 

contribution of the difference between the bulk moduli is greater for gas-filled 

bubbles than that between the densities. This results in oscillations of bubbles in 

volume which in turn, radiates the sound in a spherically symmetric pattern 

known as the monopole scattering. The bubbles can be simply modeled as 

oscillators which resonate at their natural frequencies. Therefore, bubbles have a 

resonance peak in their scattering cross section. The Rayleigh model ignores the 

resonance phenomena and the sound absorption by bubbles. In other words, it can 

predict only the scattering of bubbles below their resonance frequency. For 

frequencies above the resonance, the scattering cross section is independent of the 

transmit frequency (Hoff 2001). 
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Table 1-2 The values represent the contribution of the densities and bulk moduli terms 

(Equation 1.4) of various Rayleigh scatterers assuming water as the medium (ρ0 and K0) 

(replicated from Kinsler et al. 1982). 

 

 

1.5.4 Attenuation 

 In ultrasound contrast imaging, underlying structures can be obscured due 

to the shadowing effect of microbubbles. Shadowing is a result of an increase in 

the attenuation due to the presence of microbubbles. The attenuation in a bubble 

population is the summation of the absorption and scattering of sound from 

microbubbles. Absorption is caused by damping mechanisms such as viscous, 

thermal and radiation damping. Absorption from particles smaller than 10 µm in 

diameter have been studied experimentally and theoretically and attributed to the 

size and concentration of microbubbles (Uhlendorf 1994, Soetanto and Chan 

2000).  

 At a very low concentration of contrast agents, each microbubble can be 

treated as an individual scatterer. In this case, the power of backscattered signal is 
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proportional to the agent concentration (de Jong et al. 1992). Above a certain 

concentration the attenuation and multiple scattering (section 1.5.5) effects 

dominate the backscattered signal. Therefore, the backscattered signal does not 

change linearly with the bubble concentration (de Jong et al. 1992 and Uhlendorf 

1994). 

 The attenuation coefficient measurement is a basic method to characterize 

contrast agents. A peak in the attenuation coefficient spectrum is an estimate of 

the resonance frequency of a bubble population. At their resonance frequency, 

bubbles oscillate with their maximum amplitude and therefore, scatter most of the 

sound energy. The position of this peak and the curvature of the attenuation 

response on the frequency axis depend on the shell properties. In addition, 

damping of the shell can be calculated from the attenuation spectra (Church 

1995). If bubbles are driven below their resonance frequency, attenuation is 

dominated by absorption. While if the transmit frequency is above the bubble 

resonance frequency, the attenuation is mostly due to the scattering (Simpson 

2001). 

  

1.5.5 Multiple scattering 

 Multiple scattering can happen in a bubble population when the bubble 

inter-spacing is not sufficiently large. At high concentration of bubbles, the 
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distance between bubbles is small so that sound can be rescattered from 

neighbouring bubbles. Previous studies have examined the multiple scattering in 

suspensions of free gas bubbles (Commander and Prosperetti 1989; Kargl 2002, 

Goertz et al. 2007).  In recent studies, the previous approaches have been 

modified in order to include the shell effects (Stride and Saffari 2005; Chan and 

Zhu 2006). The secondary scattering ratio describes the ratio between the primary 

and secondary scattering from a single bubble. Ignoring the shell effects and 

assuming a monodisperse bubble population, the secondary scattering ratio can be 

calculated as follows: 

 
( )

2/3

2
4
0.554

r
NSS πσ

=  (1.6) 

where σ  is the scattering cross section in m-1, N is the number of bubbles per unit 

volume. A secondary ratio of 10% is considered significant (Chin 2001). 

 

1.6 Behaviour of Ultrasound Contrast Agents 

 

 The behaviour of ultrasound contrast agents depends on the surrounding 

medium, the acoustic pressure and the shell characteristics. The Mechanical Index 

(MI), a standard measure of the acoustic output, is defined as a ratio of the 
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ultrasound peak negative pressure to the square root of the center frequency of 

transmit pulses. The relation between contrast agent behaviour and the 

mechanical index shows the importance of improving acoustic parameters for 

imaging purposes. Figure 1-5 shows the changes in bubble behaviour as the 

mechanical index increases (Cobbold 2007). 

 

 

Figure 1-5 Different regimes of bubble behaviour as a function of the Mechanical index 

(replicated from Cobbold 2007). 

   

1.6.1 Linear and Nonlinear Systems 

 To understand the linear and nonlinear behaviour of bubble oscillations, a 

differentiation between linear and nonlinear systems should be considered. For a 

linear system, the magnitude of the system output is proportional to that of the 
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system input; so that if input x to the system results in output X, then an input of 

2x will produce an output of 2X. A linear system will not produce any frequencies 

in the output that does not exist in the input. Many actual systems are almost 

linear in response to small inputs, but become non-linear at higher levels of 

excitation.  

 Sometimes a definite threshold exists that only a little above which the 

input level results in a gross non-linearity. An example of this phenomenon is the 

“clipping” of an amplifier when its input signal level exceeds the voltage of its 

power supply. The response of a nonlinear system can be related to the transmit 

force through a power series expansion: 

  (1.7) 2 3 4
0 1 2 3 4( ) . ( ) . ( ) . ( ) . ( ) .t s s t s t s t s tΥ = + + + + + ..

where Υ is the general response of the system (e.g. it can represent the bubble 

wall displacement) and ћ is the transmit force; s0, s1 etc. are coefficients. If the 

system is linear then s2, s3 and higher coefficients are zero (Leighton 1994). 

 The response of a nonlinear system contains new frequency components 

which do not exist in the input. This response depends not only on the input at 

those frequencies but also on the input on other frequencies. The magnitude of the 

response to the input is not proportional to the system input (Hoff 2001).  
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1.6.2 Linear oscillations of bubbles 

 If the mechanical index is low, the bubble oscillates in a linear regime and 

scatters the acoustic energy at the transmit frequency. At lower amplitude acoustic 

excitation, a bubble can be modeled as a linear oscillator and compared to a 

mechanical mass-spring system, which experiences simple harmonic motion 

(Figure 1-6) (de Jong at al. 2002, Hoff 2001). The huge mass of surrounding 

liquid compared with the negligible mass of gas acts as the mass of system, m. 

The gas pressure inside the bubble with a high compressibility corresponds to the 

spring with the spring constant of k. The mechanisms by which the bubble 

oscillations are damped (details in section 2.6) can be modeled as the damping of 

the system with a real positive constant of b. The damping force is proportional to 

the velocity of the surrounding liquid but in the opposite direction to the velocity. 

In this linear system, the system response is directly proportional to the transmit 

force, Fdrive. Applying Newton’s Second Law to the system and rearranging the 

terms give the equation of motion of bubble: 

 drivem b k Fε ε ε+ + =  (1.8) 

where ε is the small displacement of the bubble wall or the spring from its 

equilibrium position. The resonance frequency of the system can be found by 

Equation (1.9) as follows: 

 1
2r

kf
mπ

=  (1.9) 
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Figure 1-6 At lower amplitude acoustic excitation, a bubble can be compared to a 

mechanical mass-spring system, which experiences the simple harmonic motion 

(replicated from Hoff 2001). 

 

The equivalent values for the mass, the damping coefficient and the stiffness has 

been previously derived as follows (Medwin 1977): 

 3
04m Rπ ρ=  (1.10) 

 totb mδ ω=  (1.11) 

 012k PRπγ=  (1.12) 
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where ρ is the density of the surrounding medium, δtot is the total damping, ω is 

the angular frequency, γ is the heat capacity ratio5, and P is the ambient pressure. 

Therefore, the linear resonance frequency of a free gas bubble can be expressed 

by: 

 
0

1 3
2r

Pf
R

γ
π ρ

=  (1.13) 

This is the frequency at which bubbles can scatter a large amount of energy due to 

their maximum radial oscillation (known as the Minneaert frequency, details in 

section 2.4). 

 

1.6.3 Nonlinear bubble oscillations 

 Bubble oscillation is a nonlinear phenomenon for large mechanical 

excitations. The bubble can not contract as much as it expands because of the 

limited compressibility of the gas, entrapped inside the shell. The asymmetrical 

bubble expansions and contractions make the pressure versus time response of the 

bubble asymmetric and cause harmonics to appear in the frequency response of 

bubbles (Figure 1-7). The scattered energies at multiple integers (2, 3 ...) of the 

transmit frequency are called harmonics (2nd harmonic, 3rd harmonic …), 

respectively. The oscillations on integer fractions of the driven frequency, f, are 

                                                 
5 The heat capacity ratio or adiabatic index, denoted by γ (gamma), is the ratio of the heat capacity 
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called subharmonics, 1/2 f, 1/3 f, 1/4 f,… and ultraharmonics, which are the 

harmonics of the subharmonics: 3/2 f, 5/3 f, 2/3 f,…(Lauterborn 1976). The most 

well-known subharmonic is the energy at half of the incident frequency. 

 Considering the physics of nonlinear oscillations, it is possible to establish 

a relationship between the transmit force (the time-varying transmit acoustic 

pressure) and the response of the bubble (the bubble wall displacement) which is 

predicted by the Rayleigh-Plesset equation (Equation (2.11), explained in section 

2.2). 

 

                                                                                                                                     
at constant pressure (CP) to the heat capacity at constant volume (CV).  
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Figure 1-7 Asymmetrical bubble expansions and contractions make the pressure versus 

time response of the bubble asymmetric and cause harmonics to appear in the frequency 

response of bubbles (replicated from Szabo 2004). 

  

1.7 Subharmonic imaging 

  

 One of the disadvantages of using ultrasound contrast agents with the 

linear imaging methods is “shadowing”. This occurs because the contrast agent 

attenuates the signal intensity behind the cavities filled with the agent. Nonlinear 

imaging techniques with higher sensitivity allow the use of a low concentration of 

bubbles and, therefore, reduce the effect of shadowing (Uhlendorf and Volkmar 
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1994). Moreover, when the ratio of blood to tissue volume is small, the contrast 

obtained with fundamental B-mode imaging using contrast agents is poor 

(Frinking et al. 2000). For instance, the blood volume ratio for the myocardium is 

about 10% and using contrast agents with clinical concentrations can only provide 

a few decibels of enhancement. In this case increasing ultrasound intensity to 

increase the contrast may cause the bubble destruction and generation of a 

temporary backscattered signal with no clinical advantage and can cause cardiac 

arrhythmias (Shi et al. 2000). 

 The idea behind harmonic imaging is the use of nonlinear scattering from 

ultrasound contrast agents to generate harmonics of the transmit frequency in 

order to differentiate between blood and the surrounding tissue. One of major 

limitations in harmonic imaging is that the second harmonic signal is attenuated 

more than the fundamental. Moreover, the tissue, itself, produces a significant 

second harmonic signal due to the nonlinear propagation of ultrasound, as 

described in the previous section. This reduces the image contrast from the 

contrast agents (Shankar et al. 1998; Frinking et al. 2000). 
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a) b) 

Figure 1-8 In vivo B-mode imaging of the left ventricle of a mouse heart a) in 

fundamental at 20 MHz and b) subharmonic at 10 MHz, shows a higher contrast to 

surrounding tissue ratio (replicated from Goertz et al. 2005). 

 

 Subharmonic imaging has the advantage of higher contrast to surrounding 

tissue ratio. Subharmonics can not be generated by nonlinear propagation in 

tissue. Therefore, if microbubbles generate the subharmonic signal, it can be 

differentiated from tissues. It means that blood and vessels which contain the 

contrast agent can be detected more easily using this imaging technique. Goertz et 

al. demonstrated the feasibility of subharmonic imaging to improve the contrast to 

surrounding tissue ratio, as shown in Figure 1-8 (Goertz et al. 2005). The bubble 

subharmonics can even exceed the strength of the backscattered tissue echoes at 

the fundamental. Moreover, since subharmonics are attenuated less than the 

fundamental and second harmonics, the imaging depth will increase. Although the 
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transmission of long pulses, required to generate subharmonics, worsens the axial 

resolution, the contrast enhancement can outweigh this disadvantage (Shankar 

1998). 

The efficiency of subharmonic imagining technique depends on the 

transmit parameters, including pressure, bandwidth and frequencies. These 

parameters have not been optimized for the high frequency range. Investigating 

the effects of these parameters on the subharmonic signal from microbubbles of 

various sizes can optimize this imaging technique. 

 The current commercial ultrasound contrast agents have been designed for 

use in clinical ultrasound frequencies (up to 10 MHz). It has been shown 

previously (Goertz 2003) that only a subpopulation of small bubbles resonate at 

high frequency. Understanding the behaviour of microbubbles can help in 

developing new contrast agents which are more efficient at high frequency, 

especially since theoretical models developed have not been able to predict 

bubble response at higher frequencies.  
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1.8 Subharmonic Generation 

 

1.8.1 Subharmonic threshold 

 Subharmonics were first observed by Esche at higher pressure (Esche 

1952). Subharmonic generation depends on the transmit conditions as well as the 

damping in bubble oscillations. The subharmonic needs time and therefore, longer 

pulses to develop (Shankar 1998). Higher harmonics can be generated for all 

levels of acoustic excitation. A pressure threshold has to be exceeded for bubbles 

to emit the subharmonics. This threshold for free gas bubbles was first derived by 

Eller and Flynn in 1969 and measured experimentally by Neppiras (Neppiras 

1968, Eller and Flynn 1969). They found that the subharmonic generation 

depends also on the transmit frequency. For a free gas bubble, the pressure 

threshold is minimum at the transmit frequency around twice the resonance 

frequency of the bubble (Eller and Flynn 1969). 

 Smaller bubbles and bubbles with thicker shell have higher resonant 

frequency. Therefore, a higher pressure threshold and frequency is required for 

these bubbles to initiate the subharmonics. Subharmonic signals from Albunex 

microbubbles were studied by Chang et al. in 1995 (Chang et al. 1995). Lotsberg 

et al. found no sharp pressure threshold for Albunex (Lotsberg et al. 1996). Shi 

studied a surfactant-shelled agent (Shi et al. 1997).  Shankar and his coworkers 
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derived a relationship between physical shell parameters of encapsulated 

microbubbles and the pressure threshold (Shankar et al. 1999). They also found 

the subharmonic pressure threshold for shelled bubble to be minimum at twice 

their resonance frequencies. Definity microbubbles (of 10MHz resonance 

frequency) are easily driven into subharmonic oscillation when excited at 20MHz 

(Goertz 2002, Cheung et al. 2008). In all these experiments, the subharmonic 

threshold was observed at much lower pressure than the theoretical predictions 

based on the current shell models and damping constants (Shankar et al. 1999).  

 

1.8.2 Three stages of subharmonic generation 

 The previous studies showed that the subharmonic signal generation can 

be divided into three stages, depending on the pressure of the incident wave: the 

onset or occurrence, rapid growth, and saturation (Schrope et al. 1993 and Shi et 

al. 1999). Figure 1-9 demonstrates the experimental results of subharmonic 

response of the Levovist™ agent as a function of the transmit pressure (Shi et al. 

1999).  

 The onset stage is where the subharmonic signal is insignificant (Figure 1-

9, a). This stage was not observed in the subharmonic response of a free gas 

bubbles (Eller and Flynn 1968, Neppiras 1968).  
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 The rapid growth occurs when the subharmonic signal grows as the 

transmit pressure increases and shows a pronounced peak at half the transmit 

frequency above the noise floor (Figure 1-9, b). The rapid growth stage of 

subharmonic with pressure was hypothesized to be a promising tool for 

noninvasive detection of pressure changes in heart cavities and major vessels for 

early diagnosis of heart and vascular diseases (Shapiro et al. 1990, de Jong 1993b 

and Brayman 1996). 

 As the transmit pressure is increased further, the backscattered 

fundamental increases while the growth of subharmonic becomes slower. This is 

where the saturation stage happens (Figure 1-9, c). 

 

1.8.3 Transient subharmonic generation 

 At low mechanical index, the subharmonic emission is stable. The 

acoustic pressure is low enough for bubbles to maintain a long lifetime, suitable 

for contrast imaging. If the transmit pressure is increased further, the broadband 

emission in the received signal will be substantially raised due to the bubble 

destruction. Therefore, the signal to noise ratio of subharmonic signal is 

significantly reduced (Shi et al. 1999). 

 The destruction mechanism is responsible for transient subharmonic 

emission. Biagi et al. studied the difference between stable and transient 
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subharmonic emission for an encapsulated microbubble during the destruction 

event (Biagi et al. 2007). Bubble destruction mechanisms are classified as 

(Chomas et al. 2001): 

• Fragmentation: a shelled microbubble is fragmentized into smaller 

microbubbles. 

• Static diffusion: the gas inside the bubble diffuses from the core of bubble 

into the surrounding medium. 

• Acoustically driven diffusion: the ultrasound driven oscillation increases 

the rate of gas diffusion. 
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Figure 1-9 The subharmonic generation from Levovist™ exhibiting the three stages: a) 

the onset, b) rapid growth and c) saturation. d) shows the subharmonic response versus 

the transmit pressure (adapted from Shi et al. 1999). 

  

1.9  Theories behind subharmonic generation 

 

 Subharmonic imaging can be a promising tool to study the 

microcirculation, although, it is far from an optimized imaging technique. One of 

the obstacles to optimizing this technique is that the origin of subharmonics has 

not yet been understood. This fact emphasises a great need to perform 
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fundamental studies in order to understand the physics of subharmonic 

oscillations. There exist some theories which try to explain the subharmonic 

generation as described in the following sections. However, none of them has 

been proven to be valid over a range of higher frequencies. 

 

1.9.1 Transient cavitation 

 Transient cavitation is the rapid growth and violent collapse of a bubble 

which is a threshold event depending on the acoustic pressure and excitation 

frequency. The shock waves are generated at the collapse of transient cavities and 

hypothesised to cause the subharmonic generation (Niemczewski 1980). Shock 

waves are sawtooth waveforms which have frequencies at harmonic multiples of 

the fundamental. There are some facts that do not support this theory; the 

experiments with shock waves generated by the sources other than bubble 

activities did not result in subharmonic oscillations. These observations led to the 

statement that “the generation of subharmonic is a general characteristic of 

nonlinear bubble oscillations and does not have to be due to the occurrence of the 

transient cavitation” (Vaughan and Leeman 1986). 
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1.9.2 Subharmonic generation from resonating bubbles 

 Bubbles are most easily driven into nonlinear oscillations when maximal 

radial displacement happens at their resonance frequency. For a given transmit 

pressure, the radial oscillation is larger when exciting bubbles below their 

resonance, compared with when insonifying them above their resonance. 

However, the off-resonant oscillations are still much smaller than the resonant 

oscillations (Hoff 2001). Subharmonics and ultraharmonics are developed in a 

strongly nonlinear system, when bubbles oscillate nonlinearly (Bohn 1957, 

Walton 1984 and Leighton et al. 1991). As the subharmonic pressure threshold is 

exceeded, there is a potential for the volumetric pulsations to bifurcate as the 

oscillations become more chaotic (Lauterborn et al. 1994). The bubble radius 

displacement reaches two different maxima, one at the transmit frequency and the 

other one at half of the transmit frequency or the subharmonic. The period 

doubling is the first step towards a chaotic response (Phelps and Leighton 1997). 

Subharmonic generation as a result of chaotic response of bubbles was measured 

experimentally (Lauterborn and Cramer 1981) and the chaos theory was applied 

to describe this behaviour (Parlitz 1990).  
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1.9.3 Resonance of larger bubbles at their second harmonic 

 Subharmonic emission might be due to the activity of the bubbles which 

are driven at twice their resonance frequency. Eller and Flynn derived an equation 

for the subharmonic generation of free gas bubbles. This equation predicts a 

minimum pressure threshold to generate subharmonic from larger bubbles with a 

natural resonance frequency of half the transmit frequency (Eller and Flynn 

1969). This theory was verified experimentally for free gas bubbles at low 

frequencies (Neppiras 1969). These bubbles are not resonant; however, their 

backscatter signal might be stronger than that of small resonant bubbles due to 

their larger size (Leighton et al. 1991).   

  

1.9.4 Surface wave theory  

 Bubbles can depart from their spherical forms by buoyancy6, asymmetries 

in the environment due to the proximity of other bubbles or boundary walls, 

gravity, shock waves, and pressure gradients on small scales (compared with the 

bubble size). As a result of bubble shape oscillations, Faraday waves on the 

surface of bubbles are generated at half the excitation frequency, first discovered 

by Faraday (Faraday 1831). Faraday waves are standing waves which are 

                                                 
6 the upward force on an object produced by the surrounding medium due to the pressure 

difference of the fluid between the top and bottom of the bubble 
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hypothesised to be the origin of subharmonics. However, this hypothesis is 

blurred by the fact that the observed intensity of subharmonics is stronger than the 

predicted intensity due to surface waves. The bubbles undergoing the shape 

oscillation are not good sound scatterers since the velocity potential of surface 

modes decreases rapidly with the distance from bubbles (Neppiras 1980 and 

Strasberg 1956). Therefore, only when the bubble approaches close enough to the 

transducer, subharmonics generated by surface modes can be detected.  

  

1.10 Summary 

 

 This chapter presented an introduction on ultrasound scattering and high 

frequency ultrasound. Current ultrasound contrast agents were introduced and 

their importance in high frequency ultrasound imaging was explained. Also, the 

behaviour of these agents was described in linear and nonlinear regimes. The 

feasibility of subharmonic generation from microbubbles was discussed under 

various transmit parameters and finally, the theories behind the subharmonic 

generation was introduced. 
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1.11 Hypothesis and objectives 

 

 The purpose of this work is to optimize the subharmonic signal from 

Definity™ (lipid-shelled) contrast agents at high frequency. We hypothesized that 

the alteration of the Definity population is required for more efficient 

subharmonic generation at high frequency. This alteration causes the majority of 

the bubble population to have a resonance at the transmit frequency. This may 

mean that the main source of the subharmonic generation is considered to be 

either the activity of resonant bubbles excited at their resonance frequency or the 

resonance of larger bubbles, excited at twice their resonance frequency.  

 

1.12 Outline of Thesis 

 

 In this work I investigate the optimization of the subharmonic signal from 

Definity™ (lipid-shelled) contrast agents at high frequency. Chapter 2 gives an 

introduction on the theory of bubble oscillations and discusses the theoretical 

limitations of current microbubble models to predict the optimized transmit 

parameters at high frequency. Chapter 3 explains the experimental procedures and 

the results from the attenuation measurements of various Definity™ populations 

in order to find the resonance frequency as well as the backscatter measurements 
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to probe the feasibility of optimizing the subharmonic signal. Changes in 

backscatter signal from the bubbles as a function of incident pressure and 

frequency are investigated. Chapter 4 discusses the future work in subharmonic 

imaging and in the development of new contrast agents for high frequency 

ultrasound imaging.    
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Chapter 2 

Theory of Bubble Oscillation  

 

2.1 Introduction  

 

 The nonlinear behaviour of a single bubble in an acoustic field can be 

predicted by numerically solving a set of differential equations. The purpose of 

this chapter is to explain the theory of bubble oscillation and to investigate the 

generation of subharmonic from a single lipid-shelled bubble at high frequencies. 

This provides a guideline to interpret the experimental results of Chapter 3. The 

subharmonic signal depends on the transmit conditions. These conditions were 

varied theoretically to investigate their effects on optimizing the subharmonic 

signals. The limitations of the current theoretical models to predict the scattered 

signal from a bubble population at high frequency are highlighted. 

  

2.2 The Rayleigh-Plesset equation 

 

 The Rayleigh-Plesset equation, Equation (2.11), is a second order ordinary 

differential equation which models the radial oscillation of a free air bubble in an 
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infinite, inviscid7 and incompressible8 liquid (Rayleigh 1917; Plesset 1949). The 

bubble diameter is assumed to be much smaller than the incident wavelength. 

Therefore, the bubble oscillates in a uniform pressure field and remains spherical. 

The surface tension is neglected. Plesset, Noltingk, Neppiras and Poritsky 

modified this equation to include the effect of viscosity, surface tension and 

incident sound wave (Neppiras and Noltingk 1950 and 1951; Poritsky 1952). This 

equation was further modified to account for damping of the shell (de Jong and 

Cornet et al. 1994) and acoustic radiation damping (Hoff 2001). 

 

Figure 2-1 The pressures exerted by liquid on the bubble wall at equilibrium is balanced 

with the internal gas pressure inside the bubble (adapted from Leighton 2007). 

 

                                                 
7 Inviscid liquid is a medium where viscous (friction) forces are small in comparison to inertial 

forces. 
8 There is no propagation of sound in an incompressible liquid. The speed of sound is assumed to 

be infinite.  
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 At time t >0, a bubble of radius R0 is at equilibrium in an incompressible 

fluid of density ρ (Figure 2-1). A small-amplitude time-varying acoustic pressure, 

P(t), is superimposed on the constant hydrostatic pressure, p0, so that the liquid 

pressure far from the bubble is )(0 tPpp +=∞ . These pressure changes the 

bubble radius during which the kinetic energy of the liquid is found by integrating 

the energy over the spherical shell of liquid (of thickness ∆r, mass of  

and speed of

drr 24πρ

r ): 

 2 21 4
2 R

r r dρ π
∞

∫ r  (2.1) 

 Because the liquid is assumed incompressible, the rate of liquid mass 

flowing through any spherical surface equicentric with the bubble does not 

change as a function of time, ∆t. Equating the mass of liquid with the radius of r 

outside the bubble  to the flow at the bubble wall gives: trr Δρπ 24

 2 2r R R r=  (2.2) 

 By substituting Equation (2.2) in Equation (2.1), the kinetic energy is 

integrated to give . Assuming the bubble oscillation as a simple 

harmonic motion, this energy is equal to the difference in work done far from the 

bubble by p

232 RRπρ

∞ and by the liquid pressure at the surface of the bubble wall pL: 

 
0

2 3 2( )4 2
R

L
R

p p R dR Rπ πρ∞− =∫ R  (2.3) 
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Differentiation of Equation (2.3) with respect to R, gives: 

 
23

2
Lp p RRR

ρ
∞−

= +  (2.4) 

The internal pressure of the bubble, pi, is the summation of the gas pressure, pg, 

and the pressure of liquid vapour, pv. This internal pressure at equilibrium is equal 

to the summation of the pressure of liquid at the surface of the bubble wall, pL 

(equal to the hydrostatic pressure, p0, when the bubble is at equilibrium) and 

surface tension, pσ. The pressure throughout the liquid is assumed to be spatially 

uniform and equal to pL. When the bubble radius changes from R to R0, assuming 

the gas obeys a polytropic9 law, the gas pressure inside the bubble will be: 

 
3

0
0g g

Rp P
R

κ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (2.5) 

where қ is the polytropic constant, pg0 is the gas pressure at equilibrium which is 

obtained by: 

 0 0g vp p p pσ= + −  (2.6) 

 i g v Lp p p p pσ= + = +  (2.7) 

 
0

2p
Rσ
σ

=  (2.8) 
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 0 ( )p p p t∞ = +  (2.9) 

 
3

0
0

0

2
L v

Rp p p p 2
vR R R

κ
σ σ⎛ ⎞⎛ ⎞

= + − + −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (2.10) 

Replacing Equations (2.9) and (2.10) in Equation (2.4), the Rayleigh-Plesset 

equation will be obtained as follows: 

 
32

0
0 0

0

3 1 2 2 ( )
2 v v

RRRR p p p p p t
R R R

κ
σ σ

ρ

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪+ = + − + − − −⎨ ⎬⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎪ ⎪⎩ ⎭

                                                                                                                                    

 (2.11) 

This equation ignores the effects of viscosity, thermal and radiation damping and 

assumes radially symmetric oscillation of the microbubble. 

 

2.3 Shell effects 

 

 The shell increases the stiffness and viscous damping which in turn, 

dampens the motion of bubble wall and limits its compressibility. Therefore, it 

decreases the scattering ability of bubbles and increases the resonance frequency. 

The Rayleigh-Plesset equation was originally derived for a free air bubble. de 

 
9 Polytropic law states that the pressure and volume of a gas are inversely proportional. It is base 

on the assumption of small amplitude bubble oscillation to maintain the gas pressure uniform 

inside the bubble. 
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Jong et al. extended this equation by adding a linear shell of an elastic solid. They 

tried to model the shell of Albunex™ by introducing the shell elasticity and shell 

friction (de Jong and Hoff 1993a; de Jong and Cornet 1994). Church assumed an 

incompressible elastic solid shell model of constant thickness (Church 1995). 

Modeling of the shell as a viscoelastic solid with a thickness inversely 

proportional to the bubble diameter which accounts for the shell stiffness and 

viscosity was first proposed by Hoff et al. (Hoff, Sontum et al. 1996). Frinking et 

al. suggested a nonlinear model for the contrast agent Quantison™. Based on their 

work, the shell can be modelled as particles with a constant bulk modulus 

(Frinking et al. 1998 and 1999). 

 The shell model used to simulate the bubble oscillations in this chapter, is 

known as the exponential shell model. This model which is developed by 

Angelsen et al. can account for the shell softening during the bubble expansions 

(Angelsen et al. 1999). Figure 2-2 shows the radial stresses at the inner and outer 

shell, T1 and T2, respectively. The difference in these stresses is due to the elastic 

and viscous forces in the shell which can be calculated as follows: 

 0 1
0

0

2 1 12 ( (1 )x x x xSe
S S

dT T G x e e x
R

η− −− = − + )  (2.12) 

 
0

1Rx
R

= −  (2.13) 
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where  is the steady state thickness of the shell which is considered as a thin 

uniform viscoelastic solid.  and 

Sed

SG Sη  are shear modulus and viscosity, 

respectively. x, is a ratio between the bubble radius and its equilibrium radius. The 

shell is assumed to be a linear elastic solid with a varying thickness. Therefore, x0 

and x1 are 0.125 and 0.25, respectively (Hoff 2001). 

 The estimation of shell parameters can be done experimentally. Most of 

these experiments were done at low frequencies with low amplitude pulses. 

Typical shell parameters for Definity™ microbubbles, used in this work, are the 

shear modulus of 190 MPa, the shell viscosity of 0.07 Pas and the constant shell 

thickness of 1.5 nm over a frequency range of 10 to 30 MHz (Goertz et al. 2007).  
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Figure 2-2 The radial stresses at the inner and outer shell, T1 and T2, respectively. The 

difference in these stresses is due to the elastic and viscous forces in the shell (replicated 

from Hoff 2001). 

 

2.4 The Minnaert Resonance Frequency 

 

 Minnaert found the natural frequency of an oscillating bubble by 

considering the exchange of energy between the potential and the inertial energies 

(Minnaert 1933). The bubble radius undergoing a wall motion of 

about a mean radius RtieRR 0

0

ω
εε −= 0 with the resonance frequency of ω0, is: 

 0

00 0R R   R i tt R R e ω
ε ε= + ( ) = −  (2.14) 
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It should be noted that an increase in pressure decreases the bubble radius. The 

kinetic energy of the liquid is obtained by Equation (2.1) which takes its 

maximum value at the equilibrium position when R=R0, ( )22

0εοω RR = : 

  (2.15) 2
0

3
0max, )(2

0
ωρπ εRRK =Φ

The kinetic energy is zero when the bubble is stationary at maximum 

displacement where the potential energy of the gas inside the bubble with the 

pressure of pg, takes its maximum value: 

  (2.16) ( ) drrpp
RR

R
gP ∫

−

−−=Φ
00

0

2
0max, 4

ε

π

Assuming the gas behaves polytropically, , the pressure and 

volume conditions at equilibrium are equal to those when the bubble is 

compressed: 

constantgp V κ =

 ( )3 3
0gp R R p Rκ

0 0
κ

ε+ =  (2.17) 

 
κ

ε

3

00

1
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

R
R

p
pg  (2.18) 

Substituting binomial expansion of Equation (2.18) into Equation (2.16) with the 

use to first order of 0R R Rε = −  coordinates gives: 

 2
000

2
0

0 0

0
max, 6430

εε
ε πκπκε

RRpdRR
R

RpR

P ==Φ ∫  (2.19) 
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 Since the model chosen for the oscillation of bubble is simple harmonic 

motion, the maximum kinetic energy, Equation (2.15), can be equated to the 

maximum potential energy. Therefore, the linear resonance frequency for the 

bubble pulsation is: 

 
ρ
κω 0

0
0

31 p
R

≈  (2.20) 

which shows that at small amplitude oscillations, the bubble can be modeled as a 

simple harmonic oscillator. In Minnaert’s calculations, the effects of surface 

tension, viscosity and thermal damping are ignored.  

 The equation of motion for the linear oscillation of a bubble (as described 

in section 1.6.2) can be modified to include the shell effects. Equation 1.8 can be 

rewritten with the following new parameters (replacing the terms in Equations 

1.10 and 1.12): 

 3
04m Rπρ=  (2.21) 

 0 0
0

4 3 12 Se
S

db R p G
R

π κ
⎛ ⎞

= +⎜
⎝ ⎠

⎟  (2.22) 

 0
0

4 4 12 Se
L S

dk R
R

π η η
⎛ ⎞

= +⎜
⎝ ⎠

⎟  (2.23) 

which Lη  is the viscosity of surrounding liquid. Therefore, the linear resonance 

frequency, f0 of the shelled-bubble is calculated as follows: 
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 0
0 0

0 0

1 1 3 12
2 2

Se
S

L

df P G
R R

ω κ
π π ρ

⎛ ⎞
= = +⎜

⎝ ⎠
⎟  (2.24) 

Without a shell (dSe=0) and under adiabatic conditions, the Minnaert resonance 

frequency can be retrieved from Equation 2.20. 

 For shelled bubbles, the shell dampens the oscillations of the bubble and 

reduces the amplitude of the scattered signal. The bubble resonance frequency is 

increased as well.  

 

2.5 Scattering Cross-section 

 

 The scattering cross-section σs of a bubble is expressed as (Hoff 2001): 

 
( ) ( )

4
2

0 2 22
( , ) 4

1
s a Rσ ω π

δ

Ω
=

− Ω + Ω
 (2.25) 

 
0

ω
ω

Ω =  (2.26) 

where 0R , is the bubble radius at the equilibrium, ω is the angular excitation 

frequency, δ is the total damping, and Ω is the ratio of the angular excitation 

frequency and the angular resonance frequency.  
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 It is worthwhile to compare the scattering cross section of Rayleigh 

scatterers (as described in section 1.4.2) with that of bubbles. Figure 2-3 compares 

the scattering cross sections of a bubble and a Rayleigh scatterer as a function of 

the size when excited at 20MHz and also as a function of the transmit frequency 

for the scatterer of 1 µm diameter. The scattering cross section of the Rayleigh 

scatterer was calculated for a glass bead with shear modulus of 39000 MPa and 

density of 2300 kg/m3
. For the frequencies below the bubble resonance frequency, 

Ω << 1, . This is equivalent to the oscillation of bubbles whose 

diameters are smaller than the resonance diameter and these bubbles behave as 

Rayleigh scatterers. However, the significant difference between the 

compressibility and the density of the gas inside the bubble and those of the 

surrounding medium (usually water) causes the scattering from the bubbles to be 

much greater than the Rayleigh scatterer. When bubbles are excited above the 

resonance frequency, Ω >> 1, σ

2 4
04s Rσ π= Ω

s does not depend on the excitation frequency and 

it increases with 2
0R .  Bubbles scatter more efficiently when excited at their 

resonance frequency, where their scattering cross section is maximum. 
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Figure 2-3 The scattering cross section of a bubble and a Rayleigh scatterer as a function 

of their size when excited at 20MHz (Left) and as a function of the transmit frequency for 

the scatterers of 1 µm diameter (Right). 

   

2.6 Damping of an Oscillating Bubble 

 

 The nonlinear behaviour of bubbles is directly affected by the pressure at 

the surface of the bubble. This pressure is equal to the summation of the gas 

pressure inside the bubble and the total damping. There are three main 

mechanisms of damping in the oscillations of a bubble: Radiation, liquid viscosity 

and thermal conduction in the entrapped gas. Total damping is the summation of 

thermal, viscous and radiation damping. These mechanisms reduce the resonance 
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frequency of the bubble (Leighton 2007). The total damping of a 1 µm diameter 

bubble is presented in Figure 2-4 and each term is also discussed briefly. 

 

2.6.1 Radiation Damping 

 Bubbles when driven by the acoustic pressure reradiate a portion of the 

energy. At lower frequencies when the wavelength is much larger than the bubble 

size, the radiation damping is small (de Jong, Bouakaz et al. 2002). The radiation 

damping can be calculated by: 

 
2

0
rad

r
c

ωδ
ω

=  (2.27) 

where c is the speed of sound. r is the bubble radius, ω and ω0 are the angular 

transmit and resonant frequency, respectively. 

 

2.6.2 Thermal Damping 

 The thermal damping depends on the motion of the bubble surface and on 

the properties of the gas. Expansions and compressions of the bubble cause an 

increase of the temperature of the gas, which results in a net flow of energy 

outwards into the surrounding medium. The thermal damping is formulated by 

Devin and Eller, assuming the same constant temperature for the shell and the 

surrounding liquid (Devin 1959 and Eller 1970):  
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2

2
g

g P

rr i

C

ω

ωρ

Ψ = +
Κ

 (2.30) 

where gΚ and gρ  are the thermal conductivity and the density of the gas inside 

the bubble, respectively. PC  is the heat capacity at constant pressure. 

  

2.6.3 Viscous Damping 

 Viscous forces in the shell dampen the bubble oscillations. The 

mechanical resistance from viscous forces in the liquid depends only on the 

bubble diameter and on the viscosity of the surrounding fluid. Viscous damping 

δη, is calculated by Equation 2.31 (Hoff 2001): 

 2
0

4
aη

ηδ
ω ρ

=  (2.31) 

where η is the viscosity of the liquid. When the 1 µm bubble is excited below 

35MHz, viscous damping is the main source of damping. 
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Figure 2-4 Damping constant versus varying transmit frequency for a 1 µm bubble. At 

higher frequencies, the radiation damping dominates where the viscous damping becomes 

less significant (replicated from Hoff 2001). 

 

2.7 Keller-Miksis Model 

 

 In addition to Rayleigh-Plesset equation, the Keller-Miksis model has 

been used commonly. This model combines Bernoulli equation, Equation (A.9) 

(described in Appendix A) with the linear wave equation under the assumption of 

a constant speed of sound in the medium (Keller and Kolodner 1956; Keller and 

Miksis 1980). Thus, the equation of motion for the bubble wall is obtained as 

follows: 
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p p p t R cR R R RRR R p
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− + − − + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
0

  (2.32) 

  Assuming linear compressibility and finite constant speed of sound, this 

model does not have the assumption of small amplitude limitation of Rayleigh-

Plesset equation. It takes account of the effects of viscosity, surface tension, 

incident sound wave and acoustic radiations.  

 The Rayleigh-Plesset equation, Equation (2.11), can be regenerated from 

Equation (2.32) if c is infinite based on the assumption of incompressibility of the 

medium. The solution of this equation can become unstable for high Mach-

numbers, which is defined by R
c

.  The term accounts for the radiation 

damping. The Rayleigh-Plesset equation ignores the radiation damping. One of 

the consequences of ignoring the radiation damping in the theoretical calculation 

of bubble oscillations is obtaining unreasonably large oscillations.   

Lp

 

2.8 Simulation Results  

 

 The simulations were done in order to investigate the effects of the 

transmit conditions and the bubble size on the subharmonic signal generation of 
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an individual bubble. However, since the validity of the model has not been 

established for the conditions used in the experiments, presented in chapter 3, a 

direct comparison between the theoretical and experimental results has not been 

done. Moreover, all the models predict radial oscillations of a single bubble which 

can not be applied to a polydisperse population of microbubbles. 

 In order to numerically solve the Keller-Miksis equation, Bubblesim™ 

which is a program written in Matlab™ was used (Hoff 2001). Bubblesim™ 

solves the ordinary differential equations of bubble oscillations using an 

embedded Runge-Kutta algorithm of order 4 and 5 (Kincaid and Cheney 1996). 

Figure 2-5 shows its graphical user interface which can take the equation, the 

shell and pulse parameters from the user.   

 For all the simulations, the Definity™ shell parameters used have been 

estimated by Goertz et al. over a frequency range of 10 to 30 MHz (Goertz et al. 

2007). Based on their measurements, the shear modulus of 190 MPa, the shell 

viscosity of 0.07 Pas and the constant shell thickness of 1.5 nm were used to solve 

the Keller-Miksis equation. 
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Figure 2-5 Bubblesim graphical user interface. 

 

2.8.1 Limitation of the pulse envelope to detect the subharmonics 

 Figure 2-6 represents the power spectra of gaussian-enveloped and 

rectangular-enveloped pulses. The arrows in the figure show the difference 

between the energy scattered at the fundamental and half the center frequency of 

the transmit pulse. The higher level of energy observed outside the desired 

bandwidth for the rectangular-enveloped pulse limits the detection of 
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subharmonic. The Vevo770™ can not generate the Gaussian-enveloped 

narrowband pulses. A reference signal which represents the power spectrum of 

the transmit pulse and the response of the transducer, was always subtracted from 

the scattered signal of bubbles. In the simulations also, the ratio of subharmonic to 

fundamental was normalized to that of the rectangular-enveloped transmit pulse. 

 

 

Figure 2-6 Subharmonic detection is more challenging using rectangular-enveloped 

pulses; the arrows show the difference between the energy scattered at the fundamental 

and half the center frequency of the transmit pulse. 
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2.8.2 Effect of bubble size on subharmonic generation 

 For all the simulations, the bubble sizes of 1.2 and 2 µm in diameter were 

chosen since previous studies demonstrated the efficiency of scattering from these 

bubble populations at high frequencies (Goertz et al. 2003). Figure 2-7 shows the 

undamped resonance frequency versus the bubble diameter. 1.2 and 2 µm bubbles 

are resonant at 20 MHz and 10MHz, respectively. The radial displacements and 

the power spectra of these two bubble sizes were simulated at 20 MHz and 40 

MHz and presented in Figures 2-8 and 2-9, respectively. The transmit pulse of 20 

MHz excites the 1.2 µm bubble at its resonance frequency and the 2 µm bubble at 

twice its resonance frequency. The numerical solution of Keller-Miksis model 

predicts that the larger bubbles excited at twice their resonance frequency are 

more easily driven into subharmonic oscillation. As shown in Figures 2-8 and 2-9, 

the 2 µm bubble with the resonance frequency of 10 MHz and the 1.2 µm bubble 

with the resonance frequency of 20 MHz produced the greatest amount of 

subharmonic signal at 20 MHz and 40 MHz, respectively. Therefore, it can be 

concluded that a suitable bubble size must be chosen based on the resonance 

behaviour of bubbles in order to improve the subharmonic generation. 
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Figure 2-7 Resonance frequency versus bubble diameter. 1.2 and 2 µm bubbles are 

resonant at 20 MHz and 10MHz, respectively, using Equation 2.24. 

  

 

Figure 2-8 The radial displacements and the power spectra of 1.2 and 2 µm bubbles 

excited using a 20 MHz rectangular pulse. 
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Figure 2-9 The radial displacements and the power spectra of 1.2 and 2 µm bubbles 

excited using a 40 MHz rectangular pulse. 

 

 This model also predicts the maximum oscillations for the smaller bubbles 

excited at their resonance frequency which can be observed for a 1.2 µm bubble at 

20 MHz (Figure 2-6). The scattering from these bubbles is more efficient at 20 

MHz, compared with the scattering at 40 MHz. 

2.8.3 Subharmonic as a function of transmit frequency 

 A bubble of any size can produce subharmonics if the transmit pressure is 

increased above the subharmonic threshold of the bubble (Cheung et al. 2007); 

Figure 2-10 demonstrates the subharmonic generation for two bubble sizes. The 

theoretical models always predict a higher threshold for the subharmonic 

generation, compared with what observed experimentally (Shankar et al. 1999). It 
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should be noted that it is very difficult to isolate a monodisperse population of 

bubbles and that these models all assume radially symmetric oscillations of an 

individual bubble. Therefore, the growth of subharmonics versus transmit 

frequencies was simulated with the higher pressure than what used in the 

experiments (1.5 MPa).  

 For the simulations, the level of subharmonic was calculated from the 

simulated bubble responses at each incremental frequency step. Then, the ratio of 

subharmonic to fundamental is calculated and normalized to that of the transmit 

signal (Figure 2-11).  Figure 2-11 shows when the transmit pressure exceeded the 

subharmonic threshold of both 1.2 and 2 µm bubbles (1.5 MPa), the greatest 

subharmonic to fundamental occurs within a limited frequency range (Hoff 2001). 

This frequency range moved towards higher frequencies as a function of the 

bubble resonance frequency, which increases with a decrease in the bubble 

diameter.  
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Figure 2-10 When the subharmonic pressure threshold is exceeded, the bifurcation 

happens in the radial oscillation of bubble. This threshold is minimum for the 2 µm 

bubble of 10 MHz resonance frequency, excited at 20 MHz (replicated from Cheung et 

al. 2007). 

 

Figure 2-11 The simulated ratio of subharmonic to fundamental as a function of the 

transmit frequency with the transmit pressure of 1.5 MPa which is normalized to the 

subharmonic to fundamental of the transmit pulse. 
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2.8.4 Subharmonic as a function of transmit pressure  

  

The pressure dependency of subharmonic generation was evaluated for two 

transmit frequencies of 20 and 40 MHz. Figure 2-12 shows that the subharmonics 

needed higher transmit pressure to develop for the 1.2 µm bubble, (resonant at 20 

MHz). The subharmonic to fundamental ratio of each bubble which was 

normalized to that of the transmit pulse is demonstrated in Figure 2-13. The very 

rapid onset of subharmonic was not observed for 1.2 and 2 µm bubbles excited at 

twice their resonance frequencies, 40 MHz and 20 MHz respectively. The reason 

is that the subharmonic generation from the larger bubbles initiates at very low 

pressure, as mentioned in section 2.8.3. For these larger bubbles, the maximum 

subharmonic to fundamental ratio was observed at 600 kPa and 1.2 MPa for the 2 

µm bubble at 20 MHz and the 1.2 µm bubble at 40 MHz, respectively.  

 At 20 MHz, when the pressure threshold for the subharmonic saturation is 

exceeded, the level of subharmonic depends no longer on the bubble size. At 40 

MHz, the subharmonic to fundamental ratio were insignificant for the 2 µm 

bubble and varied only about 5 dB over the entire pressure range. This implies 

that when the larger bubbles are excited far above their resonance frequency, the 

subharmonic to fundamental ratio remains small with varying the transmit 

pressure. 
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Figure 2-12 The simulated amount of subharmonic versus varying transmit pressure at 20 

MHz (left) and 40 MHz (right). 

 

Figure 2-13 The simulated subharmonic to fundamental ratio as a function of transmit 

pressure at 20 MHz (left) and 40 MHz (right) which is normalized to the subharmonic to 

fundamental of the transmit pulse. 
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2.9 Validity of Keller-Miksis Model at High Frequency and 

High Pressure 

2.9.1 Validity at high frequency 

 The validity of the Keller-Miksis model has not been verified at higher 

frequencies. Although the important assumption of the small bubble size 

compared with the incident wavelength is satisfied, the smallest wavelength in the 

present work is calculated about 25 µm for a 60 MHz pulse. This wavelength is 

still 10 to 20 times greater than the bubble sizes considered for the purpose of 

simulations. However, the model can not be used to verify the experiments which 

involve using the native population with larger bubble sizes (<12 µm, Figure 3-9) 

and does not take into account non-radial oscillations.  

 The validity of the exponential shell model at higher frequencies, which 

was used for the simulations in the present chapter, is also questionable. This shell 

model has only been tested for the shear modulus and shear viscosity measured at 

2 MHz (Hoff 2001). 

2.9.2 Validity at high pressure 

 The Keller-Miksis model was developed based on the assumption that the 

bubble wall velocity is smaller than the speed of sound. Although at higher 

transmit pressures, when the wall velocity exceeds half the speed of sound, the 
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model becomes invalid. The assumption of constant speed of sound also ignores 

the nonlinear propagation of ultrasound which occurs at high pressure amplitude, 

as described in section 1.4.4.  

 The mechanisms that can change the size distribution of bubbles are more 

likely to happen under higher pressures. Bubble destruction is not predicted by 

this model which has been experimentally observed at high pressures. The bubble 

dissolution as a result of the gas diffusion can be accelerated under high transmit 

pressures. This phenomenon shifts down the size distribution of bubbles which in 

turn, increases their resonance frequency. 

 A reduction in the resonance frequency of bubbles (as large as 40%) has 

been observed due to an increase in the transmit pressure (MacDonald et al. 

2002). However, there is no term to account for the effect of transmit pressure in 

the equation of the linear resonance frequency (Equations (2.24) and (2.25), 

presented in section 2.4). This indicates that the estimation of bubble resonance 

frequency by the linear approximation is no longer valid at higher pressures. 

2.9.3 Validity for a bubble population 

 Relying on the theoretical simulations of scattering from a single bubble 

and the feasibility of comparing them with the experimental results for a 

polydisperse population of bubbles are blurred by the invalidity of the underlying 

assumptions. Populations of bubbles would produce backscatter spectra that are a 
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weighted average of the contributions of all bubbles in the irradiated region. One 

other of these assumptions is that the backscatter from a bubble would be 

independent of scattering from the neighbouring bubbles. Therefore, the received 

signal from a bubble population would be equal to the summation signals from 

each bubble within the beam. In a polydisperse population of bubbles, this 

assumption is an oversimplification by ignoring the effect of multiple scattering 

(as described in section 1.5.5).  

 Moreover, the validity of considering the theoretical simulations of a 

bubble to explain the behaviour of a bubble population would be based on the 

assumption of each bubble experiencing the same transmit pressure, regardless of 

its location in the sound beam. In reality, the transmit pressure changes for each 

bubble, depending on its spatial location within the beam. This can be due to the 

combined effects of the complex spatial beam pattern, nonlinear propagation of 

ultrasound and the bubble attenuation effects (as described in section 1.5.4).  

 

2.10 Summary and Conclusion  

 

 The simulations illustrated the importance of transmit conditions to 

improve the subharmonic generation. An appropriate bubble size must be selected 
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by considering the resonance behaviour of bubbles, according to the Keller-

Miksis model. The simulations supported the theory of subharmonic generation 

due to the off-resonance oscillation of bubbles excited at twice their resonance 

frequency. However, the validity of the current models has not be proven at high 

transmit frequencies and for a polydisperse bubble population. Therefore, these 

simulations are presented to guide the reader to general trends that can be 

expected by changing the transmission parameters and bubble size distributions 

and will not be directly compared to the experimental results. 
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Chapter 3 

Subharmonic Characterization of Microbubbles at 

High Frequencies 

 

3.1 Introduction 

 

 Based on the theory of nonlinear bubble oscillations, bubbles of any size 

can produce some backscattered energy at half the transmitted frequency, 

providing a frequency-dependent pressure threshold is exceeded (Eller and Flynn 

1969). The origin of subharmonics is not well understood for a population of 

bubbles at high frequencies. The two most established theories are the 

subharmonic generation due to either the nonlinear oscillations of resonant 

bubbles excited at their resonance frequencies (Bohn 1957, Walton 1984 and 

Leighton et al. 1991) or the off-resonant oscillations of larger bubbles excited at 

twice their resonance frequencies (Eller and Flynn 1969). In both cases, the 

formation of subharmonic signal is dependent on the resonance frequency of 

bubbles as well as the transmit frequency and the resonance frequency of a bubble 

population increases as the bubble size distribution shifts down to the smaller 

bubble sizes.  
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 The experiments in this chapter test the hypothesis that the alteration of 

microbubble population is required to optimize the subharmonic generation at 

high frequencies. The population alteration shifts the bubble population so that 

they will be resonant around the transmit frequency of interest. The resonant 

behaviour of each population was investigated over a wide range of high 

frequencies. The backscatter experiments were done to characterize the 

subharmonic signal through changing the following parameters: 

 

I. Size distribution of bubble population: the three Definity™ bubble 

populations of 1.2 and 2 µm filtered and native (unfiltered) were examined. 

II. Transmit frequency: the subharmonic signal was measured over a transmit 

frequency range of 12 to 60 MHz. 

III. Transmit pressure: the changes in subharmonic generation observed with 

increasing transmit pressure within 35 kPa to 1.2 MPa. 

 

3.2 Materials and Methods 

3.2.1 Transducer Characterization 

 The Vevo770™ (Visualsonics, Toronto, ON, Canada) is a commercially 

available small animal imaging system which has been widely used in pre-clinical 

research at high ultrasound frequencies. Two broadband focused PVDF 
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transducers,  the RMV-710B (f-number 2.1; aperture 7.14 mm; focal length 15 

mm) and the RMV-708 (f-number 2.25; aperture 2 mm; focal length 4.5 mm) 

(Visualsonics, Toronto, ON, Canada) were used in pulse-echo mode for all the 

experiments. The transducers were characterized by a 40-micron needle 

hydrophone (Precision Acoustics, Dorset, UK), calibrated up to 60 MHz by the 

NPL (National Physical Laboratories, Teddington, UK).  All the hydrophone 

measurements are illustrated in Apendix B. The narrowband output peak negative 

pressure of the transducers was measured from 35 kPa up to 1.2 MPa for a 

frequency range of 10 to 60 MHz.  

 The Vevo770™ has been originally designed to produce broadband pulses 

(~100% nominal bandwidth) for high resolution imaging. However, the transmit 

parameters such as number of cycles, transmit frequency and pressure were 

altered through the access to the software engineering mode. Longer pulses with a 

narrowband power spectrum are required for the subharmonic signal to develop 

(Eller and Flynn 1969). In addition, the technique chosen to do the attenuation 

coefficient measurements is narrowband, having a better signal to noise ratio 

compared with that of the broadband measurements. The digital RF-Mode of 

Vevo770 provides the operator with the ability to record, digitize and export the 

raw RF data at the sampling frequency rate of 420MHz. The received RF lines 

were hanning-windowed in a window of 3mm (width) ×2mm (length) for RMV-

710B and 2mm (width) ×1mm (length) for RMV-708. The power spectra of the 
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200 recorded RF lines (20 lines, 10 frames) are calculated and averaged in 

Matlab™ (The MathWorks Inc., Natick, Mass., USA).  

 The presence of nonlinear propagation and energy transmitted within or 

outside of the intended bandwidth which is not due to the nonlinear oscillation of 

bubbles was investigated. For this purpose, a reference signal is obtained by the 

reflection from the surface of oil (Dow Corning® 710 Fluid). Subtracting the 

reference signal from the bubble responses can account for these effects. For all 

the experiments, the ratio of subharmonic to fundamental scattered by 

microbubbles was normalized to that of the reference signal in order to account 

for the response of the transducer and the electronics. 

 

3.2.2 Agent Handling 

 Definity™ (Bristol-Mayers Squibb Medical Imaging, Montreal, Canada) 

was kept refrigerated and brought to room temperature 10 minutes before use. 

The agent was activated using a Vialmix™ agent activator (Bristol-Mayers 

Squibb Medical Imaging, North Billerica, MA, USA) at room temperature. The 

process of activation involves mechanical agitation of the vial for 45 seconds. The 

vial was left for 10 minutes to return to the room temperature. After remixing by 

hand, the vial was inverted for 30 seconds before the extraction of the contrast 

agent. Agent was extracted using an 18 gauge needle (PercisionGlide® Needle, 
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Becton Dickinson & Co.) into a 1-ml Tuberkulin syringe (Norm-Ject®, Henke 

Sass Kronens, Germany) from the inverted vial while venting with a second 18 

gauge needle. Venting is done to stabilize the pressure inside the vial. For the 

native experiments, 60 µl of extracted agent was gently mixed with Isoton ΙΙ 

(Coulter Electronics, Luton, UK). Isoton ΙΙ is a standardized diluting liquid, used 

in laboratories. It consists of a 0.9% saline solution with a phosphate PH-buffer 

and a detergent to reduce the surface tension (Hoff 2001). For the filtration 

experiments, higher concentrations of the agent were used in order to compensate 

for the loss of volume fraction due to the population manipulation.  

 

3.2.3 Population Alteration 

 Mechanical filtration was done by using Isopore™ polycarbonate 

membranes of 1.2 and 2 µm size (Millipore Corporation). The extracted contrast 

agent was mixed with 30mL of Isoton ΙΙ at room temperature. This suspension 

was gently pushed through each filter at an approximate rate of 6mL/min. After 

the filtration of 15mL, the filter was replaced to reduce clogging of the filter 

micropores. The filtered agent was then further diluted with Isoton ΙΙ to the 

concentration of interest. The success of agent filtration procedure was verified 

through the size distribution measurements of the bubbles using a particle 

analyzer.  
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3.2.4 Size Distribution Measurements 

 Size distributions were measured with particle size analyzer, Microtrac™ 

S3500 (Microtrac Inc., FL, USA) with a measurable size range of 0.02 to 2000 

μm. The measuring range of instrument is divided into fixed “channels” or 

particle sizes. As shown in Figure 3-1, Microtrac™ uses three lasers to illuminate 

the sample to be measured. The particles inside the samples scatter the light in an 

angular pattern, depending on their sizes. The two detectors allow light scattering 

measurements to be made from approximately zero to 160 degree. Switching the 

lasers on, one at a time, multiplies the number of sensors used to detect the 

scattered light from the particles. The particle size distribution is regenerated from 

the resultant scattered light data of all three lasers. 

 For each bubble population, the concentration was 0.1% by volume and 

the measurements were repeated three times. The percentage of bubbles present in 

each channel was calculated and presented versus the bubble diameters. 
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Figure 3-1 In Microtrac™, switching the lasers on, one at a time, multiplies the number 

of sensors used to detect the scattered light from the sample. 

 

3.2.5 Attenuation Coefficient Measurements 

 When ultrasound passes through a medium, it undergoes energy losses. 

These losses are resulted from the absorption, which causes the heat generation 

and scattering due to changes in the compressibility and density. The attenuation 

in a suspension of bubbles can be measured by comparing the received signal 

without and with contrast agent in the sound path (known as substitution method) 

(de Jong et al. 1992). It means that the signal from the agent is compared with a 

reference in order to compensate for the frequency response of the transducer and 

for the characteristics of the sound path. The attenuation coefficient, defined in 

terms of a combined effect of absorption and scattering, is expressed in dB per 

unit length as:  
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 (20 logdB M R )p p
x

α = −  (3.1) 

 

where x is the thickness of the sample whose attenuation coefficient is to be 

calculated;  is the amplitude of the received signal with the sample. The 

reference signal of amplitude  is chosen to be measured in water or in saline 

solution (Hoff 2001).  

Mp

Rp

 The resonance response of microbubbles was investigated by measuring 

the frequency-dependent attenuation coefficient of bubble suspensions. This, in 

turn, determines the best transmission frequencies for each bubble population as 

the attenuation coefficient is largest at the most effective resonant frequencies. 

Agent characterization was done by the narrowband pulse-echo attenuation 

coefficient measurements using the substitution method.  
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Figure 3-2 In this custom-made container for the attenuation measurements, ultrasound 

beam was reflected off a quartz plate, located at the focus of the transducer. 

 

 Two broadband focused PVDF transducers (RMV-710B and RMV-708) 

were used to cover a frequency range of 10MHz to 60MHz. The agent was diluted 

in a custom-made container in which ultrasound beam was reflected off a quartz 

plate, located at the focus of the transducer (Figure 3-2). Figure 3-3 illustrates a 

schematic of the setup for the attenuation measurements. The suspension was 

mixed gently within the container during the entire time of the experiments in 

order to minimize the bubble floatation effects. The mixing ensures different 

populations of bubbles to be interrogated with transmit pulses. 
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Figure 3-3 Setup for the attenuation measurements of the bubble suspension. The beam is 

reflected off the surface of the quartz plate. 

 

 A sequence of narrowband pulses (30 cycles) was transmitted to sweep the 

bandwidth of each transducer (10 MHz to 35 MHz for RMV-710B and 30 MHz to 

60 MHz for RMV-708) in steps of 2 or 3 MHz (i.e. 10 MHz, 12 MHz, 

15MHz,…). Figure 3-4 shows a typical narrowband pulse, used in the 

experiments, in time and frequency domain. Narrowband attenuation 

measurements allow for the use of low transmit pressure in order to avoid the 

pressure-dependent attenuation effects and to enable the comparison with the 

linearized bubble models (Goertz et al. 2007). The potential pressure-dependent 

attenuation effects cause the attenuation coefficient to resemble the transmit 
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pressure amplitude, which depends on the transmit frequency (Chen et al. 2002).  

Moreover, longer pulses have a higher energy at their center frequency, which 

also results in a better signal to noise ratio. The peak negative pressure level of 40 

kPa was used for the attenuation measurements, measured with the method 

described in section 3.2.1.  

 The agent was handled according to the agent handling instruction (section 

3.2.2). A concentration of 1:3600, 1:9100 and 1:15000 was used for 1.2 and 2 µm 

filtration and the native experiment, respectively, in order to maintain a good 

sensitivity in the attenuation measurements. The measurements started 1 minute 

after diluting and mixing the agent in the container (Goertz et al. 2007). For each 

population, six measurements at each frequency were performed on the two 

samples for each population which were prepared separately. The total time of 

data acquisition was approximately 10 minutes for each sample.   

 

  

89



 

 

Figure 3-4 A typical 20-cycle pulse at 25 MHz, used in all the experiments, in time and 

frequency domain. 

   

3.2.6 Backscatter Measurements 

 The RMV-710B and RMV-708 transducers were used in pulse echo mode 

to cover a frequency range of 12MHz to 60MHz. Figure 3-5 illustrates the setup 

for the backscatter measurements. Agent was handled as described in section 

3.2.2. A 500 ml vessel containing the microbubble suspension was sealed by a 

Saran™ membrane and immersed in a water tank. This container has a small 

angle of 20 degree with the bottom of the water tank in order to prevent the air 

bubbles which might be entrapped behind the membrane and interfere with the 

beam path (Figure 3-6). The beam was focused 2 mm behind the membrane and 

microbubbles were stirred continuously in the container during the experiments. 

Figure 3-7 demonstrates the display of the Vevo770™ in RF mode during a 

typical backscatter experiment. 
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Figure 3-5 Setup for the backscatter measurements. 

 

 Concentrations of 1:2000, 1:1500 and 1:1000 were used for native 

population, 2 and 1.2 µm filtered microbubbles, respectively.  A low frame rate of 

10Hz ensured scanning slowly enough in order to obtain a good representation of 

bubble population, being insonified at the transmit frequency of interest. The 

power spectra of 200 independent RF lines were averaged. Electronic noise also 

was recorded and only the data from the received power spectra which were 

above the noise were taken into account. The spectra were integrated in two 

frequency bands: subharmonic (0.46 to 0.54 times the transmit frequency) and 

fundamental (0.96 to 1.04 times the transmit frequency) as shown in Figure 3-8. 

The same integration was done for the reference signal, reflected from the surface 
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of the oil, at each frequency or pressure step. Then, the ratio of the subharmonic 

to fundamental of the reference signal was calculated and subtracted from that of 

each bubble population for each transmit parameter. Six trials were performed for 

each data point for two independent samples. The error bars represent the 

standard error of all the 6 trials, unless otherwise stated. 

 

 

Figure 3-6 Schematic of the setup for the backscatter measurements. The beam is focused 

2 mm behind the Saran membrane. 

 

 The subharmonic signal and the subharmonic to fundamental ratio for 

three bubble size distributions of native, 1.2 µm filtered and 2 µm filtered were 

measured for a range of transmit pressures and frequencies. In all the results, the 
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subharmonic to fundamental ratio was normalized to that of a reference signal 

which was obtained from the oil interface as described earlier. 

  

 

Figure 3-7 Display of the Vevo770™ in RF mode during a typical backscatter 

experiment. The region of interest which was selected in the B-mode image (on the top) 

is shown separately on the bottom left corner. The time (red line) and frequency (blue 

line) domain representation of each line within the region of interest can be presented in 

the bottom right graph. 
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3.2.7 Subharmonic generation under varying transmit conditions 

 As described in section 3.1, the transmit frequency and pressure were 

changed in order to characterize the subharmonic signal from various Definity™ 

bubble populations. In order to find the optimal frequency at which bubbles in 

each population can emit the maximum subharmonic signal, the subharmonic 

signal was measured over a frequency range of 12 to 60MHz. 20-cycle 

rectangular-enveloped pulses were used to excite the bubbles at incremental 

frequency steps. The peak negative transmit pressure was kept at 400 kPa over the 

entire frequency range through the engineering software mode. This pressure 

level is considered enough to generate the subharmonic from the selected bubble 

size distributions in the present work. 

 The subharmonic generation was studied with varying the transmit 

pressure at 20 MHz and 40MHz. 20-cycle and 30-cycle rectangular-enveloped 

pulses were used to excite the bubbles over a pressure range of 35 kPa to 1.2 MPa 

at 20 MHz and 40 MHz, respectively.  
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Figure 3-8 A typical received spectrum of a native bubble population which is integrated 

in two frequency bands: subharmonic (0.46 to 0.54 of the transmit frequency) and 

fundamental (0.96 to 1.04 of the transmit frequency). 

 

3.3 Experimental Results 

3.3.1 Size Distribution Measurements  

 The size distributions of 1.2 µm and 2 µm filtered and native populations 

measured by the particle analyser are shown in Figure 3-9. A bimodal distribution 

was measured with a large number of submicron bubbles observed in the native 

size distribution. The size distributions of 1.2 µm and 2 µm filtered populations 
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demonstrated a successful removal of the majority of bubbles larger than the filter 

pore size.  

  

 

Figure 3-9 The size distributions of a) native b) 2 µm and c) 1.2 µm filtered populations 

show a successful removal of the majority of bubbles larger than the filter pore size. 

3.3.2 Attenuation Coefficient Measurements 

 The results of narrowband frequency-dependent attenuation measurements 

are shown in Figure 3-10. The error bars represent the standard errors of 6 

measurements, collected from the 2 independent samples. For the native 

Definity™, a peak in the attenuation measurements occurred around 12 MHz and 

it decreases to half of its peak value at about 50MHz. the attenuation rises up to 

15-22 MHz for 2 µm filtered bubbles, followed by a gradual decrease at higher 
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frequencies. For 1.2 µm filtered bubbles, the peak is shifted up to 30 to 40MHz 

and the attenuation coefficient remains high up to 60 MHz.  

 

 

Figure 3-10 The narrowband attenuation coefficient measurements of a) native b) 2 µm 

and c) 1.2 µm filtered populations, using two transducers the RMV-710B and RMV-708. 

It demonstrates an increase in the resonance frequency (peak of the attenuation 

coefficient) of each population due to the alteration of bubble populations. 
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3.3.3 Backscatter Measurements 

 The averaged power spectra from each of three bubble populations excited 

at 20 MHz with a 20-cycle rectangular-enveloped pulse of 400 kPa are shown in 

Figure 3-11. The power spectra were normalized to the 20 MHz fundamental of 

each bubble population. The subharmonic energy at half of the transmit frequency 

was observed above the noise floor for all three bubble populations. The 1.2 µm 

filtered population generated the greatest amount of subharmonic energy relative 

to the fundamental, -36 dB. The 2 µm filtered and native populations exhibited 

the subharmonic to fundamental ratios of -39 and -40 dB, respectively.  
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Figure 3-11 The averaged power spectra (average of 200 lines) from each of three bubble 

populations excited at 20 MHz with a 20-cycle rectangular-enveloped pulse of 400 kPa. 

The power spectra were normalized to the fundamental of each bubble population. 

 

3.3.4 Subharmonic as a function of transmit frequency 

 The subharmonic to fundamental ratio was measured over a wide range of 

transmit frequencies, 12 to 60 MHz. This was normalized to the subharmonic to 

fundamental ratio of a reference signal which was obtained from the oil interface 

(section 3.2.6). Since the ratio of subharmonic to fundamental of the reflected 

signal from oil interface is a larger negative number (compared with that of the 

bubble population) the normalized ratio was calculated as a positive number. The 
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peak negative transmit pressure was 400 kPa for all the transmit pulses. 20-cycle 

rectangular-enveloped pulses were used. The result in Figure 3-12 shows the 

greatest subharmonic energy relative to the fundamental for 1.2 µm filtered 

bubbles around 20 MHz. This ratio is almost constant over the entire frequency 

range. 2 µm filtered and native population exhibited the maximum ratio at around 

12 MHz, followed by a drop of approximately 8 dB at 20MHz. For frequencies 

above 20MHz, there are small changes in the subharmonic to fundamental ratio.  

 

Figure 3-12 The normalized subharmonic to fundamental ratio versus varying transmit 

frequency, using 20-cycle rectangular-enveloped pulses at the peak negative transmit 

pressure of 400 kPa. 
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3.3.5 Subharmonic as a function of transmit pressure at 20 MHz 

and 40 MHz 

 Subharmonic generation from various bubble populations was investigated 

as a function of transmit pressure at two transmit frequencies of 20MHz and 40 

MHz. All the graphs were normalized to the fundamental of the scattered pulse at 

the lowest transmit pressure for each bubble population. The peak negative 

pressure of transmitted pulses was varied between 35 kPa and 1.2 MPa for 20-

cycle pulses at 20 MHz and for 30-cycle pulses at 40 MHz.  

 The absolute values of subharmonic and fundamental energies at 20 MHz 

and 40 MHz are presented in Figure 3-13. The error bars represent the standard 

errors of 6 measurements, collected for the 2 independent samples with 3 trials for 

each sample. Regardless of bubble size distributions, scattering at fundamental 

and subharmonic energies seem to be more efficient at 20 MHz, compared with 

those at 40 MHz. The fundamental and subharmonic energies continue to increase 

with the transmit pressure for the three bubble populations at 20 MHz and 40 

MHz. The growth of the subharmonic and fundamental signals are slower for 1.2 

µm filtered bubbles as the transmit pressure increases. 

  At 20 MHz, the regions of subharmonic generation, onset and rapid 

growth followed by saturation for the higher transmit pressure (>400 kPa), were 

observed. The onset of subharmonic signal for 1.2 µm filtered bubbles started 10 

  

101



 

dB above that of 2 µm filtered and native populations. At 40 MHz, the 

subharmonic energy does not vary significantly for the altered bubble 

populations. The onset of subharmonic signal is the same for all three populations. 

There is an increase in the subharmonic energy with the transmit pressure. The 

saturation does not happen within the transmit pressure range.  

 The normalized ratios of subharmonic to fundamental of each bubble 

population are presented in Figure 3-14, which expresses the amount of 

subharmonic energy relative to the fundamental. The 1.2 µm filtered bubbles 

generate the greatest subharmonic to fundamental ratio at both 20 MHz and 40 

MHz. 
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Figure 3-13 The absolute values of subharmonic and fundamental energies at 20 MHz 

and 40 MHz normalized to the lowest fundamental amplitude of each bubble population. 

 

 At 20 MHz, the 1.2 µm filtered bubbles have the greatest normalized 

subharmonic to fundamental ratio, approximately 34 dB between 400 and 600 

kPa. Over the same pressure range, the subharmonic amplitude for 2 µm filtered 

and native populations were 16 dB and 15 dB, respectively. At 20 MHz, this ratio 

saturates and drops gradually for the three bubble populations with higher 

transmit pressures.  

 Unlike the result at 20 MHz, there is a smooth growth in the subharmonic 

to fundamental ratio of the three bubble populations at 40 MHz. The 1.2 µm 
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filtered bubbles generate the greatest subharmonic to fundamental ratio at 20 

MHz and 40 MHz. At 40 MHz, this ratio is increased by 15 dB for 2 µm filtered 

and native populations, compared with their ratio at 20 MHz.  

 

Figure 3-14 The normalized ratios of subharmonic to fundamental for each bubble 

populations at a) 20 MHz and b) 40 MHz. 

 

3.4 Discussion of Results 

 

 It should be noted that the possibility of the bubble disruption and 

pressure-dependent attenuation were not examined in this work. However, a 

transmit pressure of only 40 kPa, corresponding to a very low mechanical index 
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(0.005 to 0.012 at 60 and 10 MHz, respectively), was used for the attenuation 

measurements in order to prevent these effects (Goertz et al. 2007). No signs of 

bubble disruption for Definity™ have been previously reported below the 

pressure level of 0.9 MPa at 20 MHz (Needles at al. 2005). With another lipid 

shell agent, BG2423™ (Bracco Research), the bubble destruction occurred above 

1.5 MPa using 30 MHz pulses of 5% bandwidth (Goertz et al. 2006a). The 

significant destruction of Definity™ microbubbles has not been observed until the 

pressure level higher than 5 MPa at 20 MHz (Goertz 2002, Goertz et al. 2005 and 

Kruse et al. 2002). Therefore, a stable (non-destructive) regime of the 

subharmonic generation is expected within the low transmit pressures (<1.2 MPa) 

used in the backscatter measurements of the present work. In addition, the effects 

of the duty cycle and the bandwidth of the transmit pulses on subharmonic 

generation have not been considered in this work.  Cheung et al. showed that 

increasing the number of cycles (more than 5 cycles) in transmit pulses did not 

affect the subharmonic to fundamental ratio at high frequencies (Cheung et al. 

2008).  

 

3.4.1 Attenuation Coefficient Measurements 

 The attenuation measurements in section 3.3.2 have shown the significant 

levels of attenuation at high frequencies due to the resonant oscillation of 
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Definity™ microbubbles of various size distributions. The results in Figure 3-10 

were consistent with the published data (Goertz et al. 2007). By isolating the 

subpopulation of bubbles below 1.2 µm and 2 µm through filtration process 

(Figure 3-9), there is a trend of increasing the resonant frequency of bubble 

populations up until 50MHz. The nonlinear behaviour of Definity™ at high 

frequencies has been attributed to the resonant activity of submicron bubbles, 

which results in an increase in their frequency-dependent attenuation (Goertz et 

al. 2005 and 2006b; Cheung et al. 2005). 1.2 µm filtered bubbles exhibited a high 

attenuation coefficient over a wide range of frequencies, 10 MHz to 60 MHz, 

where it is believed the majority of these bubbles are resonant (Goertz et al. 

2007). This suggests that they can be easily driven to nonlinear oscillations at 

high frequencies. Therefore, 1.2 µm filtered bubbles can be good candidates for 

high frequency subharmonic imaging. It should be noted that the attenuation 

coefficient is very sensitive to the concentration of bubble suspensions. For the 

attenuation measurements, the amount of agent extracted for each sample was 

very small (section 3.2.5) which makes it difficult to prepare identical samples. A 

new sample was prepared for each transducer in each trial. This can explain the 

disjointed data of Figure 3-10. A small increase in concentration of a bubble 

population results in a higher attenuation coefficient. The attenuation coefficient 

does not increase linearly with a high concentration of microbubbles (Goertz et al. 

2007).  
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3.4.2 Backscatter Measurements 

 Experiments described in section 3.3.3 supported the hypothesis. An 

increase in the subharmonic to fundamental ratio was measured due to the bubble 

population alteration. The 1.2 µm filtered bubbles demonstrated the greatest 

subharmonic energy relative to the fundamental at 20 MHz (Figure 3-11). 

However, the numerical simulations of the Keller-Miksis model in Figure 2-8 

showed that a 2 µm SINGLE bubble with a natural resonance frequency of 

10MHz have a higher subharmonic signal than that of a 1.2 µm single bubble. 

When excited at 20 MHz, this model supports the theory of subharmonic 

generation due to the off-resonant oscillations of larger bubbles excited at twice 

their resonant frequency (described in section 1.9.3). If this theory was supported 

by the experimental results, one would expect the native population with the 

measured resonance frequency of 10 to 12 MHz (Figure 3-10) to produce the 

greatest subharmonic energy. This is because these bubbles were excited at 20 

MHz, twice their resonance frequency. Therefore, these experimental results do 

not support the most commonly accepted theory of subharmonic generation. 

However, it should be again emphasized that the model has all the shortcomings 

listed in section 2.9 and is based on the response of a single bubble rather than 

that of a population used in these experiments. Moreover, an average diameter of 

2 µm can not be assumed for the native population based on the 10 to 20 MHz 

peak measured in its attenuation coefficient. In fact, the size distribution 
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measurements of the various bubble populations can also support this statement 

(Figure 3.9). 

 Neither the theory of subharmonic generation from nonlinear oscillations 

of resonant bubbles excited at their resonant frequency (section 1.9.2) can be 

supported by the results; if this theory held for our system, the 2 µm filtered 

bubbles with a measured resonance frequency around 20 MHz (Figure 3-10) 

would generate the maximum subharmonic signal. In these experiments, however, 

the maximum subharmonic signal was obtained from the 1.2 µm filtered bubbles. 

Yet, the latter theory can not be ruled out, since there is likely a downshift in the 

resonance frequency of the bubble populations under high transmit pressures 

(MacDonald, Sboros et al. 2002). Therefore, it can be reasonably hypothesised 

that the resonance frequency of each bubble population could be reduced under 

the transmit pressure of 400 kPa (an order of magnitude higher than that used to 

measure the resonance frequency, 40 kPa). If the resonance frequency of the 1.2 

µm bubbles decreased from around 30 MHz to 20 MHz, then the great amount of 

subharmonic observed from this population could be attributed to the oscillation 

of resonant bubbles excited at their resonance frequencies.  

It should be noted that the effect of concentration of microbubbles on the 

backscattered signals has not been investigated in this work. However, an increase 

in the bubble concentration would result in a higher attenuation and potentially 
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multiple scattering, as described in section 1.5.4 and 1.5.5. This, in turn, can 

change the frequency content of the received signals depending on the size 

distribution and thus the resonance frequency of the bubble population.  In order 

to minimize the attenuation and multiple scattering effects, the concentration of 

each bubble population (as indicated in section 3.2.6) was chosen based on the 

published data (Goertz et al. 2003). 

 

3.4.3 Subharmonic as a function of transmit Frequency 

 In order to find the optimal transmit frequency for each bubble 

populations, the subharmonic to fundamental ratio was measured over a wide 

range of transmit frequencies, 12 to 60 MHz. The results in section 3.3.4 showed 

that the bubble population alteration improved the subharmonic to fundamental 

ratio.  

 The numerical simulations in section 2.8.3 showed the frequency range at 

which the maximum subharmonic to fundamental signal is expected. This 

frequency range is shifted up with decreasing the bubble size which in turn, 

increases the bubble resonant frequency. The experimental results (Figure 3-12) 

showed the same trend with the simulation, demonstrating an increase in the 

optimal transmit frequency as a result of bubble population alteration. The 1.2 µm 

filtered bubbles, with the measured resonance frequency of 30 to 40 MHz, 
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exhibited the greatest subharmonic to fundamental ratio around 20 MHz and 

maintain constant over a wide range of frequencies. However, the 2 µm filtered 

and native populations, with the measured resonance frequency of 12 MHz and 15 

to 22 MHz respectively, have peaks around 12 MHz. Therefore, subharmonic 

generation is linked to the resonance size of bubbles. 

 The optimal transmit frequency of 20 MHz can be suggested for the 

altered bubble populations which is consistent with the published data (Cheung et 

al. 2007). At higher transmit frequencies, as described in section 3.4.4, the 

scattering strength of all the three populations was significantly reduced although 

the subharmonic to fundamental ratio remained high. The high ratio of 

subharmonic to fundamental at frequencies above 30 MHz can be potentially 

attributed to the resonant oscillation of submicron bubbles. 

 

3.4.4 Subharmonic as a function of transmit Pressure at 20 MHz 

and 40 MHz 

 In order to characterize the subharmonic signal for 1.2 µm and 2 µm 

filtered and native populations, the transmit pressure was varied between 35 kPa 

and 1.2 MPa at 20 and 40MHz. The experimental results supported the hypothesis 

that the bubble population alteration can maximize the subharmonic signal from 
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Definity™. It was concluded by the observation of greater subharmonic to 

fundamental ratios from the 1.2 µm filtered bubble population (Figure 3-14). 

 The fundamental energy increased with the transmit pressure for various 

bubble size distributions. However, the subharmonic and fundamental signals 

scattered by bubbles at 40 MHz were less than those at 20 MHz (Figure 3-13). 

The result suggests that the bubble size distributions chosen for the present work 

are not efficient for scattering at higher frequencies (>40 MHz). This conclusion 

can be explained by the theory as described in section 2.2.7, the bubbles excited at 

their resonance frequency are the most efficient sound scatterers. When bubbles 

are excited above their resonance frequency (Ω >> 1), their scattering does not 

depend on the excitation frequency and it increases with 2
0R . By increasing the 

transmit frequency potentially above 40 MHz, the majority of the bubbles are 

expected to oscillate off-resonance. This is the reason why the scattering energy 

of all the three bubble populations is reduced compared with the results at 20 

MHz transmit frequency (comparing top, a) and b) with bottom rows, c) and d) of 

Figure 3-13). The largest scattering measured for the native population showed 

the size dependency of the off-resonant scattering (Figure 3-13). 

 The three stages of subharmonic generation: the onset, rapid growth and 

saturation (section 1.8.3) have been previously reported for the subharmonic 

signal at low frequencies (Shi, Forsberg et al. 1999). At high frequencies, the 
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onset of subharmonic signal has not been observed previously since the transmit 

pressure used in these studies was high (>130 kPa) (Goertz et al. 2006b and 

Cheung et al. 2007). The saturation is due to the slower growth of the 

subharmonic signal as the fundamental increases with the transmit pressure. In the 

present work, patterns resembling these three stages were observed at 20 MHz 

(Figure 3-13, a): the onset, below 100 kPa, the rapid growth, between 100 kPa and 

400 kPa, and the saturation, above 400 kPa. The observation of the rapid growth 

and saturation regions is consistent with the previous study of Definity™ 

subharmonic response at high frequency (Cheung et al. 2007). The saturation 

region was not seen at 40 MHz since the growth rate of the fundamental is slower 

than that of the subharmonic.  

 The numerical simulations of Keller-Miksis model in section 2.8.4 showed 

that bubbles of any size can generate subharmonics if the pressure threshold is 

exceeded. This was supported experimentally by the observation of the 

subharmonic signals from all the three bubble populations (Figure 3-13 and 3-14). 

The model predicts a minimum pressure threshold for the subharmonic generation 

of a single bubble excited at twice its resonant frequency. Based on this theory, at 

20 MHz the highest subharmonic level was calculated for a 2 µm bubble with a 

resonance frequency of 10 MHz. Unlike the theory, the experimental results 

(Figure 3-14) showed that the greatest subharmonic to fundamental ratio was 

achieved by 1.2 µm filtered bubbles. With the same reasoning as described in 
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section 3.4.2, it can be speculated that the observation of the greatest subharmonic 

ratio for the 1.2 µm filtered bubble population is due to the resonant oscillations 

of these bubbles excited at their resonance frequency. 

  The optimal pressure range for all the three bubble populations can 

be defined within the saturation region between 400 kPa to 600 kPa. This range is 

still below the pressure threshold for the bubble destruction (Needles at al. 2005). 

The result for the optimal pressure range is consistent with the published data 

(Cheung et al. 2007).  

 

3.5 Summary 

 

 The experimental results supported the hypothesis that the bubble 

population alteration can improve the subharmonic generation from Definity™ 

microbubbles. The resonant behaviour of various bubble populations was 

investigated over a wide range of high frequencies. Due to their resonance 

activity, smaller bubbles exhibited a peak in their attenuation coefficient at higher 

frequencies and therefore, a potential for nonlinear oscillations within the high 

frequency range. The subharmonic signal showed a dependency on the transmit 

parameters and the bubble size distribution. The optimal transmit pressures and 
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frequencies could be deducted from the experiments for each bubble population. 

The greatest subharmonic to fundamental ratio was produced by bubbles smaller 

than 1.2 µm in diameter and under transmit pressure of 400 to 600 kPa at 20 

MHz. These bubbles are likely responsible for most of the nonlinear scattering 

and can be good candidates for subharmonic imaging at high frequencies.  
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Chapter 4 

Discussion and Future Work  

  

Subharmonic imaging can be used to suppress the surrounding tissue 

signal in order to detect the microvessels. Tissue suppression is done by 

increasing the contrast of the echoes from blood, carrying microbubbles, with 

respect to tissue. This is possible through the use of subharmonics which can only 

be produced by resonance of the bubbles; as opposed to harmonics that can also 

be created by nonlinear propagation in a medium. The subharmonic generation 

from microbubbles has been previously used to detect the microvasculature in the 

rabbit ear (Goertz et al. 2005a). In addition, the feasibility of flow imaging at high 

frequency using subharmonics has been verified in vivo (Goertz et al. 2005b, 

Needles et al. 2008). 

 While the efficiency of second harmonic imaging is blurred by the 

nonlinear propagation of sound in surrounding tissues and the frequency-

dependent attenuation, subharmonic imaging seems to be a promising tool. The 

research is on going to optimize the subharmonic signal at high frequencies. 
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4.1 Optimization of Subharmonic Imaging 

 

 The nonlinear behaviour of Definity™ microbubbles has been attributed to 

the resonance oscillations of submicron bubbles at high frequencies (Goertz et al. 

2003 and 2005a). Based on this finding, there have been some attempts to 

optimize high frequency nonlinear imaging by isolating submicron bubbles from 

native bubble population and by changing the transmit conditions (Goertz et al. 

2001, 2003; Cheung et al. 2008).  

 The origin of subharmonic has not been well understood yet. Based on the 

present work, there is a correlation between the resonance frequency of the bubble 

population and the frequency at which the maximum subharmonic to fundamental 

ratio occurred. In addition, the greatest subharmonic to fundamental ratio was 

observed for microbubbles less than 1.2 µm in diameter. This suggests that the 

nonlinear oscillations of submicron bubbles, excited around their resonant 

frequency is likely responsible for the subharmonic generation at high 

frequencies. 

 Regardless of the origin of subharmonics, developing a high frequency 

subharmonic imaging system requires a knowledge of optimized transmit 

parameters and nonlinear behaviour of the current contrast agents at high 

frequencies. The high frequency transducers need to be designed with larger 
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bandwidth to be able to transmit at fundamental and receive at subharmonic. 

Analog transmit and receive filters are required to modify the current commercial 

high frequency imaging system, such as the Vevo 770™, for the purpose of 

subharmonic imaging. 

 

4.2 Future Contrast Agent 

 

 The current contrast agents have not been designed for use in imaging at 

high frequencies. Unlike contrast agents for other imaging modalities, ultrasound 

contrast agents can be modified according to the technique used to image them. 

Submicron lipid shelled bubbles are suitable candidates for the nonlinear imaging 

at high frequencies. The resonance behaviour of these bubbles has been 

hypothesized to produce strong nonlinear scattering at high frequencies (Goertz et 

al. 2001, Goertz et al. 2005a and Cheung et al. 2008). 

 Definity™ has a significant number of bubbles with diameters of 1 to 2 

µm and below. However, the volume fraction of the subpopulation of submicron 

bubbles is small. Therefore, the majority of bubbles oscillate off their resonance 

frequency and do not contribute efficiently for high frequency imaging (Goertz, 

Frijlink et al. 2004). It emphasizes the need to gain quantitative insights into an 
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appropriate bubble size distribution with a resonant behaviour at high frequencies 

and also to develop the appropriate scattering models to incorporate the effects 

which the present models can not take into account. This knowledge leads to 

developing new contrast agents for nonlinear imaging at high frequencies. 

 Using smaller bubbles, assuming a given volume fraction of gas, means 

having a larger number of bubbles per unit volume. Thereby, a higher bubble 

number density can be achieved in the blood vessels. This is an important factor 

when volume of blood within the sample volume decreases according to the scale 

of microvasculature and high frequency ultrasound beam. Therefore, a higher 

bubble number density within the agent increases the probability of the presence 

of bubbles within the sample volume (Goertz et al. 2006b and Goertz, Frijlink et 

al. 2004). 

 The results of the present work showed that for the subharmonic imaging 

at high frequency, the size of bubbles should be smaller than 1.2 µm in diameter. 

This is the size distribution by which a maximum subharmonic was detected over 

a wide range of transmit frequencies. However, manufacturing stable bubbles 

smaller than 1 µm in diameter is challenging. The increased surface area to 

volume ratio reduces the lifetime of bubbles. Moreover, the thickness of the shell 

limits the minimum achievable size of bubbles. 
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4.3 In vivo Subharmonic Imaging 

 

 It is important to discuss the differences in the behaviour and kinetics of 

microbubbles in in vitro and in vivo environments. After an intravenous injection 

of microbubbles, not all microbubbles entering the pulmonary circulation 

circulate. The lung capillaries with an average diameter of 7 µm filter the larger 

bubbles passively (Bouakaz et al. 1998). However, due to the rhythmic variation 

of diameter of the capillaries, the new altered size distribution of these bubbles 

can not simply be predicted by their average diameter. In addition, active filtration 

mechanisms such as proteolysis10 and intravascular phagocytosis11 result in 

trapping and removal of microbubbles from the pulmonary circulation (Brain et 

al. 1977). Although, there is some evidence of deformation of lipid shell 

microbubbles (such as Definity™) during the transient entrapment which allows 

their safe passage through the capillaries (Lindner et al. 2002). 

 Other in vivo factors affecting the size distribution of microbubbles 

include the outward gas diffusion and ambient pressure which result in the bubble 

shrinkage and therefore, yielding a population of smaller bubbles. After passage 

                                                 
10 Proteolysis is the directed degradation of proteins by cellular enzymes or by intramolecular 

digestion. 
11 Phagocytosis is a cellular process of absorbing waste material or other foreign bodies in the 

bloodstream and tissues. 
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through the lungs, the agent travels through the left atrium and the left ventricle. 

The left ventricle forces the agent through the systolic circulation by exerting an 

almost 120 mmHg pressure on it. This ambient pressure, in turn, accelerates the 

rate of the bubble shrinkage (Bouakaz et al. 1998 and de Jong et al. 1993b). 

 The nonlinear behaviour of the bubbles, survived during the passage 

through the pulmonary circulation can be affected due to dampening of bubble 

oscillations in blood. The viscosity of blood is about 3.5×10-3 Pas at 36°C and 

40% hematocrit, compared with  1×10-3 Pas for water at 20°C (Cobbold 2007). 

Therefore, higher transmit pressures and longer pulses may be required to initiate 

the subharmonic generation in vivo (Shankar et al. 1999). In addition, the passage 

of bubbles through small vessels can limit their large radial oscillations (Caskey, 

Dayton et al. 2005, Cheung et al. 2007).  

4.4 Conclusion  

 

 The alteration of various bubble populations was investigated as a possible 

way to improve the subharmonic generation from Definity™ microbubbles. The 

simulations showed that the subharmonic generation from a single bubble can 

increase depending on the bubble size and the transmit parameters. Specifically, a 

decrease in the bubble diameter can improve subharmonic generation at high 

frequency. The filtration of native Definity™ provided a subpopulation of smaller 
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bubbles, resonating at high frequencies. The behaviour of each population was 

examined over 10 to 60 MHz. The altered population of smaller bubbles 

demonstrated resonance behaviour and thus, their potential for the nonlinear 

oscillations at higher frequencies. The transmit conditions including pressure and 

frequency were varied to maximize the subharmonic signal, generated by each 

population. For the transmit frequencies between 12 to 60 MHz, microbubbles 

less than 1.2 µm in diameter produced the greatest subharmonic to fundamental 

ratio, with a peak around 20 MHz. Over the transmit pressure range of 35 kPa to 

1.2 MPa, the greatest ratio of subharmonic to fundamental was obtained by 

microbubbles less than 1.2 µm at 20 MHz and 40 MHz. An optimal transmit 

pressure range of 400 to 600 kPa was suggested for all the selected bubble 

populations. The nonlinear oscillations of resonant bubbles excited at their 

resonance frequency were proposed to be a feasible origin of subharmonic at high 

frequency. 

 In this work the subharmonic signal for Definity™ contrast agent was 

characterized at high frequencies. The alteration of Definity™ population 

improved the subharmonic generation in vitro at high frequency. The 

experimental results are in general agreement with the theoretical predictions.  
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Appendix A: Equations required for derivation of 

Keller-Miksis Model 

  

Equations of motion for the liquid are derived based on the conservation of mass 

(equation of continuity), the conservation of momentum (Euler equation) and the 

equation of state for the liquid. 

 

Equation of Continuity  

 A volume element of dV1 is considered to be fixed within the fluid. The 

equation of continuity states that the fluid mass is neither created nor destroyed 

within dV1. The rate of change in mass (within this volume) is either due to the 

mass flux of fluid crossing the surface of the volume element or due to the local 

changes in density. 

 .
v s

dV v dSρ ρ− =∫ ∫  (A.1) 

where v  is the fluid particle velocity. According to Gauss’ theorem: 

 ( ) ( )∫∫ ∇=
vs

dVvSdv ρρ ..  (A.2) 

Equation A.2 can be rewritten as the equation of continuity: 
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 ( ) 0. =∇+ vρρ  (A.3) 

 

 

Equations of State 

 

 The equations of state, Equations (A.4), set a relation between changes in 

pressure p, density ρ and enthalpy h per unit mass of the liquid. Constant entropy 

is assumed. The process is considered to be adiabatic in the surrounding medium 

which is a common assumption in acoustics, shown by the index S (Hoff 2001): 
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Euler’s Equation 

 

 Newton’s Second Law states that the resulting rate of change in the 

momentum (the product of the body’s mass, m, and velocity, v ) of a body as a 

force acts on the body is equal to the force.  If the volume and the density of the 

body are considered constant, then the force is equal to the product of ρdV with 

the rate of change of v , a . If the volume element is moving with the flow, v  
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changes as the liquid velocity changes not only with time at any given fixed 

position but also with position at any given fixed time. Applying Newton’s 

Second Law under the assumption of ignoring viscous and thermal conduction 

effects (Leighton 1994): 

 ( ) adVdVtrpg ..),( ρρ =∇−  (A.5) 

where  is a vector of gravitational acceleration; g ( )dVtrp .),(∇−  is the 

instantaneous force due to the unbalanced liquid pressure and a  is the 

acceleration of the body. 

Considering gravity as the only body force potential energy per unit mass of 

liquid, φB which is equal to g.h, the force per unit volume is given by: 

 ap B ρφρ =∇−∇−  (A.6) 

 ( )vvv
t

vva rt ∇+=
Δ
+Δ

= .)(  (A.7) 

where ( )
r

tvv ∂∂= . Replacing Equation (A.7) in Equation (A.6) gives Euler’s 

equation: 

 ( ) ).(),( Bvvvtrp φρ ∇+∇+=∇−  (A.8) 

When the flow is irrotational, Φ can be defined as the velocity potential and 

. Integrating Euler equation from an arbitrary position r to infinity and Φ∇=v
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knowing that the velocity potential and the enthalpy are zero at r=∞, Bernoulli 

equation can be obtained: 

 ( )21 ( ) 0
2

h r
t

∂Φ
+ ∇Φ + =

∂
 (A.9) 
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Appendix B: Output pressure characterization of 

the RMV-710B™ and RMV-708™ 

 

The RMV-710B and RMV-708 transducers were characterized by a 40-

micron needle hydrophone (Precision Acoustics, Dorset, UK), calibrated up to 60 

MHz by the NPL (National Physical Laboratories, Teddington, UK).  Figure B-1 

illustrates a simple schematic of the hydrophone measurements. The needle 

hydrophone measures the output pressure of the transducer at the focus. This 

hydrophone is attached to a submersible amplifier which buffers the signal. Power 

is provided by a DC coupler to the submersible preamplifier. It also acts as an 

acoustic signal coupler between the preamplifier and the user’s measurements 

system. The signal is further amplified by the hydrophone booster amplifier which 

can be shown and recorded by using the oscilloscope. The narrowband output 

peak negative pressure of the transducers was measured from 35 kPa up to 1.2 

MPa for a frequency range of 10 to 60 MHz as shown in Figure B-2 and B-3. 
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Figure B-1 A schematic of the hydrophone measurements in order to characterize the 

Vevo 770™ transducers. The 40 micron needle hydrophone measures the output pressure 

at the focus of each transducer.  
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Figure B-2 The hydrophone measurements of RMV-710B for a 20-cycle rectangular 

pulse at different frequencies. The output peak negative pressure is shown as a function 

of normalized transmit pressures. 
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Figure B-3 The hydrophone measurements of RMV-708 for a 20-cycle rectangular pulse 

at different frequencies. The output peak negative pressure is shown as a function of 

normalized transmit pressures. 
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