
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2009

Web service composition ranking based on QoS
and social network analysis
Alireza Dehghani
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Dehghani, Alireza, "Web service composition ranking based on QoS and social network analysis" (2009). Theses and dissertations.
Paper 849.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F849&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F849&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F849&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F849&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/849?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F849&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

WEB SERVICE COMPOSITION RANKING BASED

ON QOS AND SOCIAL NETWORK ANALYSIS

By

Alireza Dehghani

B.Eng. in Computer Engineering (Software), Azad University South Tehran, Iran, May 2003

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

In the program of

Computer Science

Toronto, Ontario, Canada, 2009

©Alireza Dehghani 2009

 ii

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of

scholarly research.

Signature

I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in

total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

Signature

 iii

Web Service Composition Ranking Based on QoS and Social Network Analysis

Master of Science, 2009
 Alireza Dehghani

Computer Science

Ryerson University

ABSTRACT

 Web service composition refers to the aggregation of web services for producing

composite solutions in order to satisfy user requirements which can't be satisfied by atomic

services. It is an essential challenge to find the most reliable and trustable complex services

in each composition process. Many of current composition approaches use QoS (Quality of

Service) values to select among different composition candidates. However, QoS values can't

be trusted all the time since some service providers may promote their services by publishing

wrong QoS values. Social network analysis techniques such as PageRank have been used

successfully in finding the trustable and authoritative web resources. We believe that these

techniques can also be used to improve the service composition process. We have developed

a modified PageRank algorithm called Service Rank in order to find the importance level of

each service in a composition based on its connectivity and invocation history. This can be

accomplished by assigning higher weights to links which have more number of invocations,

more up-to-date invocation time and contract signing time, and longer contract durations.

Eventually the Service Rank score will be combined with the QoS score for composition

ranking. Preliminary results from our experiments have proved the effectiveness of this

method. As a consequence users can be more satisfied with the service composition result.

 iv

ACKNOWLEDGEMENTS

This thesis would not have been possible without various people providing me the support

and help required to finish my work.

 First of all, I would like to express my extreme gratitude to my supervisor Dr. Cherie

Ding for her continuous support, helpful guidance and discussions during the development of

this thesis. I am also greatly thankful for her encouragement, assistance, valuable time, and

precise editing of my thesis.

 I would like to express my sincere gratitude and deep appreciation to Dr. Abdolreza

Abhari, Dr. Alexander Ferworn, and Dr. Isaac Woungang for their very valuable comments.

 I extend my thanks to all professors I have come to know in the computer science

department for their academic support and guidance during the past two years.

 My hearty thanks also go to my parents for their understanding, support, utmost solicitude

and encouragement.

 v

TABLE OF CONTENTS
AUTHOR'S DECLARATION ... ii

ABSTRACT .. iii

ACKNOWLEDGEMENTS .. iv

TABLE OF CONTENTS ... v

LIST OF TABLES ... vii

LIST OF FIGURES ... viii

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1 Background and Motivations ... 1

1.2 Problem Statement and the Proposed Approach .. 4

1.3 Web Services Composition Ranking .. 6

1.4 Thesis Outline ... 8

CHAPTER 2 ... 10

LITERATURE REVIEW ... 10

2.1 Service Composition Methods ... 10

2.2 Service Composition and Ranking Using QoS Analysis .. 11

2.3 Graph Based Service Composition and Ranking ... 17

2.3.1 Overview of Link Analysis Methods... 17

2.3.2 Graph based Service Composition Methods ... 20

2.3.3 Combination of QoS and Link Analysis Methods for Service Composition 24

2.4 Conclusion .. 27

CHAPTER 3 ... 29

METHODOLOGY ... 29

3.1 Overview of the Algorithm .. 29

3.2 I/O Graph and Weights Calculated on History Log ... 33

3.3 Social Network Analysis of Web Services ... 37

3.3.1 Service Rank Score for a Single Service ... 38

3.3.2 Probabilistic Composition Graph and More Invocation Types ... 40

3.3.3 Service Rank Unique Value for the Composite Service .. 43

3.4 QoS Categorization and Quantification .. 48

3.4.1 Positive Numeric QoS Parameters .. 49

 vi

3.4.2 Negative Numeric QoS Parameters .. 50

3.4.3 Probabilistic QoS Parameters .. 53

3.4.4 Boolean Type QoS Parameters ... 55

3.4.5 Enumeration QoS parameters ... 57

3.4.6 QoS Unique Value for the Composite Service ... 58

3.5 Combining QoS with Service Rank ... 59

3.6 Conclusion ... 60

CHAPTER 4 .. 62

EXPERIMENT .. 62

4.1 SR Tool .. 62

4.1.1 The Overview of Our Developed Analysis Tool .. 62

4.1.2 Available Functionalities and External Files .. 63

4.2 Experiment Design ... 66

4.2.1 Experiment Steps .. 66

4.2.2 Experiment Methodology ... 69

4.3 Experiments and Result Analysis .. 71

4.3.1 Experiments .. 72

4.3.2 Comparison and Evaluation of the Results ... 76

4.4 Conclusion ... 85

CHAPTER 5 .. 87

CONCLUSIONS.. 87

5.1 Conclusions .. 87

5.2 Future Works ... 88

REFERENCES .. 90

Appendix A .. 100

EXTERNAL FILES GENERATED BY SR TOOL .. 100

Appendix B .. 102

SAMPLE RESULTS GENERATED BY SR TOOL AND GRAPHS GENERATED BY GRAPHVIZ

TOOL ... 102

 vii

LIST OF TABLES

Table 1 - Invocations in the history log by users U1, U2, U3 .. 34

Table 2 - Information from different users’ contracts .. 34

Table 3 - Usage data for experiment #1 ... 77

Table 4 - Rankings based on combined normalized PUV and QUV for experiment #1 78

Table 5 - Rankings based on combined normalized SUV and QUV for experiment # 1 78

Table 6 - Usage data for experiment #2 ... 79

Table 7 - Rankings based on combined normalized PUV and QUV for experiment #2 80

Table 8 - Rankings based on combined normalized SUV and QUV for experiment # 2 80

Table 9 - Usage data for experiment #3 ... 81

Table 10 - Rankings based on combined normalized PUV and QUV for experiment #3 81

Table 11 - Rankings based on combined normalized SUV and QUV for experiment #3 82

Table 12 - Usage data for experiment #4 ... 83

Table 13 - Rankings based on combined normalized PUV and QUV for experiment #4 84

Table 14 - Rankings based on combined normalized SUV and QUV for experiment #4 84

Table 15 - A sample comparison to demonstrate the effect of increasing invocations on final rankings

 .. 85

 viii

LIST OF FIGURES

Figure 1 - A sample web services graph .. 30

Figure 2 – More complex composition graph .. 41

Figure 3 [34] – Illustration of more complete list of invocation types .. 42

Figure 4 – Different types of invocations in complex compositions ... 42

Figure 5 – Sequential and concurrent web services used for SUV calculations 44

Figure 6 – Concurrent invocations ... 45

Figure 7 – Conditional invocations .. 46

Figure 8 - Selective invocations ... 46

Figure 9 - Composition samples .. 47

Figure 10 – Screenshot 1 of SR tool .. 68

Figure 11 – Screenshot 2 of SR tool .. 69

Figure 12– Graphviz tool screenshot with code generated by SR tool .. 72

Figure 13 – Graph visualization for experiment #1 by Graphviz tool ... 73

Figure 14 - Part of the simulation results with rankings for experiment #1 generated by SR tool 74

Figure 15 - Part of simulation results for experiment #3 generated by SR tool 75

Figure 16 - Part of simulation results for experiment #4 generated by SR tool 75

Figure B.1 – Part of visualization script generated by SR tool for experiment #1 102

Figure B.2 – PageRank scores for experiment #1 .. 103

Figure B.3– Service Rank scores for experiment #1.. 104

Figure B.4– Part of path file showing some of the compositions in experiment #1 105

Figure B.5 – Part of sorted compositions based on QUV in experiment #1 106

Figure B.6– Part of history log data for experiment #1 (for solution #174) 106

Figure B.7 - Part of sorted compositions (α=0.2 and β=0.8) based on combined normalized SUV and

QUV for experiment #1 ... 107

Figure B.8 - Part of sorted compositions (α=0.2 and β=0.8) based on combined normalized PUV and

QUV for experiment #1 ... 107

Figure B.9 – Part of web services’ data for experiment #1 .. 108

Figure B.10 – Web services registry graph for experiment #2 .. 108

Figure B.11– PageRank scores for experiment #2 ... 109

 ix

Figure B. 12 – Service Rank scores for experiment #2 .. 110

Figure B. 13 – Part of path file showing some of the compositions in experiment #2 111

Figure B. 14 – Part of sorted compositions based on QUV for experiment #2 112

Figure B. 15 – Part of history log data for experiment #2 (for solution #56) 112

Figure B.16 - Part of sorted compositions (α=0.3 and β=0.7) based on combined SUV and QUV for

experiment #2 ... 113

Figure B.17- Part of sorted compositions (α=0.3 and β=0.7) based on combined PUV and QUV for

experiment #2 ... 113

Figure B.18 - Part of web services’ data table for experiment #2 .. 114

Figure B. 19 - Part of simulation results with rankings for Experiment #2 .. 114

Figure B. 20 – Web services registry graph for experiments #3 and #4 .. 115

 1

CHAPTER 1

INTRODUCTION

1.1 Background and Motivations

 Services can be any kind of functionality, which are capable of being invoked through a

particular interface [45]. In the SOA (Service Oriented Architecture) model, services are self-

contained software units of functionality. Several services can be put together to create a

composite service which offers an overall functionality. This procedure is called service

composition. Service composition assists us to take advantage of presently existing web

services to offer a completely new service. Composition is helpful if we are searching for a

web service with particular inputs and outputs, and there is no existing web service to give us

the desirable results whereas combination of a few services could offer us good results [19].

 Combined atomic web services or web service compositions are considered as self-

describing, self-contained modular applications which are capable of being located, invoked

and published on the web in a way similar to atomic web services [19]. Currently many

organizations and companies only develop and host their core business applications and

outsource other application services. Therefore, the capability of effectively and

professionally choosing and integrating inter-organizational and heterogeneous services on

the web at runtime is a very important task for service composition [43]. The problem that all

the service composition techniques are trying to solve is to rank a set of web services

composition solutions which if the best one is executed in a particular setting, offers the

optimized requested service for the service consumer [19].

 2

 Numerous automatic service composition algorithms have been proposed which employ

AI planning or other techniques, and their objective is to automate different compositions

steps [7] [19] [28] [45] [60].

 The process of automatic service composition can be accomplished in these steps [43]:

1- Presentation of single service: Service providers present their atomic services by

employing some available languages for advertising. The fundamental attributes to

portray a web service consist of the signature, the states, and the non-functional

values. The signature is signified by the service’s inputs, outputs and exceptions,

which offers information about the data transformation throughout the execution of

a web service and is important for building the web service I/O (Input/Output)

graph. Preconditions and post-conditions specify the states. Modeling is based on

the transformation from one set of states to another. Attributes which are employed

for evaluating the services, for instance cost, security, and other quality properties

are non-functional values which will be needed for QoS analysis.

2- Translation of the languages: The external and internal service specification

languages are distinguished in most service composition systems. For enhancing

accessibility, users employ the external languages in a manner which assists them to

express what they need and are able to provide. External languages are different

from the internal ones which are employed by the composition process generator.

The reason is that the process generator needs more specific and formal languages

(e.g. the Logical Programming Languages). WSDL (Web Services Description

Language) and DAML-S (DARPA - Defense Advanced Research Projects Agency

 3

Agent Markup Language for Services) are standard web service languages which

are common and usually employed as external languages. It is a good idea to

develop the translation components between the standard web service languages

and the internal languages.

3- Generation of composition process model: There is a service specification

language for the service requester to express the requirement. This requirement can

then be specified by a process generator by composing the atomic services

advertised by the service providers. The process generator considers the

functionalities of services as input, and output process model which portrays the

composite service. A set of chosen atomic services, the control flow and data flow

between these services are contained in the process model (I/O graph).

4- Evaluation of composite service [40] [43]: Usually there are many services that

have similar functionalities, which causes the generator to make more than one

composite service to meet the requirement. In this situation the composite services

can be evaluated on their overall usefulness by employing the information provided

from the non-functional attributes and other criteria. The most usually employed

data is the non-functional attributes. Relative importance of every non-functional

attributes could be further specified by the requester. Usage history data of used

compositions can be another useful source of information for the evaluation. This

history data can help decide which link in the I/O graph is more important than

others. In our work, social network analysis algorithms will be used to exploit the

history data, which is then combined with the QoS data, in order to achieve higher

 4

trust-ability in highly ranked composite services. The composite service with the

highest combined rank is the best one.

5- Execution of composite service: After choosing a specific composite process and

presenting the composite service, it is time to execute the composite service.

Composite service can be considered as a chain of message passing in agreement

with the process model. The action which is the transition of the output data of a

previously executed service to the input of a later executed atomic service is called

data flow of the composite service [43].

 As explained before, when there are more than one composition solutions, how to select

among them will be difficult for users. Due to this reason, ranking is a crucial part of every

automatic service composition procedure, which is also the main focus of our work.

1.2 Problem Statement and the Proposed Approach

 One popular way of finding composition solutions is using web service I/O graphs. In a

graph structured web service composition and ranking, a web service is represented as a node

in the graph, and its inputs and outputs are connected through links [3]. If the output of

service A is the input of service B, there is a link from A to B. Given the required input and

output, by traversing the graph, all candidate composition solutions could be found.

Furthermore, semantic information such as goals and service properties can be used to reduce

the size of this set. Even so, it is still difficult for users to go through the list and make their

selection. There are many research works on how to find the composition solutions, but not

many on proposing a good ranking algorithm to help users in this selection process. It is our

goal of this study to propose such a ranking algorithm.

 5

 Because of the exponentially increasing search space in composition problems, it is

critically important to design a good ranking algorithm. The main advantage of the graph

based technique is that it eliminates some limitations of the AI planning techniques. This

goal is possible by proposing dynamic and incremental graph based composition and ranking

techniques. These methods facilitate composition in environments that have parties which are

subject to unpredicted changes [30].

 Most of the research works on service composition ranking or selection use the QoS data

to make the decision. However, QoS data alone can’t guarantee the trust-ability of the

solution because of the possible false or misleading QoS data published by service providers

(e.g. to promote their services). Also, QoS parameters are run-time related and their values

may change over time [49]. Therefore, we should look for a ranking algorithm which can be

employed in a dynamic environment and can guarantee the trust-ability.

 We often can trust monitoring agents, but because of their high cost, they are not included

in many registries and we need some other ways to guarantee the trust-ability. Social network

analysis which is a suitable method for dynamic problems can be a great option for finding

trustable solutions by looking at previous users’ invocation history [30].

 In this thesis we propose to combine both QoS evaluation and social network analysis

techniques, in order to find trustable and high quality composition solutions. We will

consider two data sources: QoS of individual component services, and the service rank

calculated based on the service I/O graph and the invocation history log. QoS data is still

important especially for new services without any prior invocation history.

 6

There are many different definitions on trust-ability. In this thesis, trust-ability means that

a service requestor can trust a composition solution with high confidence. We will use this

definition throughout this thesis. Our main idea is that if many requestors have paid some fee

to invoke a service, it usually means this service has a high quality, which is not based on the

QoS values published by providers themselves, but is based on the real usage data. We want

to use the usage history to enforce the trust-ability of the composition solution.

1.3 Web Services Composition Ranking

 Different methodologies can be employed for ranking web service compositions.

Efficiency is a very important factor to be considered. While a composition problem in

general has exponentially increasing search space, it is essential to thoughtfully decide about

selecting primary search algorithms and data structures for ranking final composition

solutions. The wise choice is the ranking algorithm which is based on social network analysis

[30]. The interpretation behind this option is that link analysis has been successfully applied

to problems, in which, partial evaluation of the search space was required, either due to the

huge size of the search space itself or the shortage of extensive information [15] [63].

 As mentioned before, while an atomic web service can’t satisfy a customer’s request, the

relation between the input and output parameters of atomic web services, could be employed

to compose web services in order to satisfy different customers’ demands dynamically. After

discovering the web services and finding the I/O graph based on the relation between the

input and output parameters of atomic web services, we could start to generate different

composition solutions and rank them. This goal can be accomplished by employing link

analysis techniques such as a modified PageRank algorithm combined with the QoS data.

 7

Because we don’t deal with web pages, we use the name Service Rank Score (SRS) instead

of PageRank score. Since many of the publishers can’t be fully trusted, employing PageRank

algorithm can increase trust-ability of the selected compositions. Combining Service Rank

Score with QoS data could give us more trustable results.

The feasibility of this solution could be justified by the fact that a social network for web

services can be generated in the service registry [54], where all the service description

information is available and the history logs could also be saved. The current implementation

of UDDI (Universal Description, Discovery and Integration) registry doesn’t have this

capability of saving QoS information or history logs. But we believe that by extending

UDDI, it is possible to achieve this goal, if we could setup an intermediary between the

requestor and the provider and submit all the traffic data to the registry.

Based on the input and output parameters of services, we first build the service I/O graph,

then history logs assist us to weigh different links in the I/O graph, and finally we run our

Service Rank algorithm and QoS based ranking algorithm. In the experiment part, we will

compare both techniques in separate and combined manners to observe whether these

techniques are able to attain a more effective ranking result by calculating an average rank

for user selected compositions. By achieving a higher average rank, we can demonstrate that

our approach can improve the ranking for those user selected compositions.

The main contributions of this thesis are: 1) proposing a novel social network analysis

approach of ranking the composition solutions based on the connectivity and invocation

history of component services; 2) modifying the PageRank algorithm by including the usage-

based weights for all the links; 3) categorizing a quite complete list of QoS attributes and

 8

quantifying the way of aggregating the QoS values of component services; 4) developing a

combined approach of ranking compositions based on both QoS and social network analysis

approach we proposed.

1.4 Thesis Outline

In this chapter we have introduced the basics of service composition and ranking,

discussed the problems we want to solve, and explained our proposed solutions briefly. The

rest of the thesis will be organized as follows:

In chapter 2, we will survey various link analysis methods and the state of the art of

current works which employ graph structures and other techniques to assist incrementally

and dynamically compose web services and construct a new service that has desirable inputs

and outputs which satisfies the user requirements. We will also briefly survey the basics of

link analysis and QoS analysis.

In chapter 3, we will define how we calculate the Service Rank score, how to calculate the

overall QoS score for compositions, and how to combine them together to achieve more

reliable results. Also, the creation of history logs which assist us to weigh different links in

our I/O graph will be elaborated in this chapter.

In chapter 4, we will compare both techniques in separate and combined manners to

observe how these techniques are able to attain a more effective ranking result for different

solutions. We describe an implementation of our methodology, present the simulation steps,

and connect these steps with outcome back to users and designers of the procedure. This

chapter also considers the practical ways that our method can be applied to rank and compose

 9

web services through a number of case studies. The outcomes of these case studies are

employed in different evaluations and discussions in the result analysis part.

Finally, Chapter 5 offers a conclusion on our work carried out, an outlook of projected

future efforts and final remarks with considering how the contribution of this thesis assists in

other fields of associated research works and the way further research projects will develop

and in which courses this might obtain better achievements.

 10

CHAPTER 2

LITERATURE REVIEW

2.1 Service Composition Methods

 As mentioned before service composition helps us to take advantage of existing web

services to offer a completely new service [19]. Service ranking and selection is essential in

creating composite services. While a designer builds up a composite service, where several

services are supplied by outside partners, it should be able to deal with the difficulties related

to this issue [33]. There are different methods for composition and ranking web services [8]

[17] [31] [48]. Usually composition methods are QoS based, link analysis (or graph analysis)

based, or combination of QoS and link analysis based methods. In this chapter, different

techniques for composition and ranking will be explained.

 Composition of web services requires finding service providers which are able to satisfy

users’ functional and nonfunctional demands [46]. Nonfunctional demands usually refer to

QoS requirements. QoS attributes are parameters which have to be quantified properly to

offer more optimized web services composition ranking results. By considering proper

measurement process and description for QoS metrics [23] it is possible to propose service

composition and ranking techniques which are based on QoS attributes. Each measurement

process for a QoS metric must include some accepted characteristics. QoS metrics will be

explained, categorized, and quantified further in details later in next chapter. As mentioned

before, the disadvantage of purely QoS-based composition ranking techniques is a possible

 11

lower trust-ability of the final composition solutions, considering that QoS data might be

manipulated by service providers.

 Link Analysis techniques (graph based) can assist us to rank compositions dynamically in

cases where QoS is not valid or reliable for evaluating composition solutions. Higher trust-

ability is the most important advantage of link analysis techniques which must be considered

in ranking different compositions. In this chapter we briefly survey graph based techniques

for automatic service composition to have a better foundation for our work, including

AND/OR Graph based service composition [29], service composition using Enhanced

Service Dependency Graph [16], incremental graph-based approach for service composition

[45], Planning Graph Model based service composition [60], and more other techniques. We

will also briefly survey the basics of link analysis.

 There are some techniques for composition and ranking which employ combined

techniques. The advantage of combination is to have advantages of both methods and

eliminate their disadvantages. Combing QoS and graph based techniques assists us to have a

higher reliability with the capability of dynamic service composition approach [22] [61]. In

this thesis, a new technique belonging to this category will be proposed.

2.2 Service Composition and Ranking Using QoS Analysis

 With an increasing number of web services presenting equivalent functionalities, the non-

functional attributes of a web service such as QoS attributes have become crucial selection

criteria and critical for service providers to satisfy customers’ requirements [34].

 A Web service can be illustrated by the pair (,), where is to represent the

service’s functionality, is a description of its QoS attributes. WSDL is usually used for

 12

expressing a web service’s functional characteristics, and there is no common way for

describing a service’s QoS parameters [9]. These QoS attributes (non-functional properties)

such as throughput, security, availability, and response time have to be quantified properly in

order to have a more efficient web service composition ranking and selection procedure

[9][10].

 There should be a proper measurement process and description for QoS metrics to offer

service providers and consumers a common perspective [62]. For instance, response time is

one of the QoS metrics which is depending on the workload intensity level, and a single

value is not suitable for representing it [35]. Therefore a better way for measuring response

time is to consider its average value over a period of time. The measurement process for each

QoS metric should have some accepted characteristics. These characteristics include what

and how the metrics should be measured, who should accomplish this task and in which

place of the network it is intended to be measured.

 One important reason for employing QoS-based service composition (e.g. in [47]) is to

have a guaranteed quality for delivered services in the final composition. As mentioned

before the dynamic web service composition [39] brings in challenges to current composition

techniques. Some techniques attempt to integrate QoS analysis into service composition. The

problem of this method is that the composition which is based on the QoS values proposed in

advance which might be manipulated and can’t be trusted in real cases. To solve this

problem, in [52], small test cases are run, to identify real QoS values and therefore assist with

service composition and ranking. Other parts such as service execution engine, audit system,

selection algorithms, etc. can be comprehended by employing QoS technique with small

 13

adaptations. The solution offered in this work is just a research proposal, and the belief is that

the realization of this proposal is able to assist solving the problem of guaranteed QoS level.

The main problem of this work is not considering the dynamic nature of the composition and

ranking processes in case of having problems with test cases due to hardware failure or other

issues.

 In [10] a method is proposed to support the design process to have composite services

supplemented with quality descriptions which can be further employed to define more

composite service qualities. This method assists to have a better description and evaluation of

composite service qualities. To achieve the goal a mathematical model is offered with a

double range. First, this model is capable of describing a series of processes related to the

required qualities in one set. It is required that actual services have to be chosen before the

implementation of abstract services. Second, this model tries to resolve the problem of

process selection by using the class of customers with their quality requirements and quality

weights established by the customers. The goal of this method is to allow companies,

providers, and developers to have a common perspective, which is the basis for potential

improvements. Improving the ability to describe and evaluate services’ qualities will let the

different service providers and customers to understand each other so as to create more

advanced tools to upload more aspects of service design including definition, design,

discovery, monitoring, selection, and contracts.

 WS-BPEL (Business Process Execution Language) is a language for illustrating the

actions of a business process which is based on the relations between the processes and their

associate processes. In [38], authors propose an advanced QoS calculator model for WS-

 14

BPEL processes. This QoS determiner offers values for response time, cost, and reliability

for every activity in a WS-BPEL model. Also, a QoS tool is proposed which allows the

designer to change components of the BPEL process workflow, for instance, inserting fault

tolerance constructs, and verify any QoS improvements in the process. This model has some

problems such as not supporting discovery of exclusiveness of links, not handling isolated

scopes (it allows to manage concurrent access for shared resources), and not capturing forced

termination actions because of inability to work with termination handlers.

 Service selection is a crucial part of every QoS based service composition. In [6], the

broker proposes a service selection procedure for composing web services that supports

various QoS classes which is totally different from the majority of the offered plans for

service selection. Also, authors in [6] consider SLAs (service level agreement) surrounding

the stream of requests and try to resolve and formulate the optimization problem by

employing linear programming method. SLA is an efficient technique to estimate the quality

of different services. It offers a method to catch the attention of more customers for different

service providers, and constructs a type of novel business association through creation of the

assurances at particular service level. This includes offering the reimbursement in case of

inability for offering the guaranteed service level. SLA is able to assure multiple service

levels and fast service composing and modifications in SOA models [58].

 The proposed approach in [6] is able to control the service selection in an actual working

broker-based architecture. The proposed problem formulation is capable of being changed to

consider extra QoS attributes or to modify an offered SLA. The proposed model also offers a

statistical assurance on the required QoS attributes.

 15

 The authors of [55] studied complex service composition problem with multiple QoS

constraints. A broker-based framework (QCWS) is proposed for QoS aware Web service

composition. In this framework, web service composition with QoS guarantee contains two

steps. The first step is service planning and the second step is service selection. The first step

is accomplished by the Selection Manager (SM) and the second step is done by Composition

Manager (CM) in the QoS broker. In addition, complex service‘s service selection problem

with single QoS requirement is analyzed and studied. Also, the system model is expanded to

be able to deal with multiple QoS requirements by employing two different models. The first

model is defining the problem as a multi-dimension, multi-choice setback (the combinatorial

model), and the second is describing the problem as an optimal path problem (the graph

model) [55]. The goal of service selection is maximizing a user-defined utility function under

the different QoS constraints. The definition of utility function might contain an extensive set

of system parameters such as client QoS requirement (QoS constraint), static server

information (service level), and network factor to reach some user specific goals. To evaluate

their performances, simulation outcomes on using different service selection algorithms

(optimal and heuristic) to choose and compose services under several QoS constraints are

presented.

 In [57], the basis for discovering the qualitative characteristic of web services

composition is studied. This facilitates the construction of a system being able to provide an

end to end advanced QoS to the customer by employing both the RS (Region Switching)

algorithm and WS-Notification. The authors changed the level of monitoring from passive to

active (e.g. observing information content instead of verifying web services availability

 16

which is usually accomplished by other systems). This improvement gives considerable

advantages since other systems are deeply relying on real-time data. As a consequence, this

service provider may propose outstanding quantifiable QoS metrics. Some users may decide

not to employ their services in the outlook, since the qualifiable QoS aspect was lost. To

solve this problem, the RS algorithm which could control a complete multi web services

composition process is employed. RS algorithm forms the composition process into a FSM

(Finite State Machine) model, constructed above of the WS Notification infrastructure that

offers denotations for message delivery. As of a web services composition call, the system

sends notices to all participating services through the WS-Notification standard. This will

activate announcements to be directed to every registered client when a modification happens

inside a web service. Before obtaining an announcement message, the RS algorithm

recognizes the web service influenced by this announcement, and estimates how this

influence will change other web services. After that, it will publish a request to re-calculate a

possible subset of the whole process planning to return an important update to the client. On

top of it, an enhanced Decision Support Systems (DSS) can be constructed to create

improved optimization scenarios and analyses. The problem of this method is how to

incorporate this system with current QoS aware brokers intended for web services evaluation

and composition. In [5], authors propose a heuristic based method to resolve the problem of

QoS aware Web Service composition. They offer a heuristic algorithm (called

H1_IP_RELAX) that employs a backtracking method on the outcomes calculated by a

program. The evaluation of the results concludes that this heuristic algorithm is quick and

provides outcomes which are close to the optimized solution.

 17

 In [2] authors studied the problem of QoS-based Web services composition in presence of

service dependencies and conflicts, by offering a GA (Genetic Algorithm). They offered

Genetic Algorithm because it is scalable [20] and the experimental outcomes have proven

that the computation time of the GA algorithm rises linearly while the quantity of the web

services increases, and which the computation time is not exaggerated by the quantity of

Web services. Therefore, the offered algorithm is able to be employed for big dynamic

environments [57] with a huge number of Web services. The proposed GA is extensible, and

also, the proposed algorithm considers five non-functional properties, which can be simply

expanded to contain more nonfunctional properties. This algorithm looks effective and for

most of the tested problems, the proposed GA can discover a reasonable solution in a short

period of time.

2.3 Graph Based Service Composition and Ranking

 In this section we survey graph-based techniques for web service composition. First we

will briefly review the social network analysis concept in order to have a better background

for the later reviews.

2.3.1 Overview of Link Analysis Methods

 Link Analysis is an unsupervised method which is not just a single algorithm but is

referring to a collection of algorithms which are bounded with the data on which they operate

[25] [32]. This type of data should be able to be represented in the form of nodes and links.

Nodes (vertices) represent entities that can be people, documents, etc. Links (edges) indicate

the relationships between nodes. Link Analysis can be used in a wide range of applications

such as viral marketing, law enforcement applications, epidemiology, information retrieval, etc

 18

[11] [21] [24] [44] [53]. The broad goal of link analysis is to employ algorithms to analyze

the networks and acquire new relational information from the networks.

 Link analysis algorithms for search engines continue to grow in importance due to the

complexity of Internet by considering a variety of new users’ demands which are not

satisfied by the traditional algorithms [26] [41]. Old search techniques focused on the search

keywords but new search engine techniques are focusing on the relationship among pages.

Therefore link analysis, which its goal is to find relational information from the networks, is

suitable to be employed in new search techniques. Because we are going to employ link

analysis techniques for ranking composite web services it is better to study them before

employing them in order to have a better understanding for their usage.

 Nowadays, Internet users expect relevant, reliable, and authoritative results from search

engines. Authoritative pages are pages which are linked to by many other pages and

recommended by many people. Therefore authoritative pages always have some important

and reliable content related to the search topic. This is similar to the research papers which

are cited by many other papers. For instance, if a user is looking for political news, CNN

page is an authoritative page for her or him to click. The reason is that many news websites

link to CNN as the source of the news. It is quite common that in the search results we can

find many web pages which are not related to search topics. The aim of the PageRank

algorithm is to find a strategy to distinguish these authoritative web pages from junk pages.

This can be done by assigning a score to every page u by employing this formula (PageRank

algorithm) [32]:

 19

R(u) = ∑ ∊ +E(u) (Equation 1)

The notions are defined as below:

– u : A web page

– R(u) : Score (rank) of a web page u

– Fu : Set of pages that are pointed to by u

– Bu : Pages which point to u

– Nu : the number of links from u

– E(u) : A Priori score, e.g. it is a priori score for authoritative pages, and

also, can counterbalance the effects of sinks which are pages that are pointed

to but they don’t point to other pages (dead links) by negative scores, because

usually authoritative pages point to many other pages but dead links don’t

 The top search results are the relevant (based on the search keyword) and authoritative

pages (based on the PagesRank scores). Google employs a combination of PageRank

algorithm with other standard algorithms [41]. In our work we are looking for more

accessible, reliable, and trustable nodes (which are more invoked than other nodes based on

history data) in our service I/O graphs to assign higher weights to them in order to rank

composition solutions. So we take a modified version of PageRank.

 Kleinberg’s HITS algorithm [1] also scores pages based on links. This algorithm

distinguishes hubs (pages that point to many other pages) and authorities (pages that are

pointed to by many other pages) in its processing steps. Constructing a sub web graph is the

first step to start a search on the Internet. Sub-graph is a small network within Internet which

 20

is rich in relevant pages on the search topics. It is possible to obtain results which do not

contain the main search keywords. For instance, if the search keyword is “DVD player” it is

possible to obtain Sony’s home page even though it may not contain the words “DVD

player”. The second step is calculating the hub score and authority score until reaching the

equilibrium. Then the results will be ranked based on their hub/authority scores separately or

in a combined way [1] [32].

 These two explained algorithms are based on the relation among the pages within the

Internet, which demonstrates the usage of link analysis in new search engine techniques and

possibly web services composition. HITS Algorithm is less efficient because it is query

dependent. PageRank algorithm can be pre-computed before the actual query is submitted.

We will use PageRank in our research because of this feature.

2.3.2 Graph based Service Composition Methods

 In this section current works which employed graph based techniques will be reviewed.

Graph based methodologies were selected because they are able to effectively attain web

service composition goals. The purpose is to permit the web service composition procedure

to produce suitable solutions for a composition call whenever partial evaluation of the

composition network is necessary. In the graph based technique, the composition network is

represented as a graph network, and then graph network analysis metrics are employed to

dynamically examine graph link composition to direct solutions in a way to satisfy the

composition request.

In [15], web services communications are symbolized as a graph network, where web

services are symbolized by nodes, and the links among them are corresponding to edges.

 21

Heuristic graph search algorithm is employed for the web service composer implementation,

which is expressed by a series of graph network analysis ranks (such as PageRank) which

dynamically inspect the relevance and importance level of every web service. Also, in the

experiment part they attempt to find what metrics are more capable of satisfying the request,

and which are capable of directing to the maximum composition solution performance.

 Instead of evaluating the performance for every metric in a separate manner, it is possible

to evaluate the average performance for every categorized ranking metric, such as local

(when only the local network information is required), global (when knowledge outside a

node’s local region is required for the computation), absolute (when the rank’s range is

general, and not based on the current request), and relative (when the rank value is evaluated

related to the current request). Also, these ranking categories could be combined to two

levels of categorizations which are Relative-Local, Relative-Global, Absolute-Global, and

Absolute-Local. The outcomes indicate that in order to achieve higher performance levels the

relative and global ranking metrics perform better than the absolute and local ones

respectively.

 There are some problems related to this work. First, the proposed method is incomplete

and it requires additional experimental efforts to extend and verify the conclusions and

outcomes. Secondly, an important extension is necessary, to develop a more general

assessment procedure for the composition effectiveness with several metrics (metrics which

web service composer is able to employ), and also, other factors such as computational cost

of different ranking metrics has to be taken into account. The third problem is that it does not

have different experimental settings within different types of composition graphs, to evaluate

 22

the performance of the offered ranking categories and metrics. The experiment which has

been accomplished in this work is just for uniform link distribution which has to be extended

for different link distributions and link density levels in future works. In our thesis the

experiment has been accomplished for a variety of link distributions.

 The technique proposed in [29] formalizes the web service composition as a search

problem in an AND/OR graph. An AND/OR graph is a structure which is usually employed

in automatic problem solving. Given a particular service request which can only be satisfied

by a composition of web services, we need to recognize the service categories which are

related to the request and then dynamically construct an AND/OR graph to capture the

input/output dependencies between the web services of these service categories. The graph

change is accomplished based on the conditions in the request by using the logical operators.

After that, the search algorithm is employed to search the changed AND/OR graph for a

complete and minimal composite service template which satisfies the service request. The

algorithm can be applied repetitively to the graph to explore for other templates until the

result is accepted by the service requester.

 In [16], the graph illustrating input/output dependencies between service operations is

called Service Dependency Graph (SDG). Since relationships in an SDG are not directly

described by data models from service interface definitions, the expressiveness and

reusability of the relationship are not guaranteed. There is an improved version of SDG,

namely SDG+, which has clear dependency declaration by conveying dependencies

straightforwardly with static explicit declarations. After clarifying the attribute dependency

and operation dependency, some issues in SDG could be solved by SDG+. Because SDG+ is

 23

an extension of SDG, same search algorithm can be applied to SDG+. After that an automatic

service composition algorithm could be developed based on SDG+.

 In [45], a novel approach of automatic service composition is proposed. The matchmaking

and discovery is based on semantic annotations of service properties, for instance their goals,

inputs and outputs. This approach employs a graph-based search algorithm to resolve all

potential composition candidates. Reasoning and filtering are done by using goal-based

expressions on composition candidates. Two major components have been suggested to

implement this - a validation wizard and an automatic composition engine.

 The work in [45] is concentrating on the study of the scalability and performance metrics

of the offered graph-based search algorithm. Concerning non-functional properties in these

semantic annotations, this technique is restricted to the static properties such as cost. A

simple accumulation can be done on such static properties. More sophisticated aggregation

models could be considered to expand to more dynamic non-functional properties such as

response time.

 The technique proposed in [60] is to solve the matching problem where the output

parameters of a web service can be considered as the input parameters of another web

service. This work targets to eliminate the redundant web services included in the planning

graph.

 In [4], the web service composition is again considered as a planning problem. Besides

employing the semantic information throughout the search, this approach also considers non-

functional attributes of the services (e.g. service quality).

 24

 In [19], web services composition is based on the graph theory with using a modeling

language which is called “interface automata”. In addition, some network analysis

approaches have been proposed in other works which are suitable for semi-dynamic variation

of composition solution models [3]. Also, some graph based algorithms for web service

composition have been presented with different data structures such as chain data structure

[28].

 Sometimes, we might require to record extra information about the web services in the

dependency graph. As a consequence, researchers may need to benefit from other languages,

for instance, Resource Description Framework (RDF) language that supplies data regarding

web resources. In [19], the OWL-S (Web Ontology Language) description language is

chosen to specify the behavioral properties of web services. This language identifies a web

service in terms of execution workflow and its graphs, inputs and outputs.

 Many of the surveyed techniques are not able to rank the final composition solutions.

Many of them also did not consider the trust-ability and the variety of the QoS properties. In

our work, we will try to improve the ranking system in order to find more trustable and high

quality composition solutions.

2.3.3 Combination of QoS and Link Analysis Methods for Service Composition

 Combination of link analysis with some ranking procedures based on QoS will give us

more reliable results. Composition method proposed in [33] falls into this category. A quality

of service control can be performed based on the service failure rates. A local service

registry contains the binding information which is updated dynamically consistent with the

evaluation provided by web service users, and also the probability of having low quality

 25

solutions with high initial ranking scores. Such binding information can be employed to

estimate a network of services, and then link analysis can be applied to rank services

consistent with their popularity. The quality of the final composition solution can be

evaluated by performing a simulation experiment. The experiment outcomes demonstrate

that by considering the failures that consumers experienced, this method notably performs

better in choosing relevant services. One of the problems of this method is that employing

link analysis (e.g. PageRank) on the binding repository might be expensive in case of a huge

network size. The experiment in this work has no control over the percentage of employing

both quality control and social network analysis to offer better solutions. In this thesis we try

to overcome these obstacles by offering a combined score based on both QoS and service

rank score which let one to find the best combination of both factors for the ranking

procedure. Also, the service rank metric defined in this thesis is based on both PageRank

score and user feedbacks with their invocation dates.

 A ranking method offered in [51] combines a few QoS properties with social analysis

calculation to increase the performance of highly ranked solutions. Services are capable of

creating a social network through invocation associations. In this method the composition

solutions are sorted not only by considering their QoS values from the beginning of the

procedure but also their popularities in terms of services’ usages by different clients and

services. By this combination, the average rank of a user selected compositions will increase

if it has a better performance.

 The social ranking feature of the proposed algorithm is the frequency of the service usages

by other services. A request from a client to a server is considered as a rating. The client

 26

evaluates all the requests to compute a local rating of the server. Global ranking computation

is based on the aggregation of local ratings. Number of service clients, frequency of services’

invocations by other services, and QoS (in this work availability, response time and in one

experiment throughput) for each service, are three considered factors for the aggregation. The

ranking is performed in two levels. The first level is local ranking which considers frequency

of requests for each service, and QoS attributes. Also, local rankings have to be normalized

to remove the effects of bogus services which send artificial requests to particular services in

order to promote them. Global ranking values are driven from the normalized local rating

matrix. Authors of [51] also try to prevent distributing global ranks to bogus services if they

are not pointed to by reliable services, which could prevent malicious services from obtaining

higher ranks.

 At the end some experiments have been conducted on real-world data to verify the goals.

The results showed different performance from different services with same functionality in

different day times. The second experiment studies how QoS impacts the ranks of the

services. Results show that by increasing the invocation numbers of each service we will

have lower performance of them which decreases their ratings. Therefore traffic has to be

directed in a proper way to have less overloading on services to prevent deterioration of

services’ rankings. In the third experiment the effect of monitoring on the procedure has been

studied. The outcomes of the third experiment demonstrate that monitoring has little effect on

increasing the processing time. The fourth experiment demonstrates that it is capable of being

employed for thousands of services in the real environment.

 27

 In method proposed in [51] QoS attributes have been combined with social analysis

methods, and these two methods are indistinguishable in the work. Also, this method does

not consider that having unreliable QoS data in the beginning will make the ranking

untrustworthy. In this thesis we employ PageRank for ranking which is totally different from

the social ranking technique proposed in [51]. The reason is that the main contribution in this

thesis is employing the history log to improve trust-ability rather than just focusing on non-

functional (QoS) attribute values of the solutions from the beginning. Also, in this thesis

many other QoS attributes have been considered, studied, defined and combined with the

defined service rank.

2.4 Conclusion

 As mentioned above, several services can be composed to construct a composite service

which produces an overall functionality. One method of composition is using QoS-based

techniques. The reason for employing QoS-based service composition is having a guaranteed

quality for delivered composition services. Graph based methods use I/O graphs in order to

offer an overall functionality to requesters. These graphs are constructed by using the

semantic inputs and outputs of different web services.

 Unfortunately, many graph based algorithms do not have an efficient strategy to rank

composition solutions. Our work is a combination of these two methods in a novel way (with

employment of history logs) which is intended to find a trustable technique for ranking

composition solutions. In order to have the most valid and high quality solution at the end, a

variety of QoS attributes should be defined, quantified and categorized. By combination of

these QoS attributes with the modified well known link analysis methods, our method can

 28

improve pervious techniques to find high quality and at the same time reliable composition

solutions.

 29

CHAPTER 3

METHODOLOGY

 When an atomic web service can’t satisfy a user’s requirement, the I/O graph (which is

constructed based on the semantic inputs and outputs of web services) should be employed to

find composite services. The objective is to satisfy functional and non-functional users’

requirements dynamically. After discovering the related atomic web services we should start

to generate different composition solutions and then find the optimal composition based on

the I/O graph. This goal can be accomplished by employing social network analysis

techniques such as the modified PageRank algorithm combined with QoS information.

Because we don’t deal with web pages we define it as Service Rank Score (SRS) instead of

PageRank score.

 A social network for web services based on past invocation data can be generated in the

service registry, and then the Service Rank algorithm could be used and combined with QoS

attribute values for selecting the best composition solution. In the rest of this chapter we will

define different methodologies to achieve our goals.

3.1 Overview of the Algorithm

 Our proposed algorithm for the composite web services ranking and selection begins

with a service graph. The network of web services constructs a graph, in which each service

is considered as a node, and the relations among the nodes are considered as edges. On other

side usage history log records the information related to the past service invocations.

 30

 We can define a set of parameters for each web service including input parameters and

output parameters of the service [60]. When a web service is invoked with its input set it will

return the output set. It can be defined that a web service A has a link to service B if input set

of B is a subset of Output set of A.

 In fact, a web service network is a network consisting of a set of nodes and a set of links.

Each link connects a pair of nodes (e.g. A to B) showing a connection from a web service to

another web service.

 As was explained before, each node is a web service, and each link demonstrates the

relation between web services. For instance, Figure 1 illustrates a web service graph in which

service A links to B and C, B links to C, and C does not point to any nodes. Other details of

this figure will be explained in later sections.

Figure 1 - A sample web services graph

 We assume that all of the composition solutions can be found based on the service I/O

graph by using some existing algorithms (for instance, a tool has been developed for this

 31

thesis which is able to find all the routes between two nodes in an I/O graph). Afterwards the

composite services are required to be ranked, because usually there are more than one

solution being found based on the I/O matching due to the numerous possible routes between

two nodes in a given I/O graph.

 Depending on how this set of solutions is going to be ranked, there are two main

categories of approaches of our interest. One approach is evaluating a composite web service

based on QoS factors. The other is using social network analysis algorithm to rank all of the

web services independent of QoS factors.

 PageRank algorithm, which is one of the well known link analysis algorithms, can be

employed and modified to calculate a ranking score for all web services in the attained I/O

graph based on how they were connected with each other and how frequently they were

invoked before, which is called Service Rank algorithm in our work. A service can be ranked

high by Service Rank algorithm if it is invoked by many other web services, or invokes many

other web services which are semantically connected to them. Also, for calculating the

service rank score we should not ignore weights in our I/O graph which are attained from

history logs. Calculating weights from history logs will be explained in details in the next

section.

 Because we need to rank the different composition solutions by employing the Service

Rank algorithm, a service rank unique value for a composition solution should be defined

based on its components’ service rank values and weights of the links. Having higher service

rank scores for compositions means that they have higher probability to be chosen and

 32

invoked by the requesters, and also, their component services are usually more reliable and

trustable.

 On the other hand, in order to satisfy requestors’ QoS requirements, QoS data also needs

to be considered during the ranking process; to achieve this goal we should propose a way to

evaluate QoS parameters for getting an overall quality score for a composite web service.

This goal can be achieved by categorizing and quantifying different QoS parameters and

defining a unique value for overall QoS level. The last step is to compare this value with the

requester’s QoS demanded value, and combine it with the service rank unique score, to rank

the solutions.

 Based on what was explained before, here we employ both approaches (QoS and Service

Rank) to increase trust-ability of selected compositions. Before starting the ranking process

stated above we have two main steps. The first is finding (or generating) a composition I/O

graph which contains web services related to a request (with their I/O relationships) and the

second step is considering the available web service descriptions and their semantic input and

outputs in this I/O graph to generate our solutions. Then, for each composition solution we

consider the ranking scores of all nodes, based on both QoS factors and Service Rank scores

(with considering links’ probability weights obtained from history logs). Also, our solution

can be further improved by eliminating extra links, to attain a better graph for the

composition. For simplicity, in these solutions in case of having multiple links (if they point

to the same side) between two web services, only one link should be kept. Our main focus in

this work is on ranking and selection of available composition solutions in order to satisfy a

user’s functional and non-functional requirements.

 33

3.2 I/O Graph and Weights Calculated on History Log

 History logs are attained from the past service invocations by different users. These logs

can be saved in service registries. It is possible to use these logs to assign weights to different

links in our I/O graph, and to discover more reliable composition solutions. There are

different types of relations in the I/O graph, including sequential, concurrent, conditional and

selective relations [34]. If invocation of a service such as ws requires invocation of another

service such as ws then they have relation in a sequential manner. We denote this sequential

composite relation by “^” operator (e.g. ws ^ws). If invocation of a service such as ws

requires invocation of other services such as ws and ws together, then invocations of ws

and ws are concurrent and they have concurrent relation in our composite solution. We

denote this concurrent composite relation by “*” operator (e.g. (ws *ws) ^ ws). To show

conditional relation we use ‘~’ sign (e.g. ws ~ws), and for selective invocation we employ

‘+’ sign (e.g. ws + ws). These types of invocations, their illustrations, and their calculation

methods for QoS values will be discussed in details in sections 3.3.2 and 3.3.3. In this section

we will explain methods to calculate different links’ weights from history logs.

 Three important factors have to be considered for calculating weights in I/O graph. The

first one is the web service users’ contracts of invoking that service, the second is the dates of

invocations, and the third is to consider frequency of invocations in our history logs. The

important parameters which should be evaluated in contracts are durations and start dates.

This approach assigns higher weights to more frequently invoked, latest and valid web

services and distinguishes them from other services.

 34

 Table 1 and Table 2 demonstrate a portion of a sample history log. A list of requests’

invocation dates with their user data are displayed in Table 1, and different users’ contracts

data is listed in Table 2.

 Table 1 - Invocations in the history log by users U1, U2, U3

Requested Service Invocation Time User
A 22/03/2007 4:30 PM U

A^B^C 22/04/2007 2:30 PM U
A^B*(C^E) 22/07/2007 1:30 PM U
A^B^C^D 14/12/2006 8:30 AM U

A^B 11/03/2006 8:00 AM U
A^B 18/05/2007 9:30 AM U
B^C 15/06/2007 10:30 AM U

A^(B+D)*(E^F) 17/02/2007 1:30 PM U
C 21/03/2006 11:30 AM U

C^(D+F) 16/05/2007 4:00 PM U

Table 2 - Information from different users’ contracts

Requested Service Contract Start date and Duration User
A 22/03/2007, 1month U

A^B^C 22/03/2007, 2 months U
A^B*(C^E) 22/07/2007, 4 months U
A^B^C^D 14/12/2006, 6 months U

A^B 10/03/2006, 3 months U
A^B 18/03/2007, 4 months U
B^C 15/03/2007, 1 month U

A^(B+D)*(E^F) 14/02/2007, 2 months U
C 20/03/2006, 3 months U

C^(D+F) 17/03/2007, 18 months U

The first important factor for weighting links in our I/O graph is users’ contracts (e.g. SLA

– Service Level Agreement). If we have contracts with earlier start dates and longer duration

 35

time, then we will assign a higher weight for links in them. The rationale behind is that if the

contract duration is longer, it usually means consumers have a higher trust level on this

service. Below we first define the weight based on the start date of the contract:

Let l be the link from l to l

Let L be the set of all occurrences of l in the log

Let l be the r-th occurrence of l

Then WSDC is the weight of start date of contract for l :

() =
| |

∑

 (Equation 2)

After that we will define the weight based on the duration of the contract - WDC for l :

() =
| |

∑ (Equation 3)

 The second important factor for weighting links in I/O graph is the invocation date. The

higher rank should be given to the more recently invoked links. The rationale is simple,

because we prefer newer data. The weight of invocation date WID will be defined as follows:

() =
| |

∑

 (Equation 4)

Note that here the unit of time is minute.

 The third factor to calculate weight is frequency. In table 1, it is apparent that we have

four invocations of A B by the user U . In order to prevent the possible spamming or

putting too much weight on one user’s history data, we give higher weight to the first

invocation by a requester, lower weight to the second invocation by the same requester, and

ignore the rest of the invocations. Therefore, for example, we don’t count A B invocations

 36

more than two times from user U . We can set some predefined coefficients for weighting

invocation frequencies. The following formula is to calculate the weight for invocation

frequency in the history log:

Let F1 be the frequency of the first invocations by different consumers (coefficient c is set

to 1),

Let F2 be the frequency of the second invocation by different consumers (c is set to 0.1),

 () = × F1 + × F2 (Equation 5)

For example, we can calculate the weight for A B as follows:

F1 (A^B) = 2 (it is invoked by two different users)

F2 (A^B) = 2

WF(A^B) = c × F1 + c × F2= 1×2 + 0.1×2 = 2.2

After all the weights have been calculated, Let WI be the final invocation weight for l , then

we will have:

 () = WF() × () × () × () (Equation 6)

Final results will then be normalized to the range [0,1] based on the following formula, and

later in this chapter this normalized weight will be referred to as W .

N () = –

 (Equation 7)

= N () (Equation 8)

 In continue we will employ these weights to calculate service rank scores in our I/O graph

which will be explained in later sections.

 37

3.3 Social Network Analysis of Web Services

 Social network analysis techniques have improved web search to become more accurate

and trustable by employing algorithms such as PageRank or HITS. The actual usage data

(e.g. click-through data [59] and access patterns [56]) can further be utilized to improve the

performance. The nodes in a web graph are web pages and links in the graph are from the

hyperlinks between web pages (nodes).

 Web services also can form a social network graph despite of the fact that the web

services’ social network is not as straightforward as that of web pages. If we assume that we

can save history logs of the real usage data in one or more web services registry centers, we

can apply link analysis algorithms for ranking the web services as we are able to accomplish

for a network of web pages. The web service graph can be obtained by generating the I/O

graph and then assigning weights to all links based on history logs, Figure 1 illustrates such a

graph.

 In Figure 1 (a sample web services graph), there are three services A, B, and C, which are

assumed to be offered by three independent providers. We presume that we have the service

links as follows: 1) Service A has a link to service B with weight W and to C with weight

W (weight is the probability that service A invokes service B based on history logs); 2) Web

service B has a link to Service C with a weightW . We treat weights as the probabilities to

reach nodes in our constructed service graph which later we will employ to calculate Service

Rank scores. Here we are focusing on the I/O graph and the probabilistic composition graph

will be explained in later sections.

 38

Web services network can play a significant role for web services discovery, and in

particular for generating compositions and ranking them based on a request which can’t be

satisfied by an atomic service [30].

3.3.1 Service Rank Score for a Single Service

 A process to discover the graph properties according to the link distributions among the

nodes of the graph is called the link analysis of a graph. This technique has been employed

for the ranking of web pages for the Internet searching. There are several link analysis

ranking algorithms, such as HITS, Salsa [12] and PageRank. Since PageRank is the most

popular technique in web page ranking due to Google’s success, we will employ and modify

it to demonstrate how a link analysis technique can be employed for ranking web services

[12] [33].

 A service can be ranked high by PageRank algorithm if it is pointed to by many other web

services or points to many other highly ranked web services based on their semantic inputs

and outputs. Here we assume that our requester is looking for a series of services in the I/O

graph. In other words, PageRank algorithm here presumes that a requester can eventually

reach its required demands at any link in the I/O graph (because we are going to generate

different composition solutions from the I/O graph). The goal is to measure the importance

level of a web service in the I/O graph by looking at its invocation histories if it is invoked by

many other services or invoking many other highly ranked services, which demonstrates that

the level of service importance or trust-ability is higher.

 We define PageRank score for web services with the damping factor as follows: Assume

that web service A points to a set of other services FS (A), and A is also pointed to by a set of

 39

services BS (A). We denote the size of FS (A) by CS (A). The PageRank score PRS (A) of the

service A is given by:

PRS(A)= (1-damps) + damps × ∑ (Equation 9)

 In the original PageRank algorithm the probability from one node to another is the same

for the whole graph. However, based on the invocation history, these probabilities could be

different. So our Service Rank formula adapted from this original PageRank formula is

defined as below (b points to b :

SRS()= (1-damps) + damps × ∑ (Equation 10)

 By this formula we employ the invocation weights calculated based on the history log in

our Service Rank score. How to calculate the weights has been explained in the previous

section.

If we use the example from Figure 1 and assume that:

W = W =W =1

Also, by initializing SRS(A), SRS(B), and SRS(C) to 1, it is possible to iteratively calculate

the scores until they converge to a final result.

SRS(A) = 0.15 + 0 No nodes point to A

SRS(B) = 0.15 + 0.85 × (SRS(A) / 2) × W

SRS(C) = 0.15 + 0.85 × (SRS(A) / 2 × W + SRS(B) / 1× W)

 By solving this set of equations in 20 iterations, we get SRS(A) ≈ 0.15, SRS(B) ≈

0.213750, and SRS(C) ≈ 0.395438. As we can observe from obtained values, web service C

 40

has the highest PageRank score since it is pointed by all other nodes (more nodes point to C).

After that, we will normalize the Service Rank scores by using this formula:

SRSF(= Normalized())= –

 (Equation 11)

 Based on what was explained before, Service Rank scores generally reflect the relative

trust-ability (how well a service in the I/O graph is reachable and invoke-able by the

requester) and importance of the web services in the network.

3.3.2 Probabilistic Composition Graph and More Invocation Types

 As we illustrated and mentioned before in Figure 1, each service in I/O graph is

represented as a node and is connected to other nodes via directed links. This figure only

shows the sequential relationship between services, and there is equal probability from one

node to another. The actual composition graph could be much more complicated, for

instance, in Figure 2, the probability which web service A invokes web service B is P1 and C

is P2. These probabilities demonstrate that invocations are not independent and are

conditional. We call this kind of invocation as the conditional invocation. This probability is

different from the weight which we defined before. The probabilities are presumed to be one

if no value is mentioned in the composition graph (e.g. for concurrent and selective

invocations) [34].

 41

Figure 2 – More complex composition graph

 In Figure 3(a) we have a sequential invocation. Sequential activation is when a web

service is activated as a consequence of completing of a predecessor web service. In Figure

3(b) a web service requires its successors to be invoked in parallel and probabilities are

assumed to be one, and this is called the concurrent invocation. In Figure 3(c) we have a

conditional invocation with different probabilities. These invocations are not independent

from each other. In the fastest-predecessor-triggered activation, as long as one of the

predecessors completes, it will activate the web service as shown in Figure 3(d) and this is

called the selective invocation. When a web service is activated after the completion of all of

its predecessor web services, it is called the synchronized activation (join), which could be

considered as another type of concurrent invocation, as in Figure 3(e). In synchronized

activation, all of the probabilities have to be one, and it can’t be conditional [34].

 42

 Figure 3 [34] – Illustration of more complete list of invocation types

 We can use the composition graph in Figure 4 to explain these different types of

invocations. In Figure 4(a), service F is activated when either B is completed (it should be

after A invokes B) or after D is completed (after A invokes C and C invokes D). In Figure

4(b) web service A requires its successors to be invoked in parallel and probabilities should

be one. And web service F is invoked after the completion of all its predecessors D and B,

which are good examples for synchronized activation (join).

 (a) (b)

Figure 4 – Different types of invocations in complex compositions

 43

3.3.3 Service Rank Unique Value for the Composite Service

 Because Service Rank can be considered as importance probability to invoke a web

service in an I/O graph, we will use the following probability rules [36] to calculate the

Service Rank Unique Value (SUV) for concurrent compositions:

Rule 1: Complement Rule

If A and A' are complements P(A) + P(A') = 1 (Equation 12)

Rule 2: Addition Rule

 P(A OR B) = P(A) + P(B) - P(A AND B) (Equation 13)

Rule 3: Mutually Exclusive Rule

If A and B are mutually exclusive then P(A AND B) = 0

 P(A OR B) = P(A) + P(B)-P(A A AND B) (Equation 14)

Rule 4: Multiplication Rule

 P(A AND B) = P(B) P(A|B) (Equation 15)

 P(A AND B) = P(A) P(B|A) (Equation 16)

Rule 5: Independence Rule

If A and B are independent, then:

 * P(A|B) = P(A) (a) (Equation 17)

 * P(B|A)= P(B) (b) (Equation 18)

 * P(A AND B) = P(A) P(B) (c) (Equation 19)

 * P(A OR B) = P(A) + P(B) - P(A)P(B) (d) (Equation 20)

 44

 Service Rank Unique Value (SUV) will be defined based on different types of invocations

in a generated composition solution. Service Rank score of a single service demonstrates how

well it is reachable by a requester in the I/O graph and how frequently it is actually invoked

by different requestors, which in a way measures how trustable it is to make this selection.

Service Rank score of the composite service measures the overall trust-ability of the

composition solution. For instance, if we have a sequential invocation CS1: ws ws as in

Figure 5(a), then we can define its SUV score using this formula:

SUV(CS1)= (Equation 21)

 LF is length of CS1 which is the number of its nodes. The reason for defining this kind of

length factor is to avoid selecting long chain of services. The compositions with shorter

length will be preferred. In general to calculate the SUV score for a sequential invocation we

will have this formula:

SUV(CS)= ×∑ (Equation 22)

(a) (b)

Figure 5 – Sequential and concurrent web services used for SUV calculations

 In above formula a composite service is denoted as CS which contains a set of services

WS= {ws , ws , …}. WS demonstrates a subset of registered services from the history

 45

graph which are employed in our generated composition solutions. These services can be

composed together to satisfy the requester’s demands based on their relations in our I/O

graph. ws can be an atomic web service or another composite service.

 In Figure 5(b), because ws and ws are concurrent services, as a consequence, we have

“AND” relationship between their Service Rank scores. We can merge these probabilities

using rule 5(c). In the concurrent composition which is illustrated in Figure 6, we have (n-1)

concurrent invocations. Therefore, to define a SUV score for concurrent invocations with a

more generalized formula, we simply calculate the P (ws AND ws AND … AND ws),

which is equal to ∏ . SRS ,..., SRS . We have this generalized formula for

concurrent invocations (the formula for the opposite direction invocation will be same):

SUV(CS)= ∏ (Equation 23)

Figure 6 – Concurrent invocations

 If invocation of a service such as ws is followed by the invocation of only one of the

services such as ws or ws , then invocations of ws and ws are conditional and they have

conditional relation in our composite solution.

 46

Figure 7 – Conditional invocations

 Because ws and ws are conditional services, we have “OR” relationship between SRS1

and SRS2, and for each invocation we also have a probability value (Figure 7). In the

selective composition which is illustrated in Figure 8, we have n selective invocations.

Therefore, to define a SUV score for the selective invocation with a more generalized

formula, we simply calculate P(ws OR ws OR … OR ws) for selective invocations. Note

that we should also consider probabilities P1,…, Pn-1 for different selections. We have this

generalized formula for selective invocations (Figure 8) which is same as the formula for

conditional invocations (Figure 7):

SUV(CS)=∑ (Equation 24)

In Figure 3(d) we have selective relations among predecessor services. We have this

generalized formula for this type of composition as follow:

SUV(CS)= ~ ((Equation 25)

Figure 8 - Selective invocations

 47

 More complicated examples are shown in Figures 9(a) and 9(b) (probabilities are assumed

to be one) in which we have one sequential invocation in the beginning, a concurrent

invocation in the middle of Figure 9(a) and a selective invocation in the middle of Figure

9(b), and finally one sequential invocation at the end. It is important to mention that it is

impossible to combine Figures 9(a) and 9(b), since if we have a concurrent invocation of

branches in the middle of them, it will be impossible to have selective invocations of the

same branches.

 (a) (b)

Figure 9 - Composition samples

 48

We calculate the SUV for the composition in Figure 9(a) by combining previously defined

formulas:

SUV(CS)= 3 ×(SUV(ws1) + SUV ws2^ws3^ws4 SUV ws2^ws5^ws6 +

SUV(ws7^ws8))

Also, we calculate the SUV for the composition in Figure 9(b) as follows:

SUV(CS)= 3 ×(SUV(ws1)+max(SUV ws2^ws3^ws4 SUV ws2^ws5^ws6 +

SUV(ws7^ws8))

 As we can see, different parts of the compositions have sequential or concurrent

relationships to each other; therefore we combined their SUV calculations in order to get the

final SUV for the solution.

 These formulas will give us a unique value for the composite solution’s service rank

unique score. A higher SUV value indicates a better accessible and trustable composition

solution. Also, if SUV values are calculated from PageRank scores instead of Service Rank

scores it is called PageRank unique value (PUV). If a composition has a higher PUV score it

has a better connectivity between its nodes.

3.4 QoS Categorization and Quantification

 There are numerous QoS attributes related to web services. We will arrange them into

different QoS categories by considering different types of requirements and quantifications.

Each category has a set of measurable parameters. We will demonstrate which kind of

different QoS requirements we will consider and how we can quantify them.

 Here, categorization is mainly based on QoS data types. For instance, if we have Boolean

values for some QoS factors, then we will categorize them into Boolean category. Or, if we

 49

have probabilistic QoS factors we can categorize them into types such as probabilistic

category. Also, we will try to have separate categories for positive parameters (the higher the

value, the better) such as reliability from negative parameters (the lower the value, the better)

such as cost.

 For each category we will define a formula which can be used to measure and combine its

QoS values to rank the composite service. At the end we will define a unique QoS value for

the whole composite service.

3.4.1 Positive Numeric QoS Parameters

 Positive Numeric QoS Parameters have no specific ranges and we require higher values

for them to have better QoS. Runtime related QoS parameters are the major elements of this

category.

Scalability is the ability to boost the computing power of the service provider’s computer

system [42].It indicates that the system is capable of performing how many more transactions

per second. This is related to throughput and performance. If we have a higher average

scalability of the composite services’ nodes, we have a higher scalability for the whole

composite service.

Throughput is the number of completed service requests per time period which in fact is

related to latency and capacity.

Capacity indicates how many concurrent connections a service supports to have in order to

have a required performance which is different from scalability. As mentioned before

scalability is the capability of boosting the computing power of the service provider’s

computer.

 50

To calculate throughput, capacity, and scalability values for a composite service we

should consider the worst case which will be the minimum of services’ throughput, capacity

and scalability values.

Accuracy indicates how many errors a service makes over a period of time, e.g. in one

second.

Stability/change cycle is a measure about how stable the service is and indicates how often it

transforms its interface and implementation. This can be calculated by dividing its number of

transformations divided by the period of time.

To calculate the accuracy and stability/change cycle values of a composite service we can

simply calculate the addition of services’ accuracy and stability/change cycle values. The

reason is that the number of errors and transformations has to be considered for every web

service in the composition.

We normalize their values to a range between 0 and 1 in order to have a standard value

for the simulation, comparison and evaluation for each composition.

Positive Numeric QoS Unique Value (NPQUV) is the combination of positive numeric

QoS parameters that is defined as the addition of Scalability, Accuracy, Stability/change

cycle, Throughput, Completeness, and Capacity.

3.4.2 Negative Numeric QoS Parameters

Negative Numeric QoS Parameters have no specific ranges and if they have lower values

is better. Performance is the major part of this category which is to measure the speed of

serving a request.

 51

Latency and Response time: Response time is the guaranteed time needed to complete a

service request. Latency is the required time between the service request received and the

request is being answered which can be considered as the average delay on serving a request

[42]. In general to calculate the latency for a sequential invocation (e.g. Figure 4), we will

have this formula:

Let LT be the total latency of a composite web service CS which consists of n services,

and let be the latency of the component web service I, then we have:

LT(CS)=∑ (Equation 26)

 In the concurrent composition which is illustrated in Figure 6, we have (n-1) concurrent

invocations. Therefore, to define a total latency for concurrent invocations with a more

generalized formula, we simply consider the maximum latency of concurrent invocations.

The maximum part is because of the fact that all predecessors should be completed. We have

this generalized formula for concurrent invocations:

LT(CS)= MAXi()+ (Equation 27)

 In the selective composition which is illustrated in Figure 8, we could simply consider the

minimum latency. We have this generalized formula for selective invocations:

LT(CS)= MINi()+ (Equation 28)

We can use two examples to show the calculation steps. In the first example, we calculate

the total latency for the composition in Figure 9 (a) by employing this formula:

LT(CS)=LT(WS1) +MAX(LT WS2^WS3^WS4 , LT WS2^WS5^WS6 +LT(WS7^WS8)

LT(CS)= lt +MAX(lt lt lt , lt lt lt +(lt lt

 52

In the second example, we calculate the total latency for the composition in Figure 9 (b)

by employing this formula:

LT(CS)=LT(WS1) +MIN(LT WS2^WS3^WS4 , LT WS2^WS5^WS6 +LT(WS7^WS8)

LT(CS)= lt +MIN(lt lt lt , lt lt lt +(lt lt

 As we can observe that different parts of the composition have sequential and concurrent

relationships to each other, we employ different types of latency formulas in order to

calculate the final total latency for the composition solution. We normalize LT value to the

range between 0 and 1. The calculation for the response time will follow the same steps.

Cost is the measurement of the cost for requesting the service and its execution. For instance

we can measure the cost per request or per volume of data. Usually cost has a direct relation

with web service’s quality. Reliable, faster, more secure web services usually cost more. Let

 be the cost of a web service execution. Let C be the total cost of the composite web service

then we have:

For sequential invocation (as in Figure 5(a)):

C(CS)=∑ (Equation 29)

For concurrent invocation (Figure 6):

C(CS)= ∑ + (Equation 30)

For selective composition (Figure 8):

C(CS)=MAXi(+ (Equation 31)

For conditional composition (e.g. as in Figure 7) the formula is defined as follows:

C(CS)=MAXi(+ (Equation 32)

 53

 We use the maximum value because for the cost we must always be prepared for the

highest one in our composition solutions. We normalize this value between 0 and 1 to have

standard values for the simulation, comparison and evaluation.

Negative Numeric QoS Unique Value (NNQUV) is the combination of latency, response

time (L/R), and cost which is the addition of their inverse values (x).

3.4.3 Probabilistic QoS Parameters

Probabilistic QoS Parameters can be treated similarly to probabilities, which makes us

able to employ probability rules to define final formulas for them. These parameters are

reliability, availability, and Robustness/ Flexibility which are all positive QoS factors.

Reliability is the capacity of a service to complete its essential functions successfully under

acknowledged conditions for a specific period of time [42]. Therefore, we simply define it as

probability of successful invocations of a service over a period of time (between zero and

one). As a consequence we are able to use the probability formulas for calculating the total

reliability of a composite service.

 In Figure 4 (sequential invocation), the reliability of any service is very essential for our

composition’s total reliability. Therefore based on the probability rules we should multiply

reliability of each service to get the composite service’s reliability. To calculate the reliability

for a sequential invocation we will use this formula:

Let be the reliability of a web service in the composition;

Let R be the total reliability of the composite web service, then we have:

R(CS)=∏ (Equation 33)

 54

 In Figure 6 we have concurrent invocation of services and service WSn only commences

when all active predecessors become completed. Because reliability is the probability of

successful invocations of a service over a period of time, we can simply use AND operator to

calculate total reliability here. Therefore, the formula for total reliability in case of having

concurrent invocations will be defined same as sequential invocations because:

R(CS)=(∏) × R(CS)=∏ (Equation 34)

In the selective composition which is illustrated in Figure 8, to define reliability we simply

use OR operator for selective invocations. The reason is that one of the branches is needed

for starting WSn. We have this generalized formula for selective invocations:

R(CS)= MINi() (Equation 35)

This formula is defined because in selective invocations we should consider the worst

possible case for probabilistic attributes such as reliability.

Availability is the probability which service is available and it is related to reliability. We

define measurement formula as follows [27]:

Let TT be the total time.

Let AT be the time that a specific service is available.

Availability will be defined by the following formula:

Availability= (Equation 36)

 By this formula we calculate the probability which a service is available during the total

invocation time for the composition solution. Because availability is based on the probability

 55

therefore to calculate the availability of a composite service we can simply use the

probability formulas as we did for reliability.

Robustness/ Flexibility can be defined as the probability to which a service is able to

function properly in case of having incomplete, conflicting or invalid inputs. Because

Robustness/ Flexibility is a probability value, to calculate the Robustness/ Flexibility (RF) of

a composite service we can simply use the probability formulas as we did for reliability.

Probabilistic QOS Unique Value (PQUV) is defined as the combination of Reliability,

Availability, and Robustness/ Flexibility and its value is the addition of these QoS attributes.

3.4.4 Boolean Type QoS Parameters

Boolean QoS parameters are either zero or one. Security and Configuration Management

related QoS values are the important elements of this category.

Integrity of the data, on which transactions operate, can be guaranteed by grouping

transactions into separate units. The unit will be successful if every transaction in the unit

“commit” or all “roll back” to their unique state in case of having a transaction failure [42].

We can assign a value 0 or 1 which indicates if we have a successful unit of transactions and

guarantees the integrity of data and helps increasing the degree of transaction support by the

web service.

 Exception Handling indicates if the service can perform properly when a service receives

less number of parameters than it needs. Here we can quantify this by assigning a value of 1

or 0 which shows if the service is able to handle the exceptions or not.

Regulatory score indicates if the service is properly aligned with regulations or not (one or

zero).

 56

Supported Standard score shows if a service complies with standards such as industry

specific standards by assigning one or zero.

Guaranteed messaging requirements parameter is a value of one or zero to show if a web

service guarantees the order and persistence of the messages.

Security related QoS can be defined in a more fine-grained level but because of the lack of

support in current service oriented applications, we simply use the Boolean value to represent

it.

Authentication indicates if the service authenticates users or other services to access it. If the

authentication system exists we can assign 1 otherwise we can assign 0.

Authorization measures whether the service authorizes principals so that only they can

access the secured services. If yes then we assign value 1 else 0.

For Confidentiality if the service treats the data in such a way that authorized principals are

the only ones who can access or change the data then we assign value 1 to it, otherwise zero.

If the supplier is accountable for its services then the Accountability value is 1 else 0.

If the history of a service is traceable when serving a request, then we assign Traceability

and Auditability score with value one, else zero.

Data encryption score shows if the service encrypts data and its provider guarantees these

security requirements or not. This score is either zero or one.

To calculate the final value of each of the discussed Boolean type QoS parameters for a

composition, we employ the logical “AND” operator. It means calculated value is one if and

only if all of the services’ Boolean QoS values in composite service are one.

 57

 Boolean Unique QOS Value (BUQV) is defined as the combination of Integrity score,

Exception Handling score, Regulatory score, Supported Standard score, Guaranteed

messaging requirements score, Authentication Score, Authorization Score, Confidentiality

Score, and Auditability Score and its value is the addition of these attribute values.

3.4.5 Enumeration QoS parameters

These parameters are user related factors such as user ratings, availability of QoS data to

the user, and tooling options for the user. For instance, we can assign excellent, good,

average, not bad and bad to these parameters (e.g. by using scales of 1-5).

3.4.5.1 User Rating

 The user rating for a service is a measure of its usefulness for the user which is based on

user’s experiences of invoking different services. Users can have dissimilar ideas about one

service. The value of user rating is defined as the average of different ratings by different

users. We denote User Rating by UR (it will be measured by using scales of 1-5) [57].

3.4.5.2 Availability of QoS Data to the User

 QoS data which is attained by the invocation of a service should be made available to the

users in a way which guarantees that proper information is offered at abstraction levels with

the intention of advancing the future planning and comprehension of service functionality

[37]. This is a very important point to be considered in QoS evaluation of a composite

service. We denote Availability of QoS Data to the User by AU (Availability will be

measured by using scales of 1-5). This availability of QoS data to the user is different from

the availability which is one of the probabilistic parameters.

 58

3.4.5.3 Tooling Options for the User

 A number of the key challenges are related to user-side tooling support in favor of the

composite services’ executions. The user should be able to simply state QoS constraints and

link them to service compositions and definitions. Only users can evaluate those options [37].

Again user can assign a value (e.g. 1-5) to evaluate this parameter. We denote Tooling

Options for the User by TU.

 To calculate the final value of the discussed enumeration type QoS parameters for each

web service composition, we simply employ the average value of their services’ enumeration

QoS scores.

 Enumeration QOS Unique Value (EQUV) is defined as the combination of User Rating,

Availability of QOS Data to the User, and the Tooling Options for the User and its value is

the addition of these three attributes.

3.4.6 QoS Unique Value for the Composite Service

QoS Unique Value (QUV) is defined as the addition of Numeric Positive QoS Unique

Value (NPQUV), Probabilistic QoS Unique Value (PQUV), Negative Numeric QoS Unique

Value (NNQUV), Enumeration QoS Unique Value and Boolean Unique QoS Value

(BUQV).

QUV= (Equation 37)

 This will give us a unique value for the composite QoS, which can have different range of

values. We will normalize this value at the end to [0, 1]. Because NNQUV is defined as the

addition of inverse values for latency, response time (L/R), and cost therefore it is an

 59

increasing parameter. As a consequence based on what was explained, in case of having

higher values, we will have a better QoS values for the composite service.

3.5 Combining QoS with Service Rank

 Based on what was explained before, since we are looking for the optimal solution, we

should search for the compositions with higher service rank unique scores. This means their

nodes have a higher probability to be reached and invoked by the requester. This increases

trust-ability because we cannot always rely on the QoS information. The probability of

publishing false data by service providers (to promote their services) is the main reason for

this distrust. Sometimes monitoring engines can be trusted but because of the high cost, some

registries may not include the monitoring engines. On the other hand, we should have some

defined requirements related to meet the QoS objectives demanded by the requester by using

QoS-based calculations. Therefore we need to define a unique value to combine the two

factors for ranking and selection of composite services.

 To define Composition Service Unique Value (CSUV) we consider a coefficient α for

Service Rank Unique Value (SUV) and a coefficient β for QUV, and the sum of them should

be 1. By changing the coefficients, we can adjust our emphasis on each component. Later in

the experiment, we will compare performances based on different values for them and

compare the numeric results with simulated real time compositions QoS values. This

comparison has to be accomplished in order to look for the best coefficients for ranking and

selecting different compositions. Our Composition Service Unique Value is defined by the

following formula:

CSUV (WCS) = + (Equation 38)

 60

3.6 Conclusion

In this chapter we have discussed our methodology, and how this method can be

employed for web service composition and ranking to provide better ranking results returned

to service designers. Another important goal of our defined algorithm is to facilitate the

overall objectives of a web service composition process. The most important objective of

every web service composition process is to find composition solutions which are the most

reliable and trustable ones and satisfies user’ QoS and functionality requirements in a manner

that an atomic service is not capable of accomplishing that. We have discussed that through

categorization and quantification of QoS values, greater assurance of QoS is able to be

offered to the users earlier before deploying it into a real environment.

 We defined two main analysis keys for ranking composite services. One approach is

ranking composite web services based on QoS factors. The problem of QoS analysis is that

some service providers aim to promote their services by publishing wrong QoS values. The

other approach which could resolve this problem is employing some other algorithms

independent of QoS factors such as social network analysis algorithm for ranking composite

services. Our reasoning for this is to find the most reliable compositions at the end. We have

developed a modified PageRank algorithm (which is called Service Rank in this work) in

order to find the importance level of each service in the composition based on its

connectivity and user invocation data; independent from QoS factors.

 By employing invocation data, and users’ contract data it is possible to assign weights to

each link in the composition and employ our proposed Service Rank algorithm in order to

calculate those weights. By considering all services’ Service Rank scores we defined an SUV

 61

for each composition solution and then combined it with our defined QUV, which is the

combination of characterized and categorized QoS attributes, to calculate Composition

Service Unique Value (CSUV). CSUV is calculated by the addition of SUV with coefficient

α and QUV with a coefficient β. By adjusting these coefficients in the proposed formula for

CSUV, we will be able to compare performances and the numeric outcomes with simulated

real time composition QoS values in order to find the best option for ranking and selecting

final composition solutions. This comparison has to be done in order to find the best

coefficients to rank and select different compositions to effectively satisfy users’ demands.

 62

CHAPTER 4

EXPERIMENT

 A key objective of the work in this thesis is to propose and implement a more reliable and

trustable web service composition analysis and ranking approach. Our main idea is to rank

different composition candidates based on not only their QoS values but also the previous

usage history, so that the more frequently selected solutions could be ranked higher. In this

chapter the proposed method for web services composition and ranking analysis is evaluated

and the results are presented and discussed.

4.1 SR Tool

4.1.1 The Overview of Our Developed Analysis Tool

 We designed and developed an analysis tool – SR tool (Service Rank tool) to offer a novel

evaluation technique for web services composition, representation, and ranking analysis. This

tool employs C++ as the main language to implement the proposed algorithms. SR tool has

the ability of generating, analyzing, and visualizing web service composition candidates with

different QoS values and web services registry graphs, and finally evaluating the

performance of the selected web service compositions based on both QoS and social network

analysis.

 One of the principles in web service composition analysis is to guarantee the user

satisfaction with the selected solutions. SR tool is conforming to this principle because it

employs QoS data and social network analysis with the consideration of the usage history

 63

data to guarantee the user satisfaction. SR tool is an interactive program which makes

researchers able to try different web services registry graphs and QoS data to evaluate the

composition ranking algorithms and obtain results in order to offer an optimized approach to

find the most trustable and reliable web services compositions.

 The SR tool first represents web services as nodes and their relationships as edges, and

then the service composition solutions could be discovered from this large network of

available registered services based on required input and output (adjacency matrices [50]

[18], which their entries show the adjacency of two nodes, are employed to generate different

graphs). The visualized representation of the registry networks can be generated using

Graphviz [13] tool in each analysis. All the algorithms and methods explained in the previous

chapter have been implemented in the SR tool. The new algorithms can be easily plugged

into the tool for testing.

 In the following sections, all the available functionalities, external files employed for the

evaluation with this tool, its execution, and evaluation results will be described in details

(external files will be explained in details in appendix A). Then the experiment results by

using the SR tool will be shown in order to evaluate the effectiveness of our proposed

Service Rank method. Also, the relations between the final rankings and different parameters

in our experiments such as the coefficients (e.g. α and β in the proposed SUV and QUV

combination formula) will be demonstrated.

4.1.2 Available Functionalities and External Files

Many of the algorithms explained before are implemented in our SR tool. A list of available

functions is listed below:

 64

1- Main: all of the calculations and table generations and interactions with users are

defined here.

2- ConvertToG: employs the web services registry input adjacency matrix to support the

visualization. This function creates a code which can be imported to Graphviz tool to

visualize the registry graph in different formats.

3- PageRank: for calculating PageRank scores of web services.

4- ServiceRankC: calculates Service Rank scores of services based on the connectivity

and weights calculated from the history graph.

5- ConnectM: creates a matrix which indicates which nodes are connected to a specific

node.

6- SizeofCTM: calculates the maximum possible size of connections in the matrix.

7- PTopBy: calculates the number of nodes which point to a specific node, and also the

number of nodes which points to that node.

8- PathF: finds all the possible routes between two nodes. The “PathF” function takes

the input and output requirements from different users, and then searches for all possible

composition solutions from the registry graph. In this searching process, the registry

graph can be pruned in order to reduce the search space and the workload of searching

exhaustively in the graph. The pruning is done based on input and output requirements to

reduce the required time for analysis. Also, by defining the maximum number of

solutions and length of solutions, which is an optional step (but highly recommended) it

is possible to perform analysis in a shorter time. The function also sorts the solutions by

their lengths. In the current stage, for the simplicity of discussion, we only consider the

 65

sequential invocations (functional level composition’s objective is finding a sequence of

atomic services to satisfy a request [14]), other types of compositions can be extended

later.

9- Prune: employed by “PathF” function in order to prune the search space.

10- Linkage: finds all linkages in the graph adjacency matrix and returns the size of it.

11- EndNode: finds if the last node of each travered path is the end node or not. This

function is employed by the “PathF” function.

12- RowSize: returns the size of each row in the path matrix. This functions is used by the

“PathF” function.

13- RowReset: resets the rows for the next path finding process. This functions is

employed by the “PathF” function.

14- SizePart: returns the number of rows in a part of the path matrix. This function is

used by the “PathF” function.

15- FromFileToM: reads a file and copies it to memory. This function is used to work

with temporary files during the process of finding the routes in the registry graph.

16- SizeFromF: to allocate memory for the read file by the “FromFileToM” function.

17- SortQ: sorts the table of solutions based on calculated QUV values in “Main”

function.

18- SortQ2: sorts the table of solutions based on a specific column of it.

19- IntoDate: converts minutes to dates in a string format, which is used for generating

the history graph.

20- Norm: for normalizing values in a 2D matrix.

 66

21- Norm2: for normalizing values in a column of the solution table.

There are many external files generated by this tool in each experiment saving all the

necessary data for evaluation, analysis and visualization. Most of these files are in “.txt”

format and they can be opened properly by WordPad program. The list and the explanations

of external files are given in appendix A.

4.2 Experiment Design

4.2.1 Experiment Steps

 SR tool is designed in a user friendly manner in order to offer the researchers the

opportunity to consider many different parameters for comparison and evaluation for the

purpose of dynamic, flexible and reliable web service composition and ranking. Our

experiment is designed by using the SR tool in the following steps (Figure 10 and 11):

1- SR tool asks the user to enter the number of nodes in the registry graph.

2- SR tool asks the user to enter different parameters for calculating PageRank, e.g. the

number of iterations, the damping factor, and the starting node number.

3- After getting required parameters to calculate PageRank scores, if the user requires a

visualization script, it will generate the required script at the end. Visualization scripts

assist to visualize the generated web service registry graph by using the Graphviz tool.

4- In this step user should enter the requested input and output of the required

composition web service. Also, a maximum length and a maximum number of services

for the composition can be entered to avoid generating too many solutions.

 67

5- After getting the mentioned parameters, the program starts to generate the graph (if

user chooses the automatic generation of the graph). The connectivity graph is totally

random.

6- Based on the predefined value ranges for different QoS attributes, QoS values are

randomly generated for each node. Then the tool creates external files to save the

information about the graph matrix, visualization script, PageRank scores, routes

between two nodes (candidate solutions), and the table with all services and their

generated QoS values for further analysis. Up to this step, our SR tool can rank the

composition candidates based on their QUV values or the combination of QUV and

PUV values.

7- This step is to simulate the usage history which is provided from log. The SR tool

will ask for the total number of previous invocations on those composition solutions,

which means the same request has been served before. It will also ask for different

percentage of usages on each solution. For the simplicity reason, we only consider the

top three ranked composition solutions based on QUV values only and two other

manually selected compositions which are usually ranked low in the original QUV-based

ranking. The top three solutions are chosen because they are most likely to be viewed

and selected based on some cognitive studies conducted on web search engines. The

lower ranked solutions are chosen because we want to test whether our proposed Service

Rank approach can promote those compositions if they are frequently invoked before.

The other two required parameters are coefficients (α and β values) and the current date.

After that it will calculate Service Rank scores and composition ranks based on

 68

combined QUV and SUV from the generated usage history data and simulated usage

percentages.

8- In this step it will generate the an external file (“simudat.txt”) including important

data such as original rankings based on QUV, and rankings based on combined PUV and

QUV, and combined SUV and QUV.

9- In this step if user needs another simulation it will ask the user to enter new α and β

values. All of the tried α, β values and the ranking results will be included in sumdat.txt

file for evaluation and comparison purposes.

SR tool screen shots are illustrated in figures 10 and 11.

Figure 10 – Screenshot 1 of SR tool

 69

Figure 11 – Screenshot 2 of SR tool

4.2.2 Experiment Methodology

 In each experiment top three compositions are selected based on QUV values and two

others are selected manually with manually entered invocation percentages by the researcher.

The usage data of these five compositions are included in the history usage file (historyl#.txt)

with their QoS attribute values, component service nodes, users, invocation time, contract

durations, and contract start dates.

 70

 In the beginning we have solutions sorted by their QUV values without considering usage

data (soluqsorted.txt). Registry graph and its QoS attribute values in each experiment are

generated randomly (it is also possible to be entered manually or from a file). Therefore, it is

possible to perform each experiment for different graph structures and QoS attribute values

for the evaluation purpose.

 After entering coefficients (α and β) values in the final formula (for each step), a history

usage data will be generated based on the usage number and percentage of usages entered in

the execution time. Generated usage data can be employed to calculate weights using the

formulas explained in the previous chapter. These weights will be employed to calculate

Service Rank score for each web service.

 SUV value for each composition is calculated based on its component nodes’ Service

Rank scores. Final rankings are based on the combination of SUV and QUV, and the average

ranking of the five chosen compositions will be compared with the QUV only based rankings

in order to evaluate the ranking improvements. If a lower average ranking is achieved than

QUV only approach, then the results demonstrate the improvement in ranking compositions.

Usually different α and β values produce different results, and by comparing results from

different α and β combinations, we could also find a set of coefficients offering the best

optimized rankings.

Combined PUV and QUV scores also will be considered to see the effect of graph

structure in the final rankings. The reason is that the combination of PUV and QUV is

independent from the history data and it is based on both web services registry graph’s

connectivity and its QoS attribute values. This consideration gives a better understanding to

 71

evaluate the effect of SUV scores on final rankings because SUV is based on both graph

structure and the usage data. Having a higher PUV demonstrates a stronger connectivity of

each composition node. Weak connectivity of composition nodes will decrease the

improvements caused by combined SUV and QUV.

 As explained before, “simudat.txt” file contains all the necessary data for the final

evaluation. In continue some of the experiment results will be explained to demonstrate the

effectiveness of the proposed algorithm in this thesis for web service composition and

ranking.

4.3 Experiments and Result Analysis

 Four experiments are demonstrated here. They represent different simulation scenarios.

They have different web service registry graphs, different numbers of invocations and

different QoS attribute values. Experiments 1, 2 and 3 have different service graphs.

Experiment 4 has the same web service graph as experiment 3 in order to study the effect of

increasing invocation times on our ranking method. Therefore the number of usages in

experiment 3 is set to 100, and in the other three experiments is 1000. QoS attribute values in

all four experiments are different. These data sets assist to evaluate the proposed algorithm

for the same registry graphs with different QoS values (e.g. by comparing results from

experiments 3 and 4). Therefore, by considering original rankings based on QUV only, and

considering the combination of SUV and QUV rankings, it is possible to demonstrate the

effect of combining SUV in ranking web service compositions with QUV.

 72

4.3.1 Experiments

Experiment #1:

 In this experiment we have 30 nodes in the web services registry graph. Figure 13

illustrates the structure of this graph using the Graphviz tool (Figure 12). This way of

visualization assists to have a better perspective of each web service registry graph and to

observe web services’ inputs and outputs. This illustration is based on the script generated by

the SR tool (Figure 12).

Figure 12– Graphviz tool screenshot with code generated by SR tool

 73

Figure 13 – Graph visualization for experiment #1 by Graphviz tool

More figures to illustrate the experiment are included in Appendix B (B.1-B.9). These

figures show PageRank scores, Service Rank scores of all services, the service QoS values,

the history data, and the candidate composition solutions sorted by QUV value only, QUV

plus PUV, and QUV plus SUV with different coefficient values. Final results and rankings

will be stored in “simudat.txt” file (Figure 14). We have 1000 invocations for the simulation

demonstrated in Figure 14.

 74

Figure 14 - Part of the simulation results with rankings for experiment #1 generated by

SR tool

Experiment #2:

 In this experiment we have 40 nodes in the web services registry graph. Figure B.10

illustrates the structure of this graph using the Graphviz tool. All other information such as

web services’ data is illustrated in Figures B.11-B.19. There are 1000 times of invocations in

this simulation.

Experiment #3:

 In this experiment we have 30 nodes in the web services registry graph. Figure B.20

illustrates the structure of this graph using the Graphviz tool. Figure 15 shows the final

simulation data for this experiment. There are 100 times of invocations in this simulation as

can be observed in Figure 15.

 75

Figure 15 - Part of simulation results for experiment #3 generated by SR tool

Experiment #4:

 In this experiment web services registry graph is same as experiment #3. Figure 16

demonstrates the final simulation data for this experiment. There are 1000 times of

invocations in this simulation as can be observed in Figure 16. In the following section, the

results of different experiments are visualized, analyzed and compared for the final

evaluation and conclusion.

Figure 16 - Part of simulation results for experiment #4 generated by SR tool

 76

4.3.2 Comparison and Evaluation of the Results

 As mentioned before, in each experiment different α and β values are entered to employ the

proposed ranking algorithm to calculate final score for each composition and therefore get a

new ranking for the original top 30 results based on QUV value only. The average ranks of

the top three compositions based on QUV only and also two other manually selected

compositions are calculated. In addition to the combination of SUV and QUV scores,

combination of PUV and QUV values are considered in order to have a better understanding

about the effect of SUV on new rankings.

 Based on the experiment results (Tables 3 to 14), combination of SUV and QUV

improves the ranking for the previously selected and invoked compositions (which will be

calculated and evaluated). In each scenario, certain α and β values give an optimized ranking

result. Also, by comparing experiments #3 and #4 results (they have same web services

registry graphs), it can be demonstrated that by increasing the number of invocations (e.g.

more history data available) the ranking can be improved even more. Results from 4

experiments are organized and presented in the following tables.

 Table 3 shows our simulated usage percentage data for top three and two other manually

chosen solutions (i.e. 20 and 21). Left column shows the solution numbers, middle column

shows the original ranks based on QUV data, and the right column shows the usage

percentages (e.g. 10 means 10% users chose this solution).

 77

Table 3 - Usage data for experiment #1

 Table 4 shows rankings based on combination of PUV and QUV scores (PQ#). We could

see that when the coefficient on PUV is higher, the average rank for those 5 solutions is

much higher. It infers that the ranking based on the connectivity of the services is completely

different from the ranking based on QoS values. So simply combining the two together is not

very helpful.

Table 5 illustrates the rankings based on SUV and QUV values (SQ#). It is possible to

evaluate the improvements by comparing the average rankings with different values for

coefficients. When α=0, the ranking is based on QUV only. We could see that the average

rank for those 5 solutions is 9.4 in the original QUV-based ranking. When we combine QUV

with SUV, the average rank is consistently lower than 9.4. The best performance can be

achieved when α=0.2 and β=0.8 with the average rank 6.4. The percentage of improvement

in average ranking of selected compositions (for the best combination of SUV and QUV) is:

. .
.

≈0.32 therefore the highest ranking improvement is 32% for experiment #1.

 Solution # Original Rank Based on QUV % of Usage

18 3 10

129 2 12

147 20 35

174 1 18

175 21 25

 78

Table 4 - Rankings based on combined normalized PUV and QUV for experiment #1

Solution

Number

QUV

Based

Rank

PQ#

α=0,

β=1

PQ#

0.1,

0.9

PQ#

0.2,

0.8

PQ#

0.3,

0.7

PQ#

0.4,

0.6

PQ#

0.5,

0.5

PQ#

0.6,

0.4

PQ#

0.7,

0.3

PQ#

0.8,

0.2

PQ#

0.9,

0.1

PQ#

1,

0

18 3 3 3 5 7 14 38 84 140 156 174 182

129 2 2 2 2 3 6 13 45 93 126 146 159

147 20 20 23 25 30 53 98 148 165 179 185 186

174 1 1 1 1 3 4 9 41 94 130 149 164

175 21 21 22 26 11 52 97 149 166 178 184 187

Average 9.4 9.4 10.2 11.8 14.4 25.8 51 93.4 131.6 153.8 167.6 175.6

Table 5 - Rankings based on combined normalized SUV and QUV for experiment # 1

Solution

Number

QUV

Based

Rank

SQ#

α=0,

β=1

SQ#

0.1,

0.9

SQ#

0.2,

0.8

SQ#

0.3,

0.7

SQ#

0.4,

0.6

SQ#

0.5,

0.5

SQ#

0.6,

0.4

SQ#

0.7,

0.3

SQ#

0.8,

0.2

SQ#

0.9,

0.1

SQ#

1,

0

18 3 3 4 3 5 5 5 5 6 6 6 6

129 2 2 3 4 6 7 6 6 7 7 8 8

147 20 20 16 11 10 10 10 10 10 9 9 9

174 1 1 1 2 3 6 7 8 9 11 11 13

175 21 21 17 12 11 11 11 11 11 10 10 10

Average 9.4 9.4 8.2 6.4 7 7.8 7.8 8 8.6 8.6 8.8 9.2

 79

Table 6 shows the solution numbers, original rankings based on QUV data, and usage

percentages of selected compositions for experiment #2.

Table 6 - Usage data for experiment #2

 Table 7 and Table 8 show the result based on combined PUV and QUV and combined

SUV and QUV respectively. From Table 7, it is clear that by increasing the coefficient of

PUV, rankings of selected solutions becomes worse. This result shows that PUV rankings

can be totally different from QUV rankings and they are just based on the connectivity of the

graph. On the other hand, SUV rankings are based on both connectivity and usage history

data, which we believe is more accurate.

By looking at results in Table 8, we could conclude that combination of SUV and QUV

again gives us some improvement in the final rankings. The percentage of improvement for

experiment #2 is (for the best case α=0.4 and β=0.6):

. .
.

≈0.53 therefore the highest ranking improvement is 53% for experiment #2.

 Solution # Original Rank Based on QUV % of Usage

36 20 34

56 1 20

57 3 10

61 2 20

194 21 16

 80

Table 7 - Rankings based on combined normalized PUV and QUV for experiment #2

Solution

Number

QUV

Based

Rank

PQ#

α=0,

β=1

PQ#

0.1,

0.9

PQ#

0.2,

0.8

PQ#

0.3,

0.7

PQ#

0.4,

0.6

PQ#

0.5,

0.5

PQ#

0.6,

0.4

PQ#

0.7,

0.3

PQ#

0.8,

0.2

PQ#

0.9,

0.1

PQ#

1,

0

36 20 20 17 17 17 19 20 26 33 43 57 62

56 1 1 2 3 6 12 32 69 113 142 166 184

57 3 3 3 2 1 2 4 6 13 21 29 41

61 2 2 1 1 2 5 7 17 43 72 96 113

194 21 21 19 18 18 20 23 30 39 52 61 67

Average 9.4 9.4 8.4 8.2 8.8 11.6 17.2 29.6 48.2 66 81.8 93.4

Table 8 - Rankings based on combined normalized SUV and QUV for experiment # 2

Solution

Number

QUV

Based

Rank

SQ#

α=0,

β=1

SQ#

0.1,

0.9

SQ#

0.2,

0.8

SQ#

0.3,

0.7

SQ#

0.4,

0.6

SQ#

0.5,

0.5

SQ#

0.6,

0.4

SQ#

0.7,

0.3

SQ#

0.8,

0.2

SQ#

0.9,

0.1

SQ#

1,

0

36 20 20 16 8 7 6 6 6 5 5 5 5

56 1 1 2 2 2 2 4 4 4 4 4 4

57 3 3 3 4 5 5 5 5 6 6 7 9

61 2 2 1 1 1 1 1 1 2 3 3 3

194 21 21 18 15 9 8 7 8 9 10 10 11

Average 9.4 9.4 8 6 4.8 4.4 4.6 4.8 5.2 5.6 5.8 6.4

 Table 9 shows the usage percentages for experiment #3. Table 10 shows the rankings

based on combined PUV and QUV and Table 11 shows rankings based on combined SUV

 81

and QUV. This experiment will be used to compare with experiment #4 which has different

number of invocations and same settings of all other parameters.

Table 9 - Usage data for experiment #3

Table 10 - Rankings based on combined normalized PUV and QUV for experiment #3

Solution

Number

QUV

Based

Rank

PQ#

α=0,

β=1

PQ#

0.1,

0.9

PQ#

0.2,

0.8

PQ#

0.3,

0.7

PQ#

0.4,

0.6

PQ#

0.5,

0.5

PQ#

0.6,

0.4

PQ#

0.7,

0.3

PQ#

0.8,

0.2

PQ#

0.9,

0.1

PQ#

1,

0

1 1 1 1 1 1 2 7 16 35 66 89 112

3 21 21 23 27 32 41 56 74 94 119 138 148

15 3 3 3 2 3 4 8 10 26 43 61 82

42 2 2 2 6 9 16 35 59 89 129 150 163

137 20 20 18 17 20 21 30 40 49 72 85 96

Average 9.4 9.4 9.4 10.6 13 16.8 27.2 39.8 58.6 85.8 104.6 120.2

 Solution # Original Rank Based on QUV % of Usage

1 1 12

3 21 30

15 3 8

42 2 10

137 20 40

 82

 As mentioned before we have 100 invocations for this experiment and as it can be

observed from Table 11 the improvement in ranking for experiment #3 (for the best

combination of SUV and QUV with α=0.5 and β=0.5) is:

. .
.

≈0.40 therefore the highest ranking improvement is 40% for selected compositions

in experiment #3.

Table 11 - Rankings based on combined normalized SUV and QUV for experiment #3

Solution

Number

QUV

Based

Rank

SQ#

α=0,

β=1

SQ#

0.1,

0.9

SQ#

0.2,

0.8

SQ#

0.3,

0.7

SQ#

0.4,

0.6

SQ#

0.5,

0.5

SQ#

0.6,

0.4

SQ#

0.7,

0.3

SQ#

0.8,

0.2

SQ#

0.9,

0.1

SQ#

1,

0

1 1 1 1 1 1 1 1 1 1 1 1 1

3 21 21 16 9 8 8 7 8 8 10 10 9

15 3 3 2 2 2 2 2 2 2 2 2 2

42 2 2 3 3 4 4 4 4 6 7 9 12

137 20 20 18 15 15 15 14 16 17 18 21 26

Average 9.4 9.4 8 6 6 6 5.6 6.2 6.8 7.6 8.6 10

Table 12 shows usage data for experiment #4. The percentage of usages is the same as

experiment #3 for selected compositions. We have different solution numbers because we

have different QUV values for different compositions in these two experiments, and it

doesn’t affect our analysis.

 83

Table 12 - Usage data for experiment #4

Table 13 demonstrates the rankings based on combined PUV and QUV and Table 14

shows the rankings based on combined SUV and QUV for experiment #4. By comparing

Table 14 with Table 11 we are able to observe the effect of increasing invocation numbers on

ranking improvements.

As mentioned before we have 1000 invocations for experiment #4 and based on Table 14

the percentage of improvement is (for α=0.7 and β=0.3):

 . .
.

≈0.55 the highest ranking improvement is 55% for experiment #4 (better than

experiment #3 when the number of invocations is 100)

 Solution # Original Rank Based on QUV % of Usage

10 21 30

68 3 8

72 1 12

108 2 10

141 20 40

 84

Table 13 - Rankings based on combined normalized PUV and QUV for experiment #4

Solution

Number

QUV

Based

Rank

PQ#

α=0,

β=1

PQ#

0.1,

0.9

PQ#

0.2,

0.8

PQ#

0.3,

0.7

PQ#

0.4,

0.6

PQ#

0.5,

0.5

PQ#

0.6,

0.4

PQ#

0.7,

0.3

PQ#

0.8,

0.2

PQ#

0.9,

0.1

PQ#

1,

0

10 21 21 25 35 49 66 89 105 128 148 156 164

68 3 3 3 5 1 5 11 27 55 86 112 139

72 1 1 2 2 4 8 17 47 88 131 157 167

108 2 2 1 1 1 1 1 1 1 3 7 13

141 20 20 27 46 68 88 113 141 167 170 179 183

Average 9.4 9.4 11.6 17.8 25.4 33.6 46.2 64.2 87.8 107.6 122.2 133.2

Table 14 - Rankings based on combined normalized SUV and QUV for experiment #4

Solution

Number

QUV

Based

Rank

SQ#

α=0,

β=1

SQ#

0.1,

0.9

SQ#

0.2,

0.8

SQ#

0.3,

0.7

SQ#

0.4,

0.6

SQ#

0.5,

0.5

SQ#

0.6,

0.4

SQ#

0.7,

0.3

SQ#

0.8,

0.2

SQ#

0.9,

0.1

SQ#

1,

0

10 21 21 11 10 7 7 7 7 5 4 2 2

68 3 3 3 1 1 1 1 1 1 1 1 1

72 1 1 2 3 3 3 3 4 4 6 8 8

108 2 2 1 2 2 2 2 2 2 3 4 5

141 20 20 14 12 11 9 8 9 9 9 9 9

Average 9.4 9.4 6.2 5.6 4.8 4.4 4.2 4.6 4.2 4.6 4.8 5

 85

Table 15 shows the comparison between experiment #3 and #4, which have same graphs

but different number of invocations. SUV value for experiment #3 is 10 whereas in

experiment #4 it is 5, and it has been improved by 50% when the number of invocations is

increased from 100 to 1000. And the best SUV+QUV combination is also improved from 5.6

to 4.2, which is 25% increase. It can be concluded that the ranking result is improved when

there are more invocations in the history file. This feature demonstrates the effectiveness of

applying weights in the proposed Service Rank algorithm.

Table 15 - A sample comparison to demonstrate the effect of increasing invocations on final

rankings

Experiment # Invocation # SUV Best SQ#

3 100 10 5.6

4 1000 5 4.2

 Our experiment also shows the PUV value could be totally different from QUV based

ranking. Therefore it is not enough to consider only PageRank values or QoS values as in

many QoS papers, and it is useful to consider usage data with PageRank. Combining SUV

with QUV can improve ranking performance significantly. Also, one set of α and β values

can offer the optimal results.

4.4 Conclusion

SR tool is an analysis tool based on proposed algorithms in this thesis for the purpose of

web service composition and ranking. It assists to find the importance level of each service

(node) in the composition based on its connectivity and history data. History log file

 86

generated by our SR tool contains user invocation data and contract data which make it

possible to assign higher weights to links with higher number of invocations, later invocation

time, contract dates, and longer contract durations. SR tool calculates SUV score of each

composition and combines it with QUV score to calculate the Composition Service Unique

Value (CSUV).

CSUV is calculated by adding SUV with a coefficient α and QUV with a coefficient β.

These coefficients in the proposed formula for CSUV can be adjusted to compare

performances and the numeric outcomes with simulated real time composition QoS values in

order to find the best coefficients to rank and select different compositions to effectively

satisfy users’ demands in a trustable and reliable manner.

Comparing four experiment results in this chapter demonstrates the effectiveness of the

Service Rank algorithm for ranking compositions. These results also show that by increasing

the number of invocations, performance of the Service Rank algorithm could be further

improved.

 87

CHAPTER 5

CONCLUSIONS

5.1 Conclusions

 The necessity of discovering an approach for reliable and trustable automatic web service

composition and ranking has been addressed by many researchers. Until now, several

attempts have been made in this field for designing techniques and supporting tools to

achieve required objectives such as selecting reliable compositions with guaranteed QoS

levels. However, offering reliable models of web service composition, ranking, verification,

and evaluation with considering possible false QoS attribute values have been mostly ignored

in pervious works.

The major objective of this thesis is to offer an algorithm, which if implemented in a tool,

demonstrates an effective way for the purpose of automatic web services composition and

ranking in a reliable and trustable manner. QoS attribute values alone are not completely

trustable since some providers publish wrong QoS attribute values in order to promote their

services. The graph representing the relationship among web services forms the basis of

employing social analysis techniques for service composition and ranking analysis. The

usage history data could further improve the accuracy of social analysis techniques. Both

composition ranking mechanisms (e.g. QoS-based and usage-biased social network analysis)

are implemented in this thesis in a combined manner in order to achieve the optimal

performance.

 88

 Our contributions include a number of particular features. Firstly, graph modeling of web

services registry and composition with implemented procedures provide a way to analyze

them directly without considering QoS factors. This feature improves the trust-ability of

selected compositions in case of having manipulated QoS attribute values. Secondly, a

combined algorithm is offered to rank the final compositions based on both QoS parameters

and Service Rank scores. Service Rank scores are based on both the connectivity of web

services (which is based on interaction behavior among services) and usage history data. This

characteristic makes proposed algorithm suitable to be employed for giving a higher rank to

more reliable compositions which have been selected and invoked before. Thirdly, required

history data parameters are defined and quantified for being capable of providing a higher

rank to more popular and up to date compositions. This objective can be achieved by

calculating weights of links based on the history data and employing the weights to calculate

Service Rank scores for each composition. Fourthly, QoS attribute values are categorized and

quantified to consider all of the possible QoS factors in the final QoS analysis. This

categorization and quantification demonstrate the flexibility and comprehensiveness of the

proposed approach of calculating the QoS-based rank scores. Finally, an analysis tool has

been designed and developed for web service composition and ranking based on proposed

algorithms which we hope could help research communities to find the best web service

composition and ranking approach that can be employed for real cases.

5.2 Future Works

There are many works which can be done along this research direction. Firstly, we would

like to extend our experiment to other invocation types such as concurrent or selection or

 89

join. And we would also want to have simulated data closer to the real scenario (e.g. usage of

different compositions from more diversified users). Secondly, we could explore other

techniques for web service composition and ranking such as AI techniques to see whether

and how it could be integrated with our approach to further improve the performance.

Thirdly, different data representations for the selected compositions can be implemented in

order to be employed with other techniques. Lastly, the approach proposed in this work can

be tested and evaluated in real applications with real web service registry graphs and QoS

attribute values for future works.

 90

REFERENCES

1. Agosti, M.; Pretto, L., “A Theoretical Study of a Generalized Version of Kleinberg's

HITS Algorithm,” Information Retrieval 8, 2 (Apr. 2005), pp. 219-243.

2. Ai, L.; Tang, M., “QoS-Based Web Service Composition Accommodating Inter-

service Dependencies Using Minimal-Conflict Hill-Climbing Repair Genetic

Algorithm,” In Proceedings of the 2008 Fourth IEEE international Conference on

Escience (December 07-12, 2008). ESCIENCE. IEEE Computer Society,

Washington, DC, pp. 119-126.

3. Akkus, G.B., "Semantic Web Services Composition: A Network Analysis Approach,"

Data Engineering Workshop, 2007 IEEE 23rd International Conference on, pp.937-

943, 17-20 April 2007

4. Aydogan, R.; Zirtiloglu, H., "A Graph-BasedWeb Service Composition Technique

Using Ontological Information," Web Services, 2007. ICWS 2007. IEEE

International Conference on, pp.1154-1155, 9-13 July 2007

5. Berbner, R.; Spahn, M.; Repp, N.; Heckmann, O.; Steinmetz, R., "Heuristics for QoS-

aware Web Service Composition," Web Services, 2006. ICWS '06. International

Conference on, pp.72-82, 18-22 Sept. 2006

6. Cardellini, V.; Casalicchio, E.; Grassi, V.; Lo Presti, F., "Flow-Based Service

Selection for Web Service Composition Supporting Multiple QoS Classes," Web

Services, 2007. ICWS 2007. IEEE International Conference on, pp.743-750, 9-13

July 2007

 91

7. Chang, H.C.; Wang, J.; Chiu, C.Y.; "Automatic Semantic Web Service Composition

via Agent Intention Execution in AgentSpeak," Web Intelligence, IEEE/WIC/ACM

International Conference on, no., pp.564-567, 2-5 Nov. 2007

8. Colbourn, C.J.; Chen, Y.; Tsai, W.T., "Progressive ranking and composition of Web

services using covering arrays," Object-Oriented Real-Time Dependable Systems,

2005. WORDS 2005. 10th IEEE International Workshop on , vol., no., pp. 179-185,

2-4 Feb. 2005

9. D'Ambrogio, A., "A Model-driven WSDL Extension for Describing the QoS ofWeb

Services," Web Services, 2006. ICWS '06. International Conference on, pp.789-796,

18-22 Sept. 2006

10. De Paoli, F.; Lulli, G.; Maurino, A., "Design o f Quality-based Composite Services,"

In Proceedings o f 4th International Conference on Service Oriented Computing -

ICSO C 2006 - Chicago, USA LNCS vol. 4294, pp. 153- 164, 2006.

11. Domingos, P.; Richardson, M., “Mining the network value of customers ,”In

Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pp. 57- 66, San Francisco , USA, August 2001.

12. Farahat, A.; Lofaro, T.; Miller, J.C., Rae, G.; Ward, L.A., "Authority rankings from

hits, pagerank, and salsa: Existence, uniqueness, and effect of initialization," SIAM J.

Sci. Comput., vol. 27, no. 4, pp. 1181-1201, 2006.

13. Fox, C.; Wilson, D., "Visualization in Interrogator using Graphviz," Information

Assurance Workshop, 2006 IEEE , vol., no., pp.390-392, 21-23 June 2006

 92

14. Freddy, L.; Alain, L., "Semantic Web Service Composition Based on a Closed World

Assumption," Web Services, 2006. ECOWS '06. 4th European Conference on,

pp.233-242, Dec. 2006

15. Gekas, J.; Fasli, M., “Employing Graph Network Analysis for Web Service

Composition,” In Alkhatib G. I. and Rine, D. C. (eds), Agent Technologies and Web

Engineering, IGI Global Publishers, December 2008 International Journal of

Information

Technology and Web Engineering, Vol. 2. Issue. 4. pp. 21 - 40

16. Gu, Z.; Li, J.; Xu, B., "Automatic Service Composition Based on Enhanced Service

Dependency Graph," Web Services, 2008. ICWS '08. IEEE International Conference

on, pp.246-253, 23-26 Sept. 2008

17. Guo, L.Y.; Chen, H.P.; Yang, G.; Fei, R.Y., "A QoS Evaluation Algorithm for Web

Service Ranking Based on Artificial Neural Network," Computer Science and

Software Engineering, 2008 International Conference on, pp.381-384, 12-14 Dec.

2008

18. Hanneman, R.A.; Riddle, M., “Introduction to social network methods,” Riverside,

CA: University of California, Riverside, 2001. Published in digital form at

http://faculty.ucr.edu/~hanneman/).

19. Hashemian, S.V.; Mavaddat, F., "A graph-based approach to Web services

composition," Applications and the Internet, 2005. Proceedings. The 2005

Symposium on, pp. 183-189, 31 Jan.-4 Feb. 2005

 93

20. Hovakimyan, A.; Sargsyan, S.; Barkhoudaryan, S., "Genetic algorithm and the

problem of getting knowledge in e-learning systems," Advanced Learning

Technologies, 2004. Proceedings. IEEE International Conference on, pp. 336-339, 30

Aug.-1 Sept. 2004

21. Jensen, D., “Statistical challenges to inductive inference in linked data,” Preliminary

papers of the 7th International Workshop on Artificial Intelligence and Statistics;

1999 Jan 4 - 6; Fort Lauderdale. FL.

22. Kalasapur, S.; Kumar, M.; Shirazi, B.A., "Dynamic Service Composition in Pervasive

Computing," Parallel and Distributed Systems, IEEE Transactions on , vol.18, no.7,

pp.907-918, July 2007

23. Kalepu, S.; Krishnaswamy, S.; Loke, S.W., "Verity: a QoS metric for selecting Web

services and providers," Web Information Systems Engineering Workshops, 2003.

Proceedings. Fourth International Conference on, pp. 131-139, 13 Dec. 2003

24. Kempe, D.; Kleinberg, J.; Tardos, E., “Maximizing the Spread of Influence through a

Social Network,” Proc. 9th ACM SIGKDD Int’l Conf. Knowledge Discovery and

Data Mining, ACM Press, 2003, pp. 137–146.

25. Kim, G.; Christos, F.; Martial, H., "Unsupervised modeling of object categories using

link analysis techniques," Computer Vision and Pattern Recognition, 2008. CVPR

2008. IEEE Conference on, pp.1-8, 23-28 June 2008

26. Kleinberg, J., “Authoritative sources in a hyperlinked environment,” Journal of the

ACM, 1999, 46, 5:604-632.

 94

27. Lei, X.; Jing, L.; Jie, Q.; Pershing, J.A.; Ying, L.; Ying C., "Availability “weak point”

analysis over an SOA deployment framework," Network Operations and

Management Symposium, 2008. NOMS 2008. IEEE, pp.473-480, 7-11 April 2008

28. Li, L.; Ma, J.; Chen, Z.M.; Ling, S., "An Efficient Algorithm for Web Services

Composition with a Chain Data Structure," Services Computing, 2006. APSCC '06.

IEEE Asia-Pacific Conference on, pp.64-69, Dec. 2006

29. Liang Q.; Yang, S., "AND/OR Graph and Search Algorithm for Discovering

Composite Web Services, " International Journal of Web Services Research, Vol. 2.

No. 4. pp. 48 -67, 2005

30. Liu, J.; Lian, C., "Web Services as a Graph and Its Application for Service

Discovery," Grid and Cooperative Computing, 2006. GCC 2006. Fifth International

Conference on, no., pp.293-300, Oct. 2006

31. Lu, H.E., "Ranking Web services based on ontology semantics," Machine Learning

and Cybernetics, 2005. Proceedings of 2005 International Conference on, pp.2161-

2165 Vol. 4, 18-21 Aug. 2005

32. Maimon, O.; Rokach, L., “Data Mining and Knowledge Discovery Handbook,”

Springer-Verlag New York, Inc, pp. 417-432.

33. Mei, L.; Zhang, Z.; Chan, W.K.; T.H., T., "An Adaptive Service Selection Approach

to Service Composition," Web Services, 2008. ICWS '08. IEEE International

Conference on, pp.70-77, 23-26 Sept. 2008

34. Menasce, D.A., “Composing Web Services: A QoS View,” IEEE Internet Computing,

v.8 n.6, p.88-90, November 2004

 95

35. Menascé, D.A., "QoS Issues in Web Services," IEEE Internet Computing, vol. 6, no.

6, Nov./Dec. 2002, pp. 72-75.

36. Montgomery, D.C.; Runger, G.C., “Applied Statistics and Probability for Engineers,

3rd Edition, and JustAsk!,” Set (John Wiley & Sons, 2006), third edition, pp. 42-52

37. Mos, A., “Challenges in Integrating Tooling and Monitoring for QoS Provisioning in

SOA Systems (Keynote). In Service-Oriented Computing,” (2009), ICSOC 2008

Workshops: ICSOC 2008 international Workshops, Sydney, Australia, December 1st,

2008, Revised Selected Papers, G. Feuerlicht and W. Lamersdorf, Eds. Lecture Notes

In Computer Science, vol. 5472. Springer-Verlag, Berlin, Heidelberg, 189-189.

38. Mukherjee, D.; Jalote, P.; Gowri Nanda, M., "Determining QoS of WS-BPEL

compositions," 6th International Conference on Service-Oriented Computing -

ICSOC 2008, volume 5364 of LNCS, pp. 378–393, 2008.

39. Mustafa, F.; McCluskey, T.L., "Dynamic Web Service Composition," Computer

Engineering and Technology, 2009. ICCET'08. International Conference on , vol.2,

pp.463-467, 22-24 Jan. 2009

40. Narayanan, S.; McIlraith, S., “Simulation, Verification, and Automated Composition

of Web Services,” Proc. 11th Int’l World Wide Web Conf. (WWW 02), ACM Press,

2002, pp. 77–88.

41. Pretto, L., “A theoretical analysis of Google’s PageRank,” In Proceedings of the 9th

International Symposium on String Processing and Information Retrieval (SPIRE),

volume 2476 of Lecture Notes in Computer Science (LNCS), pp. 131–144. Springer-

Verlag, 2002.

 96

42. Ran, S., "A model for web services discovery with QoS," SIGecom Exch., vol. 4, no.

1, pp. 1-10, 2003.

43. Rao, J.; X. Su., “A Survey of Automated Web Service Composition Methods”,

Springer, 2004, p. 43-54.

44. Richardson, M.; Domingos, P., “Mining Knowledge-Sharing Sites for Viral

Marketing,” Proc. 8th ACM SIGKDD Int’l Conf. Knowledge Discovery and Data

Mining, ACM Press, 2002, pp. 61–70.

45. Shiaa, M.M.; Fladmark, J.O.; Thiell, B., "An Incremental Graph-based Approach to

Automatic Service Composition," Services Computing, 2008. SCC '08. IEEE

International Conference on, pp.397-404, 7-11 July 2008

46. Singhera, Z.U., "Extended Web services framework to meet non-functional

requirements," Applications and the Internet Workshops, 2004. SAINT 2004

Workshops. 2004 International Symposium on, pp. 334-340, 26-30 Jan. 2004

47. Thissen, D.; Wesnarat, P., "Considering QoS Aspects in Web Service Composition,"

Computers and Communications, 2006. ISCC '06. Proceedings. 11th IEEE

Symposium, pp. 371-377, 26-29 June 2006.

48. Toma, I.; Roman, D.; Fensel, D., "On Describing and Ranking Services based on

Non-Functional Properties," Next Generation Web Services Practices, 2007. NWeSP

2007. Third International Conference on, pp.61-66, 29-31 Oct. 2007.

49. Vladimir, S.; Christian, S., “Negotiating and enforcing QoS and SLAs in grid and

cloud computing,” In GPC ’09: Proceedings of the 4th International Conference on

 97

Advances in Grid and Pervasive Computing, pp. 25–35, Berlin, Heidelberg, 2009.

Springer-Verlag.

50. Wasserman, S.; Faust, K., “Social Network Analysis,” Cambridge University Press

1994, pp. 150-152.

51. Wu, Q.; Arun, I.; Subramanian, R.; Rouvellou, I.; Silva-Lepe, I.; Mikalsen, T.,

“Combining Quality of Service and Social Information for Ranking Services,” In

Proceedings of ICSOC-ServiceWave 2009 (ICSOC'09), pp. 561-575, November 24-

27 2009, Stockholm, Sweden.

52. Xia, J., "QoS-Based Service Composition," compsac, vol. 2, pp.359-361, 30th Annual

International Computer Software and Applications Conference (COMPSAC'06),

2006

53. Xu, J. J.; Chen, H., “Using shortest path algorithms to identify criminal associations,”

In Proceedings of the 2002 Annual National Conference on Digital Government

Research (Los Angeles, California, May 19 - 22, 2002). vol. 129. Digital Government

Society of North America, pp. 1-7.

54. Yu, C.; Leon-Garcia, A.; Foster, I., "Toward an Autonomic Service Management

Framework: A Holistic Vision of SOA, AON, and Autonomic Computing,"

Communications Magazine, IEEE , vol.46, no.5, pp.138-146, May 2008

55. Yu, T.; Lin, K.J., “Service Selection Algorithms for Composing Complex Services

with Multiple QoS Constraints,” Proc. Int’l Conf. Service-Oriented Computing

(ICSOC ’05), 2005, pp. 130-143.

 98

56. Zaiane, O.R.; Man, X.; Jiawei, H., "Discovering Web access patterns and trends by

applying OLAP and data mining technology on Web logs," Research and Technology

Advances in Digital Libraries, 1998. ADL 98. Proceedings. IEEE International Forum

on , vol., no., pp.19-29, 22-24 Apr 1998

57. Zeng, L.; Benatallah, B.; Ngu, H. H. A.; Dumas, M.; Kalagnanam, J.; Chang, H.,

“QoS-Aware Middleware for Web Services Composition,” IEEE Trans. Software

Eng. 30(5): 311-327 (2004)

58. Zhang, N.; Qiu, X.S.; Meng, L.M., "A SLA-Based Service Process Management

Approach for SOA," Communications and Networking in China, 2006. ChinaCom

'06. First International Conference on, pp.1-6, 25-27 Oct. 2006

59. Zhao, Q.; Hoi, S. C. H.; Liu, T. Y.; Bhowmick, S. S.; Lyu, M. R.; Ma, W. Y., "Time-

dependent semantic similarity measure of queries using historical click-through data,"

in WWW '06: Proceedings of the 15th international conference on World Wide Web.

New York, NY, USA: ACM, 2006, pp. 543-552.

60. Zheng, X.; Yan, Y., "An Efficient Syntactic Web Service Composition Algorithm

Based on the Planning Graph Model," Web Services, 2008. ICWS '08. IEEE

International Conference on, pp.691-699, 23-26 Sept. 2008

61. Zheng, Z.; Lyu, M.R., "A QoS-Aware Middleware for Fault Tolerant Web Services,"

Software Reliability Engineering, 2008. ISSRE 2008. 19th International Symposium

on , vol., no., pp.97-106, 10-14 Nov. 2008

 99

62. Zhou, C.; Chia, L.T.; Lee, B.S., "QoS measurement issues with DAML-QoS

ontology," e-Business Engineering, 2005. ICEBE 2005. IEEE International

Conference on, pp.395-402, 12-18 Oct. 2005

63. Zhou, N.; Zhang, L., "A Graph Theory Based Impact and Completion Analysis

Framework and Applications for Modeling SOA Solution Components," Services

Computing, 2008. SCC '08. IEEE International Conference on, pp.145-154, 7-11 July

2008

 100

Appendix A

EXTERNAL FILES GENERATED BY SR TOOL

1- “Simudat.txt” contains the new rankings based on the combination of QUV and SUV

and different values of α and β. Old rankings are based on purely overall QUV scores.

We also include rankings based on the combination of QUV and PUV in order to show

the different performances of combining PageRank or Service Rank with the QoS

values. “Simudat.txt” also includes the percentage of each composition usages in our

simulation experiment. The percentages are kept fixed when we evaluate the effect of

changing α and β values. This is the main result file.

2- “Graphc.gv” consists of visualization script for visualizing the web services registry

graph by importing it to the Graphviz tool.

3- “historyl#.txt” includes the history usage data which saves the required information

illustrated in Table 1 and Table 2 for each invocation. The “#” sign represents the

experiment number, e.g. “historyl1.txt” for experiment 1.

4- “Input.doc” consists of web registry graph input data which is defined as a adjacency

matrix to represent web services and their relations. This input data file is assumed to be

obtained from a web services registry and it can be entered manually, automatically or

from a file.

5- “Pagerank.txt” contains PageRank values for all of the web services.

 101

6- “Pathff.txt” includes compositions generated by the SR tool and it shows the node

numbers in each path. “-1” indicates the end of a path.

7- “Pathfile.txt” is another version of “Pathff.txt” file (in a different format).

8- “Servicernk1.txt” consists of Service Rank values for all of the web services.

9- “Soluq.txt” includes compositions solutions with their QoS values (the number of

results are limited in the run time in case of having too many paths, e.g. maximum 200

compositions).

10- “Soluqsorted.txt” contains sorted compositions based on the overall QUV score with

all of their nodes.

11- “Solusorted#.txt” consists of sorted compositions based on the combination of

normalized SUV and QUV scores with different α and β values included in

“Simudat.txt”.

12- Table.txt: contains QoS and PageRank values of each node

 102

Appendix B

SAMPLE RESULTS GENERATED BY SR TOOL

AND GRAPHS GENERATED BY GRAPHVIZ

TOOL

Figure B.1 – Part of visualization script generated by SR tool for experiment #1

 103

Figure B.2 – PageRank scores for experiment #1

 104

Figure B.3– Service Rank scores for experiment #1

 105

Figure B.4– Part of path file showing some of the compositions in experiment #1

 106

Figure B.5 – Part of sorted compositions based on QUV in experiment #1

Figure B.6– Part of history log data for experiment #1 (for solution #174)

 107

Figure B.7 - Part of sorted compositions (α=0.2 and β=0.8) based on combined

normalized SUV and QUV for experiment #1

Figure B.8 - Part of sorted compositions (α=0.2 and β=0.8) based on combined

normalized PUV and QUV for experiment #1

 108

Figure B.9 – Part of web services’ data for experiment #1

Figure B.10 – Web services registry graph for experiment #2

 109

Figure B.11– PageRank scores for experiment #2

 110

Figure B. 12 – Service Rank scores for experiment #2

 111

Figure B. 13 – Part of path file showing some of the compositions in experiment #2

 112

Figure B. 14 – Part of sorted compositions based on QUV for experiment #2

Figure B. 15 – Part of history log data for experiment #2 (for solution #56)

 113

Figure B.16 - Part of sorted compositions (α=0.3 and β=0.7) based on combined SUV and

QUV for experiment #2

Figure B.17- Part of sorted compositions (α=0.3 and β=0.7) based on combined PUV and

QUV for experiment #2

 114

Figure B.18 - Part of web services’ data table for experiment #2

Figure B. 19 - Part of simulation results with rankings for Experiment #2

 115

Figure B. 20 – Web services registry graph for experiments #3 and #4

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2009

	Web service composition ranking based on QoS and social network analysis
	Alireza Dehghani
	Recommended Citation

