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Abstract

This thesis develops a novel way to iden.t.i”fy—goﬂl the joint friction parameters and a built in
torque sensor gain and offset. The identification method is based on a genetic algorithm (GA).
A model based friction compensation method and a real coded GA are selected from a variety of
methods available. A model of a single degree of freedom mechatronic joint with a link is
presented. Numerical simulations are run to determine the optimum configuration of the GA
with respect to the population size and maximum number of generations necessary to identify the
parameters to within 5% of their actual value. The GA identification technique is then used on
an experimental mechatronic joint with a harmonic drive and built-in torque sensor. The friction
parameters as well as the sensor gain and offset are identified in the experimental system and the
position tracking error is reduced. Based on the experimental results, the method is found to be

an effective way of identifying system parameters in a mechatronic joint.
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Chapter 1

Introduction

1.1 Background

Mechatronic joints have applications that range from the Canadarm for use in space to hard
drive arms that are used to read data from magnetic disks to Computer Numerical Control (CNO)
machines that produce manufactured goods. Robotic joints can be utilized in many ways, which
creates almost endless opportunities for improvements and research. In all robotic joints there is
a common phenomenon — friction. Friction is caused when two surfaces come in contact with
one another and microscopic asperities on the surfaces interlock. In order for the surfaces to
move with respect to one another, some force must be exerted. Once the surfaces begin to move,
the asperities constantly come in contact and break. The end result of this is twofold, there is a
loss of kinetic energy which is dissipated as heat and the two surfaces wear down. The
phenomenon can be very difficult to deal with, depending on the application, and there are
numerous research papers devoted to dealing with this complex behaviour.

There are fundamental components required in order to control a joint. The first is a model
of the joint. This often includes mathematical relationships between the actuation and the joint,
as well as links that may be involved with the joint. In a system with multiple joints, it becomes
complicated to model mathematically because the joints become coupled in their motion. The
ability to solve a high degree of freedom system in real time is dependant on the available
computing power and is limited. The second component is the use of sensors. Sensors that are
typically used in robotics are a position encoder and an accelerometer which measure position
and acceleration, respectively. While sensors provide information about the system, they have
physical limitations. Common problems are caused by electromagnetic interference (EMI)
which limits the sensitivity of the senor as well as sensor accuracy which is generally due to how
precisely the sensor itself can be manufactured. Within the last two decades, torque sensors have

been developed to measure the joint torque. Joint torque sensors have opened up new fields of



research. The torque sensor can be used to directly compensate for friction, but perhaps a more
interesting “application is to use it to measure the upstream link dynamics and avoid using
complex dynamic équations. | |

The modular and reconfigurable robot (MRR) project under development' at Ryerson
University intends to utilize the joint torque sensor to further system controls research. By using
the joint torque sensor to compensate coupling dynamics and friction, one of the purposes of the
project is to show these techniques are viable and practical by doing a variety of experiments.
Due to the particular equipment used to conduct this research, friction compensation is an
integral part in this overall project. A major component of friction compensation is parameter
identification. In addition to identifying friction parameters by using robust search techniques,
other information about the system can be obtained, such as sensor parameters. This thesis

focuses on identifying such parameters.
1.2 Thesis Objectives and Contributions

1.2.1 Problem Statement ,
To do precise motion control of a mechanical joint an appropriate control law must be

designed. The dynamics of a joint where friction is present are non-linear. To achieve precise
control, it is necessary to use a non-linear control law. Such control laws generélly include a
model of the system integrated into them. The system model relies on various parameters of the
system. These parameters are not always directly measurable. The performance of the control
law will rely on the accuracy of the parameter identification. Parameter identification can rely
on a series of experiments that are a) difficult to accomplish in certain situations b) time
consuming and therefore costly. The gbal of this work is to develop a tool which is applicable to
systems in order to identify system parameters. The parameters that are specifically identified in

this thesis include friction coefficients as well as the joint torque sensor gain and offset.

1.2.2 Parameter Identification
The purpose of this thesis is to develop a parameter identification method by combining two

different fields of research: a) friction modeling and compensation and, b) genetic algorithms
(GAs), aiming to find a novel solution to the problem of friction compensation and joint control.
Using information from an un-calibrated joint torque sensor, it is hypothesized that a GA will be

able to identify the system parameters, including both the friction parameters and the joint torque

2



sensor parameters. GAs immediately come to mind when one considers noisy feedback signals,
discontinuous friction functions and because of their robust nature, do not depend on a perfectly
accurate model for the plant. In this way, it is possible to calibrate the joint torque sensor and the
performance can be improved. As the temperature changes or the gears wear the GA will be
available to update the system parameters accordingly over time. The end result is an effective
and practical identification technique that will be available for the MRR as well as similarly

designed joints.

1.2.3 Genetic Algorithms
As a field of research, GAs were introduced in the 1970s and have grown alongside the

advancement of digital computers. GAs are global optimization techniques that are particularly
well-suited for highly nonlinear functions. GAs can handle noisy, discontinuous functions
because there is no requirement for a derivative in the fitness function. Moreover, GAs
accumulate information about the system during the search process, which makes them more
desirable than other random search algorithms.

A major contribution of this thesis is to develop a suitable fitness function that can be used
to identify the parameters. The fitness function has been tested in both simulations and in

experiments to evaluate its effectiveness.

1.3 Thesis Layout

This thesis is organized in the following fashion: Chapter 2 includes an overview of four
different friction models. There are several friction compensation techniques that are discussed.
Chapter 3 introduces GAs and the advantages of using GAs as well as discussions about the
various kinds of GAs that are available to solve various problems in robotics and parameter
estimation. Chapter 4 details the system model that is the main focus of the identification
procedure. Once the system has been modelled, the identification technique is introduced. A
fitness function is developed for this problem. Based on this fitness function, the procedures to
identify friction and torque model parameters using GAs are formulated. Chapter 5 studies the
effectiveness of the proposed procedure by conducting simulations of a single degree of freedom
joint with a joint torque sensor. The simulations not only demonstrate that the feasibility of the
GAs, but also provide a roadmap for the experiments. Chapter 6 takes the procedure to an

experimental setup to show that it can be applied in a real mechatronic joint. Several



experiments are conducted to demonstrate the effectiveness of the proposed algorithm as well as
investigating the limitations of the identification procedure. Finally, Chapter 7 details the

conclusion, overall result of this research and possible future research in this topic.



Chapter 2

Friction Modeling and Compensation Techniques

2.1 Friction Compensation

Friction arises when two surfaces come in contact as a consequence of irregularities of the
two surfaces. At a microscopic level, the asperities on each surface catch on one another must be
broken in order for the surfaces to move relative to one another. As this process takes place, a
thin layer of lubricant is accumulated and the two surfaces can move more readily [1]. The result
of this contact is a resistance to any force exerted on either of the bodies in contact. The
mechanics of the interaction depend on many things, including the presenée of foreign
lubricants, temperature and the materials. There are a variety of models which accuraté]y
capture this behaviour in many ways, from a simple Coulomb model to complex static and

dynamic models.

2.1.1 Friction Models
2.1.1.1 Coulomb and Viscous Model

A simple Coulomb and viscous model can be expressed as:
F(4)=[fsen(g)+b4] (2-1)
where F is the friction force, ¢ is the relative velocity of the contact surfaces, b is the viscous

friction coefficient, and f; is the Coulomb friction. The sign function is defined as:

1 for g>0
sgn(¢)=40 for ¢=0 (2-2)
-1 for ¢<0

2.1.1.2 Static and Stribeck Model

The model in equation (2-1) does not accurately reflect what takes place at low speeds in

real systems. It is known that when two objects are in contact, it takes an initial force to push



them apart. This force is often referred to as the breakaway force and the phenomenon is
described as static friction or “stiction”. What follows is a nonlinear region of motion between
the break away force and the viscous friction. This region is referred to as the Stribeck region.

The following model describes this behaviour:

F(4)= fc+(fs—fc)e-l7'r sgn(g)+bg (2-3)

where f;and f; are the Stribeck coefficient and the static friction coefficient, respectively. The
exponential term, Js, can be equal to 2, but depending on the material, not necessarily [1]. The
curves in Figure 2-1 show the two friction models graphically. It can be seen that the static
friction and Stribeck effect occur at low velocities, but at higher velocities the models exhibit the

same behaviour.
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Figure 2-1: Friction models



2.1.1.3 Dahl Friction Model
Dahl [2] introduced the idea of analogizing friction with two layers of bristles rubbing

against each other. If this is the case, the average bristle deflection at the contact points of the
moving surfaces can be represented by introducing an internal state, z. The friction can then be

defined as:

Z=y— M oz (2-4)
F,
F=¢z (2-5)

where ¢ is the average bristle stiffness parameter. This model does not include the static friction

or the Stribeck effect.

2.1.1.4 LuGre Friction Model
The Dahl model does not account for a small amount of motion that occurs before the two

contacting surfaces break away from one another. This motion is called “pre-sliding” and can be
found in some applications where this very small deflection is important [3], [4]. The LuGre
model [5] expands on the Dahl model by including the static friction and Stribeck friction. The
two parameters, gy and g; are assumed to be constant. :I‘he function g(v) and f{v) model the

Stribeck effect and the viscous friction, respectively.

Z=vy —?gJZIT)GOZ (2-6)
F=0yz+0,2+ f(v) -7

This method is difficult to apply because the internal state, z, is not a measurable quantity.
Moreover, observing this internal state requires high precision sensors in order to measure the

“pre-sliding” phenomenon.

2.1.2 Friction Compensation Strategies
‘As friction in physical systems is a complex non-linear phenomenon, several different

techniques have been developed to compensate for it. Depending on the application, the system
may require different levels of precision. The following sections will highlight some advantages

and disadvantages of the different compensation techniques.



2.1.2.1 Fixed Friction Compensation with a Known Model
In friction compensation with a known model a general control scheme is used with a fixed

friction term. The friction model parameters are known or identified offline. This method can
be effective if the parameters do not vary over time due to temperature or wear. Papadopoulos
and Chasparis show in [6] that using a fixed friction compensation for the model in equation
(2-1) cannot provide accurate tracking and positioning results compared to thé friction model in

equation (2-3).

2.1.2.2 Friction Compensation with a Partially Known Model
Friction compensation with a partially known model techniques rely on using a developed

control algorithm, and then adding terms to compensate for the friction. For this technique, the
exact friction.model is not necessarily known, nor does the technique rely on the knowledge of
knowing the model exactly.

In 1997, after introducing the LuGre model, Canudas de Witt and Lischinsky [7] implement
the new model into a real system. They first describe how to determine the friction paraxhete;s
of their model. This method is carried out offline. Once nominal friction values have been
determined, the control system adapts to compensate for time dependant phenomenon such as
temperature effects, and physical wear. The proposed method is compared to a proportional,
derivative and integral (PID) controller without friction compensation and is found to be more
effective. Another contribution of this paper is a method for determining the friction parameters
via a series of experiments. The experiments were designed to isolate each parameter and
identify them independently. For example, to identify viscous velocity, the joint is run at
different constant speeds, and using the relationship between the applied torque and the velocity,
a straight line can be found. The slope of this line determines the viscous damping coefficient.

Southward et al. [8] develop a proportional and derivative (PD) controller that includes an
additional nonlinear torque term to compensate for “stick-slip” at low velocities. The “stick-
slip” phenomenon occurs due to the static friction and has the effect of the surfaces “sticking”
together with zero velocity. Once the command torque overcomes the static friction the surfaces
“slip”.  The joint becomes unstuck and overshoots the desired trajectory because the static
friction is higher than the Coulomb friction. The controller reverses the torque to compen‘saie for
the error. If not properly compensated, the two surfaces slow /down and can become stuck

together once again. The controller Southward et al. developed is asymptotically stable so long



as the static friction is bounded within a known region. The nonlinear compensation torque is
only active in the “stick-slip” region and is essentially a PD controller elsewhere.

This technique has been upgraded by Kang [9] to include terms for hysterises. However, the
added hysterises parameters must be carefully chosen to avoid any problems due to the time
delay. Kang also found that a wide margin for the selection of such parameters will increase the

error as well as increasing the stability margin.

2.1.2.3 Adaptive Control Schemes

It has been noted before that friction behaviour can change due to temperature, humidity or
machine wear, so a natural solution to such a problem is an adaptive control scheme. However,
using such a scheme presents two major problems a) some friction parameters are only modelled
in a nonlinear way and b) there is a part of the system dynamics which relies on parameters that
are not measurable. There is no global solution to estimate both the system parameters and an
internal state. Depending on the application and the tools at hand there are several different
ways to solve this problem. In one such example, Canudas de Witt and Lischinsky (7]
considered a dynamic friction model in their compensation method. In order to compensate for
changing temperature, two assumptions must be made. First, it is assumed that the temperature
change affects the static region. Second, it is assumed that the dynamic region is reliant ona
unchanging lubricant characteristics. The viscous coefficient can then be dealt with by a linear
controller. Implementation of such a controller relies on a high precision resolver that is
necessary for the observer to estimate the internal state, z. Using this compensation technique
results in a trade off between the necessity of estimating the immeasurable part of the friction -
dynamics, and updating the friction parameters on-line. The nonlinear parameter related to the

Stribeck effect is lost.

2.1.2.4 Adaptive and Robust Control
Song et al. [10] propose a combination of adaptive and robust controls. Their paper

proposes an adaptive control method to estimate friction terms and a robust controller to
compensate for the un-modeled friction terms. The authors argue that linearization of the model
worked poorly because of inaccurate friction modeling. They also note that PD friction control
does not have good steady state error performance while a PID controller produces a limit cycle

instability. Their control algorithm eliminates both of these problems.



" The adaptive controller consists of terms that are fed forward based on the known dynamic -
model of the system and the servo mechanism and part of a “stick-slip” friction model. This -
control method is able to compensate for the Coulbmb friction and viscous friction forces based
on the fact that they are linear or parametric linear. However, the exponential (Stribeck friction)
and position-dependent forces which are nonlinear cannot be feed-forward cancelled.

In order to compensate for the nonlinear parameters and nonlinear behaviour, a robust
compensator is introduced. The residue that is not cancelled is shown to be bounded. The
adaptive compensator is embedded into the robust compensator to “learn” the proper upper
bounding function. |

The overall compensator is shown to by asymptotically globally stable via Lyapunov’s
theorem, which is used to proof stability in non-linear control theory. The control scheme is
tested in numerical simulations, but not experimentally. In the simulations the stiction behaviour
is only observed at zero-velocity crossings. It is concluded that the proposed scheme

compensates for “stick-slip” friction.

2.1.2.5 Adaptive and Robust Control with Feedback Linearization
The control theory suggested by Liu [11] is one based on a decomposition control design.

There is a separate compensator for the individual friction parameters that, when combined,
provide an overall control scheme. The two control schemes are adaptive control and robust
control. The adaptive control is used to compensate linear parametric friction for tracking
control. The robust control is used to compensate for the un-modeled friction. In order for the
robust controller to achieve a good tracking error, it would be necessary to use very high gain
values which may not be physically available. Alone, the adaptive control by itself may become
unstable due to an incompleteness of the friction model. Therefore, the overall determination is
to integrate both techniques into a single control design. '

Combining the robust and adaptive control is necessary to compensate for the parametric
uncertainty of the friction. As the surface lubrication or surface temperéture changes, the friction
parameters are apt to change as well. The adaptive compensator is designed with the assumption
that the friction parameters are constant but not exactly known. The robust controller is designed
to account for the parametric uncertainty and un-modeled phenomenon. The theory is shown to

be Lyapunov stable.
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Liu et al. [12] demonstrated the proposed control scheme experimentally in 2004. Using a
direct drive, one degree of freedom robot, they were able to show that the tracking error is
reduced and the controller performs robustly, even in the presence of changing friction values.
The experiments indicated that the friction parameters do not need to be known exactly;
however, the closer the estimated values are to the real values, the better the performance of the

controller will be.

2.2 Compensation and Control Using Torque Sensors

One method of measuring joint torque is to attach the sensor to the gear head and thus any
upstream torque generated will be able to be measured. The configuration of this method is

shown in Figure 2-2.

— > Link

T; :&—b Torque Sensor
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|
'

» Speed Reducer

Rotor

Figure 2-2: Joint diagram
One way to implement this sensor is to attach it to a harmonic drive, also referred to as an
asymmetric drive. The drive consists of three main components. There is a wave generator
which is elliptical shaped and fits onto the motor shaft. The second component is the flexspline
which is a flexible piece of material that fits over the wave generator. Finally, there is a circular
spline which fits over the flexspline and attaches to the link. The assembly can be seen in Figure
2-3. The principle behind the drive is that the teeth on the flexpline have a slightly different
pitch and have two fewer teeth than the circular spline. When the elliptical wave generator
rotates, the flexpline will deform and the teeth of the flexpline will engage those of the circular
spline along the major‘axis of the wave generator. In this way, the speed between the wave
generator and the circular spline can be reduced by a factor of up to 320:1, depending on the

number of teeth in the gear.
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Figure 2-3: Harmonic drive [15]
Because of the flexibility of the flexpline, it is possible to attach a series of strain gauges
which form a Wheatstone bridge. The bridge produces a voltage when there is an applied torque
on the flexpline. The strain gauges are glued onto the bottom of the flexpline in the

configuration seen in Figure 2-4.

Figure 2-4: Strain gauge configuration on a harmonic drive flexpsline [16].

Hashimoto [14] first suggested using a joint torque sensor for position control in 1987. Prior
to this time, the dynamics of the system were calculated using computed torque. This was done
by using the inverse dynamics of the system to compute how much torque was necessary to
move to the desired position (or velocity etc.). Clearly, for a multi-link robotic arm, this would
be computationally expensive and becomes impossible to do in real time if there is a sufficient
number of links. Hashimoto replaced this method by using the joint torque sensor. The sensor is

used to measure the inertia and the gravitational effects of the upstream links. By feedihg back
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the torque sensor information, it is possible to use a PD controller to achieve satisfactory position
tracking.

Many of the teeth are always in contact making a large amount of friction in this type of
gear head. While Hashimoto implemented his control law successfully, it did not specifically
address the presence of this increased friction. Moreover, a PD controller has poor steady state
tracking error performance, as discussed in [1]. However, this procedure is very useful in
compensating the nonlinear dynamics of multi-link systems and can be expanded on in future
work.

Using the joint torque sensor to compensate directly for friction has been explored in the
literature. Pfeffer et al. [17] used the joint torque sensor in a PUMA robot in 1989 to compensate
for the friction effects. The effective friction was reduced by 97%. In 1998, Hashimoto and
Kiyosawa [18] used the joint torque sensor built into a harmonic drive as described above to
compensate for friction. By using joint torque feedback Morel et al. [19] achieved high precision
control of a robotic manipulator without using a friction model. These three separate methods
demonstrate the effectiveness of using the joint torque sensor to directly compensate for joint
friction. _

In 1990, Imura et al. [20] proposed a control method which uses joint torque sensor placed
at each joint in the multi-link system. First a dynamic model based on inverse dynamics was
developed. The dynamics are highly nonlinear and require a lot of computing power to solve as
well as high sampling rates. To overcome this problem the dynamic equations are solved using a
recursive Newton-Euler method using the information from the joint torque sensors that are
place at each joint. This method does not require the information of the mass of the links, only
the rotors, which are known. Thus, the robustness of the control law is improved against
parameter variations caused by the loads attached to the end of the arm.

In 1991, a different control method using joint sensors was proposed by Kosuge et al. [21].
The authors suggest that a robust control system based on inverse dynamics is not convenient for
design. The coupling terms of the links and modeling error of the actuator are not negligible.
This is due to the fact that the dynamic expression does not have an explicit expression. The
control scheme is considered robust because it is able to deal with the uncertainty of the

actuators. The proposed method needs less knowledge about uncertainties of the actuator system
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because of the joint torque sensors. This method is also able to reduce the computational load
and reduce the feedback gain to achieve the tracking precision. o

The wave generator in the harmonic drive causes an issue that is problematic with built-in
joiﬁt torque sensors. The rotation of the wave generator causes strain in the flexspline, which is
picked up by the strain gauges that are placed there to measure the torque. The strain gauges are
placed in such geometry that this ripple effect is supposed to be cancelled out, but in practice this
is impossible to do exactly [21], [22]. In 1998, Taghirad and Belanger [23] suggested using a
Kalman filter to filter the noise from the signal. In 1999, Godler et al. [22] suggested that by
adjusting the amplified gains on each of the strain gauges, the ripple can be cancelled out.
Figure 2-5 shows how Godler et al. proposed to change the geometry of the strain gauges in
order to help cancel out the ripples in the torque signal. The Kalman filter is difficult to
implement in practice and requires an acceleration signal which is usually found by
differentiating the velocity and is not accurate. Moreover, the calculations required to implement
the Kalman filter need to be carried out in real time and add a computational burden to the
controller. The Golder et al. proposed method is only useful if implemented before the sensor is

constructed. If the sensor is already built, it cannot be modified in this way.

= | Tube Pt Teeth
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Figure 2-5: Modified geometry of strain gauges on flexspline [22]

There have been attempts by Tuttle and Seering [24] as well as Kennedy and Desai [25] to
model harmonic drives. Tuttle and Seering found that, due to the amount of analysis required for
the experimental data, it was unlikely that any comparably sufficient representation could not be |
made from parameters available in catalogues or simple experimental observations. Kerinedy
and Desai developed an experimental algorithm to determine the harmonic drive parameters for a
Mitsubishi PA-10 robot kit that is commercially available. =~ While the modeling and
identification of harmonic drive parameters are beyond the scope of this work, it may be useful

in future work or when analysing the experimental results.
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Chapter 3

Genetic Algorithms

This chapter introduces the concepts of genetic algorithms. Following the introduction,
discussion into techniques that are relevant to this work will be discussed. Also, applications of
GA pertaining to robotic joints and controls will be discussed to show how they have been

employed in this field of research.

3.1 Introduction into Genetic Algorithms

Throughout this work references will be made to a number of characteristics of genetic
algorithms. Genetic algorithms are global optimization techniques that are particularly well
suited for highly nonlinear functions. GAs are based on the Darwin’s theory of natural selection.
As new solutions are found, they are evaluated in accordance with their fitness. The fit solutions
are crossed with one another to produce new generations. As the number of generations
increase, the overall fitness of the population will also increase. An added advantage of
occasional mutation helps to prevent the solution to converge to a local optimum [13]. The three
main operators are selection, cross-over and mutation. The general process is shown in Figure
3-1. First, an initial population is randomly selected. Once the population is created it is
necessary to evaluate the fitness of each individual. The individuals are chosen to mate based on
their fitness. This process is called selection. After the mating has occurred, a random number
of children are selected to be mutated. The mutation adds a random amount of new genetic
material into the population. Finally, the objective function is re-evaluated and the process is
repeated over a set number of generations.

This chapter will include a brief discussion of the two major types of GA coding. In
addition, some examples of how GAs have been successfully applied in robotics and system

identification will be discussed.
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Figure 3-1: Genetic algorithm

3.2 GA Coding
There are two distinct types of GA coding methods, binary coded and real coded. While

both coding techniques mechanically operate in the same fashion, i.e., they evolve through
generations seeking global solutions, the ways in which they go about it are distinctly different.
The two techniques will be discussed in the following sections to point out some of the key
differences, but for a comprehensive overview, the reader is referred to [13], [26], [27], and
[28].

3.2.1 Binary Coded GA

Binary coded GAs work on the idea that the information in the code is stored in a binary
string, i.e., a string of 1’s and 0’s that represent integer numbers. The integer numbers represent
solutions to the problem at hand. In order to use integers to model in real number problems, it is

necessary to map the integers into a continuous domain to evaluate the fitness. This procedure
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requires several arithmetic operations, which alone are not significant in computational time, but
when a population of strings with multiple parameters over hundreds of generations is
considered, it can become time consuming.

Another phenomenon that arises when using binary coding is called the Hamming cliff. The
Hamming cliff effect occurs when a binary number is converted to a decimal number. For

instance, consider two binary strings:

[0 111 1]=15
[1 0 0 0 0]=16

While the two strings have five different digits when represented by binary, there is only a
difference of one in the real number domain. Herrera et al. [28] note that this phenomenon can be

problematic when searching a continuous search space.

3.2.2 Real Coded GA

A real coded GA is used because it allows for the search of large domains without
sacrificing precision as would be necessary in a binary coded algorithm [28]. Furthermore, real
coded GA are not susceptible to the Hamming cliff effect. [27]. Whereas the binary coded GA
relies on a crossover technique that switches bits between two parent strings, the real coded GA
generates random numbers around the parents to generate the children.

Vasconcelos et al. [27] discuss a technique called dynamic adaptation crossover and
mutation. This technique varies the probability of crossover and mutation while t_he GA is
executing. Generally, crossover is desirable when the solutions are spread throughout the search
space and mutation is desirable when the solutions begin to converge to a single point which
could be a local solution. In order to determine if the solution is converging on a single point,
the concept of genetic diversity (gdm) is introduced. This term is the ratio between maximum
value of the fitness function and the average value. Figure 3-2 shows how the probability of
crossover (P;) and mutation (Py,) vary as the gdm is increased. Vi, and Vi are user defined

variables.
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Figure 3-2: Dynamic crossover and mutation

3.2.2.1 Real Coded Crossover
Several crossover techniques are presented in the literature, [28, 29, 30 31]. Simulated

binary crossover (SBX) is a crossover technique developed by Deb and Beyer [26]. This

technique was developed from the blend crossover (BLX-a) which can be expressed as:

[P

in —@L,P. +a-I] 3-1)

where Ppin and Ppg are the minimum and maximum values in two parent solutions, .a is an
adjusting parameter for the range, / is the difference between the two parent solutions. The best
known value for  is 0.5 [28]. The SBX improves on this technique by making it more likely
that the children will be selected close to the parents as opposed to far away. However, there is
still a small probability that they will be selected far away, which increases the randomness in

the search algorithm to avoid a local maximum. The SBX crossover can be expressed as:
C, =0.5[(1+8,)P, +(1-B,)P,]
C, =0.5[(1-B,)R +(1+B,)P,] G2
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where Cy, (3, P, and P; are the children and parent solutions, /g is obtained from a probability

distribution function with a random number u between 0 and 1, and S can be expressed as:

1/(n+1)
5 (2]”) if u<0.5
=

Wn+l)
(—z(l_u)) if u>0.5

(3-3)

where m is the distribution index and a nonnegative real number. A large value of 1 gives a

higher probability for creating children solutions near parent solutions.

3.2.2.2 Real Coded Mutation
Another consideration in a real coded GA is the mutation. In a binary coded GA the

mutation is done by simply selecting a random bit and switching it from 1 to 0 or vice versa.
This is a totally random function and could turn 14 into 15 or 256 into 128. In real coded GA it
is possible to better control the mutation. Michalewicz and Schlierkamp [32] proposed a non-

uniform mutation rate in 1992. A uniform mutation rate can be expressed as the random child

selected, C; is any uniform number in the domain of the parameter[a,.,b,.]. The proposed non-

uniform mutation (NUM) takes the form of:

[ +a(t5,-C)if =0
Ci_{ci—A(t3Ci-ai)ifg=1 G-4)
2]
A(t,y)=y|[1-u* &= (3-5)

where gpnax is the maximum number of generations and @ is a number selected by the user to
determine the dependency on the number of iterations. The term ¢ is randomly chosen as 1 or 0,
and y is the current generation number. The function gives a value in the range of [0,y] such
that the probability of returning a number close to zero increases as the algorithm advances. The
size of the gene generation interval shall be lower with the passing of generations. This property
causes this operator to make a uniform search in the initial space when ¢ is small, and very

locally at a later stage, favouring local tuning.
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3.3 GA Applications in Robotics

Genetic algorithms are a useful tool in many research fields including robotics. There are a
- variety of préctical applications including control, parameter identification or trajectory tracking.
The following subsections will illustrate some of the interesting ways that GA have been applied

in the field of robotics.

3.3.1 Genetic Algorithms and Fuzzy Logic
In 1998, Lih-Chang and Ywh-Jeng [33] suggested using genetic algorithms combined with

fuzzy logic and adaptive control to compensate for friction. The authors use the LeGru friction
model. In this application there is significant frictional memory and “pre-sliding”, which is the
justification for the author to use this particular friction model. “Pre-sliding” refers to the
amount of torque that is applied before the surfaces break away.

The control scheme combines adaptive compensation with fuzzy control. The fuzzy logic is
combined with genetic algorithms in such a way that the binary string from the genetic algorithm
yields the membership function for the fuzzy logic output set. In this way, the GA is used to
learn the fuzzy subsets. The use of fuzzy controllers is beyond the scope of this work, but the
combination of various artificial intelligent methods may be considered for future work. A
complete stability theory was not introduced and the authors suggest it as future work. Also, no

experimental work was done to justify the simulation.

3.3.2 GAs for Trajectory Planning

GAs are used in robot trajectory planning. The process of the path generation can be broken
into two parts. In the first part, the dynamic properties of the robot are not taken into
consideration; this is due to the faét that the dynamic behaviour of the arm is complex and is -
being influenced by factors such as gravity, joint elasticity, friction or reaction forces due to
adjacent links. The programmer must specify by a series of points to be reached by the end-
effector. In the second portion of the path planning, the inverse kinematics are calculated to
created a smooth path for each link through the desired points. The number of paths that are
possible is very large and the number of points is not specified.

A GA approach to this problem was suggested by Davidor [34]. The robot considered by
Davidor consisted of three links restricted to the vertical plane with all dynamic effects

considered. The inputs are the arm configuration vectors which define the end-effector’s
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positions. The output is the actual position of the robot via the position sensors. Each arm-
configuration vector can be considered as a chromosomic structure and an n-step trajectory can
be represented by a string. Because there is no set number of steps for each trajectory, new GA
operators must be introduced which can vary the length of the strings. This technique is

compared to a hill-climbing algorithm and the GA is found to be more consistent.

3.3.3 Parameter Identification
In 1998, a genetic algorithm is proposed by Liaw and Huang [35] to determine friction

coefficients for a robot with contact friction. They use a control method with feedback
linearization to do position control. The friction is modeled with only Coulomb and viscous
friction, equation (2-1). The control scheme considers Stribeck friction as a disturbance. If the
parameters for Coulomb and viscous friction are known exactly, the tracking error will be driven
to zero (assuming position and velocity are exactly measured as well).

" The overall control scheme is shown in Figure 3-3. It can be seen that the error in the
position and velocity are used directly in the fitness function. This implies that the GA is run

online.
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Figure 3-3: Closed loop control diagram [35]
Liaw and Huang chose to use an initial population of 100, a crossover probability of 0.98,

and a mutation probability of 0.2% over 50 generations. After running simulations, it is
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concluded that the friction parameters can be found accurately within a few seconds.
Simulations with artificial measurement noise are also attempted successfully. The authors even -
try to simulate a three parameter friction model with the Stribeck friction involved and find that
it is successful. However, they note that if a large deviation from the friction model occurs in a -
real system, the tracking errors will be very large and the system may even become unstable.

There is no experimental result to demonstrate whether or not the simulations are accurate.
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Chapter 4

System Modeling and Parameter Identification Method

In order to effectively implement the GA identification technique, it is important to
understand the system that is being investigated. The key components of the model are the
system equations, the friction phenomenon and the joint torque sensor. Once the system is

modelled, it will be possible to proceed to the identification method.

4.1 Selecting a Friction Model

Chapter 2 outlined many different friction models and friction compensation techniques. It
is necessary to decide which model best suits the current application. Two friction models, the
Coulomb + viscous model and the Dahl model do not -include terms for static and Stribeck
friction. It is noted that in low speed trajectory tracking, compensating for these phenomenon is
necessary to achieve small errors. For the MRR project, it is desirable to have high precision
tracking at low speeds so both the Dahl model and the Coulomb + viscous models are rejected.
The two remaining models both provide the characteristics desirable, but from a controls point of
view, one is more desirable than the others. As noted in Section 2.1, the LuGre model relies on
internal state estimation and requires a high accuracy velocity sensor. Such a sensor is not
available for the MRR project; therefore, the four parameter static + Stribeck model from

equation (2-3) is selected.

4.2 Modeling the Plant

Consider a dynamic model for a joint with a torque sensor and a speed reducer between the
rotor and the link with the following assumptions:
1) The rotor is symmetric with respect to the axis of rotation.

2) The joint flexibility is negligible.
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3) The torque transmission does not fail at the speed reducer, and the inertia between
the torque sensor and the speed reducer is negligible.
The following notations will be used; '
| I,,: the moment of inertia of the rotor about the axis of rotation;
1,: the moment of inertia for the link about the axis of rotation;
7 : the reduction ratio of the speed reducer (y21);
g: thé joint angle;
7(g,4): the joint friction, which is assumed to be a function of the joint pbsition and velocity;
7, : the coupling torque at the torque sensor location; and

7 : the output torque of the rotor;

G(q): the forces due to gravity.

The joint friction is modeled as equation (2-3) with the addition of a term that accounts for

unmodelled position dependent friction,

7(2:9)= (1. + £ exp(~£,4*))sen (9) + g + £, (9 4) (4-1)
The dynamic equation for joint with the link can be written as:
t=G(q)+(L,7+1)i+f(g,9) ' 4-2)

If the joint torque sensor is positioned as shown in Figure 2-2, then it can be assumed that
the sensor signal will be able to replace the terms for the gravitational effects of the link, as well
as the link inertia, so long as the friction of the joint is compensated. So it is possible to replace

those two terms with a coupled joint torque at that point.

7, =14+G(q) @-3)

An un-calibrated joint sensor is known to have two critical parameters that must be
identified [36], the sensor offset and the sensor gain. The sensor offset is caused by a change in
temperature of the joint. The Wheatstone bridges that make upv the sensor should be symmetric,
but it is not possible for the sensors to have exactly the same characteristics, so a voltage bias
appears. This voltage bias acts as a steady offset for the sensor [37]. The voltage created in the
Wheatstone bridges is generally around 0-20 mV, while analog to digital converters use signals

that require 0-5 V, so it is necessary to amplify the signal. It can be assumed that this gain value
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is not precisely known and hence the sensor is un-calibrated. The torque sensor is modeled

ast, =PBt, +0, where g is the sensor gain and ¢ is the sensor offset.

The model can now be written as:

(L7)a+(f+ 1, exp(—f,qz))sgn(cj)+bq'+fq(q,(j)+(ﬂ—r’;i)=r (4-4)

4.3 Control Scheme

The overall control scheme is shown in Figure 4-1.

Estimated GA
Parameters |

. . v .
Desired 9194 .65 € Controller c Plant %97,
Trajectory

Figure 4-1: Overall control scheme

In order to understand what exactly has to be identified, it is useful to state the control
scheme that will be used. The control scheme implemented here is a modified version of the
linearized decomposition based control by Liu [11]. In that scenario, a link was not considered.
In the following treatment, the effect of the link will be compensated by feeding back the torque
sensor signal. For completeness, the control scheme will be presented.

In order to implement the decomposition based control scheme, it is first necessary to

linearize the nonlinear model:

Lyi+bi+(J.+ f.exp(~7,47)Jsen (4)-Y () F + 7, (g )47, =7 (4-5)

where b, f., 1., f, denote the nominal values of their respective parameters. Also:

Y(9)=[d sen(d) exp(-fid?)sen(d) —Fdtexp(-Fid)sen(@)]  @6)
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Felb-b Jimfi Jimf, Fi-1] @)
There are two different control techniques integrated: an »adaptive control law to compénsate
for the constant uncertainty of the friction parameters, and a robust control compensator to deal
with the unmodelled friction and the variable friction parameters.
The objective of the control schemé is to provide precise tracking. The position and velocity

tracking errors are defined by:

e=q—q,, €=4—q, 4-8)
The mixed tracking error is defined by:
r=é-—Ae 4-9)
where A is a positive constant.

For tracking control, the nominal torque value is defined as:

to=Iya+bi+(f.+ fexp(~1,47))sen(d)+r. (4-10)
where a is defined by:
a=i§,-246—Ae 4-11)

Here, the nominal torque term has been modified to include the corrected torque sensor
signal in order to compensate for the link dynamics. Therefore, the overall control law is given
by:

t=1,+Y(§)u,+u, (4-12)
The adaptive control technique is employed to deal with the unknown but constant

parametric uncertainty:

u,=-k IY ((j)T dr (4-13)
0

where k is a tunable control gain.

The non-parametric uncertainty, f,(g,g), is bounded by:

1 (ed)<p (4-14)
where p is a known constant bound for any position ¢ and velocity §. The robust control used

to compensate for the non—parametric uncertainty is defined by:
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u, = (4-15)

u

—pl, if |r|l<e
€

where ¢ is a positive control constant that can be tuned for achieving better tracking results [11].

4.4 I|dentification Technique

Before proceeding into this task in depth, it is important to understand how the parameters
affect the motion of the joint. This task will be accomplished by conducting a sensitivity study
on the model to test the effect of each parameter. It is critical to understand how the variance of

the parameters affects the model in order to choose a suitable excitation for the joint.

4.5 Sensitivity Study on Model Parameters

To demonstrate where each parameter affects the function, it is necessary to plot the
function with a small change in each parameter. Figure 4-2, Figure 4-3, Figure 4-4, and Figure
4-5 show a variance of each friction parameter within 10% of its original value. The sensor
parameter sensitivity is shown in Figure 4-6 and Figure 4-7 where the parameters are also varied

within 10% of its original value.

© Coulomb friction senstmity © Static friction senstmty
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Figure 4-2: Coulomb friction sensitivity Figure 4-3: Static friction sensitivity
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Figure 4-6: Sensor offset sensitivity Figure 4-7: Sensor gain sensitivity

Several observations can be made from the sensitivity study. First, several of the system
parameters are coupled within different regions of the velocity space. It can be seen that at all
speeds the Coulomb friction, sensor gain and sensor offset values affect the curve. The Stribeck
and static effect can only be seen at very low velocities whereas the viscous effect only appears
at higher velocities. This implies that in order to capture the behaviour of all of the parameters, it
is necessary to get sensor readings from all of the different velocity values. Moreover, it is
important when considering the excitation of the system that a certain region is not emphasized

more than another region, or it might dominate the result.

4.6 GA Fitness Function

The fitness function of the GA must be constructed such that it effectively identifies the

variables. The sensitivity study showed where each parameter affects the motion of the joint.
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Based on this knowledge a fitness function is constructed. The identification technique relies on
feedback from the joint. The feedback signals are from both the encoder, which measures the
position, and from joint torque sensor, which measures the torque of the joint at the sensor
location. By differentiating the position signal, it is possible to obtain the velocity, but it is
important to keep in mind that this term will be noisy. Because of the noise in the velocity
signal, it is not practical to differentiate the signal again. The information would not reflect the
actual state of the robot.

In order to understand the derivation of the fitness function, a simple curve will be used as
an example. This will illustrate the procedure and thought process used to obtain the fitness

function. Consider the two simple sine curves as shown in Figure 4-8.

N
1.5 / \
i / \
0.5
ot .
‘ sin(x)
0.5 — 2sin(x)
4 \ /
-1.5 \ /
23 2 4 o 1z 3 4

Figure 4-8: Sine curves
The sine curve over this domain is an odd function. This means that when integrated, the

negative area exactly cancels the positive area and the overall area is zero.

’]sin(x)dx=0, ’]2sin(x)dx=0 (4-16)

Clearly, the two curves are very different, but the integral function does not highlight the
differences in the curve shape. It only highlights the total area that each contains. Consider
different definite integral limits, such as [-x, 1]. It can be seen in Figure 4-9 that the area under

each curve over this domain is not the same in this case.
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1 1 A :
 [sin(x)dx=—0.7738 , [2sin(x)dx=-0.1548 (4-17)

-

sin(x)
—— 2sin(x)

1.5+

4 1 1 1 1 1 1
4 3 2 -1 0 1 2 3 4

Figure 4-9: Sine curve evaluated at - and 1

The value of the integral clearly changes as the limits of the integral change. A graph of the
integral shows where there is the greatest difference between the two curves. Figure 4-10 shows

the results of the definite integral along x.

0.5+
A}
-1.5r

2.5+

3.5-

Figure 4-10: Definite integration of two sine curves
By comparing the two curves at various points, it is possible to get a quantitative value for

how different they are. For example, consider the difference between the two curves at 10 places

-30



along the integral curves. Let the function, P, be a penalty assigned to quantify the difference
between the two curves. Figure 4-11 shows the different values of x where the definite integral

is chosen.

(o)
0.5}
At
1.5}
> 2
25}
3k
3.5
-4 y
4 4
Figure 4-11: Definite integration of sine curves at various points
This is can be expressed as:
2r 2x 4x L4
-’l"!{—l-a) -7 W) -IH{]—O) -7 ‘:—0)
P=| [ sin(x)dx- [ 2sin(x)ax [+ [ sin(x)dx- j 2sin(x)dx [+...
i d —z+% -x+% (4-1 8)
+| [ sin()dc— [ 2sin(x)dx [~0.1909+0.6909 +...+0~10.1
97 O
AT AT
In general this expression can be expressed for any number, n, of divisions.
A +(i;|-l)—-(x2;x') x *(“l)_(x,;x,)
P=Y j‘ sin(x)dx — I ~ 2sin(x)dx 4-19)
i=0 X2 X2
Xl+i7 X]'Ff;
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'For this expression it should be noted that as # — o then the penalty, P —> e as well.
This procedure quantifies the different shapes of the original functions by comparing how

the areas are different along the path. Consider the function that is used to describe the joint,'

neglecting the unmodeled friction, f; (¢,4)-

.. : L., (BT O
]myq+(fc + f, exp(—f,q2 ))sgn(q)+bq+(——y—)-= T - (4-20)

As stated previously, the acceleration term is something that cannot be obtained through the
available sensors. While the velocity is obtained by differentiating the position signal,
differentiating this signal again to obtain acceleration is not practical. The resulting signal is too
noisy to be useful. To alleviate this problem, the entire function can be written as an integral
function:

i L3 ! ) T + )
I(Im}'ij)dt + j( fo+ frexp(= f,qz))dt + _[(bq)dt + I[M)d’ = jfdt (4-21)
h h 4 h\ /4 h '

This entire equation can be rearranged to explicitly state the sensed torque value:

]‘rsdt =p" [y{]rdz ~Lylal - L[] -, zjexp(- 1.4%)dt —b[q]::}-a[z]:] (4-22)

L]

The equation defines a curve that can be obtained through the torque sensor. What is
desirable is to estimate this curve by estimating all the parameters which are unknown.

The unknown parameters can be estimated and the resulting estimated torque can be

expressed as:

Tt,dt =p" [y{']rdt -me[q]:j -1 [t]:f - f:[exp(— f;qz)dt -b [q]if }—&[z]:} (4-23)
4 4

If equation (4-23) is a cyclical function, then the torque signal can become an odd function.
As described above, this can be detrimental when trying to compare the two curves, the sensed
torque and the estimated torque. While the integral of the two curves may have the same result,
the shapes may be very different. One may suggest that, in order to avoid this, do not use a
cyclical velocity trajectory to obtain the sensor information for the identification process.
However, it is the zero crossing data which is most critical to identify the aforementioned

parameters. Therefore, the example that was illustrated for the simple sine curves will be used
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for the more complex estimated and sensed torque curves. The expression can be simplified by

assuming #, is equal to 0. The penalty can be defined as:

o (m)% (m)i;-

1
P= Z I T, dt — I 7,dt (4-24)
i=0 A +2 4 +i%

The next task is to select a suitable value of n for the penalty. The torque sensor will have
some kind of sampling time associated with it. It is not truly a continuous function, but a series
of discrete values from the sensor. So if the sampling time is 1 ms then » would be a maximum
of the total time divided by the sampling times of the torque sensor; for instance for 6 seconds of
excitation, there would be 6000 pieces of information available. In the lower range, it is
important to keep in mind that a larger value of n gives more information about the shape of the
curve. The best way to determine a suitable value is to conduct some simulations and find what

value of n provides enough information to obtain good results for the solution.

4.7 Implementation of GA for Parameter Identification

In Chapter 3, the necessary components of a GA are the fitness function, the crossover
method and the mutation method. For this identification method, the crossover and mutation
method used are from Equation (3-2) and Equation (3-4), respectively. The fitness function is
inversely proportional to the square of the penalty function defined in Equation (4-24), i.e., the
lower the penalty, the higher the fitness.

To implement the GA, a set of data must be collected which includes information of the
joint position, joint velocity and the joint torque sensor. In the simulation, this will be
accomplished by solving the necessary differential equations. In the experiment, this
information will come directly from the sensors. Once the data is collected, the GA can be run
and the optimal solution is found. Having found the set of parameters which best suit the system
model, the simulation or experiment is run again to see whether or not the parameters estimated

by the GA reduce the tracking error.
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Chapter 5

Simulations

In order to evaluate the effectiveness of the proposed method, a series of simulations have
been devised. The simulations serve several necessary functions; first the GA requires extensive
tuning to find a good number of generations, population, crossover method or mutation rate that
provides an accurate solution to the problem. A simulation is better suited to this task than an
experiment because it is less time consuming, less expensive, and easier to control various
parameters that may interfere with the method, such as sensor accuracy. Another benefit of the
simulation is that the parameters that the GA is identifying can be set by the user and are thus
exactly known. Once the method has been optimized, it can then be performed on a real system,

which is the ultimate goal.

5.1 Simulation Layout

The simulation is written in the scripting language of MATLAB and uses Simulink. There
is an initialization program in MATLAB that initializes the variables used in the simulation.
Parameters such as the rotor inertia, the link size and mass are defined. Once the initial
parameters are defined, Simulink is used to simulate the plant dynamics from equation (4-2).
The values for the position and velocity of the joint are obtained through the integration of the
plant equation. The simulated sensor information is written to a file while the simulation is
running. Upon the completion of the simulation, the GA is run, which is also programmed as a
MATLAB script file.

5.1.1.1 Simulation Trajectory
The following trajectories shown in Figure 5-1 and Figure 5-2 were chosen for two reasons.

First, the position and velocity both begin at zero, so there is no jump, but rather a smooth
transition from the initial position. Secondly, the velocity trajectory contains many zero crossing

points. These crossing points are important because this is where the friction discontinuity
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occurs and, thus, is the most difficult to compensate. The largest tracking error due to the
friction in both position and velocity should occur in this region. It is desirable to have zero
velocity crossings from both the positive and negative directions. However, it is also important
not to collect too much data from a single region, whether it be high speed or low speed, because
this will give too much weight in the fitness function to that one parameter which is dominant in
that region. The position and velocity trajectories are shown in Figure 5-1 and Figure 5-2 -

respectively and are given by the following:

g, =sin(t)-0.5 sin(2t), ¢, = cos(t)- cos(2r) (5-1)
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Figure 5-1: Position trajectory Figure 5-2: Velocity trajectory

5.2 Simulink Program

The simulations were carried out in Simulink. The Simulink blocks are shown in Figure 5-3.
The Simulink program first reads the estimated parameters from an ASCII text file. These
estimated parameters are used in the control law. The control law produces the required torque
in order to achieve the desired trajectory. The control law has been introduced in Section 4.3.
Equation (4-4) is integrated in order to solve for the velocity and position of the joint.
A fixed step numerical solver is used to solve the plant equation with a time step of 1 ms. Once
the dynamics have been calculated, a term for the torque sensor must be generated. In the
physical system the torque signal would come directly from a sensor, but in this case it is
necessary to estimate it numerically as seen in equation (4-3). In order to make the simulation
more realistic, some sensor noise is added to the signal. The sensor noise is generated based on

the harmonic drive dynamics derived by Taghirad and Belanger [23]. The motor velocity
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determines the frequency of the oscillation and the sensor characteristics given by the
manufacturer of a torque sensor indicate the magnitude of the ripple is 0.4% of the full scale

value of the rated torque for the harmonic drive.
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Figure 5-3: Simulink program
5.3 GA Characteristics Selection

Selecting the GA characteristics, i.e., population size, crossover rate, mutation rate,
maximum generation etc. is generally one of trial and error. While the literature can give some
ideas, generally these parameters are very problem specific. In order to evaluate whether or not
the selection of such parameters is suitable or not, there have to be some design constraints
introduced. The overall goal is to reduce the tracking error. The control scheme takes care of
the stability but requires parameter estimates to perform optimally. In order to test what is the
best combination of population size and how many generations to search through, several test

cases were considered.
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5.3.1 Test Case 1: _
The first test case considers a single trial of each population size and generation size. The

resultant solution is plotted against a random estimate of the parameters. This may be considered
to be the first time the joint is activated and there is no knowledge of any parameter. The GA is
then executed and the updated parameter can be expected to enhance the tracking. Figure 5-4 and
Figure 5-5 show the results of the GA estimation vs. a random estimation. When looking at the
tracking error, two factors should be considered a) the mean distance from zero and b) the peak

value of the error.

x10° Time vs. Position emor x10° Time vs. Position error

i

\

i
i
A
H
)
i

position error (rad)

position error (rad)
o

p— — \
First parameter estimation = —=First parameter estimation

L—— GA estimation

2 — GA estimation 4 2
3Cl 1 2 3 4 5 4‘: 7 30 1 2 3 4 5 6 7
time (sec) time (sec)
Figure 5-4: Response for 20 population over Figure 5-5: Response for 200 population
100 generations over 100 generations

Two observations can be made from these results. Firstly, the GA does better than a random
guess. Even with a small number of solutions explored i.e., a population of 20 over 100
generations or about 2000 solutions, the tracking response is much better. Another expected
result is that by exploring the search space with more population over the same number of
generations, the result obtained is improved. The next task is to establish an optimal number of

population and generations to search to find an adequate estimation of the parameters.

5.3.2 Test Case 2:
For this test case the following situation is considered; the parameters have been identified

after an initial run of the experiment. Now it is desirable to improve on the performance which
could degrade due to temperature effects or physical wear. In order to understand how the
parameters are affected by error, an example will be given as to the effect of parameter

estimation, as shown in Figure 5-6 to Figure 5-11.
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A good estimate of the parameters, i.e., parameters randomly selected to within + 5% of
their actual value is compared with the results of 10 trails of the GA results averaged out. The
purpose of this test case is to see if the GA is able to achieve better tracking than the randomlyv
selected variables within the + 5% range. If the GA is able to achieve such results in the

- simulation, then it is a promising candidate for the experimental test. Rather than comparing the
value of each parameter directly, it is better to view the performance. If a single parameter is

poorly estimated, it could only affect a small region of the tracking error.

5.4 Simulation Results

Figure 5-12 to Figure 5-17 show the results of a population of 20 over various numbers of
generations. In the case of the lower generations, it is clear that the GA does not find an
adequate solution. The solutions improve as the number of generations increase, but between
1000 and 1500 generations, the solution does is no longer improving, this suggests that the GA

needs to begin the search with more initial solutions. -

Table 5-1: GA properties for test case 2 - 1

Population size Maximum P maxs Pe,min Py maxs Pm,min Trials
generations
20 20-1500 0.95, 0.80 0.08, 0.03 10
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Figure 5-12: Response for 20 population Figure 5-13: Response for 20 population
over 20 generations over 50 generations
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Figure 5-18 to Figure 5-23 show the results for a population of 50 over a number of different

generations.
Table 5-2: GA properties for test case 2 —2
Population size Maximum P maxs Pemin Py maxs Prm,min Trials
generations
50 20-1500 0.95, 0.80 0.08, 0.03 10
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For this scenario, the GA once again shows improvement as more generations are used to
explore the search space. The solutions still do not fall within the 5% that is desirable for the
simulations. Therefore, more space should be explored.

Figure 5-24 to Figure 5-29 show the results of a population of 100 over a number of
different generations.

Table 5-3: GA properties for test case 2 - 3

Population size Maximum P maxs Pe.min Primaxs Prm,min Trials
generations
100 20-1500 0.95, 0.80 0.08, 0.03 10
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Figure 5-28: Response for 100 population Figure 5-29: Response for 100 population
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Once again, there is a general trend that as the number of generations increases, the overall
solution also increases. It is also notable that between 1000 generation and 1500 generations, the
solution is not improving a great deal. The solutions are almost within the desired bound but it
would seem prudent to search further still.

Figure 5-30 to Figure 5-35 show the results of a population of 200 over a number of

different generations.
Table 5-4: GA properties for test case 2 — 4

Population size Maximum P maxs Pe,min Py maxs Prmmin Trials
generations
200 20-1500 0.95, 0.80 0.08, 0.03 10

x10* Time vs. Position error x 10 Time vs. Position error
T T T T T T

—===5% emor = = =5% emor
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Figure 5-30: Response for 200 population Figure 5-31: Response for 200 population
over 20 generations over 50 generations
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Figure 5-34: Response for 200 population Figure 5-35: Response for 200 population
over 1000 generations over 1500 generations

The results show that as population increases and the number of generations increase, the
parameter estimation improves. The case of an initial population of 200 with 1500 generation
has the least amount of tracking error compared to all other cases. The estimated GA tracking
error shape also closely resembles the 5% error curve. This would indicate that all of the
parameters are being closely identified. In the instances where there is a large spike, it indicates
that at least one parameter has been poorly identified.

In all cases, the parameter that is most difficult to estimate is the static friction parameter.
This parameter’has the greatest effect on the performance at the zero crossing positions. An
explanation for the poor estimation of this parameter likely lies in the simulation of the torque
sensor. In order to simulate the torque sensor, the velocity signal has to be differentiated. In the

simulations, this should not be a problem, as one would expect the velocity signal not to be
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noisy, as it would in a real system. However, at very low velocities there some round-off errors
which cause the velocity to have small discontinuities. When differentiated, these amplify to
somewhat larger discontinuities. While this only occurs for a few milliseconds at the zero
| crossing, this is the range where the static friction is most dominant in the penalty function, so it

is most affected.

5.5 GA vs. Random Search

A GA is a type of random search algorithm. Generally compared to a totally random search,
one would expect the GA to be much more efficient. In this case, it was desirable to achieve a
heuristic solution that is within 5% of the actual solution. In order to compare the efficiency of
the GA to a random search algorithm, it is necessary to break the domain for each parameter up
into sections of 5%, then calculate the probability of finding each parameter within 5% of the
actual solution. For example, in the GA, the value for Coulomb friction coefficient was thought
to be in the domain [0,50] Nm. The value for the simulations was chosen to be 25 Nm.
Therefore, any solution in the range of [23.75, 26.25] would be considered as a good solution. If
the total domain for that parameter is broken down into sections of 5%, or in this case 2.5 Nm,
then there would be 20 possible solutions. This gives a random chance of 1 in 20 of finding a
.good solution. The other domains are similarly selected such that each has a 1 in 20 chance of

being within 5% of the heuristic solution. In order to find a heuristic solution randomly, the

6
probability would be (—1—-) ! =. The GA with a population of 200 and a maximum
20 6.4x10

generation of 1500 explored 3x10° solutions to find the heuristic solution. Therefore, the GA
has an order of magnitude of 2 advantage to find the solution. Clearly, this is more efficient than

a random search, which is consistently supported in the GA literature.
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Chapter 6

Experiment

In order to confirm the hypothesis, it is essential to conduct experiments on a physical plant.

The simulations suggest the parameter estimation algorithm will work, but experiments must be

done to verify this. The experiments should demonstrate how applicable this algorithm could be

to a practical setting and may even suggest a commercial viability.

6.1 Experimental Setup

As mentioned previously, the overall project is on a modular and reconfigurable robot. The

experiments conducted for this thesis will involve one joint module only. The joint has several

major components that will be outlined. The components will be divided into two major

categories, the joint hardware and the joint software and communication. The following sections

will give a brief description of each component.

6.1.1 Experimental Hardware

Motor: Moog brushless DC motor model BN-42-33EU-03. The motor has a peak torque of
8.82 Nm, a rated speed of 4710 RPM, a rated torque of 1.42 Nm and consumes a rated power
of 697W.

Gear: HD Systems harmonic drive CFS-32-100-2A-GR-1V-SP-A1228. The gear has a ratio
of 101:1, a rated torque of 137 Nm a max momentary torque of 647 Nm and a maximum
input speed of 4800 RPM.

Encoder: Torque Systems HS15-05/05-2000-0-04-T5-01. The encoder has a resoluﬁon
of up to 5000 counts per revolution. The input voltage is 5 to 26 volts DC with a frequency
of 500 KHz.

Power Supply: Sorenson model DCS 80-37E. The power supply is capable of a voltage of 0-
80, and amperage of 0-37. The input: 190-250 VAC, three phase, 14A typical, 47-63 Hz.
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e Joint Torque Sensor: Is composed of 4 full Wheatstone bridges. The strain gauges are from
Kyowa Electronic Instruments model KFG-1-120-D16-11. The gauges are 1mm long with a
resistance of 120Q. The gauges have an excitation of +/- 5V and can produces up to 20mV
output.

o Amplifier: Phoenix Systems, model PN5603007. Strain Gage amplifier supports strain
gages/load cells with resistances from 120 to 20,000 ohms. It includes 1000 V, 3-way
galvanic isolation between power supply, input, and output circuits. Module filters and
conditions signals to eliminate unwanted signal noise with DIP switch selectable cutoff
frequencies of 30 or 5000 Hz. Outputs are provided for voltage (0 to 10, +/-10, 0 to 5, or +/-5
V), and current loop (4 to 20 mA) operation.

e Link: The link is 50 cm long and 15 cm wide and 1.27 cm thick. The total mass of the link is
3.3 kg. The link is designed to carry a payload in order to create a torque signal to feedback

to the controller to test to see if the control law is effective.

6.2 Electrical Architecture

The overall electrical architecture is shown in Figure 6-1. The personal computer (PC) is
used to program the digital signal processor (DSP) board, which is a distributed controller. Once
the program is downloaded into the DSP board, it is capable of controlling the driver, which
drives the motor. The motor turns the gear head and produces two feedbacks, an encoder for
position and the torque sensor. The encoder is a digital signal and is sent to the driver. The
driver uses the position signal to calculate the velocity. These two pieces of information are fed
back to the DSP board via a Can bus which is a high speed communication network device. The
DSP also receives the analog signal from the amplifier which is necessary to boost the weak
torque signal into the +/-3V range that the DSP board needs to do the analog to digital
conversion. The DSP board now has the torque signal, the position and velocity signals and is

able to calculate how much torque to send to the driver.

6.2.1.1 Driver
The driver selected for this experimental setup is from Elmo Motion Control. The drive is a

Cello digital servo drive. The driver is capable of doing position, velocity and current control.
This unit was selected because the current loop is open, so it is possible to program a current

control law and implement it with this driver. The drive has a standard serial port, RS232 and a
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Controller Area Network (CAN) communication port available. For the purposes of

the MRR project, only the CAN communications are necessary.

6.2.1.2 DSP Board
The DSP board serves as a distributed controller. For the MRR project, there would

be a DSP board on each joint, which would be capable of controlling each joint in a
distributed manner. The DSP is responsible for controlling the joint in real-time. The
communication from the PC to the DSP board is carried out through the RS232 COM
port. Technosoft provides software that is capable of programming the control law which

is desired onto the DSP board. The software programming language is C.

6.2.2 CANOpen Protocol

In order to ensure timely control, it is necessary to have high speed communication
between the DSP board and the driver. This is accomplished by using the CAN bus and a
CANopen protocol. The CANopen protocol has one master, in this case the DSP board,
and any number of slave nodes. For the purposes of this experiment, the only slave node
needed is the motor drive. The overall communication architecture is shown in Figure
6-1. The CANopen bus speed can be set as high as 1 Mbps, for a single joint this speed is
not necessary. The speed that was used was 500 kbps. The limiting factor in determining
the speed at which the joint is commanded was determined by the driver. The driver is
designed to be a position control but had an option to keep the torque loop open. This
allows for a control law to be executed outside of the driver, which is desirable for the
research on the MRR. The drawback of this feature is that the drive only reads the CAN
bus torque commands in its processor idle loop. The processor idle loop is statistically
read every 1.5 ms. While it is possible to broadcast torque commands more frequently,
based on the bus speed, the DSP speed, it will not ensure that the drive will execute this
command. Therefore, the control law is set to send a command to the drive every 2 ms.

This is the shortest amount of time which guarantees a consistent execution.

49



‘ [
Amplifier TR -

Tl Encoder
Sensor

Joint

—> RS-232 (Offline) —»  Mechanical

—_— > :
CAN Bus P pryra Electrical

Figure 6-1: Electrical communication

50



6.3 Sensors

Two sensors are used in the experiment. There is the joint torque sensor, which has been
described in» section 2.2, and the position sensor, i.e., the incremental encoder. The incremental
encoder is used for two purposes. The first is to measure the position. This is procedure is fairly
straightforward. The encoder is electrically wired to the DSP and there is a subroutine on the
Technosoft DSP board that increments (or decrements depending on the direction of rotation) a
register as the motor shaft rotates. The torque sensor is an analog signal. In order for it to be
used in the control algorithm, it must be converted to a digital signal. The conversion from
analog to digital is also a subroutine supplied by the Technosoft DSP board. The board is
capable of converting sixteen different channels. Since this application requires only one
channel, the other 15 channels are used to over-sample the signal. Over-sampling the signal and
averaging the result dramatically reduces the analog to digital conversion (ADC) noise as seen in

Figure 6-2 and Figure 6-3.
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Figure 6-2: Unfiltered ADC signal Figure 6-3: Filtered ADC signal

6.3.1 Velocity Estimation
The control law requires the velocity of the joint to be known. A tachometer can be used to

directly measure the velocity, but there is not one available in this experimental setup. In order
to determine the velocity, the signal from the position encoder is differentiated at each time step.
At very low speeds this method can be inaccurate. The definition of very low speed depends on
the resolution of the encoder. When only a few pulses are being measured in each time step,
then partial increments of the encoder are lost and the result is a loss of accuracy in velocity

measurement.
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Liu et al. [12] proposed a method to estimate the velocity to overcome this problem. In the
proposed mefhod, if the encoder does not increment by a set number of pulses, or the time does
not change by a pre-determined amount, then the velocity will remain the same. The resulting
velocity is experimentally demonstrated to be more accurate than by direcﬂy computing the
velocity at each time step. The method also allows the tuning of the estimation parameters in
order to trade off the accuracy vs. the time delay. For this joint, it was found that the best
estimation of velocity occurred when the minimum number of pulses used to estimate the

velocity is set to 5 and the maximum amount of time used to estimate the velocity is 10 ms.

6.4 Experimental Joint

The experimental joint is shown in Figure 6-4. In this configuration, the link rotates in the
vertical plane. It is also designed so it can be rotated 90 degrees and the link can be planar. This
is part of the reconfigurable characteristics of the joint. The mass of the link is approximately 3
kg and can carry a weight of 100 N. The link was designed to be able to be easily removed and
reconfigured to two positions; the position shown in Figure 6-4 and a configuration where the
link is attached to the joint in the centre. The advantage of the first position is that weight added
to the end will give the maximum amount of torque on the joint. 'Attaching the link in the middle
would effectively cancel out the weight of the link, and allow the user to add the precise amount
of weight that is desired. Also, if the joint were to be configured in a planar mode, attaching the
link in the centre would cancel out torque created perpendicular to the axis of rotation. This
mode could be important if the bearing in the joint is not functioning properly. In all of the

experiments conducted for this work, the joint was configured exactly as seen in Figure 6-4.
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Figure>6-4:' Experi&eniéi Joint
6.5 Experimental Results

The experiments were carried out with the following position, velocity and acceleration

trajectories and are shown in Figure 6-5, Figure 6-6, and Figure 6-7, respectively. The chosen

amplitude, A, of the motion is selected to be: 4 =4".
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6.6 Experimental Effect of Friction Parameter Identification

As predicted by the simulations, poor parameter estimation adversely affects the
experimental results. The control system remains stable, but the position tracking error increases
when the parameters are poorly estimated. The control parameters are shown in Table 6-1. For
the folllowing experiments, the sensor characteristics gain and offset are assumed to be known,
and further discussions are included later. For this experiment, several different combinations of
friction parameters were compared. A combination of parameters found to have the best

tracking is considered to be the good estimates and for the sake of comparison, another set of
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parameters are selected to be the poor estimates, as listed in Table 6-2. The position tracking

error for each case is shown in Figure 6-8.

Table 6-1: Experimental Control Parameters

Control A k & P
Parameters

80 0.005 0.9 0.05

Table 6-2: Friction Parameters

Parameters Fc (Nm) Fs(Nm) Ft B (Nm- Gain Offset
: (szlradz) s/rad) (Nm)
Good 20 10 110 20 32 5.2
Estimates
Poor 10 40 300 50 32 5.2
Estimates
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Figure 6-8: Position tracking for good estimation vs. poor estimation.

6.7 Joint Torque Feedback Assisted Control

The motor command is supplemented by including the joint torque sensor signal. The joint

torque sensor measures the dynamic torque of the link without needing specific model
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parameters pertaining to the link, i.e., the mass, the inertia or the acceleration. In the case where
the trajectory is chosen such that gravity dominates, the sensor feedback greatly enhances the
. tracking control. The joint sensor feeds the signal back and cancels this force before it can cause

an error in the tracking control. The effect of adding this term to the control law is shown in the

position tracking error in Figure 6-9.
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Figure 6-9: Position tracking for torque sensor correction vs. no torque sensor.

6.8 Effect of Poor Joint Torque Sensor Estimation

The joint torque sensor contains two parameters, the sensor gain and the sensor offset that
can change over time. As these characteristics change, the performance of the joint is

compromised. The sensor measurement used in the controller is no longer accurate.

6.9 GA Ildentification of Joint Parameters

Consider the situation where the user is first setting up the joint. In order to tune the
controller to achieve stability, some simple experiments must be conducted. To implement the
controller it is necessary to input some parameters. The initial estimation of the parameters may

be based on experience with similar joints, or it may be based on values found in literature. For
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the purposes of this discussion, that initial estimate will be referred to as unidentified parameters.
Following the successful execution of an experiment, i.e., the experiment is carried out and the
tracking error does not diverge, the corresponding data can be analyzed By the GA and the
parémeters can be identified. The result of this procedure is shown in Figure 6-10. The values
for the initial estimate and the GA are shown in Table 6-3. This result suggests that the GA

identification method is an effective way to estimate the friction and sensor parameters for the
joint.
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Figure 6-10: Parameter estimates vs. GA estimates

In order to find a baseline comparison for the GA, a series of trial and error experiments
were conducted. In these experiments each parameter was varied individually and for each
variation an experiment was conducted. The goal of this procedure was to identify the set of
parameters with produced the least amount of position tracking error. The results of these

experiments is compared with the result of the GA identified parameters in Figure 6-11.
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Table 6-3: Friction Parameters

Parameters Fc (Nm) Fs(Nm) Ft B (Nm- Gain Offset.
(s¥rad®) s/rad) (Nm)
Initial 10 20 200 10 1 0
Estimates :
GA 25 3 94 19 1.3 25
Identified :
Estimates
0 10 Time vs. Joint Position Error
— GA Estimation
8l — — —Trial and error Estimation |-

joint position error (rad)
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Figure 6-11: GA estimates vs. trial and error estimates.
6.10Discussions

The genetic algorithm identification technique can be effective in identifying system
parameters. However, in order for the algorithm to be effective, appropriate data must be
collected. Clearly, the system dynamics must be excited. If the system is not excited

appropriately, then the model no longer accurately represents the system, and the identification
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process is no longer possible. A clear example of this is using a high speed trajectory; at high
speeds Stribeck friction is not present.

As experimental tests were done, some more subtle problems appeared while collecting
data, for example, the flexspline and wave generator influence on the joint velocity. While it
would be desirable for the joint to move at a steady velocity, this is impossible with a harmonic
drive. The continuous flexing of the flexspline causes a speed variation while the joint is in
motion. This torque ripple creates a velocity error, this error is fed back through the controller
and the controller increases and decreases the torque accordingly. The effect of this ripple can
be seen in Figure 6-12 and Figure 6-13. The resulting friction map is shown in Figure 6-14. The
GA is still able to find the best fit data which represents the system, despite the friction map

containing these ripples.
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Figure 6-14: Closed loop friction map

One problem that should be addressed is the initial estimation of the parameters. While the

control law suggests any estimation should be stable, i.e., the tracking error does not diverge, in
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reality of course this is not true. Physical limitations, such as motor saturation, will cause the
tracking error to diverge and limit the range over which the parameters can be estimated. In
order to get an initial estimate, users can use their experience or it may be possible to run the
joiht in an open loop configuration. Figure 6-15 and Figure 6-16 show the open loop torque and
open loop velocity, respectively. The effect of the torque ripple can still be seen in the figures,
but since the velocity error is not being fed-back to the controller, the resulting torque is much
smoother.. Figure 6-17 and Figure 6-18 show the maps for the command torque versus the
velocity and the command torque with the sensor subtracted plotted against the velocity,
respectively. Since the torque sensor measures the effect of the link, the map for the command
torque without the torque sensor vs. the velocity would be the best representation of the friction

in the system.
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This method is effective for getting the initial estimate but not very practical for updating the
parameters. Running the joint in an open loop manner is not desirable and may not even be
possible. It requires a great deal of trial and error to find the correct amount of torque to move
the joint in the desired fashion. Also, the joint moving in an uncontrolled fashion can be unsafe
and has the potential to damage the joint. Once a joint is integrated with control system, it

normally runs with closed-loop control only.
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Chapter 7

Conclusions and future work

The purpose of this thesis was to determine system parameters of a mechatronic joint via
GA. The identification of the system parameters is important to ensure stable, precise motion
control. A real coded GA technique was utilized to identify the friction parameters as well as the
joint torque sensor parameters. The effectiveness of the technique was demonstrated in a
laboratory experiment.

The real coded GA is a much more efficient way to explore the search space compared to a
binary coded GA or a random search. The real coded GA used a dynamic adaptive crossover
method to determine the probability of crossover. The SBX crossover method was used to
generate the children solutions. The fitness function for the GA was designed to have the ability
to trade off some of the accuracy in order to save computation time. This feature was found to
be useful when evaluating the GA over large time spans of data.

The key roll of the simulations was to develop the fitness function so that it would be
suitable for the parameter identification problem. The simulations were a fast and cost effective
way to evaluate the behaviour of the GA identification process. Once the fitness function was
developed, various parameters of the GA were experimented with to find the most optimal for
finding the friction and sensor parameters. The most notable parameters were the GA population
and the total number of generations. The simulations indicated that this GA would be capable of
identifying the system parameters within 5% of their actual values if the population and
generations were selected to be 100 and 1000, respectively. This information provided a starting
point for the experiments

The experimental part of this work was essential. Although the experiments are time
consuming and expensive, they demonstrate the practicality of this identification technique. The

joint was built and the control law was implemented. As predicted by the simulations, the
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presence of the joint torque sensor feeding back to assist the compensation technique reduced the
tracking error. The tracking error was also effected by the variation of the parameter estimates.
First, open loop experiments were conducted on the joint and the parameters were estimated.
Onc'e the parameters were used in the closed loop control, the tracking error was found to be
reduced. Running a joint in open loop configuration could be impossible, or impractical, even
dangerous, so it was necessary to conduct the trial using information from a closed loop test.
The closed loop data is not as clean because the torque ripples cause the velocity signal to have a
ripple which feeds back to the controller as an error. Despite the noisy friction map, the GA is
able to identify the parameters and improve the tracking error. ‘

Part of the work of this thesis was laying the groundwork for future work. The first joint
module of the MRR is complete. The identification technique can be updated to include more
system parameters. It would be useful to try to use another friction model and develop a new
control law and use the parameter estimation technique to identify these other parameters. The
LeGru model uses 7 parameters, and the GA could be modified to include these other
parameters. While the model used in this thesis assumed the joint is rigid, in fact the flexspline
is flexible, which is how it is able to measure torque. Using a more accurate model to represent
the joint and implementing this model into the control law could improve the performance of the
joint. Of course a model of the joint would require further parameter estimations, such as the

spring constant of the flexspline. The GA could be used to identify this parameter as well.
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Appendix

MATLAB Script Files for Simulation

R R R R R R R R R R LR R TR R R 2 1

% Simulation of a single degree of freedom joint with friction
% and a link which is affected by gravity

AR A AR R R R e R R R T T 1]
clear

$Friction Values are from Friction_Values.txt, these are for time step %1
only

x=load_values; %Loads estimated friction values from a file which are
% estimated via the GA

Fs_hat=x(1):

Fc_hat=x(2);

Ft_hat=x(3);

B_hat=x(4);

Ts_Offset_hat=x(5);

Ts_Gain_hat=x(6);

¢Set the system parameters

TS_Offset=40;

TS_Gain=2.4;

Gear_Ratio=101;

Rotor_Inertia=.0002472;

Full Scale=650;

Ripple=0.009; % 0.9% ripple

Nonlinearity=0.0014; %0.14% non-linearity

sdnoise =0.5;

Length=0.5; %meters

Mass=3; %kg

Payload _mass=0;
Link_I=1/3*Mass*(1/2)*Length”2;%+Payload mass*Length;
Gravity=9.817;

sim single_dof_const_grav

R R R L L R R R R T e

% Integrates the torque signal. Calculates the join dynamics.
% Based on S-Function template. Input is the torque, the output is the %
velocity and position of the link.

R R R R R R R R R L R R R R R R A T T R R R R L
function [sys,x0,str,ts] = sfuntmpl (t,x,u, flag)

switch flag,

case O,
[sys,x0,str,ts]=mdlInitializeSizes;
case 1, ’
sys=mdlDerivatives(t,x,u);
case 2,
sys=mdlUpdate(t, x,u);
case 3,
sys=mdlOutputs(t,x,u);
case 4,
sys=mdlGetTimeOfNextVarHit (t, x,u);
case 9,
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sys=mdlTerminate (t,x,u);
otherwise
error(['Unhandled flag = ',num2str(flag)]);
end
%
%
% mdlInitializeSizes
$ Return the sizes, initial conditions, and sample times for the S-function.
% .
function [sys,x0,str,ts]=mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates = 2;
sizes.NumDiscStates 0;
sizes.NumOutputs 2; %position, velocity
sizes.NumInputs 1; %$command torque
sizes.DirFeedthrough 0;
sizes.NumSampleTimes 1; % at least one sample time is needed
sys = simsizes(sizes);

%

% initialize the initial conditions

%

x0 = [0 0];

%

% str is always an empty matrix

%

str = [];

%

$ initialize the array of sample .times
%

ts = [0 0];

% end mdlInitializeSizes

%

%

% mdlDerivatives

$ Return the derivatives for the continuous states.
%

%

function sys=mdlDerivatives(t,x,u)

Fc=.22;%Nm

Fs=.33; %Nm

B=.08; %Nm s/rad

Im=.0002472; % Rotor Inertia kg m"2

Ft=150; %$s”2/rad"2

Gear_Ratio=1;%101;

Length=.5; %meters

Mass=3; %kg

$Payload_mass=12;
Link_I=1/3*Mass*(1/2)*Length”2;%+Payload_mass*Length;
Gravity=cos(x(1l))*Length/2*Mass*9.817; '
Friction=(Fc+Fs*exp (-Ft*x(2)*x(2)))*sign(x(2));
Fg=0.05*sin (3*x(1)):
g2dot=(u-Friction-Fg-B*x (2)-Gravity)/ (Im*Gear_Ratio+Link_I);
sys(1)=x(2):

sys (2)=q2dot;

% end mdlDerivatives
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function sys=mdlUpdate(t,x,u)
sys=[1;
% end mdlUpdate

function sys=mdlOutputs (t,x,u)
X7

sys = X;

% end mdlOutputs

function sys=mdlGetTimeOfNextVarHit (t,x,u)

sampleTime = 1; % Example, set the next hit to be one second later.
sys = t + sampleTime;

% end mdlGetTimeOfNextVarHit

function sys=mdlTerminate (t,x,u)
sys = [];
% end mdlTerminate

$ noise function : gaussian distribution function

function [sys,x0,str,ts] = noise_func(t,x,u,flag,sd_sig)

$VDPM Example M-File S-function implementing the Van der Pol equation
2 See sfuntmpl.m for a general S-function template.

%

$ See also SFUNTMPL.

oo

Copyright 1990-2001 The MathWorks, Inc.
% SRevision: 1.19 $

switch flag,

22253253 %2%%%%%%%
% Initialization %
$32%%2%%%2%%%%%2%%%%
case 0
[sys,x0,str,ts] = mdlInitializeSizes(sd_sig);

225292233 %2%%%%
¢ Derivatives %
23%3%2%%%%%2%%%%
case 1,
sys = mdlDerivatives(t,x,u);

2228%%%%%%%
% Outputs %
2%2%2%%3%%%%
case 3,
sys = mdlOutputs(t,x,u,sd_sig);

2%%%2%2%%%%%%%
$ Terminate %
23%%%%%%%%%%%
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case 9
sys = []; % do nothing

end
%

%
$ mdlInitializeSizes

% Return the sizes, initial conditions, and sample times for the S-function.
%
%
function [sys, x0,str,ts] = mdlInitializeSizes(sd_sig)

sizes = simsizes;
sizes.NumContStates = 0;

sizes.NumDiscStates = 0;
sizes.NumOutputs = 1;
sizes.NumInputs = 0;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0 = [];

str = [];

ts = [0 0]; % continuous sample time: [period, offset]

%¢end mdlInitializeSizes
%
% mdlDerivatives
%
function sys = mdlDerivatives(t,x,u)
$end mdlDerivatives

function sys = mdlOutputs(t,x,u,sd_sig)
% sd_sig: standard deviation

theta = 8*atan(1.0)*rand(1l);

temp = -1;
while (temp<=0) temp = l-rand(1l):;
end

r = sqrt(-2*log(temp));
sys=sd_sig*r*cos (theta);

$end mdlOutputs

MATLAB Script Files for genetic algorithm

PP 3238320922392 238%020%00 029322289222 0222 93333333 38333%333%%3%%
$This function is designed to use the information collected by either %the
simulation or experimental sensors and use it to estimate the %parameters.
It calls the GA as well as plots the frictional maps

P3390 22%222222%922%922%%290%2992289%23 0233333833 3%3333%3333%%
num_trials=3; $%$Set the number of trials to be averaged

totalpop=[10]; %a vector of the number of populations

totalmaxgen = [20]; %a vector of the number of maximum generations

for u=l:size(totalpop,2) '
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popsize=totalpop (u)
for r=1:size(totalmaxgen,2)
maxgen=totalmaxgen (r)
for m=l:num _trials
close all
3=0;
figure(1l);
plot (Velocity, Torque, 'k');
$Evaluate the GA and estimate the parameters
tic
%to see a graph or check the fitness, comment out the GA call and
substitute the parameters directly
[Parameter_Values] = multi_parameter_real grav(Velocity,Position,
Sensed_Torque, Torque, time, popsize, maxgen,mutation_rate);
$Parameter_Values=[Fc Fs Ft B Offset Gain]
toc
j=0;
Friction=f_model(Parameter_Values,Velocity,Position, Torque
,time);
hold on;
plot (Velocity, (Torque-Sensed_Torque), 'g')
plot (Velocity, Friction, 'r');
legend('Command Torque', 'TC-TS','F'):;
xlabel ('Vel (rad/s)'):
ylabel ('Torque (Nm)');
Estimated_Torque=integral_ friction_model_grav(Parameter_Values, Ve
locity,Position, Torque ,time);

% Plot the results to compare how accurate the GA is
Ts_Int=TS_Integral (Sensed_Torque, time);
Tc_Int=TS_Integral (Torque, time);
figure(2);
plot(time,Ts_Int);
hold on;
plot(time,Estimated Torque,'r');

x=obj_func_grav(Parameter_ Values,Velocity,Position, Sensed_Torque,
Torque, time)

for k=1:6,
if m>1
avg_values(m,k)=avg_values(m—1,k)+Parameter_Values(k);
else
avg_values(m,k)=Parameter_Values(k);
end
end
end
for k=1:6

parm_avg(k)=avg_values(m,k)/m;
total parm_avg(u,r,k)=parm avg(k);

end
parm_avg
$total_parm_avg(u,r)=parm_avg;
end
end

2%%%3925%%%%32%%2222%9%9%%9922222%332222%%%%028%%3033%33%%%%

$ Genetic Algorithm
$ Inputs are: velocity, position, command torque, sensed torque time,
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$ population size, and the maximum generations. .
% Ouputs are: The estimated parameter values
3392922922923 22322322322322222222%28922323333333323%2%%%%%%

function [Parameter_ Outputs] = multi_parameter_grav(Velocity,Position,
Sensed_Torque, Torque, Time, popsize, maxgen)

2%%%%%%%%%%%%%%%%%%Parameter Definition%%%%%%%%3332333%333%%

NParm=6; %convention of N* is "Number of" ie NParm = Number of Parameters

$2%%%%%9%%%%%%%%%%Population Definition®%%%2%%22%333%3%3%8%%%

gm————————-- Crossover parameter-----—-—-—--—==--—-——————————o——oooo—o——
neta=4;

Grm————————e Mutuation Parameters (non-uniform)-----------—--ccco————-—
mutation_rate=.03; '

B=2;

Vmin=0.7;

Vmax=0.95;

Prob_cross(1)=0.80;
Prob_cross(2)=0.9;
Prob_mut (1)=0.03;
Prob_mut (2)=0.15;

322322232253 2922%%%%%%%%%%501ution%38%%39232%%%223383333%%%%

Total_Scale=0;
Parm_Scale(1,1)=0;%Coloumb
Parm_Scale(1,2)=50;
Parm_Scale(Z,1)=0;%Static
Parm_Scale(2,2)=40;
Parm_Scale(3,1)=0; %stribeck
Parm_Scale(3,2)=200;
Parm_Scale(4,1)=0;%viscous
Parm_Scale(4,2)=40;
Parm_Scale(5,1)=-30;%Sensor Offset
Parm_Scale(5,2)=30;
Parm_Scale(6,1)=.1;%Sensor Gain
Parm_Scale(6,2)=5;
for i=1:NParm
Max_Parm(i)=Parm Scale(i,2);
end
22332222285 2222399229%%9%99%%%%3Initialized3%%28%%%%%23833333333333%%
2232223322552 2232%2%%%%%%9%%%%Population?d%22223%%9%22222333%3%%%%%%
pop.sumfitness=0; :
gen=1;
for i=l:popsize,
pop (i) .fitness=0;
for m=1:NParm
pop (i) .chrom(m)=Parm_Scale (m,1)+rand* (Parm_Scale (m,2)-
(Parm_Scale(m,1))):
end
pop(i).fitness=obj_func_grav(pop(i).chrom,Velocity,Position,
Sensed_Torque, Torque, Time);

fitness(i)=pop (i) .fitness;
pop (1) .sumfitness=pop(i).fitness+pop (1) .sumfitness;
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end
avg(gen)=pop (1) .sumfitness/popsize;
pop(2) .sumfitness=0;
for i=l:popsize, %normalize fitness
pop (i) .fitness=(1l-pop(i).fitness/pop(l).sumfitness)*pop(l).sumfitness;
fitness(i)=pop(i).fitness;
if (i==1)
Most_Fit(gen)=pop(i).fitness;
Global Fit=pop(i).fitness;
Global Max=pop (i) .chrom;
else
if (pop(i).fitness>Most_Fit(gen))
Most_Fit(gen)=pop(i).fitness;
Most_Chrom(gen, 1:NParm)=pop (i) .chrom;
end
end
pop (2) .sumfitness=pop(2) .sumfitness+pop(i).fitness;

end
total_relfit=0;
for i=l:popsize
rel fitness(gen,i)=pop(i).fitness/pop(2).sumfitness;
end
$%%%%%%%%%%%%%Generation Iteration%%%%%%33%%3%333%%33%%
j=1;
while (gen<maxgen),
gen=gen+1l
%avg(gen)=sumfitness/popsize;
¢Determine Probability of Mutation and Crossover Based on Genetic
Diversity
Gdm= (pop (1) .sumfitness-Most_Fit (gen-1))/(avg(gen-1));
gdmmm (gen) =Gdm;
newpop (1) .sumfitness=0;
newpop (2) .sumfitness=0;
[Pc Pm] = nonuniform(Prob_cross, Prob_mut, Vmin, Vmax, Gdm);
$39%2%%%%2%%Roulette Wheel Selection$%%%%%%%%%%%%3%%%5%%%5%%%
for i=1:2 :popsize,
matel=select (popsize, pop(2).sumfitness, pop):
mate2=select (popsize, pop(2).sumfitness, pop):
mates(gen, i)=pop(matel).fitness;
mates (gen, i+l)=pop(mate2).fitness;
22%%9%22%%22%%%32%%Crossoversesseee29%2299%%23%%233%9%38%%%%%%
% Crossover each parameter of the selected mates.
if (flip(Pc)==1)
for n=1:NParm
[newpop (i) .chrom(n) newpop(i+l).chrom(n)]=
dynamic_adaptation_crossover (min(pop (matel).chrom(n), pop(mate2).chrom(n)),
max (pop (matel) .chrom(n), pop(mate2).chrom(n)),neta,Max_Parm,n);
end
else
newpop (i) .chrom=pop (i) .chrom;
newpop (i+1) .chrom=pop (i+1) .chrom;
end
end

for i=l:popsize,
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FF22222922322222%99%%2338Mutation®ese222399982283393%33%%%
Aif (flip(Pm)==1)

newpop (i) .chrom=mutate_real (newpop (i) .chrom,Parm_ Scale,gen,maxgen -
,B,NParm) ;

end

335322292229 %322%%2%3%%33Fitnesst 83398339823 9%%3%%%%9%%%

newpop (i) . fitness=obj_func_grav(newpop (i) .chrom,Velocity,Position, Sense
d_Torque, Torque, Time);

fitness(i)=newpop(i).fitness;

newpop (1) . sumfitness=newpop (1) .sumfitness+newpop (i) .fitness;

end
avg (gen)=newpop (1) .sumfitness/popsize;

$%%%%%%%%3%%%%%Normalize the Fitness%%%%%%%%%%33%%%%%%%%
for i=l:popsize

newpop (i) .fitness=(1-

newpop (i) .fitness/newpop (1) .sumfitness) *newpop (1) .sumfitness;

end

newpop (2) .sumfitness=newpop (2) .sumfitness+newpop (i) .fitness;

$%%%%%%%%%%Find the Best Fit for this Generation%%%%%%%%%%%%
if (i==1)
Most_Fit(gen)=(newpop(i).fitness);
Most_Chrom(gen,1:NParm)=newpop(i).chrom;
else '
if newpop(i).fitness>Most_Fit(gen)
Most_Fit (gen)=newpop (i) .fitness;
Most_Chrom(gen, 1:NParm)=newpop (i) .chrom;
end
end

end
POp=newpop;

GA Finished

%

$2339%3%29%%%9%3%%%%%%%%3%3%3%Find Global Max%%%%%322%%229%%3%%333%3%3%3%3%%
for i=1l:maxgen

if i==
Global_Fit=obj_func_grav(Most_Chrom(i,1:NParm),Velocity,Position,

Sensed_Torque, Torque, Time);

Global Chrom=Most_Chrom(i,1l:NParm);
else

Fitness=obj_func_grav(Most_Chrom(i,1:NParm),Velocity,Position,

Sensed_Torque, Torque, Time) ;

end

if Fitness<Global_ Fit
Global_Fit=Fitness;
Global_ Chrom=Most_Chrom(i,1l:NParm);
end

end

for i=1:NParm,

Parameter_ Outputs(i) = Global_Chrom(i);
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e Write to File-------——-=----oomooeme e
save Friction_Values.txt Parameter Outputs -ascii
oo Plot Items-------—===--=--—-—--—o—eoooo—-

EE R R R R R R R R R AR R R L L AR R R LR R R A LA LR R R R L L AL 1 11 1]
% Selection algorithm. Probability of selection increases with high
¢ fitness
2222233335333 2%2 3222229032303 22 242998998922 %3%%
function [j] = select (popsize, sumfitness, pop)
partsum=0;
j=0;
random=rand*sumfitness;
for j=l:popsize,

partsum=partsum+pop (j) .fitness;

if (partsum>=random)

break;

end

end

3339322329525 %%333%322%%%3232%32%%2%22%22232%2%3238%32%%%%%%%
% Random selection of 1 or O
2322355255355 3%232%%%3%2%%2%%2%32%%2%3222%32%32%8358%8%%%%%
function [bool] = flip(probability)
a=rand;
if (probability==1)
bool=1;
elseif (probability<a)
bool=0;
else
bool=1;
end

2232293322235 3%%%32%%3322%3%2%%3222%%222%2%2%%922%%8%%%%%%%
% Dynamic Adaptation Crossover method
2222222922922 %2%%%%%%3%%3%%3%%33%33%22%2%22922%2222%%2%%%%%%%
function [x1, x2] = dynamic_adaptation_crossover (min, max, n, Scale,Parm)
u=rand;
if u<=0.5
Bg=(2*u)"(1/(n+1));
else
Bg=(1/(2*(1-u)))"(1/(n+l));
end

x1=abs (0.5* ( (1+Bqg) *min+ (1-Bqg) *max) ) ;
x2=abs (0.5* ( (1-Bqg) *min+ (1+Bq) *max) ) ;

if x1>Scale(Parm)
X1=Scale(Parm);

end

if x2>Scale(Parm)
xX2=Scale(Parm);

end

2922222829 222999822%%2%22228%%9%22%%%9%%22222%%%%%9%%%%%%%%%
% Real coded mutation algorithm
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$9%%%%229999999992999%93333322933399299999999933999%3333%93%%%

function "[new_value] = mutate real(chrom,Scale,gencount maxgen, B, NParm)

parameter= 1+floor (rand*NParm) ;

min=Scale (parameter,1);

max=Scale (parameter, 2);

p=(l-gencount/maxgen) *B*rand;

new_value=chrom;

if (round(rand)==1)
new_value(parameter)=abs((1—p)*chrom(parameter)+p*min);

else :

new_value(parameter)=abs((1-p)*chrom(parameter)+p*max);

end

if new_value(parameter)>max
new_value(parameter)=max/2;
end

3222223922838 %9952288%%%332%%2222292%28%%%99308%%3333%%%%%%

$ Integration of the system model
2999%%%%9%922999999999939%333222323222222929999999993%%%%%3%

function [Sensed_Value] = friction model_grav(friction_| parameters,qdot,q,
Torque, time) -

Fc= (friction_parameters (1)

)i
Fs= (friction_parameters(2));
Ft= (friction_parameters(3));
B= (friction_parameters(4));
Offset=(friction_parameters(5));
Gain= (friction_parameters(6));

$pshyical parameters
Im=0.0002472;
dt=time (2)-time(1);
Sensed_Value (1)=Torque(l);
$%%%%%Trapazoidal integration
for i=l:size(time,1),
if i>1 & (time(i)-time(i-1)<0.02)
Viscous=B* (q(i)-q(i-1));
Coloumb=Fc*dt;
Exponential=Fs* (exp (-abs (Ft*gdot (i) ~2))+exp (-abs (Ft*qdot (i-
1)72)))/2*dt;
Friction=Viscous+ (Coloumb+Exponential) *sign(gdot(i));
Dynamic=(101*101*Im)* (gdot (i)-gdot (i-1));
Input_Torque=(Torque (i)+Torque(i-1))/2*dt;
Int_Gain=Gain*dt;
Int_Offset=0ffset*dt;
Sensed | _Value (i)=(Input_Torque-Dynamic- -Friction);
Sensed Value(l)—(Sensed Value (i)+Int_Offset)/Gain;
Sensed Value(l) =Sensed Value(1)+Sensed Value (i-1):
else
dt=time (i+1l)-time(i);
Sensed Value(l)—Torque(l)*dt,
End

22352852393 523%22%22232232232232%2222809209292233333333%3%%%

% Objective function-
323233322522 22%3393222322%22282222322222223392228%%32333%3%%%
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function [sum] =
obj_func_grav(parameter_values,velocity,position,Torque_sensor,Torque, Time)
x=0;
TS=TS_Integral (Torque_sensor,Time);
model_value=integral_friction_model_grav(parameter_values,velocity,position,T
orque, Time);
x=(TS-model_value)."2;
sum=0;
for i=l:size(x,2)

sum=sum+x (i) ;
end

P22 2222%%9922222%2%999322222228 9333223383333 83%%%
% Non uniform crossover and mutation probability calculation
3235223592229 222%222299222922%32222 9223032393839 8333%
function [Pc, Pm] = nonuniform(Prob_cross, Prob_mut, Vmin, Vmax,gdm)
if (gdm<Vmin)

Pc=Prob_cross(2);

Pm=Prob_mut (1) ;
elseif (gdm>Vmax)

Pc=Prob_cross(1);

Pm=Prob_mut (2) ;
else

Pc=-( (Vmin-gdm) * (Prob_cross(2)-Prob_cross(1l))/(Vmin-Vmax)-Prob_cross(2));

Pm= (gdm-Vmin) * (Prob_mut (2) -Prob_mut (1) )/ (Vmax-Vmin)+Prob_mut (1) ;
end
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Simulink Block Diagrams for Simulation of 1 DOF Joint and Link with Torque Sensor and
Friction . '
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Real Time Control Algorithm

' " N

Download program to DSP

A

Initialize Global Variables
Enable CAN registers
Enable QEP registers

~ Enable ADC registers

y

A

Sample ADC on 15 channels

Has ADC been sampled
10 times?

Average the sensed torque values

A

Read encoder
Estimate velocity

A 4

Calculate instantaneous reference position and velocity
Calculate Control Gains
Calculate required torque
Convert to amps

y
Build the CAN message
Transmit the CAN message
Log data

Is experimental time

No

complete?

Exit real time operation

A

C Upload Data to PC )
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DSP Program C Code

/*****************************************************************

File name : can.c
Project : MRR Joint Prototype
Originator : M. Adamson, S. Abdul

Target Sys : MSK2812 board

Description :

C file for CAN demo modified to include ADC, QEP.

This application controls a single joint via current commands sent to an
elmo driver.

What to do? Set trajectory settings, compile, download and run the
application. Upload trace variables to see performance.

Status : OK

Last

Update : Nov 6, 2006

Include required header files:
LF281x_Regs.h : bit definitions of peripheral registers.

RegDef.h
can.h

gep.h : encoder

: definition of Global Peripheral Variables.
specific for the given example.

adc.h : analog to digital conversion

math.h : math functions

#include "..\LF2812_Regs.h"
#include "..\RegDef.h"
#include "math.h"

#include "can.h"

#include "gep.h"

#include "adc.h"

// Variables must be declared globally
i.e. download them to PC after program has run.

float

pos_error=0;

long Position=0;
int Transmit_Count=0;
int error_count=0;

float
float
float
float
float

Prev_Pos=0;
Velocity=0, Vel rad=0;
ref vel=0;

ref pos=0;

Prev_ref pos=0;

int strExMsg[4]:;

float
float
float
float
float
float
float

vel_error=0;
ref acc=0;
prev_vel=0;
Nom_Tau=0;

sumY1l=0, sumY2=0, sumY3=0, sumY4=

r=0; :
Start_Pos;.

int Step_Est=0;

float
float
float
float

NN

Vel Avg=0;
Torque_Sensor;
Nom_acc;

Gain, Offset;

in order to trace them or log them

0;
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float a_1;
float t 1,
//float Torque_filt; // Filtered Torque Value
float Up=0, Uu=0;
float Torque_Corr;// position dependent correction on sensor reading
float Error_Torque;
float time_s;
float Pos_Rad;
void main(void)
{
‘struct ECAN_REGS ECanaShadow;
/**x*x%x* Global variable and function initilization ******xkx¥x/
init_logger();
Transmit_Count=0;
error_count=0;
pos_error=0;
DemoQEP.eva_evb = 0;
DemoQEP.position = 0x0000;
DemoCAN.stop = O;
DemoADC.count_adc=0;
DemoADC.count_saved=0;
DemoADC.ADC_Avg=0;

//

/*************Initilize CAN variables***************************/

//

DemoCAN.bit_tim param = 0x000BOO7F; // 500Kbs
DemoCAN.op mode = 0; //Network Mode
DemoCAN.rx_format_id = 0x0000;
DemoCAN.rx_std_id =0XO04FF;
DemoCAN.rx_xtd_id = Ox1FFFFFFF;

DemoCAN. tx format_id = 0x0;

DemoCAN. tx_std_ld = 0x037F;

DemoCAN.tx_xtd_id = Ox1FFFFFFF;

DemoCAN.std accept_mask = 0x0; do not mask out any bits
DemoCAN.xtd_accept_mask = Ox1FFFFFFF;
DemoCAN.tx_data_len = 0x8;
DemoCAN.tx_data_val[0] = 0x1234;

DemoCAN.tx_data_val(l] = 0x5678;
DemoCAN.tx_data_val[2] = 0x9ABC;
DemoCAN.tx_data_val[3] = OxXDEFO0;

DemoCAN.data_len = 0x0;

DemoCAN.tx msg_rq = 0xl; //0x0 = do not send
DemoCAN.rx_msg_rq = 0x0;

DemoCAN.pos_count = 0;

DemoCAN.bitvalue=2;

/************** Configure CAN bits *****************/
// Enable CAN clock

EALLOW;

SysCtrlRegs.PCLKCR.bit.ECANENCLK=1;

EDIS;

// Configure CAN pins using GPIO regs here
EALLOW;
GpioMuxRegs.GPFMUX.bit.CANTXA GPIOF6
GpioMuxRegs.GPFMUX.bit .CANRXA_ . GPIOF7

1;
1;
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EDIS;

// Configure the eCAN RX and TX pins for eCAN transmissions
EALLOW;
ECanaShadow.CANTIOC.all = ECanaRegs.CANTIOC.all;
ECanaShadow.CANTIOC.bit.TXFUNC = 1;
ECanaRegs.CANTIOC.all = ECanaShadow.CANTIOC.all;

ECanaShadow.CANRIOC.all = ECanaRegs.CANRIOC.all;
ECanaShadow.CANRIOC.bit .RXFUNC = 1;
ECanaRegs.CANRIOC.all = ECanaShadow.CANRIOC.all;
EDIS;

EALLOW;
ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;
// select the operation mode
if (DemoCAN.op_mode == 0)
ECanaShadow.CANMC.bit.STM
(op_mode = 0)
else

0; // set the CAN Network Mode

ECanaShadow.CANMC.bit.STM
(op_mode = 1)
ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;

1; // set the Self Test Mode

ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;

ECanaShadow.CANMC.bit.DBO = 1; // configure data byte order as
0,1,2,..,7

ECanaShadow.CANMC.bit.ABO = 1; // set Auto Bus On bit

ECanaShadow.CANMC.bit.CCR = 1; // CPU requests write access to

Configuration Registers CANBTC
ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;
EDIS;
// Wait until the CPU has been granted permission to change the configuration
registers
do
{
DemoCAN.ret_val mon = (*callmon2812)(); // call monitor
ECanaShadow.CANES.all = ECanaRegs.CANES.all; .
} while (ECanaShadow.CANES.bit.CCE != 1 ); // Wait for CCE bit to be
set..
// Configure the eCAN timing paramenters and baud rate prescaler
EALLOW;
ECanaShadow.CANBTC.all = DemoCAN.bit_tim param;
ECanaRegs.CANBTC.all = ECanaShadow.CANBTC.all;
// CPU requests normal operation
ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;
ECanaShadow.CANMC.bit.CCR = 0 ; // Set CCR = 0 to disable the
write access to Configuration Registers
ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;
EDIS;
// Wait until the CPU no longer has permission to change the
// configuration registers
do
{
DemoCAN.ret_val_mon = (*callmon2812) (); // call monitor
ECanaShadow.CANES.all = ECanaRegs.CANES.all;
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} while(ECanaShadow.CANES.bit.CCE != 0 ); // Wait for CCE bit to be
cleared..

// clear transmission acknowledge bit for mailbox 5
ECanaRegs.CANTA.bit.TA5 = 1;

// clear receive message pending bit
ECanaRegs.CANRMP.bit.RMPO = 0;

ConfigRxMailBox () ;

/* : */
/*****************Initilize QEP settings******************************/
/* */
// configure shared pins as capture input pins

EALLOW;

GpioMuxRegs.GPAMUX.all = EVA_QEPENMSK; // EVA CAP/QEP pins

EDIS;

// Enable EVA clock
SysCtrlRegs.PCLKCR.bit.EVAENCLK=1;
// Setup Timer 2 Registers (EV A)

EvaRegs.GPTCONA.bit.T2TOADC = 0; // configure GPTCONA not to start
ADC on GPT2 Event

EvaRegs.T2PR = T2PR_INI; // initialize GPT2 timer period

EvaRegs.T2CNT = TxCNT_INI_ QEP; // reset GPT2 counter register

// set GPT2 configuration register v
EvaRegs.T2CON.all = TxCON_INI_QEP; // T2CON prepared to use for QEP,
x/1
// start timer 2
EvaRegs.T2CON.bit.TENABLE = 1; // Start GPT2 counter to
count QEP circuit pulses
// configure Capture Control Register CAPCONA

EvaRegs.CAPCON.bit.CAPQEPN = 3; // enable QEP in CAPCONA
register
/* */
/_****************Initialize ADC Settings***********************/
/* */

/*To transmit every 2ms, must account for delay of transmition*****/
/**147 microseconds 10 times=1.47ms + transmit time = approx. 2ms per current
message*/

DemoADC.timer period = 0X56B8; //147 micro seconds

DemoADC.n_samples = 8; // transmit time = (n_samples X
timer_ period)+transmit time
//******configure ADC to read Channel 6 on all samples (channel 6 has torque
sensor input)

DemoADC.ch_sell = 0x6666;
DemoADC.ch_sel2 = 0x6666;
DemoADC.ch_sel3 = 0x6666;
DemoADC.ch_seld = 0x6666;

DemoADC.max_ch = 15;
// Enable ADC clock
" EALLOW; :
SysCtrlRegs.PCLKCR.bit.ADCENCLK=1;
EDIS;
// Set HSPCLK to SYSCLKOUT = 150MHz
EALLOW;
SysCtrlRegs.HISPCP.all = 0; // HSPCLK = SYSCLKOUT / 1 .= 150MHz
EDIS;
AdcRegs.ADCTRL3.bit .ADCCLKPS = 3; // BADCCLK = HSPCLK/6
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AdcRegs .ADCTRL1.bit.CPS = 0; // ADCCLK = HSPCLK/6

// Power up the reference and bandgap circuits

AdcRegs .ADCTRL3.bit .ADCBGRFDN = 0x3; // Power up bandgap/reference
circuitry
DELAY_US (DELAY5000) ; // Delay before powering up rest of ADC
AdcRegs.ADCTRL3.bit .ADCPWDN = 1; // Power up rest of ADC
DELAY_US (DELAY20) ; // Delay after powering up ADC
// RAssign ADC Interrupt Service Routine
EALLOW; // This is needed to write to EALLOW protected registers

PieVectTable.ADCINT = &adc_isr;
EDIS; // This is needed to disable write to EALLOW protected registers
// Enable ADCINT in PIE
PieCtrlRegs.PIEIERl.bit.INTx6 = 1;
// Enable CPU Interrupt 1
IER |= M_INT1; //
Enable Global INT1
// Enable global Interrupts and higher priority real-time debug events:

EINT; // Enable Global interrupt INTM

ERTM; // Enable Global realtime interrupt DBGM
// set Maximum Conversion Channels Register

AdcRegs.MAXCONV.all =DemoADC.max_ch; // Setup the number of conv's
on SEQ1
// Select Cascaded mode

AdcRegs.ADCTRL1.bit.SEQ CASC = 1; // Cascaded mode

// Initialize ADC Input Channel Select Sequencing Control Register
AdcRegs.CHSELSEQl.all DemoADC.ch_sell; // Setup the 1st to 4th SEQ1

conv.
AdcRegs.CHSELSEQ2.all
conv.
AdcRegs.CHSELSEQ3.all
conv.
AdcRegs.CHSELSEQ4.all
conv.
AdcRegs.ADCTRL2.bit.EVA_SOC_SEQl = 1; // Enable EVASOC to start SEQl
AdcRegs.ADCTRL2.bit:INT_ENA_ SEQ1 1; // Enable SEQl interrupt (every

DemoADC.ch_sel2; // Setup the 5th to 8th SEQ1

al

DemoADC.ch_sel3; // Setup the 9th to 12th SEQ1

DemoADC.ch_seld4; // Setup the 13th to 16th SEQl

Il

EOS)
// Configure EVA
// Assumes EVA Clock is already enabled

EvaRegs.T1CMPR = 0x0080; // Setup Tl compare value

EvaRegs.T1PR = DemoADC.timer period; // Setup period register

EvaRegs.GPTCONA.bit.T1TOADC = 1; // Enable EVASOC in EVA

EvaRegs.T1CON.all = 0x1042; // Enable timer 1 compare (upcount mode)
/* */
//****Main Rouitne. Executes interrupt until Experiment is over****/
/* */

while (!DemoCAN.stop)

{ .

DemoCAN.ret_val _mon = (*callmon2812) ():

}

DINT;

EALLOW;

SysCtrlRegs.SCSR.bit .WDOVERRIDE =1; // Set WDOVERRIDE bit to allow the
Watchdog enable

SysCtrlRegs.WDCR = 0x000F; // Enable Watchdog and write incorrect WD
Check Bits
}
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//*******************************************************************

void SendMessage (void)
{

ECanaRegs.CANTRS.bit.TRS5 = 1; // enable transmission of the
mailbox 5

}

//*******************************************************************

void ReadMessage (void) //unused in this version. only needed for reading CAN
messages on DSP
{ /*
if (DemoCAN.rx_format_id == 0) // test reception mailbox format:
O=standard format, l=extended format
// read standard identifier
DemoCAN.rx_std_id = ((int)ECanaMboxes.MBOX0.MID.bit.MSGID_H) >>
2;
else
// read extended identifier
DemoCAN.rx_xtd_id = ECanaMboxes.MBOX0.MID.all & Ox1FFFFFFF;
// load data length
DemoCAN.rx_data_len = ECanaMboxes.MBOX0.MCF.bit.DLC;
if (DemoCAN.rx_data_len != 0) // test if data was transmitted
{
// convert bytes in words
DemoCAN.data_len = ( (DemoCAN.rx data_len + 1) >> 1) - 1;
// read received data
switch (DemoCAN.data_len)
{
case 3:
DemoCAN.rx data_val[3]
ECanaMboxes.MBOX0.MDRH.bit.HI_WORD;
case 2:
DemoCAN.rx data_val[2]
ECanaMboxes .MBOX0.MDRH.bit .LOW_WORD;
case 1:
DemoCAN.rx data_val[l]
ECanaMboxes .MBOX0.MDRL.bit.HI_WORD;
case 0:
DemoCAN.rx data_val([O0]
ECanaMboxes .MBOX0.MDRL.bit.LOW_WORD;
default: ;

}
DemoCAN.position=DemoCAN.rx_data_val[1l]//=/[DemoCAN.pos_count]=DemoCAN.
rx_data_valf{l];
DemoCAN.position//[DemoCAN.pos_count]=DemoCAN.position[DemoCAN.pos_coun
t]<<16;
DemoCAN.position[DemoCAN.pos_count]+=DemoCAN.rx_data_val([O0];
DemoCAN. timestamp [5]=ECanaMots.MOTSO0;
DemoCAN.pos_count+=1;
DemoCAN.position=DemoCAN.rx data_val[l];

// DemoCAN.position=DemoCAN.position<<16;
// DemoCAN.position+=DemoCAN.rx data.val[0];
// DemoCAN. timestamp=ECanaMots.MOTSO0;

//Position=DemoCAN.position;
// logger();

}*/

88



//***************************************************‘*********

void ConfigRxMailBox (void)
{
// configure reception mailbox0
ECanaRegs.CANME.bit.MEO = 0; // disable mailbox 0

if (DemoCAN.rx format_id == 0)
// reception mailbox format: O=standard format
{
// set local acceptance mask
- ECanalam.LAMO.bit.LAM H = DemoCAN.std_accept_mask;
// set standard identifier
ECanaMboxes.MBOX0.MID.bit.MSGID_H = DemoCAN.rx std id << 2;
ECanaMboxes.MBOX0.MID.bit.IDE = 0; // configure to Standard
Identifier
}
else
// reception mailbox format: l=extended format
{
// set local acceptance mask
ECanalam.LAMO.bit.LAM L = (int) (DemoCAN.xtd_accept_mask &

OXFFFF) ;

ECanalam.LAMO.bit.LAM H = (int) (DemoCAN.xtd accept_mask >> 16);

// set extended identifier

ECanaMboxes .MBOX0.MID.bit.MSGID L = (int) (DemoCAN.rx_xtd_id &
OxXFFFF) ;

ECanaMboxes.MBOX0.MID.bit.MSGID H-= (int) (DemoCAN.rx_xtd id >>
16);

ECanaMboxes .MBOX0.MID.bit.IDE = 1; // configure to Extended
Identifier

}

ECanaMbbxes.MBOXO.MID.bit.AME = 1; // enable the usage of the
acceptance mask

ECanaRegs.CANMD.bit.MDO = 1; // Config as receive mailbox
ECanaRegs.CANME.bit.MEO = 1; // enable mailbox 0

}

//***************************************************************

void ConfigTxMailBox (void)
{
// configure transmission mailbox5
ECanaRegs.CANME.bit.ME5 = 0; // disable mailbox 5
if (DemoCAN.tx_format_id == 0)
// transmission mailbox format: O=standard format
{
// set standard identifier
ECanaMboxes.MBOX5.MID.bit.MSGID_H = DemoCAN.tx_std_id << 2;
ECanaMboxes.MBOX5.MID.bit.IDE = 0; // configure to Standard
Identifier
}
else
// transmission mailbox format: l=extended format
{
// set extended identifier
ECanaMboxes.MBOX5.MID.bit.MSGID L = (int)DemoCAN.tx_xtd_id;
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ECanaMboxes .MBOX5.MID.bit.MSGID H = (int) (DemoCAN.tx_xtd_id >>
16);

ECanaMboxes.MBOX5.MID.bit.IDE = 1; // configure to Extended
Identifier :

}
ECanaRegs.CANME.bit.MES5 = 1; // enable mailbox 5

ECanaMboxes .MBOX5.MCF.bit.RTR = 0; // no remote frame requested
if (DemoCAN.tx data_len != 0) // test if data be transmitted

{
ECanaMboxes .MBOX5.MCF.bit.DLC = DemoCAN.tx_data_len;

// convert bytes in words
DemoCAN.data_len = ( (DemoCAN.tx_data_len + 1) >> 1) - 1;

// put data. for transmission
switch (DemoCAN.data_len)
{
case 3:
ECanaMboxes .MBOX5.MDRH.bit .HI_WORD =
DemoCAN.tx_data_val([3];
case 2:
ECanaMboxes.MBOX5.MDRH.bit.LOW_WORD =
DemoCAN.tx_data_val[2];
case 1:
ECanaMboxes.MBOX5.MDRL.bit.HI_WORD =
DemoCAN.tx_data_val([l];
case 0:
ECanaMboxes .MBOX5.MDRL.bit .LOW_WORD =
DemoCAN.tx_data_val[O0];
default: ;

}
}

/* */
/***Convert Torque to floating point and transmit over CAN bus*****¥*/
/* */

void TCommand(float TC)
{
Uint32 Bin=0;
float mantissa;
long temp[4];
float Tc_Dec;
int bin_flag;
int i;
long bin_power=0;
int sign_flag=0;
bin_flag=1;
//*******Convert floating point number to IEEE floating point format
(as required by Elmo) *****/ ’
if (TC<0)
{
sign_flag=1;
TC=TC*-1;
}
Tc_Dec=TC- ( (int) (TC));
if (TC==0) Bin=0;
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else

if (TC>=2)
for (i=1;i<4;i++)
{
if ( ( (int) (TC)/(int) (pow(2.,1)) ) >=1)
bin_power+=1;

}
else if (TCK<1)
for (i=0;i<8;i++)
if (Tc_Dec-pow(2.,-i)>=0) bin_flag=0;
else if (bin_flag) bin_power-=1;
mantissa=(TC) /pow(2.,bin_power);

if (mantissa>=1) mantissa-=1;

for (i=1;i<5;i++)
{
Bin=Bin<<1;
if (mantissa-pow(2.,-1i)>=0)
{
mantissa=mantissa-pow(2.0,-1i);
Bin+=1;
}
}
Bin=Bin<<19;
Bin=Bin+((127+bin_power)<<23);
if (sign_flag) Bin=Bin+2147483648;
}
temp[0]=Bin&0x000000FF;
temp[1]=(Bin&0x0000FF00)>>8;
temp[2]=(Bin&0x00FF0000)>>16;
temp [3]=(Bin&0xFF000000)>>24;

/********************Build the CAN message********************/

DemoCAN.tx data_val[0] = 0x4354; // 'T'=0x54, 'C'=0x43
DemoCAN.tx_data_val[l] = 0x8000; // tells Elmo driver to expect

floating point number in IEEE format

}

//
//
//

DemoCAN.tx data_val[2] = ((temp[1]<<8)+temp([0]);
DemoCAN.tx_data_val[3] = ((temp[3]<<8)+temp[2]);
ECanaRegs.CANTA.bit.TA5 = 1;// clear transmission acknowledge bit
ConfigTxMailBox(); // configure MailBox 5

SendMessage() ; //transmit message

while (ECanaRegs.CANTA.bit.TA5==0) {}

return;

" Timer 2 period interrupt service routine

interrupt void adc_isr(void)

{

float TC,K_P;

float lambda, a=0, abs_r=0;

float Fs_hat, Ft_hat, Fc_hat, B_hat;// Offset_hat, Gain_hat;
float Im;
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float Ku, eps;

float count_rad=3.14159/4000;

int sign_vel=0;

int Pos_Diff;

float Y1=0, Y¥Y2=0, ¥3=0, Y4=0;

// float nd([2],dd[2]; // filter coefficients

float Amplitude, Frequency;

int MAXCOUNT;

int Data_Log_Interval; .
float Start_Link; // starting position of link in degrees
float Cycles;

/****xxx%x  Trajectory Settings. Experiment Duration *******#ssi+/

MAXCOUNT=6000;

Start_Link=90;

Start_Link=Start_Link/180.*3.14159+0.6454;

Amplitude=20; //link in degrees

Amplitude=Amplitude*101*200/9; //convert link in degrees to motor in
counts

Amplitude=Amplitude/1.3; //repeating sine

Cycles=2; :

Frequency=2*Cycles*3.142/MARXCOUNT; // sampling time of Zms

Data_Log_Interval=MAXCOUNT/1500;

/***************** Control Gain Settings ********************/
K_P=.001
Ku=0.05
eps=0.9;
lambda=80;
/******************** Parameter Settings ********************/.
/* in terms of motor units */
Fc_hat=.18;
Ft_hat=.040;
Fs_hat=.1;
B hat=13/101/101;
Im=0.0002472;
Gain=1/0.3;
Offset=4;
[/**xxxxxxxx  Low pass filter for Torque Sensor Signal ******/
/* For experiments on filtered torque signal only */
/* nd[0]=.09091; //100Hz
nd[1]=.09091;
dd[1]=-.8182; *
nd[0]=.04762; //50Hz
nd[1]=.04762;
- dd[1])=-.9048; */

if (DemoADC.count_adc < DemoADC.n_samples) // if count_adc <
n_samples, new acquisition .
{ _
// read and store A/D conversion results
switch (DemoADC.max_ch)
{
case 15:
{
DemoADC.count_saved++;
DemoADC.ADC_Avg+= (AdcRegs.RESULT15>>4);
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case

}

case
{

}

case

{

}

case

{

}

case
{

}

case

{

}

case

14:

DemoADC.count_saved++;
DemoADC.ADC_Avg+=(AdcRegs.RESULT14>>4);

13:

DemoADC.count_saved++;
DemoADC.ADC_Avg+=(AdcRegs.RESULT13>>4);

12:

DemoADC.count_saved++;
DemoADC.ADC_Avg+=(AdcRegs.RESULT12>>4);

11:

DemoADC.count_saved++;
DemoADC.ADC_Avg+=(AdcRegs.RESULT11>>4);

10:

DemoADC.count_saved++;
DemoADC.ADC_Avg+=(AdcRegs.RESULT10>>4);

9:

DemoADC.count_saved++;
DemoADC.ADC_Avg+=(AdcRegs.RESULT9>>4) ;

8:

DemoADC.count_saved++;
DemoADC.ADC_Avg+=(AdcRegs.RESULT8>>4) ;

7:

DemoADC.count_saved++;
DemoADC.ADC_Avg+=(AdcRegs.RESULT7>>4) ;

6:

DemoADC.count_saved++;
DemoADC.ADC_Avg+=(AdcRegs.RESULT6>>4) ;

5:

DemoADC.count_saved++;
DemoADC.ADC_Avg+=(AdcRegs.RESULTS5>>4) ;

4:

DemoADC.count_saved++;
DemoADC.ADC_Avg+=(AdcRegs.RESULT4>>4) ;

3:
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DemoADC.count_saved++;
DemoADC.ADC_Avg+=(AdcRegs.RESULT3>>4) ;
}
case 2:

{

DemoADC.count_saved++;
DemoADC.ADC_Avg+=(AdcRegs.RESULT2>>4) ;

}
case 1:
{ .
DemoADC.count_saved++;
DemoADC.ADC_Avg+=(AdcRegs.RESULT1>>4) ;
-}
case 0:
{
DemoADC.count_saved++;
DemoADC.ADC_Avg+=(AdcRegs.RESULT0>>4) ;

}
default: ;

}

DemoADC.count_adc++; // increment counter of A/D made
conversions
}
else
{ /* */
/*********************** Control Law ***************************/
/* */

/********Calculate the reference trajectories****xFkkkdkkdkkkdkkkdrk/

/* Several reference trajectories are available. Uncomment the desired

trajectory for the experiment and comment the unused ones. Using a

reference velocity will improve the accuracy if an analytical solution

iS readily available.***********************/

ref pos=-Amplitude* (sin(Frequency*Transmit_Count)-
0.5*sin(2*Frequency*Transmit_Count));

// ref _vel=-500*Amplitude*Frequency* (cos (Frequency*Transmit_Count) -
cos (2*Frequency*Transmit_Count) ) *count_rad;
//Sigmoid

// ref pos=Amplitude/2*(1l-cos(3.14159* (2*Transmit_Count-
1)/(2* (MAXCOUNT-1))));
// ref_vel=count_rad*Amplitude/3.142*sin(3.14159* (2*Transmit_Count-
1)/(2* (MAXCOUNT-1)));
//Step .
/* if (Transmit_Count<200)
ref pos=0;
else
ref pos=1000;
ref vel=0; */

//*********************************************************//

//**Store varibles from previous step for reference velocity and

acceleartion***///
if (Transmit_Count>1) //used to generate the reference

acceleration
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prev_vel=ref vel;
else
prev_vel=0;
time_s=(float) (Transmit_Count)/1000.*2;

//Keep track of previous reference position for reference velocity if

trajectory is not known

if (Transmit_Count>0)

{
ref_vel=((ref_pos-Prev_ref_pos)/.002)*count_rad; //Use if
ref velocity is unknown
Prev_Pos=Position;
}
else
ref _vel=0;
Prev_ref pos = ref pos;
//Trapazoid trajectory

/* y1=20000; //in motor counts
y2=40000;
y3=60000;
timel=500;
time2=750;
time3=1250;
if (Transmit_Count<timel)

{

ref pos=yl*Transmit_Count*Transmit_Count/(timel*timel);
ref_vel=2*yl*Transmit_Count/timel*count_rad;

// ref_acc=2*yl/timel/timel;

}

if ((Transmit_Count>=timel)&& (Transmit_Count<=time2))

{

ref pos=(Transmit_Count-timel)/(time2- timel) * (y2-yl)+yl;
ref vel=2*(y2- yl)*count rad;

// ref_acc=0;

}
if (Transmit_Count>time2)
{
ref pos=-((y3-y2)*(time3-Transmit_Count)/(time3-
time2)* (time3-Transmit_Count)/(time3-time2))+y3;
ref vel=2*(y3-y2)*(time3-Transmit_Count)/(time3-
time2) *count_rad;

// ref acc=-2*(y3-y2)/(time3-time2)/(time3-time2);

*
/*****l*i*******************************************************/
/********* Obatain Position from encoder in counts********xkxdis/

if (Transmit_Count<1)

EvaRegs.T2CNT=0;
DemoQEP.position += (int) (EvaRegs.T2CNT);
EvaRegs.T2CNT=0;
Position=DemoQEP.position;

/*********** Torque sensor calculation**************************/
DemoADC.ADC_Avg=DemoADC.ADC_Avg/DemoADC.count_ saved;
DemoADC.Volts=DemoADC.ADC_Avg*3/4095;

Torque_Corr=0.2+0. 09*cos ( (float) (Position)*2*3.142/(8000.0*101.0)+Start

_Link);//position based torque correction
Torque_Sensor=( (DemoADC.Volts-1.5)/1.5); //217.34
Torque_Sensor=Torque_Sensor-Torque_Corr;
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Torque_Sensor=(217.34*Torque_Sensor-Offset) /Gain; //adjust for
offsets and gains (217.34 is the amplifier gain and represents max torque)
/*****Initialze varibles in the first step of the experiment***/
if (Transmit_Count<1)
{
Velocity=0;
Step_Est=0;
a_l=Torque_Sensor;
t_l=a_1;
}
/* Find the Reference Acceleration for the nominal torque value*/
if (Transmit_Count>1)
{
ref_acc=(ref_vel-prev_vel)/.002;
}
else ref_acc=0;

/************** Velocity Estimation routine****************/
if (Step_Est==0)
Start_Pos=Position;
Pos_Diff=Position-Start_Pos;
if ((Step_Est==2) || (abs(Pos_Diff)>3))
{
Velocity=Pos_Diff/(Step_Est*.002)*count_rad;
Step_Est=0;
}
else Step Est++;
/**Calculate velocity and position errors as well as mixed tracking
errors**/
vel error=(-ref_vel+Velocity);
pos_error=(-(ref_pos)+Position) *count_rad;
r=vel error+lambda*pos_error;
a=ref acc-2*lambda*vel_error-(lambda*lambda)*pos_error;
Pos Rad-(float)P051t10n*count rad;
//Find the sign of the veloc1ty signal
if (Velocity ==0)
sign_vel=0;
else if (Ve1001ty<0)
sign_vel=-1;
else
sign_vel=l;

/***************Calculate the nominal torque*****************/
Nom_Tau=Im*a+B_hat*Velocity+(Fc_hat+Fs_hat*exp(-
Ft hat*Ve1001ty*Veloc1ty))*31gn vel;
Nom_Tau=Nom_Tau/0.198; //convert from Nm to Amperes
[****xdkrxkrx*kk*Calculate Parametric Control Value*****x*krskkx/
Yl=Velocity:;
Y2=sign_vel;
Y3=exp (-Ft_hat*Velocity*Velocity)*sign_vel;
Y4=(-Fs_hat*Velocity*Velocity) *exp (-
Ft_hat*Velocity*Velocity)*sign_vel;
if (Transmit_Count>1)
{
sumY1l+=r*Y1*.002;
sumY2+=xr*Y2*.002;
sumY3+=xr*Y3*,002;
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sumY4+=r*Y4*.002;
}

else

{

sumY1=0;
sumY2=0;
sumY3=0;
sumY4=0;

}
Up=sumY1l*Y1;
Up+=sumY2*Y2;
Up+=sumY3*Y3;
Up+=sumY¥4*Y4;
Up=Up* (-K_P);
UP=Up/0.198;//Convert from Nm to Amps store in UP, the current
control input
/*************Calculate Robust COntrol Value******************/
if (r<0) abs_r=r*-1;
else abs_r=r;
if (abs_r>=eps)
Uu=-Ku*r/abs_r;
else
Uu=-Ku*r/eps;
Uu=Uu/0.198;// Convert from Nm to Amps
/**************Cacluate the Filtered Torque**********************
Torque_filt = nd[0]*Torque_Sensor+nd[l]*t_1-dd[1]*a_1;
a_l=Torque_filt;
t_1=Torque_Sensor; */
/************** Torque Calculation*****************************/
TC=Nom_Tau+Uu+UP+Torque_Sensor/(101*0.198);
/********* Saturation Bounds for Saftey ***********************/

if (TC>=8)
{
TC=8;
error_count++;
}
if (TC<=-8)
{
TC=-8;

error_count++;

}

if ((Transmit_Count>=MAXCOUNT) || (error_count>20))
TC=0;

DemoCAN.Torque_Command=TC*0.198*101;

Error_Torque=(Uu+UP+Nom;Tau)*.198*101;
/****************** Transmit Control Message **********************/

if (Transmit_Count>MAXCOUNT)

{
DemoADC.stop = 1; //
else, set stop index, last acquisition has been made

}

else

{
TCommand (TC) ;

Transmit_Count++;
if (Transmit_Count%Data_Log_Interval==0)
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logger(); .
/****Reset ADC variables for next iteration***/
DemoADC.count_adc=0;
DemoADC.count_saved=0;
DemoADC.ADC_Avg=0;
}
}

// Reinitialize for next ADC sequence

AdcRegs.ADCTRL2.bit.RST_SEQl = 1; // Reset  SEQ1
AdcRegs.ADC_ST_FLAG.bit.INT SEQ1 CLR = 1; // Clear INT SEQl bit
PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; // Acknowledge

interrupt to PIE
}
/*
Delay Function
There is a 18/19 cycle overhead and each loop takes 14 cycles.
The LoopCount is given by the following formula:

DELAY CPU_CYLES = 18 + 14*LoopCnt

LoopCnt = (DELAY_CPU_CYCLES - 18) / 14

*/

void Delay(unsigned long LoopCnt)
{

unsigned long i;

for (i = 0; i < LoopCnt; i++){}
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