
FAST AND EFFICIENT EDGE FUSING NETWORK ARCHITECTURES FOR ACCURATE SINGLE

IMAGE SUPER-RESOLUTION

by

Debjoy Chowdhury

Bachelor of Science, Chittagong University of Engineering and Technology, 2010

A thesis

presented to Ryerson University

in partial fulfillment of

the requirements for the degree of

Master of Applied Science

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2019

c© Debjoy Chowdhury, 2019

Author’s Declaration For Electronic Submission Of A Thesis

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

I understand that my thesis may be made electronically available to the public.

ii

FAST AND EFFICIENT EDGE FUSING NETWORK ARCHITECTURES FOR ACCURATE SINGLE

IMAGE SUPER-RESOLUTION

Debjoy Chowdhury

Master of Applied Science

Electrical and Computer Engineering

Ryerson University, 2019

Abstract

Recovering a High-Resolution (HR) image from a Low-Resolution (LR) image is the main concept of

image Super-Resolution (SR). Convolution Neural Networks (CNN) are becoming widely adopted

in many applications including generation of HR images from LR images. Although CNNs are

widely used with great performance improvements, there is still much room for improvement.

There has always been a trade-off between the number of parameters and performance enhance-

ment. This thesis presents a novel convolutional neural network architecture for high scale image

SR inspired by the DenseNet and ResNet architecture. In particular, modifications can be made

to the convolutional layers in the network: stacking the features and reusing the weight layers

to increase the receptive field. It is shown how this method can be used to expand the receptive

field and performance of super-resolution networks, without increasing the number of trainable

parameters and sacrificing the computation time. These modifications can easily be integrated into

any convolutional neural network to improve the accuracy by efficient high-level feature extraction

while reducing training time and parameter numbers. Proposed methods are especially effective

for the challenging high scale SR due to edge and texture recovery through the expanded network

receptive field. Experimental results show that the proposed model outperforms the state-of-the-art

methods.

iii

Acknowledgments

I would like to convey my gratitude to my supervisor, Dr. Androutsos for being the first to inspire

my interest in the field of Image Processing and Computer Vision, and for always encouraging me

to push for the best. Also, many thanks to my parents for their unwavering support throughout

both my academic and personal life.

iv

Contents

Declaration . ii

Abstract . iii

Acknowledgments . iv

List of Tables . vii

List of Figures. viii

1 Introduction 1

1.1 Problem Context . 1

1.2 Scope and Contributions of this Thesis . 3

1.3 Overview of this Thesis . 4

2 Related Work 5

2.1 Pre-Deep Learning Super-Resolution . 5

2.1.1 First Formulation . 5

2.1.2 Recursive Least Squares . 5

2.1.3 Interpolation Method . 6

2.1.4 Edge-Preserving Method . 6

2.1.5 Sparse Coding Method . 7

2.2 Convolutional Neural Networks . 8

2.2.1 Basics of Convolutional Neural Networks . 8

2.2.2 State-of-the-art Techniques in Convolutional Neural Networks 12

2.3 Deep Networks for Super-Resolution . 15

2.3.1 Primary CNNs for Super-Resolution . 15

v

2.3.2 Further Improved Deeper Networks . 16

2.4 Fast Super-Resolution Processing . 18

2.5 Recent Development for Super-Resolution . 22

2.6 Main Drawbacks of Previous Methods . 26

3 Technical Approach 28

3.1 Expansion of Receptive Field . 29

3.2 Theory of 1-D Convolution and Depth wise Separable Convolution 31

3.3 Design Space Exploration . 35

3.3.1 Recursive Residual blocks . 35

3.3.2 Shallow Multiplicative blocks for Attention . 36

3.3.3 Combined Network Architecture . 37

4 Experimental Results 40

4.1 Execution of Experiment . 40

4.1.1 Training Dataset . 40

4.1.2 Measurement Metrics . 41

4.1.3 Loss Function . 42

4.1.4 Implementation Details . 42

4.2 Litmus Test . 43

4.2.1 Experimenting Baseline with Recursions . 43

4.2.2 Experimenting EFNet with various Factors . 46

4.3 Comparison with the state-of-the-art Methods . 47

5 Conclusions 76

5.1 Brief History of Thesis . 76

5.2 Expansion of Work . 77

Bibliography 78

vi

List of Tables

4.1 Evaluation result on NTIRE validation benchmark set according to PSNR/SSIM with

various convolution schemes. 43

4.2 Evaluation result on NTIRE validation benchmark set according to PSNR/SSIM with

various recursions. 44

4.3 Evaluation result on NTIRE validation benchmark set according to PSNR/SSIM with

various kernel size. 45

4.4 Parameter number and Runtime result on NTIRE validation benchmark set with

various kernel size. 46

4.5 Evaluation result on NTIRE validation benchmark set according to PSNR/SSIM with

various kernel size. 47

4.6 Performance Evaluation on NTIRE validation set using all the 800 DIV2K training

images by the three different models. 48

4.7 Evaluation result on public benchmark set according to PSNR/SSIM. Red indicates

the best. 51

vii

List of Figures

1.1 Example of SISR . 2

2.1 Illustrating the basic idea behind interpolation based methods 7

2.2 Illustrating the process of performing SISR . 8

2.3 Illustrating the convolution operation. 9

2.4 Illustrating Activation Functions . 10

2.5 Illustrating The AlexNet architecture . 12

2.6 Illustrating The VGGNet architecture . 13

2.7 Illustrating Residual Block from ResNet . 14

2.8 Illustrating Dense Block from DenseNet . 15

2.9 Illustrating SRCNN architecture . 16

2.10 The VDSR architecture . 17

2.11 The DRCN architecture . 18

2.12 The FSRCNN architecture . 19

2.13 An illustration of sub-pixel convolution in ESCPN . 19

2.14 The Laplacian Super-Resolution Network (LapSRN) architecture 20

2.15 The framework of the DEGREE network for image SR 21

2.16 The framework of the Attention based approach . 22

2.17 The SRResNet architecture with GAN . 23

2.18 A recursive residual block used in the DRRN . 24

2.19 An illustration of SRDense Net . 24

2.20 An illustration of EDSR and MDSR . 25

2.21 Basic MemNet architecture . 26

2.22 The architecture of Residual Dense Network (RDN) 26

viii

3.1 Proposed baseline model . 29

3.2 Stacking multiple small convolution layer . 30

3.3 Receptive field explanation . 32

3.4 Convolution explanation by means of depth wise separable process 34

3.5 A basic Residual Block . 36

3.6 A basic multiplicative block . 37

3.7 Illustration of proposed EFNet architecture . 38

3.8 Illustration of proposed EFNet+ architecture . 39

4.1 Plot of Network Depth vs Parameters against some state-of-the-art and proposed

models on scale x2. 52

4.2 Plot of Network Depth vs Parameters against some state-of-the-art and proposed

models on scale x3. 53

4.3 Plot of Network Depth vs Parameters against some state-of-the-art and proposed

models on scale x4. 54

4.4 Plot of PSNR on Set14 dataset vs Network Parameters against some state-of-the-art

and proposed models on scale x2. 55

4.5 Plot of PSNR on Set14 dataset vs Network Parameters against some state-of-the-art

and proposed models on scale x3. 56

4.6 Plot of PSNR on Set14 dataset vs Network Parameters against some state-of-the-art

and proposed models on scale x4. 57

4.7 Plot of PSNR vs Network Runtime against some state-of-the-art and proposed models

on scale x2 on Set14 dataset. 58

4.8 Plot of PSNR vs Network Runtime against some state-of-the-art and proposed models

on scale x3 on Set14 dataset. 59

4.9 Plot of PSNR vs Network Runtime against some state-of-the-art and proposed models

on scale x4 on Set14 dataset. 60

4.10 Visual comparison of the EFNet+ architecture with others on scale x4. 61

4.11 Visual comparison of the EFNet+ architecture with others on scale x4. 62

4.12 Visual comparison of the EFNet+ architecture with others on scale x4. 63

ix

4.13 Visual comparison of the EFNet+ architecture with others on scale x4. 64

4.14 Visual comparison of the EFNet+ architecture with others on scale x4. 65

4.15 Visual comparison of the EFNet+ architecture with others on scale x4. 66

4.16 Visual comparison of the EFNet+ architecture with others on scale x4. 67

4.17 Visual comparison of the EFNet+ architecture with others on scale x4. 68

4.18 Visual comparison of the EFNet+ architecture with others on scale x4. 69

4.19 Visual comparison of the EFNet+ architecture with others on scale x4. 70

4.20 Visual comparison of the EFNet+ architecture with others on scale x4. 71

4.21 Visual comparison of the EFNet+ architecture with others on scale x3. 72

4.22 Visual comparison of the EFNet+ architecture with others on scale x3. 73

4.23 Visual comparison of the EFNet+ architecture with others on scale x3. 74

4.24 Visual comparison of the EFNet+ architecture with others on scale x3. 75

x

Chapter 1

Introduction

1.1 Problem Context

The total number of pixels or dots in an image represents the resolution of that image [1]. It is

represented as two dimensions of the image - Width and height. For instance, having the resolution

of 500×500 means the image has a width of 500 pixels and a height of 500 pixels. High Resolution

(HR) image is that which has a greater number of pixels compared to the Low Resolution (LR)

image which consists of fewer pixels. In the spatial domain, HR images contain more details

and visually clearer and are spectacular, and hence highly desirable to be used in many image

applications. In terms of frequency domain, HR images contain high frequency components and

details like edges, corners and contours. LR images lack those details and have smooth areas which

represents the low frequency components. Having more details improves the pictorial information

for human interpretation (i.e., aesthetics) and helps with representation for automatic machine

perception (i.e., computer vision) [1,2].

There are many types of image acquisition devices, which are capable to produce HR images.

However, this is not always possible due to the expense, availability or transportation of the devices.

Furthermore, HR is dependent on the intended use of the image. Image SR is categorized into two

- Single Image Super Resolution (SISR)and Multi Image Super Resolution (MISR) [2]. SISR aims

to recover a HR image from single LR version. MISR reconstructs the HR from multiple images.

This is an inverse problem focused on generating a HR image from a LR one. This problem is

highly ill-posed due to large number of unknown variables in HR image compared to LR. The main

problem lies in recovering high frequency details like edges, texture, blobs and contours, since they

are lost from the Ground Truth (GT) HR image by degradation, hardware limitation or data loss,

1

(a) (b) (c) (d)

Figure 1.1: Example of SISR. (a) The HR image with resolution 2040 × 1356. (b) LR image at ×2 scale. (c) LR image at ×4 scale (d)
LR image at ×8 scale.

especially with high upscaling factors. The term “scale” or “upscaling factor” commonly used in

SR is the ratio of HR pixels with corresponding LR. If the LR image has a size of 500×500 and

the HR image has a size of 2000×2000, then the SR scale is said to be ×4. This is illustrated

in Figure 1.1 where examples of the HR image and corresponding LR images at ×2, ×4, and ×8

scales are shown. As the upscaling factor goes higher, the more challenging the reconstruction

becomes because less data availability to recover the HR image from its counterpart LR image.

When downscaling an image by a factor of ×2, half of data are lost in the vertical direction and

half in the horizontal direction, and in total, four times the original data are lost to use for building

the HR image. In the same way, for the factor of×8 with only having 1
64

th of the data makes it much

more complicated and difficult to reconstruct higher frequency details. The motto of SISR process

is to increase the high frequency components and details as well as remove the degradation which

may be caused by the low-resolution hardware or while processing image for various purposes

such as image communication. While recovering the image with a high upscaling factors, many

fine image structures, details, and textures are often missing due to lack of sufficient input data.

Most of the state-of-the-art works in SISR can perform substantially high reconstruction accuracy

with lower scaling factors, however fails to achieve higher accuracy with higher factors. Currently,

researchers are moving more towards working on the higher scales such as ×4 and ×8 with more

complex architectures which will be discussed in Chapter 2.

Many different techniques were proposed in the last 35 years for SR started with Tsai and

Huang’s first work in 1984 [3]. In traditional approaches, SR requires multiple low-resolution im-

2

ages, prior knowledge and assumptions to recover the high-resolution image [4]. The problem lies

in an inadequate number of low-resolution images, ill-conditioned registration, unknown blurring,

and a non-unique solution. Several methods are being adopted to regularize the inversion of this

problem. Moreover, if the magnification factor is large, the SR algorithm decays rapidly. As a result,

the output is smoother and lacks important high frequency details, which is an inherent problem

with bicubic interpolation method. Edge and gradient based models recover sharpness. There

are also background/foreground descriptors, gradient profile prior and learning dictionary patch

pairs as the old fashioned approach [5, 6]. Recently, deep CNNs with the ability to learn complex

mappings in image transformation and high representational power, have become very popular

in SISR. Some techniques that were used to improve classification accuracy are also utilized for

increasing the SISR reconstruction accuracy by many researchers [7, 8, 9, 10, 11, 12]. The trend

has thus been towards constantly adapting the latest techniques from image classification and then

building deeper models with more layers and parameters. Peak Signal-to-Noise Ratio (PSNR) and

Structural Similarity index (SSIM) are used to measure the accuracy of the architecture.

Besides higher SR reconstruction accuracy, deeper models come with a few drawbacks. Firstly,

deeper layers need very large number of parameters, leading to a larger memory bandwidth

requirement. Recursion has been successfully used in past works [13, 14] to increase depth while

mitigating memory consumption. However, minimizing memory consumption as well as main-

taining state-of-the-art accuracy needs a higher number of recursions and hence many layers.

Using such many layers leads to sacrifice of speed for accuracy, even with the minimal memory

consumption. Secondly, training the network is much more complex due to both the large number

of parameters and layers. Finally, it requires careful design of the learning rate schedule and

gradient clipping [13,14,15].

1.2 Scope and Contributions of this Thesis

In this thesis, a new direction and discussion is unveiled to increase the receptive field of SR

networks without increasing the network depth or parameter count, to have a more efficient use

of parameters while focusing on the more challenging high upscaling factors. In particular, three

3

different methods are proposed to expand the receptive field with better edge and texture map:

• Reusing residual blocks, motivated by the DenseNet [12]

• Masking (pointwise multiplication of feature vectors) of an independent parallel net with the

residual block, inspired by Channel Attention Net [16]

• Finally, infusing Sobel, Laplacian edges to the input features

By reusing the weights, the receptive field is expanded without increasing the parameters

and with masking and including the edge maps, the high-level features are preserved. All those

techniques can be applied to SR networks to increase reconstruction accuracy while maintaining

the optimal layers and parameter count, and without major sacrifices in speed unlike some current

state-of-the-art methods. Several different convolution arrangement schemes are also explored to

find the best match. Proposed Edge Fusing Network (EFNet) achieves state-of-the-art accuracy in

terms of PSNR and SSIM and is easy to train by using low memory.

1.3 Overview of this Thesis

The content of this thesis is structured as follows: Chapter 2 reviews the main developments

in SR from a deep learning and computer vision perspective related to the proposed methods.

Chapter 3 describes the proposed model explorations and methodology in detail. In Chapter 4,

implementation details and experimental results on benchmark SISR image data sets are presented.

Conclusion and future research are discussed in Chapter 5.

4

Chapter 2

Related Work

In this section, the history of SR research is discussed, started with the pre-deep learning era in

section 2.1. This part includes the old works done for image SR like interpolation and sparse

coding-based methods. Section 2.2 discusses the background of CNNs and the networks used to

predict results in the computer vision field. Section 2.3 analyzes the state-of-the-art methods using

deep learning to super resolve the images and their SWOT (strength, weakness, opportunity and

threat) investigation.

2.1 Pre-Deep Learning Super-Resolution

2.1.1 First Formulation

Tsai et al. first introduced the problem to obtain the original image from its down sampled LR

version in 1984 [3]. They used the dataset from Landsat satellites. They developed the equation in

their model based on frequency domain representation of the image considering the shift property

of Fourier Transform.

2.1.2 Recursive Least Squares

Kim et al. modified the model introduced by Tsai et al. by incorporating noise and blur [17].

Their model solved the problem by being more computationally efficient. However, problems arose

as they didn’t introduce the ill-posedness of the problem. To overcome that, they extended their

work later by the total least square method [18]. These frequency domain models were simple but

5

were not completely free from drawbacks; introduction of prior knowledge is tough and sometimes

inappropriate. To address the shortcomings, spatial domain methods are initiated.

2.1.3 Interpolation Method

Interpolation technique predicts the missing pixel by means of weighted average of all neigh-

boring pixels. It has played a vital role in image applications such as zooming, enhancement

and restoration. Some popular methods are: nearest-neighbor, weighted average, least-squares

plane fitting, iterative back-projection, bi-linear, bi-cubic etc. In nearest-neighbour method, the

nearest value closest to the missing pixel is copied to interpolate. Iterative Back-Projection (IBP)

approaches the HR image by iteratively back projecting the difference between the input LR image

and the stimulated LR image. Stimulated LR image is generated by down sampling the initial HR

image. Again, the initial HR image can be generated by decimating the initial LR image [19].

Bi-linear interpolation provides equal weighing of the diagonally closest four pixels [1]. Bi-cubic

interpolation in contrast, considers closest sixteen pixels around the missing pixel.

2.1.4 Edge-Preserving Method

For better edge preservation in an image, edge-guided interpolation was implemented [20, 21].

Here, different neighboring pixels have different weights given and those non-linear weights are

calculated by statistical structure. This technique interpolates a pixel by means of two observation

sets in two orthogonal directions. Using the two estimations, edge sharpness can be preserved

hence the upscaled image is not smoothed.

The basic principle of edge-guided interpolation is shown in Figure 2.1. In Figure 2.1a, the black

pixels are the available samples from the LR image, and the unfilled white pixels are missing ones

to be determined in the HR space. First, the odd indexed pixel values (red circle) are computed

with the weighted average of four black pixels in the 45◦ and 135◦ direction. Next, the even indexed

pixels are calculated by the weighted average of two black pixels and two red pixels in the 0◦ and

90◦ direction, respectively shown in Figure 2.1b. The sliding window technique is used here to

compute every pixel. In the sliding window, if the covariance of the pixels is positive, there is no

6

(a) (b)

Figure 2.1: Illustrating the basic idea behind interpolation based methods. (a) Step 1 fill in the odd-indexed pixels using a weighted
average of their four diagonal neighbors. (b) Step 2, fill in the even-indexed pixels using a weighted average of their two vertical and
two horizontal neighbors.

edge and all the pixels are then given equal weighs. However, negative covariance represents a

probable edge and in that case some pixels are given more emphasis than others. The problem

with this method is a lack of high frequency details such as textures, which the covariance can’t

extract.

2.1.5 Sparse Coding Method

Sparse coding-based approaches address this limitation of Edge Preserving method. Here HR

patches are represented as a sparse linear combination of dictionaries trained from external databases

or recovered from self similar properties in the LR image itself at different locations [4, 22, 23,

24]. To ensure the same sparse representations, two dictionaries are learned simultaneously by

concatenating them with proper normalization. The sparse signal is then learned from the training

dataset which contains HR and LR patch pairs. This similarity in sparse representation is applied at

the time of training.

The SR technique with these methods is shown in Figure 2.2. Here sparse representation of two

coupled dictionaries for low resolution(Xl) and high resolution(Xh) is involved. For increasing the

resolution of the image, the LR image patch is converted to sparse representation and matched to

7

Figure 2.2: Illustrating the process of performing SISR using sparse signal dictionaries [25].

the closest one in the learned dictionary. According to the LR-to-HR mapping, the HR patch from

Xh is thus recovered using the corresponding Xl. From the dictionary, the sparse representation

selects the most relative patches with respect to the given low resolution and hence, leads to a

qualitative and quantitative superior performance. These methods can generate sharper edges,

clearer texture and robust to noise, while interpolation-based methods can’t handle noise and SR

simultaneously.

2.2 Convolutional Neural Networks

2.2.1 Basics of Convolutional Neural Networks

A Neural Network is a combination of algorithms which imitates the operation of the human brain

to find the statistical relation in a given dataset. Neural Networks were not following efficient

training since the introduction of Backpropagation algorithm in the mid 1980s [26]. Then in

the 1990s, with the inclusion of Kernel methods, Neural Net gained fame and respect among the

researchers. A kernel function is a computationally tractable operation that maps any two points in

an initial space to the distance between these points in the target representation space, completely

bypassing the explicit computation of the new representation [26].

CNN consists of several sets of filters/kernels whose weights are to be determined by a continu-

ous training process [27]. A generic example is shown in Figure 2.3. The kernel has the dimension

8

of 3×3. With the weighted sum of first 3×3 pixels in the input image, it calculates the first output

pixel. The kernel then slides through the rows and columns of the input, computes the next output

pixels. Several stacks of such kernels make one layer and several layers lead to the complete CNN

network. It is worth to mention that, all the kernels in a CNN network are unique. The output pixel

is a function of weights and pixels of the previous layer and may be mathematically expressed as

z =
∑

n

wnxn, (2.1)

where wn is the convolution kernel weight with corresponding input pixel xn, and together they

produce the single output pixel z. This output of the weighted average is called feature map. A

kernel size of 3 × 3 has 9 parameters count and the stride is represented by how many slides a

convolution kernel will make to compute the next output pixel. For example, stride of 2 means the

filter will slide by 2 pixels in the horizontal and vertical direction to calculate the succeeding output

pixel. It should be mentioned here that for a stride of 2, the size/resolution of the output is half of

the input. For a stride of 4, the output turns quarter.

Figure 2.3: Illustrating the convolution operation.

Besides convolution layers, there are two more important parts in CNNs: activations and

sub-sampling/pooling functions. The activation function does the non-linear mapping of the input

to the output. Non-linear means that the output cannot be reproduced from a linear combination

of the inputs. Without these activation functions, regardless of the number of layers present

in a CNN, it will behave as a single layer model. Thus, this function enables CNNs to learn

non-linear transformations by directly performing non-linear operations [27]. One important

aspect to consider is that, the activation function must be differentiable, otherwise gradient-based

methods can’t be optimized. Several activation functions are Softmax, Elu, Selu, Tanh, Sigmoid,

9

Hard Sigmoid, and the most commonly used is Rectified Linear Unit (ReLU) [28].

z(x) = max(0, x), (2.2)

where x is the input value i.e., the input pixel and z(x) is the output pixel. From the equation it is

noticeable that, ReLU activates when the input is positive and disregards the negative values. ReLU

activation function is shown in Figure 2.4a. Yann et al. used tanh or sigmoid [29], whereas ReLU

is used most of the time with performance improvement [7,8,10,11,28]. Tanh function shown in

Figure 2.4b ranges from −1 to 1, is a s-shaped function. The Sigmoid is an exponential function

and can be expressed as

z(x) = 1
1 + e−x

, (2.3)

where x is the input value i.e., the input pixel and z(x) is the output pixel. Sigmoid is highly

preferred in the cases when the output generates a probability. In Figure 2.4c the graph is shown.

Sigmoid function is slightly modified linear piece-wisely in the Hard Sigmoid function. It has a

slope 0.2 for −2.5 < x < 2.5 and the slope is 0 elsewhere. So unlike Sigmoid, this function is a

linear approximation and therefore, easier to calculate.

(a) (b) (c)

Figure 2.4: Illustrating Activation Functions. (a) ReLU activation function. (b) Tanh activation function. (c) Sigmoid activation function.

The pooling function, that is used to reduce the feature space of the input, can be assumed as a

filter which slides through the input and provides a scalar output based on the equation given. The

most widely used sub-sampling is max-pooling. This function picks the maximum value from the

input within a given window. Max-pooling is very efficient for solving the classification problem

as it picks the highest value from a feature map and those values represent the most important

features.

10

CNNs learn the parameters to transform the input to output in a most accurate way. The

weight matrix of the convolution filters should be as optimal as possible to perform an end-to-end

mapping. Generally, these weight values are initially set manually by some initialization technique.

He et al. introduced a technique for random weight initialization which is very popular in the state-

of-the-art methods [30]. Once the weights have been initialized, in the next stage CNN learns the

optimum value by means of Back-Propagation algorithm [27]. This technique minimizes the loss by

finding the global minimum of the high dimensional loss surface of a CNN. This algorithm is closely

connected to the predefined loss function. Loss is defined as a function, that evaluates the predicted

output with respect to a given input, which is called ground truth or sometimes labeled data. The

goal is to view the loss as a multivariable function of all the parameters. Back-Propagation updates

the weight matrix by applying the chain rule. Chain rule computes the derivative of a composite

function. If Forward-Propagation is a series of nested equations, chain rule finds the loss with

respect to any variable in that nested equation. Thus, using the greedy algorithm, Back-Propagation

propagates error from loss function to first layer and updates the weights accordingly.

For CNNs, Back-Propagation is based on gradient descent/steepest descent process on convex

optimization, which iteratively optimizes the network to find the minimum of a function [31]. The

gradient descent algorithm is mathematically expressed as

wn+1 = wn − γ∆L(wn), (2.4)

where loss function is denoted as L, the network weights on the nth iteration as wn, and γ is

the learning rate. The first order partial derivative of the loss function with respect to the weight

matrix is the gradient γ∆L(wn), which is subtracted from the previous weight value to update the

next weight. γ determines how fast the convergence will be. Lower γ results in higher number

of iterations and hence slows down the training process and raises “Vanishing Gradient” problem.

When the optimization can’t progress from a certain minimum point due to too low gradient, it is

called “Vanishing Gradient”. However, high γ provides faster convergence also with a chance to

overshoot the minimum. When the gradient becomes too large, it leads to an unstable network.

This phenomenon is called “Exploding Gradient” problem. To prevent these problems “Gradient

Clipping” is used in the state-of-the-art methods. In “Gradient Clipping” algorithm, a threshold of

11

gradient is set and when the gradient exceeds the threshold, it is scaled down to the standard.

One important aspect of good model architecture is tuning the γ variable. It is important to

mention that, for convex error function, convergence is done easily. However, in reality, condition

of convexity doesn’t hold and hence convergence is not guaranteed. Moreover, sometimes the

convergence may become stuck to a local minimum not a global minimum. Despite this, is has

been effectively used to solve computer vision and image processing tasks.

2.2.2 State-of-the-art Techniques in Convolutional Neural Networks

Presently CNNs draw inspiration from the techniques applied in image classification problems and

utilize them to solve other computer vision problems. Some fundamental techniques, which are

being used as baseline for many cutting edge methods in SISR domain, will be discussed here.

Figure 2.5: Illustrating The AlexNet architecture [7].

AlexNet architecture by Krizhevsky et al. was the first to utilize a deep network of CNN

for large scale image classification. They trained their model using ImageNet challenge dataset

[32, 33], which contains a large amount of labeled data. Due to insufficient memory as a result

of higher number of parameters, they implemented the training on two parallel GPUs. They

also replaced tanh activation function with ReLU for the non-linearity activation and since then

ReLU has become a default activation function. They expanded the training by following data

augmentation techniques, e.g., image translations, horizontal reflections, and mean subtraction,

which also resulted in improved performance. In Figure 2.5 AlexNet architecture is shown.

12

Figure 2.6: Illustrating The VGGNet architecture [34].

Simonyan et al. [8] extended the Alexnet by adding more layers named VGG (Visual Geometry

Group) network (Figure 2.6). The largest VGG net has 19 layers, approximately 4 times more than

Alexnet. Moreover, they significantly reduced the number of parameters by using kernels of size

3×3 as compared to AlexNet’s first two layers, which are using 11×11 and 5×5. They proposed

a novel theory of stacking several small size kernels which is equivalent to using a bigger size

kernel. For example, two successive 3×3 convolution provides the same receptive field of one 5× 5

convolution. Similarly, a single 7×7 convolution is equivalent to three successive 3×3 convolutions.

This technique benefits the network computationally and also reduces the requirement of large

memory requirement for deeper layers. Besides, there is a chance to include more ReLU non-

linearity between the layers and hence, it makes the decision boundary more robust to outliers.

Both AlexNet and VGGNet established the concept that, deeper layers tend to produce better

result. However, He et al. [10] showed that, deeper layer is not always better. Sometimes they

aggravate the performance of the network too. It happens due to the “Vanishing Gradient” problem

(explained in Subsection 2.2.1). In practice, due to weight decay, sometimes weight matrix of

filters at a certain layer goes to zero. Because of the“Vanishing Gradient” problem, the weight

13

matrix doesn’t update. As a result, the filters don’t pass any feature vectors to the next layers.

So, the following layers can’t generate any results rather than increasing the memory requirement.

To address this problem, they introduced skip connection in residual learning. A residual block is

illustrated in Figure 2.7. The additive skip connection helps the deeper layers to have the access

to the previous layers. Thus it propagates information throughout the network, and eliminates the

chance of any layer having an output zero and hence solves the vanishing gradient problem [10,35].

Training is also benefited from skip connection for more efficient back-propagation. Such a way,

ResNet first implemented deeper network having more than 100 layers.

Figure 2.7: Illustrating Residual Block from ResNet [10].

Huang et al. introduced dense networks which generated substantially better results than

ResNet [12]. They substituted the addition function in ResNet with the concatenation of features

from the previous layers, so that, all the layers are connected to each other in a feed forward

fashion. Feature maps from all the preceding layers are fed into each layer. DenseNet helps to

reuse the features and propagates the features more efficiently. One complication is the growth

rate becomes very high at a certain point and overshoots the allocated memory. To overcome this

issue, bottleneck layer (1×1 convolution) is applied in the transition layer between two adjacent

blocks. 1×1 convolution also performs weighted learned addition of feature maps, compared to the

direct addition in ResNet. This enables the model to learn the features which have more priority

over others. DenseNet successfully outperformed the previous state-of-the-art methods with less

computations. A dense block is illustrated in Figure 2.8.

14

Figure 2.8: Illustrating Dense Block from DenseNet [12].

2.3 Deep Networks for Super-Resolution

2.3.1 Primary CNNs for Super-Resolution

Applying CNNs to super resolve image was first introduced by Dong et al [36], which directly

learns an end-to-end mapping between low and high-resolution images, named Super-Resolution

Convolutional Neural Network (SRCNN) [Figure 2.9]. They used the simplest architecture having

only three layers with ReLU activation. Inspired by optimization, the convolution layers represent

the patch extraction and aggregation. In the pre-processing part, LR image is first upscaled to a

desired size by means of bicubic interpolation. Then, three operations are performed for mapping

purposes. First, the overlapped patch is extracted from the image. Second, each high dimensional

vector is mapped non-linearly on to another high dimensional vector. Finally, the mapped vectors

are aggregated to form the HR image. The operations are named as Patch extraction and represen-

tation, Non-linear mapping and Reconstruction respectively.

They experimented many parameters such as filter size, number of train data, train on different

color channels, and depth of the network. They showed increasing the filter size provides slightly

better performance, while sacrifice the speed. They evaluated the result by training the model on

different color channels and found RGB training patches provides the best result because of high

cross correlation among the channels. They also showed that, increasing number of training patch

results in improved performance. Their only drawback was utilizing the depth of the network.

Increasing the depth of the network made the model performed worse. They came to a decision

15

Figure 2.9: Illustrating SRCNN architecture [36].

that; deeper network tends to perform poorly. Later, this problem was resolved by the ResNet [10].

They have used Mean Squared Error as the loss function which can be expressed mathematically

as follows

L =
∑W

x=1
∑H

y=1 (|Y i,j −X i,j|)2

WH
, (2.5)

where Y is the ground truth HR image with width W and height H, X is the bicubic upscaled LR

image.

Despite having some drawbacks, their method started a new era in the SR field which outper-

formed the previous state-of-the-art methods in terms of PSNR and SSIM.

2.3.2 Further Improved Deeper Networks

In SRCNN, stacking more layers produced worse results. To mitigate this issue, Kim et al. came up

with the Very Deep Super-Resolution network (VDSR) network, which worked based on the ResNet

concept [10]. Instead of learning unreferenced functions, residual was learned according to the

input to make optimization simple. Residual is the difference between the output and input image.

The equation can be written as

H(x) = F (x) + x, (2.6)

16

where H(x) is the output, F (x) is the residual function to learn and x is the input. It is easier to

learn the residual for mapping the input-output in a feedforward neural network. The residuals are

also called “shortcut connections” as they skip several layers. Shortcut connections simply perform

identity mapping. Identity shortcut connections add neither extra parameters nor computational

complexity. End-to-end training was possible using the simplest back-propagation algorithm. So,

for SR, the network first takes an interpolated (usually bi-linear) LR image (to the desired size) and

predicts the residual. Once predicted, the residual is then added back to the input LR image to give

the final HR image. The block diagram of VDSR is shown in Figure 2.10.

Figure 2.10: The VDSR architecture [14].

One thing worth noting is that, He et al. used a very high learning rate (γ = 0.1), which helped

the network to converge fast. However, it can cause exploding gradient problem (explained in

Subsection 2.2.1). To address this problem, the authors used gradient clipping in the optimization

algorithm which prevents the gradient from going beyond a certain range. Moreover, they trained

their network with multiple scales of data (×2,×3,×4) compared to the single scaling factor at a

time in SRCNN. They used the same Mean Squared Error (MSE) loss function as in SRCNN. Their

methodology showed significant improvement over Dong et al. technique. However, the problem

of large amount of memory requirement for deeper networks was not completely solved.

Kim et al. proposed the Deeply Recursive Convolutional Network (DRCN) model [15] with

a very deep recursive layer (up to 16 recursions) without introducing new parameters for addi-

tional convolutions which mitigates the drawbacks of VDSR. The general model consists of three

sub-networks: embedding, inference and reconstruction networks (Figure 2.11). The embedding

net maps the given image to a feature vector. The inference net analyzes the feature map from

interference net by a single recursive layer. Each recursion repeats same convolution weights

17

followed by a rectified linear unit. This recursion can be applied multiple times to increase the

network depth. Finally, in the reconstruction phase, feature maps from the inference net are fed

into the reconstruction net to generate the output image.

Figure 2.11: The DRCN architecture [15].

The authors also proposed two extensions: recursive-supervision and skip-connection. Recursive-

supervision model utilizes every feature map produced by the recursive layers to reconstruct the

HR image. These all predictions from the reconstruction net are simultaneously supervised during

training to produce the final image. All those features from each layer are summed by weights,

which are also learned during training. To maintain a high correlation between input and output

image, skip-connections are also introduced from the input to the reconstruction net. With the

same MSE loss function DRCN outperformed VDSR both visually and statistically.

2.4 Fast Super-Resolution Processing

Earlier methods used the bicubic upscaled image in the data pre-processing part. Due to processing

of the higher resolution image, those methods were computationally inefficient by affecting the

speed. In Fast Super- Resolution Convolutional Neural Network (FSRCNN) model [37], the authors

discarded the unnecessary bicubic upscaled image and fed in the lower sized LR image directly in

the architecture. That helped the network to train faster since less computation was needed for

the lower size feature vector. In Figure 2.12 the schematic diagram of FSRCNN model is shown.

After passing through several convolution layers, the feature maps are upscaled through strided

transposed convolution [38] at the last layer to match the GT size. Transposed convolution is

18

sometimes named as deconvolution. It performs the upscaling through convolution technique.

Overall, this type of architecture highly boosts the speed and the margin is prominent for higher

scaling factors as higher scaling creates proportionately lower image size.

Figure 2.12: The FSRCNN architecture [37].

Another upscaling technique is proposed by Shi et al. in the Efficient Sub-Pixel Convolutional

Network (ESPCN) [39]. Like the FSRCNN, it also uses the LR space image as the input but use

sub-pixel convolution at the end for upscaling. It is almost the same as the deconvolution, except

a shuffling is done through the channels at the final stage. Two convolutions are followed by

a reshaping function of preceding channels. Unlike deconvolution, which puts zeros in between

pixels, it computes more convolutions in lower resolution and resize the resulting map into an

upscaled image [40]. It also speeds up the process than the traditional deconvolution technique.

An illustration of sub-pixel convolution is given in Figure 2.13. This process was also followed

in [41].

Figure 2.13: An illustration of sub-pixel convolution in ESCPN framework where r denotes the upscaling ratio [39].

19

Lai et al. combined the concept of VDSR and FSRCNN in Laplacian Pyramid Super-Resolution

Network (LapSRN) by progressively assemble residuals in sub-bands [42] which is shown in Figure

2.14. The model has two branches: (1) feature extraction and (2) image reconstruction. Like a

pyramid the feature extraction part consists of several levels. Each level (also called sub-network)

consists of cascade of convolution layers to extract feature maps followed by a transposed convo-

lution layer for up sampling the feature maps. Each sub-network takes the downscaled LR image

as input and predicts the residuals progressively. There is also a skip connection added at the end

of every sub-network like in the VDSR. Then, in the reconstruction, a convolution layer is used

to predict the sub-band residuals from each level. Finally, the residuals are added to the input to

efficiently reconstruct the HR image. LapSRN can perform progressive upscaling for a factor of 2.

Thus, in one feed-forward pass the network generates multi-scale predictions of upscaling factors

×2,×4,×8. Charbonnier loss function [43] is used to train the proposed LapSRN, which is robust to

outliers than MSE or the Mean Absolute Error (MAE). Charbonnier loss function can be expressed

mathematically as:

L =
∑W

x=1
∑H

y=1 ρ.(|Y i,j −X i,j|)2

WH
, (2.7)

where ρ =
√
X2

i,j + ε2. The total loss is the sum of all individual sub-network loss.

Figure 2.14: The Laplacian Super-Resolution Network (LapSRN) architecture [42].

Although having good PSNR and SSIM, the previous methods lack to recover high frequency

details from LR images and hence provides smoother images. An edge guided CNN was introduced

20

by Yang et al. [44] is shown in Figure 2.15. The Deep Edge Guided Recurrent Residual Learning

(DEGREE) network jointly infer the edge map and the recurrent residual learning to reconstruct

the image. At the first stage, the prior edge map is extracted from the LR image by applying an

off-the-shelf edge detector like Sobel filter. Then, the recurrent layers are provided with both the LR

image and LR edge input. Unlike the previous models, this network predicts the edge map beside

the feature map in the penultimate layer and use them both to predict the residual output which is

mentioned as the high frequency component by the authors. The high frequency and low frequency

components (the bicubic upscaled image in this case) are then added together to reconstruct the

final image. The loss function is composed of the MSE based edge loss and normal reconstruction

loss. DEGREE network has shown better performance both statistically and visually.

Figure 2.15: The framework of the DEGREE network for image SR [44].

Another similar type of network was surfaced by Liu et al. in the Attention based approach [45].

They adopted the same concept of extracting high-level features for better visual effect. It may be

seen as combination of two different networks:

• Feature Reconstruction Network-Predicts the low-level features

• Attention Producing Network- Generates high-level features

Then outputs of both networks are multiplied point wise to compute the final residual edge map,

which is finally added to the LR image in the HR space i.e., the bicubic upscaled one. As the Feature

Reconstruction Network, the authors used their own DenseRes block which takes the downscaled

image as input and at the end upscale features by means of sub-pixel convolution [39]. However, as

Attention Producing Network, UNet was used, followed by a sigmoid activation function to create

the mask, which enhances the features created by the other network. Besides PSNR and SSIM

21

development, marginal improvement was achieved through this process to recover the edge and

texture like high-level features. The basic building block of Attention based approach is shown in

Figure 2.16.

Figure 2.16: The framework of the Attention based approach for image SR [45].

2.5 Recent Development for Super-Resolution

Recently, further complex networks have been used to solve the SR problem. One of them is the

Generative Adversarial Networks (GAN) [46]. A GAN is a combination of two parts: Generative

part named as Generator and Adversarial part which is called Discriminator. The Generator network

learns the distribution of a certain class based on certain label and generates the features. The

features produced by the Generator are then passed to the Discriminator network, which detects

them as true or false. It is a process, where Generator creates fake data and tries to fool the

counterpart, where Adversarial part tries to catch the false data. Through such continuous training,

the model becomes and expert to entirely fool the Discriminator and hence the output goes close

to the GT. Ledig et al. used GAN operation with Super-Resolution Residual Network (SRResNet) as

Generator [Figure 2.17]. Their Generator predicted the HR image, and the Discriminator learned

to distinguish between the real HR image and the predicted one. Likewise, in [37], the input was

22

downscaled LR image, and sub-pixel convolution was applied at the end to upscale the features.

They also adopted local residual [10,11] and global residual [14] learning at the same time.

Figure 2.17: The SRResNet architecture with GAN [46].

Deep Recursive Residual Network (DRRN) by Tai et al. consisting of a very deep CNN model (up

to 52 convolutional layers) use recursive learning to control the model parameters while increasing

the depth [13]. DRRN has two key parameters: recursive block and the residual unit in each

recursive block. In Figure 2.18, inside each recursive block, both the green and red convolution

layers share the same weights. However, the weights are different in each recursive block. There

is a local skip connection/identity path in each residual unit too. As a result, there are multiple

paths between the input and output of the recursive block. The residual paths help to learn highly

complex features and the identity paths help gradient flow during training. Several recursive blocks

are stacked, followed by a convolution layer to reconstruct the residual between the LR and HR

images. The residual image is then added to the global identity mapping from the input LR image.

Such connections allow the DRRN model to have high depth with top performance while keeping

the number of parameters very low. DRRN uses the bicubic upscaled image as input, which takes

longer processing time, and a major drawback of this method. Each layer takes a higher number

of feature maps unlike most previous works [14, 15, 36, 37, 39, 42, 46], which is also a reason for

slowing down the speed.

23

Figure 2.18: A recursive residual block used in the DRRN architecture [13].

Establishment of Dense Net motivated Tong et al. to apply the concept in SR field [47]. Features

from each layer are connected to the subsequent layers through concatenation. At the time of

reconstruction, both high-level and low-level features are combined. As the inputs are in LR space,

upscaling is needed in the system. Authors used deconvolution to scale up the features. A term

growth rate k is used here, which defines the number of features produced by every convolution

layer in each dense block. If a block contains 8 convolution layers with k=16, a total 8k=128

feature maps will be created by that block. In their extension work, the authors also used the

local and global skip connection. To reduce high volume of the feature maps, bottleneck layer

was introduced by 1 × 1 convolution. Despite the problem of requiring high memory allocation,

SRDense Net surpassed previous state-of-the-art methods. A SRDense Net block diagram is shown

in Figure 2.19.

Figure 2.19: An illustration of SRDense Net [47].

A refinement of SRRes Net structure is done in Enhanced Deep Residual Networks for Single

24

Image Super-Resolution (EDSR) [48]. The batch normalization layer is removed from the block

to speed up the computation and save memory allocation. Also, a new technique residual scaling

is induced to stabilize the training for increasing number of feature maps. Besides single scale,

authors proposed a multiscale model (MDSR), both are shown in Figure 2.20. The network

optimizes the MAE loss function. Although it achieves good performance, since the layers don’t

share the weights, this model has more parameters compared to the recursion based models

[13,15].

Figure 2.20: An illustration of EDSR and MDSR [48].

Based on human brain working principle, Tai et al. proposed Persistent Memory Network

(MemNet)for Image Restoration [49]. Basically, MemNet is a joint network of Resblock, Denseblock

and recursion. In each memory block the authors designed several recursive units. One recursive

unit has almost the same resblock structure [46] with some changes in the layer order. These

recursive units share weights in the same memory block. Feature maps from each recursive unit

are called short term memory, and those from previous memory block are named long term memory.

All short-term memories from the current block and long-term memory from the previous blocks are

concatenated followed by a gate unit which performs 1 × 1 convolution. Such memory blocks are

stacked together till the reconstruction layer [Figure 2.21]. MemNet achieved high performance

25

for SISR as well as image degradation problem.

Figure 2.21: Basic MemNet architecture [49].

Another significant improvement is shown in Residual Dense Network (RDN) by Zhang et

al. combining of SRResNet and DenseNet for image SR [50]. RDN learns local residuals by

extracting abundant local features via dense connection which also allows direct connection from

the preceding to the all subsequent layers. Like VDSR, RDN also learns global residuals, but this

case, before the upscaling layer is induced. Each residual dense block (RDB) is an arrangement

of several convolutions and ReLU activation functions followed by a bottleneck layer of 1 × 1

convolution at the end. The authors used the down sampled inputs, and then upscaled the features

progressively using the method showed in ESPCN [39]. A basic block diagram of RDN is shown

in Figure 2.22. The one caveat is that, RDN requires larger memory allocation for high number of

parameters due to growing number of feature maps in each RDB.

Figure 2.22: The architecture of Residual Dense Network (RDN) [50].

2.6 Main Drawbacks of Previous Methods

So far, a significant number of remarkable works have been implemented in the SR field to better

super resolve the LR image. However, some solutions are very expensive in terms of computation

26

and memory consumption. Finding an optimum trade-off between expense, efficiency, and perfor-

mance is still a matter of experiment. RDN [50], EDSR, MDSR [48], have better results with high

number of parameters. Whereas, ESPCN [39], VDSR [14], DRRN [13], DRCN [15], LAPSRN [42]

have a smaller number of parameters with less performance improvement compared to the previous

ones. Expanding the network receptive field by stacking more unique convolution layer increase

the parameter count of the network. However, recursion tends to affect the speed to achieve the

same performance with more non-unique layers. Also, high-level features e.g., edges and textures

are difficult to reconstruct especially for the higher scaling factors. As it will be shown, using a

careful design of recursive block with dense connection, one-dimensional kernel and depth wise

separable convolution, allows performance increasing in terms of PSNR, SSIM and network depth,

while keeping lower parameter requirements.

27

Chapter 3

Technical Approach

In this chapter, design and different components of the proposed EFNet are described. To be

specific, three different networks are presented here: one using simple recursive blocks, one using

recursive blocks with features masking by an independent parallel architecture and the final one

including Sobel and Laplacian edges while masking. In the beginning, various components and

theoretical explanation of the EFNet is described in Section 3.1. How to increase the receptive field

without affecting the parameter count is covered here. Then, inspection is done on different design

spaces by rearranging the convolution layer orders. In chapter 4, further evaluation on different

design schemes is done to find the best performing arrangement. The goal is to find the optimal

parameter numbers with best performance both visually and statistically.

First, a baseline model is created, which is shown in Figure 3.1. Baseline structure is designed

by restructuring the composition of RDB used in RDN [50]. This baseline model generates features

in the same manner as some state-of-the-art methods [13, 37, 50]. The input is in LR space, and

the features are upscaled by means of learned filters. Proposed model is not able to handle

multiple scales in a single model simultaneously. To handle multiple scales as in [13, 14, 15], a

different design scheme is created, which takes the bicubic/bilinear upscaled image in HR space.

However, the performance is worse with a cost of higher computation complexity and time. In the

offered structure, both global and local residual learnings are used like the previous state-of-the-art

methods. But, for local residual learning, adding the skip connection like in [13] is discarded.

Instead, concatenation of the preceding layer features is presented, followed by a 1×1 convolution

layer to perform a weighted sum for computing the residuals. This way, the local residual generates

the features, which has access to all the previous information and hence becomes more robust to

the outliers. Each local residual block is a combination of three successive 3 × 3 convolutional

28

layer followed by only one ReLU at the end. As a result, the structure is simpler and more

computationally efficient compared to RDN, where 8 successive unique convolutions and ReLU

were used [50]. For global residual, traditional method of adding skip connection is followed as

proposed in [10]. Only 4 residual blocks with 64 number of filters are used in all the convolution,

except the last layer where there are only 3 filters to predict the final RGB image. Also, each unique

residual block is reused thrice to apply the recursion and thus increase the depth. Experiments are

made with the recursions more than thrice but didn’t improve the performance.

Figure 3.1: The architecture of proposed baseline model.

3.1 Expansion of Receptive Field

Receptive field is a term related to neuroscience, which is a region of a sensory space for each

neuron. The definition is quite similar for CNNs as well. The area in the input to compute a

single pixel in the output, is represented as the receptive field. In the Figure 2.3, a single 3 × 3

convolution layer is applied to calculate an output pixel. The spatial field of view or receptive field

for that network 3 × 3. The higher the receptive field, the more information the network can use

for a single output pixel. So, the main target should be expanding that in an efficient way. Several

methods can be adopted to enlarge the receptive field. One possibility may be increasing the kernel

size to have a bigger field of view. In the previous Figure 2.3, if a sliding window of size 9 × 9

is used, that would enlarge the area to compute a single output pixel. However, this technique

requires more computations and memory bandwidth for the need of higher number of parameters.

A single 9 × 9 kernel requires 9 × 9 = 81 parameters, compared to 3 × 3 = 9 numbers of a 3 × 3

29

filter. Computing a single output pixel, several multiplications and additions are required, which

are equal to the quantity of parameters. So, compared to a 3× 3 kernel, a 9× 9 kernel has 81
9 = 9

times excess parameters and computations. As a result, memory bandwidth and runtime are higher

for bigger sized kernels. Besides, training is also difficult for these types of models [8,36].

Figure 3.2: Stacking multiple small convolution layer for an efficient receptive field expansion.

Another expansion method is stacking several small sized kernels, proposed by Simonyan and

Zisserman in the VGG network [8]. This technique overcomes the drawbacks of the bigger kernels.

An example is illustrated in Figure 3.2. Here, two successive convolutions of 7 × 7 and 5 × 5 are

applied. One pixel in Map3 is looking at 7 × 7 pixels in Map2. Similarly, in Map2, one pixel is

used on a 5 × 5 map. In total, each pixel from Map3 is viewing 7 + 5 = 11 × 11 pixel area in

Map1. Hence, stacking a 5× 5 and 7× 7 convolution is mathematically equivalent to using a single

11 × 11 convolutional layer. Now the question is, how these are efficient. A single 11 × 11 layer

uses total 11 × 11 = 121 parameters, and also 242 (121 + 121) additions and multiplications for

each output pixel. However, the stacked smaller kernels need only (5× 5) + (7× 7) = 25 + 49 = 74

parameters and 148 (74 + 74) computations in total for each output pixel. Thus, the later process

provides enough savings with the same receptive field. Moreover, this specific architecture allows

to introduce scaling factors [48] and multiple ReLU non-linearity to make the decision function

more discriminative.

Many Computer Vision related issues experienced improved capability by increasing the recep-

tive field [8, 10, 11, 51, 52, 53]. Having larger spatial context in a larger area helps the network to

capture the complex mappings like edges, textures and blobs. As a result, reconstruction accuracy

also improves.

Another memory efficient way to expand the receptive field involves applying recursion [13].

30

Stacking few convolution layers to obtain deeper layers comes with the adverse effect of more

memory bandwidth requirements to save those large amounts of weights. By means of recursion,

a network tends to have deeper layers with a constant number of parameters. A unique residual

block is successively applied several times such that, memory consumption problem is mitigated,

and different features are generated. But the process needs more computations to achieve the

desired result. Moreover, a careful design is required as too many layers form difficulties to train

the network.

One dimensional (1-D) kernel inspired by the separable kernel idea was successfully imple-

mented in [53, 54]. This proved a very efficient theory for larger receptive field. Breaking down a

3× 3 convolution into two successive 1× 3 and 3× 1 convolutions, produces the same result with

less memory and computations.

For further memory efficient design, Chollet presented Xception net, which basically performs

depth wise separable convolution [55]. The proposed technique will utilize separable convolution

concept in addition to 1-D kernel with the baseline architecture. To produce a single feature map,

depth wise separable convolution uses only a single unique filter for every given input feature.

Thus, reduces the number of required filters as well as the quantity of weights. Experimental

results will show how the 1-D kernel and separable convolution blend together to increase the

accuracy while maintaining the parameter numbers with less computations.

3.2 Theory of 1-D Convolution and Depth wise Separable

Convolution

1-D convolution was first introduced in the image SR field by Seif et al. [54]. 1-D convolution

is called spatial separable convolution, which simply divides the kernel into two smaller kernels.

For example, in Figure 3.3a, by means of two sequential 3 × 3 convolutional layers, a receptive

field of 5 is created in both vertical and horizontal direction. Without the bias two layers utilize 18

parameters in total to cover receptive field. Now in Figure 3.3b, two back-to-back 3×1 convolutions

make a receptive field of 5 in the vertical direction having only 6 parameters. Similarly, for

horizontal direction 6 more parameters are needed. Hence, to gain the same receptive field by

a 3× 3 square kernel, 1-D convolution needs only 12 parameters, which is 1
3

rd times less.

31

(a) (b) (c)

Figure 3.3: Receptive field explanation by means of kernel [54]. (a) 3 × 3 convolution slides thrice to create a receptive field of 5 in
both dimensions. (b) Receptive field of 5 in the vertical direction by means of two successive 3 × 1 convolution. (c) Receptive field of 9
in the vertical direction by means of two successive 5 × 1 convolution.

Another example is shown in Figure 3.3c. Two 5 × 1 convolutions are applied in the vertical

direction to cover an area of 9 with 10 weights and 10 multiplications. Including the horizontal

receptive field, a total of 20 parameters are required to have a receptive field of 9 in both directions.

However, using the square requires a total of 50 parameters and same number of computations. So,

the efficiency is more significant (2
5

th) for the bigger kernels. Even, if 5 × 5 kernels are replaced

by 3 × 3 square kernels to get a receptive field of 9, a total of 36 parameters and 36 computations

(stacking 4 layers) are required, which is nearly twice than the 5× 1 kernel.

1-D convolution is influenced by the separable filter concept in computer vision problems [1].

A square filter can be represented as a matrix multiplication of two 1-D filters and thus reduces the

complexity while producing the exact same result. For example, an edge detecting filter such as

Sobel operator (Gx, Gy) is represented by the following matrices

Gx =



−1 0 +1

−2 0 +2

−1 0 +1


Gy =



−1 −2 −1

0 0 0

+1 +2 +1


(3.1)

Here, Gx and Gy extracts the vertical and horizontal edges respectively. This filter has 9

parameters and requires 9 multiplications and additions to compute a single output pixel. Now,

32

this matrix can be separated into two one dimensional vectors for the ease of calculation.

Gx =



+1

+2

+1


∗

[
−1 0 +1

]
Gy =



−1

0

+1


∗

[
+1 +2 +1

]
(3.2)

By representing the kernel in such a manner, the parameter numbers can be reduced, and

accordingly the multiplications minimize from 9 to 6, although performing the same operation on

the image. One constraint must be kept in mind is that, in CNNs 1-D kernel may or may not turn

to be a separable one. Since, the network can’t be enforced to train in such a way that, the learned

kernels are always separable, there is a chance of performance degradation too. In this context,

it is better to rely on the training and optimization method to utilize the parameters for a global

minimum regardless the kernels are separable or not and proceed in an efficient way. Despite the

uncertainty, better results were achieved efficiently in [54].

Depth wise separable convolution is a different version of factoring a convolution operation

into multiple branches for efficient parameter use of a model. In the convolution layer of a CNN,

the filters to be learned are in a three-dimensional state - width, height and channel. A single

filter performs spatial correlation as well as cross channel correlation [55]. Spatial correlation is

the most common height and width-wise convolution task. Cross channel correlation occurs when

convolution is assigned through channels in a three-dimensional space. To perform both operations

for a single output channel by an only one convolution, enormous parameters are needed. A depth

wise separable technique factorizes these two steps in an efficient way. The entire process has two

parts- depth wise convolution and pointwise convolution.

Consider the illustration of depth wise separable convolution in Figure 3.4. In Figure 3.4a, the

depth wise convolution is shown. As can be seen, unlike normal convolutions, it uses only one

filter for every input channel. This single filter slides over a single channel to compute one output

channel. In the example shown in the figure, the input is RGB channel and only three 2-D (two

dimensional) filters are required to produce all the spatial correlated output. In short, in the Figure

3.4a this step maps a n× n× 3 channel to another n× n× 3 channel with 3× 3× 3 filter.

33

(a) (b)

(c)

Figure 3.4: Convolution explanation by means of depth wise separable process [56]. (a) Depth wise convolution part performing spatial
correlation. (b)Pointwise convolution part performing cross-channel correlation. (c) The full picture at a glance.

In Figure 3.4b, the second part, cross-channel correlation representation is shown. This is

actually a 1× 1 convolution. Kernel set has three dimensions and the depth is equal to the number

of inserted channels. Since, in Figure 3.4b, the input has channels of 3, the depth is 3 for the kernel

set having a dimension of 1×1×3. All together, it maps the input to a n×n×1 output. To have an

output of n channels, it requires n number of 1× 1× 3 filters and hence the output dimension will

be n × n × n. For the normal convolution process, there will be three different filters (sometimes

called a three-dimensional filter) for each generated feature map. To construct the same outputs

shown in Figure 3.4, a normal convolution will need three n× n× 3 filters.

As this can be seen, depth wise separable convolution quite substantially expands the receptive

field with fewer computations and parameters. Let’s consider another example. Say, a n × n × 64

input channel is required to map into a n × n × 64 feature by using 3 × 3 kernel. For the regular

convolution, 64 numbers of 3 × 3 × 64 filters will be needed. Total required parameters are 64 ×

3 × 3 × 64 = 36, 864. Whereas, for the depth wise separable convolution, there involves only

64× 3× 3 + 1× 1× 64× 64 = 4, 672 parameters, which is only 10% of the original 2-D parameters.

Thus, the network can perform more processing within the shortest possible time and saves a huge

34

memory consumption and processing time. Only caveat is that, due to substantially low number

of parameters, the network might not learn properly and fail to converge. So, this technique is

applied only in the middle layers of the proposed model to increase the network depth efficiently.

3.3 Design Space Exploration

In this section, various components of the proposed network architecture will be explored with

the 1-D kernel and depth wise separable convolution. In the first stage, baseline model (EFNet-B)

uses few recursive residual blocks to achieve the benchmark. Then is gradually upgraded from the

baseline to EFNet through multiplication by a shallow network using 1-D kernel. And finally, in

EFNet+, edge features are added to recover the textures and edges more prominently.

3.3.1 Recursive Residual blocks

Baseline model consists of several residual blocks and recursive use of the blocks. Unlike the

original residual block in ResNet architecture [10], batch-normalization and several ReLU are

removed for computational efficiency. The residual block has 3 successive separable convolutions

followed by a 1× 1 convolution. In addition, to capture the correlation between the feature maps,

all the convolution outputs are concatenated (including the initial input feature) prior to the final

1 × 1 convolution layer. As a result, the block can easily encapsulate important features from all

the preceding layers, and thus a smooth flow of information from each channel is maintained. This

layer also serves the purpose of local residual as adding the input features is removed in this case.

Instead of plain addition, learned addition of input features are performed in the design. It is worth

to be noted that, the ReLU non-linearity is not applied until the 1×1 convolution layer, which helps

to independently process all the features with no loss of information. The applied ReLU hence

serves as pre-ReLU for the next recursion block. Figure 3.5 illustrates several arrangements for the

proposed resblock. In Figure 3.5a, baseline model for the residual block is shown. Rearrangement

of the layers are experimented to see if performance improvement is possible. Figure 3.5b shows

the diagram if the ReLU activation function is placed before the convolutions. The features maps are

also processed through parallel branches instead of sequential convolution function (Figure 3.5c

and 3.5d). This is inspected to observe if independent processing of features affects the spatial and

35

cross-channel correlation. After analyzing different arrangements, it is perceived that, the baseline

design (scheme-a) performs the best. So, this architecture will be implemented throughout the rest

of the experiments. Another design consideration is trading off performance and computational

cost by using recursion blocks. After several experiments, a unique residual block is opted to use

four times followed by concatenation of all the residual outputs and 1× 1 convolution at the end.

Figure 3.5: A basic Residual Block. (a) Baseline block setup. The ReLU is applied after the concatenation layer, for non-linear mapping
of all the gathered features. (b)ReLU is shifted before the initial convolution layer to check if pre ReLU affects the performance. (c) &
(d) The convolution is split into two different parallel branches to independently process the information with placing the activation
function before and after the convolution respectively.

3.3.2 Shallow Multiplicative blocks for Attention

For masking [45] the features, shallow multiplicative blocks are incorporated in the architecture.

The purpose of this part is to enhance the high-level features, which are most prominent for

sharpening the image. Illustrated in Figure 3.6, 1-D depth wise separable kernel is applied to

extract the high-level features by spreading the receptive field in a very efficient way. This block can

expand the receptive field without any recursion and also able to introduce an extra non-linearity

between two adjacent 1-D layers. Consequently, complex textures and edges are more visible in the

final result. This scheme is inspired by the improved results in [54]. The purpose of this shallow

Attention part is to independently increase the receptive field with bigger kernels having less

parameters so that, the network can extract features losing a minimal number of information from

36

the input channels. However, bigger kernels also produce increased computations and sometimes

redundant parameters. In [54], the authors have shown how to implement the bigger kernel

concept with only a few computations, and also exhibited improvement in the SR field. Motivated

by that concept, in total, four 1-D convolutions and four activation functions ReLU sequentially

build the final block. Like the original ResNet structure [10], an additive skip connection is used to

learn the local residual. An activation function Hard Sigmoid is applied at the end of this shallow

masking architecture, enabling the model to amplify the area containing high feature maps.

Figure 3.6: A basic multiplicative block for masking.

3.3.3 Combined Network Architecture

In the baseline EFNet-B model shown in Figure 3.1, recursion of residual blocks is used to enhance

performance. Three successive recursions of each block yield the best result in test. The architecture

is further extended with the shallow masking block for Attention mechanism. The EFNet structure

is shown in Figure 3.7. From the figure, it is visible that, both the outputs of residual block and

multiplicative block are passed through the sub-pixel convolution to upscale the features. Prior

to that upscale layer, an additive skip connection enables the global residual learning. Then,

the upscaled multiplicative features are passed through the Hard Sigmoid function. Masking the

features then occurs, followed by a convolution which outputs three channels to synchronize with

the initial RGB input.

Finally, incorporating the Sobel and Laplacian edge operators, the EFNet is further upgraded to

EFNet+. It has an advantage over the previous model in terms of edge preservation while keeping

fewer parameter count. In this case, first the edge features are extracted from the input by the

Sobel and Laplacian operator. These edge features including the extracted features from the first

convolution layer are passed into the middle part (i.e., recursive part) of the model. Then, the initial

37

edge maps are being upscaled in the bottom part using the technique described in ESPCN [39]. It is

worth to mentioning that, for further enhanced edge performance, an edge loss function is applied

in addition to the default loss function. Figure 3.8 explains the different parts of the final EFNet+

architecture.

Figure 3.7: Illustration of proposed EFNet architecture.

38

Figure 3.8: Illustration of proposed EFNet+ architecture.

39

Chapter 4

Experimental Results

In this chapter, evaluation of the proposed models is presented on various test dataset. Analysis

of training data, measurement metrics, loss function, details the implementation of the system is

shown in section 4.1. The next section 4.2 covers the statistical test results for different schemes

of the proposed method. Finally, comparison of the results with the state-of-the-art methods is

demonstrated in section 4.3.

4.1 Execution of Experiment

4.1.1 Training Dataset

Most widely used training dataset for SR purpose is the 291 imageset by Yang et al. [4] and the

Berkeley Segmentation Dataset [57]. Recently, DIV2K dataset containing high quality image data

[58], has been very popular for image restoration purpose. This dataset contains 800 HR (2k

resolution) images for training and 100 images for testing and validation. This dataset has shown

huge improvements in training over others in recent SISR works [59,60]. The New Trends in Image

Restoration Enhancement (NTIRE) DIV2K dataset contains high quality diverse images. Those

images have a minimal blur and noise, and effective to provide enough training data for image

restoration-based architectures.

For training, first, the RGB images are cropped out into smaller patches of size 48× 48 with the

stride of 48, which implies no overlapping segment involved in the sub images. It is found, using

patches of larger size doesn’t improve the performance in contrast to the speed and runtime trade-

off. Again, using too smaller patches limits the ability to use larger receptive field. Considering the

above factors, a patch size of 48 × 48 is selected. Since, naturally HR & LR training pair doesn’t

40

exist, the LR patch is artificially created from the corresponding HR one. In this experiment, the

48 × 48 HR patches are down sampled by the means of bicubic interpolation according to the SR

scale. These down sampled patches are input to the system & original HR patches are the target

output. This procedure is followed because it uses less memory space for computation efficiency as

in some other state-of-the-art techniques [37,39,42,48,50].

To create additional data, augmentation of data is developed by random rotation and flipping

[13, 14, 15, 42]. Both the training and evaluation is conducted in RGB color space. The HR image

patches are downscaled with a scaling factor of x2, x3, x4, and hence proposed model can handle

those scaling factors only. Final evaluation is performed on the predicted Y channel of YCBCr

colour space in terms of PSNR and SSIM. Test is executed on DIV2K 100 validation images as well

as Set5 [61], Set14 [62], BSDS100 [63], Urban100 [64] benchmark datasets.

4.1.2 Measurement Metrics

SISR performance is generally evaluated based on PSNR and SSIM [65]. PSNR measures the pixel

by pixel accuracy and SSIM assesses the perceptual image quality. PSNR is the most commonly

used metric based on MSE. MSE is very straightforward, makes clear mathematical sense, and

convenient to optimize. It defines the distance between the predicted and reference pixel value,

which can be presented as follows

MSE = 1
MN

∑
M,N

(Ŷ (m,n)− Y (m,n))2, (4.1)

where Ŷ (m,n) is the predicted pixel, Y (m,n) is the reference pixel and M,N are total number of

rows and columns in the input image respectively. Now based on MSE, the PSNR of that window

is defined as

PSNR = 10 log10(I2

MSE
), (4.2)

where I is the maximum pixel value in that specific window of M rows and N columns. PSNR is

a metric to quantify the reconstruction accuracy but doesn’t suit perceived visual quality. It doesn’t

consider features from the image local context. To eliminate the shortcomings, in some cases

41

MSE has been adjusted to comply with human visibility. However, the best solution is SSIM, which

measures the reconstruction performance according to human perception, hence considers the local

intensity pattern into account. SSIM shows improved results to handle structural degradation

besides recovering raw pixel. SSIM algorithm is explained in detail in [65].

4.1.3 Loss Function

Most widely used loss function is MSE (also called L2 loss). MSE penalizes substantially for higher

deviation of the prediction with respect to the reference. Moreover, it is convenient for optimiza-

tion. However, proposed networks are trained using L1 loss, since it is found by experiments that,

L1 loss exhibits better results compared to L2. L1 loss (also called MAE) is defined as

MAE = 1
MN

∑
M,N

|Ŷ (m,n)− Y (m,n)| (4.3)

In the EFNet-B and EFNet, L1 loss function is applied. In the EFNet+ model, a combination of

losses from different layers are employed. The cost function for this architecture combines weighted

sum of actual output loss, Sobel and Laplacian edge loss. Sobel and Laplacian loss are computed

by applying Sobel and Laplacian operators on the ground truth image. So, the total loss is

L = α

MN
|Ŷ (m,n)− Y (m,n)|+ β

MN
|Ês(m,n)− Es(m,n)|+ γ

MN
|Êl(m,n)− El(m,n)|, (4.4)

where Ês(m,n) & Êl(m,n) are Sobel & Laplacian edge map of the predicted image respectively,

and α, β and γ denote the loss weight. Empirically, α = 0.7, β = 0.3, γ = 0.3 are set to yield the

best result.

4.1.4 Implementation Details

To explore the best combination and number of recursive blocks, initially the models are trained

with first 100 images from DIV2K dataset on a scale of x2, x3, x4. Those images benchmark the

baseline model besides achieving the state-of-the-art result. Once the baseline design scheme is

firm, training is done with all the 800 images in DIV2K dataset on all the scale. Since, a single

42

model can’t handle multiple scales, the same model is trained thrice with three different scales:

x2, x3 & x4. ADAM optimizer [66] is used with an initial learning rate of 10−4. The learning rate

is halved in every 10 epochs with 200 numbers of epochs. To reduce the complexity of huge data

and train time, total 64, 000 patches are implemented in each epoch. As a result, training time is

significantly reduced to 3 days approximately. All the weights are initialized by the method stated

in [11] with bias in effect. The batch size is set to 32. NVIDIA 1080Ti GPU is used throughout the

whole process.

4.2 Litmus Test

4.2.1 Experimenting Baseline with Recursions

Scheme Scale
EFNet-B

PSNR/SSIM

x2 33.45/0.9347

A x3 30.10/0.8655

x4 28.37/0.8071

x2 33.37/0.9340

B x3 30.08/0.8612

x4 28.30/0.8055

x2 33.10/0.9290

C x3 29.75/0.8581

x4 28.12/0.7957

x2 33.15/0.9336

D x3 29.93/0.8589

x4 28.17/0.8067

Table 4.1: Evaluation result on NTIRE validation benchmark set according to PSNR/SSIM with various convolution schemes.

In this module, benchmark various arrangement scheme of the EFNet-B will be described. First,

the best arrangement scheme of the convolutional layers in the residual block will be determined.

In Figure 3.5, separate settings of layers are shown. Each of them is tested on a kernel size of 3

on the NTIRE validation set, which is shown in Table 4.1. The schemes are ordered from A to D,

and it is clear from the table that, 3.5a achieves the best result among all of them. In scheme B,

43

placing the ReLU before the convolution deteriorates the performance substantially. In scheme C &

D, parallelization of two independent convolutions don’t improve the result either. Hence, future

experiments are conducted using the scheme A to achieve the best results with the model.

Number of
Recursions

Scale PSNR/SSIM

x2 32.97/0.9299

0 x3 29.15/0.8593

x4 27.96/0.7968

x2 33.24/0.9297

1 x3 29.88/0.8634

x4 28.24/0.8049

x2 33.36/0.9329

2 x3 30.01/0.8634

x4 28.24/0.8058

x2 33.45/0.9347

3 x3 30.10/0.8655

x4 28.37/0.8071

x2 33.30/0.9122

4 x3 29.83/0.8589

x4 28.15/0.7991

x2 32.59/0.9038

5 x3 29.52/0.8512

x4 28.47/0.7819

Table 4.2: Evaluation result on NTIRE validation benchmark set according to PSNR/SSIM with various recursions.

Now, the question is how many recursions are needed for a residual block. Recursions are

also responsible for higher number of computations. So, an optimal number of recursions must be

determined for a better PSNR/SSIM with less calculations. In Table 4.2, the performance evaluation

with higher order of recursions are shown. Observation depicts that, performance upgrades till the

3rd applied recursion. After that, decays gradually. So, 3 recursions are selected for each residual

block.

In the next step, experiments are conducted with the validation results by changing the filter

size from 3 to 11. It is obvious that, increasing the kernel dimensions boosts behavior. It reflects

44

Filter Size Scale
EFNet-B

PSNR/SSIM

x2 33.45/0.9347

3 x3 30.10/0.8655

x4 28.37/0.8071

x2 33.49/0.9351

5 x3 30.13/0.8659

x4 28.39/0.8076

x2 33.52/0.9355

7 x3 30.19/0.8666

x4 28.45/0.8079

x2 33.43/0.9348

9 x3 30.12/0.8653

x4 28.36/0.8069

x2 33.35/0.9320

11 x3 30.04/0.8613

x4 28.23/0.8055

Table 4.3: Evaluation result on NTIRE validation benchmark set according to PSNR/SSIM with various kernel size.

the theory in the results of Table 4.3. The bigger the kernel size with keeping the layers fixed, the

more the enhancement. EFNet-B is trained with different kernel sizes and the results are validated

with NTIRE DIV2K validation set on RGB images. However, larger receptive field by increased filter

size comes with more parameters and runtime, which is displayed in Table 4.4.

After observing Table 4.3, it is clear that both PSNR and SSIM improve gradually until kernel

size of 7 × 7 and decrease afterwards. The same happens for all the scales. However, Table

4.4 proves the additional parameters by increased kernel size is not worth of the performance

improvement as expected. So, in that case the better choice will be not to trade-off memory

bandwidth for performance since improvements are not significant. Hence, kernel size of 3 is

selected for the network architecture. In a nutshell, for a fair performance efficiency trade-off,

convolution scheme A is opted with a filter size of 3 and 3 recursions for the rest of the experiments.

45

Filter Size Scale
EFNet-B

Parameters
EFNet-B
Runtime

x2 418,243 5.39s

3 x3 602,883 6.9s

x4 565,955 5.45s

x2 503,235 5.53s

5 x3 687,875 7.09s

x4 650,947 5.57s

x2 630,723 6.08s

7 x3 815,363 7.23s

x4 778,435 6.11s

x2 800,707 6.29s

9 x3 985,347 7.36s

x4 948,419 6.40s

x2 1,013,187 6.45s

11 x3 1,197,827 7.44s

x4 1,160,899 6.51s

Table 4.4: Parameter number and Runtime result on NTIRE validation benchmark set with various kernel size.

4.2.2 Experimenting EFNet with various Factors

Now, importance is given on the construction of masking network in the EFNet. In the shallow

multiplication block, 1-D kernels are used to extract the edges by means of efficient receptive field

expansion. The components are chosen in such a way that it emphasizes the edge or texture pixels

without a major increase in the parameter count. In Table 4.5, the results and parameter numbers

by using kernel size from 3 to 11 are shown. Performance improves until a kernel size of 9 and

then starts decreasing. Using a size of 9 gives better result compared to a little rise in the memory

consumption. So, 1 × 9 & 9 × 1 convolution kernel is picked for the final network architecture.

As the multiplication blocks and residual blocks work independently, their combined framework

benefits the model to perform better than the baseline.

46

Filter Size Scale
EFNet

Parameters
EFNet

PSNR/SSIM

x2 470,828 33.49/0.9360

3 x3 655,518 30.13/0.8669

x4 618,580 28.39/0.8071

x2 472,364 33.51/0.9367

5 x3 657,054 30.14/0.8678

x4 620,116 28.41/0.8085

x2 473,900 33.57/0.9370

7 x3 658,590 30.18/0.8682

x4 621,652 28.45/0.8092

x2 475,436 33.60/0.9376

9 x3 660,126 30.20/0.8685

x4 623,188 28.48/0.8097

x2 476,972 33.53/0.9320

11 x3 661,662 30.14/0.8613

x4 624,724 28.42/0.8055

Table 4.5: Evaluation result on NTIRE validation benchmark set according to PSNR/SSIM with various kernel size.

4.3 Comparison with the state-of-the-art Methods

Experimental results are compared with a few state-of-the-art methods such as Bicubic, SRCNN

[36], VDSR [14], DRCN [15], LapSRN [42], DRRN [13], Memnet [49], EDSR [48], RDN [50] at

a scale of x2, x3, x4. Results are validated on public benchmark dataset Set5 [61], Set14 [62],

BSDS100 [63] and Urban100 [64]. For comparison, predicted RGB images are first converted

to YCBCr space, and then PSNR/SSIM of the Y channel are computed only. This maintains a fair

comparison against the state-of-the-art methods. In Table 4.6, the final test results on DIV2K dataset

of all the methods using the full 800 training images are displayed. In this case, the evaluation is

done on RGB images. The comparison with other methods, on statistical result of Y channels are

shown in Table 4.7.

From the experimental data included in Table 4.7, some discussions can be made. By using

the depth wise separable convolution, improved results are obtained consistently for all the scaling

factors, while keeping the number of parameters minimal. Even the baseline, although having the

47

Architecture Scale
DIV2K Val.

PSNR/SSIM

x2 33.63/0.9453

EFNet-B x3 30.24/0.8760

x4 28.49/0.8179

x2 33.69/0.9492

EFNet x3 30.31/0.8795

x4 28.55/0.8205

x2 33.65/0.9489

EFNet+ x3 30.26/0.8793

x4 28.59/0.8219

Table 4.6: Performance Evaluation on NTIRE validation set using all the 800 DIV2K training images by the three different models.

simplest structure, exceeds the state-of-the-art performance. Moreover, proposed architecture eases

the training with the Adam optimizer having no gradient clipping in action. However, performance

improvement with the Urban100 dataset is not quite significant on x4. This is obvious, as major

edges and textures are lost there because of the higher down sampling factor. Those features on

Urban100 dataset are very challenging to predict and reconstruct. Yet, the baseline performance is

aligned with the recent results, although a very basic error function like MAE is used in this context.

One interesting observation is that, for scaling factor x2 & x3, EFNet performs slightly better than

EFNet+, whereas in x4, EFNet+ exceeds all others. This may be due to the capability of extracting

high-level features e.g., edges in EFNet+ architecture. One more reason is, the edge features

are extracted from the down sampled image and then upscaled by sub-pixel convolution. This

technique helps the network to separately and independently reconstruct the high-level features,

and hence improves the performance for higher scaling factors. On the contrary, for the lower

scaling factors like x2 & x3, information lose is insignificant, and the convolutional filters can better

extract the edge or texture features than the edge operators. Therefore, EFNet+ performance turns

detrimental and does nothing but increase parameter count in x2 & x3 scale.

Comparison is also done with the other state-of-the-art methods with respect to network depth,

parameters and runtime. Figure 4.1, 4.2, 4.3 plot the depth vs parameter number on x2, x3, x4

scales. In all cases, the proposed networks perform depth expansion with a very few parameter

requirements alongside rise in PSNR and SSIM. The improvement is even remarkable compared

48

to those having more parameters and layers. With the EFNet+ architecture in scale x4, the

enhancement is more distinct. This result indicates that, EFNet+ performs evidently with the

higher down sampled images. These plots show how efficient use of recursions and depth wise

separable convolution deepen the network and improves the performance efficiently, while keeping

the parameter count as low as possible.

Further analysis is done on the statistical result PSNR with the other state-of-the-art models

against the parameter numbers. In Figure 4.4, 4.5, 4.6, comparison is shown between the PSNR

and parameters, with Set14 dataset on x2, x3, x4 scales respectively. Achievement is greater

performance gain with a very few parameters. Only DRRN has a smaller number of parameters.

However, their performance is not up to the mark compared to EFNets. Since, EDSR and RDN

has more parameters compared to reduced PSNR, they are skipped from the plot for the clear

visualization. Finally, runtime vs PSNR plot is compared against the prominent methods. For a fair

comparison, plots in Figure 4.7, 4.8, 4.9 are conducted on the same Set14 dataset. In the all cases,

proposed models show improvement will less computation time. SRCNN, LapSRN are faster, but

have less PSNR. It is also notable that, EFNet+ runs slightly slower than the DRRN, MemNet and

VDSR due to having a masking part and an edge fusion part. As a result, more computations are

made to better extract edges and textures. Moreover, SRCNN, LapSRN and DRRN have 3, 24(on

x4 scale), 54 layers respectively, compared to 100 convolution layers of the EFNet+, and in turn

they tend to run faster. However, due to efficient use of parameters in the proposed networks, the

difference is not very big. So, it can be said, as an interference performance trade-off, proposed

models outperform the previous models substantially in all aspects.

Visual qualitative comparison among the methods are also presented. Figure 4.10 to 4.24 show

some x4 & x3 upscaling results on images from Set5 [61], Set14 [62], BSDS100 [63], Urban100

[64] database using different methods. It is evident that, proposed architecture can detect the

edges and textures better than the other methods. The sharpness of the edges and improved clarity

of the images are clearly seen even in the higher x4 scaling factor, where other methods tend to

produce smooth pictures. The complex images from BSDS100 and Urban100 have very fine details

and textures and reconstructing the SR image doesn’t show the expected improvement qualitatively.

However, EFNets performances are aligned with the other state-of-the-art methods and such results

are included in Figure 4.16 to 4.20. Proposed methods still perform better with a less noticeable

49

difference in between.

Based on all the aforementioned quantitative and qualitative results, decision can be made

that, proposed all three models perform agreeably well over the state-of-the-art methods on all the

scales. In addition, they are efficient to utilize the parameters, even with the baseline, through

the inclusion of separable convolution technique. Inclusion of shallow masking network and edge

fusion makes the network more robust to the textures and edges, with a slight increase in the

inference time. The technique offers better PSNR and SSIM over the state-of-the-art models and

also very efficient in using the parameters and speed.

50

Architecture Scale
Set5 Set14 BSDS100 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic

x2

33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403

SRCNN [36] 36.66 0.9542 32.45 0.9067 31.36 0.8879 29.50 0.8946

VDSR [14] 37.53 0.9590 33.05 0.9130 31.90 0.8960 30.77 0.9140

DRCN [15] 37.63 0.9588 33.04 0.9118 31.85 0.8942 30.75 0.9133

LapSRN [42] 37.52 0.9591 33.08 0.9130 31.08 0.8950 30.41 0.9101

DRRN [13] 37.74 0.9591 33.23 0.9136 32.05 0.8973 31.23 0.9188

MemNet [49] 37.78 0.9597 33.28 0.9142 32.08 0.8978 31.31 0.9195

LRFNet-S [54] - - - - - - - -

EDSR [48] 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351

RDN [50] 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353

EFNet-B 38.29 0.9617 34.07 0.9215 32.37 0.9019 32.93 0.9356

EFNet 38.32 0.9619 34.09 0.9216 32.41 0.9024 32.95 0.9357

EFNet+ 38.31 0.9617 34.06 0.9216 32.40 0.9022 32.91 0.9355

Bicubic

x3

30.39 0.8682 29.76 0.7742 27.21 0.7385 24.46 0.7349

SRCNN [36] 32.75 0.9090 29.30 0.8215 28.41 0.7863 26.24 0.7989

VDSR [14] 33.67 0.9210 29.78 0.8320 28.83 0.7990 27.14 0.8290

DRCN [15] 33.82 0.9226 29.76 0.8311 28.80 0.7963 27.15 0.8276

LapSRN [42] - - - - - - - -

DRRN [13] 34.03 0.9244 29.96 0.8349 28.95 0.8004 27.53 0.8378

MemNet [49] 34.09 0.9248 30.00 0.8350 28.96 0.8001 27.56 0.8376

LRFNet-S [54] - - - - - - - -

EDSR [48] 34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653

RDN [50] 34.71 0.9296 30.57 0.8468 29.26 0.8093 28.80 0.8653

EFNet-B 34.75 0.9301 30.62 0.8473 29.31 0.8099 28.83 0.8657

EFNet 34.79 0.9306 30.69 0.8476 29.35 0.8108 28.88 0.8662

EFNet+ 34.77 0.9301 30.66 0.8473 29.31 0.8104 28.87 0.8663

Bicubic

x4

28.42 0.8104 26.00 0.7027 25.96 0.6675 23.14 0.6577

SRCNN [36] 30.48 0.8628 27.50 0.7513 26.90 0.7101 24.52 0.7221

VDSR [14] 31.35 0.8830 28.02 0.7680 27.29 0.0726 25.18 0.7540

DRCN [15] 31.53 0.8854 28.02 0.7640 27.23 0.7233 25.14 0.7510

LapSRN [42] 31.54 0.8850 28.19 0.7720 27.32 0.7270 25.21 0.7560

DRRN [13] 31.68 0.8888 28.21 0.7721 27.38 0.7284 25.44 0.7638

MemNet [49] 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630

LRFNet-S [54] 31.91 0.8900 28.44 0.7780 27.47 0.7330 25.70 0.7730

EDSR [48] 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033

RDN [50] 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028

EFNet-B 32.51 0.8994 28.88 0.7875 27.79 0.7425 26.65 0.8032

EFNet 32.56 0.8997 28.91 0.7878 27.82 0.7429 26.68 0.8035

EFNet+ 32.61 0.8999 28.95 0.7882 27.86 0.7435 26.72 0.8038

Table 4.7: Evaluation result on public benchmark set according to PSNR/SSIM. Red indicates the best.

51

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Parameters
(in thousands)

0

50

100

150

D
ep

th

SRCNN

VDSR DRCN

LapSRN

DRRN

MemNet
EFNet-B

EFNet
EFNet+

Figure 4.1: Plot of Network Depth vs Parameters against some state-of-the-art and proposed models on scale x2.

52

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Parameters
(in thousands)

0

50

100

150

D
ep

th

SRCNN

VDSR DRCN

DRRN

MemNet
EFNet-B

EFNet
EFNet+

Figure 4.2: Plot of Network Depth vs Parameters against some state-of-the-art and proposed models on scale x3.

53

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Parameters
(in thousands)

0

50

100

150

D
ep

th

SRCNN

VDSR DRCN
LapSRN

DRRN

MemNet
EFNet-B

EFNet
EFNet+

Figure 4.3: Plot of Network Depth vs Parameters against some state-of-the-art and proposed models on scale x4.

54

0 200 400 600 800 1000 1200 1400 1600 1800

Number of Parameters
(in thousands)

32.4

32.6

32.8

33

33.2

33.4

33.6

33.8

34

34.2

P
S

N
R

 SRCNN

VDSR DRCN
LapSRN

DRRN
MemNet

EFNet-B EFNet
 EFNet+

Figure 4.4: Plot of PSNR on Set14 dataset vs Network Parameters against some state-of-the-art and proposed models on scale x2.

55

0 200 400 600 800 1000 1200 1400 1600 1800

Number of Parameters
(in thousands)

29.2

29.4

29.6

29.8

30

30.2

30.4

30.6

P
S

N
R

 SRCNN

VDSR DRCN

DRRN
MemNet

EFNet-B

 EFNet
 EFNet+

Figure 4.5: Plot of PSNR on Set14 dataset vs Network Parameters against some state-of-the-art and proposed models on scale x3.

56

0 200 400 600 800 1000 1200 1400 1600 1800

Number of Parameters
(in thousands)

27.4

27.6

27.8

28

28.2

28.4

28.6

28.8

29

P
S

N
R

 SRCNN

VDSR DRCN

LapSRNDRRN
MemNet

EFNet-B
 EFNet
 EFNet+

Figure 4.6: Plot of PSNR on Set14 dataset vs Network Parameters against some state-of-the-art and proposed models on scale x4.

57

10-2 10-1 100 101

Faster Run Time Slower
(in seconds)

32.4

32.6

32.8

33

33.2

33.4

33.6

33.8

34

34.2

P
S

N
R

SRCNN

VDSR DRCN
LapSRN

DRRN
MemNet

EDSR

RDN
EFNet-B EFNet

 EFNet+

Figure 4.7: Plot of PSNR vs Network Runtime against some state-of-the-art and proposed models on scale x2 on Set14 dataset.

58

10-2 10-1 100 101

Faster Run Time Slower
(in seconds)

29.2

29.4

29.6

29.8

30

30.2

30.4

30.6

30.8

P
S

N
R

SRCNN

VDSR DRCN

DRRN
MemNet

EDSR
RDN

EFNet-B

EFNet
EFNet+

Figure 4.8: Plot of PSNR vs Network Runtime against some state-of-the-art and proposed models on scale x3 on Set14 dataset.

59

10-2 10-1 100 101

Faster Run Time Slower
(in seconds)

27.4

27.6

27.8

28

28.2

28.4

28.6

28.8

29

P
S

N
R

SRCNN

VDSR DRCN

LapSRN DRRN
MemNet

 EDSRRDN

EFNet-B
 EFNet

 EFNet+

Figure 4.9: Plot of PSNR vs Network Runtime against some state-of-the-art and proposed models on scale x4 on Set14 dataset.

60

(a) Ground Truth Image

(b) Ground Truth Patch

(c) Bicubic Patch

(d) SRCNN Patch

(e) VDSR Patch

(f) DRCN Patch

(g) LapSRN Patch

(h) DRRN Patch

(i) MemNet Patch

(j) EDSR Patch

(k) RDN Patch

(l) EFNet+ Patch

Figure 4.10: Visual comparison of the EFNet+ architecture with others on scale x4.

61

(a) Ground Truth Image

(b) Ground Truth Patch

(c) Bicubic Patch

(d) SRCNN Patch

(e) VDSR Patch

(f) DRCN Patch

(g) LapSRN Patch

(h) DRRN Patch

(i) MemNet Patch

(j) EDSR Patch

(k) RDN Patch

(l) EFNet+ Patch

Figure 4.11: Visual comparison of the EFNet+ architecture with others on scale x4.

62

(a) Ground Truth Image

(b) Ground Truth Patch

(c) Bicubic Patch

(d) SRCNN Patch

(e) VDSR Patch

(f) DRCN Patch

(g) LapSRN Patch

(h) DRRN Patch

(i) EDSR Patch

(j) RDN Patch

(k) EFNet+ Patch

Figure 4.12: Visual comparison of the EFNet+ architecture with others on scale x4.

63

(a) Ground Truth Image

(b) Ground Truth Patch

(c) Bicubic Patch

(d) SRCNN Patch

(e) VDSR Patch

(f) DRCN Patch

(g) LapSRN Patch

(h) DRRN Patch

(i) EDSR Patch

(j) RDN Patch

(k) EFNet+ Patch

Figure 4.13: Visual comparison of the EFNet+ architecture with others on scale x4.

64

(a) Ground Truth Image

(b) Ground Truth Patch

(c) Bicubic Patch

(d) SRCNN Patch

(e) VDSR Patch

(f) DRCN Patch

(g) LapSRN Patch

(h) DRRN Patch

(i) EDSR Patch

(j) EFNet+ Patch

Figure 4.14: Visual comparison of the EFNet+ architecture with others on scale x4.

65

(a) Ground Truth Image

(b) Ground Truth Patch

(c) Bicubic Patch

(d) SRCNN Patch

(e) VDSR Patch

(f) DRCN Patch

(g) LapSRN Patch

(h) DRRN Patch

(i) EDSR Patch

(j) EFNet+ Patch

Figure 4.15: Visual comparison of the EFNet+ architecture with others on scale x4.

66

(a) Ground Truth Image

(b) Ground Truth Patch

(c) Bicubic Patch

(d) SRCNN Patch

(e) VDSR Patch

(f) DRCN Patch

(g) LapSRN Patch

(h) DRRN Patch

(i) EFNet+ Patch

Figure 4.16: Visual comparison of the EFNet+ architecture with others on scale x4.

67

(a) Ground Truth Image

(b) Ground Truth Patch

(c) Bicubic Patch

(d) SRCNN Patch

(e) VDSR Patch

(f) DRCN Patch

(g) LapSRN Patch

(h) DRRN Patch

(i) EFNet+ Patch

Figure 4.17: Visual comparison of the EFNet+ architecture with others on scale x4.

68

(a) Ground Truth Image

(b) Ground Truth Patch

(c) Bicubic Patch

(d) SRCNN Patch

(e) VDSR Patch

(f) DRCN Patch

(g) LapSRN Patch

(h) DRRN Patch

(i) EFNet+ Patch

Figure 4.18: Visual comparison of the EFNet+ architecture with others on scale x4.

69

(a) Ground Truth Image

(b) Ground Truth Patch

(c) Bicubic Patch

(d) SRCNN Patch

(e) VDSR Patch

(f) DRCN Patch

(g) LapSRN Patch

(h) DRRN Patch

(i) EFNet+ Patch

Figure 4.19: Visual comparison of the EFNet+ architecture with others on scale x4.

70

(a) Ground Truth Image

(b) Ground Truth Patch

(c) Bicubic Patch

(d) SRCNN Patch

(e) VDSR Patch

(f) DRCN Patch

(g) LapSRN Patch

(h) DRRN Patch

(i) EFNet+ Patch

Figure 4.20: Visual comparison of the EFNet+ architecture with others on scale x4.

71

(a) Ground Truth Image

(b) Ground Truth Patch

(c) Bicubic Patch

(d) SRCNN Patch

(e) VDSR Patch

(f) DRCN Patch

(g) LapSRN Patch

(h) DRRN Patch

(i) MemNet Patch

(j) EFNet+ Patch

Figure 4.21: Visual comparison of the EFNet+ architecture with others on scale x3.

72

(a) Ground Truth Image

(b) Ground Truth Patch

(c) Bicubic Patch

(d) SRCNN Patch

(e) VDSR Patch

(f) DRCN Patch

(g) LapSRN Patch

(h) DRRN Patch

(i) MemNet Patch

(j) EFNet+ Patch

Figure 4.22: Visual comparison of the EFNet+ architecture with others on scale x3.

73

(a) Ground Truth Image

(b) Ground Truth Patch

(c) Bicubic Patch

(d) SRCNN Patch

(e) VDSR Patch

(f) DRCN Patch

(g) LapSRN Patch

(h) DRRN Patch

(i) EFNet+ Patch

Figure 4.23: Visual comparison of the EFNet+ architecture with others on scale x3.

74

(a) Ground Truth Image

(b) Ground Truth Patch

(c) Bicubic Patch

(d) SRCNN Patch

(e) VDSR Patch

(f) DRCN Patch

(g) LapSRN Patch

(h) DRRN Patch

(i) EFNet+ Patch

Figure 4.24: Visual comparison of the EFNet+ architecture with others on scale x3.

75

Chapter 5

Conclusions

5.1 Brief History of Thesis

In this thesis, three novel methods are proposed to improve image SR reconstruction in an efficient

manner. In the beginning, a baseline model (EFNet-B) is shown, which can expand the receptive

field with a very low number of parameters. In addition to that, a shallow multiplication segment

is incorporated (in EENet), which tends to emphasize more on the edge and texture details of

the baseline model. And finally, two common edge operators-Sobel and Laplacian are infused (in

EFNet+) to more accurately sharpen the image with fine textures and details. All these models

can increase the efficiency with a quite substantial performance boosting both qualitatively and

quantitatively.

In the beginning, different convolution arrangements are analyzed to find the best fit for the

baseline, and then, evaluation of baseline performance with different recursions are applied to

achieve the optimal trade-off. Through the design space exploration, it is shown, how the separable

convolution technique reaches the peak performance with a careful design of the network such

that, there is a relaxed trade-off among the memory consumption, runtime and accuracy. In the

next phase, 1-D convolution kernel is introduced in the shallow masking sub-part of the network

to expand the receptive field with very few parameters. It appears in the experiment that, using

1-D kernel helps to utilize bigger filters with less computation, hence, extracts the global features

economically. At the end, the importance of edge fusion for higher scaling factors through learned

upscaling process is demonstrated. The improvements are quite substantial with a very low memory

footprint.

The impact of three different networks is clearly shown with higher scaling factors gradually. In

76

general, proposed designs show how to achieve better reconstruction accuracy, and increase depth

with less parameters and without major sacrificing the speed. Recursion, 1-D kernel and depth wise

separable convolution are applied in that regard. Also, a novel architecture is proposed to better

fit all those techniques. Unquestionably all proposed models achieve significant improvement over

the state-of-the-art methods, especially with the higher scaling factors.

5.2 Expansion of Work

Although, a performance improvement is achieved, there is still scope for further improvement.

Further design space exploration may include squeezing the architecture more efficiently. Recur-

sions are used here to increase the depth, while after a certain point recursions are detrimental.

Perhaps, some other network architecture may enable the network to apply more recursions with-

out affecting the performance. In addition, analyzing flattened convolution technique proposed

in [67] can also be done for more efficiency. In the shallow part of EFNet, only a few 9× 1 & 1× 9

size kernels are applied. Different architecture can also be used here to more accurately extract the

edges for the Attention part. In EFNet+, only Sobel and Laplacian operators are used. However,

these operators are highly sensitive to noise. So, a noise reduction layer may be included in the

architecture to better super resolve the images. The canny edge detector can also be introduced

for superior edge feature extractions. Since, proposed architecture shows better results, this can be

used as the generator in a GAN model for performance upgrade.

Another extension may be proposed by upgrading the loss function, i.e., incorporating the

structural information while optimizing the network. Here in the experiments, only MAE is used,

which is basically pixel base loss function. This is not effective for human visual system for higher

scaling factors. So introducing a feature based loss function like [46, 68] in the Attention part of

proposed network will help to generate more high-level features. A pitfall of this technique is, it

tends to corrupt original structure while sharpening the images. Since, this loss function will be

applied in the shallow Attention part of the network besides the pixel base loss in the main part

of the network, this duo will generate higher PSNR, SSIM and more accurate image for human

visual system. A careful combination of these losses can be a better solution to address classic SISR

problem.

77

Bibliography

[1] R. C. Gonzalez, R. E. Woods et al., “Digital image processing,” 2017.

[2] R. Szeliski, “Computer vision: algorithms and application,” 2010.

[3] R. Tsai, “Multiframe image restoration and registration,” Advance Computer Visual and Image

Processing, vol. 1, pp. 317–339, 1984.

[4] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse representation,”

IEEE transactions on image processing, vol. 19, no. 11, pp. 2861–2873, 2010.

[5] S. Dai, M. Han, W. Xu, Y. Wu, and Y. Gong, “Soft edge smoothness prior for alpha channel

super resolution.” in CVPR, vol. 7. Citeseer, 2007, pp. 1–8.

[6] J. Sun, Z. Xu, and H.-Y. Shum, “Image super-resolution using gradient profile prior,” in 2008

IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2008, pp. 1–8.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional

neural networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” arXiv preprint arXiv:1409.1556, 2014.

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2015, pp. 1–9.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.

770–778.

78

[11] ——, “Identity mappings in deep residual networks,” in European conference on computer

vision. Springer, 2016, pp. 630–645.

[12] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional

networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition,

2017, pp. 4700–4708.

[13] Y. Tai, J. Yang, and X. Liu, “Image super-resolution via deep recursive residual network,” in

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, no. 4, 2017.

[14] J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image super-resolution using very deep

convolutional networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2016, pp. 1646–1654.

[15] ——, “Deeply-recursive convolutional network for image super-resolution,” in Proceedings of

the IEEE conference on computer vision and pattern recognition, 2016, pp. 1637–1645.

[16] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image super-resolution using very deep

residual channel attention networks,” in Proceedings of the European Conference on Computer

Vision (ECCV), 2018, pp. 286–301.

[17] S. Kim, N. K. Bose, and H. M. Valenzuela, “Recursive reconstruction of high resolution image

from noisy undersampled multiframes,” IEEE Transactions on Acoustics, Speech, and Signal

Processing, vol. 38, no. 6, pp. 1013–1027, 1990.

[18] N. Bose, H. Kim, and H. M. Valenzuela, “Recursive total least squares algorithm for image

reconstruction from noisy, undersampled frames,” Multidimensional Systems and Signal

Processing, vol. 4, no. 3, pp. 253–268, 1993.

[19] R. R. Makwana and N. D. Mehta, “Single image super-resolution via iterative back projection

based canny edge detection and a gabor filter prior,” International Journal of Soft Computing

& Engineering, vol. 3, no. 1, pp. 379–384, 2013.

[20] X. Li and M. T. Orchard, “New edge-directed interpolation,” IEEE transactions on image

processing, vol. 10, no. 10, pp. 1521–1527, 2001.

79

[21] L. Zhang and X. Wu, “An edge-guided image interpolation algorithm via directional filtering

and data fusion,” IEEE transactions on Image Processing, vol. 15, no. 8, pp. 2226–2238, 2006.

[22] J. Yang, J. Wright, T. Huang, and Y. Ma, “Image super-resolution as sparse representation

of raw image patches,” in 2008 IEEE Conference on Computer Vision and Pattern Recognition.

Citeseer, 2008, pp. 1–8.

[23] R. Timofte, V. De Smet, and L. Van Gool, “Anchored neighborhood regression for fast example-

based super-resolution,” in Proceedings of the IEEE international conference on computer vision,

2013, pp. 1920–1927.

[24] ——, “A+: Adjusted anchored neighborhood regression for fast super-resolution,” in Asian

conference on computer vision. Springer, 2014, pp. 111–126.

[25] S. Wang, L. Zhang, Y. Liang, and Q. Pan, “Semi-coupled dictionary learning with applications

to image super-resolution and photo-sketch synthesis,” in 2012 IEEE Conference on Computer

Vision and Pattern Recognition. IEEE, 2012, pp. 2216–2223.

[26] C. Francois, “Deep learning with python,” 2017.

[27] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning. book in preparation for mit press,”

URL¡ http://www. deeplearningbook. org, 2016.

[28] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,”

in Proceedings of the 27th international conference on machine learning (ICML-10), 2010, pp.

807–814.

[29] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based learning applied to document

recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification,” in Proceedings of the IEEE international conference on

computer vision, 2015, pp. 1026–1034.

[31] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error

propagation,” California Univ San Diego La Jolla Inst for Cognitive Science, Tech. Rep., 1985.

80

[32] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical

image database,” in 2009 IEEE conference on computer vision and pattern recognition. Ieee,

2009, pp. 248–255.

[33] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition challenge,”

International journal of computer vision, vol. 115, no. 3, pp. 211–252, 2015.

[34] D. Frossard. (2016) Vgg in tensorflow. [Online]. Available: https://www.cs.toronto.edu/

∼frossard/post/vgg16/

[35] A. Veit, M. J. Wilber, and S. Belongie, “Residual networks behave like ensembles of relatively

shallow networks,” in Advances in neural information processing systems, 2016, pp. 550–558.

[36] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using deep convolutional

networks,” IEEE transactions on pattern analysis and machine intelligence, vol. 38, no. 2, pp.

295–307, 2016.

[37] C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution convolutional neural

network,” in European conference on computer vision. Springer, 2016, pp. 391–407.

[38] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in

European conference on computer vision. Springer, 2014, pp. 818–833.

[39] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang,

“Real-time single image and video super-resolution using an efficient sub-pixel convolutional

neural network,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2016, pp. 1874–1883.

[40] W. Shi, J. Caballero, L. Theis, F. Huszar, A. Aitken, C. Ledig, and Z. Wang, “Is the

deconvolution layer the same as a convolutional layer?” arXiv preprint arXiv:1609.07009,

2016.

[41] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic

segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition,

2015, pp. 3431–3440.

81

https://www.cs.toronto.edu/~frossard/post/vgg16/
https://www.cs.toronto.edu/~frossard/post/vgg16/

[42] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep laplacian pyramid networks for fast

and accurate super-resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp.

624–632.

[43] A. Bruhn, J. Weickert, and C. Schnörr, “Lucas/kanade meets horn/schunck: Combining local

and global optic flow methods,” International journal of computer vision, vol. 61, no. 3, pp.

211–231, 2005.

[44] W. Yang, J. Feng, J. Yang, F. Zhao, J. Liu, Z. Guo, and S. Yan, “Deep edge guided recurrent

residual learning for image super-resolution,” IEEE Transactions on Image Processing, vol. 26,

no. 12, pp. 5895–5907, 2017.

[45] Y. Liu, Y. Wang, N. Li, X. Cheng, Y. Zhang, Y. Huang, and G. Lu, “An attention-based

approach for single image super resolution,” in 2018 24th International Conference on Pattern

Recognition (ICPR). IEEE, 2018, pp. 2777–2784.

[46] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani,

J. Totz, Z. Wang et al., “Photo-realistic single image super-resolution using a generative

adversarial network,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2017, pp. 4681–4690.

[47] T. Tong, G. Li, X. Liu, and Q. Gao, “Image super-resolution using dense skip connections,” in

Computer Vision (ICCV), 2017 IEEE International Conference on. IEEE, 2017, pp. 4809–4817.

[48] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual networks for single

image super-resolution,” in The IEEE conference on computer vision and pattern recognition

(CVPR) workshops, vol. 1, no. 2, 2017, p. 4.

[49] Y. Tai, J. Yang, X. Liu, and C. Xu, “Memnet: A persistent memory network for image

restoration,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2017, pp. 4539–4547.

[50] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense network for image super-

resolution,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

82

[51] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” arXiv preprint

arXiv:1511.07122, 2015.

[52] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous convolution for

semantic image segmentation,” arXiv preprint arXiv:1706.05587, 2017.

[53] C. Peng, X. Zhang, G. Yu, G. Luo, and J. Sun, “Large kernel mattersimprove semantic

segmentation by global convolutional network,” in Computer Vision and Pattern Recognition

(CVPR), 2017 IEEE Conference on. IEEE, 2017, pp. 1743–1751.

[54] G. Seif and D. Androutsos, “Large receptive field networks for high-scale image

super-resolution,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops, 2018, pp. 763–772.

[55] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in Proceedings

of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1251–1258.

[56] C.-F. Wang. (2018) A basic introduction to separable convolutions. [Online]. Available: https:

//towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728

[57] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented natural

images and its application to evaluating segmentation algorithms and measuring ecological

statistics,” in Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International

Conference on, vol. 2. IEEE, 2001, pp. 416–423.

[58] E. Agustsson and R. Timofte, “Ntire 2017 challenge on single image super-resolution: Dataset

and study,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

Workshops, July 2017.

[59] R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang, L. Zhang, B. Lim, S. Son, H. Kim, S. Nah,

K. M. Lee et al., “Ntire 2017 challenge on single image super-resolution: Methods and results,”

in Computer Vision and Pattern Recognition Workshops (CVPRW), 2017 IEEE Conference on.

IEEE, 2017, pp. 1110–1121.

83

https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728
https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728

[60] R. Timofte, S. Gu, J. Wu, L. Van Gool, L. Zhang, M.-H. Yang, M. Haris et al., “Ntire 2018

challenge on single image super-resolution: Methods and results,” in The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) Workshops, June 2018.

[61] M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel, “Low-complexity single-image

super-resolution based on nonnegative neighbor embedding,” 2012.

[62] R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using sparse-representations,”

in International conference on curves and surfaces. Springer, 2010, pp. 711–730.

[63] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and hierarchical image

segmentation,” IEEE transactions on pattern analysis and machine intelligence, vol. 33, no. 5,

pp. 898–916, 2010.

[64] J.-B. Huang, A. Singh, and N. Ahuja, “Single image super-resolution from transformed self-

exemplars,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2015, pp. 5197–5206.

[65] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli et al., “Image quality assessment: from

error visibility to structural similarity,” IEEE transactions on image processing, vol. 13, no. 4,

pp. 600–612, 2004.

[66] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[67] J. Jin, A. Dundar, and E. Culurciello, “Flattened convolutional neural networks for

feedforward acceleration,” arXiv preprint arXiv:1412.5474, 2014.

[68] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and super-

resolution,” in European conference on computer vision. Springer, 2016, pp. 694–711.

84

	Declarationto.44em.
	Abstractto.44em.
	Acknowledgmentsto.44em.
	List of Tablesto.44em.
	List of Figuresto.44em.
	Introduction
	Problem Context
	Scope and Contributions of this Thesis
	Overview of this Thesis

	Related Work
	Pre-Deep Learning Super-Resolution
	First Formulation
	Recursive Least Squares
	Interpolation Method
	Edge-Preserving Method
	Sparse Coding Method

	Convolutional Neural Networks
	Basics of Convolutional Neural Networks
	State-of-the-art Techniques in Convolutional Neural Networks

	Deep Networks for Super-Resolution
	Primary CNNs for Super-Resolution
	Further Improved Deeper Networks

	Fast Super-Resolution Processing
	Recent Development for Super-Resolution
	Main Drawbacks of Previous Methods

	Technical Approach
	Expansion of Receptive Field
	Theory of 1-D Convolution and Depth wise Separable Convolution
	Design Space Exploration
	Recursive Residual blocks
	Shallow Multiplicative blocks for Attention
	Combined Network Architecture

	Experimental Results
	Execution of Experiment
	Training Dataset
	Measurement Metrics
	Loss Function
	Implementation Details

	Litmus Test
	Experimenting Baseline with Recursions
	Experimenting EFNet with various Factors

	Comparison with the state-of-the-art Methods

	Conclusions
	Brief History of Thesis
	Expansion of Work

	Bibliography

