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Abstract

This paper proposes a demand response method that aims to reduce the long-term charging cost of a plug-in

electric vehicle (PEV) while overcoming obstacles such as the stochastic nature of the user’s driving be-

haviour, traffic condition, energy usage, and energy price. The problem is formulated as a Markov Decision

Process (MDP) with unknown transition probabilities and solved using deep reinforcement learning (RL)

techniques. Existing methods using machine learning either requires initial user behaviour data, or converges

far too slowly. This method does not require any initial data on the PEV owner’s driving behaviour and

shows improvement on learning speed. A combination of both model-based and model-free learning called

Dyna-Q algorithm is utilized. Every time a real experience is obtained, the model is updated and the RL

agent will learn from both real data set and “imagined” experience from the model. Due to the vast amount

of state space, a table-look up method is impractical and a value approximation method using deep neural

networks is employed for estimating the long-term expected reward of all state-action pairs. An average

of historical price is used to predict future price. Three different user behaviour without any initial PEV

owner behaviour data are simulated. A purely model-free DQN method is shown to run out of battery

during trips very often, and is impractical for real life charging scenarios. Simulation results demonstrate

the effectiveness of the proposed approach and its ability to reach an optimal policy quicker while avoiding

state of charge (SOC) depleting during trips when compared to existing PEV charging schemes for all three

different users profiles.
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Chapter 1

Introduction

1.1 Background and Motivation

Electric vehicles (EV) use electric motors powered by a battery for propulsion instead of burning gasoline.

EVs came into existence in the 1800s and has been the propulsion method for some trains and small vehicles.

EVs are seeing a resurgence due to technological advancement in this field, and a world-wide focus on

renewable energy. Plug-in electric vehicle (PEV) is a sub-class of EVs that can be plugged in at home,

in public, or private charging stations. According to electrive.com, there are currently almost 5.6 million

PEVs in the world. Since PEVs are able to recharge their batteries from renewable energy sources such as

wind, solar, hydroelectric, or nuclear power sources, their greenhouse gas emission is effectively zero when

charged with renewable energy [1]. It was found that all the electric cars on average produce less than half

of the global warming emissions when compared with traditional gasoline vehicles, even when taken into

consideration the higher emissions caused by electric car manufacturing [2]. Many governments are now

giving incentives to purchasing PEVs as they are environmentally friendly. For instance, Transport Canada,

a Canadian government agency, is now offering a purchase incentive program for electric vehicles. Any

Canadian who purchase a PEV are eligible for an amount of $2500 to $5000. These types of programs are

very common today for many countries.

Electric motors are very efficient at converting stored energy into driving the vehicle. PEVs do not

consume energy when at rest or coasting [3]. It is shown that PEVs can have an efficiency of around 80%,

1



in comparison with 15% for gasoline engines, and 20% for diesel engines [4]. Most electric cars have much

lower cost per mile than traditional gasoline vehicles. For instance, the Nissan Leaf has a cost of 3.5 cents

per mile, and the Chevrolet Volt has a cost of 3.8 cents per mile. Comparatively, gasoline cars such as the

Toyota Corolla has a cost of 11.9 cents per mile, and the Hyundai Elantra has a cost of 13.1 cents per mile.

PEVs drastically reduces cost of drivers due to their better efficiency [5].

PEVs also have a lower maintenance cost when compared to combustion vehicles, because electronic

systems break down less often than mechanical systems. As PEVs do not run off of gasoline or diesel, they

do not require oil changes, which reduces costs for owners [4]

Another very useful feature of PEVs is their utilization of vehicle-to-grid mode. In this mode, PEVs

offer owners the ability to sell electricity stored in their batteries back to the power grid, which can help

utilities operate more efficiently [6]. The vehicle-to-grid mode help balance loads by charging when the

demand is low, and discharging when the demand is high. The PEV’s batteries could also be used as backup

power in case of an electricity outage.

Although there are downsides to PEVs, such as the limited range of the vehicle, cost of battery, charging

time, and the availability of charging infrastructure, most of these problems are showing improvement with

time. For instance, The cost of battery has decreased by 70% between 2008 and 2014.

Electric vehicles are expected to increase to 22% of the global share in 2030 [7], which means roughly

240 million cars in the world will be electrical. The average electric vehicle battery is 23kWh, which

implies that there will be 5.5 Terawatt Hour of electric vehicle battery storage world wide. These are very

conservative estimates and the reality of total electric vehicle battery storage is potentially much more.

If these battery storages are used in load demand response strategies, the power grid will be able to

greatly alleviate peak power demand. However, currently, there are no customer incentive to participate in

these strategies, therefore it becomes crucial that PEV owners get some benefit from participation. The most

intuitive solution is to reduce PEV’s charging cost from an owner’s perspective. It is found that PEV owners

can potentially earn hundreds of dollars depending on their daily drive by utilizing vehicle-to-grid mode [8].
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However, this is likely far from optimal, and a PEV owner must manually sell the PEV’s battery electricity.

Manually taking part in the selling/buying of electricity causes a huge nuance for PEV owners. Therefore,

more incentive can be given to PEV owners if the buying/selling of power is done automatically.

From this perspective, reinforcement learning techniques can be utilized to minimize a PEV owner’s

charging costs. Reinforcement learning (RL) has been gaining popularity due to advancement in research

and computing power. RL has had a long history with its origin dating back to 1950s, when Richard Bellman

described a problem of designing a controller to minimize a measure of a dynamical system’s behaviour over

time. This process has been introduced as a Markov Decision Process (MDP) [9]. Since then, RL has seen

successes in beating the world’s champion at Go, Chess, and Backgammon and has also achieved super

human performances in video games [10].

The goal of RL is to discover an optimal policy in a dynamic environment. This problem formulation

provides an excellent framework for PEV charging scheduling, as the PEV owner’s behaviour and energy

prices are both dynamic environments. In order to avoid owner participation in selling/buying power, a

RL agent can “learn” to perform this task automatically by observing the owner’s driving routines and

fluctuating energy prices. Having a RL agent perform this task effectively means that a PEV owner can

simply plug in his PEV at all times and his charging cost will be reduced and the PEV will have sufficient

charges for the owner’s trips.

1.2 Literature Review

Many methods to reduce the cost of charging PEV fleets have been proposed in literature [17–22]. An

optimal charging scheduling strategy for charging a large PEV fleet to reduce cost and supplying the

requested power to the grid is developed using partial differential equation in [17]. This method assumes

prior knowledge of the large PEV fleet. A fully distributed solution for solving PEV’s Cooperative Charging

(PEV-CC) problem is proposed in [18]. A multi-agent distributed approach to solving the PEV-CC problem

is developed in [19]. A game theoretic approach to finding optimal bidding strategies for electric vehicle
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aggregators with variable energy sources is formulated as a mathematical programming with equilibrium

constraints in [20]. A bidding strategy with the objective of minimizing charging costs for a vehicle fleet is

studied in [21], but it does not consider Vehicle-to-Grid mode. In [22], a decentralized real-time EV power

allocation scheme is proposed. All of the above methods only take into consideration the PEV fleet charging

problem and not from the perspectives of individual owners.

Numerous optimization methods to schedule PEV have been investigated in [23–29]. An optimization

approach to reduce cost of charging based on battery degradation is proposed in [23]. Day-ahead charg-

ing scheduling using information gap decision theory based approach is introduced in [24]. In [25], an

electric vehicle aggregator participating in electricity market, using a two-level optimization problem in the

framework of model predictive control is analysed. It is found this method can reduce cost compared to the

stochastic method and deterministic predictive method. Another two-stage optimization method for reducing

PEV charging cost for the workplace is proposed in [26]. In [27], a real-time charging scheme is proposed,

the problem is formulated as a binary optimization problem. A convex relaxation method is developed to

reduce the computation complexity of the algorithm. In [28], a task time allocation and reward scheme

for advertising PEV charging station information is proposed. PEV charging scheduling schemes can take

advantage of the Hybrid Machine Learning Model proposed in [29] to predict the power consumption on

trips. None of these approaches take the stochastic nature of PEV usage into account, as the problem is too

complex due to variations in the driver’s driving routine, traffic conditions, and energy price.

Methods using artificial intelligence such as reinforcement learning (RL) or artificial neural network to

solve the challenges of single PEV charging scheduling are gaining popularity in research. Methods using

existing user behaviour data to schedule a single PEV are examined in [30–32]. The authors of [30] use

an artificial neural network trained using historical household power comsumption and EV energy demand

data with two hidden layers to predict whether the PEV should charge or discharge. In [31], an off-line RL

charging scheduling using fitted Q-iteration is proposed. The problem is formulated as a Markov Decision

Process (MDP). This proposal achieved good results under the assumption that the user behaviour is known
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ahead of time. Two infinite horizon average cost MDP formulations are described for both hybrid vehicles

and PEVs in [32]. The MDPs are built from historical data on vehicle usage. In the real world, user’s

previous driving behavior is often unknown and varies from owner to owner. These off-line methods cannot

adapt if there are changes to the PEV owner’s driving routine.

Model-free RL methods are developed in [33–35]. Q-Table based method where electricity price and

time are discretized is utilized in [33] to discover an optimal demand response. However, this method

becomes impractical when energy price and time have a large number of states. The authors of [34] solve

the problem of having a large number of states by using a linear approximator to approximate Q-values.

However, this method can only approximate linear functions, while such relationships are generally non-

linear in a real life PEV charging scenario. In [35], the PEV charging scheduling problem is formulated as

an MDP and an optimal charging policy is found using a model-free deep-Q network with memory replay.

This method takes into account the user’s stochastic behaviour and the fluctuating energy price, and is able

to achieve good results. However, the simulation assumes that the PEV’s battery SOC will never reach zero,

and ignores the relationship between trip length and energy usage’s effect on the PEV’s battery SOC before

and after trips. In addition, the suggested method does not take full advantage of the PEV owner’s routinely

behaviour. Under a more realistic scenario, the PEV is found to run out of battery during trips quite often.

Furthermore, a pure model-free RL strategy takes a long time to discover an optimal charging policy.

1.3 Objectives

In this paper, a cost-efficient PEV charging/discharging scheduling strategy is proposed from the PEV

owner’s perspective. The proposed strategy fulfills the usage requirements of the PEV owner while taking

full advantage of the fluctuating energy price to reduce charging cost or, in some cases, earn a profit.

The problem is formulated as an MDP. A combination of model-based and model-free RL called Dyna-Q

algorithm is utilized. A deep-Q network is utilized to decide the optimal charging action when given the

current time of day, day of the week, current SOC of the PEV, current energy price, and the difference
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between current energy price and the average historical price for the next six hours. The approach considers

a real-life scenario that takes into consideration the relationship of battery SOC and the variability of trips.

The effectiveness of this approach is proven in simulations. The Dyna-Q algorithm can discover an optimal

strategy much quicker than a pure model-free RL strategy. Furthermore, the simulation shows that this

paper’s problem formulation ensures that the PEV’s battery SOC never decreases to zero during a trip, all

the while reducing the PEV owner’s charging cost. The method does not require any PEV owner’s historical

driving data. The model-based aspect of Dyna-Q algorithm is created and updated as experience is gained

from the PEV owner’s real-life driving.

1.4 Contributions

The contributions of this paper are as follows:

• A single PEV charging problem from the owner’s perspective is formulated as an MDP. The owner’s

driving routine, the relationship between battery SOC and trips, and fluctuating energy price are taken

into account.

• An optimal policy is discovered using a three-layer deep-Q network. The neural network can generate

an optimal charging policy based on PEV owner’s driving behaviour and fluctuating energy price

while keeping the PEV battery SOC above zero during trips.

• A combination of model-based and model-free RL is utilized in training the deep-Q network. This

ensures the an optimal charging policy is discovered quickly. The model for model-based RL is

updated from real driving experience after its initial creation. The RL agent will learn from both real

experience and experience generated from the model.

1.5 Thesis Outline

The remainder of this thesis is organized as follows.
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Chapter 2 gives the background information needed on various machine learning techniques. This in-

cludes the optimization method used by most machine learning techniques, supervised learning algorithms,

and how supervised learning algorithms is applied in reinforcement learning.

Chapter 3 outlines the system model for single PEV charging scheduling. The state, action, reward space

for reinforcement learning are discussed in detail.

Chapter 4 investigates the various reinforcement learning methods that can be applied to the PEV

charging problem. On-line, off-line, on-policy, off-policy, model-free, model-base, and combinations of

any of the above methods are discussed.

Chapter 5 provides the model-based aspect of our proposed reinforcement learning approach. The user’s

driving behaviour is modeled and updated every time an real experience occurs.

Chapter 6 presents the simulation results comparing various approaches to single PEV charging schedul-

ing.

Finally, chapter 7 concludes the thesis and discusses future works.
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Chapter 2

Machine Learning Fundamentals

This thesis relies heavily on machine learning techniques, and this section outlines the algorithms utilized.

Machine learning algorithms usually belong to three classes, and are listed as follows:

• Supervised learning: attempts to predict a target (dependent variable) from a given set of features

(independent variables). This class of machine learning algorithms usually requires massive amount

of sample data.

• Unsupervised learning: attempts to cluster data into different groups, without any target to predict.

• Reinforcement learning: attempts to learn a policy by making specific decisions. This class of

machine learning algorithms trains itself continuously within an environment through trial and error.

The proposed solution to PEV charging scheduling in this thesis makes use of supervised learning and

reinforcement learning extensively, and these techniques are discussed in-depth throughout the rest of this

thesis. The PEV charging scheduling scheme’s long term expected reward are estimated using a neural

network, which is a form of supervised learning.

2.1 Loss Function

The most common class of machine learning algorithms is supervised learning. This class of algorithms

usually tries to minimize an objective function, typically known as the loss function. The loss function is

8



usually the difference between a predicted value and the true value, more specifically shown as:

J = y − ŷ, (2.1)

where J is the loss function, ŷ is the predicted value, and y is the true value. The predicted value ŷ is usually

obtained using a value approximation method. The actual optimization method are discussed in following

chapters.

Traditionally, statistical methods such as linear regression are used to make predictions. With the recent

advancement in computing technology, machine learning methods such as neural networks and XGboost are

shown to drastically improve accuracy when compared to traditional statistical methods [36].

The two categories of supervised learning methods are regression and classification [37], which are

discussed in the following subsection. The regression aspect of supervised learning is used to estimate the

long term expected reward of a PEV charging scheduling policy.

2.1.1 Regression

Regression attempts to generalize and estimate the relationship between a dependent and independent

variable. This is very useful technique to generalize patterns based on existing data, which is used in the

PEV charging scheduling scheme.

The most commonly used loss function for regression is the mean squared error [38]. It is the average

of the squared difference between predictions and actual values. The loss function for mean squared error is

shown as follows:

J =
∑n
i=1(yi − ŷi)2

n
, (2.2)

where y is the true value, ŷ is the predicted value using a value approximation function, and n is the total

number of samples or data points. The neural network used for the proposed method uses the mean squared

error as its loss function, the details of which are discussed in the following chapters.
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In some cases, another commonly used loss function called the mean absolute error is used. It is the

measurement of the average of sum of absolute differences between predictions and the true value, and is

shown below:

J =
∑n
i=1 |yi − ŷi|

n
, (2.3)

where ŷi is the predicted value, and yi is the true value.

2.1.2 Classification

Classification tries to assign observations to two or more categories.

The most common loss function for classification is the cross entropy loss function [39], and is shown

as follows:

J = −(yi log(ŷi) + (1− yi) log(1− ŷi)), (2.4)

where ŷi is the predicted value, and yi is the true value. These values take on a range between (0, 1) and

are probability values. More specifically, the predicted value will be the probability of it belonging to class

1. The cross entropy loss function will penalize the predictions that are confident and wrong more heavily.

Although classification is not used in PEV charging scheme, it was considered as an option for policy

gradient reinforcement learning methods.

These loss functions are very commonly used in machine learning and statistics and the following

subsections discusses the most commonly used optimization algorithms to minimize loss functions.

2.2 Iterative Optimization

This section outlines frequently used iterative optimization algorithms in machine learning. Iterative op-

timization algorithms are widely used to optimize supervised learning methods such as neural networks

through a process called back-propagation [40]. The back-propagation technique is utilized extensively in

solving the PEV charging scheduling problem.
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2.2.1 Gradient Descent

Gradient descent is a crucial algorithm in supervised learning. It is the foundation of back-propagation in

deep neural networks, which has applications in many areas in our modern world [41]. A variation of the

gradient descent algorithm will be used to optimize the neural network utilized in the PEV charging scheme.

The goal of gradient descent is to minimize a function. In machine learning, the most common function

to minimize is the loss function J , with respect to weights θ. The weights are used in a value approximation

function, f(x), to predict a value given input values x. The input values x are usually a vector of features,

which has more than one value. The loss function J can be minimized with respect to the weights θ, which

reduces the loss of the value approximation function f(x).

The gradient descent algorithm computes the gradient of the loss function, ∇J(θ) with respect to the

weight, θ, and moves the weight in the gradient descent direction. This process is done iteratively until the

loss function stops showing improvement. The gradient descent algorithm is shown as follows:

θ ← θ − η∇J(θ), (2.5)

where η is the learning rate, θ are the weights, and ∆J(θ) is the gradient of the error function with respect

to the weights. Learning rate is the step size, which means how much to move the weights in the direction

of gradient descent per step.

Gradient descent computes the loss of the entire data set, and is usually computationally heavy [42]. A

variation of the gradient descent, called stochastic gradient descent, is more commonly used as it generally

reaches convergence faster and requires less computation [43].

Stochastic gradient descent computes the loss function for a single data point, and updates the weight

θ with the gradient of that loss function. The problem with stochastic gradient descent is that it could

“overshoot” the minimum due to frequent fluctuations [44]. The variation of gradient descent that is most

widely used is the mini-batch gradient descent [45]. Instead of using the whole data set or a single data point
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to compute the loss function, a fraction of the whole data points are used instead. This method can reduce

computation time, leads to faster convergence, and solves the overshoot issue of stochastic gradient descent.

A mini-batch sampling method will be used in the PEV charging scheduling scheme.

One of the biggest issues of gradient descent and its variations is the potential to be “trapped” in a

sub-optimal local minima. When this issue occurs, it is difficult to overcome, and will usually require

resetting the weights θ. The following approach is an attempt to overcome this issue.

2.2.2 Momentum

The momentum algorithm is similar to gradient descent, except it adds a ”momentum” update vector [46].

The update vector is essentially a fraction of the previous update, and is shown as:

V (t) = γV (t− 1) + η∇J(θ), (2.6)

where γ is the strength of the momentum, V is the update value, η is the step size, and ∆J(θ) is the gradient

of the loss function with respect to the weights.

The update of the weights θ is therefore:

θ ← θ − V (t) (2.7)

Momentum algorithm usually leads to faster and more stable convergence and reduces overshooting

and oscillations. The momentum update is included in the optimization algorithm used for PEV charging

scheduling.

2.2.3 Adagrad

There can be many parameters, i in the weights θi. Some parameters are used infrequently and some are

used more frequently. For this reason, an algorithm that attempts to update the more infrequently used
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parameters with a bigger learning rate η is proposed as the Adagrad algorithm [47]. The Adagrad algorithm

is as follows:

θ
(t+1)
i = θti −

η√∑t
τ=1 g

2
τ,i

gt,i, (2.8)

where gt,i is the gradient of the loss function at step twith respect to the specific parameter of weight, shown

as θt,i, and θ are the weights of the value approximation function.

This update algorithm takes into consideration the different frequency of parameters of the weight θ.

The previously mentioned algorithms will be utilized as a foundation to the optimization algorithm used for

the actual PEV charging scheduling scheme.

2.3 Supervised Learning

Supervised learning is the most commonly used class of machine learning. It is found in many areas

of artificial intelligence, such as self driving cars, computer vision, and credit card fraud detection. The

supervised learning algorithm requires massive amounts of data for the machine to “learn” specific patterns

between inputs and outputs [48].

Supervised learning falls into two categories: regression, and classification. These were outlined in the

beginning of this chapter.

There are many supervised learning algorithms, the following is a list of the most commonly seen:

• Support Vector Machines

• Linear Regression

• Logistic Regression

• Naive Bayes

• Bagging and Boosting Forest

13



• k-nearest Neighbor

• Neural Networks

• Similarity Learning

The most popular and effective supervised learning algorithm today is neural networks, which will be

discussed in the following subsections. Neural networks is a very important aspect of the PEV charging

scheme.

2.3.1 Artificial Neural Network

Neural networks have uses in many applications such as: computer vision, natural language processing, and

time series analysis. The PEV charging scheduling problem uses an artificial neural network to approximate

values which are used for reinforcement learning.

Neural networks are inspired by human brain’s biological neural networks, in where neurons fire when

a certain activation threshold is achieved. Each neuron is connected with other neurons in the brain, forming

a complex network [49].

An artificial neural network architecture is made up of 3 crucial parts:

• Neurons/Nodes

• Connections

• Weights

A neural network can consist of many layers, with a parallel number of nodes per each layer. Each of

these nodes have a set of weight values, in which each input of the neural network is multiplied by, and

summed together with the bias. This value is then passed to an activation function, and the output of that is

fed into another layer.
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Figure 2.1 shows an example of a single neuron. In the figure, x1, x2, .., xn is multiplied by weights

w1, w2, .., wn. The bias b is then added to this value and passed through an activation function to produce

an output. To summarize:

a1 = A(
n∑
i=1

xiwi + b), (2.9)

where a1 is a single output, A is the activation function, x are input features, and w are neuron weights.

.

.

X1

X2

X3

Xn

Inputs Weights

W1

W2

W3

Wn

b

a1

Figure 2.1: Single Neuron

There are many activation functions, and they are explained more in depth in the following subsections.

2.3.1.1 Activation Functions

A neural network can have no activation functions, and in the earliest version of the neural network, there

were in fact no activation functions. Without an activation function, the network is not able to predict
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any non-linearity in the data, and real-world data is often non-linear. This caused neural networks to be

ineffective in solving most real-world problems.

The mostly used activation function for binary classification is the Sigmoid function [50], and is shown

as the following:

σ(x) = 1
1 + e−x

(2.10)

The output of this function takes on the range of (0, 1), which is ideal for binary classification (1s or 0s).

A decision threshold needs to be set, which is usually set as 0.5. More specifically, if the output S(x) > 0.5,

then the classifier will decide that the output belongs to class 1, and conversely, if the output S(x) < 0.5,

then the classifier will decide that the output belongs to class 0.

The curve of the activation function is shown in 2.2

Figure 2.2: Sigmoid Activation Curve

The advantage of the sigmoid function is that it is continuously differentiable across all values. This is a

very beneficial property when we use any of the above mentioned optimization algorithms, which requires

the gradient of the function.

Another activation function that is commonly used is the hyperbolic tangent activation function, or

otherwise called the tanh function. The advantage of this function over the existing Sigmoid function shown

in (2.10) is that it has a stronger gradient, as the function ranges from (−1, 1) [51]. The tanh function is
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shown as:

tanh(x) = ex − e−x

ex + e−x
(2.11)

The curve of the tanh function is shown as Figure 2.3. As seen, the function converges to 1 as x

approaches infinity, and 0 when x approaches negative infinity.

The issue with both the sigmoid and tanh function is the vanishing gradient problem. When the input

values are very large or very small, the gradient of the function approaches 0. This is unwanted as a non-zero

gradient is needed to optimize the neural network. Although binary classification is not used in the final PEV

charging scheme, it was considered as an option for a policy gradient reinforcement learning method.

Figure 2.3: TanH Activation Curve

The sigmoid and tanh activation functions are commonly used in binary classification, however, they

become insufficient when solving a multi-class classification problem. The softmax function allows multi-

class classification [52].

The activation function is as follows:

fi(x) = exi∑J
j=1 e

xj
, (2.12)

where J is the total number of classes and i is the ith specific class score. The softmax function also suffers
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from the vanishing gradient problem.

The rectified linear (Relu) function can mitigate the vanishing gradient problem the other activation

functions have. The Relu function is shown as:

f(x) =


0 for x ≤ 0

x for x > 0
(2.13)

The curve for the relu activation function is shown in Figure 2.4. The relu function is most commonly

used in the hidden layers of the neural network. There are many advantages of the relu activation function,

shown as follows [53]:

• Computational simplicity: the relu function is linear and does not require exponential calculation

• Representational sparsity: the relu function can output true zero values. When the input is negative,

the output is 0.

• Linear behavior: This avoids the vanishing gradient problem, as all input values will have a desired

gradient

Figure 2.4: Rectified Linear Activation Curve
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The relu activation function will be used for the hidden layers of a deep-q network, which is utilized to

solve the PEV charging scheduling problem.

If negative values are of importance in the neural network, then the relu activation function will produce

a gradient of 0 whenever the input is negative. A special case of relu activation function named leaky relu,

shown in Figure 2.5, is created to combat this issue [54]. Leak relu activation function is shown as follows:

f(x) =


0.01x for x ≤ 0

x for x > 0
(2.14)

This adds a small gradient for when the output of the activation function is negative.

Figure 2.5: Leaky Rectified Linear Activation Curve

2.3.1.2 Back-propagation

A fully connected neural network has every node of a layer connected with every node of the next layer. An

example of a single hidden layer neural network is shown in Figure 2.6.

The neural network attempts to minimize a loss function through back-propagation. The minimization

is done using any of the iterative optimization methods mentioned earlier in this chapter. For example,

referring to Figure 2.6, if the input layer is represented as x, the weights of the hidden layer represented as
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Figure 2.6: Neural Network

wij , the output of the hidden layer after going through an activation function is oj , the summation of the

hidden layer before an activation function is represented as Sj , and the error function is represented as E,

then the back-propagation is done as follows:

∂E

∂wij
= ∂E

∂oj

∂oj
∂wij

= ∂E

∂oj

∂oj
∂Sj

∂Sj
∂wij

(2.15)

When the gradient is found, the optimization function will move in the opposite direction of the gradient,

which reduces the error. The artificial neural network is a crucial component of the PEV charging scheduling

solution, and will be discussed in depth in a later chapter.
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Chapter 3

System Model

The problem of finding a PEV charging strategy to minimize the overall charging cost for the PEV owner is

formulated as a finite MDP with discrete time steps and unknown transition probabilities.

MDP is an effective method for decision making under uncertainty [55]. An MDP is a 4-tuple (S,A,P,R),

where S is a finite set of states; A is a finite set of actions; P is a set of transition probabilities that reflects

the probability of arriving at a specific next state St+1, after taking an action a in a previous state S for all

states and actions; and R is a set of rewards that contains all the immediate reward after transitioning from

any one state to any next state from taking any actions.

3.1 MDP State Space

The state space for the proposed MDP formulation is defined as follows: a state s encapsulates six variables:

S = [d m c p ∆P k]. The variables d ε [1, .., 7] and m ε [0, .., 1439] represents the day of the week, and

minute of the day, respectively.

There are a total of 1440 minutes in a day. The variable c reflects the state of the PEV battery, which

ranges from 0 to 1, with 1 being full SOC and 0 being empty SOC. The variables p and ∆P represent the

current and predicted future energy price, p is the current electricity price in dollars per kWh; and ∆P is the

difference of current energy price and the estimated energy price of the next six hours, averaged over every

hour. Price prediction will not be the focus of this paper.
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There are existing methods in literature, such as the long short-term memory neural network proposed

in [35] that is more accurate for price prediction than using historical averages. However, the method of

price prediction has no impact to the viability of the proposed charging strategy when compared with other

charging strategy, as a better price prediction will reduce the various method’s charging cost by a similar

ratio. The variable k is a binary variable that represents whether the PEV has ran out of battery on a given

trip, with 1 representing that the PEV depleted its battery during a trip, and 0 representing the battery was

sufficient for the trip.

The estimated energy price is taken from historical data of the same month and date of previous years.

There are no state representations for when the PEV is unplugged. Specifically, if the PEV becomes

unplugged (when owner takes a trip), the next state St+1 will be when the PEV is plugged in again.

There are predictable patterns in the user’s weekly driving routines, and with the six variable state space,

the PEV owner’s driving behavior should be sufficiently represented. Since the MDP has unknown transition

probabilities, P will be “learned” from real-life experience using RL techniques. The transition probability

is taken into consideration implicitly by the deep-Q network when deciding on the optimal policy, which

will be discussed in later sections.

3.2 MDP Action Space

The action space A consists of these actions: discharge, idle, or charge, represented by a = −1, a = 0, and

a = 1 respectively. The PEV cannot exceed its maximum battery capacity when charging, or its minimum

battery capacity when discharging, shown as the following constraint:

0 ≤ c+ Vcharge ≤ cmax, (3.1)

where c is the current battery SOC; Vcharge is the amount of electricity charged into or discharged from the

battery, which can be positive or negative; andCmax is the battery capacity. Because of the above constraint,
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there are only two valid actions in the states with c = 0 or c = 1.

3.3 MDP Reward

The immediate reward of an action is the cost of charging or discharging, shown as:

R = −p · a · r, (3.2)

where p is the current price of electricity in dollars per kWh; a is the action taken; and r is the minutely

charging/discharging rate of the PEV. The reward has a negative sign because if a charging action is taken,

ie. a = 1, then the reward is negative, as a cost has incurred for charging the PEV. Similarly, discharging

the vehicle will yield a positive reward. If the PEV owner takes a trip, and has insufficient energy to reach

destination, then a penalty −P plus the cost of recharging during a trip −C is obtained as the reward. To

summarize:

R =



−p· a· r, if dt+1 − dt = 0 and

mt+1 −mt = 1; or

dt+1 − dt = 1 and mt+1 = 0

−P − C, ifmt+1 −mt 6= 0 and k = 1; or

dt+1 − dt 6= 0 and k = 0

(3.3)
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3.4 MDP State Transition

When the PEV is plugged in at both state St and the next state St+1, then the day, time and the PEV’s battery

SOC are fully deterministic. The day and the minute of the next state St+1 are:

dt+1 =


dt, if t = 1439

dt + 1, else
(3.4)

mt+1 =


mt + 1, if t 6= 1439

0, else
(3.5)

where the number 1439 is the last minute of the day, and a new day starts when t reaches 1440. The battery

SOC of the next state is:

ct+1 =



0, if ct = 0, a = 0

cmax, if ct = cmax, a = 0

ct + a · r, else

(3.6)

The electricity price of the next state is unknown, therefore the transition probability p is also unknown.

If the PEV owner takes a trip, then the next state St+1 is no longer deterministic, as knowledge of the

duration of the trip and the battery charges used are unknown. Due to uncertainties in road conditions, nature

of user’s trips, and energy price, it becomes difficult to determine St+1. This challenge is resolved using

deep-Q network which is discussed in Section IV.

3.5 State-Action Quality

Since the transition probability of the MDP is unknown and there exists a large state-action space, we use a

deep reinforcement learning strategy to discover the optimal charging policy.
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A selection criteria is needed to choose an action for a given state. Knowledge of the short term reward

R is insufficient when choosing the optimal action. Therefore a long-term expected reward is required. The

Bellman equation represents the long-term expected reward when following a policy as:

QΠ(St, at) = E[Rt+1 + γRt+2 + γ2Rt+3 + ..], (3.7)

where Π is the PEV charging/discharging policy, which selects an action for each state; γ is the discount

factor; and R is the immediate reward following the action at time step t. The Q value is therefore the

expected sum of the discounted reward of every time step t with a discount factor γ. The variable γ

represents the weight of future rewards, and takes a range from 0 to 1. Having a discount factor of 1

means that the future and present has the same importance, and conversely, having a discount factor of 0

means that the future is of no importance. The goal of reinforcement learning is therefore to find the policy

that maximizes Q(s, a) at every time step:

Π′(s) = argmaxaεAQ(s, a) (3.8)
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Chapter 4

Reinforcement Learning Methods

This chapter analyzes the many different reinforcement learning methods and their viability and their pros

and cons for single PEV charging scheduling.

MDPs are discussed more in-depth as they are the foundation building block of reinforcement learning.

4.1 Markov Decision Process

An MDP can formally describe an environment for reinforcement learning, where the environment is fully

observable [56]. If the environment is not fully observable, then other methods must be employed, such as

partially observable MDP (POMDP) [57]. For the PEV charging scheduling problem, the environment can

be considered as fully observable, and an MDP is sufficient for modeling the problem.

Almost all RL problems can be formalized as MDPs, an example of a problem solved using MDPs is

optimal control, and it primarily deals with continuous MDPs.

For any given state S to be considered Markov, it must capture all relevant information from history,

in other words, the future of the state is independent of the past given the present. If the current state S is

known, then all history regarding how S is reached can be discarded, as the state itself already contains all

the relevant information about its history.

There exists a transition probability of being in one state St at time t, and transitioning into the next state

St+1 at time t+ 1.
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The formal definition of is as follows: a state St is Markov if and only if

P [St+1|St] = P [St+1|S1, ..., St], (4.1)

in other words, the probability of being in state St and transitioning into state St+1, is the same as the

probability being in state S, and knowing all the transitions that ultimately resulted in being state S, and

transitioning into St+1.

For a single state St transitioning into another single state St+1, the transition probability is defined by:

PStSt+1 = P [St+1|St] (4.2)

A state transition matrix, P, can define the transition probabilities of all state S transitioning into all

next states St+1, and takes the form of:

P =

P11 ... P1n

Pn1 ... Pnn,

 (4.3)

where P11 is the probability of being in state S1 and transitioning back into state S1, and P1n is the

probability of being in state S1 and transitioning into state Sn.

A Markov process is therefore a memoryless random process, in other words, a sequence of random

states S1, S2, .., all with the Markov property.

A Markov Process is also known as a Markov Chain, and it is a tuple of < S,P >, where S is a finite

set of states, and P is the state transition probability matrix.

Figure 4.1 shows an example of what a Markov chain looks like. Each node represents a state of the

Markov Chain, and each arrow represents the probability of transitioning into another state. For example,

the probability of being in state 1 and transitioning into state 2 is 1/4. The formal definition of the transition
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probability matrix P for the Markov Chain shown in Figure 4.1 is as follows:

P =



1 0 0 0 0 0

0 1/2 1/4 1/4 0 0

0 1/3 0 1/3 1/3 0

0 0 0 1/3 0 2/3

0 0 0 0 1 0

0 0 0 0 0 1,



(4.4)

where the first row and first column represents the probability of being in state 0 and transitioning into

state 0, more precisely, P [S0|S0]. From 4.4, state 0, 4, and 5 are observed to be absorbing states, defined to

be a state that once entered, cannot be left.

0

1 2 3

4 5

1/4

1/3
1/3

1/31/2

1/4

1/3 2/3

Figure 4.1: Markov Chain.

An Markov reward process (MRP) is a Markov chain with “rewards” [58]. In other words, there are
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rewards for reaching certain states. The Markov reward process is a tuple of < S,P, R, γ >, where S is a

finite set of states, P is the state transition probability matrix, R is a reward function, and γ is a discount

factor.

Figure 4.2 shows a Markov reward process. The state S and transition probability matrix P behaves

the same as a Markov chain. However, there is now an reward associated with transitioning from one state

to another. For instance, by reaching the state “Pass”, a reward of 10 is obtained. This formulation allows

being in some states to be more favourable than other states.

The discount factor γ is a penalty given to future states. There are many reasons to include a discount

factor γ, some reasons are: uncertainty about the future, future value discounts in finance, and animal

instinctive drive to seek immediate rewards.

SNS

Class 1 Class 2 Class 3 Pass

Pub

Sleep

9/10

1/21/10

1/5

2/5

2/5

2/5

1/2 4/5 3/5

1

R=-1

R=3 R=4 R=2 R=10

R=-3

R=0

Figure 4.2: Markov Reward Process.
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There needs a return that summarizes the “goodness” of an experience. The return is defined as:

Gt = Rt+1 + γRt+2 + .. =
∞∑
k=0

γkRt+k+1, (4.5)

where γ is the discount and it takes on a range between 0 and 1, and R is the immediate reward of each step.

Having a discount factor of 1 means that there are no discounts to future steps, and every step is as important

as the current one. Conversely, having a discount of 0 means that only the immediate step is of value, and

no future steps are taken into consideration.

Having only the return is insufficient to represent the whole MRP, as long-term return for any given state

S is needed.

A value function, v(S) represents the expected value of state S and is given as follows:

v(S) = E[Gt|St = S], (4.6)

where v(S) is the expected return of state S.

The value function can further be broken down into the following:

v(S) = E[Rt+1 + γv(St+1)|St = S], (4.7)

where Rt+1 is the reward of the immediate next step, and v(St+1) is the expected long-term value of the

next state. This intuitively makes sense, as the long term value of the current state is the immediate reward

of moving to the next state, plus the expected reward of the next state.

However, this only holds true if the next state is deterministic, but if the next state is probabilistic, as in,

there are different probabilities of transitioning into different states, then another solution is needed, and is

as follows:

v(S) = R + γ
∑
S′εS

PSS′v(S′), (4.8)
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where R is the immediate reward of transitioning out of the current state S, and PSS′ is the probability

transition matrix that summarizes the probability of transitioning from state S into any next state S′. The

value function v(S′) is the expected long-term value of any next state v(S′).

The above equation, when summarized, gives the Bellman equation, and is expressed concisely using

matrices, as follows:

v = R + γPv, (4.9)

where v is the value vector, which contains the expected value of all states, and R is the reward vector,

which contains the reward of all states. The probability transition matrix is P, which contains the transition

probability of going from state S to a next state. To express the Bellman Equation more clearly, the following

is the expanded vectors and matrices form:



v1

v2

...

vn


=



R1

R2

...

Rn


+ γ



P11 . . . P1n

P21 . . . P2n

...

Pn1 . . . Pnn





v1

v2

...

vn


(4.10)

Since the Bellman equation is linear, it can be solved as the following:

v = (I− γP)−1R (4.11)

However, solving the above equation is computationally expensive, as inverting a matrix is a O(N3)

operation. The only time that the above equation is solvable is when the state space is small. For PEV

charging scheduling, the state space is much too vast to solve linearly using the above method.

A Markov decision process is very similar to an MRP, except it has an action. A MDP is a tuple of

< S,A,P, R, γ >, where S is a finite set of states, A is a finite set of actions, P is a state transition
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probability matrix, R is a reward function, and γ is a discount factor. Refer to 4.3 for what a MDP looks

like.

Starve Hungry Full

Don’t Eat Eat

9/10

R=-1 R=1R=0.1

1/2
Don’t Eat

1/2

1/10

9/101/10

Figure 4.3: Markov Decision Process.

In the above figure, if current state is “Hungry”, then there are two actions which can be taken, either

“Don’t Eat” or “Eat”. If the action ”Eat” is taken, there is a 0.9 probability the next state reached is ”Full”

and a reward of 1 is obtained. There is also a 0.1 probability that the state ”Hungry” is transitioned back

into, in which case a reward of -1 is obtained.

The probability transition matrix, P ,is now expressed as follows, since there are actions that can be

taken which results in different state transitions:

Pa
SS′ = P [St+1 = S′|St = S,At = a] (4.12)

And the reward function is also affected by actions, and is expressed as follows:

Ra
S = E[Rt+1|St = S,At = a] (4.13)

To choose a set of actions, a policy is needed, and is defined as the probability of choosing an action
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when given a state. A policy π as follows:

π(a|S) = P [At = a|St = S] (4.14)

Therefore it can be said that given an MDP and a policy, the state and reward sequence becomes a MRP,

as actions will be determined by the policy, or in other words:

Pπ
SS′ =

∑
aεA

π(a|s)Pa
SS′ (4.15)

Rπ
S =

∑
aεA

π(a|s)Ra
S (4.16)

To discover an optimal policy, an expected long term return function that takes action into account is

needed. Similar to the value function for MRPs v(S), an action-value function qπ(s, a) is shown as follows:

qπ(S, a) = E[Gt|St = S,At = a] (4.17)

The action-value function can then be expressed as the Bellman expectation equation, and is as follows:

qπ(S, a) = Eπ[Rt+1 + γqπ(St+1, at+1)|St = S,At = a] (4.18)

Similar to MRPs, if the next transitioned state after taking an action is not fully deterministic, then a

probability transition matrix P is required. The Bellman expectation equation then becomes:

qπ(S, a) = RaS + γ
∑
S′εS

Pa
SS′vπ(S′), (4.19)

where Pa
SS′ is the probability transition matrix for taking action a in state S and transitioning into S′. More
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concisely, in vector and matrices form, the Bellman expectation equation can be expressed as:

vπ = Rπ + γPπvπ, (4.20)

where v is the value function for policy π, Rπ is the reward vector for following policy π, and Pπ is the

transition probability matrix for following policy π.

Similarly to Bellman’s equation, the Bellman’s expectation equation can be solved linearly as:

vπ = (I− γPπ)−1Rπ (4.21)

This is similar to the Bellman equation solution, and it also has a computation complexity of O(n3).

To solve the Bellman expectation with an iterative method, a dynamic programming approach can be

used and is discussed in the following section.

4.2 Dynamic Programming

If we have sufficient usage history of the PEV user’s driving behavior and electricity pricing is deterministic

(for instance in Toronto), a dynamic programming approach can be used to find the long term value function

for every state action pair.

Using the user’s driving history, we can build a probability transition matrix. For instance, if we know

the probability of the user going to work at 8 am on a Monday is 95%, and we know the probability of the

user being home at 5 pm is 95%, we can then imply that PM8M5 is 95%.

An entire probability transition matrix, P, can then be built for every single day and every single minute

for the user.

For a dynamic programming approach to work, we must have full knowledge of the MDP. With the

MDP fully known, we can do planning iteratively [9].

To discover the value function of any given policy π, we can iterate over the Bellman expectation
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equation as following:

vt+1(S) =
∑
aεA

π(a|S)(RaS + γ
∑
S′εS

P aSS′vt(S′)) (4.22)

For simplicity, the above equation can be expressed in vector and matrices form as the following:

vt+1 = (Rπ − γPπ)Rt (4.23)

To improve a policy π, we must first evaluate the value function vπ(S), which is shown as:

vπ(S) = E[Rt+1 + γRt+2 + ...|St = S] (4.24)

After evaluating the value function of the policy, we can then act greedily according to the value function,

more specifically, choosing to take actions that results us landing in the state which has the highest value. A

greedy policy is shown below:

π′ = greedy(vπ) (4.25)

In other words, we first evaluate the value function of the policy, update the policy by taking greedy

actions. This step is repeated as many times as possible until there are no more changes in the policy.

This process is called policy iteration, and it always converges to the optimal policy π∗, as long as

sufficient iterations are ran.

We can also improve the policy directly using a method called policy improvement. With policy

improvement, instead of evaluating the value function, and then changing the policy based on the greedy

method, the policy is directly updated using the state-action value, qπ(S, a).
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The policy can be improved by acting greedily with respect to the action, and is shown as follows:

π′(S) = argmaxaεAqπ(s, a) (4.26)

The above equation will allow the agent to choose the most greedy action given any state-action pair.

The above will improve the current policy by taking the action in a state that will yield the maximum q-value,

and the following will hold true:

qπ(S, π′(s)) ≥ argmaxaεAqπ(s, a) (4.27)

This means that the new policy will be taking the action that yields the highest q-value in state S, and

this policy will yield a higher or at worst, the same q-value as the previous policy. Consequently, the value

function is improved as well, as in vπ′(S) ≥ vπ(S).

When improvements stop, we will know that the current policy will yield the best state-action value, and

the Bellman optimality equation, shown as:

vπ(S) = maxaεAqπ(S, a), (4.28)

has been satisfied.

The downside of using this method to schedule PEV charging, are as follows:

• The user’s driving history must be known, but is often unknown in real-world scenarios.

• Future electricity price must be known, and in real-world scenarios this is only possible for cities

which have static electricity price schedules.

• The policy is learnt off-line, and if the user’s driving behaviour changes, the algorithm must be

restarted using newly obtained data.

Due to these limitations, a lot of real-world PEV charging scenarios cannot be solved using dynamic
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programming. To solve the off-line learning problem, or more specifically, when a user changes his be-

haviour, an on-line method using model-free reinforcement learning can be used. This is discussed in the

following section.

4.3 Model-Free Policy Evaluation

Model-free RL is able to learn a policy without any prior data, and obtains data through sampling or

observing experiences. There are many variations of Model-Free RL, and a few are discussed in the

following subsections.

4.3.1 Monte-Carlo Learning

Monte-Carlo policy evaluation uses sampling, and obtains an empirical mean return. Therefore, instead of

assuming the MDP is known, in which case we can calculate expected return using dynamic programming,

an empirical mean return, obtained from sampling, is used to update the state value [59]. The First-Visit

Monte-Carlo policy algorithm is often used and is shown in Algorithm 1.

The first-visit policy is used when only the first visit to a state during an episode is important, and the

rest of the visits are unimportant or redundant. For instance, traversing out of a maze, where landing back

into the same location will have no impact on future actions. If repeated visits to a state is important, then

the every-visit policy is used, and is shown in 2.

Similarly to the first-visit policy, instead of only updating a state value function during the first visit

within an episode, every visit to that state will have a state value function update. For PEV charging

scheduling, every-visit is important, and Algorithm 2 would be used to figure out the value function of

the policy.

The value function update can be simplified into the following:

V (St)← V (St) + 1/N(St)(Gt − V (St)), (4.29)
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Algorithm 1 First-Visit Monte-Carlo
Input: State: S
Input: Action: a
Input: Reward: R

1: Initialize increment counter: N(S) = 0 for all states
2: Initialize state visit counter: M(S) = 0 for all states
3: Initialize total return: T (S) = 0 for all states
4: Initialize value function: V (S) = 0 for all states
5: while V (S) 6= vπ(S) do
6: Start episode following policy π
7: if M(S) = 0 then
8: N(S)← N(S) + 1
9: T (S)← T (S) +Gt

10: V (S) = T (S)/N(S)
11: else
12: Do nothing
13: end if
14: end while

Algorithm 2 Every-Visit Monte-Carlo
Input: State: S
Input: Action: a
Input: Reward: R

1: Initialize increment counter: N(S) = 0 for all states
2: Initialize total return: T (S) = 0 for all states
3: Initialize value function: V (S) = 0 for all states
4: while V (S) 6= vπ(S) do
5: Start episode following policy π
6: N(S)← N(S) + 1
7: T (S)← T (S) +Gt
8: V (S) = T (S)/N(S)
9: end while

whereGt is the cumulative reward of the episode, andN(St) and V (St) are the increment counter and value

function respectively.

The key features of Monte-Carlo learning is as follows:

• High variance
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• Low Bias

• Good convergence properties

• Not sensitive to initial value

• Simple to use

• Does not exploit the Markov property

4.3.2 Temporal-Difference

Temporal-difference learning is another method that ”learns” the true value function of any policy. However,

unlike Monte-Carlo learning, Temporal-difference learning does not have to finish an episode to update the

value function, more specifically, temporal-difference learning learns from incomplete episodes [60]. The

one-step temporal-difference algorithm is shown in Algorithm 3.

Algorithm 3 One-Step Temporal-Difference
Input: State: S
Input: Action: a
Input: Reward: R
Input: Update step size: α

1: Initialize value function: V (S) = 0 for all states
2: while V (S) 6= vπ(S) do
3: Perform single step following policy π
4: V (St)← V (St) + α(Rt+1 + γV (St+1)− V (St))
5: end while

The algorithm attempts to update the current state value function with its immediate reward Rt+1 plus

the discounted value of the next state γV (St+1), which is called the target. The difference between the

target and the value of the current state, which is called the error, is multiplied by a step size α. The error

value is then added onto the previously computed state value, to update the previous state value.

The key features of Temporal-Difference learning is as follows:
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• Low variance

• Medium Bias

• Very efficient

• Sensitive to initial value

• Exploits the Markov property

4.3.3 Temporal-Difference Lambda

Monte-Carlo learning updates the state value function after the entire episode ends, and Temporal-Difference

updates the state value after one step. The Temporal-Difference Lambda combines the two methods, and

updates the value function every step until the end of an episode [61].

Let n be the number of steps taken in an episode. A weight of (1− λ)λn−1 is used to assign the weight

of each individual step. The higher the λ, the more importance is given to later steps in an episode.

The total return of an episode using the Temporal-Difference Lambda method is as follows:

Gλt = (1− λ)
n∑
n=1

λn−1Gnt (4.30)

The update algorithm for Temporal-Difference Lambda is shown in Algorithm 4.

Algorithm 4 Temporal-Difference Lamda
Input: State: S
Input: Action: a
Input: Reward: R
Input: Update step size: α

1: Initialize value function: V (S) = 0 for all states
2: while V (S) 6= vπ(S) do
3: Begin episode following policy π
4: V (St)← V (St) + α(Gλt + γV (St+1)− V (St))
5: end while
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This method will retain the advantages of both Monte-Carlo learning and Temporal-Difference learning,

and has a good balance between variance and bias.

These methods can only attempt to learn the value function of any given policy, when the MDP is

unknown. They cannot, however, learn an optimal or near-optimal policy. The following subsection will

discuss how a policy can be learned without knowledge of the MDP.

4.4 Model-Free Control

There are many methods of model-free control reinforcement learning, a few will be discussed in the

following sections.

4.4.1 On-Policy Learning

An on-policy learning method attempts to learn the best policy, while following the policy. Precisely, the

RL agent will follow a policy, and update the same policy throughout the episode.

4.4.1.1 Monte-Carlo Control

The most common policy to follow in RL is the ε-greedy policy. According to the policy, the action a, will

be chosen as a = argmaxaεAq(s, a) with probability 1 − ε. And with probability ε, the action will be

chosen at random. This policy gives a chance to explore to unseen state, but at the same time takes greedy

policy to ensure maximized state-action value [62].

For policy improvement using the ε-greedy policy, the update is as follows:

qπ(S, π′(S)) = ε/m
∑
aεA

qπ(S, a) + (1− ε)maxaεAqπ(S, a), (4.31)

where π is the current policy, π′ is the updated and improved policy, qπ(S, π′(S)) is the state-action value

following the improved policy, ε is the exploration-exploitation variable, m is the total number of available
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actions in state S, and qπ(S, a) is the state-action value of taking action a in state S.

It can be shown that by taking the ε-greedy policy π, the improved ε-greedy policy π′ is will have either

equal or greater state-action value, as in:

ε/m
∑
aεA

qπ(S, a)+(1−ε)maxaεAqπ(S, a) ≥ ε/m
∑
aεA

qπ(S, a)+(1−ε)
∑
aεA

π(a|S)− ε/m
1− ε qπ(S, a) (4.32)

It then follows that:

vπ′(S) ≥ vπ(S) (4.33)

By the law of large numbers, if enough state-action pairs are explored, or explored infinite number of

times, the policy will converge on a greedy policy, as in:

lim
t→∞

πt(a|S) = π∗, (4.34)

where π∗ is the optimal policy.

4.4.1.2 SARSA

On-policy SARSA is similar to temporal difference learning, except that it is applied to a control problem.

Instead of updating the state-action value at the end of an episode, the immediate reward is added to the

state-action value of the next state [63].

The update is as follows:

q(S, a)← Q(S, a) + α(R+ γq(S′, a′)−Q(S, a)), (4.35)

where Q(S, a) is the current state-action value, α is the update step size, R is the immediate reward, γ is the
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discount factor, and q(S′, a′) is the state-action value of the state-action pair arrived at.

The advantage of using SARSA over Monte-Carlo control is that it updates online, has lower variance,

and can learn from incomplete sequences.

The complete On-Policy SARSA algorithm is shown in Algorithm 5.

Algorithm 5 SARSA
Input: State: S
Input: Action: a
Input: Reward: R
Input: Update step size: α

1: Initialize state-action value Q(S, a)
2: while Q(S) 6= qπ(S) do
3: Begin episode following policy π
4: Take action a from S following policy derived from Q(S, a)
5: Q(S, a)← Q(S, a) + α[R+ γQ(S′, a′)−Q(S, a)]
6: S ← S′

7: A← A′

8: end while

The On-Policy SARSA algorithm will converge when number of experiences approaches infinity. In

some cases, a sub-optimal solution can be obtained using a large number of experiences.

A variation of SARSA algorithm named SARSA-lambda is used to reduce bias. Similar to the Temporal-

Difference learning algorithm, SARSA-λ updates the state-action value with the q(S, a) value of every state

and action pair taken in an episode. The weight value is the same as the one shown in equation 4.30.

Using weight (1− λ)λt−1 for every step t, the state-action value q(S, a) for SARSA-λ is as follows:

qλt = (1− λ)
∞∑
t=1

λt−1qt (4.36)

The update for the state-action value q(S, a) is shown as:

q(S, a)← q(S, a) + α(qλt − q(S, a)), (4.37)
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where α is the update step size.

A backward view SARSA-λ algorithm using eligibility trace is shown in Algorithm 6 [64].

Algorithm 6 Backward SARSA
Input: State: S
Input: Action: a
Input: Reward: R
Input: Update step size: α

1: Initialize state-action value Q(S, a)
2: Initialize eligibility trace E(S, a) = 0 for all states and action
3: while Q(S) 6= qπ(S) do
4: Begin episode following policy π
5: Take action a from S following policy derived from Q(S, a)
6: Observe R and S′

7: Choose a′ from S′ using policy derived from Q(S′, a′)
8: δ ← R+ γq(S′, A′)− q(S,A)
9: E(S, a)← E(S, a) + 1

10: For all S and a:
11: Q(S, a)← Q(S, a) + αδE(S, a)
12: E(S, a)← γλE(S, a)
13: S ← S′

14: A← A′

15: end while

The reason a backward view is used is to be able to memorize everything that happened in an episode,

and then go ”backwards” and update all the state-action values that occurred in the episode.

4.4.2 Off-Policy Learning

An off-policy learning method is when the RL agent learns an optimal policy while following another policy.

In many real-world scenarios, experiences are limited and some episodes must be learned from historical

data. For instance, learning by observing humans, learning from experiences obtained from other policies,

or learning an optimal policy while following an exploratory policy.

These examples all have very practical real-life uses, which makes off-policy learning very practical.
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4.4.2.1 Q-Learning

The update algorithm, Q-learning, updates the policy using the maximum state-action value of the next

possible state-action values [65]. The update algorithm is as follows:

q(S, a)← q(S, a) + α(R+ γmax
a′

q(S′, a′)− q(S, a) (4.38)

The full Q-Learning algorithm for off-policy control is shown in Algorithm 7. The Q-Learning algorithm

Algorithm 7 Q-Learning
Input: State: S
Input: Action: a
Input: Reward: R
Input: Update step size: α

1: Initialize state-action value Q(S, a)
2: Initialize eligibility trace E(S, a) = 0 for all states and action
3: while Q(S) 6= qπ(S) do
4: Begin episode following policy π
5: Take action a from S following policy derived from Q(S, a)
6: Observe R and S′

7: q(S, a)← q(S, a) + α(R+ γmaxa′q(S′, a′)− q(S, a)
8: S ← S′

9: end while

outlined above only looks at the next state-action value, and chooses the max state-action value over all

possible values.

These model-free control reinforcement learning methods are widely used in many of today’s research

and industry problems, famous applications include: AlphaGo, Resource management in computer clusters,

traffic light control, and robotics.

For PEV charging scheduling, many research paper using the above method had been published and

outlined in previous sections.

There are a few downsides to this approach, the most important ones are listed below:

• Slow convergence: Using a model-free method on a PEV user without any historical data will reach
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convergence far too slowly, the user will be expected to drive for a very long time for the RL agent to

learn an optimal policy.

• Not applicable for large state-action space: If the electricity price is continuous, there would be a near

infinite number of state action space, and a method which can generalize would be needed.

Due to the above limitations, a state-action value estimation method is proposed in the following sub-

section.

4.5 Fitted Q-Iteration

One method of learning a function approximation is an off-line method called fitted Q-iteration. The

algorithm learns the optimal policy from a set of transition samplesD. The transition samples are in the form

of (S, a,R, S′), where S is a state, a is the action taken in that state, R is the immediate reward received,

and S′ is the state arrived at. The samples can and often is obtained from historical samples [66].

Any supervised learning algorithm can be used to generalize the state-action value q(S, a), and the loss

function to be optimized will be dependent on the supervised learning algorithm chosen.

This is especially useful when new experiences are difficult or costly to obtain. The fitted Q-iteration

algorithm is shown in 8.

Algorithm 8 Fitted Q-Iteration
Input: Transition samples D

1: Initialize supervised learning algorithm parameters
2: while q(S) 6= qπ(S) do
3: Initialize state-action value Q(S, a : θ)
4: Sample historical experience (S, a,R, S′)
5: Update q(S, a) towards target value Rt + γmaxa′q(S′, a′)
6: end while

This algorithm is useful when state-action space are vast or continuous, such as the PEV charging

scheduling problem that we are considering. However, this algorithm needs historical user behaviour data
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and cannot update on-line, which will not be able to adapt to any user behaviour changes.

4.6 Model Based Reinforcement Learning

Model based reinforcement learning attempts to construct a model which can generate or simulate experi-

ences. This is useful when real experiences are scarce or hard to obtain. Model based reinforcement learning

can plan or learn a value function or policy directly from a model without any real life experiences [67].

The advantages of a model based reinforcement learning is a model can be learned efficiently using a

supervised learning method. However, there are now two sources of approximation error, one from learning

the model, and another from constructing a value function.

A model M is a representation of a MDP < S, a, P,R >. A model M is therefore a representation

of state transitions and rewards. The model consists of < Pn, Rn >. More specifically, a next state St+1

can be created with Pn(St+1|St, at), which gives the probability of transitioning into the next state St+1

when given current state St and action taken at. The reward should also be represented by the model, that

is, Rt+1 = Rn(Rt+1|St, at). As seen, the reward Rt+1 is obtained when action at is taken in state St. In

summary:

P [St+1, Rt+1|St, at] = P [St+1|St, at]P [Rt+1|St, at] (4.39)

This assumes that state transition and rewards are independent, which is typically the case. The model

should fully represent the transition probabilities and rewards of every state-action pair.

Learning the model can be framed as a supervised learning problem or a distribution problem. The goal

is to estimate model M from experiences S1, a1, R2, ..., ST . The supervised learning algorithm will attempt

to predict the state S2 and reward R2 from state S1 and action a1. More specifically, the supervised learning
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algorithm attempts to predict the following:

St, at → Rt+1, St+1, (4.40)

where St is the previous state, at is the action taken in the previous state, Rt+1 is the reward obtained, and

St+1 is the state transitioned into.

Two separate supervised learning algorithms can be used to approximate St+1 and Rt+1 separately.

With enough training examples, the model should sufficiently represent reality, and can generate simulated

experiences to train the reinforcement learning model.

In the following section, a method that combines model-free and model-based reinforcement learning

named Dyna-Q algorithm is presented and utilized to solve the PEV charging scheduling problem. Along-

side Dyna-Q algorithm, a value approximation method named deep-Q network, which has shown to be an

improvement over the existing fitted Q-iteration, is also used to solve the PEV charging problem. The Adam

optimizer is used in back-propagation to train the neural network in deep-Q network.

4.7 Deep-Q Network and Dyna-Q Algorithm

A traditional Q-table update method, in which the Q value of every state-action pair is stored in a table,

updates according to the Q-learning algorithm [68]:

Q(St, at)← Q(St, at) + α(Rt + γmax
at+1

Q(St+1, at+1)−Q(St, at)). (4.41)

The update requires the current state St, the action taken at, the immediate reward Rt, the next state

St+1, and the action at+1 to be taken in St+1 that yields the highest state-action pair value Q(St+1, at+1).

However, the Q-table method is impractical for the PEV charging problem as the state-action space is too

vast. Therefore we use a neural network to estimate the Q value instead, as this allows the approximation

of Q value of unvisited state-action pairs. This method is called the Deep-Q Network (DQN) and is used to
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approximate theQ(St, at) values of all existing state-action space. The DQN will update from both real and

model generated experience as this allows quicker learning time. For a DQN, instead of updating the table

value of Q(St, at), the weights θ, of the neural network are updated instead. Traditionally, the stochastic

gradient descent algorithm is used to update the neural network weights. But recent studies have found that

the adaptive moment estimation (ADAM) optimizer, shown in Algorithm 9, can reach convergence faster

when the user behaviour is stationary[69]. The ADAM update performed seeks to minimize the following

objective function with respect to θ:

f(θ) = (Rt + γmax
at+1

Q(St+1, at+1; θ)−Q(St, at; θ))2 (4.42)

Algorithm 9 Adam Optimizer
Input: Step-size: α
Input: Exponential decay rates for the moment estimates: β1, β2 ε [0, 1)
Input: Stochastic objective function with parameters θ: f(θ)
Input: θ0: Initial parameter vector

1: Initialize first moment vector m0 ← 0
2: Initialize second moment vector v0 ← 0
3: Initialize time step t← 0
4: t← t+ 1
5: Get gradients w.r.t stochastic objective at time step t: gt ← Oθft(θt−1)
6: Update biased first moment estimate:
7: mt ← β1 ·mt−1 + (1− β1) · gt
8: Update biased second raw moment estimate:
9: vt ← β2 · vt−1 + (1− β2) · g2

t

10: Compute bias-corrected first moment estimate: m′t ← mt/(1− βt1)
11: Compute bias-corrected second raw moment estimate: v′t ← vt/(1− βt2)
12: Update parameters: θt ← θt−1 − α ·m′t/(

√
v′t + ε)

The update performed is therefore on the squared difference of the predicted value and the one step

reward plus the predicted value of the next step with respect to the weights θ. This squared difference is

used to update the neural network through back-propagation.

When choosing actions, the RL agent cannot simply choose the action that has the highestQ(s, a) value,
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in other words, follow a greedy policy. The reason is that the agent using a greedy policy will not “explore”

to discover unseen states. Therefore an ε-greedy policy is taken instead, where the agent will have an ε

chance of taking a random action, and 1− ε chance of taking the greedy action. To allow more exploration

in the early episodes, and more greedy action taking in later episodes, an ε with exponential decay is used

[70]. The variable ε is chosen and shown in equation (4.43):

ε = εmin + (εmax − εmin) · e−λ·N , (4.43)

where εmin and εmax are the minimum and maximum ε respectively; λ is the decaying factor; and N is the

number of episodes.

Taking an ε-greedy policy is not ideal in the real world, because there is a probability of taking an

unwanted random action. Therefore the RL agent will only follow the ε-greedy policy in model-based

aspect of the RL scheme, where experience is artificially generated. The RL agent will follow a pure greedy

policy when taking actions in the real world.

There is a problem when updating the deep neural network using the ADAM optimizer. The problem

lies in that the neural network used to predict Q(S, a; θ) is the same neural network that is currently being

updated, and this will create instability as the neural network is chasing an ever moving target. To combat

this issue, a separate target network is created, in which we hold the current weights θ′ constant in a separate

memory for T time steps, and update the actual weights θ of the neural network using the state-action value

predicted with the memorized weights θ′. More precisely, instead of using argmaxat+1Q(St+1, at+1; θ) to

perform Q-learning update, we use argmaxat+1Q
′(St+1, at+1θ

′), where Q′ is predicted using memorized

and constant weights θ′ from T time steps ago. After U time steps, we set the memory weights equal to the

actual weights of the neural network, as in θ = θ′ [71].

A user behaviour model is used to generate “imagined” experience to allow the DQN train faster with

less real experience. The model creation and update process are discussed in depth in section V, and

this approach is called the Dyna-Q algorithm. Every time a real experience occurs, the model is updated
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alongside the DQN, the DQN then samples from a model generated mini batch of experience and updates

its weights. There is an endless loop in the algorithm because it updates on-line at every time step t, and the

RL agent will use the most recently updated policy. Refer to Figure 4.4 for a representation of the Dyna-Q

algorithm. The full DQN update algorithm, with the Dyna-Q algorithm and separate target network, is

shown in Algorithm 10.

Algorithm 10 Deep Q-Network

1: Initialize action-value function Q with random weights θ
2: Initialize target action-value function Q′ with weights θ′ = θ
3: Initialize counter c = 0 and time step U
4: loop
5: Obtain current state St from real experience
6: With probability ε select a random charging action at
7: Otherwise predict all state-action value in state St with neural network and select at =
argmaxaQ(St, a; θ)

8: Execute action at and observe reward Rt and next state St+1
9: Perform Adam Optimization on (Rt +γmaxa+1Q

′(St+1, at+1; θ′)−Q(St, at; θ))2 with respect to
the weights θ

10: Update model with the obtained St, at, Rt, St+1
11: Generate a mini batch of transitions St, at, Rt, St+1 from model
12: Perform Adam Optimization on mini batch generated from model with respect to weight θ
13: Increment counter c
14: if c = U then
15: Set weights θ′ = θ, Reset counter c = 0
16: else
17: Do nothing
18: end if
19: end loop
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Chapter 5

User Experience Model Generation

A model is used to generate experience that is used to train the DQN alongside real experience. The model

of the PEV owner’s experience should accurately reflect the driving routine and trip behaviour of the user.

There are three aspects of a PEV owner that requires modelling:

• Probability of PEV being plugged in during each time step: this models the probability that the PEV

is plugged in at home for every minute of a day.

• Trip duration: this models the trip duration of trips, when the departure time is known.

• Charge used: this models the charge used for trips, when the departure time and the trip duration are

known.

These three aspects should accurately represent any user’s driving pattern, as it reflects when the PEV owner

takes a trip, how long each trip is, and how much charge is used per trip. The model is updated every time

a real experience occurs. The model can be initialized with values if there are some knowledge of the user’s

behaviours, the details will be discussed in the following subsections.

5.1 PEV at Home Probability

The probability that the PEV is plugged in with respect to the time and day is stored in a look-up table. This

table is continuously updated as data is gathered on the PEV owner’s driving routine. The value stored for
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each time slot is the mean of all the times the PEV is plugged-in or away during that time. During each

update, we assign a “1” for when the PEV is at home, and a “0” for when the PEV is away. Table 1 shows

an example of the look-up table. For instance, according to Table 1, the probability that the PEV is home

Table 5.1: PEV plug-in probability

Min

Day
Sun M T W Th F Sat

0 0.875 0.995 0.995 0.993 0.992 0.984 0.943

1 0.867 0.994 0.994 0.993 0.998 0.976 0.934

2 0.834 0.995 0.993 0.995 0.995 0.994 0.965

3 0.894 0.997 0.994 0.992 0.993 0.996 0.943

.. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. ..

1439 0.893 0.987 0.974 0.982 0.994 0.994 0.941

and plugged-in at midnight on Sunday is 0.875.

If nothing is known about the user’s driving pattern initially, a constant can be assigned to each value in

the table.

Assigning a lower percentage to the PEV being plugged-in implies that the probability of the user taking

a trip is high, and the RL agent will try to avoid the battery SOC running out during a trip by keeping battery

SOC high at all times.

Since updating the table requires computing the mean of all previous data, memory and computation

requirement will grow larger as more user experience is acquired. A more practical on-line update algorithm,

in which we can reduce the computing and memory requirements, is shown below,

N [d,m]← N [d,m] + 1 (5.1)

P [d,m]← P [d,m] + 1
N [d,m] (H − P [d,m]), (5.2)
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where d and m represent day and minute of a day respectively. The variable N [d,m] is a counter that

represents the total number of times a real experience was gathered during that specific time slot and is

incremented every time a real experience occurs. P [d,m] is the estimated probability that the user is plugged

in during that time; and H is a binary number that is obtained from real experience of the plug-in status of

the PEV, with “1” being the PEV plugged-in and “0” being the PEV plugged-out.

Every time a real experience during a time slot occurs, the counter increments, and the probability that

the PEV is home or away is updated towards the real experience. At every time slot of every day of the

week, the plug-in status of the PEV is obtained, and the probability table is updated. Over time, the PEV

owner’s plug-in behaviour can be fully described by the probability table.

This accurately represents the plug-in and plug-out behaviour of the PEV owner, and with this it can be

assumed that when the PEV is plugged-out, the user has taken a trip.

5.2 Trip Duration

The duration of trips is based on the time and day of departure. We assume the user has routines for each

specific day of the week. Specifically, if the user has work on Mondays at 9am, he will leave home at 8am,

and come back home from work around 5:50pm to plug in his vehicle. Therefore we assume the duration of

his trip will be around 9 hours and 50 minutes given any Monday with a departure time around 8am.

Some variances can be expected for each trip time, but due to the routinely nature of the user’s driving

behaviour, each trip time will be centred around a mean. A truncated normal distribution for every departure

time interval is used to model the probability of trip duration, with the variable bounded above 0, as trip

duration cannot be less or equal to 0. The departure time interval is set to every 15 minutes, ie. 8:00am -

8:15am, 8:15am-8:30am, and so on. The truncated normal distribution would have a mean of µ = 1
nΣn

i=1xi,

and variance σ2 = 1
nΣn

i=1(xi − µ)2, where xi is the length of current trip i.

This function will be updated every time the PEV owner takes a trip. Updating the PDF requires

the mean and variance of the trip duration, which needs to be computed using all previous trip samples.
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This requires ever growing memory and computation power. Therefore a more efficient on-line updating

algorithm called Welford Online algorithm is used [72], shown as,

N [d, t]← N [d, t] + 1 (5.3)

l̄[d, t]n ← l̄[d, t]n + 1
N [d, t] (L− l̄[d, t]n−1) (5.4)

σ2[d, t]n ← σ2[d, t]n−1 + 1
N [d, t] [(L− l̄[d, t]n−1)(L− l̄n)− σ2

n−1], (5.5)

where d and t are the day and time intervals respectively, and N is a counter for the amount of times this

particular day and time interval has been sampled for a trip.

The variables l̄ and σ are the mean and standard deviation of the trip duration respectively. The length

of the most recent trip obtained from real experience is represented by L.

5.3 Charge Used Per Trip

The charge used per trip is dependent on the nature of the trip. The user’s time and day of departure, and the

length of the trip is a good indicator of the expected charge used on that trip.

The time of departure is separated into morning, afternoon, evening, and night. The length of the trip is

separated into short, medium, and long for trips under 3 hours, from 3 hours to 7 hours, and longer than 7

hours respectively.

A truncated normal distribution for each day and time of departure, and trip length is used to model the

probability of the charge that will be used on a particular trip, the distribution is bounded above 0, as no trip

can use less or equal to 0 charge. More specifically, if a user drives his PEV every Monday to work from

8am to 5:50pm, he will use a similar amount of charge for that trip, and the normal distribution for departure
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on Monday mornings, with a long trip length, will be centered around that amount. Similar to trip length

modelling, Welford’s Online algorithm is used, and is shown below,

N [d, t, l]← N [d, t, l] + 1 (5.6)

c̄[d, t, l]n ← c̄[d, t, l] + 1
N [d, t, l] (M − c̄[d, t, l])n−1 (5.7)

ϕ2[d, t, l]n ← ϕ2[d, t, l]n−1 + 1
N [d, t, l] [(M − c̄[d, t, l]n−1)(M − c̄n)− ϕ2

n−1], (5.8)

where d, t, and l are day, time slot of departure, and the length of the trip respectively; and N is a counter

for the amount of times this particular day, time interval, and length of trip has been sampled. The variables

c̄ and ϕ are the mean and standard deviation of the charge used during trip respectively. The charge used of

the most recent trip obtained from real experience is represented by M .

5.4 Model State Generation

To generate a PEV charging/discharging experience from model, independent state transitions are created.

Specifically, the state at time t: St = [dt,mt, ct, pt,∆Pt] and the next state at time t + 1: St+1 =

[dt+1,mt+1, ct+1, pt+1,∆Pt+1] needs to be generated. The day, minute, and SOC of the initial state St,

are generated with a uniform distribution, with d ε(1, .., 7), m ε(0, .., 1439), and c ε(0, .., 100).

The reason for uniformly generating the starting state S is to ensure the probability of exploring all

states are equal. The price p is sampled from historical price that has the same day and time, and ∆P is also

sampled from historical price averaged over its next 6 hours. The action a is chosen based on the ε-greedy

policy using values predicted by the neural network.

The next state St is generated by firstly checking if the PEV is plugged in, this is done by generating
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its plug-in status based on the plug-in probability table shown in table 5.1. If the PEV is plugged in at time

t then the next state’s day, minute, and SOC are deterministic and can be calculated using equations (3.4)

- (3.6).

If the PEV is not plugged in, then a trip duration is sampled from the trip duration model based on the

departure day and time. The charge used on that trip will be sampled according to the departure day and

time, and the length of the trip. The next state’s day and time is when the PEV is plugged-in again after the

trip, which is deterministic when the trip length is known. The state SOC is the previous state’s SOC minus

the charge used during the trip. The electricity price of all the states is looked up from historical price.

This process of generating state transitions is repeated to generate a small number of transitions to be

used for the training of the DQN.
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Chapter 6

Simulations

In this section, we discuss the experimental set-up, and evaluate the performance of the proposed approach

compared to some existing approaches of single PEV charging.

6.1 Experimental Set-up

6.1.1 PEV environment

To evaluate the performance of the proposed method, we modelled the BYD e6, which has a battery capacity

of 82 kWh. Battery capacities are growing ever-larger, and the BYD e6 has one of the largest battery

capacities, which reflects the size of PEV batteries in the near future. The charge/discharge rate of the PEV

is 19.2 kW, which is the current level 2 charging rate and most residential homes have the capability to

install level 2 charging.

The minutely electricity price is taken from Energy Exchange Austria. Three months of electricity price

data, from August 2018 to November 2018, is taken to find the average historical electricity price. Price

taken from November 2018 to December 2018 is used as the real minutely price in the actual simulation.

Three types of PEV owner behaviour are simulated:

• Normal user behavior: the PEV owner leaves his home from 8:00 am to 9:00 am on weekdays, and

uses a charge between 25% to 30% with a trip duration of 7.5 to 8.5 hours. On weekends the user
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leaves his home from 5:00 am to 5:00 pm and uses a charge between 15% to 50%, with a trip duration

of 6 to 12 hours. The user’s driving routine changes within that range from week to week.

• Stationary user behavior: the PEV owner leaves his home at 8:00 am on weekdays, and from 10:00

am on weekends. The trip duration on weekdays is 8 hours, and 4 hours on weekends. The charge

used is based on the length of trip, and is between 25% to 28% on weekdays and between 25% to

28% on weekends. The owner driving behavior will remain exactly the same from week to week.

• Stochastic user behavior: the PEV owner leaves his home from 7:30 am to 9:00 am on weekdays,

and from 5:00 am to 5:00 pm on weekends. The trip duration are between 7.5 hours to 9 hours on

weekdays, and 3 hours to 15 hours on weekends. The charge used is based on the length of the trip,

and is between 5% to 50% on weekdays, and between 3% to 40% on weekends. The driving behaviour

of the PEV also changes every week, which makes it highly unpredictable.

All PEV simulation starts with an initial SOC of 100%, and the time starts on Monday at 12:00 am.

The reward received by the RL agent upon taking any charging/discharging action is the cost of elec-

tricity at that minute multiplied by the PEV’s rate of charge. It is positive when discharging and negative

when charging. The reward for idling, charging the PEV at full battery SOC, and discharging the PEV at 0

battery SOC is 0. Having the PEV battery running out of energy during trips will cause an inconvenience.

In the best case scenario the PEV owner has to find a charging station to charge his vehicle, and in the worst

case scenario the PEV owner must tow his vehicle. Therefore a reward of -28 plus the cost of charging

is obtained as a reward when the PEV battery is depleted during trips. The -28 is a rough estimate on the

inconvenience experienced by the owner when the PEV runs out of battery during trips, including the rare

times when he needs to get his vehicle towed. If the RL agent’s previous action before the trip was to charge

the vehicle, then a reward of -24 plus the cost of charge used is given. This incentivizes charging when the

battery SOC is near 0 and lets the RL agent learn to keep sufficient battery charge faster.

Figure 6.1 shows the configuration of the neural network used in the DQN for Q(s, a) prediction. The

neural network used for the DQN is configured as follows:
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• Input layer has 5 nodes: time of day, day of week, current battery SOC, current electricity price, and

average historical electricity price of the next 6 hours

• Output layer has 3 nodes: the state-action quality, Q(s, a), of charging the PEV, remaining idle, and

discharging the PEV

• Three fully connected hidden layers, first layer has 4 nodes, second layer has 3 nodes, and third layer

has 2 nodes. This configuration seems to perform better than other tried configurations (50-50-50,

10-7-5, and 50-40-30)

• Rectified Linear activation function at each hidden layers, and no activation function at the output

layer for regression

6.1.2 Neural Network

Figure 6.1: Neural Network Configuration.

6.1.3 Training Process

The RL agent is trained over 40000 decision epochs. A decision epoch occurs when a charging/discharging

action needs to be taken. When the PEV is plugged in, a charging/discharging action occurs every minute.
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However, when the PEV owner is on a trip, there are no actions to be taken. The next decision epoch occurs

when the PEV is plugged in at home. This set-up means that the 40000 decision epochs span over a time

frame of roughly 50000 real life minutes, as the additional 10000 minutes are spent on trips, where there are

no decisions to be made.

At every decision epoch, the RL agent also samples from model generated experience. The model

generates 32 experience per real experience.

6.2 Experimental Results

The proposed scheme is compared to five other charging schemes:

• Model-free DQN proposed in [35].

• Cheap Scheme: The PEV charges/discharges when the current electricity price is lower/higher than

the historical average price for the same month and date in the previous year.

• Always Charge Scheme: The PEV always charges when it is plugged in.

• Low SOC and Cheap Scheme: The PEV will always charge when it has less than 20% battery SOC,

and will charge/discharge when the electricity price is lower/higher than the historical average price

otherwise.

The cumulative reward of the RL agent when the PEV owner’s driving nature is regular, stationary, and

stochastic is shown in Figures 6.2, 6.3, 6.4 respectively. The proposed scheme achieves the highest reward

overall, and drastically outperforms a purely model-free DQN strategy. This is due to the fact that only 30

days are simulated, and this is far too little experience for a pure model-free DQN to discover a policy that

ensures the PEV does not deplete its battery during trips. The biggest penalty that the model-free DQN

suffers from is running out of battery during trips, as seen in Figure 6.5. This scheme has ran out of battery

during trips a total of 22 times in 30 days. Due to computation and time constraints, the model-free DQN
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Figure 6.2: RL Agent Cumulative Reward for Normal Owner Behavior.

cannot be sufficiently simulated until convergence. Because of the nature of the always charge scheme

and low SOC and cheap scheme, the PEV owner will never deplete his battery during trips. The proposed

scheme performs just as well in this regard, and never have depleted its battery during trips and is shown in

Figure 6.5, which shows the battery depletion during trips amount for a normal user. The above mentioned

three schemes is overlapped in Figure 6.5, due to all three schemes run out of battery exactly 0 times during

the 30 simulated days.

The always charge scheme was able to outperform the low SOC and cheap scheme because the historical

electricity prices is not always a good predictor of future prices, and some charging decisions made by the

low SOC and cheap scheme are likely not optimal.

Although it may appear that the proposed scheme only outperforms the always charge scheme by a

little, in actuality, if we observe Figure 6.6, which shows the cumulative reward for a stochastic user, the
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Figure 6.3: RL Agent Cumulative Reward for Stationary Owner Behavior.

cumulative reward for the proposed scheme was -22, while the always charge scheme has a cumulative

reward of -43. Therefore the proposed scheme actually reduces the cost of charging by 51% when compared

with the always charge scheme.
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Figure 6.4: RL Agent Cumulative Reward for Stochastic Owner Behavior.
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Figure 6.5: Number of Times PEV runs out of Battery During Trips
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Figure 6.6: Comparison of Three Schemes
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Chapter 7

Conclusions

A method that combines both model-free and model-based reinforcement learning for PEV charging was

proposed in this thesis. The proposed method implicitly takes into consideration the user’s driving behavior,

traffic conditions, electricity price, and PEV energy usage. This method tries to ensure the owner has

sufficient charge for trips, all the while charging the PEV cheaply according to the user’s needs. The

effectiveness of this method is demonstrated in simulations, where it is shown to run out of battery zero

times during trips, and costs less than other methods.

Simulation results have shown that the model-free DQN will run out of SOC during trips quite often, and

is impractical for real life charging scenarios. Dynamic programming approaches assumes the probability

transition matrix and is not ideal for charging scenarios in which the PEV owner’s behaviour is unknown,

which is often the case in real life. A realistic scenario for owner’s manual charging is shown to be unreliable,

and will often times not even outperform always charge schemes. Charging the PEV manually also creates

extra work for the PEV owner which is unwanted.

Future works include the use of multi-agent reinforcement learning, which can reduce costs for an entire

household, community, or neighborhood. The current reward function can also be modified to include

demand response strategies, which can alleviate peak demand while still giving PEV owner incentives.

By combining multi-agent reinforcement learning and modifying the reward function, we will be able

to realistically utilize an entire community’s PEV batteries as demand response storage, while giving an

incentive for PEV owners to participate in these strategies. This should offer advantage over most research
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in this field, as it is a much more realistic and adaptable strategy due to learning from real life experiences.
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