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ABSTRACT

Demand for three-dimensional (3D) urban models keeps growing in various civil and military
applications. Topographic LiDAR systems are capable of acquiring elevation data directly
over terrain features. However, the task of creating a large-scale virtual environment still
remains a time-consuming and manual work. In this thesis a method for 3D building
reconstruction, consisting of building roof detection, roof outline extraction and regularization,
and 3D building model generation, directly from LiDAR point clouds is developed. In the
proposed appréach, a new algorithm called Gaussian Markov Random Field (GMRF) and
Markov Chain Monte Carlo (MCMC) is used to segment point clouds for building roof
detection. The modified convex hull (MCH) algorithm is used for the extraction of roof
outlines followed by the regularization of the extracted outlines using the modified
hierarchical regularization algorithm. Finally, 3D building models are generated in an ArcGIS
environment. The results obtained demonstrate the effectiveness and satisfactory accuracy of

the developed method.
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1. INTRODUCTION

Spatial information is gaining increasing attention from the general public, government
agencies and commercial establishments. Topographic light detection and ranging (LiDAR),
which integrates a laser scanner, a Global Positional System (GPS) receiver and an Inertial
Measurement Unit (IMU), 1s capable of acquiring dense elevation point data over terrain
rapidly, economically and accurately. Since the appearance of topographic LiDAR in 1990s,
its applications extend from Digital Elevation Model (DEM) generation (Lee and Younan,
2003; Shan and Sampath, 2005), urban modeling\(Haala and Brenner, 1997; Schwalbe et al.,
2005) to disaster management (Webster et al., 2004; Dash et al., 2004). Topographic LiDAR
has grown to a viable and valuable tool in the survey’s toolbox (Jonas and Byrne, 2003). In
this chapter, the motivations and the objectives of the study are illustrated, the structure of the

thesis is summarized.

1.1. Motivations and Signification

Today more than half of the world’s population lives in urban areas. As large cities around the
globe keep propagating and become more populated, up-to-date geospatial information and
three-dimensional (3D) city models are becoming increasingly important for applications
such as city planning, crisis management, visualization, architecture, and landscaping (Tolt et

al., 2007).



Traditionally 3D city models are produced by conventional aerial photogrammetry or by
semi-automated procedures for measurements in aerial imagery (Vosselman and Dijkman,
2001), in which the process is labour-intensive, time-consuming, expensive and error prone.
Topographic LiDAR provides direct 3D information precisely over urban areas regardless of
illumination conditions and reduces or eliminates the interpretation errors that may occur in
traditional elevation data generation. These superior attributes make topographic LiDAR
systems ideal for high-fidelity 3D urban model reconstruction. The scanning rate of modemn
topographic LiDAR systems is as high as 200 kHz with the precision to centimeter level. As
a result topographic LIDAR datasets are notoriously famous for their huge volume of data
size. When a topographic LiDAR system is in operation, the data collected are non-selective.
The system records everything under the flying route, which includes less wanted data like
vegetation in metropolitan areas. In the past decade a wealth of research activities developed
various approaches to extract topographic features from topographic LiDAR data. Several
standardized workflows for the reconstruction of 3D city models exist, they are either based on
photogrammetry or on LiDAR or on a combination of both data acquisition techniques.
However, the automated reconstruction of reliable and highly accurate 3D city models is still a
challenging task, requiring a workflow comprising several processing steps. Some of the most
relevant challenges are building detection, building outline generation, building modeling, and

N

last but not least, an accuracy assessment.



Building detection focuses on locating point sets covering building roofs in the dataset and is
achieved by using either segmentation or filtering methods. It is the most critical step in
building reconstruction process and determines the quality of the building model. In the
building outline extraction step, edge points forming the shape of the building roof arc traced
out from building roof points. Due to the nature of topographic LiIDAR , some of building\
roof edge points are missing, which makes building roof outlines distorted. The building
shape regularization method removes distortions produced in the previous step. In the last

step, 3D city models are reconstructed in a 3D environment. Commercial software tools for

v
“

building modeling require, generally, a high degree of human interaction and most automated
approaches described in literature stress the steps of such a workflow (Dorninger and Pfeifer,

2008).

As the demand for reconstruction of 3D building models keeps growing and high quality
topographic LiDAR data become available, practical, integrated and efficient approaches are
expected urgently. A greater number of research papers examine only one of aforementioned
four aspects. For instance, Brovelli et al. (2002), Chen et al. (2007), Kilian et al. (1996),
Kraus and Pfeifer (1998), Lee and Younan (2003), Sithole (2001), Vosselmann (2000)
presented building detection approaches from gridded topographic LiDAR data. Huber et al.
(2003) and Kim et al. (2006) depicted 3D building reconstruction methods with building roof

shapes acquired from auxiliary data. Jwa et al. (2008) and Sampath and Shan (2007)



illustrated the building outline extraction and building shape regularization methods from
building point set of topographic LiDAR data. These partly finished algorithms may cause
confusion and contradiction when choosing proper combination of approaches to achieve 3D
applications. At the same time, few researchers presented the complete methodology

including above four aspects for 3D city modeling.

The work demonstrated in this study is motivated by presenting an approach for generation
of 3D city models from topographic LiDAR point clouds, which comprises the entire
sequence from building detection, extraction and regularization to reconstruction. The
proposed approach works on topographic LiDAR point cloud directly without an
interpolation process and does not need maps, construction plan or GIS data to establish
building roof shape. This approach has a substantial advantage over previous methods as the
3D building models are created solely from topographic LiDAR data. The algorithm is
versatile in term of data resolution and, is applicable for topographic LiDAR data with a
density around two points per square meter. However, it is capable of processing topographic

LiDAR data with higher point density.

1.2. Objectives

The objective of this study is to develop a methodology for the generation of 3D building

models from topographic LiDAR point cloud data. The proposed approach consists of five



parts: building detection, roof outline extraction, building shape regularization, 3D building
model creation and accuracy assessment. The methodology is implemented using the
following four steps:

1. Point cloud segmentation.

2. Building roof outline extraction.

3. Roof outline regularization.

4. 3D building reconstruction in a GIS environment.
First, this study attempts an overview of the working principles of topographic LiDAR,
physical components, data formats and various data processing algorithms, which offers the

background for further study on point cloud segmentation and building reconstruction.

Second, this study attempts an extension of the literature to the utilization of Gaussian
Markov Random Field (GMRF) and Markov Chain Monte Carlo (MCMC) algorithm for the
segmentation of point clouds. The advantages of the algorithm include:
1. The GMRF-MCMC algorithm works directly on topographic LiDAR raw data
without any data conversion.
2. The GMRF-MCMC algorithm does not require data pre-processing or support data.
The segmentation algorithm achieves satisfactory results based on an accuracy analysis of

sample data.



Third, this study verifies building outline extraction and regularization algorithms from other
researchers. Future studies will benefit in term of choosing proper matching methods with

respect to the outcome from building extraction.

1.3. Thesis Structure

The thesis is comprised of six chapters.

Chapter 1 outlines the motivations of the study. Subsequently the study objectives are

defined.

Chapter 2 provides a review of the working principle of topographic LiDAR systems and the

methods used for building reconstruction from LiDAR data.

Chapter 3 describes the characteristics of topographic LiDAR data, various data formats,

different levels of products, main error sources and data ground processing workflow.

Chapter 4 presents the methodology for building reconstruction. The GMRF-MCMC
segmentation algorithm is described first, followed by the algorithms for building roof
outline extraction and regularization. Finally the reconstruction of 3D building models is

* implemented in an ArcGIS environment.



Chapter 5 reports the experimental results of building roof detection, roof outline extraction
and regularization, and the generation of 3D building models in the GIS environment. The

accuracy of the developed method is discussed.

Chapter 6 presents conclusions related to the developed method and suggests future work to

extend the study.



2. TOPOGRAPHIC LIDAR FOR 3D CITY MODELING:

AN OVERVIEW

As the name suggests, topographic LiDAR involves mounting a laser scanner on an aircraft
or helicopter and setting it to scan the measurements of the surface along the flying route. In
this chapter, some basic working principles and mathematical formulas are elaborated, then
various algorithms on building extraction, building outline extraction and regularization and

3D city modeling will be examined and compared.

2.1. Background of Topographic LiDAR

Topographic LiDAR transmits laser beams to acquire elevation data of surface, its frequency
is in the 500-1500 nm (0.5x10° m — 1.5x10 m) range, with typical values of 1040-1060 nm
(Baltsavias, 1999a). Figure 2.1 shows the composition of the light spectrum. The laser falls in
the near infrared portion of the infrared region (red part close to visible light portion).
According to the definitions from the European X-ray Laser Project, laser has three distinct
aspects in contrast to other light sources:
1. Monochromatic. The light emitted from laser is monochromatic, which mean it only
produces radiation of a specific wavelength, whereas visible light includes red,
green and blue wavelengths (see Figure 2.1), and appears white/yellow when three

wavelengths are added together.
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Coherence. Electromagnetic radiation can be regarded as a composition of
individual wavetrains (fixed wavelength plus a length and a position). The
individual wavetrains are extremely long for laser light, and adjacent wavetrains

oscillate in synchronization manner, for visible light, the wavetrains are quite short.

o

Intensity and emittance. Laser beams can be very thin. As a result, a laser is usually
extremely intense as it is concentrated on a tiny area. A laser beam does not diverge,
which means it remains the “thin™ state during its journey. so it is more focused than

other light sources.

Frequency, Hz
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Figure 2.1 Light spectrum (Sentinel Archiving, Inc.. 2008)

All the above important propertics make the laser the excellent candidate of more accurate
distance detection. So shortly after the advent of laser, very precise ranging was carried out
with this new tool (Wehr and Lohr, 1999). LiDAR technology began to develop n late
1960°s, the first commercial topographic LIDAR mapping system became in 1993 (NOAA,

2008) thanks to the development of GPS and inertial navigation technologies.



2. Coherence. Electromagnetic radiation can be regarded as a composition of
individual wavetrains (fixed wavelength plus a length and a position). The
individual wavetrains are extremely long for laser light, and adjacent wavetrains
oscillate in synchronization manner, for visible light, the wavetrains are quite short.

3. Intensity and emittance. Laser beams can be very thin. As a result, a laser is usually
extremely intense as it 1S concentrated on a tiny area. A laser beam does not diverge,
which means it remains the “thin” state during its journey, so it is more focused than

other light sources.
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Figure 2.1 Light spectrum (Sentinel Archiving, Inc., 2008)

All the above important properties make the laser the excellent candidate of more accurate
distance detection. So shortly after the advent of laser, very precise ranging was carried out
with this new tool (Wehr and Lohr, 1999). LiDAR technology began to develop in late
1960’s, the first commercial topographic LiDAR mapping system became in 1993 (NOAA,

2008) thanks to the development of GPS and inertial navigation technologies.



2.2. Working Principles of Topographic LiDAR

Figure 2.2 demonstrates generic topographic LiDAR in operation. The preferred platforms of
topographic LiIDAR systems. are fixed-wing aircrafts or helicopters. According to Baltsavias
(1999c), helicopters cruise at 40-90km/h with a typical flying height of 200-300m, and are
typically used in applications of small width, elongated areas (e.g., power lines, corridor
mapping, topographic and bathymetric mapping along coastlines) or small areas (e.g.,
airports, open pit mines). They are also capable of conducting data capture when low speed
(flood mapping) or high maneuverability (road mapping) is required. The fixed-wing
aircrafts usually travel at 160-270km/h with altitude of 500-1000m, which can cover a larger

area in a relatively short time.

Base station

Figure 2.2 Paradigm of topographic LiDAR (Straatsma and Middelkoop, 2006)

When the aircraft flies over the target area, the scanner mounted emits LiDAR beams to the

N
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ground and, the scanning rate could be as high as 200 kHz/s. Absorptions and reflections
occur with atoms, molecules and aerosol which float in the air during the emitted LiDAR
beam’s travel to the ground. These changes could be recorded for atmosphere remote sensing,
which is the scope of atmospheric science studies. For photogrammetric applications the
interactions with man-made or natural features on the ground should be concentrated on.
After the LiDAR beams hit the ground, the same phenomenon happens as it does in the air,
part of LiDAR beams are back scattered to the air and are recoded. The velocity of light is
constant, 299,792 ,458 m/s, and by calculating the difference between the time when LiDAR
beams is generated and the time when its return-is captured, the accurate elevation data of
sampled points on the earth can be determined. The divergence of LiDAR beam is quite
limited and the ground surface covered by single LiDAR beam is limited as well. By adding
oscillating devices, LIDAR beams can scan the earth in a systemic way covering a wider area

in one strip of flight.

Topographic LiDAR point cloud data, like images in photogrammetry, must be
geo-referenced, so they can be utilized by other geo-spatial applications. On-board GPS
device provides the geo-location of each sample point. Using ground GPS stations, high
accuracy can be reached. INS device records aircraft orientation (i.e., attitude) data. Through
the integration of LiDAR scanning data, GPS data and INS data, a densely sampled,

geo-referenced yet highly precise elevation dataset is achieved. Millions of points are

i1



sampled in one dataset, sometimes referred to as a point cloud.

A complete topographic LiDAR system consists of several integrated parts. Flood and
Gutelius (1997), Wehr and Lohr(1999) and Webster and Dias (2006) all analyzed the
composition of topographic LiDAR systems. These researchers agreed that the three parts

should be included in order to maintain its full functionality.

Figure 2.3 shows a complete topographic LiDAR system. According to Wehr and Lohr
(1999), a typical topographic LiDAR system is comprised of three main parts: ranging unit,
opto-mechanical scanner and control and processing unit. The ranging unit comprises the
emitting LiDAR beam and the electro-optical receiver. The LiDAR scanner deflects a
ranging beam in a certain pattern, causing it to move back and forth along the flying path, so
that an object surface is sampled with a high point density. The control and processing unit
consists of scanning control and monitor equipment, position and orientation system (POS)

and on-board computers to record elevation and auxiliary data.

Control, Monltoring. |
and Recording-Units

DGPS iMU

Figure 2.3 A topographic LiDAR system (Wehr and Lohr, 1999)
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Figure 2.4 displays the composition of a ranging unit. A pulse generator usually applies
xenon flash tubes, arc lamps, metal-vapor lamps or semiconductors to generate the LiDAR
beam. Through the aperture on the transmitter, the LIDAR beam is emitted to the ground, at
the same time the counter is triggered. When the LiDAR beam hits the earth, a tiny part of
surface is illuminated that is called a footprint. The smaller the footprint size, the higher the
accuracy of the LiDAR range unit. When the echo of LiDAR beam is captured by the
receiver, the counter is stopped, the accurate round trip time of LIDAR beam is documented.
The intensity of echo may be recorded as well, which is the ratio to the emitted the LiDAR

beam, and symbolized as a digital number.

Figure 2.4 A LiDAR ranging unit (Pfeifer and Briese, 2007)

Since the divergence rate of LiDAR beam is so small, a scanner is introduced in order to
cover the reasonable swath of the ground surface beneath the fly route. Figure 2.5 lists some
of scanning mechanisms applied by scanners. An oscillating mirror usually produces
Z-shaped lines and its scanning pattern is bidirectional. This type of systems involves

stopping and accelerating when cach scanning line is finished. The Palmer scan (mutating
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mirrors) results in elliptical pattern due to its inclining mirror design. The rotating polygon
scanners (including its variation-multifaceted scanner) generate parallel lines and always start
to scan from one direction. For a fiber scanner, an array of optical fibers is mounted in the
focal plane of both transmitting and receiving lenses respectively. Two fiber arrays have
identical number of fibers. Fibers on the transmitting side emit LiDAR beam to ground in
sequence, fibers on the receiver side detect reflected LiDAR beam in sequence. No
mechanical movement is involved during the set-up, which is distinct from the three above

mentioned scanning patterns, so a higher scanning rate can be achieved.

fiber switch fiber
EEE / a—"
e
Py
\

Figure 2.5 Selected scanning mechanisms (Wehr and Lohr, 1999) From left: oscillating
mirror, Palmer scan, rotating polygon, fiber scanner.

Due to the structure of scanners, elevation data collected at the margin area of the swath
shows distinct properties and needs to be removed from the dataset. Usually there are certain

overlapping parts between the adjacent strips to ensure those areas are normally sampled.

In the control and processing unit, control and monitor equipment integrate and synchronize
components to ensure efficient and error-free functionality of the system. Data storage
equipment offers depository media for data collected.

5
N
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POS contributes critical -auxiliary data to dataset and it consists of two components: an
inertial measurement unit (IMU) and a differential global positioning system (DGPS). When
topographic LiDAR is in operation, the IMU measures velocity and position adjustments of
the aircraft, thus the pitch, roll and yaw of the aircraft can be acquired. The DGPS contains
an on-board GPS receiver and a base GPS station on the ground within the vicinity of the
operation site, GPS mounted on the aircraft geo-references the sample points and the base
GPS station can correct the inaccuracies of on-board GPS to insure high precision of

geo-representation of a dataset.

2.3. Summary of Main Topographic LiDAR Systems

Table 2.1 lists topographic LiDAR systems from five main manufacturers worldwide.
Compared with major technical parameters of topographic LiDAR systems summarized by
Baltsavias (1999c¢), the functionality of current systems has dramatically improved. Scanning
angle augments by 20° to 60°. Pulse rate reaches above 200 kHz, almost quadruples their
predecessors. Range accuracy increases to around 5cm in contrast to more than 10cm a
couple of years ago. The flying height has also increased, but not as much as other
parameters. The current systems can operate on higher altitude, larger area, with a denser

sampling rate and shorter time interval.
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Table 2.1 Main manufacturers of topographic LiDAR systems (modified from GIM

International)
Manufacturer Leica Optech Riegl Fugro TopoSys
Type/name of scanner | ALSS0-11 ALTM LMS-Q3560 FLI-MAP Harrier 56
Gemini 400
Dimension & weight 37x56x24cm, 26x19x57cm | 56x20x22cm | 50x30x30cm | N/A, > 15kg
30kg 23.4kg 20kg; 30kg,
Wavelength 1,064nm 1,060nm 1,500nm 1,500nm 1,550nm
Pulse length <Ons 7ns <4 ns 4 ns <4 ns
Scanning method oscillating oscillating rotating rotating rotating
mirror, TIITor multi-facet mirror multi-facet
mirror mirror
Max. pulse frequency | 150,kHz 167kHz 200kHz 250kHz 200,Khz ]
Max. scanning angle 75° 50° 60° 60° 45° or 60°
Max.#. of echoes/pulse | 4 4 unlimited 4 Unlimited |
Range precision <10cm 0.05¢m 2cm 2-3cm 5-30cm |
Cameras 1.3 MP digital [ Rollei 39 IGI 11Mpix still | Applanix
frame camera Mpixel DigiCAM and video POSAV 410
Fly height 200 - 6,000m 200-4000m | 30m/500m/ | 50 - 400m 30m/ 800m
1,000m /1,000m
Max. operation time ~17 hrs unlimited ~ 8 hrs 3-6 hrs > 8 hrs

Besides the above advantages, current systems have two properties which were not well

established in previous systems: multiple echoed recording and a digital camera. Multiple

echoes occur when the LiDAR beam penetrates the surface of the object (e.g., tree canopies)

or hits the border portion of objects (e.g., edge of a building). By applying these extra data,

classification in the dense urban area can achieve higher accuracies. A digital camera has

become a standard component of today’s topographic LiDAR systems. Topographic LiDAR
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is a single wavelength detector. Its gray scale images are obscure to visualize by naked eye
while on board camera enables real-time views of the scanning surface underneath the flight
route by offering images (multiband or visible band) at a fixed time interval. Combining

these two kinds of images, true colour 3D imagery can be generated.

2.4. Basic Ranging Formulas

In topographic LiDAR ranging, two principles are utilized: pulse ranging (PR) and phase
ranging (FR). PR calculates the time interval between emitted LiDAR beam and its echo, FR
measure the phase difference between the transmitted and the returned LiDAR beam through
continuous wave (CW) LiDAR beam generation. Both principles measure the travel time of
the signal, however, different physical effects are utilized (Wehr and Lohr, 1999). Since the

pulse LiDAR beam is applied in most of the systems (Wehr and Lohr, 1999, Flood, 2001,

Pfeifer and Briese, 2007), this section will mainly describe formulas related to PR.

In the early stages of topographic LiDAR research, rich sets of formulas were examined by
some renowned contributors in the community (Baltsavias, 1999b; Wehr and Lohr, 1999). In
the following sections, basic formulas are elaborated for the interest of remote sensing. For
simplicity, the attitude of aircraft is assumed zero while the flying height and ground speed
are assumed as constants.

1. Range
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Range is the distance from LiDAR scanner to ground surface, and is represented by
R, ¢ is the velocity of light, ¢ is traveling time of LIDAR beam captured by counter.

l
Rzac*t Q2.1

where £ is the round trip time and needs to be divided by two.

2. Maximum Range

1
R = 5¢ e (2.2)

The maximum range (Rue) is limited by the maximum traveling time (fma) of
LiDAR beam and the time that could be captured by the counter in the scanner.

3. Range Accuracy

5~—1-c,1* 1

2 Tow 2.3)

Range accuracy (6) is dependent on the wave length (1) of the LiDAR beam and

inversely proportional to the square root of signal to noise ratio (S/N). Typical
factors contributing to the ratio are the cloud condition in the sky, the power of
received signal and radiation property of the terrain surface.

4. LiDAR Beam Divergence
Typically the value of instantaneous field of view (IFOV) is applied to describe the
divergence of LiDAR beam. IFOV is determined by the wave length of LIDAR (A)

and the diameter of the aperture (D) on the ranging unit.
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IFOV= 2.44% (2.4)

The emitted LiDAR beam and its echo share the same aperture, which ensures that
the terrain surface covered by the LiDAR beam is always within the receiver’s field
of view. The value of IFOV is normally between 0.3-3mrad.
LiDAR beam Footprint Diameter
As shown 1n Figure 2.2, let 4 be the flying height of the aircraft and « be the half
angle value between emitted LiDAR beam and its echo.

w=2h*tan(x) \ (2.5a)
Since a is relatively a small value, w can be approximately evaluated by the
following equation.

w=2h*IFOV (2.5b)
where 4 is measured in metre and /FOV in mrad.
Scanning Swath
Let Q be the swath width of the topographic LiDAR system, 4 is the flying height of

the aircraft and f is the swath angle of the scanner.

Q=2h*tan(-§-) 26)

Minimum Required Number of Strips
Multiple strips are required if the width of target area is larger than the scanning

swath of the topographic LiDAR system. Let N be the minimum number of strips, L
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is the width of ground surface region of interest, Q is the scanning swath and p is the

overlapping fraction.

N=—©%
(1-p)*Q

2.7)
When N is not an integer, one more strip is needed to complete the mapping.

8. Point Density
Point density refers to the number of sampled points within a unit area (usually one
square metre). A higher point density can achieve more accurate rate in mapping
elevation data. Let d be the point density, fis the frequency of LiDAR, / is the strip

length, v is the velocity of aircraft, NV is the number of strips and 4 is the total area

covered.

I Lyew
v

d = —4— (28)
Two main factors influence the point density: the design of ranging unit, and the

flying speed; the lower speed, the higher the point density.

2.5. Segmentation of Topographic LIDAR Point Clouds

The topographic LiDAR raw data consist of a combination of terrain, buildings, vegetation,
roads and other man-made structures (Charaniya et al., 2004). There have been a large
number of works concentrating on data mining from topographic LiIDAR data and they can

.be classified into two categories: filtering and segmentation. In this section both approaches
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are reviewed in detail.

Filtering refers to the elimination of points caused by reflections of LiDAR pulses on
vegetation and buildings (Vosselman and Maas, 2001). After filtering, ground and
non-ground points are separated. Ground points are widely employed for generating DEM, -
which is essential for many topographic, hydrographic, agricultural, and construction
applications (Fowler, 2001). Above terrain features can be further extracted from non-ground
points and building footprint derivation is one of main tasks. Most topographic LiDAR data

filtering techniques consist of morphology, slope and surface approaches.

Morphology filters are very popular in optical image processing and were introduced to
handle topographic LiDAR data in the 1990s. Kilian et al. (1996) applied the lowest
elévation value plus a certain band width threshold (determined by accuracy level of LIDAR
scanner) within a moving window to remove building roof and vegetation points. Zhang et al.
(2003) introduced a progressive morphology filter, which engaged a series of windows
whose size grew in increasing order to generate DEM. Combined with elevation difference
thresholds, the algorithm can create smoother DEM without pre-defining the size of windows
and with improved efficiency. Arefi and Hahn (2005) designed construction element opening
which held feature needs to be removed through morphology filtering, by overlaying opening

with rasterized topographic LiDAR image and imposing feature constraints like shape, size
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and orientation, not only DEM, but also buildings and vegetation can also be separated.

Slope-based filters were developed by Vosselmann (2000). It utilizes the slope of line
connecting any two points in topographic LiDAR data set as benchmark to determine terrain
points. The algorithm assumes that inclinations among ground points are obviously distinct
from those between ground and non-ground points, by comparing gradients with pre-defined
threshold to detect terrain points. Roggero (2001) constructed a local linear regression model
to estimate intercept, gradient and its standard deviation. Then, a curve function of ground
points is established based on these parameters to separate terrain points. Buildings and
vegetation can be further segregated from non-terrain points by variance difference in their
spatial distributions. Sithole (2001) modified Vosselmann (2000)’s algorithm by introducing
a threshold variable, its value varies with respect to the steepness of the terrain and is
acquired by computing slope map based on gridded minimum height image in which pixel

values are the least elevations within the local neighborhood.

In surface-based filter approach, mathematical equation which best describes the curve of
terrain is established. Kraus and Pfeifer (1998) designed weight functions to recursively
remove non-terrain points above interpolation surface; After each iteration, the points
remaining are getting closer to the actual ground elevation until the cycle limit is

reached. Schickler and Thorpe (2001) modified Kraus and Pfeifer (1998)’s algorithm by
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incorporating the concept of surface classes to guide the estimation process and additional
curvature and slope constraints to control the shape of the estimated surface. With auxiliary
mass-points and break line data, the algorithm can create smoother terrain surface model with

a reduced noise level. Lee and Younan (2003) added a post processing step to optimize the

result acquired from Kraus and Pfeifer (1998)’s algorithm where the terrain points obtained

were compared with the original topographic LiDAR data to extract the matched points with

identical georeference characteristics, then interpolation was implemented for refinement.

The performances of different filtering algorithm\s were reviewéd by Sithole and Vosselman
(2004). They concluded that none of them are capable of handling every kind of data
reflecting various terrain types. All above mentioned filtering algorithms suffer from
different problems. The choice of moving window size is critical in morphological filters.
The ideal way to locate it with respect to the original topographic LiDAR data is still under
investigation. In slope filtering, deciding how to locate the optimal slope of a point with its
neighboring points which matches real terrain situation is not finalized yet. Surface-based
filtering algorithms require long processing time and it is difficult to extract the exact edge
points because the scan data are made up of discrete points and edge points are not always
included in the scan data (Woo et al., 2002). Another common issue for filtering algorithms is
reformatting. As a pre-processing step, irregular distributed 3D points are converted into

rasterized images, the nodes of the gridded network have to be constructed by interpolation
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in the original data set, and consequently some of the information will be lost (Roggero,
2001). In recent years, some researchers started to apply new filtering algorithms on point
cloud data directly. Shan and Sampath (2005) proposed a two directional labeling approach

to generate DEM. Lin and Wu (2006) presented sweep line method to extract off-terrain

points.

In segmentation, points are grouped into segments according to some homogeneity criterion
(Tovari and Pfeifer, 2005). In most cases, result of segmentation reveals topographic LIDAR
data more explicitly than simply terrain points and object points, so filtering can be regarded
as special case of segmentation, which results in two groups without regard to what features
are involved in point cloud data. Traditional segmentation approaches can be classified into

two categories: edge detection and region growing.

Edge detection is performed by searching the discontinuities along the borders of closed
terrain features. Fan et al. (1987) employed zero-crossings and local extrema of curvature
along a given direction to extract edge points, by grouping these points into different classes,
important physical properties are distinguished from range data. Brovelli et al. (2002) applied
spline threshold to separate ground points and non-ground points, then edge points are
connected, if edges are closed and heights of points within edges are greater than the mean

heights of edge points, then they are labeled as terrain features. This algorithm is
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implemented in GRASS (Geographic Resources Analysis Support System). ThuyVu and
Tokunaga (2002) engaged wavelets to partition range images (converted from topographic
LiDAR raw data), then object edges are detected using scale factor, as a result, features with

different sizes and shapes are distinguished.

Region growing, on the other hand, conglomerates the points sharing similar geometrical
properties or belonging to the same terrain features. Jiang and Bunke (1994) reported a
straight line based method. A small portion of lines are selected by optimal criterion as seed
region, neighboring lines are added into the regior\l until no neéw line segments are detected in
the data set. Lee and Schenk (2001) utilized Delaunay triangulation to represent topographic
LiDAR raw data and then those triangles are grouped within adjacency area according to
plane parameters and the roughness. Finally patches with similar geo-spatial properties are
merged to form meaningful terrain features. Gorte (2002) introduced a Triangulated Irregular
Network (TIN) approach, the algorithm iteratively merges TIN meshes created from
topographic LiIDAR raw data into planar segments by calculating similarities among adjacent
triangle meshes. After each iteration, planar segments become larger until all the small

triangle structures are properly grouped.

Both of aforementioned approaches have some limitations. Edge-based methods run short

when a portion of an edge shows a small difference or when regions are homogeneous (Woo
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et al., 2002) or the edges are not closed. Region-growing methods have problems in noisy
data and data in which points from different surfaces overlap (Sithole, 2005). Besides, some
of the algorithms still suffer fr‘om information loss resulting from rasterization. In recent
years, novel techniques to segment topographic LIDAR data have been introduced with some
of the typical ways including a split and merge approach (Wang and Tseng, 2004), a graph
approach (Sithole and Vosselman, 2005), an object approach (Lohmann, 2002) and a

scanning line approach (Han et al., 2007).

2.6. Building Outline Extraction and Regularization

Building outlines refer to roof boundaries that segregate the building areas from other terrain
features like vegetation or the ground. There are two general assumptions about the building
outlines: walls of the buildings are perpendicular, roof areas equal to building planar
coverage. These assumptions simplify the work and can produce more generalized building

models.

Since LiDAR beams are randomly emitted during flight operation, some points may be
missing at the building roof boundaries or shadowed by trees nearby the building. Usually
building edge points extracted are zigzagged and further refinement called regularization is
needed to regularize the shape of the building roof before they can be employed in a

geo-database for3D building reconstruction.
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In the early stage of 3D building modeling, due to the limitations from both topographic
LiDAR technology and immaturity of algorithms, the point cloud data are rasterized before
processing. Meaningful building outline extraction and regularization operations cannot be
performed on raster data. There some popular remedies including digital cadastral map
(Haala and Brenner, 1997), ground plans (Vosselman and Dijkman, 2001), aerial images °
(Huber et al., 2003) and orhoimages (Kim et al., 2006) to provide regularized building shapes

for 3D city modeling.

In recent years, as scanning rate and accuracy 1e\vel increase, it becomes possible that 3D
building models can be reconstructed solely from topographic LiDAR raw data without
rasterization and other supporting data. After points covering building roofs are detected,
edge points have to be separated from non-edge points in order to estimate building roof
outline. A traditional convex hull algorithm is the start point of most edge point extraction
algorithms and some modifications are applied to make the algorithm work for various
shaped buildings. Lee et al. (2007) separated building points by grids and restricted the
search space within current and adjacent grids. By joining the edge points within each grid,
building edge points are achievable. The algorithm presented in Sampath and Shan (2007)
started with corner edge point, and then calculates localized minimum clock-wise angle

repeatedly to trace the next edge point until the start point is reached.
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Line simplification, aiming at reducing the number of boundary segments in a polygon,
shares some similarities with building outline regularization. There are a number of
algorithms dealing with this apblication in cartography for decades. Douglas and Peuker
(1973) proposed a simple algorithm that recursively eliminates intermediate point if its
distance to a polygon is less than distance threshold, otherwise it is maintained. The
algorithm terminates when all of the points in the polygon are checked. Jenks (1989)
introduced neighbourhood algorithm. It considers three points for each iteration, if the
distance from middle point to the line connecting the first and the third point is less than
distance tolerance, middle point 'is discarded and point next to the third point is included in a
three point group, otherwise the first point is kept and next three points are chosen to

continue calculation until all the points are checked.

The algorithms for building outline regularization from topographic LiDAR point clouds go
back in the 1990s. They are based on line simplification algorithms and take the properties of
the building into consideration. Weidner and Forstner ( 1995) presented a minimum
description length-based approach. Four points are selected as a group of polylines to fit in
one of ten regularization models. With consideration of orthogonality of adjacent polylines,
models are created by either reorganizing two middle points or removing one of the middle
points. Sampath and Shan (2007) developed a hierarchical regularization approach. First long

line segments from building outline are extracted and their linear equations are fixed through
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a least squares solution, then long line segments are divided into groups which are
perpendicular each other, finally all line segments are determined by applying the slopes of
lines as estimation parameters. Jwa et al. (2008) modified Weidner and Férstner (1995)’s

algorithm, such that the directionality all the edge segments are labeled according to compass

line filter and weighted with scores, and then three points are chosen in one time to fit in one

of three hypothetical solutions by the scores of their line segments.

2.7. Topographic LiDAR for 3D City Modeling

The 3D city model consists of landmarks, buildings, vegetation, traffic and transportation
networks, etc, among which buildings receive most interest from city planners,

environmental managers, commercial organizations and the general public.

Traditionally, 3D objects are reconstructed by two properly angled 2D optical images, which
are called a stereo image pair. In the geo-science domain, photogrammetry is a classic,
accurate and operational approach for 3D data acquisition (Tao, 2005). However manual 3D
processing of aerial images is time consuming and requires the expertise of highly qualified
persons (Deng et al., 2004). Rescarchers are applying multi-sensor data or fusion of data
from different sources to recreate 3D city models out of consideration of cost, efficiency and

accuracy.
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As a newly emerged remote sensing technique, topographic LiIDAR mainly focused on
generation of DEMs or Digital Terrain Models (DTMs) at early stage thanks to its unique
properties presented in previous section. Several researchers including Kraus and, Axelsson
(2000) and Baltsavias et al. (2001) and Pfeifer (1997) examined the suitability through
different approaches. Modern topographic LiDAR systems are capable of generating much
denser sampling rate (more than 200 kHz), buildings and other man-made features in urban
areas are represented by hundreds of points, which makes it possible to model 3D cities using

topographic LiDAR point cloud data.

Due to topographic LiIDAR’s ability to directly geo-referencing 3D features, it is natural to
integrate topographic LiDAR data with existing 2D maps for fast, accurate and highly
automated acquisition of 3D maps (Elberink et al, 2006). Haala and Brenner (1997)
segmented the Digital Surface Model (DSM) from topographic LiDAR data to extract
building regions, then building parameters were defined by a least squares adjustment
procedure. Based on these predefined references roof elevations were estimated, with
available building map data 3D city model were recovered. Vosselman and Dijkman (2001)
applied Hough transform algorithm to extract planner faces of buildings from topographic

LiDAR point cloud, by the support of building ground plan, building models were recovered.

Besides 2D maps, optical images are another popular remote sensing data type utilized
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together with topographic LiDAR data to achieve better outcome in 3D city modeling. Huber
et al. (2003) extracted building shapes and boundaries from aerial images and DSM from
topographic LiDAR data, through fusion of two data layers, accurately positioned 3D
buildings were remodeled. Rottensteiner et al. (2003) computed normalized difference
vegetation indéx (NDVI) from green and near infrared bands of the geocoded multi-spectral -
images, which helped to remove vegetation regions from DSM created from topographic
LiDAR data. After traditional morphologic filtering processes, building points were

preserved for 3D building retrieval. Kim et al. (2006) suggested a new algorithm to produce

¥
i

the true ortho-images from optical images through a co-registration process with topographic
LiDAR data of the same coverage. By draping an ortho-image on top of the DSM, a 3D city

model can be created.

Some researchers even piloted to integrate multiple data sources for 3D city modeling. Steed et
al., (2004) and Vosselman (2002) applied aerial images, topographic LIDAR data and existing
2D vector maps to create 3D city models in a purpose to make best use of available data,

reduce work load and achieve higher level of automation.

As topographic LiDAR technology evolves, it has become reality that 3D city models are
created solely from topographic LiDAR raw data without any supporting data, researchers

concentrate more on this topic in recent years. Rottensteiner and Briese (2002) proposed a
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subtraction approach. First DSM and DTM are produced through interpolation, non-ground
points are picked by subtraction Qf DSM and DTM, and then building points are filtered out
by proper threshold, in final step buildings are reconstructed geometrically by fine filtering
and modeling procedures. Hofmann (2004) introduced TIN structure to establish 3D
buildings. Topographic LiDAR raw data are re-formatted by TIN pattern, each triangle is
recorded by spherical coordinates and those coordinates are displayed in a Cartesian
coordinate system. Through clustering algorithm, small TIN patterns are grouped into several
clusters, where these clusters are further assembled to form the roof and wall of the building
according to certain thresholds. This algorithm can recover a building roof in more detail.
Tarsha-Kurdi et al. (2006) proposed new approach by utilizing first returns of topographic
LiDAR data to extract 3D buildings. Points of first return contain ground points, building
roof points and vegetation crown points, ground points are filter out by proper height
threshold, rest of the points are rasterized. By integrating elevation information of each point
and a filtering technique in an optical image, building points are extracted and applied for 3D

building recovery.

From above analysis it is can be clearly observed that topographic LiDAR data has proven to
be a rather powerful source for a wide range of 3D GIS object tasks (Schwalbe et al., 2005).
According to Hofmann (2004) and Tarsha-Kurdi et al. (2007) two approaches are adapted for

3D city modeling applications by employing topographic LiDAR data. The first approach is
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model driven, a range of basic building models are established in advance, then 3D building
models are recovered by searching the best matching models in the building model library.
Haala, and Brenner (1997) and Maas (1999) took this track. But this approach has constraints
and is usually limited to simple building models. Complex ground plans may be split into
parts, which can be modeled individually (Haala et al., 1998). The second approach is data -
driven, in contrary to model driven, the buildings are re-established completely depend on
the information from topographic LiDAR data. This approach works on arbitrary shaped
building roofs, however, it requires data with a higher sampling rate and more complicated
algorithms. Since data driven approach is capable of modelin!g the 3D cities more faithfully,

the majority of researchers focus on this track and most of the literature reviewed in this

section belong to this domain.

Though topographic LiDAR is gaining increasing importance over photogrammetry, it
does not mean that topographic LiDAR will replace the latter completely in 3D city modeling,
because both technologies have their strong and weak aspects. As indicated in Table 2.2,
topographic LiDAR is superior in terms of data collection, direct 3D coordinates acquisition
and vertical accuracy. Photogrammetry is predominant in semantic and break line
information and planimetric accuracy. In the future the choice of one technique over another

will mainly depend on case requirements.
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Table 2.2 Comparison between topographic LIDAR and photogrammetry (Kim et al. 2006)

Topographic LiDAR Photogrammetry
dense information along almost no positional information
homogenous surfaces | along homogeneous surfaces
- day or night data collection A day time data collection
3 : . , g | complicated and sometimes
@ | direct acquisition of 3D coordinates | & . .
unreliable matching procedures
vertical accuracy is better than vertical accuracy is worse than
planimetric accuracy planimetric accuracy
no inherent redundancy high redundancy
positional; difficult to derive - . .
. . rich in semantic information
a semantic information .
§ almost no information along break é dense positional information along
lines object space break lines
planimetric accuracy is worse than planimetric accuracy is better than
vertical accuracy vertical accuracy

Based on the observation of properties of both topographic LiDAR and photogrammetry,
Ronnholm et al. (2007) proposed a concept of integration of both methods to achieve optimal
outcome. Four levels of integration, object-level integration, photogrammetry aided by
LiDAR scanning, LiDAR scanning aided by photogrammetry and tightly integrated LIDAR
scanning and optical images are elaborated, which provides general guide lines in choosing

most appropriate integration to satisfy project criterions.

2.8. Chapter Summary

In the first part of this chapter, several topics about topographic LiDAR systems including

their composition, basic ranging formulas and properties of current systems are discussed,
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which offers a background for further study. In the second part, different approaches on
building detection, building roof outline extraction and regularization, 3D city modeling from
topographic LIDAR data are reviewed. The difficulties and challenges remaining in these

areas are examined. The objectives and structure of this thesis are presented.
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3. DESCRIPTION OF TOPOGRAPHIC LIDAR DATA

In this chapter some important aspects regarding topographic LiDAR data are discussed in
detail. They are essential for choice of proper topographic LiIDAR data products, algorithm

design and data accuracy evaluation.

3.1. Topographic LiDAR Data Standards

Topographic LiDAR systems have been developed through increasing demands for
high-accuracy and low cost surface elevation data collection. Each manufacturer adopted its
own standard regarding topographic LiDAR data collection, data format, accuracy
assessment, etc. This pure commercial behavior, on one hand, makes vendors focus on
competing to have larger market share while ignoring cooperation in term of facilitating
customers to choose desirable topographic LiDAR system wisely, on the other hand, greatly

hinder the interoperatability and post processing of topographic LiDAR data.

As topographic LiDAR implicates a wider array of mapping and photogrammetry
applications, the industry standards are in high priority for geomatics community in order to
regulate the development of this comparatively new technology. The American Society for
Photogrammetry and Remote Sensing (ASPRS) has established several guidelines and

industry standards which have been widely used by various users. The main works include:

AN
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1. Digital Elevation Model Technologies and Applications; The DEM Users Manual.
The second version of this manual was released in 2007. It covers a wide variety of
topics about the DEM including an overview of the topographic LiDAR systems,
procedures of creating LiDAR-based DEMs, the advantages and limitations of
topographic LiDAR, data processing software and LiDAR-derived DEM accuracy -
assessment (Maune, 2008).

2. ASPRS LiDAR Guidelines : Vertical Accuracy Reporting for LIDAR Data
This document identifies the vertica{ accuracy reporting requirement when
analyzing elevation data generated using airbomerlight detection and ranging or
laser radar (LiDAR) technology. It consists of three parts: first part lists accuracy
requirements (horizontal accuracy and vertical accuracy) when specifying the
quality of elevation data; second part deals with Accuracy Assessment and
Reporting, starting from designing accuracy tests, selecting and collecting and
checkpoints, Deriving Dataset Elevations for Checkpoints, to computing errors and
analyzing errors; third part 1s about how to Calculating and Reporting Vertical
Accuracy. (ASPRS LiDAR Guidelines: Vertical Accuracy Reporting for LiDAR
Data, 2008).

3. ASPRS LiDAR Guidelines: Horizontal Accuracy Reporting

This is the accomplishment of vertical accuracy reporting, where in some cases

horizontal accuracy has to meet certain level. In this document, several popular
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minimum horizontal accuracy standard including ASPRS 1990 are listed, as well as
their differences and conversion formulas. ASPRS also published Planimetric
Accuracy for large scale LIDAR maps. In the last part, common errors and their
effect on horizontal accuracy are investigated, correct operation instructions are
provided as well (ASPRS LiDAR Guidelines: Horizontal Accuracy Reporting,

2008).

3.2. Data Format

Comparing with other imagery widely applied in remote sensing and mapping industries, the

information included in the topographic LiDAR data is relatively simple. There are millions
v

of points in one dataset, each point is georeferenced in a geographic coordinate system like

Universal Transverse Mercator (UTM) system and assigned with an elevation value.

Optionally each point can be associated with intensity value, time tag or colour (red, green

and blue) value.

At the initial stage of topographic LiDAR advancement, each manufacture adopted its own
data delivery format out of hardware and software properties and requirements from clients.

As a result there are many different data formats and they are company-dependent.

Table 3.1 lists major topographic LiDAR formats available in technical reports and academic
\
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literatures. Except for a few exceptions (index file, project file or DTM file), two data
formats, ASCII and binary are widely applied. ASCII is abbreviation for American Standard
Code for Information Interchange, it is numerical representation of English alphabet and
symbols. .ASC, .DAT, .PTS, PTX, RAW, TXT, .WRL, .XYZ are all generic forms of ASCII
format, they are plain text files and can be edited by any text file editors. Binary format takes -
another path, where all the contents in the file are represented in binary numbers (0 and 1),
extra information needed to be provided on how to interpret binary number correctly in order
to apply various functions on dataset. Formats such

as .3DD, .BIN, .LAS, .LDA, .TEW, .TS, .ZFC and .ZFX all belong to this group.
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Table 3.1 Existing common LiDAR data file formats (Samberg, 2007)

Format Type ) Notes
3DD binary Riegl
ASC ASCII text file
BIN binary TerraScan
.CMP propriety Optech’s REALM, comprehensive format
.CSD propriety Optech’s REALM
DAT ASCII text file
.DVZ propriety project file in FUSION/LDV
IXF propriety Optech’s ILRIS parser
.LAS binary ASPRS LAS
DA binary FUSION/LDV
LDI propriety index file in FUSION/LDV
LDX propriety index file in FUSION/LDV
PTC TerraScan classification file
.PTS ASCII Leica Geosystems
PTX ASCII Leica Geosystems
| .QTC propriety QT Modeler, ungridded point clouds, no interpolation or
approximation
QTT propriety QT Modeler, surface model, gridded data set
RAW ASCII raw topographic LiDAR points
TEW binary TopEye Mark II
TS binary TerraScan
IXT ASCII text file
| 'WRL ASCH used in 3D range imaging
XLS worksheet Microsoft Excel
XML DTM file
XYZ ASCH text file
ZFC binary Zoller+Frohlich
ZFS binary Zoller+Frohlich

Topographic LiDAR data file in ASCII format looks a like a giant table, each tuple delineates

a sampled point, specifying its geospatial location (x and y value), elevation value (z value)

and intensity value, etc. Figure 3.1 shows part of sample data in ASCII format.
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538794.161962905550
538794.756933608670
538795.560644546170
538796.155615249300
538796.750585952420

4810036.491672001800
4810035.687900029100
4810036.282809697100
4810035.479037724400
4810034.675204716600

Under this format, topographic LIDAR dataset can be edited on almost any computer without
any special software, it also convenient to segment one dataset or combine multiple datasets.

This format also widely accepted as input file format by science or engineering computation

software like SAS or Matlab.

Figure 3.2 shows the generalized structure of binary file. The header contains general
information about the file and information to process the data sections. The relocation table
contains records used by the link editor to update pointers in combining binary files. The
symbol table holds records used by the link editor to cross reference the addresses of named

variables and function between binary files (Inside Mac Media, Inc., 2008). Sections 1 to n

hold the raw data.

geospatial location

elevation

41

349.615998804569
350.090983927250
349.279453366995
349.753313004971
351.313596546650

58
58
59
59
59

Figure 3.1 Sample topographic LiDAR data in ASCII format
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Header
Relocation Table
Symbol Table
Section 1
Section 2

Section n

Figure 3.2 Generalized structure of binary file (Ung, 1996)

As topographic LIDAR technology advances, it is necessary to have a standard data format
that can be integrated by various processing software to simplify the distribution and
manipulation of datasets. In 2003, ASPRS published LiDAR Data Exchange Format
Standard 1.0, which is referred to as “LAS” format. In 2005, LAS 1.1 was released, while
LAS 2.0 is under development. LAS format applies binary format, with file extension “.las”.
According to ASPRS (LAS format, 2008), the following reasons contribute to the birth of
LAS format.

1. Interoperatability. Data cannot be easily taken from one system or process flow to
another with proprietary systems.

2. Performance. Processing performance is degraded because the reading and
interpretation of ASCII elevation data can be very slow and the file size can be
extremely large.

3. Accuracy. All raw data and information specific to the LIDAR data collection is lost.

This can inhibit troubleshooting and debugging of problem data sets and limit
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third-party analysis of data integrity

Figure 3.3 illustrates the structure of the LAS format. A complete topographic LiDAR dataset
in LAS format 1.1 should carry three parts, public header block, variable length records and
point data. In the public header block, general system information like unique file number,
type of scanner involved and software information are clarified and data information is also
included. Variable length records is developer defined project information, it varies from
individual developer. Point data part is the critical part of dataset, X, y and z values, colour

and classification of each point are recorded. The full version of LAS 1.1 is accessible

through http://www.asprs.org/socicty/divisions/ppd/standards/asprs_las_format_v11.pdf.

Example data

Basic structure System Information

Public header block

Total number of records

h

Min/max values

A

Variable length »  Developer defined
XYZ
\ 4
Point data RGB
Classification

Figure 3.3 LAS format 1.1 (Barber, 2006)

LAS format has be widely accepted both in the USA and internationally so far. Major
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photogrammetric software and topographic LiDAR providers (e.g., Z/1 Imaging, Leica
Geosystems and Optech), and the US Army Corps of Engineers Topographic Engineering
Center (TEC) have adopted the LAS data format. According to Samberg (2007), some
professional organizations including American National Standards Institute (ANSI), The
International Organization for Standardization (ISO), ISPRS, The IEEE Committee on Earth
Observations Standards Working Group (ISWG) have also started to look over ASPRS LAS.
Commercial GIS and image processing software packages including ArcGIS 9.2 Workstation,
ENVI 4.3, ERDAS Imagine 9.1, GIS Global Mapper 8.0, Leica Photogrammetry Suite 9.1,
QT Modeler 6.0, PCI Geomatica 10.0 all use LAS as the standard input file format. Therefore,

LAS format is also used in this study in this study.

3.3. Data Products

Collected topographic LiDAR data can be customized or post-processed by a commercial
data provider to generate data products with different level of complexity. Flood (2002)
defined a series of data products which are commonly accepted by the industry and can be
used as guidelines when choosing the best matching topographic LiDAR product from

market.

Table 3.2 lists five different levels of products available in general, with costs arranged from

the lowest to the highest. Level 1 products contain all the sampled points and have a large data



Table 3.2Product definitions for topographic LiDAR data (Flood, 2002)

Level | Name Description
1 Basic or | All of the post-processed topographic LiDAR data properly geo-referenced
"All but with no additional filtering or analysis. Suitable for those organizations
Points" with in-house data processing tools and capabilities or who work with a
third-party data processing service bureau. Cheapest and fastest product.
2 Low Using either proprietary algorithms or third-party software tools, the data

Fidelity | provider will automatically filter the point cloud in to points on the
or "First | ground, the "bare earth”, and points that are not ground. There is generally
Pass" no classification of the non-ground points in to separate features types
(buildings, trees, etc.) and the ground points generally include some
percentage of residual features not extracted by the automated
classification algorithms. Suitable for those organizations with in-house
data processing tools and capabilities or who work with a third-part data
processing service bureau. Common . deliverable. Usually same
cost/schedule as All-Points

3 High A fully edited data set that has been extensively reviewed by an
Fidelity | experienced data analyst to remove any artifacts created by the automatic
or classification routine and provide a "99%" clean terrain model. The low
"Cleaned | fidelity data are analyzed and classified manually, usually with supporting

imagery. Labor-intensive product., Moderate cost but with longer delivery
schedules, especially on larger projects.

4 Feature Further processing using a combination of automated and manual
Layers classification to identify features of interest such as power lines or building
footprints. Generally completed in-house or using a service bureau or
third-party data processor that specializes in the desired application and
has experience or has developed customized tools for the specific type of
feature extraction. Usually more expensive product than high fidelity
terrain model.

5 Fused A further refinement of the topographic LiDAR data product achieved by
the fusion of the topographic LiDAR-derived elevation data set with
information from other sensors. This can include digital imagery,

hyperspectral data, thermal imagery, planimetric data or similar data
sources. Generally the most information-rich product with the highest cost.

volume and the richest information content. Clients must have the ability to extract

information desired. In Level 2 products, automatic algorithm is applied to separate ground
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points and non-ground points into layer’s structure. The accuracy is limited and cost is same as
Level 1 products. Manual involvement is required for Level 3 products to improve the
accuracy of Level 2 products, with reference images and trained personnel, high accuracy
DEM can be achieved. In Level 4 products, features of interest (trees, buildings, roads, etc) are
extracted from non-ground points of Level 3 products, it may employ both automatic and
manual classification or tailored software. Level 5 products integrate topographic LiDAR

product with information of other sources, it carries abundant information and is the priciest.

3.4. Error Sources

Topographic LiDAR system is a complex system, its data file is the fusion of several data
sources, errors occur in each sub-system will deteriorate the overall positioning accuracy.
Crombaghs et al. (2000) categorized data errors into four components: error per point, error per

GPS-observation, error per strip, error per block. Figure 3.4 illustrates the components.

Enee pet smp OGP INS
Esren pox (P Scbwrt ation I

Error par bk

Figure 3.4 Error components of topographic LiDAR data (Crombaghs et al., 2000)
Error per point is introduced by the measuring uncertainty of LiDAR scanner. The cause of

error, per GPS-observation is similar to error per point, because the GPS time interval is
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larger than the pulse ranging interval, so multiple sampled points within one GPS interval
will be influenced. Error per strip happens when integrating both GPS data and inertial
navigation system (INS) data, which causes the vertical offsets on every strip during flying
operation. Error per block occurs when ground control points are utilized to calibrate the
topographic LiDAR dataset, inaccuracies in measuring control points will affect the whole

block of dataset which has multiple strips.

Potential error sources contribute to the quality of topographic LIDAR data are examined by
Alharthy et al. (2004), Mass (2003), Schenk (2001), Sithole and Vosselman (2003) and
Zhang and Liu (2004). They can be grouped into three aspects: systemaﬁc errors, random

errors and other errors. All types of errors are explained in the following:

Systematic errors can happen in each part of topographic LiDAR system, they are results of
deficiencies of equipments or mistakes happened during operation.
1. Ranging Unit and Scanner
These errors include the alignment failure of the emitted LIDAR beam and its echo,
the counter’s inaccuracy in timing the LiDAR beam’s traveling time, scanner mirror
vibration and swath angle errors, etc. Total elimination of errors is difficult, but they
can be minimized through calibration.

2. GPS errors
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Accurate positioning from the GPS device requires the availability of properly
positioned GPS satellite constellation at the time of flying operation, otherwise it
might be insufficient to geo-reference sampled data precisely. GPS signal from
ground station is applied to correct the distortion of GPS data from satellites, this
distance from aircraft in mission to GPS ground stations in another factor, usually
the shorter the distance, the better the improvement effect.
3. INS Errors

INS consists of IMU and auxiliary computers and it constantly generates the
position, orientation and velocity of the aircraft. Initialization errors, misalignment
(boresight error), and gyro drifts contribute to systematic errors (Schenk, 2001).
The misalignment between the INS system and the scanner is the largest source of
systematic error (Morin and Sheimy, 2002) and it is necessary to be addressed in

more detail,

Borowgnt sicn e |a', Boresight cokemor - &l
LA e,
‘ 3 \\, .,
3 ; LN .
.'-. k .."'. \» .
True ground e True ground — -
L e - /, -
Mis-registerad Poink *
Mis-registered Points
(a) (b) (c)

Figure 3.5 Illustrations of the results of misalignments (ASPRS LiDAR Guidelines:

Horizontal Accuracy Reporting, 2008)
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Pitch error causes inclined recording of nadir (Figure 3.5a), roll error causes wrong
range registration (Figure 3.5b), the heading error causes the distortion of each
scanning line (Figure 3.5¢). deviation scale correlates with angleapositively. Boresight
error skews each point within a strip and is removable with reference to the ground
control points.

Time Bias

Topographic LiIDAR systems consist of GPS, INS and ranging components. each
component works independently and their sampling rate are distinct, GPS has the
slowest rate, ranging unit has the fastest rate. Error occurs when matching three
datasets precisely. Schenk (2001) summarized it as time bias, which includes
synchronization error and interpolation error. Figure 3.6 demonstrates both types of
errors. Synchronization error (Figure 3.6a) occurs when ranging data is available, but
the GPS and INS data are absent. Interpolation error (Figure 3.6b) arises when INS
data is present, but ranging data is missing. Time bias can be corrected through post
processing algorithms.

e synchronizabion amor
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GPS —! ! I n
| .—?ﬁ\
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Figure 3.6 Time bias (Schenk, 2001)
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Pitch error causes inclined recording of nadir (Figure 3.5a), roll error causes wrong
range registration (Figure 3.5b), the heading error causes the distortion of each
scanning line (Figure 3.5¢), deviation scale correlates with angleapositively. Boresight

error skews each pomt within a strip and is removable with reference to the ground

control points.
Time Bias
Topographic LiDAR systems consist of GPS, INS and ranging components, each

component works independently and their sampling rate are distinct, GPS has the

N

-

slowest rate, ranging unit has the fastest rate. Error occurs when matching three
datasets precisely. Schenk (2001) summarized it as time bias, which includes
synchronization error and interpolation error. Figure 3.6 demonstrates both types of
errors. Synchronization error (Figure 3.6a) occurs when ranging data is available, but
the GPS and INS data are absent. Interpolation error (Figure 3.6b) arises when INS
data is present, but ranging data is missing. Time bias can be corrected through post

processing algorithms.
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Figure 3.6 Time bias (Schenk, 2001)
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Random errors arise from topographic LiDAR system designed accuracy limits (vertical

accuracy, horizontal accuracy, etc). They cannot be totally eliminated from the system and

statistical analysis can minimize these types of errors.

Other errors do not belong to systematic errors or random errors, but they occur and have

impact on the data accuracy.

1.

Outliers.
Outliers develop when LiDAR beam hit the objects which does belong the
topographical features of the earth surface. These objects could include airborne
objects like birds or low flying aircraft, or ground objects like pedestrian, cars and
animals. Outliers can be easily removed from dataset if their elevations are quite
distinct from neighboring features.
Atmosphere
As discussed in Section 2.1, emitted LiDAR beam interacts with atmosphere
(mainly in troposphere) first before reaching ground. Under unfavorable conditions,
air pressure, temperature and humidity may influence the accuracy beyond an
acceptable level. These errors can be alleviated by careful mission planning, aircraft
maneuver and interpolation in the lab.
Human errors

Raw data generation or high level products developing require extensive human
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involvement, which may introduce human errors.

3.5. Data Ground Processing

Ground processing can be regarded as generation of a data product. The choice of working
procedures and software tools varies from different data providers, but three main objectives
(data assembly, data calibration and data customization) must be achieved in this stage. An
example from Optech 1s used to illustrate this process, which will offer snapshot on how data

o~

will be manufactured.

Figure 3.7 demonstrates the processing flow of airborne LiDAR terrain mapper (ALTM).
First, data stored in hard drives are downloaded to a PC/laptop by the Disk Extraction
software. Then range file is decoded into range data and POS data by DashMap software. In
stage three, POSPac software is applied to extract both IMU data and air GPS data from POS
data, together with basic data processing and adjustment. POSGPS software can create
centimeter-level, inertial-aided differential GPS data through combining air GPS data and
ground/ virtual reference stations (VRS) GPS data. POSProc function from POSPac decodes
and reprocesses inertial data using inertial-aided differential GPS information, a Smoother
and more accurate (up to100 times more detailed) Smoothed Best Estimate Trajectory (SBET)

is generated. In the last stage, the original point cloud is produced, usually in WGS84
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coordinate system, DashMap can transform XYZ data to local coordinate system decimate
and output in desired formats (binary, ASCII, LAS,etc.) and product is ready to be delivered

to client.

ALTM Disk Range file Base\VRS
Extraction
GPS
y y
DashMap Data Range data POS data
Decode
Y A 4
POSPac Extract IMU data Air GPS
I A
POSGPS Inertially  Aided
KAR GPS
I
A
POSProc SBET
Y

DashMap XYZI
Laser Points

LAS out put

Figure 3.7 ALTM data processing flow (Optech, 2008)

3.6. Chapter Summary

Topographic LiDAR developed purely from market demands, which caused confusion and
complexity in term of choosing data products. This chapter provides knowledge for

topographic LiDAR data standards and formats, which are critical for the design of LIDAR

N
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data processing algorithms. Main error sources, data ground processing procedures and
various data products are also introduced. This background information is beneficial in terms

of choosing proper LIDAR products satisfying the requirements of the applications.
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4. METHODOLOGY FOR BUILDING

RECONSTRUCTION

This chapter consists of three sections. First a new topographic LiDAR raw data
segmentation algorithm for building coverage detection based on Gaussian Markov Random
Field (GMRF) and Markov Chain Monte Carlo (MCMC) is introduced. Then modified convex
hull algorithm and a hierarchical regularization algorithm are applied to extract and regularize
building roof outlines respectively. Finally, extracted building roof outline points are

exported to the ArcGIS to generate 3D building models.

4.1. Segmentation Algorithm for Building Roof Detection

This algorithm is applicable for segmenting topographic LiDAR point clouds and can be
further divided into two integrated portions. By utilizing GMRF, a mathematical model
simulating the distribution of topographic LiDAR point cloud is established and then MCMC

is employed to acquire optimal segmentation solution.
4.1.1. Mathematical Model

Gaussian distribution, also referred as normal distribution, is one of the basic forms of
distribution in statistics and its general formula for the probability density function is

expressed as

N
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_ 1 (x—p)’
y—mgexp{——ﬁ} (4.1)

where W is the mean and o is the variance.

MRFs are stochastic models which describe the spatial relationship among the subset of the
data. During the past decades its applications have been extended from mathematical analysis
to physics, artificial intelligence and computer vision. Several researchers (Bouman 1995,
Perez 1998, Pieczynski and Tebbache 2000, Heesch and Petrou 2007) have applied MRF as a
tool for image processing because it provides an efficient and convenient way to model
context-dependent features like pixels (Zhang, 2000). In MRF, the conelated relationships
among the elements in set 7 are achieved through neighboring system, which can be defined as
N = {N, ieT}, where N; is neighboring set of element i (i€T), i¢ N,and i eN; < j eNi. A
random field X is MRF within T with respect to defined N if and only if

p(x)>0,VxeX 4.2)

p(x| xNi) = p(x| xT—{i}) (4.3)
Segmentation is the process of subdividing raw topographic LiDAR data (point cloud) into
homogeneous regions, generally as a prelude to further analyses. What should be regarded as
homogeneous depends on the context. However, in this study only the elevations are
considered. A regression model is specified with a piecewise constant mean function (i.e., a

step function) for elevations distributed on an area of interest (AOI) D.
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Before going further, concepts of two sets, which are essential during modeling process, need
to be set up. The measurements of elevations acquired can be modeled as a random data field Y
= {I1,...,Y,} and a raw topographic LiDAR data on D can be considered as a incomplete
random sample of the random field, y = {yy, ..., y»}. A label indicating the group number to
which the corresponding point belongs is represented as a random variable X;. For the
topographic LiDAR data set with # points and & groups, the collection of all label, X={ X;, ie
I, X;ieJ}whereJ={l,... k}, I={1,...,n}, can be viewed as label field, while x = {x;, i € I} is
one realization of X. Figure 4.1 indicates the relationship between label field and data field, for

each y value in dataset, there is one and only one x value associating to it.

Label Field Data Field

X1

L,

X2

X3

[ ———

X]

Figure 4.1 Relationship between label field and data field

Given Y (elevations of each point) in a topographic LIDAR raw data set, value of X needs to
be optimized such that the all points with similar elevation values are grouped together
through finite cycle of computations. The parameter vector s is defined, and s = {X, 0}, where
@ is a parameter vector to be estimated, the optimum is achieved by maximizing p(s | ¥). Using
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Bayes’ Theorem, the following equation is obtained:
ps|V)=pX,0|Y) < p(X,)p(Y| X,0) (4.4)
Assuming X and 0 are statistically independent, therefore

PX,0)=p(X)p(6) (4.5)

Combining Eqgs. 4.4 and 4.5, then

ps|Vyec p(X)p(Y'| X,0)p(6) \ (4.6)
Through Eq. 4.6 the maximum of p(s | ¥) can be calculated by multiplying p(X), p(¥| X, 6) and
p(6), once the values of above three parts are optimized, p(X, 8 | ¥) can be obtained. Set X,
which holds the labels for each point is fixed, thus the whole dataset is segmented according to
the labels attached to each point. In the following context, equations to calculate the p(X), p(Y'|

X, ) and p(8) will be elaborated.

In a topographic LiDAR raw data set, the distances among points vary in contrast to the
regularized distance among pixels in optical images, which introduces extra steps in
processing topographic LiDAR data. For label field X; it is assumed that the distribution of x;
satisfies MRF( i.e., for each independent point of the data set, its elevation is dependent of the
elevations of its neighboring points). Since points are randomly scattered, reasonable radium r

is designated such that each point has at least one neighboring point and r is determined by the

57



intensity of data. As shown in Figure 4.2, the elevation of Point 1 is closely related to the

elevations of Points 2, 3, 4 and 5 within square window delineating neighboring zone.

Figure 4.2 MRF property of topographic LiDAR data

P (x;) is expressed by:

CXP{ Zt(xu Xy )}
i'eN, (4.7)
ool £ 310 )

jed ieN,

p(Xe = X, lXi’ :x;";i'EN‘.)z

LExX=y N < 4i di, #) <), dG, ) is the Euclidian distance between
0, otherwise

where #(x,y) = {

points 7 and 7, GXP{Zf(xnxi')} is the potential power function of x;.

By multiplication of p(x;), p(X) can be obtained by:

p(X)=[]p(x) (4.8)

iel

Topographic LiDAR raw data sets can also be viewed as the integration of multiple subsets of
points with different z values, points share same label field within each subset. It is rational to

assume that these points satisfy Gaussian distribution with proper mean and variance. For each
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given x; = the distribution of subset of y sharing the same label x; satisfy Gaussian distribution

with mean g; and variance %, we define 6 = {1, 0’;}. Thus the probability density function

p(yi | xi, ) with reference to Eq. 4.1can be defined as:

_ 2
P(Y‘ =V ig_[ =(auj9(7;)sX,' = j)= exp{—(i-—ﬂi)—} (49)

Through Eq. 4.9 p(Y | X, &) accomplished as:

p(¥16,%)=TTI1 \/2_:{0 exp{—w} (4.10)

2
jeJ ieS, 20}

For the parameter the vector 6; = {1, 0*;}, 4 and ¢, are assumed to be independent, the joint

distribution probability p(8;) can be rewritten as:

p(6,)=p(u;,6%,) = p(u;)p(c’s) @.11)

Assume that mean y; follows uniform distribution between minimum and maximum z values, 1.
. .. . . 3 2
€., #j ~ U(Amin, Mmax), Variance (72}- follows normal distribution, 1. e., 6"; ~ N(0, 77), where A,

hmax and 7% are constants. For each é;,

~ 1 1 o
p(@j) = p(ﬂ,)p(gj) - (hmax _hmm ]m{ exp{ 272} (412)

Through Eq. 4.12, p(#) can be expressed as
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1 AR TR o}
p(9)=gp(6j)=( . —hmm) [ Jz??r] gexp{— 2r2} (4.13)

Through the above inference p(X), p(Y | X, 8) and p(¢) are mathematically formulated by Eqgs.
4.8, 4.10 and 4.13 respectively, by Eq. 4.6 p(s | ¥) is solvable by multiplication. Thus the

complete GMRF model can be obtained:

pls|Y)
k k 2
1 0 -n) 1 ) [ 1 ] o’
———eXPy — exXpy— exp 1(x;,x;)
gg 2ﬂdj p{ 2612 hmax—hmin \127[?7 E 2?‘-2 (i,z;l)

4.14)
where Fma , hmimy T and k need to be fed in manually according the properties of the

topographic LiDAR data set.

Figure 4.3 depicts the parameters and their relationships with different parts in Eq. 4.14. Aya
and A, are applied to determine the distribution of mean (u) of each group, % controls the
jumping step of variance (o) for each group, k confines the scope of X, With a proper
combination of these parameters, optimum values of X could be reached. Thus the meaningful

segmentation of topographic LiDAR raw data can be achieved.
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Figure 4.3 GMRF parameters and their interrelationships

4.1.2. MCMC for Segmentation

MCMC is essentially Monte Carlo integration using Markov Chains and it mainly focuses on
simulation, estimation and optimization and it consists of set of sampling algorithms as long as
the distributions satisfy Markov chain properties. In Section 4.1.1 the mathematical model for
segmenting topographic LIDAR point clouds set is established by Eq. 4.14. In order to solve
this equation, a dependent sampler is required to capture the optimum values of X. In this study
the MCMC algorithm is chosen based on the following considerations:
1. Itis mature and stable theory and has been widely applied in statistical inference.
2. Its main applications involves in Bayesian inference, namely from prior distribution or
likelihood established in joint distribution to predict posterior distribution, as
described in Eq.4.4.

3. It works better on complicated high-dimensional distributions. A topographic LIDAR
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raw data set has millions of points and it is very difficult simulate its distribution under

other type of sampling method like independent sampling.

A standard MCMC algorithm called Metropolis-Hastings algorithm is employed to calculate

the optimal value of X. Figure 4.4 shows the flowchart of this algorithm and it contains the

following six steps:
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1. Initialize the iteration counter # = 1 and set the initial value of the chain s° = {s,o, oo
smo}, where ;{,»0, jedJ, are érawn from U(Awin, Armax)s (t’{sz){}, j € J, are drawn from N(O,
), andx, i e I, are uniformly drawn from {1, ..., k} and satisfy S; = {i, xP =j},Vje
J.

2. Initialize the component counter v = 1.

3. Move the vth component s, of s to a new value 5,* generated from the density gs(s,%“ P,
s,%), where u,* ~ N, &), o>* ~ N(@®“Y, &) and N, &), €1, &, & are
constants.

4. Calculate the acceptance probability of the move,

p(s,*1 V)g(s,*,5,Y™")
p(sv(j"l) { Y)Q(Sv(j_l)asv *)

a(s, Y, s %) = min{l, } . Let w be drawn from U(0,1). If a >

w, the move is accepted, then s, = g, * If @« < w, the move is rejected, then s =50
5. Change the counter from v to v+1 and return to step 3 until v=m. When v =m, go to

step 6.

6. Change the counter from « to u+1 and return to step 2 until convergence is reached.

4.2. Building Outline Extraction and Regularization Algorithms
4.2.1. Building Outline Extraction Algorithm

After the segmentation process introduced in Section 4.1 along with a possible filtering
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procedure, building roof points with similar elevation values can be successfully classified.
In order to reconstruct the shape of the building roof, building roof edge points need to be
further separated from non-edge points. Building roof point determination is a crucial and
difficult step in the building reconstruction task (Rottensteiner and Briese, 2002). In this
study, the modified convex hull (MCH) algorithm introduced by Sampath and Shan (2007) is

adapted to delineate building roof points.

Given a set of points, convex hull is the smallest convex polygon containing all the points, it
also can be visualize by wrapping rubber band around the boundary points. Figure 4.5
displays the convex hull of a set of points, it is a closed convex polygon formed by the border

points.

X

-

Figure 4.5 Convex hull of a ;')oint set

There are different algorithms available to compute convex hull of a set of points like Graham's
Scan, Jarvis' March or Quick-Hull. Sampath and Shan (2007) proposed the least clockwise

angle algorithm to obtain convex hull. This algorithm is further modified to calculate
building roof edge points.
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Figure 4.6 illustrates how this algorithm works. Starting at leftmost point P, edges are created

with rest of the points within the set. After sorting edges according to their clockwise angles,

the edge with the least clockwise angle is chosen to be the boundary edge. Then starting with

the other end point of selected edge, the above step is repeated until start point P is reached.

The generated set of edges is the convex hull of the point set.

bl Steps in convex hull formation
] o Selected edge
i ( calculate the clockwise angles and select the one with minimum angle )
A
pA oB
P S
1 L
/’ C
;7 C (o]
P T~w D D

2)

3)

4)

Figure 4.6 Convex hull computation procedure (Sampath and Shan, 2007)
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No matter what shapes the point sets form, the convex hull algorithm computes the convex
polygon, which is not always the case in delineating building edge points. Figure 4.7 shows
some of commonly seen concave shaped building roofs and their outlines cannot be

accurately recovered by the convex hull algorithm.

{a) ih) {ch

Figure 4.7 Regular concave shaped buildings

In order to trace concave the shaped building roof outline points, MCH is proposed, which
can be regarded as a localized convex hull method. The algorithm creates a moving window
for each edge point and correct edge point is traced out within the moving window. After
starting point is reached, all edge points are selected successfully regardless of the shape of
the building. Figure 4.8 demonstrates the tracing process. At the beginning, a corner edge
point is picked, within its neighboring window next edge point is chosen. Starting from the
newly selected edge point, the same steps are repeated until the original edge point is
encountered. The fourth row in Figure 4.8 shows the distinct results of two algorithms where
the building outline recovered from convex hull algorithm is far coarser than the outline from
MCH algorithm and cannot be applied as the base building shape in 3D city modeling. The

radius of the moving window should be adjusted according the point density. In general, it is
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slightly larger than twice of the point spacing in the along and across scan directions.

P Steps in boundary tracing
£ ( calculate the clockwise angles for points within the neighborhood Selected edge
a of the circle and select the one with minimum angle )
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i see Y X soo oo
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Figure 4.8 Modified convex hull algorithm (Sampath and Shan, 2007)
4.2.2. Building Outline Regularization Algorithm

The first step of the algorithm is to locate the line segments framing the shape of building.
According to Sampath and Shan (2007), this is done by sequentially following each building

edge point and looking for positions where the slopes of two consecutive edges are
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significantly different. The points on subsequent edges with similar slopes are gathered in
one line segment. At the end of this step, the building roof outline points are subdivided into
a number of sets of points, the number of sets equals to the number of the building outline

segments.

Next step is building roof outline reconstruction. In this study, it is assumed that building
edges are straight, so they can be expressed by Eq. y=ax+b. The extracted ‘points
corresponding to the building outline can be L\lsed to estimate the lines. Figure 4.9
demonstrates the process. Given the edge point set {4,8,C,...,H}, let d be the distance from a

point to the line, the line is regressed by Minimum Mean Square Estimate (MMSE), that

minimizes the sum of distance, d; + da+d3 + ... +ds.

Figure 4.9 Line replacement of multiple points

In the final step, the corner points of a building outline are computed by solving the linear
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equation pairs of adjacent edges. By connecting these points with straight lines, the building

roof can be retrieved and are ready to be exported to a geo-database.

4.3. 3D Building Generation

Several software packages are commercially available in the market to produce 3D city

models including Fusion or LP360, ArcGIS is employed in this study.

Figure 4.10 exhibits the key steps in 3D building generation. First, points are converted to a
line coverage. A coverage is an intermediate file required by the following function. A
polygon shapefile is created based on line coverage. Spatial references of shapefiles are
defined, so they can be overlaid on other spatial data. A building polygon shapefile accepts
various functions offered by software and can be exported to other geo-databases. During the

last step, 3D buildings are generated in ArcScene-3D simulation modular in ArcGIS.
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Convert to line coverage

y

Convert to polygon shapefile
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Specify spatial reference
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3D building generation

v

End

Figure 4.10 Process of 3D building generation in ArcGIS

4.4. Chapter Summary

In this chapter, the proposed methodology for 3D building reconstruction from topographic
LiDAR point clouds is described. The complete workflow comprises of three critical parts:
building detection, building outline extraction and regularization, 3D building model
generation. In the first part, a new segmentation algorithm utilizing GMRF and MCMC is
presented. Compared with other algorithms, the advantage of this algorithm is that it works

on topographic LiDAR data directly without other supporting data. In the second part, MCH
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and MMSE are applied to obtain the final edge point set that symbolizes planar shape of the

building. In the last step, the point set is exported to ArcGIS to generate 3D building models.
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5. RESULTS AND DISCUSSIONS

5.1. Study Area and Data

['he study area is a part of the University of Waterloo (UW) campus, covered by a single strip
topographic LIDAR point clouds. Figure S.lexhibits the image and its legend. Different
colours are utilized to symbolize the elevation of each point. The numbers are the absolute

elevations 1in metres.

Figure 5.1 Topographic LiDAR point clouds of the University of Waterloo campus and

surrounding area

Figure 5.2 demonstrates a reference map from Google map, the region in black rectangle is

the proximate area covered by topographic LiDAR data.
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Figure 5.2 Reference map to topographic LIDAR image (Google map)

Table 5.1 lists relative topographic LIDAR data information and hardware settings when data

was collected.

Table 5.1 Topographic LIDAR data specifications

Coverage UW Campus and neighboring area
Acquisition date March 11, 2006
No. of points 7.9 million
Scanner ALTM GEMINI
POS system Applanix-POS/AV
Flying height (m ASL) 1200
Speed (m/s) 66.9
Scan frequency (Hz) 35
Swath (m) 873.53
Desired resolution (m) 0.908
Point density ( per m’) 1.1
Data format LAS
Source Optech Inc

Figure 5.3 displays part of header file from topographic LiDAR data where essential facts
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about the dataset, including number of returned recorded, margin values, offsets and scale
factors of X, Y, Z variables are recorded. They are critical when format conversion or filter

operations are required.

FILE_SIG LASF

RESERVED 0
VERSION_MAJOR 1
VERSION_MINOR G

SYSTEM_IDENTIFIER ALTM System (¢} Optech
GENERATING_SOFTWARE Realm Survey Suite 3.5
FLIGHT_DATE 0

YEAR 0

HEADER_SIZE 227

OFFSET_TO_DATA 759
NUM_VAR_RECORDS 3
POINT_DATA_FORMAT 1
POINT_DATA_RECORD_LEN 28
NUM_POINT_RECORDS 7997153

Points by Return [ 1] 6483242
Points by Return 2] 1185015
Points by Return 3] 304469
Points by Return 4] 24427
rPoints by Return 5] 0

X.SCALE_FACTOR 0. 010000000
Y..SCALE_FACTOR 0. 0100006000
Z_SCALE_FACTOR 0. 0010000000
X OFFSET 531700.00
Y_OFFSET 4808200.0
Z_OFFSET 356.17338

MA . X 535497.30

MIN_X 534618.70

MASY 4816069.9

MIN_Y 4810033.5

MAX 2 476,.12729

MIN.Z 219,158705

o o | o | |

Figure 5.3 Part of header file

Figure 5.4 is aerial image of UW campus, which acts as reference image during the processing.
Buildings in coloured squares are candidates chosen to demonstrate the 3D building
reconstruction process elaborated in previous chapter. In Table 5.2 the main properties of

aerial image are listed.
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Figure 5.4 Aerial image of UW campus

Table 5.2 Aerial image specification

Coverage University of Waterloo (UW) campus
Format GeoTIFF
Resolution Im
Dimension 1369 * 881
Source UW library

The study area is the UW northeast campus. The detailed description of individual building is
given in Table 5.3. Buildings are aligned by complexity scale in increasing order. The common
practices in 3D building reconstruction including convex polygons, concave polygons, curved

edges, non-perpendicular edges, preliminary noise filtering techniques are examined in the

study.
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Figure 5.4 Aerial image of UW campus

Table 5.2 Aerial image specification

Coverage University of Waterloo (UW) campus |
Format GeoTIFF
Resolution Im
Dimension 1369 * 881
Source UW library

The study area is the UW northeast campus. The detailed description of individual building is
given in Table 5.3. Buildings are aligned by complexity scale in increasing order. The common
practices in 3D building reconstruction including convex polygons, concave polygons, curved

edges, non-perpendicular edges, preliminary noise filtering techniques are examined in the

study.
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Table 5.3 Sample building properties

Building name Aerial image Building properties

RIM high-rise building, convex polygon
0 shape except for one curved edge, sparse
,*" vegetation around.

BFG low-rise building, irregular concave
polygon shape, medium vegetation
presence close to building.

Optometry multi-level building complex, strong

appearance of vegetation.

The original topographic LiIDAR point clouds contain 7.9 million points. In order to extract
building roof” outlines listed in Table 5.3, points covering the building areas need to be
separated. As discussed in Chapter Two, each point in the topographic LiDAR point clouds is
geo-referenced, usually in the UTM system. Two steps are involved to achieve the goal. First,
spatial references of corner points need to be positioned. The reference image in Figure 5.4,
provides desired spatial locations of corner points (lower left and upper right points).Next,
points external to corner points are filtered out. LAStool (Isenburg and Shewchuk, 2008)

contains basic functions handling topographic LIDAR data in LAS format and filtering and
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contains basic functions handling topographic LiDAR data in LAS format and filtering and
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format conversion functions are utilized in this study.

Figure 5.5 displays part of pre-processed topographic LiDAR data in ASCII format, there are
three columns separated by space, first two columns (x and y) offer spatial reference of the

point, and the third column (z) indicates its elevation.

537056.56 4813658.28 336.371385
537057.43 4813658.82 336.412385
537058, 34 4813659.37 336.377385
537059.4 4813659.72 336.430385
537058.51 4813659.17 336.436385

Figure 5.5 RIM.txt file

Figure 5.6 demonstrates the topographic LiDAR point clouds of sample buildings in an aerial
view (Figures 5.6 (a), (¢) and (e)) and 3D view (Figures 5.6 (b), (d) and (f)), respectively. The
RIM building (Figures 5.6 (a) and (b)) has one level of flat roof, with Low Rise Vegetation
(LRV) in the north part and low gradient ground. The BFG building (Figures 5.6 (¢) and (d))
also has one level of flat roof, with close High Rise Vegetation (HRV) in the west and south
part of the building and low topographic ground. The Optometry Building (Figures 5.6 (¢)
and (f)) has three levels of flat roofs of distinct altitude, there are heavy HRV surrounding the

building except for north part, the ground surface is undulating.
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(e) ()

Figure 5.6 Topographic LIDAR Images of sample buildings

5.2. Experiments

5.2.1. Segmentation

Table 5.4 lists all constants for the segmentation algorithm presented in Section 4.1. The

value 4 is the number of groups into which a given topographic LiDAR data set is segmented,
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prior knowledge about the scene covered by dataset is helpful. The variable i represents the
computing cycles. And r is the size of neighbouring window for each point, the rule for
selecting window is that there must be at least one neighbouring point in the window. The
parameter o°is the variance of the normal distribution corresponding to the elevations of
points in each group and it controls the extent to which the elevations fluctuate around their
means. Finally, &7 governs the span of the samples of the mean in successive iterations.

Table 5.4 Input constants

Name Abbreviation
Radius 4
Number of groups k
Variance of each group o’

- 7
Variance of mean £

~.

Number of iterations

Table 5.5 lists constants of the three scenes. The value of # is related to the desired resolution
in Table 5.1 and it should be slightly larger than the value of desired resolution to ensure that
each point has at least one neighbouring point. The parameter k£ symbolizes the segment
number that the data is divided into. Scene 1 contains ground and building roof and 2 is
picked. Scene 2 consists of ground, HRV and building roof and 3 is selected. Scene 3
includes three levels of building roofs and three levels of ground surfaces, so 6 is chosen. The
choice of o® and &’ requires some prior knowledge about the scene. For instance, RIM
building . has low rise vegetation around so larger o* (2m?) is selected, in order to reduce
computing time, move mean of each group its stable value, 2m? is chosen for &7 so its mean
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values will move faster to their stable values. The experiment shows that as & increases, both
o?and & should be reduced to achieve optimal solution. The choice of / is linked with the k
and &%, as k increases and &’ decreases, larger i value is expected. The selection of i in this
case 1s based on the step-wised experiment.

Table 5.5 Parameters of sample buildings

Constants Scene 1 Scene 2 Scene 3
r I.1m 1.lm I.Im
k 2 3 6
o’ 2 m? 1.5 m? I m’
& 2 m’ 1.5 m? 1 m?
i 200,000 150,000 850,000

Figure 5.7 shows the process of segmentation of Scene 1. Figure 5.7 (a) demonstrates the
initial state, where each point is assigned a group value randomly. After 50,000 iterations,
points with similar elevation value (z value) start to cluster together, which is shown in Figure
5.7 (b). The majority of points are segmented successfully after 100,000 iterations as in Figure
5.7 (c). Figure 5.7 (d) exhibits shows the final results of the segmentation procedure, all the
points are divided into two groups, ground points (blue colour) and building points (green
colour). It is noticed that there are a few blue points mixed into green points. This is caused by
the ground returns when LiDAR beams go through building windows. Those noise points can
be deleted by post-processing method and will not have effect for building boundary

extraction.

81



gmentation of scene one

7 Seg

5

Figure

.8 demonstrates the Acceptance Rate (AR) of k: one means £ is accepted., zero

5

Figure

38

.8 (a) reveals overall AR during complete computing cycle. Figures

5

=

otherwise. Figure

an

B

(b)

ANE]

i &

11 4
13

» 0

YT
Las L Rl

« 10

a
A

« 0

(a)

a8
07
08
05
04
02
11

S

d)

(

)

C

(

5.8 Acceptance rate of k

Figure

s and 100,000

000 to 100,000 repetition

*

50

(c) and (d) offer AR in first 50,000 repetitions,

»

(b)

82



Y
N/“,.e

NN
/,W

,.,M%w N

(d)

x 10°

(b)
(d)

000 repetitions and 100,000

3

000 to 100

Uk
b4

50

b

o

0.5
a1
0.4}

A aal
403
| K32
lpst
1lpst
b7l
4los}
1ipsk
S HER
1le2t
Hbal
82

x 10°
x 1

000 repetitions

3

Figure 5.8 Acceptance rate of k

)

(a)
(c

CE)

H5H

(c) and (d) offer AR in first 50

0B
D7 |-
1.6 +
"t
D4
D3k
nZpk
p1p
03t
O8F
0.7
3.8 |
05+
0.4
0.3
02F
.1
a}

e o0
o ey
N w2
- L
b5 5
W &0
5 6T
% .
R =
o
= )
2 a ) R
A e, o m
&
AR 3 2.
TR ,N///W/v g &
SN 8
/x..,. 5 2 m 3
3 J.f 0 e
2 N
— .. R
3 ~ [
e 8 s &
- c )
@] m o
)
8 < =
gl ~— o
& n 3
5 s
g o
<
& 8 =
/5] & tm
- = £
™= v
= w % o}
5 g g
&0 < 8
(59 o >
S s
T N & «
3 A Hf;,.wem L <
= AR R :
.xwﬂ,.,..,, %,.//ﬁy, & o
X R .,a.“ N
N .m Nt -~ o
§ w g
9
h 5 £
&9 o

(b),



to 200,000 repetitions, respectively. AR in Figures 5.8 (b) and (c) are higher because of
frequent label shifting rate and Figure 5.7 (b) and (c) show the same tendency. As most points

are correctly labeled, new labels tend to be rejected and AR drops significantly, which is

explained in Figure 5.8 (d).

Figure 5.9 shows the change of means for two groups during complete iterations,
respectively. Figure 5.9 (a) shows mean shift of ground points. At the beginning a value is
assigned arbitrarily between the minimum and maximum heights, as point labels switch, its
mean value alters accordingly. Because a large portion of points are gréund points and big
elevation difference between ground points and building roof points, the mean value
fluctuates dramatically before it stabilizes. Figure 5.9 (b) reflects the mean change of

building roof points, which share similarities with Figure 5.9 (a).
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Figure 5.9 u Values against iteration

o

Figure 5.10 discloses the AR of mean for ground points, one means value is accepted and

zero otherwise. Figure 5.10 (a) gives overall AR during whole computing procedure. Two
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thousand iterations are extracted from beginning, middle and end respectively to deliver
better view of tendency, which are shown in Figures 5.10 (b), (¢) and (d). With reference
to Figure 5.9 (a), at the beginning AR is high, from the middle of iterations and thereafter, u,
decreases and becomes stable, only values close to its current mean are accept, which are

reflected in Figures 5.10 (¢) and (d).
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Figure 5.10 Acceptance rate of u;

Figure 5.11 depicts the AR of mean for building roof points, which shows similar situation as
in Figure 5.10 except that stability occurs after passing the middle of iterations. In Figure
5.11 (c), the mean is stilling changing (values shown in Figure 5.9 (b)), the stabilized

situation is shown Figure 5.11 (d).
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Figure 5.11 Acceptance rate of u;

Figure 5.12 illustrates the segmentation operation of Scene 2. At beginning each point is
assigned a label as shown in Figure 5.12 (a). Figure 5.12 (b) exhibits how points are grouped
after 50,000 iterations, most points have aggregated properly. Figures 5.12 (¢) and (d) display
the results after 100,000 and 150,000 iterations respectively. By the end of operation, dataset is
segmented into building roof layer (red). ground layer (blue) and vegetation layer (green and

minor red points).

Figure 5.12 Segmentation of scene two
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(b)

Figure 5.12 illustrates the segmentation operation of Scene 2. At beginning each point is

assigned a label as shown in Figure 5.12 (a). Figure 5.12 (b) exhibits how points are grouped

after 50,000 iterations, most points have aggregated properly. Figures 5.12 (c) and (d) display

the results after 100,000 and 150,000 iterations respectively. By the end of operation, dataset is

segmented into building roof layer (red), ground layer (blue) and vegetation layer (green and

minor red points).
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Figure 5.12 Segmentation of scene two
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Figure 5.13 shows the AR of &, one means label is accepted, zero otherwise. Figure 5.13 (a)
offers AR in overall view. Figure 5.13 (b) shows AR during first 50,000 iterations, whose AR
is the highest among three stages. AR declines gradually as computing advances to the
100,000 and 150,000 iterations, the tendency is revealed in Figures 5.13 (c) and (d),
respectively. Because the majority of points are correctly labeled, new labels to these points

are more likely to be rejected.
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Figure 5.13 Acceptance rate of &

Figure 5.14 shows the mutation of means. Figure 5.14 (a) is for ground points, Figures 5.14

(b) and (c) are for vegetation and building roof points, respectively. Values in Figures 5.14 (a)
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and (c) become constant before 50,000 computing cycles, which is echoed by Figure 5.12 (b). -
Values in Figure 5.14 (b) oscillate in a wider range, because some points can be classified as
either ground points or LRV points. Only a small portion of points are vegetation points, so

the label changes have bigger impact on mean values.
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Figure 5.14 u Values against iteration

Figure 5.15 shows mean AR for ground points; one symbolizes acceptance and zero means
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Figure 5.15 Acceptance rate of
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rejection. Figure 5.15 (a) shows overall AR. Figures 5.15 (b), (c) and (d) magnify two
thousand iteration intervals from the beginning, middle and end part, respectively. It is

clearly shown that AR declines as the calculation continues.

Figure 5.16 displays the mean AR for vegetation points. In contrary to what 1s shown
in Figure 5.15, its value does not drop significantly as iteration develops, this is because label
switches between ground points and LRV points happen frequently throughout the whole

cycle, Figure 5.14 (b) indicates the same situation.
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Figure 5.16 Acceptance rate of u;

Figure 5.17 demonstrates the mean AR for building roof points. Its change shares similarities

with that of ground points (shown in Figure 5.15).
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Figure 5.17 Acceptance rate of u;
Figure 5.18 exhibits the segmentation process of Scene 3. At the initial stage, each point is
allocated to one of the six labels randomly, which is shown in Figure 5.18 (a). After 150,000
iterations, the approximate shape of building and its surrounding area become clear as

in Figure 5.18 (b). At the moment when 550,000 repetitions are completed (indicated in

Figure 5.18 Segmentation of scene three

Figure 5.18(c)), six layers are clearly separated except for minor points which need label
adjustment. Figure 5.18 (d) depicts the final result after 850,000 iterations. The dataset is
divided into two categories: ground and building roof, ground category contains points in red
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Figure 5.17 Acceptance rate of u3

Figure 5.18 exhibits the segmentation process of Scene 3. At the initial stage, each point is
allocated to one of the six labels randomly, which is shown in Figure 5.18 (a). After 150,000
iterations, the approximate shape of building and its surrounding area become clear as

in Figure 5.18 (b). At the moment when 550,000 repetitions are completed (indicated in

e FaiE
s

Figure 5.18 Segmentation of scene three
Figure 5.18(c)), six layers are clearly separated except for minor points which need label
adjustment. Figure 5.18 (d) depicts the final result after 850,000 iterations. The dataset is

divided into two categories: ground and building roof, ground category contains points in red
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cyan and green colours, building roof category holds points in yellow, blue and black colours.

Points within each category are arranged in ascending order of elevations.

Figure 5.19 shows the AR of k; one means k is accepted, zero otherwise. Figure 5.19 (a)
offers overall AR, because of high iteration number, it is not clear to demonstrate switch
tendency. Figures 5.19 (b), (¢) and (d) extract 5,000 repetitions from the beginning, start of
second of computing stage (150,000 to 550,000 iterations) and last phase towards end of

calculation. It is clearly observable that AR declines steadily during the whole computing

process.
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Figure 5.19 Acceptance rate of k
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Figure 5.20 depicts the alteration of means. With reference to Figure 5.18 (d), Table 5.6 lists

point set that each mean belongs to in the geographic distribution sense. The property of each

point set is identified in the third row.

2

4

¥ E F ¥

o »1°

(d) (e) (H)
Figure 5.20 u Values against iteration
Table 5.6 Means and their colour representations
Image name (a) b) (c) (d) {e) (H
Colour red cyan green yellow blue black
Category ground | ground | ground | building roof building roof building roof

Due to the range reduction of o’ and & and increase of , a couple of changes are noticeable
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in Figure 5.20. First, mean stabilizing times are greatly postponed and in Figure 5.20 (f), the
mean becomes constant after 700,000 iterations. Second, it becomes harder to differentiate
means, each mean experiences a period where its value sways heavily, as the calculation

progresses, the value stabilizes at certain cycle.

Figure 5.21 shows the AR of u; with value changes in Figure 5.20 (a) where one indicates
that mean value is accepted and zero otherwise. Figure 5.21 (a) represents comprehensive AR
during whole computing cycle. In Figures 5.21 (b), (c) and (d) 2,000 iterations are extracted
from the beginning, middle and end parts, respectively to describe changing trends in more
detail. At the initial stage, AR is high because of frequent label switch of points and, then it

keeps decreasing until the end of computation.
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Figure 5.21 Acceptance rate of u;

Figure 5.22 pictures the AR of u; whose value change is shown in Figure 5.20 (b), its shift
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trend is similar to y;,
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Figure 5.22 Acceptance rate of u,

Figure 5.23 indicates AR of u3, whose value mutation is shown image (c) of Figure 5.20 (c).

Its AR follows the same rule as u;.
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Figure 5.23 Acceptance rate of u;3

Figure 5.24 depicts AR of g, its value change are shown in Figure 5.20 (d), still same order
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as for p; govems its alternation tendency.
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Figure 5.24 Acceptance rate of p4
Figure 5.25 shows the AR of us, its value change are displayed in Figure 5.20 (e), its AR

experiences single decreasing period, which is identical with AR of y;,
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Figure 5.25 Acceptance rate of us
Figure 5.26 displays the AR of us with its value changes shown in Figure 5.20 (f). Observing

from Figure 5.26 (b), (c) and (d) it is obvious that its AR complies with the same rule with u;
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5.2.2. Filtering

It is quite common that building roof points are accompanied by HRV points. In the study,
both the BFG building and the Optometry building are surrounded by HRV, which can be
clearly observed in Figure 5.12 (d) and 5.18 (d). These points arc noise and have to be

removed. In this section, the Optometry building is chosen to demonstrate the approach.

The Optometry building roof consists of three layers (yellow blue and black colours in Figure
5.27 (a)) with distinct heights. The adjacent area has strong presence of HRV and these
regions are square-marked in Figure 5.27 (a). In Figure 5.27 (b) and (c), two building roof
layers are obtained which offer a detailed view of HRV points. Points in black colour have no
involvement in building roof outline acquisition and will be treated separately in 3D building

reconstruction,
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(a) (b) (¢c)
Figure 5.27 Optometry building and its neighboring HRV

Traditional image filtering approach is borrowed to remove HRV points by applying dilation
and erosion filters repeatedly. The process, which consists of two phases, starts by converting
points to grayscale image by predefined conversion rules. After the noise is removed, image is

converted back to points.

Figure 5.28 demonstrates refining method of building roof points in blue colour. In Figure
5.28 (b), points are transformed to black and white image. A 3-pixel dilation filter is applied
to eliminate black pixels within building roof outline with result displayed in Figure 5.28(c).
A 11-pixel erosion filter deletes HRV pixels, only building roof pixels are shown in Figure
5.28 (d). By dilating back 11 pixels, Figure 5.28 (e) is achieved. Figure 5.28 (f) exhibits pixel
difference between Figure 5.28 (c¢) and (e), which holds HRV pixels plus minor building
pixels. After HRV pixels are deleted, remaining building pixels are converted back to points,

the outcome 1s shown in Figure 5.28 (g).
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Figure 5.28 HRV points removal (phase one)

o

Figure 5.29 demonstrates filtering method of building roof points in yellow colour. Points in
blue colour from the previous step are integrated with points in yellow colour as shown
in Figure 5.29 (a). Point to image conversion is accomplished, resulting in Figure 5.29 (b).
In Figure 5.29 (c) black pixels within building outline are deducted by a 3-pixel dilation filter.
Most HRV pixels are eliminated by a 10-pixel erosion filter as indicated in Figure 5.29 (d).
Because a small chunk of building area is lost (area in the white polygon), an 18-pixel
dilation filter is employed to recover part of missing space indicated by white area covered
by polygon in Figure 5.29 (e). An 8-pixel erosion filter is applied to shrink the building area
back, the result is exhibited in Figure 5.29 (f). Figure 5.29 (g) shows difference between

Figures 5.29 (c) and (f). Image (h) indicates final building points set survived after filtering.

97



(b) (c) (d)

(H

Figure 5.29 HRV points removal (phase two)

Table 5.7 demonstrates the process of building roof outline points extraction and
regularization operations. Images in the first row show the results from the GRFM-MCMC
algorithm. In the second row, building point sets are withdrawn together HRV points. By
applying the above mentioned filtering technique, HRV points are removed, the remaining
building point sets are illustrated in the third row. Roof outline points are further extracted
from building points sets through MCH algorithm with resultants shown in the fourth row. In
the last row, roof outline points are regularized by modified hierarchical regularization

algorithm.
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Figure 5.29 HRV points removal (phase two)

Table 5.7 demonstrates the process of building roof outline points extraction and
regularization operations. Images in the first row show the results from the GRFM-MCMC
algorithm. In the second row, building point sets are withdrawn together HRV points. By
applying the above mentioned filtering technique, HRV points are removed, the remaining
building point sets are illustrated in the third row. Roof outline points are further extracted
from building points sets through MCH algorithm with resultants shown in the fourth row. In
the last row, roof outline points are regularized by modified hierarchical regularization

algorithm.
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Table 5.7 Building roof outline extraction and regularization

Building name Optometry

Segmented image

Building layer(s)

with noise

\

Building layer(s) %
after filtering /

L

1@

Building roof 4l :'-.__ Y

outline ! b8 L L ¥ \

Regularized
building roof

outline

*No filtering process is needed for RIM building, building roof points are identical
before and after filtering.
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Table 5.7 Building roof outline extraction and regularization
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building roof points are identical

*No filtering process is needed for RIM building,

before and after filtering.
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5.2.3. 3D Building Reconstruction in ArcGIS

After regularization, building edge point sets are ready to be exported to ArcGIS for 3D
building reconstruction. The RIM building is taken to demonstrate how to convert

geo-referenced point dataset to a polygon shapefile where four steps are involved.

The first step is file re-formatting. Figure 5.30 displays re-formatted border points of the RIM
building required by ArcGIS where each row is the spatial reference of one point. The first

row and last row must be identical and include a header and end of file mark.

1
537111.12,4813635.71
537124.17,48136108.52
537086.36,4813592.13
537067 .78,4813628.72
537093.14,4813642.36
537098,4813639.%
5370699.91,48136408.5
537105.81,4813638.26
5371186.31,4813635.23
537111.12,4813635.71
END

Figure 5.30 File re-formatting of RIM building roof outline points

The second step is creating line coverage. “Generate” function is utilized to convert text file

to line coverage file. Figure 5.31 displays the RIM building line coverage file in ArcMap.
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Figure 5.31 RIM building line coverage file in ArcGIS

The third step is polygon shapefile generation. “Feature to Polygon™ function is applied to

senerate polygon shapetile in ArcMap. Figure 5.32 shows the created shapefile.
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Figure 5.32 RIM building roof shapefile

The last step is assigning the geo-reference system. The “Define Projection™ function is
employed to attach proper coordinate system to polygon shapefile. As introduced in Chapter

101



LY WU T PRSP RRREIRS WOy PNy RO FRRESY TN 1 REERCE
Dris ft Low laawt Gudettiem foGt Dode Juis
+ 2 . i * % e Padne — o -
Q&9 L R - JdamOw QaQuine==th -y SR L’
. .
s P m—— N
- M oa hiimes ws el T e,
PR ‘ R
/'r‘
< )
\ \"«
AY *
s
‘\h
h, Y
\ ,//
5 -
N -
\ )
\ T
N
ot X
. .
Duply [Smacn Sabcten | a8 e el
ey K VMY AT e tan e SEmel R g A Se ety
T T Tt o 0 e e e ATIT ORI WS U T Taits

Figure 5.31 RIM building line coverage file in ArcGIS

The third step 1s polygon shapefile generation. “Feature to Polygon™ function is applied to

generate polygon shapefile in ArcMap. Figure 5.32 shows the created shapefile.
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Figure 5.32 RIM building roof shapefile

The last step is assigning the geo-reference system. The “Define Projection” function is

employed to attach proper coordinate system to polygon shapefile. As introduced in Chapter
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Three, topographic LiDAR raw data is usually in the UTM system where the UW campus is
located in Zone 17N and spatial reference system “NAD 1983 UTM Zone 17N” is

selected.

After the above four-step operation, a functional RIM building shapefile is completed, it can
not only be used to reconstruct 3D buildings, but also be shared among various

geo-databases.

By following identical rules, shapefiles of both BFG and Optometry buildings are
generated. Figure 5.33 exhibits the shapesfiles of selected buildings in ArcMap. The BFG

building is in blue, the RIM building in olive and the Optometry building in rose.
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Figure 5.33 Shapefiles of three selected buildings

The height of the building can also be estimated using topographic LiDAR raw data. Elevation
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Three, topographic LIDAR raw data is usually in the UTM system where the UW campus is
located in Zone 17N and spatial reference system “NAD_1983 UTM_Zone 17N” is

selected.

After the above four-step operation, a functional RIM building shapefile is completed, it can
not only be used to reconstruct 3D buildings, but also be shared among various

geo-databases.

By following identical rules, shapefiles of both BFG and Optometry buildings are
generated. Figure 5.33 exhibits the shapesfiles of selected buildings in ArcMap. The BFG

building is in blue, the RIM building in olive and the Optometry building in rose.
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Figure 5.33 Shapefiles of three selected buildings

The height of the building can also be estimated using topographic LiDAR raw data. Elevation
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data for each point is recorded as an absolute value, usually above mean sea level (AMSL). By
subtraction the height difference of the building roof layer and ground layer is computable,
which can be regarded proximately as the height of building. Table 5.8 shows the calculation
process. It is assumed that the ground points, in contrary to HRV points with multiple retumé,
all come from first return in topographic LiDAR raw data set. In the first row, the building roof
points and points with multiple returns are removed and the remaining points are ground
points. In the second row, points inside buffer zone with rational width along the building roof
outline are picked out as reference points to calculate average height of ground. The width of
buffer zones varies from 3 to 5 meters and the reason for buffer zone is that ground area within
buffer tends to be flatter than the ground far from building, which can better represent the
altitude of ground. In the third and fourth rows, the average altitude of ground and buildings
are computed, respectively. In the last row, heights of buildings relative to the ground are
figured out by subtraction of values in the third row and the fourth row. Height of buildings

will be applied for 3D building reconstruction.
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Table 5.8 Building height estimation

Building name
Ground points :
':g;% E
,-:ﬁ*"'«;é‘;;;;?fyt ;(//#' “
;‘/;ﬂ—"‘.- ‘.3',
Buffer zone % :
2"
%
Altitu
itude ofgromd 338.08 337.88 344.01
(AMSL) Unit: m
e 350.06 (yellow)
i;;;% .ltll ng 353.41 346.27 353.65 (blue)
( ) Unit: m 358.35(black)
R 6.05 (yellow)
{
j:(;gL); .tl.ll Ing 15.33 8.39 9.64 (blue)
( nit: m 14.34 (black)

*Optometry building has three parts with different heights.

Based on the elevation data of each building listed in Table 5.8 and shapefiles created before,
3D buildings reconstruction is achievable. Optometry building has three levels of roofs with
different altitude, in order to mimic this property in 3D view, its polygon file is split into two
parts and another shapefile created from points in black colour is added. A 3D view of
building is accomplished in ArcScene. Figure 5.34 provides 3D view of sample

buildings, F igure 5.34 (a) is viewed from the North West and Figure 5.34 (b) is from the East.
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(a) (b)

Figure 5.34 3D view of selected buildings

Figure 5.35 offers a comprehensive 3D view of the UW campus. The building shapefiles are

acquired from map library while their height information is from planning office.

Figure 5.35 3D view of UW campus

105



Figure 5.34 3D view of selected buildings

~

Figure 5.35 offers a comprehensive 3D view of the UW campus. The building shapefiles are

acquired from map library while their height information is from planning office.

Figure 5.35 3D view of UW campus
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5.3. Accuracy Evaluation

In this study, three tools in descriptive statistics, namely overall accuracy (OA), commission

error (CE) and omission error (OE) are introduced for accuracy estimation. Measurement of

surface area covered by polygon shapefile is used for computation while standard shapefiles

from UW map library are imported as a reference. The inspection is achieved in an ArcGIS

environment based on individual building polygon. The formula and brief explanation of each

tool is provided as follows:

1.

Overall Accuracy (OA)
As the name suggests, OA tests how well the building shape 1s recovered

according the performance of the algorithm.

Awf
04== (5.1)

als

A,sis the area of reference building polygon, Ay is the area of building polygon
from topographic LiDAR raw data.

Commission Error (CE)

CE indicates how much area of the building polygon is recovered where it should

not. The designer of the algorithm is more concerned about CE, because it tells the

correct interpretation rate building shape.

Aas "—(Aus UAW )
CE =4 A[ A (5.2)

als
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3. Omuission Error (OE)
OE implies how much area of the building polygon fails to be recovered where it
should be found. The user takes more care of the value, because it tells the
percentage of the building shape that is correctly restored.

A=A WA,
()E: ref ( als /u}) (53)
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Figure 5.36 exhibits overlay effect of shapefiles. Standard shapefiles are in solid red line,
generated ones are in yellow colour. In all three images it is noticeable that some area
controversies exist between two versions of the shapefiles in each building, by computing

area differences, the accuracy rate of proposed algorithm can be estimated.

(a) (b) (c)

Figure 5.36 Overlay of shapefiles

Table 5.9 lists the area differences of three buildings in both coloured shapefiles and numbers.

Given two versions of shapefiles in
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3. Omission Error (OE)
OE implies how much arca of the building polygon fails to be recovered where it
should be found. The user takes more care of the value, because it tells the

percentage of the building shape that is correctly restored.
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Figure 5.36 exhibits overlay effect of shapefiles. Standard shapefiles are in solid red line,
generated ones are in yellow colour. In all three images it is noticeable that some arca
controversies exist between two versions of the shapefiles in each building, by computing

area differences, the accuracy rate of proposed algorithm can be estimated.

(a) (b) (c)

Figure 5.36 Overlay of shapefiles

Table 5.9 lists the area differences of three buildings in both coloured shapefiles and numbers.

Given two versions of shapefiles in
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Figure 5.36, new shapefiles which carry the union arca coverage of both shapefiles are
created except that they are divided into three sections. The area in rose colour is the area that
both shapefiles agree, the arca in blue colour is the area in the standard shapefile, but absent
from generated shapefile, the area in green colour is the area present in generated shapefile,
but missing from standard shapefile. Coloured shapefiles are presented in the second column
of Table 5.9. In the third column, the measurements of individual coloured areas are

calculated through geometry computing function in ArceGIS.

Table 5.9 Shapefiles and their area coverage

Building names Union of shapefiles | Area by colour (m”)

RI ~
M ' O 115.80
O 1568.68
O 95.25
BFG s
) O 63.69
O 1607.48

\ 118.48
Optometry N @ 232.82
- b o i
N \
A O 3459.07
\
)
| m 12232
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Figure 5.36, new shapefiles which carry the union area coverage of both shapefiles are
created except that they are divided into three sections. The area in rose colour is the area that
both shapefiles agree, the area in blue colour is the area in the standard shapefile, but absent
from generated shapefile, the area in green colour is the area present in generated shapefile,
but missing from standard shapefile. Coloured shapefiles are presented in the second column
of Table 5.9. In the third column, the measurements of individual coloured areas are
calculated through geometry computing function in ArcGIS.

Table 5.9 Shapefiles and their area coverage

Building names Union of shapefiles | Area by colour (m?)
RIM O 115.80
O 1568.68
O 95.25
BFG
O 63.69
O 1607.48
0O 11848
Optometry
O 232.82
O 3459.07
\ O 122.32
[ A;ef_ (Aals UArej) O Aals UAmf O Aals _(Aals U-Arej)
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In Table 5.10, OA, CE and OE of each building are calculated based on the data in Table 5.9,
where the averages of each error are listed in the last row as well. OA ranges from almost 97%
to 103% with an average around 100.38%. Regarding CE, an average of 5.34% of the area is
mistakenly included the created shapefiles. On the other hand, 5.66% of the average area is
overlooked in the created shapefiles as shown by OE. By analyzing above table, two facts are
observable: the building areas are proximately fully reconstructed by the algorithm, both CE
and OE are less than 6%. As such, the algorithm accomplishes satisfactory results.

Table 5.10 Accuracy evaluation

OA CE OE
RIM 101.24% 5.72% 6.87%
BFG 96.82% 6.87% 3.81%
Optometry 103.09% 3.42% 6.31%
Average 100.38% 5.34% 5.66%

Among the main factors that contribute the inaccuracies of created shapefiles, several aspects

need to be examined in more detail.

HRYV causes constant obstacle in building roof outline verification, it shadows neighboring
buildings partly, which makes it complicated to separate building roof outline points from
tree canopies, especially in situations where there is no auxiliary data available like a field
map or an aerial image. The east part of the Optometry building suffers distortion of border

line and loss of part of border region from strong appearance of HRV. There are some
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remedies accessible to alleviate the impact of HRV, avoiding flight operation during tree

bloom season and seeking verification from another form of data in dense HRV areas.

The scanning rate of dataset is 35 kHz, which is pretty low sampling rate considering the
prevailing scanning rate is more than 200 kHz. As a result some elaborate details of building
fails to be recorded. Both the BFG and the Optometry buildings have some subtle curves in
roof outline design as shown in

Figure 5.36. Omission of such information in the original topographic LiDAR dataset leads

to the failure to retrieve proper border lines from algorithm.

Building roof outline regularizing algorithm assumes that all roof edge lines are straight, it
works well for the BFG and the Optometry buildings, but introduces problem when obvious
curve border line is present in the North East part of the RIM building. The linear
substitution of curve line causes part of building failed to be recovered and it is exhibited in

Figure 5.36 (a).

Standard shapefiles are from map library and there are no descriptions about how they are
created. Standard shapefiles are assumed to be accurate in this study, however in
Figure 5.36, it is observable that all the created shapefiles slide certain extent to south, which

leaves gaps between two version of roof outlines in north part for each building. In order to
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trace the origin of the problem, building roof points of the RIM building are extracted and
overlaid with standard shapefile. Figure 5.37 shows overlay image of two datasets, as
indicated by arrow, there is clearly down shift of original topographic LiDAR raw data
compared to standard shapefile, which contributes to both OE’s and CE’s in TablAe 5.10. Thé
cause of discrepancy is difficult to locate for lack of necessary information since it may come
from the calibration process after the data is collected or from GPS errors during operation.

The accuracy level will be further increased if systematic errors are reduced.

Figure 5.37 Overlay of RIM building roof points from topographic LiDAR data and

standard shapefile

5.4. Chapter Summary

In this chapter, a complete case of 3D building reconstruction from topographic LIDAR raw
data is implemented. The study area is part of UW campus. The experiment consists of five
parts. First, raw data is segmented by GRMF-MCMC algorithm proposed in Chapter 4.
Second, filtering process removes HRV points from dataset. Thirdly, building roof edge

points are extracted and regularized. In the next step 3D buildings are reconstructed in an

m



ArcGIS environment. Finally, an accuracy assessment is conducted, which shows that the
whole process achieves promising outcome with low point density topographic LiDAR data

alone,
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6. CONCLUSIONS AND RECOMMENDATIONS

6.1. Conclusions

Rapid and accurate reconstruction of 3D building models in urban areas remains a challenging
task for geomatics community. Topographic LiDAR systems are capable of acquiring 3D
information directly over terrain features and become a very active research topic in recent
years. In this thesis, a method of 3D building model reconstruction from topographic LIDAR
point clouds is presented. Compared with existing approaches, this procedure has two
advantages. First, it works on LiDAR point clouds directly without pre-processing or
rasterization, which eliminates the loss of spatial information during interpolation step.
Second, it functions alone without auxiliary data such as vector maps or GIS data, which

makes the approach more versatile.

The proposed approach consists of four steps: building roof detection, roof outline extraction,
and regularization, and 3D building model generation. In the segmentation step,
mathematical model resembling the distribution of LiDAR data is established by Gaussian
distribution and MRF theory. The MCMC algorithm is utilized to obtain the optimal solution.
The building outlines are extracted by the MCH algorithm. However, the outlines are
distorted due the nature of topographic LIDAR systems and further refinement is required.
The regularization of the extracted roof outlines is achieved by a modified hierarchical
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regularization algorithm. Finally, the regularized the building roof outlines are input