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Abstract 

INVESTIGATION OF NIR SPECTROSCOPY FOR IDENTIFYING AND SORTING 

WOOD WITH RESPECT TO SPECIES, MOISTURE CONTENT, AND 

WEATHERING 

by 

Ekaterina Tounis 

An abstract submitted to Ryerson University in partial fulfillment of the requirements for 

the degree of Master of Science in the Program of Molecular Science, 2009. 

Near-infrared spectroscopy can characterize wood surfaces fast and without 

significant surface preparation. It is based on molecular overtone and combination 

vibrations which are typically very broad, leading to complex spectra. Multivariate 

calibration techniques are often employed to extract the desired chemical information. 

This study focused on the potential of near-infrared spectroscopy combined with partial 

least squares for identifying and sorting wood with respect to species and physical 

properties and on the effects of wood preparation and weathering on the precision of 

analysis. It was shown that a range of moisture content values and artificial weathering 

periods could be well predicted independently of wood species analyzed. Species within 

the spruce-pine-fir species group could be predicted reasonably well when tested under 

similar conditions. When different moisture contents and weathering exposure periods 

were introduced, species prediction was still possible, but, with decreased prediction 

ability. 
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1. Introduction 

For many value-added applications, a rapid and reliable sorting of solid wood by 

species and other properties is needed. Near Infrared Spectroscopy (NIRS) has developed 

as a powerful tool to rapidly predict chemical and physical properties on the production 

line or through handheld instruments based on the surface chemistry of wood. One 

application of industrial interest is development of a fast and reliable sorting technology 

for separating fir, spruce, and pine. These three species are currently marketed as one 

(SPF) but it will be beneficial to separate them. Fir is more permeable than spruce and 

pine, and so longer drying times are needed and it should be separated from the other two 

species for drying and preservati ve treatment. Fir is also weaker than spruce or pine, and 

so is less suitable for construction. It is also beneficial to separate spruce and pine 

because spruce is selected for machine stress rating for lumber construction, while pine is 

better for wood treating or window frames and furniture. 

This study focused on the potential of NIRS for separating spruce, fir, and pine, and 

on the effects of wood preparation and weathering of wood surfaces on the precision of 

analysis. Results suggest that NIRS has potential as a cost-effective and rapid method for 

identifying or separating wood species and wood of different properties. 
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1.1. Near Infrared Spectroscopy 

1.1.1. Principles of NIR Spectroscopy 

Near infrared (NIR) refers to the spectral region adjacent to the long-wavelength side 

of the visible (Vis) range. The NIR wavelength range lies between 750 and 2600 nm. The 

transitions involved in NIRS are usually the weak vibrational overtone and combination 

bands. 

Molecules are capable of storing energy as vibrations; i.e., internal motion in which 

the nuclei oscillate about their equilibrium bond positions. In general , a non-linear 

molecule will have 3N-6 normal modes, where N is the number of nuclei in the molecule. 

Many of the modes will be infrared active; i.e., they will be capable of absorbing infrared 

(IR) radiation, which process results in a change of the vibrational energy of the 

molecule. Normal vibrational modes that result in a change of dipole moment of the 

molecule are IR active; fully symmetric modes, which do not change the dipole moment, 

are not. 

Each IR-active normal vibration of a molecule will absorb radiation at its fundamental 

frequency, Vi . The energy of the photon, hVi, where h is Planck's constant, corresponds to 

the difference in energy between the lowest (or ground) vibrational level (n = 0, where n 

represents the vibrational quantum number and 0 denotes the lowest vibrational level) 

and the first excited vibrational state (n =1) of the mode; thus, when the photon is 

absorbed the molecule gains vibrational energy, as well as a series of overtones and 
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combination bands at higher energy. The fundamental transition is allowed by quantum 

mechanical rules (provided symmetry conditions are met) and is the strongest transition 

for the mode because the frequency of the oscillating dipole moment of the molecule 

matches that of the photon's electric field, allowing excellent transfer of energy. 

Fundamental frequencies are usually observed in the mid infrared spectral region (MIR; 

2.5 to 15 ,urn). 

Absorption of the more energetic NIR radiation by organic molecules is due to 

overtone and combination bands, primarily of O-H, C-H, N-H, C-C and C=Q groups. 

The overtones involve transitions from the ground vibrational level to higher excited 

states: the first overtone is the transition from n = 0 to n = 2; the second overtone is n = 0 

to n = 3, etc. Because they involve transitions to higher states, they are observed at 

higher energy in the spectrum, i.e. the NIR region. The overtones are formally forbidden 

by quantum mechanical selection rules because the frequency of the photon no longer 

matches that of the oscillating dipole moment (which is roughly half that of the photon), 

and so are much weaker than the fundamentals. Combination bands involve simultaneous 

excitation of two fundamentals and so they also appear in the NIR. They are also weak 

transitions, like the overtones, for a similar reason. 

The NIR spectrum of an organic material includes overtone and combination bands 

from all the organic functional groups in the material. Because the structures of organic 

materials like wood are very complex, the resulting spectra can be difficult to interpret. 

When performing NIR analysis specific features in the spectra must be identified and 
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characterized by means of statistical methods. Chemometrics procedures are often 

necessary for both qualitative and quantitative analysis. Fortunately, several commercial 

software packages are available to accomplish that. For more about NIR principles see 

reference (l, 2). 

1.1.2. Theory of NIR Absorption Spectroscopy 

To understand the types of measurements possible using NIR, it is useful to 

understand several general properties of electromagnetic (EM) radiation, as well as the 

basics of classical molecular and atomic structure. EM radiation has wave-like properties. 

Frequency refers to the number of complete "waves" that occur in unit time (usually one 

second). Wavelength is the distance between equivalent points on successive waves. 

These parameters are related by: 

c= VA [1] 

where c = speed of light in vacuum, A = wavelength, and V = frequency in cycles per 

second (Hz). Light, as well as being a wave, consists of photons which have properties of 

both waves and particles. The energy of a photon is given by: 

E=hv = he/A [2] 

where E = energy and h = Planck's constant, so that the energy of a photon is related to 

the wavelength at which the radiation is emjtted. The general properties of waves of 

certain energies allow their classification across the full EM spectrum. 
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Photon energy can be absorbed by molecules, elevating the energy of the molecule by 

a discrete amount to a higher energy level. The energy levels of a diatomic molecule can 

be roughly calculated using equation [3] which is based on a quantum mechanical 

harmonic oscillator. 

E =(n+~)~ [k 
n 2 2IT~-;; 

where En = the molecule vibrational energy, n = quantum number (n = 0,1 ,2,3 ... ), h = 

Plank's constant, k = the force constant (which reflects bond strength), and,u = the 

reduced mass ( m,m2 J. A transition from n = ° to n = I is known as a fundamental 
m, + m2 

[3] 

absorption. The overtones are the result of forbidden transitions arising from the ground 

vibrational energy level to levels where n > 1. 

The majority of overtone bands in the NIR arise from X-H stretching modes. Due to 

the large mass difference between the two atoms, large amplitude vibrations arise with 

high anharmonicity and large dipole moments. The large anharmonicity causes the 

frequencies of the first and second overtones being slightly different from (usually less 

than) whole-number multiples of the fundamental frequency. As a result, first, second, 

and higher overtones usually occur at longer wavelengths than expected. This is 

mathematically described by equation [4]. This equation relates the observed frequency 

Vn of the nth harmonic to the frequency va of the fundamental (1): 

[4] 
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where n is the vibrational quantum number (=1 for fundamental and =2 for second 

overtone) and x is a positive number indicative of the anharmonicity that measures the 

deviation of the potential function from the ideal parabolic function (Fig.1.1). 

Unlike the harmonic oscillator, the energy levels expressed in equation [3] are no 

longer equidistant from each other (Fig. 1.1) and the selection rule is expanded to 

transitions over more that one energy level. Reference (1) gives the approximate areas 

where overtones of some of the most common absorbers may be expected to occur. 

Fig. 1.1. The energy diagram of a molecule's vibrational model showing an (a) ideal diatomic or 

(b) anharmonic diatomic oscillator. (3) 

--r_ 

Harmonic potential 

Anhannonlc 
potential 

The sample can be made of different types of molecules each with its own absorption 

spectrum, resulting in a complex spectrum. When a measurement is performed on this 

sample, the instrument is measuring the number of photons which undergo the absorption 
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process for a particular wavelength. The number of photons absorbed is proportional to 

the amount of a particular type of molecule present in the sample. This statement is 

Beer's law (equation [5]). In principle, this is the basis for an NIR measurement. 

[5] 

where G), is the molar absorption coefficient that is a characteristic of each molecular 

species, b is the path length of the irradiating energy through the sample, and e is the 

analyte concentration. The quantity log (11 T) is 'absorbance' (A). In the field of NIRS, 

reflectance (R) is analogous to transmittance (T); equation [5] can thus be expressed in 

terms of reflectance as (1): 

loglO (1/R) = c be = A 
), ). 

[6] 

In NIRS the reflectance of solid samples is measured where the path length cannot be 

kept constant and will vary with sample. The net consequence of this scattering is to 

change the proportion of absorbed and reflected radiation so that path length becomes an 

extra unknown along with concentration. Therefore, even if only one component was 

known to absorb at just one wavelength, it would be necessary to have another 

measurement wavelength to solve a pair of simultaneous equations relating path length 

and concentration to absorbance at the two wavelengths. Features that affect path length 

include density, moisture content (MC) and absorption itself. In practice, most 

measurements require information from more than one region of the NIR spectrum, so 

that a matrix solution to a set of simultaneous equations forms part of the calibration 

process. Calibration is a regression modeling procedure that identifies the minimum 

subset of wavelength terms that best explains the chemical property across a population 
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of similar commodities showing multivariate changes in composition. For more about 

NIR theory see reference (1, 2). 

1.1.3. NIR Spectra 

All molecules have normal vibrations at characteristic wavelengths. In each normal 

mode of vibration, all of the functional groups of atoms of the same type in a molecule 

vibrate at a certain frequency range. There are two main types of molecular vibrations: 

stretching and bending. Stretching is movement along the axes of bonds, so that the 

distance between atoms changes rhythmically. Stretching vibrations are either 

symmetrical or asymmetrical. The absorption frequency of asymmetric stretch is higher 

than that of symmetric stretch. Bending vibrations may involve changes in bond angles 

between atoms, or movements of groups of atoms with respect to the rest of the molecule 

with minimal movement of the atoms in the group relative to one another. Bending 

vibrations are either out-of-plane or in-plane. Out-of-plane bending consists of wagging 

and twisting, and in-plane bending consists of scissoring and rocking. For any given 

molecule, stretching vibrations occur at the highest frequency, followed by scissoring, 

wagging, and twisting and rocking. Only vibrations that result in rhythmic changes in the 

dipole moment of a molecule (permanent displacement of electric charge) are capable of 

absorbing in the IR region. 

Polyatomic molecules composed of N atoms have 3N degrees of freedom. For non

linear molecules, three of these describe translation of the molecule and another three 
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describe rotation. The remaining (3N-6) degrees of freedom describe vibrational motions, 

all of which are theoretically capable of absorbing photon energy, and so there are 3N-6 

possible fundamental absorbencies for a non-linear molecule. For linear molecules, only 

two degrees of freedom are required to describe rotation because rotation about the 

molecular axis is not measurable, so that there are (3N-5) degrees of freedom available 

for vibrational motions. Of these, N-l are stretching motions and 2N-5 are bending 

motions. There is more deformation or bending than stretching vibrations, but stretching 

vibrations are usually the more intense. 

The above rules for the number of absorption bands apply only to the number of 

fundamental bands. It does not apply to the number of overtone and combination bands. 

Combination bands occur when the absorbed photon excites two or more vibrations 

simultaneously. For this to happen, the energy of the photon has to be equal the sum of 

the energies of the coupling vibrations. They are also influenced by the anharmonicity of 

the vibration which increases with the amplitude of atomic oscillation. In practice, the 

number of fundamental bands observed is rarely exactly 3N-6 for any molecule. The 

number can be decreased by several factors, including a high degree of molecular 

symmetry. Some fundamentals occur so close together that they are not separated by the 

spectrometer, and others are too weak to be observed. Finally, some bands occur outside 

of the range of the spectrometer. 

If the sample being irradiated was totally reflective and contained molecules all of 

which were 100% nonpolar and symmetrical, the spectrum would theoretically appear as 
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a straight line across the wavelength range. In practice, at each wavelength point there are 

molecules that are capable of absorbing energy. Each individual constituent present in 

any sample, will absorb energy according to Beer's law to a greater or lesser degree at 

different wavelength points, depending upon their concentration. Accordingly, the 

amount of absorbance/ reflectance that takes place will differ at different wavelength 

points, thereby creating the undulating pattern as the spectrum. The shape of the spectral 

trace in terms of "peaks and valleys" of absorbance is characteristic of all of the 

absorbing molecules present in the sample and is affected by the composition of the 

molecules, by the presence and magnitude of dipoles, by interactions between molecules, 

by the resolution capability of the spectrometer, by the efficiency of the detector at 

different wavelengths, and by other factors. 

Absorption of NIR radiation can be attributed largely to the low mass of the hydrogen 

atom. Not only does this low mass cause resonant molecular vibration at high frequency, 

but the resultant oscillations are often anharmonic; and since anharmonicity in a mode 

enhances overtone excitation these high-frequency vibrations exhibit strong overtone 

absorption at near multiples of the fundamental frequency. Most of the fundamental 

oscillations of the bound hydrogen atom fall in the wavelength range of 2700-3600 nm 

(IR region). Most overtones are found in the area from 400 to 2200 nm (Vis and NIR 

region). The area between 1800 and 2500 nm is the combination area. All the information 

about NIR spectra is described in reference (1, 2). 
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1.1.4. Chemometric Models 

The step in NIR analysis entailing the most planning preparation is the collection of 

the calibration samples, termed the training set. A very important step in achieving 

success is ensuring the samples have been analyzed as accurately and precisely as 

conventional techniques allow. These analyses are termed reference analyses. In order to 

make quantitative measurements or qualitative discriminations, one must have a 

computer with access to one or more chemometric model. 

A chemometric model is developed by measuring a group of samples that display the 

maximum variability of the characteristic of interest by NIRS. The same samples are also 

used to measure the characteristic of interest by a reference method. The spectral data and 

independent test data are then analyzed using chemometrics software. An example of a 

statistical process used in quantitative or qualitative spectral analysis is partial least 

squares (PLS). When a sufficient number of samples have been collected and analyzed, a 

mathematical model is constructed that describes the relationship between certain spectral 

features and the sample characteristic of interest. Subsequently, that same characteristic 

in a new target samples can be measured by applying the chemometric model to the 

spectrum of the target samples. 

Because there is a multitude of variables (for example moisture content, sapwood

heartwood differences, density within species, and perhaps surface roughness) that may 

all confound the signals, analytical refinements may be necessary to optimize the 
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analysis. Examples are first and second order derivatives and multiplicative scatter 

correction (MSC) transformation. MSC can be used on spectroscopic data when 

calculating PLS models to reduce their complexity as it separates the multiplicative or 

scattering variations from the chemical information. Scattering phenomena can arise from 

variations in, for example, water content and surface roughness in the samples, which are 

of relevance to this study. (2,4) 

1.1.5. NIR Instrumentation 

The discovery of NIR energy is ascribed to Herschel in 1800, but the first industrial 

application began in the 1950s. Classical spectroscopists have traditionally avoided the 

NIR: Researchers were convinced that overtones and combination absorptions that 

occurred in the NIR were of little consequence because of their weak absorption cross

sections and broad overlapping resonances. The development of sensitive photon 

detectors revived interest in the NIR, and the technology was attached to UV -Vis 

instruments. This continued the separation of NIR from the mainstream of IR research. 

However, in the 1960s, the advent of the minicomputer enabled researchers to look more 

closely at the Vis and NIR spectra of various products for the purpose of sorting 

according to quality and composition. In the 1980s, a single unit stand-alone NIRS 

system became available, and the use of NIRS was focused mainly on chemical analysis. 

With the developments of light-fiber optics in the mid 80s and the monochromator

detector in early 90s, NIRS became a more powerful technique for scientific research, for 

example, for research involving remote measurements. 
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Instrumentation for NIRS is similar to traditional, scanning UV -Vis 

spectrophotometers. It has a radiation source, a detector, and a dispersive element. 

Incandescent (emission of light from a hot body) or quartz halogen light bulbs are most 

often used as broadband sources of NIR radiation. Light-emitting diodes which offer 

greater lifetime and spectral stability are also used. Wavelength isolators range in 

technology and include diode arrays, laser arrays, filters, and monochromators (prisms or 

gratings). 

Fourier transform (FT)-NIR instruments using an interferometer are also available. 

They fall into one of two groups: 1) discrete-value and 2) full-spectrum devices. Full 

spectrum spectrometers produce spectra with equally spaced data across the full range. 

Discrete-value spectrometers are described as "discrete" because discrete wavelengths are 

used rather than a continuum of light. 

The type of detector employed depends mainly on the range of wavelengths to be 

measured. Silicon-based charge-coupled detectors are suitable for the shorter end of the 

NIR range. Indium gallium arsenide (InGaAs) and lead (II) sulfide (PbS) detectors are 

sufficiently sensitive over most of the NIR range. In some diode array NIRS instruments, 

both silicon-based and InGaAs detectors are used in the same instrument. Such 

instruments can measure both Vis and NIR spectra simultaneously. For more about NIR 

instrumentation see reference (1). 
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1.1.6. Advantages and Disadvantages of NIRS 

The biggest advantage of NIR is that it is suitable for in-situ analysis with little or no 

sample preparation, and it is rapid enough for near-real time analysis. Unlike most 

conventional analytical methods such as chromatography, NIRS is rapid (a spectrum can 

be acquired in as little as a tenth of a second), non-destructive, does not require 

chemicals, or generate chemical wastes requiring disposaJ, simultaneously determines 

numerous constituents or parameters, and can be transported to nearly any environment 

as it is truJy portable for field work. NIR instrumentation is simple to operate by non

chemists, and operates without fume hoods, drains, or other installations. 

Because the absorbance in the NIR region is lower than in neighbouring regions and 

generally obeys Beer's law, it is possible to analyze bulk samples without the need for 

dilution or other elaborate sample preparation. Thus, the results provided by NIR are 

typically more representative than those provided by other analytical means. 

NIR is not useful as a stand-alone technology for quantitative analysis. Separate 

determinations by an independent and reliable method are required for each constituent or 

parameter to be determined with the training set and model, and a portion of unknown 

samples must be analyzed periodically, often by expensive and complicated reference 

methods, to ensure that calibrations remain reliable. The calibration methods rely on 

sophisticated chemometric techniques, thus requiring personnel who are trained in 

chemometrics. The above information was taken from reference (2). 
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1.2. Wood Structure and Chemistry 

1.2.1. Macro-structure of Wood 

Wood is fibrous and lignified structural tissue produced as secondary xylem in the 

stems of woody plants. In a living tree, it conducts water and nutrients to the leaves and 

other growing tissues, and has a support function, enabling plants to reach large sizes. A 

cross section of a tree (Fig. 1.2) shows the following features: bark, which is divided into 

an outer corky dead part (A), whose thickness varies with species and age of trees, and an 

inner thin living part called phloem (B), which carries food from the leaves to growing 

parts of the tree; wood or xylem, which is differentiated into sapwood (D) and heartwood 

(E). Sapwood contains both living and dead tissue and carries sap from the roots to the 

leaves. Heartwood is formed by a gradual change in the sapwood and is inactive; and pith 

(F), a small core of tissue located at the center of tree stems, branches, and twigs about 

which initial wood growth takes place. The cambium layer (C), which is inside the inner 

bark forms wood and bark cells. New wood is laid down to the outside of old wood and 

the diameter of the woody trunk increases. Sapwood which is located between the 

cambium and heartwood (Fig. 1.2D) may vary in thickness and number of growth rings 

depending on the wood species and growth conditions. More vigorously growing trees 

have wider sapwood. The transition from sapwood to heartwood is accompanied by an 

increase in extractive content. The basic strength of the wood is essentially not affected 

by this transition. 
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In most species in temperate climates, the difference between wood that is formed 

early in a growing season and that formed later is sufficient to produce well-marked 

annual growth rings. The age of a tree may be determined by counting these rings. 

Nevertheless, if the growth in diameter is interrupted, more than one ring may be formed 

in the same season and trees that have only very small crowns or that have accidentally 

lost most of their foliage may form an incomplete growth layer. The inner part of the 

growth ring formed first in the growing season is called earlywood and the outer part 

formed later in the growing season, is called latewood. Actual time of formation of these 

parts of a ring may vary with environmental and weather conditions. Earlywood is 

characterized by cells with relatively large cavities and thin walls. Latewood cells have 

smaller cavities and thicker walls. When growth rings are prominent, earlywood has 

different physical properties than latewood. Earlywood is lighter in weight, softer, and 

weaker than latewood. Because of the greater density of latewood, the proportion of 

latewood is sometimes used to evaluate the strength of the wood. For in depth description 

of macro-structure of wood sees reference (5, 6). 
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Fig. 1.2. Cross section of tree trunk: (A) outer bark, (B) Phloem, (C) cambium, (D) sapwood, (E) 
heartwood, and (F) pith 

B 

c 

1.2.2. Micro-structure of Wood 

Trees are classified into two groups: hardwoods (angiosperms or flowering plants) and 

softwoods (gymnosperms or conifers or needle-bearing trees). The difference is in the 

cellular structure of the wood. The microscopic structure of wood generally resembles a 

bundle of straws glued together; each straw represents a cell with a lingo-cellulosic wall 

and a hollow centre (lumen), and lots of fine holes through the walls. Wood cells are of 

various sizes and shapes and are tightly bound together. The majority (over 90%) of 

wood cells are longitudinally oriented (parallel to the tree trunk); these cells are called 

fibers or tracheids. Their length is highly variable within a tree and among species. 

Hardwood fibers average about 1000 .£lm in length; softwood fibers range from 2000 to 

5000 .£lm in length, 50 to 60.£lm in width and have a cell wall thickness of two to eight 

.£lm. Wood fibers provide strength. In addition to fibers, hardwoods have cells of 

relatively large diameter known as vessels or pores. These cells function as pipes that 
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move sap up the tree through the mass of fibres. With some experience it is possible to 

distinguish different hardwoods based on the number, size and location of the vessels. 

Softwoods do not contain vessels for conducting sap longitudinally in the tree; this is 

done by the tracheids. Both hardwoods and softwoods have cells that are oriented 

horizontally in the direction from pith toward bark. These cells conduct sap radially 

across the grain and are called ray parenchyma cells. Another type of wood cell, known 

as longitudinal or axial parenchyma cells, functions mostly in the storage of food. 

Dry wood is mainly composed of cellulose, lignin, hemicelluloses, and minor amounts 

(usually 5% to 10%) of extraneous materials. Cellulose, the major component, constitutes 

about 50% of wood by weight. It is a high-molecular-weight linear polymer consisting of 

chains of several hundred to over ten thousand ~-linked glucose monomers. During 

growth of the tree, the cellulose molecules are arranged into ordered strands called fibrils, 

which in turn are organized into the larger structural elements that constitute the cell wall 

of wood cells. Most of the cell wall cellulose is crystalline. 

Lignin constitutes 23% to 33% of the wood in softwoods and 16% to 25% in 

hardwoods. Although lignin occurs in wood throughout the cell wall, it is concentrated 

toward the outside of the cells and between cells. Lignin binds individual cells together. 

Lignin is a three-dimensional phenylpropanol polymer. In general, the lignins of 

softwoods are made up entirely of guaiacyl nuclei, whilst the lignins of hardwoods 

consist of a mixture of guaiacyl and syringyl nuclei. 
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The hemicelluloses are associated with cellulose and are branched, low-molecular

weight polymers composed of several different kinds of pentose and hexose sugar 

monomers. The relative amounts of these sugars vary with species. The total cellulose 

and hemicellulose content is known as holocellulose, and is generally found to be higher 

in hardwoods than softwoods. 

Unlike the major constituents of wood, extraneous materials are not structural 

components. Both organic and inorganic extraneous materials are found in wood. The 

organic component is called the extractives, which contribute to such wood properties as 

color, odour, taste, decay resistance, density, hygroscopicity, and flammability. 

Extractives include tannins and other polyphenolics, pigments, essential oils, fats, resins, 

waxes, starch, and simple metabolic intermediates. The component is called extractives 

because it can be removed from wood by extraction with hot water and organic solvents. 

Extractives may constitute approximately 5% to 30% of the wood, depending on factors 

such as species, growth conditions, and time of year when the tree is cut. The inorganic 

component of extraneous material (ash) generally constitutes 0.2% to 1.0% of the wood. 

Calcium, potassium, and magnesium are the more abundant elemental constituents. Trace 

amounts of phosphorus, sodium, iron, silicon, manganese, copper, zinc, and a few other 

elements are generally present. For in depth description of micro-structure of wood see 

reference (5, 6). 
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1.3. Literature Review- Application of NIRS to Wood 

1.3.1. Chemical Composition of Wood 

Wood is a composite material consisting of three major polymers, cellulose, 

hemicellulose, and lignin, which serve as skeletal, matrix, and encrusting substances, 

respectively. The extractives are usually low molecular weight, extracellular compounds. 

Considerable NIR research concerning these compounds has been published in the area 

of non-destructive evaluation with the aid of multivariate analysis. 

The chemical components of wood entering the kraft pulping process are of high 

interest for many reasons. Traditional methods which rely on wet chemistry are slow and 

expensive, restricting the number of samples that may be processed. NIRS is a promising 

method that can be adapted for rapid measurements on wood. However, the reference 

measurements must be accurate and must represent a wide range of values to achieve 

valid predictions. (8) 

1.3.1.1. Hardwoods 

Raymond and Schirnleck (2002) examined the feasibility and efficiency of predicting 

cellulose content using NIR reflectance analysis for Eucalyptus globulus wood meal. 

Calibrations for NIR prediction of cellulose content indicated that NIR analysis could be 

used as a reliable predictor (standard errors of predictions (SEP) < 2.5%, with a 

maximum of 6 principle components (PCs» . The data were converted before analysis to 
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the second-derivative mode and then analyzed using PLS. This study demonstrated a 

cost-effective method for screening large numbers of trees for cellulose content based on 

NIR analysis. (8) 

Poke et al. (2004) predicted extractives and lignin contents in wood meal of the same 

species using the same technique. Laboratory measurements were highly correlated with 

NIR predicted values (coefficients of determination (R2) of 89% for extractive content, 

83% for acid-soluble lignin content, 97% for Klason lignin content (dissolution of 

carbohydrates in sulfuric acid), and 99% for total lignin content) . It was concluded that 

NIR analysis was a reliable predictor of extractive and lignin content in E. globulus. (9) 

Bailleres et al. (2002) employed NIR reflectance analysis as a tool for rapid screening 

of some major wood characteristics in a Eucalypt breeding program. From a narrow 

genetic base, wood-meal samples (E. urophylla x E. grandis) with fixed moisture content 

were analyzed to determine quantitative relations between NIR spectral bands and 

extractive content and lignin composition. The first key results of this study were that a 

reproducible spectrum could be obtained and variation in particle size did not have a 

significant effect on the spectra. The results also revealed that NIRS data that were 

transformed to second-derivative mode and analyzed by PLSR could be used effectively 

to predict characteristics linked closely with the chemical composition of wood (SEP < 

5%, with a maximum of 10 pes). The statistical parameters of the calibration equation 

applied were improved after wood extractives were eliminated from the analysis. The 
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chemical assignment of the major absorbance bands in the NIR region of the eucalyptus 

spectrum are shown in Table 1.1 (10) 

Brinkmann et al. (2002) compared different methods for lignin determination as a 

basis for calibration of NIR reflectance spectroscopy. The acid detergent fiber (ADF) and 

the thioglycolic acid (TGA) lignin data of beech were used to calibrate NIR spectra of 

dry beech powder for lignin prediction. The calibration equations were calculated using 

PLSR and pre-processed by applying the second-derivative. Both NIR calibration 

procedures based on different tissues gave good statistical fits (with correlation 

coefficients (r) = 99% and SEP < 4%) indicating that TGA and ADF lignin 

concentrations of beech could be estimated by NIRS with high accuracy. (11) 

Terdwongworakul et al. (2005) determined the chemical composition of wood meal of 

Eucalyptus camaldulensis by using NIR reflectance spectroscopy. MLR (multiple linear 

regression) analysis and PLS analysis were introduced to develop the optimum 

calibration equations for contents of cellulose, pentosans, and lignin in wood with 

variation of either pre-treatment of NIR spectra or selected wavelengths. In this study, 

MSC, smoothing, normalization, first- and second-order derivations were employed as 

the spectrum pre-treatment. In MLR analysis, a reasonably good model was found only 

for pentosans (r = 90% and SEP = 4%). The PLS analysis improved the accuracy of 

prediction for every criterion variable, especially for pentosans and lignin. The band at 

1676 nm (assigned to the CH stretch in an aromatic skeletal structure) was strongly 

correlated to lignin. (12) 
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Table 1.1. Chemical assignment of the major absorbance bands of the eucalyptus NIR spectrum 

(10) 

Wavelength 
(nm) Local Mode Structure 

1394 CH combination CH2 

1520 NH stretch I sl overtone CONH2 

1616 CH stretch 1 sl overtone =CH2 

1688 CH stretch 1 Sl overtone Aromatic 

1724 CH stretch 1 sl overtone CH2 

1740 S-H stretch I sl overtone -SH 

1782 CH stretch 1 sl overtone Cellulose 

1896 OH stretch, CO stretch C=O, C02H 

1910 OH stretch I sl overtone Aromatic-OH 

1992 NH stretch bend combination Amino acids 

2028 C=O stretch 2nd overtone CONH2 

2074 NH2 deformation 2nd overtone Amide II 

2266 OH CO combination Cellulose 

2280 CH CH2 deformation combination CH3, starch 

2296 CH stretch bend 2nd overtone Protein 

2332 CH stretch, CH deformation Cellulose, starch 

2386 CO stretch OH deformation 2nd overtone Primary alcohols ROH 

Poke and Raymond (2006) predicted extractives, lignin, and cellulose contents 

utilizing NIR reflectance spectroscopy on solid wood in E. globulus. Predicting wood 

traits from NIR spectral data taken from solid wood would greatly increase the speed and 

cost-effectiveness of this procedure. Existing ground wood calibrations (9) were 
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evaluated for the prediction of wood chemistry from NIR spectral data taken from solid 

wood. Extractives, acid-soluble lignin, and Klason lignin contents were poorly predicted. 

Total lignin and cellulose contents showed moderate relationships between laboratory 

values and the NIR predicted values. NIR calibrations were further developed specifically 

for predicting wood chemistry from solid wood. All calibrations had high R 2 values 

ranging from 72% to 88%, and standard errors of calibrations were less than 1.37%. 

Calibration validation produced high correlation coefficients between predicted and 

laboratory values for extractives, Klason lignin, total lignin, and cellulose contents with 

R2 values ranging from 67% to 87%. Acid-soluble lignin was poorly predicted. This 

study showed that NIR analysis on solid wood of E. globulus could be reliably used to 

predict extractives, lignin, and cellulose contents. It also determined that existing ground 

wood calibrations, although they could give crude estimates of the wood chemistry 

values, would need to be re-developed for accurate predictions from solid wood. (13) 

The ability of reflectance NIRS together with PLSR to predict extractive content of a 

ground tropical hardwood (Astronium grveo[ens) was investigated by Taylor et al. 

(2008). NIR spectra accurately predicted hot-water-soluble extractive content of this 

naturally durable wood (root mean square error of prediction (RMSEP) = 19%, with 9 

PCs). (14) 

Zahri et al. (2008) applied reflectance NIRS combined with PLS analysis to 

quantitatively assess total phenol contents of European oak (Quercus petraea and Q. 

robur) on solid heartwood surfaces. The spectra were recorded separately from the 
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longitudinal-radial and the transverse section surfaces by reflectance. The spectral data 

were then pre-treated by several pre-processing procedures, such as MSC, first- and 

second-derivative and standard normal variate (SNV). The tannin contents of sawmill 

collected from the longitudinal-radial and transverse section surfaces were first 

determined by quantitative extraction and then, total phenol contents in tannin extracts 

were measured. The NIR data were correlated against the laboratory results. Calibration 

models built with PLSR displayed strong correlation and low RMSEP (R2 < 82% and 

RMSEP < 13%, with maximum of 6 PCs). The best calibration was provided with 

second-derivative spectra (R2 of 93% for the longitudinal-radial plane and of 91 % for the 

transverse section plane). This study illustrated that the NIRS technique when used in 

conjunction with multivariate analysis could provide reliable, quick and non-destructive 

assessment of European oak heartwood extractives. (15) 

1.3.1.2. Softwoods 

Yeh et al. (2004) characterized the lignin content of wood using transmittance NIR 

analysis. Unlike reflectance, transmittance techniques, which penetrate fully through the 

sample, are less sensitive to sample preparation and homogeneity and permit the analysis 

of smaller quantity samples. Using MLR and PLS statistical analysis the lignin contents 

of dried loblolly pine wood wafers, taken from 12-mrn tangential surface of increment 

cores, and synthetic wood, prepared by blending milled wood lignin and holocellulose, 

were compared and quantified. The peak at 1672 nm was assigned to lignin and the peaks 

at 1366, 1432, and 1588 nm to carbohydrates. The band ratios showed a linear 
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relationship with increasing lignin content. Strong correlations (R2 close to one) were 

obtained between the results predicted by NIR and those obtained from traditional 

chemical methods for both techniques. In addition, NIR results from wood samples with 

different particle sizes and various lignin contents were discussed. Contrary to previous 

reports in the literature, they showed that variations in particle size between 30 and 60 

mesh did have an effect on the NIR spectra. To eliminate the particle size effect they 

suggested utilizing the ratio of the components peaks, rather than the individual peak 

data. (16) 

Sykes et al. (2005) used the same method and type of samples to develop calibration 

models for the estimation of cellulose and lignin contents of loblolly pine. The second

derivative NIR spectra (600-1900 nm) showed noise at both ends of the spectra, therefore 

calibration equations were based on a reduced spectrum (800-1600 nm for cellulose and 

800-1750 nm for lignin). NIR calibrations and laboratory measurements based on one site 

were generally reliable, with R2 ranging from 55% to 88%. Predicting properties in one 

annual ring using calibration equations from another ring showed potential for predicting 

cellulose content with R2 values of approximately 60%. Predicting the wood properties 

using the calibration equations from one site to predict another showed moderate success 

for cellulose content (R2 = 63%). However, prediction of lignin content was not as 

reliable, partially because of low variation in lignin content in these wood samples and 

large errors 'in measuring lignin content in the laboratory. (17) 
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Kelley et al. (2004) used reflectance NIRS coupled with PLSR to predict the chemical 

components (lignin, extractives, glucose, xylose, mannose, and galactose) of uniform 

solid loblolly pine wood, and evaluated the impact of reducing the spectral range from 

500-2400 nm to 650-1150 nm. The samples were selected from different radial locations 

and heights of three loblolly pine trees. Strong correlations between the NIR data and 

traditional wet chemical techniques were obtained, with r generally above 80%. The 

correlation coefficients remained high even when the spectral range was reduced. (18) 

Yeh et al. (2005) used transmittance NIRS to predict the variation in chemical 

composition of loblolly pine and aspen (hardwood) wood wafers. The effects of sample 

preparation, sample quantity (single vs. stacked multiple wood wafers), and NIR 

acquisition time on the quantification of cellulose and lignin content were investigated. 

Strong correlations were obtained between wet chemistry values and the NIR-predicted 

values for both species (SEP < 3%, with maximum of 7 pes). Stronger correlations were 

obtained for the stacked-wafer model than for the averaged single-wafer model. 

Moreover, using stacked wafers was not only faster but resulted in a better signal-to-noise 

ratio, which led to reduction in the calibration error. The calibration error could be 

reduced by some technical improvements, such as, increasing the signal intensities, 

increasing the accuracy of the reference method, or broadening the variability of the 

calibration set. (19) 

The same research group (2006) used the same technique and analysis to characterize 

the chemical components of transgenic products. Two types of sample preparations were 
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studied and discussed. In the first method, wood meal pellets made from only 75 mg of 

aspen wood meal, showed very strong correlations between the NIR obtained data and 

conventional wet chemistry results for the lignin content, syringyl/guaiacyl ratio (SIG), 

cellulose, and xylose content. The second method, which used three-layer wood wafers, 

did not produce good correlations. This may be due to the poor intensity of the NIR 

spectrum as a result of only being able to use three wood wafers per specimen. Thus, 

transmittance NIRS using wood meal pellets represented a rapid and reliable analytical 

tool for studying chemical components of wood requiring small sample amounts. (20) 

All loblolly pine trees, especially the juvenile portion, contain various amounts of 

compression wood which is formed when grown under stress. The morphological, 

chemical, and papermaking properties of compression wood are distinctively different 

from those of normal juvenile wood and mature wood. Compression wood has higher 

lignin and galactan, but lower cellulose and mannan content. Chen et al. (2007) used 

NIRS and other micro analytical methods to quantitatively determine the percentage of 

compression wood in an incremental core of loblolly pine wood meal. Lignin, cellulose, 

and sugar (glucan, galactan, and mannan) contents were determined using transmittance 

NIRS. Excellent correlations were obtained between the NIR prediction and laboratory 

data for all traits (R2> 92%). Compression wood content in an increment core could be 

accessed by plotting galactan, glucan, mannan, or cellulose content against lignin content. 

These chemical properties could be determined by transmittance NIRS. (21) 
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Jones et ai. (2008) compared loblolly pine whole-tree wood property calibrations 

using reflectance NIR spectra obtained using a variety of sampling options. Calibrations 

for whole-tree lignin obtained using PLSR on NIR spectra of whole-tree chips (milled or 

intact) had the strongest statistics; calibrations based on NIR spectra from milled 

increment cores were similar. Calibrations based on NIR spectra obtained from intact 

cores provided weaker statistics than those obtained using milled cores. Other options for 

sampling the tree (drill shavings, collecting spectra from tree in the field, etc.) gave errors 

that were too large for practical applications. If an increment core is going to be used to 

estimate whole-tree properties, it was recommended that it be dried and milled prior to 

analysis. (22) 

1.3.2. Physical and mechanical properties of wood 

1.3.2.1. Moisture Content 

Wood is a typical hygroscopic material with porous structure. It exhibits the 

characteristic behaviour of swelling accompanied by a remarkable change in mechanical 

or physical properties when adsorbing or des orbing water. Therefore, the monitoring of 

MC is very important for wood the industry. Tsuchikawa et al. (1996) developed 

calibration equations for MC with sufficient precision by using NIRS together with MLR 

analysis. When the wavelengths as the explanatory variables were selected (1272, 1672, 

and 1960 nm) suitably for the calibration equations, they could predict the MC 

independently of the ten wood species analyzed (r = 98% and SEP = 1.85%). (23) 
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Axrup et al. (2000) evaluated NIR reflectance measurements with a silicon diode 

array spectrometer to investigate the determination of water of wood chips. The water 

content ranged from 19 to 56% and the predictions models with three PCs had good 

accuracy with RMSEP values less than 3.2%. (7) 

Jonsson et al. (2004) presented an approach for on-line control and monitoring of 

pulpwood chip properties based on reflectance NIRS. The pulpwood chips used as raw 

material in a pulp and paper making process were characterized at- and on-line using NIR 

spectroscopic measurements. Collected NIR spectra were used in multivariate calibration 

models for prediction of the MC (35-65%) as well as the between- and within-species 

variation in the studied raw material. Statistical experimental design was used to form a 

calibration data set including most of the variation occurring in a 'real' on-line situation. 

NIR spectra for all designed samples were measured at-line and the estimated calibration 

models were used for carrying out predictions on-line. Predictions of the MC as well as 

the percentage contents of pine and sawmill chips in the raw material were carried out 

using PLSR methodology. To validate the quality of the predictions, wood chips from the 

studied process were sampled and analysed in the laboratory before being subjected to 

predictions in the on-line model. Comparison of the filtered on-line predictions with the 

results obtained from the laboratory measurements indicated that moisture (RMSEP = 

3.78%, with 4 PCs) and pine chip contents could be well predicted by the on-line model, 

while predictions of sawmill chip content showed less promising results. (24) 
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Reflectance NIRS, coupled with PLSR, was used to predict the green Me and density 

of solid red oak by Defo et al. (2007). NIR spectra were collected from tangential, radial 

and transverse surfaces of the samples. PLS models were validated using an independent 

test set. In general, spectra collected from transverse and radial surfaces gave better 

predictions than the ones collected from tangential surfaces. Good predictions were 

obtained for spectra collected from transverse or radial surfaces, with RMSEP of less 

than 3.6% for Me (70-100%) and 19.8 kg/m3 for basic density when using eight pes. 

(25) 

Adedipe and Dawson-Andoh (2008) examined the feasibility of using reflectance 

NIRS combined with multivariate data analysis to predict Me (0.3-80%) of yellow

poplar veneer sheets. All the spectral data were normalized and pre-processed using 

second-derivative transformation. Both principle component regression (peR) and PLSR 

techniques indicated clustering of veneer samples of the same or close Me range with a 

clear distinction between samples of low and high Me. Predictions had R2 greater than 

94%. The spectral window, 1400-1900 nm, between the two Me peaks (1450 and 1930 

nm) gave R2 of 98.5% and 98.6% for peR and PLSR, respectively. There was no clear 

distinction between the peR and PLS models developed using the NIR spectra region of 

1400 to 1940 nm. However, the PLS models with lower RMSEP, SEP and bias were 

better when compared to the peR models developed using the whole NIR spectra region. 

(26) 
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1.3.2.2. Density and Mechanical Properties 

Clearwood is wood that does not contain characteristics such as knots, cross grain, 

checks, and splits. This wood has anatomical characteristics such as growth rings that 

occur in consistent patterns. Clearwood specimens are usually considered 

"homogeneous" in wood mechanics. Wood may be described as an orthotropic material; 

that is, it has unique and independent mechanical properties in the directions of three 

mutually perpendicular axes: longitudinal, radial, and tangential. The longitudinal axis is 

parallel to the fiber (grain); the radial axis is normal to the growth rings (perpendicular to 

the grain in the radial direction); and the tangential axis is perpendicular to the grain but 

tangent to the growth rings. Clearwood mechanical properties are a function of density, 

wood chemistry, and microfibril angle (MFA) and thus, NIRS can be used to measure the 

stiffness of increment cores with good accuracy. (6) 

The optimal use of a given wood raw material in the pulp and paper industry is 

dictated by the underlying wood physical and mechanical properties. Wood density is 

considered a key property, affecting, for example, pulp yield per unit of wood volume. 

Hoffmeyer and Pedersen (1995) investigated wood properties of Norway spruce by 

reflectance NIRS. The spectral data of cross sections of clearwood were compared to 

such properties as MC, density, and compression strength using PLSR and PCR. In 

addition, the spectral data were compared to the bending strength of the structural timber 

from which it had been cut. The NIR measurements were pre-treated by normalization 

and derivation. The NIR dependency on surface roughness (circular sawn, band sawn, 
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and sanded) was investigated and found to be of minor importance. NIR calibrations for 

MC (MC< 30%), density, and compression strength proved that the NIR technique was 

an excellent non-destructive method (R2 > 90%). For the prediction of bending strength 

of timber NIR was less efficient (R2 = 29%). However, NIR still contributed to timber 

strength prediction at the same level as annual ring width, the parameter which is 

presently visually assessed by timber graders. (27) 

Schimleck et al. (1999) estimated density of E. globulus using reflectance NIRS. The 

spectral data were converted to the second-derivative mode and analyzed by PLSR. They 

found that the densities of milled 12-mm increment core samples ranging from 378 to 

656 kg/m3 could be determined with an accuracy of prediction of ca. ±30 kg/m3
. This 

error compared well with the accuracy of prediction of pilodyn density measurements on 

similar samples of ca. ±22 kg/m3
. The basic densities of increment cores having reJativeJy 

low basic densities were consistently overestimated and those having relatively high 

basic densities were consistently underestimated by the NIRS method. These models 

were not as successful as those obtained by the previous research. For example, model 

developed by (27) had accuracy of prediction of 19 kg/m3
. Their model also had a much 

higher R2 value compared with the models developed in this study. This might be due to 

the species analyzed. Norway spruce is softwood and, compared with hardwoods such as 

E. globulus, their anatomy is relatively simple. They concluded that the relatively high 

error of density estimates indicated that NIRS was unsuitable for the accurate estimation 

of the density of E. globulus increment cores. (28) 
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Schimleck et al. (2001) used reflectance NIRS for the prediction of a range of solid 

wood properties. A series of Eucalyptus delegatensis were characterized in terms of 

density, wood stiffness (longitudinal modulus of elasticity (Ed which is defined as the 

rate of change of strain as a function of stress), MFA (defined as the angle that the helical 

windings of cellulose chains, within the fiber wall, make with fiber axis), and modulus of 

rupture (MOR) (defined as the maximum fiber stress). NIR spectra were obtained from 

the radial-longitudinal face of small strips and used to generate calibrations for the 

measured mechanical properties. The spectra were converted to the second-derivative 

mode and analyzed using PLSR. The relationships were good in all cases, with R2 

ranging from 77% for MOR through 90% for EL to 93% for stick density. It was 

concluded that appropriately calibrated NIRS could form the basis of a "universal" 

testing instrument capable of predicting a wide range of product properties from single 

type of spectrum obtained from the product or from the raw material. (29) 

A series of Pinus radiata samples were later examined by these scientists (2002) using 

the methods described in (29). Calibrations developed for measured properties had R2 

ranging from 68% for 100IMFA to 94% for density strip. A good relationship (R2 = 83%) 

was also obtained for EL estimated using data collected by SilviScan-2 (reported as 

EL(SS)). It was also observed that the correlation between EL and EL(SS) was strong for 

the P. radiata samples (R2 = 86%). They concluded that a NIR instrument could be 

calibrated to estimate stiffness of increment cores, based on SilviScan-2 data (SilviScan 

combines x-ray densitometry, diffractometry and image analysis). They also concluded 

that calibrated NIRS might provide a rapid, inexpensive method for estimating the wood 
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properties of large numbers of increment core samples. NIR spectra could be collected 

from the prepared surface of increment cores and then a calibration applied, such as the 

EL(SS) calibration developed in this study, to provide pith to bark profiles of a given 

property or to determine average properties of an increment core. They suggested that the 

good calibration statistics they obtained for MFA might have been due to the systematic 

within-tree variation in a range of associated properties, such as cellulose content. (30) 

The same research group (2001) described application of the same method and 

analysis to a large number of mixed species that displayed extremely wide variations in 

wood chemistry, anatomy, and physical properties. The uniform and solid mixed species 

samples were characterized in terms of density, wood stiffness, and MFA. The 

calibrations developed for density and EL had the highest R2 and demonstrated that it was 

possible to develop general calibrations for these important wood properties across a 

wide range of species. These mixed species calibrations were used to estimate wood 

properties of two species (E. delegatensis and P. radiata) . The results obtained for 

density and EL indicated that mixed species calibrations could be used to rank trees. In 

practice the extreme variation of samples selected for this study would not be required. It 

is expected that refinement of calibrations, through sample selection, would provide more 

accurate prediction of physical properties. (31) 

Schirnleck et al. (2001) found that some species had very large residuals (NIR-fitted 

values minus laboratory-determined values) when calibrations for the measured 

properties were developed (31). Two species that were noted as having large residuals 
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were known to have high levels of extractives and it was suggested by (31) that the 

development of calibrations using extracted wood might provide improved results for 

these species. Therefore, Schimleck et al. (2003) applied reflectance NIRS and PLSR to 

extracted wood species representing a diverse array of taxonomic affiliations, wood 

chemistry and physical properties. The extracted samples were characterized in terms of 

density, MFA and EL. NIR spectra were obtained from the radial longitudinal face of 

each sample and used to generate calibrations for the measured physical properties. 

Extraction was found to improve the calibration statistics for all properties. (32) 

Schimleck et al. (2002) utilized reflectance NIRS for predicting the radial variation of 

the EL of increment cores. Sets of dried clearwood samples from E .delegatensis and P 

. radiata were characterized in terms of EL(SS). NIR spectra, obtained from the radial

longitudinal face of each sample, were used to develop EL(SS) calibrations for the E. 

delegatensis and P. radiata sample sets and the two sets combined. The relationships 

between laboratory-determined EL(SS) and NIR-fitted EL(SS) were good in all cases. 

EL(SS) was estimated in separate test sets and found to correlate well with measured EL. 

NIR spectra were obtained in IS-mm sections from the radial-longitudinal face of two 

intact P. radiata increment cores. EL(SS) of each section was estimated using the P. 

radiata and the combined P. radiata and E. delegatensis calibrations. NIR estimates of 

EL(SS) were in good agreement with SilviScan-2 determined stiffness indicating that 

NIRS could be successfully used to estimate radial variation in wood stiffness of 

increment cores (R2 ranging from 89% to 93 %). (33) 
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Schimleck and Evans (2002) suggested that estimates of the EL(SS) of increment core 

samples could be improved by using calibration samples that are more closely related to 

the samples whose properties would be predicted. Moreover, the resolution could be 

improved by using a smaller window when the NIR spectra were collected. Thus, they 

selected P. radiata increment core samples for the development of a EL(SS) (34) and 

MFA (35) calibration based on NIR spectra obtained from the radial-longitudinal face of 

each sample in lO-mrn increments. The primary aim of their work in (34) was to 

investigate if a EL(SS) calibration developed using a subsample of cores representative of 

a larger set provided better predictions of the EL(SS) than those reported in (33). The 

EL(SS) calibration was developed using eight factors giving an excellent relationship 

between SilviScan-2 determined EL(SS) and NIR fitted the EL(SS) (R2 = 97%) and a low 

standard error of calibration (SEC). To test EL(SS) calibration, NIR spectra were obtained 

in lO-mrn sections from the radial-longitudinal face of two intact P. radiata increment 

cores and the EL(SS) of each section predicted. NIR estimates of EL(SS) were in excellent 

agreement with EL(SS) determined using SilviScan-2 data, with R2 of 99% (core A) and 

98% (core B). The predictions were superior to those reported in (33) . (34) The MFA 

calibration was developed using seven factors giving an excellent relationship between 

SilviScan-2 determined MFA and NIR fitted MFA (R2 = 95%). NIR predicted MFA was 

found to be in excellent agreement with MFA determined by SilviScan-2, with R2 of 98% 

(core A) and 96% (core B). This data set had a much wider range than the limited ranges 

in (29, 30). They also investigated the possibility that systematic within-tree variation in a 

range of associated properties, such as cellulose content was the reason for good 

calibrations (30). The correlation of MFA with the scores of PLS factors used to develop 
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the current calibration was examined. The corresponding loadings plot had large loadings 

in regions of the NIR spectrum assigned to cellulose suggesting that variation in cellulose 

content is an important factor in the success of the MFA calibration. It was also found 

that several wavelengths assigned to cellulose had strong correlations with MFA 

providing further evidence that MFA variation is linked to variation in cellulose content. 

(35) Both predictions closely followed the patterns of MFA and EL(SS) radial variation 

determined by SilviScan-2. They concluded that NIRS provided a rapid method for 

determining MFA and EL(SS) variation in increment cores and was suitable for the 

routine analysis of large numbers of samples. (34, 35) 

Potentially, NIRS could be used to test trees in the field, but it was not known what 

impact the variable and high MC of standing trees would have on the calibrations. 

Therefore, Schirnleck' s laboratory (2003) applied reflectance NIRS and modified PLSR 

to green loblolly pine radial samples to develop calibrations for the prediction of physical 

and mechanical wood properties (air-dry density, MFA, and stiffness). NIR spectra were 

obtained in lO-mm steps from the radial longitudinal and transverse faces of each sample 

and used to develop calibrations for each property. NIR spectra were collected when the 

wood was green (MC ranged from 100 to 154%) and dried to 7% Me. Relationship 

between measured and NIR estimates for green wood were good; R2 ranged from 0.79 

(MFA) to 0.85 (density). Differences between calibrations developed using the radial 

longitudinal and transverse faces were small. Calibrations were tested on an independent 

set. Predictive errors were relatively large for some green samples and relationships were 

moderate; R2 ranged from 0.67 (MFA) to 0.81 (stiffness). Dry wood calibrations 
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demonstrated strong predictive relationships with R2 ranging from 0.87 (density) to 0.95 

(stiffness). (36) 

Kelley et al. (2004) used reflectance NIRS to predict the mechanical properties (MFA, 

MOR, and modulus of elasticity (MOE)) of oven-dried solid loblolly pine wood. The 

samples were selected from different radial locations and heights of three loblolly pine 

trees. These mechanical properties were correlated with the NIR spectra using PLS 

models . The correlations were very strong, with r generally above 0.80. The mechanical 

properties could also be predicted using a reduced spectral range (650 nm-1150 nm) that 

should allow for field measurements of these properties using handheld NIR 

spectrometers. (18) 

The same research group (2004) used the same technique for predicting the 

mechanical properties (MOE and MaR) of a number of different softwood species. The 

Vis and NIR (500-2400 nm) spectra and mechanical properties of almost 1000 small 

clearwood samples with fixed Me from six softwood species: loblolly pine, longleaf 

pine, slash pine, shortleaf pine, ponderosa pine, and Douglas fir were measured. PLS 

modeling showed that the NIR spectra of these softwoods could be used to predict the 

mechanical properties of the clearwood samples. The correlation coefficients for most of 

these models were greater than 0.80. All six softwood species were combined into one 

data set and a PLS model was constructed that effectively predicted the strength 

properties of any of the individual softwoods. Reducing the spectral range to between 650 

and 1050 nm only caused a slight decrease in the quality of the models. (37) 
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When a radial strip is cut from an increment core it can potentially be cut with two 

orientations: parallel to longitudinal tracheids, i.e., a radial-longitudinal (RL) strip (the 

orientation of SilviScan samples), or at an orientation of 90° to the tracheids, i.e., a 

radial-transverse (RT) strip. Both strips could be used for NIR analysis, but it is unknown 

how calibrations based on RT-face NIR spectra compare with those based on RL-face 

NIR spectra. Therefore, Schirnleck et al. (2005) characterized P. taeda RL strips in terms 

of air-dry density, MFA, stiffness and several tracheid morphological characteristics. 

Reflectance NIR spectra were collected in lO-mm increments from the RL and RT faces 

of matching strips with fixed MC and used to develop calibrations for each property. In 

general, RL-face NIR spectra gave calibrations that provided stronger relationships. 

Differences between the two sets of calibrations were small, indicating that either face 

could be used for NIR analysis. (38) 

Preliminary studies based on small sample sets showed that NIRS has the potential 

for rapidly estimating many important wood properties. However, if NIR is to be used 

operationally, then calibrations using several hundred samples from a wide variety of 

growing conditions need to be developed and their performance to be tested on samples 

from new populations. In the study of Jones et al. (2005), P. taeda radial strips (cut from 

increment cores) representing 15 different sites from three physiographic regions in 

Georgia (USA) were characterized in terms of air-dry density, MFA, and stiffness. 

Reflectance NIR spectra were collected in lO-mm increments from the radial longitudinal 

surface of each strip and split into calibration and prediction sets. The spectra were 

treated with various transformations. PLS Calibrations were developed using untreated 
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and mathematically treated (first- and second-derivative and MSC) spectra. Strong 

correlations were obtained for all properties, the strongest R2 values being 0.83 (density), 

0.90 (MFA), and 0.93 (stiffness). When applied to the test set, good relationships were 

obtained (R2 ranged from 0.80 to 0.90), but the accuracy of predictions varied depending 

on mathematical treatment. The addition of a small number of cores from the prediction 

set (one core per new site) to the calibration set improved the accuracy of predictions and 

importantly minimized the differences obtained with the various mathematical 

treatments. These results suggested that density, MFA, and stiffness could be estimated 

by NIR with sufficient accuracy to be used in operational settings. (39) 

The estimation of density, MOE, and MaR of loblolly pine c1earwood samples from a 

diverse range of sites across the southern USA was investigated by Schimleck et al. 

(2005) using reflectance NIRS. NIR spectra were obtained from the radial and cross 

sectional (original, rough, and sanded) surfaces of blocks cut from the ends of juvenile 

and mature wood samples. In this study, the tangential surface was not examined because 

it does not represent all of the wood property variation present in a short c1earwood 

sample. Calibrations based only on juvenile or mature wood samples had weak 

calibration statistics and failed to perform well when applied to a separate test set 

possibly due to small variability in wood properties. Calibrations developed using both 

juvenile and mature wood NIR spectra provided good relationship for all properties with 

R2 ranging from 0.82 (MOE, radial face) to 0.90 (density, radial face) demonstrating that 

it was possible to obtain multi-site calibrations for these properties. Prediction R2 ranged 

from 0.77 (MOE, radial face and density, original cross section) to 0.86 (MaR, sanded 
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cross section). Though differences between surfaces were small, on average the sanded 

cross-sectional surface provided the best calibration and prediction statistics. (40) 

Until now, NIRS has been used to predict mechanical properties of solid wood from 

spectra collected from either solid or grounded wood. In the study of Andre et al. (2006), 

three yellow poplar wood beam samples were tested in bending (the applied load was 

increased) while collecting NIR reflectance spectra on their compression and tension 

faces. The data were then converted to absorbance, normalized, and submitted to MSC to 

remove scatter due to surface roughness. It was demonstrated that NIRS coupled to PLS 

analyses could be used to predict tension or compression loads within these wood 

samples. Strong correlations (r > 0.96) between the measured load and the predicted load 

were obtained using spectra taken from both the tension and compression surfaces of the 

small wood beams. These strong correlations can provide experts with a new tool to 

monitor and diagnose timber structures. The regression coefficients obtained from the 

PLS model for the tension face (all samples together) were different than the ones 

obtained from the PLS model for the compression face. A parallel was drawn for the 

compression face between the main compounds identified from the regression 

coefficients and those involved in the reinforced concrete theory. Yet, it was not possible 

to draw the same parallel for the tension face due to the presence of chemical groups 

belonging to both cellulose and lignin. (41) 

Thirteen wood parameters were predicted using reflectance NIRS combined with 

PLSR by Lestander et al. (2008). This analysis was done on clearwood samples of Scots 
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pine from trees at two sites. NIR measurements were conducted in the radial direction on 

the plane perpendicular to the longitudinal direction. Calibrations based on the measured 

parameters at seven growth rings (cambial age ranging between 6 and 42 years) could be 

divided into three groups: (i) the best accuracy was found for EL (r > 0.9) followed by 

bending, compression, and cell length (0.8 < r < 0.9); (ii) MFA, longitudinal hardness, 

proportion of latewood, and creep with correlations in the range of 0.7-0.8; and (iii) 

tangential hardness, cell diameter, and cell wall thickness with 0.4 < r < 0.7. It was also 

shown that juvenile (cambial age ~ 20 years) and mature wood could be classified using 

NIR techniques. (42) 

Estimation of the density along with the tensile strength of uniform and solid wood 

within both the elastic and plastic deformation ranges, represented as MOE and ultimate 

tensile stress (UTS), respectively, were performed using reflectance NIRS by Tsuchikawa 

et al. (2005). Various pre-treatments were performed on the NIR data. A PLS analysis 

was applied to the measurements of density, MOE, and UTS, and resulted in a high 

accuracy of prediction, independent of wood species. The correlation coefficient between 

the criterion variables and explanatory variables indicated that in the case of Japanese red 

pine, the increase of OR absorption bands for the amorphous regions of cellulose was 

related to an increase in density. Conversely, the increase of OR absorption bands for the 

crystalline regions and the decrease of OR absorption bands for the amorphous regions of 

cellulose were related to an increase of the MOE or UTS. In the case of Japanese zelkova 

(hardwood), the increase of the crystalline regions in cellulose and the decrease of the 

amorphous regions in cellulose, hemicellulose, and lignin were related to an increase of 
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both density and the MOE or UTS. Variation of the regression vector indicated that in the 

case of density for Japanese red pine, there was a slightly significant feature at the 

absorption band due to the amorphous regions of cellulose, whereas in the case of 

Japanese zelkova, there was no dominant absorption range that contributed to the PLS 

analysis. There were some characteristic peaks in the regression vector for the MOE of 

the Japanese red pine, which were due to OR absorption bands of cellulose. Japanese 

zelkova presented different aspects, such as the contribution of the CR absorption band of 

the semi-crystalline or crystalline regions of cellulose, and the CR absorption band of 

hemicellulose and lignin, to the validation of the MOE. Finally, they proposed that the 

key spectroscopic factors for the validation of physical and mechanical properties of 

softwood, from a perspective of anatomical observation, were absorption bands due to 

intramolecular hydrogen-bonded OR groups in the crystalline regions of cellulose, which 

are oriented preferentially in a direction parallel to the cellulose chain, and might strongly 

affect the tensile strength because of an approximate coincidence between the direction of 

cellulose chains in the S2 layer (i.e., the middle layer of the secondary wall) within the 

cell wall and the tensile direction. Since hardwoods have much more complex structures 

than softwoods, the most important key factor governing the tensile strength may not be 

the nature of the cellulose chains, but the interaction between the three principal 

constituents of wood. They also assigned absorption bands in the second-derivative NIR 

spectra (Table 1.2). (43) 
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Table 1.2. Chemical assignment of the major absorbance bands of the Japanese red pine and 
Japanese zelkova NIR spectrum (43) 

Wavelength 
(nm) Local Mode Structure 

1428 OH stretch I st overtone Amorphous regions in cellulose 

Semi-crystalline regions in 
1476 OH stretch I st overtone cellulose 

1548, 1592 OH stretch I st overtone Crystalline regions in cellulose 

1672 CH stretch I st overtone Aromatic groups in lignin 
Furanose/pyranose due to 

1724 CH stretch I st overtone hemicellulose 
Semi-crystalline or crystalline 

1790 CH stretch 1 st overtone regions in cellulose 
Semi-crystalline or crystalline 

1830 OH stretch + 2xCO stretch regions in cellulose 
OH stretch + OH 

1916, 1980 deformation Water 
OH stretch + CH Semi-crystalline or crystalline 

2080 deformation regions in cellulose 
CH stretch + CC 

2140 deformation Amorphous regions in cellulose 

2200 CH stretch + CO stretch CHO 
CH2 stretch + CH2 

2272 deformation ? 
CH stretch + CH Semi-crystalline or crystalline 

2336 deformation regions in cellulose 
CH deformation 2nd 

2380 overtone Holocellulose 

It has been shown that NlRS offered a rapid method for the estimation of MFA and 

EL(SS)' Schimleck et al. (2005) suggested that the success of these NlR calibrations might 

be related to air-dry density, because density varies in wood simultaneously with MFA 

and stiffness. The importance of density variation was investigated by developing 

calibrations for MFA and EL(SS) using P. radiata and P. taeda sample sets where the 

density range was small and the relationships between density and MFA and density and 

EL.(SS) were poor. Excellent PLS calibrations for MFA and EL.(SS) were obtained, 
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demonstrating that reflectance NIRS could provide strong relationships for MFA and 

stiffness even when density variation was limited. They suggested that the inferior 

calibration statistics observed for P. taeda sets having densities less than 500 kg/m3 were 

probably a consequence of high average MFA for these sets and limited MFA range. As 

MFA increases, the signal-to-noise ratio in the diffraction patterns decreases, reducing 

the precision with which MFA can be determined. This reduction in precision contributes 

to the weakness in the calibrations at high MFA. Based on these observations it is 

probable that calibrations developed using juvenile wood, which inherently has large 

MFA would fail to give strong statistics. Examination of loading plots from the MFA and 

EL(SS) calibrations indicated that variation in wood components such as cellulose, lignin 

and possibly hemicellulose was important. (44) 

Fujimoto et al. (2007) investigated the feasibility of reflectance NIRS for estimating 

MOE and MOR in bending tests. NIR measurements were performed on radial

longitudinal surfaces, where the spectral data were obtained from both the tension and 

compression surfaces of the bending samples. Two uniform and solid hybrid larch sample 

sets having large and limited density variation were prepared to examine the effects of 

wood density on estimation of MOE and MOR by the NIR technique. PLS analysis was 

employed and it was found that the relationship between laboratory-measured and NIR

predicted values was good in the case of sample sets having large density variation. MOE 

could be estimated even when density variation was limited. The difficulty of estimating 

MOR might arise from the fact that the density of the wood sample strongly affects MOR 

rather than MOE. It was concluded that absorption bands due to the OH group in the 
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semi-crystalline or crystalline regions of cellulose strongly influenced the calibration for 

bending stiffness and strength of hybrid larch. This was also suggested from the result 

that both cellulose content and cellulose crystallinity showed moderate positive 

correlation to wood stiffness. (45) 

The composite structure of the S2 layer in the wood cell wall is defined by the angle of 

the cellulose microfibrils and concentration of polymers and this structure impacts 

strength and stiffness. Via et al. (2009) used absorbance NIRS and X-ray diffraction to 

determine the effect of lignin and cellulose associated wavelengths, MFA, density, and 

radial position within the tree on strength and stiffness. The aromatic portion of lignin 

provided a good predictive role on strength and stiffness at high MFAs. However, in 

mature wood where MFA and lignin content was low, cellulose associated wavelengths 

became increasingly important. The increased importance of the aromatic portion of 

lignin (1665 nm) on the strength as MFA increased was attributable to the plastic 

deformation of lignin that occurred beyond the yield point. Finally, a fourfold increase in 

stiffness was observed when the microfibril angle dropped from 40 to 5°. (46) 

1.3.2.3. Anatomical Parameters 

Hauksson et al. (2001) investigated the feasibility of using reflectance NIRS and 

PLSR to characterize the basic wood properties of Norway spruce. The discs cut from 

40% tree height were used (i.e., where the largest variations in annual ring widths and 

wood density were found). These discs were used for measuring annual ring widths, 
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wood density, average fiber length, and the fiber length distributions. The wood meal 

prepared from these discs, which was dried to ensure uniform humidity, was scanned by 

NIR and analyzed by PLSR. The results presented in this study demonstrated good to 

excellent correlation between NIR spectra of wood meal and a number of wood 

properties. It was even possible to correlate fiber length distributions with these wood 

properties. The use of a pre-processing method called orthogonal signal correction (OSC) 

greatly improved the modeling power of the PLS models based on NIR spectra and even 

fiber length distributions. OSC algorithm removes structure from the NIR spectra which 

is unrelated to the y variables being modeled. (47) 

Estimation of tracheid length by (47) had promising results but they used milled wood 

samples. Schimleck et al. (2004) employed reflectance NIRS for predicting tracheid 

(fiber) length of solid loblolly pine wood samples. The lO-mm sections of radial strips 

were selected and NIR spectra were obtained from the radial longitudinal face of each 

section. The fibers in these sections were characterized in terms of arithmetic and length

weighted mean tracheid length using a fiber quality analyzer, and calibrations with NIR 

spectra were developed for both measures of tracheid length by PLSR. Relationships 

were good, with R2 of 0.88 for arithmetic tracheid length and 0.96 for length-weighted 

tracheid length. The accuracy of NIR predicted length-weighted tracheid length was 

sufficient for ranking purposes. (48) 

Schimleck and Evans (2004) selected P. radiata increment core samples for the 

development of calibrations for several tracheid morphological characteristics: 
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coarseness, perimeter, radial and tangential diameter and wall thickness. NIR spectra, 

obtained from the radial-longitudinal face of each core in lO-mm sections from pith to 

bark, were used to develop the calibrations by PLSR. Calibrations for coarseness and 

wall thickness were excellent, R2 of 0.91 and 0.89, respectively. Calibrations for the 

remaining characteristics were weaker (R2 ranged from 0.65 to 0.69). To test the 

predictive ability of the calibrations, two intact P. radiata increment cores (core A and B) 

were selected from the same set as the calibration samples. NIR-predicted tracheid 

coarseness and wall thickness were in strong agreement with measured (SilviScan

determined) values. Radial patterns of variation (NlR-predicted, measured) closely 

followed each other for both cores, but coarseness and wall thickness were 

underestimated for core B. Tracheid tangential perimeter was well predicted with R2 of 

0.69 (core A) and 0.79 (core B). Relationships for the remaining characteristics were 

weak. They suggested that collection of NlR spectra in smaller increments, to capture 

more of the variation, could improve calibration. (49) 

Sykes et al. (2005) used transmittance NlRS and PLSR to characterize physical 

properties of thin wood wafers cut from 12-mm increment cores to develop calibration 

models for the estimation of average fiber length and fiber coarseness. NIR calibrations 

and laboratory measurements based on one site were generally reliable. Predicting one 

ring properties using other ring calibration equations showed potential for predicting fiber 

coarseness, with R2 values of ca. 0.60, indicating the potential for early selection. 

Predicting the wood properties using the calibration equations from one site to predict 
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another showed moderate success for fiber coarseness (R2 = 0.63), but predictions for 

fiber length were relatively poor (R2 = 0.43). (17) 

NIR wavelengths can provide either useful or misleading calibrations depending on 

the context. This can happen since a property such as tracheid length is not directly 

related to the absorbance at any wavelength but is instead the result of a secondary 

correlation with some unknown chemical constituent. Via et al. (2005) investigated the 

effect of tree age and height on reflectance NIR predictability since tracheid length and 

chemistry might vary as a function of location within the tree. The NIR data were 

transformed to first-derivative mode and analyzed by PLSR. It was found that tracheid 

length predictability of solid longleaf pine did not change with height but decreased with 

age. As a result, predicting tracheid length regardless of age was good (R2 = 0.72) while 

predictability with age and height held constant was mostly low to moderate with the 

exception of rings one and four where it was reasonably good. The modeling of tracheid 

length, for tree improvement applications needs more justification, particularly for mature 

wood zones. Without the variation in xylem age, NIR does not generally have an 

acceptable precision to estimate tracheid length. The exception to this was the rings 

adjacent to the pith. As a result, NIRS might be suitable for tree improvement in this 

juvenile zone. (50) 
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1.3.3. Wood Classification 

Knowing the wood species of a board is generally very useful. Lumber can be sorted 

by species or species group for different end uses and then sold for different prices. For 

example, higher grades of Douglas-fir typically sell for more than the same grade of SPF 

lumber. Species differences are also important in lumber-manufacturing processes. For 

example, dry-kiln efficiency can be improved by putting species with similar drying rates 

in the same kiln charge. Sorting by species is currently performed by eye using 

appearance criteria and is quite a difficult task with some species. An automated method 

for quickly and accurately identifying wood species would relieve graders from a 

demanding and often difficult task, while increasing product quality and decreasing 

production costs. (51) 

An experiment in identifying the solid wood species of Douglas-fir, lodgepole pine, 

and Engelmann spruce wood samples was described by Brunner et al. (1996), based on 

their spectral-reflectance curves in the Vis and NIR regions and quadratic discriminant 

analysis. The direction of illumination was parallel to wood fiber direction to minimize 

specular reflection. The measurements were made on 25 samples with the same thickness 

for each species at 5-10 random locations in the sample and taken every 5 nm from 400 

to 1100 nm, but only every tenth reading was used in the discriminant analysis. Species 

predictions based on this method sometimes confused spruce with pine, but achieved an 

overall accuracy of 98.7% in separating Douglas-fir from spruce/pine. They concluded 

that further experiments with considerably larger sample sizes would be needed to 
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confirm this level of accuracy. Improvements in the identification model are also 

possible. Determining if heartwood or sapwood spectra are better predictors and a further 

partition of reflectance spectra into earlywood and latewood classes might improve 

accuracy. (51) 

The possibility to make species predictions of mixtures of wood chips from three 

different wood species (Swedish pine, Swedish spruce and Polish pine) was investigated 

by Antti et al. (1996) based on NIRS. Mixture design and PLS were used for the 

multivariate calibration modeling. The calculated model was validated both internally 

and with an external test set. They obtained a PLS model with the overall predictive 

ability, R2 = 0.91 according to cross-validation and good prediction of the test set objects, 

R2 = 0.78. The fact that the model gave such good predictions of the test samples was 

confirmation that this methodology could be used for predicting mixtures of different 

wood species as well as within species variations. However, samples were finely ground 

for mixing prior to analysis which is not practical for the applications investigated in this 

study. (52) 

Lebow et al. (1996) used spectral reflectance to classify wood-surface features on 40 

Douglas-fir veneer samples. The feature types they considered were sapwood-earlywood, 

sapwood-Iatewood, loose and tight knots, pitch pockets and streaks, and wane (cambial 

interface). They measured the spectral reflectance of each feature in 10 nm increments 

from 400 to 1100 nm. They used both linear and quadratic discriminant analysis to 
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classify the features and found that quadratic discriminat analysis proved significantly 

superior, achieving an overall misclassification rate of about 1-2%. (53) 

Previous research showed that a variety of surface features on Douglas-fir veneer 

could be accurately classified via Vis-NIR region reflectance spectra and quadratic 

discriminant analysis. A paper from the same laboratory (2001) extended those results to 

an expanded set of features, a broader spectrum and a larger set of physical samples. The 

wood analyzed came from nine types of surface features (heartwood, sapwood, heart/sap 

mix, loose and tight knots, pitch pockets and streaks, white speck, and nonfungal stain). 

The data were collected in the same way as the previous research. They also tested two 

methods for eliminating the classification procedure's reliance on raw spectral

reflectance curves. Instead of working with the raw curves, which were difficult to obtain 

by traditional means at sufficient speeds in a production environment, the data required 

by these two methods (one derived from PCA (principle component analysis) and the 

other from a simulated extended-color system that used bandpass filters) was much 

reduced and could potentially be obtained from a video camera equipped with either 

custom or commercially available bandpass filters. The paper showed that classification 

accuracies achieved with either of the two reduced-data methods were comparable to the 

accuracies achieved when using raw spectral data. (54) 

Tsuchikawa et al. (2003) dealt with a new non-destructive discriminant analysis by 

which solid wood could be classified on the basis of a combination of absorbance NIRS 

and Mahalanobis' generalized distance (a measure of generalized distance between 
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samples based on the means, variances, and covariances of various properties of replicate 

samples in multivariate analysis). Its accuracy and reasonability were examined for nine 

wood species with various MCs ranging from oven-dried to a fully saturated free water 

state. In a discriminant analysis employing second-derivative spectra, each wood group 

was well distinguished where the selected wavelengths were often derived from the 

absorption of wood components. When the wavelengths for analysis were limited to the 

short range of 800-1100 nm, the correct results diminished. In this case, the wavelength 

derived from the absorption of water (around 980 nm) was often selected. Hence, there 

may be two bases for selecting the wavelength: (1) when the chemical component of 

wood substance relates to the discriminant analysis; and (2) when the difference in MC 

with wood species relates to them. Mahalanobis' generalized distances between 

softwoods were relatively independent of analytical pattern so it was difficult to explain 

the difference in their spectroscopic characteristics, whereas the distances between 

hardwoods were large for easy classification. (55) 

The same research group (2003) used the same technique and several chemometric 

analyses to distinguish various wood-based materials (solid wood, laminated wood, 

particle- or fiberboard, impregnated wood, and overlaid wood). The concept of 

Mahalanobis' generalized distance, K nearest neighbours (KNN), and soft independent 

modeling of class analogy (SIMCA) were evaluated to determine the best analytical 

procedure. These techniques are used for classifying objects based on distances. The 

differences in the accuracy of classification with the spectrophotometer, the wavelength 

range as the explanatory variables, and the light-exposure condition of the sample were 
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examined in detail. It was difficult to apply Mahalanobis' generalized distances to the 

classification of wood-based materials where NIR spectra varied widely within the 

sample category. The performance of KNN in the NIR region (800-2500 nm), for which 

the device used in the laboratory was employed, exhibited a high rate of correct answers 

of validation (> 98%) independent of the light-exposure conditions of the sample. When 

employing the device used in the field, both KNN and SIMCA revealed correct answers 

of validation (> 88%) at wavelengths of 550-1010 nm. These results suggested the 

applicability of NIRS to a reasonable classification of used wood at the factory and at job 

sites. (56) 

Jonsson et al. (2004) presented an approach for on-line control and monitoring of 

pulpwood chip properties based on NIRS and multivariate data analysis. NIR spectra for 

all designed samples were measured at-line and the estimated calibration models were 

used for carrying out predictions on-line. Predictions of the percentage contents of pine 

and sawmill chips in the raw material were carried out using PLS methodology. 

Comparison of the filtered on-line predictions with the results obtained from the 

laboratory measurements indicated that pine chip contents could be well predicted by the 

on-line model (RMSEP= 22%), while predictions of sawmill chip content showed less 

promising results. (24) 

Considerable areas in the northern parts of Norway are afforested with Norway 

spruce, Lutz spruce, and Sitka spruce. The species have different machining and wood 

properties but are similar in visual appearance. Flaete et al. (2006) evaluated whether 
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reflectance NIRS combined with multivariate statistical modelling could be used to 

identify wood from these three species. In all, 83 wood specimens were available for 

analyses, 36 of which were used as a test set for model validation. NIR spectra were 

obtained on the air-dry cross-sectional surfaces. The faces were prepared by circular 

sawing. The reflectance data expressed as apparent absorbance were centered and 

transformed to first-derivative. An initial PCA indicated that little information from the 

first and second components could be used for discrimination, but in score-plots of the 

third and fourth components the samples from the tree species formed clusters. This 

showed that the NIR spectra did contain information relevant for tree species 

identification, and that only a small fraction of the total variance could be used for that 

purpose. For classification of the wood specimens, PLS discriminant analyses were 

applied. All 47 specimens in the training set were fitted into the correct group. The test 

set validated results showed that except for two wood specimens, all specimens were 

correctly classified. The two misclassified samples were Sitka spruce. This is not 

surprising as the regression coefficients for Norway spruce and Lutz spruce showed a 

strong inverse relationship along the whole spectral range. Conversely, there were only 

narrow spectral areas where the PLSR coefficients for Sitka spruce were high and the 

corresponding regression coefficients for Norway spruce and Lutz spruce were close to 

zero. Despite the small calibration set and the structure of regression coefficients, the 

PLS discriminant analysis model performed well also for Sitka spruce. This underpins the 

potential for calibrating PLS models with higher classification performance if a large 

number of calibration samples are used. (57) 

56 



1.3.4. Treated Wood 

1.3.4.1. Chemically and Preservative Treated Wood 

There is a growing need to find a rapid, inexpensive, and reliable method to 

distinguish between treated and untreated waste wood. So et al. (2003/4) used NIRS 

together with multivariate analysis to identify water and oil-borne preservatives. Three 

types of water-borne preservatives were chosen: CCA (chromated copper arsenate), 

ACZA (ammoniacal copper zinc arsenate), and ACQ (alkaline copper quat). Several 

commercially treated deckboards were obtained for this study: CCAlHernlock-Fir, 

CCAIEastern Hemlock, ACZAIDouglas Fir, and ACQ-Hemlock-Fir. They were milled 

and scanned with a NIR spectrometer. MSC was applied to the spectra prior to 

multivariate analysis. The spectral data were then analyzed by PCA. The samples 

separated out according to treatment and were easily distinguishable. Furthermore, 

separation according to wood species and assay zone was also observed. Within the range 

of preservative concentrations available, PLSR was also performed on the NIR data, from 

which retention levels were well predicted. Two oil-based preservatives were also 

studied: copper napthenate and oxine copper. Again these samples separated and 

clustered according to their treatments. Furthermore, with the copper napthenate samples, 

there was a clear graduation in solution strength. The results clearly demonstrated that 

this technique had potential for use in a variety of recycling and sorting applications. (58, 

59) 
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As with all preservative systems, efficacy is dependent upon reaching a preservative 

concentration in the treated wood that is above the toxic threshold of the target pest(s), 

and thus it is important to be able to accurately determine preservative concentration. 

Reflectance NIRS coupled with PLSR was assessed by Taylor and Lloyd (2007) as a 

possible method for determining quantitatively boron-based preservative concentration in 

treated wood. It was found that NIR-based model could successfully predict the borate 

concentration of treated southern pine sapwood cubes (R2 = 0.86), suggesting that it 

might provide the basis for rapid, easy-to-operate and portable analytical tool. (60) 

Reflectance NIR spectral analysis was used by Peydecastaing et al. (2006) to 

determine the degree of substitution (DS) of chemically modified cellulose and 

lignocellulosics. Two kinds of samples were studied, long aliphatic-chain cellulose esters 

and Scots pine wood sawdust chemically-modified either by anhydrides or by ethylene 

carbonate. It was possible to determine the DS of such samples through a correlation by 

PLS of the second-order derivatives of NIR spectra. This technique was efficient even 

when DS values were low, which is difficult to achieve by using Ff-IR. It was also 

possible to distinguish reagent molecules that were attached to the cellulosic substrate by 

hydrogen bonding from those linked by covalent bonding. (61) 

Impregnation of solid wood with a furfuryl alcohol monomer that is subsequently 

cured using heat and a catalyst to yield an inert polymer inside the cell wall structure 

provides positive changes in wood properties. In general, these properties are positively 

correlated with increasing polymer mass, as evaluated by the weight percent gain. Venas 
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and Rinnan (2008) used NIRS to determine the degree of treatment in Scots pine solid 

wood modified with in situ cured furfuryl alcohol. The treatment range was 

approximately 0 to 30% weight gain relative to wood dry mass. Reflectance NIR spectra 

were recorded directly on wood surfaces without sample preparation. PLSRs were used 

to construct a model for weight percent gain; initially for one data set but later extended 

to an external test set not treated fully in the same way as the original set. This gave rise 

to an increase in the prediction error which was neutralised by addition of a small fraction 

of the new samples in the original calibration set. Four spectral ranges and 13 pre

processing methods were tested and the final model with addition of 30% of the new 

samples in the original calibration set resulted in a model with a RMSEP of 1.7±O.1 % 

weight gain and a R2 of 0.97±O.01. The range 1100-2498 nm and by using SNV with 

second-derivative gave the lowest prediction errors, and this was consequently chosen as 

the optimal wavelength range and pre-processing method for the prediction of weight 

percent gain in Scots pine solid wood by NIR. (62) 

A new optical system was developed and applied to automated separation of wood 

wastes, using a combined technique of Vis-NIR imaging analysis and chemometrics by 

Kobori et al. (2008). Three kinds of typical wood wastes were used, i.e., non-treated, 

impregnated, and plastic-film overlaid wood. The classification model based on SIMCA 

was examined using the difference in luminance brightness of a sample. Their newly 

developed system showed good/promising performance in separation of wood wastes, 

with an average rate of correct separation of 89%. Hence, it was concluded that the 
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system was efficiently feasible for online monitoring and separation of wood wastes in 

recycling mills. (63) 

1.3.4.2. Thermally Treated Wood 

Schwanninger et al. (2004) applied reflectance FT-NIRS to thermally modified wood. 

The NIR measurements were made on a cross-sectional surface of each solid wood 

sample. The spectral data were then transformed to second-derivatives and analyzed by 

PCA. A comparison of NIR spectra of untreated beech with wood treated at 220°C 

showed changes for OH, aromatic CH, CH3, CH2, and CH overtone vibrations due to e.g. 

lignin and hemicelluloses degradation. A close relationship between the chemical 

changes and the NIR spectra of thermally modified beech wood made clustering easy and 

provided a possibility for quality control. (64) 

The paper by Mitsui et al. (2008) dealt with the evaluation of thermally treated Sitka 

spruce wood by NIRS. The wood samples were treated by steaming at 140°C for 5, 10, 

20,50, and 100 hours. In the NIR second-derivative spectrum, the absorption band at 

1447 nm appeared with the procession of heat treatment, which conclusively assigned to 

the phenolic hydroxyl groups due to the lignin in comparison with the spectrum of 

acetylated wood. As a result of the changes in the ratio of the areal integral calculated 

from spectral separation in the region of hydroxyl groups (1389-1639 nm) by the Gauss

Newton method, it was clear that the degradation of hydroxyl group in the cellulose 

started predominantly from the amorphous region and followed to semicrystalline and 
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crystalline region. There was an obvious correlation between the weight decrement of 

wood and the decrement of hydroxyl groups in the cellulose by heat treatment. (65) 

NIRS was tested by Esteves and Pereira (2008) for predicting the properties of heat 

treated wood using pine (Pinus pinaster) and eucalypt (E. globulus) woods with two 

types of treatment: in oven and in a steam autoclave. Mass loss, equilibrium MC, 

dimensional stability, MOE, bending strength, colour CIELAB parameters and 

extractives content were determined. NIR spectra were obtained using a fiber probe on 

the radial surface of the samples. PLS models for mass loss showed very high 

coefficients of determination ranging from 96-98%. The models obtained for wood 

properties were in general good with coefficients of determination ranging from 78-95% 

for equilibrium MC, 53-78% for dimensional stability, 47-89% for MOE, 75-77% for 

bending strength and 84-99%, 52-96% and 66-98% for colour parameters L, a* and b*, 

respectively. Coefficients of determination of the models for extractive content varied 

between 41.9-79.8% for pine and between 35.3-82.2% for eucalypt wood. NIRS showed 

a good potential for quality control and characterization of heat treated woods. (66) 

1.3.5. Weathering, Aging, and Biodegradation of Wood 

1.3.5.1 Biodegradation of Wood 

Decay and discoloration caused by fungi are major sources of loss in value for both 

timber production and wood in service. A better understanding of the chemical 

parameters involved in brown-rot decay is a necessary prerequisite for developing 
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methods of protecting wood from brown-rot degradation in a targeted and 

environmentally friendly manner. Kelley et al. (2002) used reflectance NIRS and 

pyrolysis-molecular beam mass spectrometry (MBMS) analysis in conjunction with 

multivariate regression and PCA to differentiate brown-rot-degraded wood from non

degraded red spruce and to follow the temporal changes in wood undergoing brown-rot 

degradation. The red spruce samples were allowed to incubate from a week to eight 

months and then the wood was ground prior to spectroscopic analysis. PLSR of NIR test 

results versus percent weight loss for Postia placenta- and Gloeophyllum trabeum

infected spruce wood blocks yielded r of 0.96. PLSR of MBMS test results for the same 

samples yielded the same results. There were several changes in the NIR spectra of wood 

as the decay time increased. These changes included a decrease in hydroxyl vibrations 

associated with carbohydrates (1490 and 2100 nm) and a decrease in wood hydroxyls 

associated with lignin and hydrogen bonded water (1920 nm). PCA was used to 

differentiate noninfected wood and P. placenta- and G. trabeum-infected wood. These 

techniques were able to detect different types of biodegradation. (67) 

The ability of tree species heartwood to resist biological degradation, referred to as 

"natural durability" or "decay resistance", is an important wood quality factor essential 

for environmentally friendly exterior timber uses. To compare the natural durability of 

the wood of different tree species, a classification based on the computation of "relative 

resistance" is highly practical. This measure is expressed in a five-class system according 

to the European standard EN 350-1, with classes ranging from "nondurable" (class 5) to 

"highly durable" (class 1). The feasibility of reflectance FT-NIRS for rapidly determining 
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the natural durability of the heartwood of larch trees was investigated by Gierlinger et al. 

(2003). Ff-NIR spectra were collected from cross section of solid wood with fixed MC 

with a fiber optical probe. Basidiomycetes tests using Coniophora puteana and Poria 

placenta were carried out on larch heartwood, with pine sapwood (Pinus sylvestris) used 

as a reference. The relative resistance to decay based on mass loss was calculated, and 

durability classes were estimated according to European standard EN 350-1. PLSRs 

between the data sets of wood decay tests and the Ff-NIR spectra were calculated. It was 

found that MSC of the first- or second-derivative spectra considerably improved the 

model predictability. High coefficients of correlation and RMSEP were obtained for cross 

validation based on wood decay tests with P. placenta (R2 = 0.85, RMSEP = 0.077, range 

0.27-1.13) and C. puteana (R2 = 0.97, RMSEP = 0.078, range 0.07-1.58). Differences in 

the mean spectra between 1587 nm and 1887 nm were associated with the durability 

classes This region included first overtones from CH stretch of =CH2, methyl groups, 

methylene groups, and aromatic substances, and OH stretch/CO stretch second overtone 

combinations present in all main components of wood. The flavonoid taxifolin 

(3,3',4',5,7-pentahydroxyflavanone), which is known to be a major phenolic compound in 

larch heartwood showed strong bands within this range. (68) 

Restrictions on the use of wood preservatives have increased interest in the utilization 

of the natural durability of wood. Scots pine heartwood has been used in constructions 

exposed to risk of decay. In a laboratory experiment done by Flaete and Haartveit (2004), 

Scots pine wood specimens sampled from inner heartwood, outer heartwood and 

sapwood were exposed to the brown rot fungus P. placenta. Outer heartwood was found 
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to be more resistant than inner heartwood and sapwood. Reflectance NIR spectra 

obtained on a fresh radial surface of solid wood before decay testing were converted to 

apparent absorbance, transformed by MSC and used in multivariate calibrations to predict 

decay resistance of heartwood. Results from multiple test set validated PLSR models 

showed that resistance to decay in Scots pine heartwood could be predicted with 

satisfying precision using NIRS (RMSEP < 14%). (69) 

Reflectance Ff-NIRS was evaluated as an analytical tool for monitoring changes in 

milled loblolly pine samples induced by the white-rot fungus Ceriporiopsis 

subvermispora by Ferraz et al. (2005). Intensities of several NIR bands increased with 

biodegradation time, but a direct correlation between band intensities and biodegradation 

periods or weight losses due to the biotreatment were not observed. On the other hand, 

the intensities of NIR bands correlated (by PCR and PLSR) with properties reflecting the 

macromolecular characteristics of the components of the biotreated wood samples. Bio

kraft pulps were also characterized by wet chemical analysis and NIRS. In this case, 

appropriate prediction models related NIR spectral information with the chemical 

composition of the pulps, R2 values ranged from 0.96 to 0.99. (70) 

Weight loss, specific gravity and strength are traditional measures of how wood 

changes after fungal exposure. The study by Kent et al. (2006) investigated the effects of 

fungal decay (P. placenta) on properties of oriented strand board made of aspen including 

weight loss, specific gravity, dowel-bearing strength, shear strength, and alkali solubility. 

Predictive models using reflectance NIRS, in combination with PLSR, showed promise 
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as predictors of weight loss, shear strength, dowel-bearing strength, and solubility 

(RMSEP < 11 %, R2 > 84%). (71) 

Due to their outstanding capability of degrading the recalcitrant biomacromolecule 

lignin, white rot fungi have been attracting interest for several technological applications 

in mechanical pulping and wood surface modification. However, little is known about the 

time course of delignification in early stages of colonisation of wood by these fungi. 

Fackler et al. (2006) used Ff -NIR spectroscopic technique to monitor lignin loss of 

sterilised spruce wood shavings that had been degraded by various species of white rot 

fungi. The delignification kinetics of Dichomitus squalens, three Phlebia species, three 

strains of C. subvermispora as well as the white rot ascomycete Hypoxylon fragiforme 

and the basidiomycete Oxyporus latemarginatus were determined. The lignin content of 

spruce wood was calculated from the second-derivative of the NIR spectrum at 1673 nm 

which is characteristic band for CH vibrations of aromatic rings in lignin. Each of the 

fungi tested was able to reduce the lignin content of spruce wood significantly during the 

first week. The amount of delignification achieved by the selected white rot fungi after 

two weeks ranged from 7.2% for C. subvermispora to 2.5% for P. radiata. 

Delignification was significant already after 3 days of treatment with C. subvermispora 

and P. tremellosa. Activities of extracellular ligninolytic enzymes expressed by each of 

the tested fungi were determined. Lignin was degraded when peroxidase activity was 

detected in the fungal cultures, but only a low level of correlation between enzyme 

activities and the extent of delignification was found. (72) 
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In the study of Sykacek et al. (2006), reflectance Ff-NIRS was investigated for its 

ability to predict the natural durability of commercially available larch wood. Natural 

durability (mass loss) tests were performed using the test brown-rot fungi Gloeophyllum 

trabeum and C .puteana. Ff-NIR spectra were recorded on solid samples with fixed MC 

and transformed spectra (MSC and second-derivative) were calculated for PLSR 

modelling. The models were strong (R2 = 70.7-95.19%, RMSEP = 0.063-0.026) and 

showed better suitability with spectra acquired from planned radial surfaces compared to 

those from cross section surfaces. The prediction model was valid across larch species 

(European and Siberian), so that exact knowledge of the growth and site conditions was 

not required. (73) 

Fackler et al. (2007) cultivated beech wood veneers with white and brown rot fungi 

(c. subvermispora, G. trabeum, P. placenta, and Trametes versicolor) for up to 10 weeks 

and then fungal wood modifications were traced with Ff-NIR and Ff-MIR methods. 

PLSR models to predict the total lignin content before and after fungal decay in the range 

between 17.0% and 26.6% were developed for Ff-MIR transmission spectra as well as 

for Ff -NIR reflectance spectra. Weight loss of the decayed samples between 0% and 

38.2% could be estimated from the wood surface using individual PLSR models for white 

rot and brown rot fungi , and from a model including samples subjected to both 

degradation types. (74) 
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1.3.5.2. Weathering and Aging of Wood 

Tsuchikawa et al. (2004) used reflectance NIRS to qualitatively monitor the variation 

in oven-dried wood characteristics caused by UV light-irradiation. The wood species 

used were Japanese cypress, Japanese cedar, Sitka spruce, Japanese beech, and 

hackberry. It was found from the second-derivative NIR spectra that OH groups in the 

amorphous regions in cellulose, CH in the aromatic skeletal region due to lignin and CH 

in the furanose or pyranose region due to hemicellulose could be easily decomposed into 

low molecular mass matter by light-irradiation. The degradation rates for the amorphous 

regions in cellulose and hemicellulose were faster than that for lignin. Such degradation 

of main chemical compounds in wood by light-irradiation was closely associated with 

yellowing of the samples. The ratio of the second-derivative of absorbance at certain 

wavelengths after light-irradiation to before irradiation was investigated. In the case of 

OH groups in the amorphous region (1432 nm), they could not find an obvious difference 

in the trend between wood species. However, it was suggested that the decomposition 

state of lignin (1672 nm) by light-irradiation varied characteristically with wood species. 

Furthermore, they found a strong correlation between the ratio of absorbance due to 

lignin and chroma coordinates (colorfulness, brightness, and hue) measured by a 

colorimeter, independent of the wood species. In the case of hemicellulose, there were 

considerable differences in absorbance ratio (at 1712 nm) versus chroma coordinates 

between softwoods and hardwoods. (75) 
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Wang et al. (2006) reported on recent laboratory work to quantify the degradation 

process of wood during exposure to natural weathering. Approximately 330 southern pine 

lumber specimens were placed "above-ground" at an outdoor exposure site near Gulfport, 

Mississippi for periods up to five years. An additional 90 specimens were stored indoors 

to serve as controls. Two chemical preservative treatments, CCA and DDAC 

(Didecyldimethyl ammonium chloride), were also applied to several sets of lumber 

specimens. NIRS techniques on MSC transformed data were used to characterize the 

condition of the weathered wood surface. Multivariate statistical tools (PCA and PLSR) 

were used to further analyze NIR spectral data. Results indicated that NIR spectra 

analysis, in conjunction with multivariate statistical analysis, had good potential for 

monitoring changing surface conditions of wood structural members subjected to natural 

weathering. (76) 

Yonenobu and Tsuchikawa (2003) examined the temporal changes in wood properties 

as estimated from NIRS applied to Japanese cypress wood from modern timber and 

samples collected from an old wooden building from the seventh century. The difference 

second-derivative spectra (difference spectra were computed by subtracting the second

derivative spectra of the antique sample from those of the modern sample) showed 

negative values for the absorption bands due to CH stretch first overtone in furanose or 

pyranose of hemicellulose at 1710 nm, and CH stretch and deformation in hemicellulose 

at 2330 nm. The maximum of the negative values was noticeably found at the absorption 

band due to OH deformation second overtone in holocellulose. These results could be 

directly attributed to the decrease of cellulose and hemicellulose. In contrast to 
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carbohydrates, the absorption band due to aromatic CH stretch first overtone in lignin at 

1670 nm showed positive values in the difference spectra. The quantity of lignin may 

have decreased in absolute mass, but had increased relatively after 1300 years of dry 

exposure. The absorption bands due to OH stretch first overtone groups in the 

semicrystalline (1480 nm) and crystalline (1580 nm) regions in cellulose did not show 

significant change between the antique and the modern samples. Negative values could 

be observed for OH stretch first overtone groups in the amorphous region at 1430 nm. 

(77) 

The ageing degradation of the fine wood structure of dry-exposed archaeological 

wood was investigated by FT-NIRS with the aid of a deuterium exchange method by 

Tsuchikawa et al. (2005). The archaeological wood sample was taken from an old 

wooden temple in Japan (late seventh century). Comparing the analytical results with 

those of a modern wood sample of the same species (Japanese cypress) , the ageing 

process of archaeological wood was clarified as a change in the state of order on a 

macromolecular structural level. It was concluded from NIR spectra that the amorphous 

region, and partially semi-crystalline region, in cellulose, hemicellulose, and lignin 

decreased by the ageing degradation (1429, 1724, and 1672 nm, respectively), whereas 

the crystalline region in cellulose was not affected by the ageing 1550, 1591, 1790, 1830, 

and 2336 nm). The absorption band at 2382 nm assigned to the second overtone of the 

CH deformation vibration mode in holocellulose also decreased by aging. The water 

molecules are condensed in one or more layers on sorption sites in the amorphous region 

of wood. It could, therefore, be explained that the adsorption sites in wood substance 
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decreased by the ageing degradation (1916 nm). The accessibility of the diffusant to 

affect HID-exchange was monitored by an OH-related absorption band obtained from 

Ff-NIR transmission spectroscopy and characteristically varied with the ageing process 

of the wood samples, the absorption bands characteristic of a specific state of order and 

the diffusion agent. Finally, they proposed a morphological model to describe the 

variation of the fine structure of the microfibrils in the cell wall with ageing degradation. 

(78) 

Inagaki et al. (2008) investigated the adsorption/desorption mechanism of water and 

the variation of water adsorption for modern and archaeological wood from Japanese 

cypress using reflectance FT -NIRS. A mixture model of water was used to decompose 

the NIR difference spectra into three components (free water molecules (1887 nm), those 

with one OH group engaged in hydrogen bonding (1923 nm), and those with two OH 

groups engaged in hydrogen bonding (2032 nm)) based on a peA. The variations of each 

water component with relative humidity (RH) could be explained by proposing a model 

that described water absorption in three stages. At Stage I (RH=0-40%), water molecules 

interacted more strongly with wood substances than those at the other RH ranges, since 

monomolecular layers of water were formed. At Stage II (RH=40-90%), the water 

molecules might interact with adjacent water molecules, because multilayers of water 

molecules were formed on wood substance. At Stage III (RH=90-100%), the water 

molecules existed not only in an adsorbed water state but also in a bulk water state. It was 

shown from the NIR spectra that the mechanism of water adsorption to wood did not 

show a marked change due to aging. On the other hand, the modern sample adsorbed 
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water molecules more strongly than the archaeological wood sample. No difference in 

crystallinity between the modern and the archaeological samples could be found. This 

suggested that the aging phenomenon in wood is due to the decrease of adsorption sites in 

hemicellulose or amorphous cellulose. (79) 

1.3.6. Pulp and Paper 

1.3.6.1. Pulp Properties 

A goal for the pulp and paper industry is to get a fast and reliable characterization of 

raw materials. One possibility for this is NIRS combined with multivariate analysis. In 

the study by Antti et al. (1996), NIRS was used to characterize a series of pine pulp 

samples. The pulps were characterized by 17 traditionally measured pulp properties such 

as porosity, tensile strength, and paper density. PLS was used for the calibration model 

and internal as well as external validations were done. The resulting PLS model for the 

17 pulp properties gave an overall R 2 of 0.61 according to cross-validation. Predictions of 

the test set objects showed that most of the properties were well described by the model. 

(51) 

The work by Marklund et al. (1999) presented a NIR study undertaken to explore the 

relationship between the choice of softwood raw material and the properties of the 

resulting kraft pulps expressed in terms of physical parameters for the pulps and strength 

properties for the corresponding handsheets. The kraft pulps were made from 20 different 

types of wood samples, which were chosen according to an experimental design. 
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Absorbance NIR spectra were recorded for the wood chips and the fully bleached pulp 

samples. To evaluate the relation between NIR and the end properties, PLSR analysis 

was used to generate prediction models for fiber properties and strength parameters. 

Using OSC, it was found that the NIR spectra of milled wood chips had nearly the same 

predictive ability as those of the bleached pulps. The PLS models for strength parameters 

based on NIR spectra of pulp samples used between 95% and 98% of the variation of the 

pre-treated NIR spectra to explain between 75% and 92% of the variation of the strength 

parameters using one PLS component. The predictive ability was good, corresponding to 

R2 values ranging from 73.3% to 90.8%. The PLS models based on OSC treated NIR 

spectra of wood samples used between 77% and 90% of the variation of the OSC

corrected NIR spectra to explain between 71 % and 88% of the variation of the strength 

parameters using one PLS component. The predictive ability corresponded to R2 values 

ranging from 62.1 % to 87.2%. (80) 

NIRS and multivariate data analysis were applied by Fardim et al. (2002) to predict 

the chemical composition and physicCH::hemical characteristics of Eucalypt grandis 

unbleached kraft pulps obtained at different laboratory pulping conditions. Viscosity, 

degree of polymerization, kappa (it estimates the amount of chemicals required during 

bleaching of wood pulp to obtain a pulp with a given degree of whiteness), brightness and 

contents of glucan, xylan, uronic acids, and lignin were the modeled variables using 

reflectance NIR spectra obtained on pulp handsheets and the PLS method. Models with 

two to four PLS components and good predictive ability (RMSEP < 14%) were 

established after first-derivative spectra pre-processing and application of cross validation 
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methodology. The predictive models could reduce the time consuming traditional 

analyses in the pulping industry laboratories, and also led to a better process monitoring 

for suitable applications. (81) 

A total of 910 maritime pine wood discs, belonging to a genetic trial of 80 families 

with 11-12 trees per family, were used in the study by Alves et al. (2007). A NIR PLSR 

model for the prediction of kappa number of P. pinaster pulps obtained from samples 

pulped under identical conditions was calculated. Very good correlations between NIR 

spectra of maritime pine pulps and kappa numbers in the range from 58 to 100 were 

obtained. Besides the raw spectra, spectra pre-processed with ten methods were used for 

PLS analysis (cross validation with 57 samples), showing that even after test set 

validation (with 34 samples) no model decision could be made due to almost identical 

statistics. The final evaluation that proved the predictive power of the models by 

predicting pulps with unknown kappa numbers allowed choosing a model according to a 

minimal number of outliers found during this process. The minimum-maximum 

normalized spectra in the wave number range from 1637 to 1838 nm used for the 

calculation gave the best model with a RMSEP of 2.3%, R2 of 95.9%, and one PLS 

component. The percentage of outliers during evaluation was 0.9%. (82) 

The use of calibrated Vis and NIRS to predict the Klason lignin content of Moso 

bamboo, Chinese fir, Paulownia, and poplar samples was investigated by Huang et al. 

(2008). For bamboo, Chinese fir, and Paulownia, the lignin content predicted by means of 

chemical methods and that predicted by NIR were similar. The ratio of performance to 
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deviation (RPD) of bamboo, Chinese fir, and Paulownia was 3.33, 2.53, and 1.77, 

respectively. However, for the poplar, the RPD was only 1.07. The original models were 

constructed using a full spectrum ranging from 400 nm to 2500 nm. If the spectral range 

was reduced to the range of 400-1050 nm or 1100-2500 nm, a slight decrease in the 

quality of the models would occur. However, this decrease was minor considering the 

advantages of using a reduced spectral range. The results demonstrated that NIR could 

predict Klason Lignin Content of bamboo, Chinese fir, Paulownia, and Poplar. (83) 

1.3.6.2. Pulp Yield 

Pulp yield is an important parameter for the paper industry and is function of 

cellulose, density, extractives, and lignin content. Each wood constituent has a different 

capacity to resist chemical degradation, thus influencing the variation in residual pulp per 

volume of wood. The perpetual goal is to increase cellulose and density and decrease the 

lignin content and extractives. A concept was presented by Lindgren and Edlund (1997) 

for monitoring the delignification process during a laboratory kraft cook on softwood 

(mixture of Pinus silvestris and Picea abies). Pulping of wood using the kraft process 

involves the cooking of wood chips in an alkaline solution at elevated temperature and 

pressure to dissolve lignin and leave fibers composed of cellulose and hemicellulose 

intact. Two series of cooking liquors were analyzed by transmittance NIRS. The first 

series of liquors was withdrawn from pulping experiments covering the initial, bulk and 

final phase of the cook. The second series of liquors was taken from experiments 

associated with the final delignification phase in order to be a better learning set for the 
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prediction of kappa numbers. MSC was applied to correct for optical interference. By 

using a PLSR technique, the pulp yield and the Klason lignin content could be predicted 

accurately from spectroscopic data obtained on the first series of liquors (r < 97%). 

Similarly, when NIR data were used from the second series of cooking liquors, a very 

good correlation (r = 98%) was found between observed kappa numbers and the 

predicted ones. (84) 

Within-tree variation in kraft pulp yield, predicted using reflectance NIR analysis, was 

studied in 30 trees of E. globulus and 50 trees of E. nitens by Raymond et al. (2001) to 

develop a non-destructive sampling strategy. Trees, aged five to nine years, were sampled 

across a range of sites in southern Australia. Simulated core samples were removed at six 

fixed heights easily accessible from the ground and at seven percentage heights. Whole

tree values, calculated from percentage height data, were correlated with the core data to 

determine the optimal sampling height. The data were converted before analysis to the 

second-derivative mode. Core samples were found to be good predictors of whole-tree 

pulp yield for E. globulus, with simulated cores taken from the recommended sampling 

height (1.1 m) explaining more than 50% of variation in whole-tree pulp yield. Results 

for E. nitens were variable with large site differences apparent. On high quality sites, core 

samples from the recommended sampling height (0.9 m) were good predictors of whole

tree pulp yield, explaining around 60% of the variation. On poor quality sites, cores were 

poor predictors of whole-tree pulp yield. Radial orientation of cores was not important 

and predicted pulp yield was not related to tree size, basic density, or fiber length. To 

estimate stand mean pulp yield to an accuracy of ± 1 % would require sampling six trees 
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of E. globulus and four trees for E. nitens using either multiple discs or core samples. A 

single sampling height (1.1 m) was recommended for sampling for basic density, fiber 

length. Fiber coarseness, and predicted pulp yield in E. globulus. For E. nitens the 

recommended sampling height for basic density and fiber length was 0.7 m and 0.9 m 

was recommended for predicted pulp yield on good quality sites. (85) 

Schimleck et al. (2006) investigated the addition of samples from a new site (Gog) to 

the 126 samples of Tasmania-wide E. nitens set, with the aim of improving predictive 

accuracy of pulp yield using reflectance NIRS. It was demonstrated that the addition of a 

single Gog sample to the Tasmania-wide calibration set was sufficient to greatly reduce 

predictive errors and that the inclusion of at least three Gog samples in the Tasmania

wide set was sufficient to give relatively stable predictive errors. The addition of different 

sets of five Gog samples to the Tasmania-wide calibration, however, caused predictive 

errors to vary between sets. The standard deviation of pulp yield for the prediction set (20 

Gog samples) was important, with sets having the largest standard deviations giving the 

best predictive statistics. Finally, the Tasmania wide E. nitens calibration was enhanced 

using samples from a different species (E. globulus) and applied successfully to other E. 

globulus samples. (86) 

1.4. Proposed approach and objectives 

Considering all of the potential interactions of variables that can affect NIR 

spectra, emphasis will be placed on the investigation of relationships between NIR 
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characteristics of different species (spruce, fir, and pine) and the different variables 

that can affect practical application of this approach, e.g., wood moisture content and 

wood weathering. 
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2. Materials and Methods 

2.1. Wood Samples 

Finger-jointed SPF lx2 and 2x4lumber was purchased from both Home Depot and 

Rona in Canada. The lumber was then cut at finger jointed ends and the segments were 

identified according to eastern species Uack pine (Pinus banksiana), spruce (white spruce 

(Picea glauca) or black spruce (Picea mariana)), and balsam fir (Abies balsamea)) by a 

microscope using a key identification list. After classification, the wood pieces were cut 

to smaller non-uniform pieces (ca. 16 mm x 27 mm x 35 mm) and sanded to obtain 

smooth and uniform surfaces. All the wood samples were then air dried and stored 

indoors under ambient conditions. 

2.2. Instrument Reproducibility 

The reproducibility of the NIR spectrometer was examined by measuring the spectra 

of the same 20 wood samples (10 of each fir and pine samples) twice within two months. 

These wood samples were kept at fixed MC of 11 % in a dark room to avoid effects of 

MC and light exposure. 

78 



2.3. Analysis of Effects of Moisture Content and High Temperature 

Drying 

The wood samples were dried at 105°C until no further weight loss was observed. The 

final oven-dry weight was recorded. The wood samples were then conditioned to various 

MC values (air-dry to FSP) by using a controlled relative humidity chamber (Blue M 

Electric Company, Blue Island, lllinois, USA) where chamber air is humidified or de-

humidified using an integral water reservoir. By controlling the temperature of the water 

in the reservoir, moisture is added or removed from the chamber air. Since the MC of 

wood is directly related to the relative humidity and temperature of the surrounding air, 

the MC of wood was altered as the temperature and RH of the chamber was varied. MC 

was calculated as per cent weight gain relative to oven-dry weight, 

MC (%) = (current wood weight - oven - dry wood weight) x 100 
oven - dry wood weight 

To evaluate the effect of drying, wood samples were dried at 80°C overnight. SPF is 

[7] 

usually dried at high temperature, with relatively little humidity. These conditions could 

not be achieved in our kiln so an oven at 80°C and no humidity control was used as a 

relatively close approximation of the former conditions. The cross-section of conditioned 

wood samples was immediately measured by NIR. 
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2.4. Wood Weathering Analysis 

The wood samples were tested for accelerated weathering exposure using an ATLAS 

Es25 Weather-Ometer. The samples were continuously exposed to UV irradiation 

(l2000w xenon arc) and sprayed with deionized water (every two hours for 18 minutes) 

to different periods up to eight weeks. The temperature was kept constant at 25°C. Every 

two weeks the samples were taken out of the Weather-Ometer, air dried for 24 hours, and 

then their cross-section was measured by NIR. The cross-section surface of wood 

samples exposed to six weeks was cut (ca. 10 mm) and the newly fresh surface was 

sanded and measured by NIR in order to compare with the control (0 weeks) wood 

samples. 

2.S. NIR Analysis 

NIR reflection spectra were measured in a scanning spectrophotometer (Ocean Optics) 

at 6.8-nm intervals over the wavelength range 850-2600 nm. Fifty scans were collected 

and averaged into a single average spectrum. A box-car width of three was chosen. It 

specifies number of adjacent data points that are used to average across the spectral data. 

Increase in box-car width improves smoothing as it results in higher signal-to-noise but if 

it is too high there is a loss in spectral resolution. Spectra below 1100 nm and above 2300 

nm were discarded because of high levels of noise observed due to instrumentation. The 

instrument white reflectance standard was spectralon (fluoro polymer resin). A fiber optic 

probe oriented at a right angle and 2 mm above the cross-section of wood surface was 
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used to illuminate the wood sample and to collect the reflectance spectra. NIR spectra 

were collected on one of the cross-sectional faces of each of the heartwood specimens. 

This fiber optic probe consisted of a single input fiber encircled by 6 source fibers 

providing 3600 of NIR illumination of a spot 6 mm in diameter. This arrangement 

ensured parallel orientation of the fibers. The outer six illumination fibers were connected 

to the tungsten halogen continuous light source (HL-2000, Ocean Optics). 

The reflected light was collected by the centrally located input fiber which was 

coupled to a spectrometer. The spectrometer featured cooled InGaAs linear photodiode 

array detectors and acquired data as fast as 10 milliseconds. It is internally cooled for 

optimum signal-to-noise and sensitivity. InGaAs is a semiconductor composed of an 

alloy of gallium arsenide and indium arsenide. It consists of array of diodes (256 

elements in this study) which act individually as a light-to-charge converter and storage 

apparatus. Each diode on the array corresponds to and detects a wavelength or set of 

wavelengths and thus the instrument is able to detect the whole NIR spectrum 

simultaneously. The computer then acquired and stored reflection spectra using 

SpectraSuite software. The dispersive optic was of the common Czerny-Turner design. 

NIR instrumentation is described in more detail in reference (1). 
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2.6. Spectral Processing 

Before any spectral pre-treatment the reflection spectra was converted to absorbance 

and the following analysis was done on the absorbance spectra. In order to establish the 

best validated calibration model, several pre-processing methods were investigated. The 

pre-processing techniques employed were MSC, first- and second-derivative. Scatter 

effects were removed from the data by MSC. The hidden information in the spectra was 

detected by first- and second-derivatization. Spectra were smoothed and derived 

according to the Savitzky and Golay (1964) algorithm by means of a 7-point smoothing 

filter and a second-order polynomial for first-derivative and a 13-point smoothing filter 

and a third-order polynomial for second-derivative. Some of the pre-processing 

techniques were also used in combination, giving rise to a total of 6 pre-processing 

methods: none, first-derivative, second-derivative, MSC, MSC+ first-derivative, and 

MSC+ second-derivative. The best calibration model was selected by means of R2 and 

rank (number ofPCs). In addition, both the X- and Y-matrices were mean centered and 

normalised prior to performing the PLS analysis. As a rule, the first stage in multivariate 

modeling using projection methods is to subtract the average from each variable. This 

operation, called mean-centering, ensures that all results will be interpretable in terms of 

variation around the mean. Fig. 2.1 shows the transformed raw spectra by various pre

processing techniques used in this study. 

Variation between individual NIR spectra is the result of three main sources: non

specific scatter of radiation at the surface, variable spectral path length through the 
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sample, and chemical composition of the sample. In calibration one is interested only in 

the last source of variance. One of the main reasons for carrying out pre-processing of 

such data is to eliminate or minimise the effects of the other two sources. It is also 

possible to try to increase the differences in the contribution of each component to the 

total signal and in this way to make certain wavelengths more selective. The type of pre-

processing depends on the nature of the signal. For this purpose, several approaches are 

possible. 

Fig. 2.1. Raw spectra transformed by various pre-processing techniques 

Areaation / 
Normaliz/" 

MSC 

Second
derivative 
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Normalization refers to the division of multiple sets of data by a common variable in 

order to eliminate that variable's effect on the data. This allows data on different scales to 

be compared, by bringing them to a common scale. In this study, area normalization was 

used. This transformation normalizes a spectrum Xi by calculating the area under the 

spectral curve. 

x. 
new x .=--'-, LXij 

j 

[8] 

It attempts to correct the spectra for indeterminate path length when there is no way of 

measuring it, or isolating a band of a constant constituent. The area under the curve 

becomes the same for all samples. 

Multiplicative Scatter Correction (MSC) was used to transform the data in order to 

compensate for multiplicative and additive scatter effects in the spectra. Scatter effects 

are effects caused by physical phenomena. They interfere with the relationship between 

chemical properties and shape of a spectrum. MSC tends to simplify the calibrated model 

by reducing the number of PCs required, and in many cases predictions improve. The 

light scattering or change in path length for each sample is estimated relative to that of an 

ideal sample. In principle this estimation should be done on a part of the spectrum which 

does not contain chemical information, i.e. influenced only by the light scattering. 

However the areas in the spectrum that hold no chemical information often contain the 

spectral background where the signal-to-noise ratio may be poor. In practice the whole 

spectrum is sometimes used. This can be done provided that chemical differences 

between the samples are small. Each spectrum is then corrected so that all samples appear 
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to have the same scatter level as the ideal. As an estimate of the ideal sample, the average 

of the calibration set can be used. For each sample: 

x =a + bx + e 
I } 

[9] 

where Xi is the NIR spectrum of the sample, and Xj symbolises the spectrum of the ideal 

sample (the mean spectrum) and e is the error. For each sample, a and b are estimated by 

ordinary least-squares regression of spectrum Xi vs. spectrum Xj over the available 

wavelengths. Coefficient a is the intercept (offset) of the regression line, coefficient b is 

the slope. Each value xi} of the corrected spectrum Xi (MSC) is calculated as: 

X ·· - a 
Xij(MSC)=~;j= 1,2, . .. ,p. 

Other types of signal processing used were smoothing and differentiation. By 

[10] 

smoothing one tries to reduce the random noise in the instrumental signal. The most used 

chemometric methodology is the one proposed by Savitzky and Golay. It is a weighted 

moving window averaging method. The principle of the method is that, for small 

wavelength intervals, data can be fitted by a polynomial of adequate degree, and that the 

fitted values are a better estimate than those measured, because some noise has been 

removed. The user must decide the size of the window and the order of the polynomial to 

be used. Another way of carrying out smoothing is by repeated measurement of the 

spectrum, i.e. by obtaining several scans and averaging them. In this way, the signal to 

noise ratio, increases with & , ns being the number of scans. In this study, fifty scans 

were measured and averaged into one spectrum. 
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Differentiation can be used to address overlapping peaks and large baseline variations. 

Both first- and second-derivatives are used, but second-derivatives seem to be applied 

more frequently. A possible reason for their popularity is that they have troughs (inverse 

peaks) at the location of the original peaks. The first-derivatives removes baseline offsets 

while the second-derivative is used to handle both baseline offsets and scatter effects 

because it removes both slope and offset. In principle, differentiation of data is obtained 

by using the appropriate derivative of the polynomial used to fit the data in each window. 

One drawback of the use of derivatives is that they decrease the signal-to-noise ratio by 

enhancing the noise. For that reason smoothing is needed before differentiation. The 

higher the degree of differentiation used, the higher the degradation of the signal-to-noise 

ratio. Another drawback is that calibration models obtained with spectra pre-treated by 

differentiation are sometimes less robust to instrumental changes such as wavelength 

shifts which may occur over time and are less easily corrected for the changes. All 

spectral processing information and equations are discussed in reference (4). 

2.7. Multivariate Analysis 

Multivariate analysis was performed using The Un scrambler software (version 9.7, 

CAMO) and PLSR (Partial Least Square Regression) technique. While a complete 

description of multivariate analysis can be found elsewhere (4) the following summary 

describes the steps used to construct PLS models in this work. PLSR was applied to 

obtain mathematical models comparing the NIR spectra which are combined into a single 

data matrix (X-matrix) and the property data which are combined into a response matrix 
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(Y-matrix). PLSR is a bilinear modeling method where both the X- and Y-matrices are 

modeled simultaneously to find the latent variables (an unobserved variable that may 

account for variation in the data and/or for apparent relations between observed variables) 

in X (tl' t2, etc.) that will best predict the latent variables in Y (UI' U2, etc.). Interpretation 

of the relationship between X-data and Y -data is then simplified as this relationship is 

concentrated on the smallest possible number of components (Fig. 4). 

Fig. 2.2. PLS Procedure (4) 

• x. 

• I t *: . 
..... +-C 

x. x. PCy=f(PCx) 

u=f(t) 

The task is to describe the relationship between positions of the observations in factor 

space or X and their positions in response space or Y. The first component of the PLS 

model will orient itself so that it well describes the points in X-space while at the same 

time giving good correlation with the Y-space. PCs are created so that they are mutually 

orthogonal, thus avoiding problems related to co-linearity among the variables in the X-

matrix. Compared to traditional statistical modelling based on least squares estimation, 

independent variables in the X-matrix are not a requirement for the PLS method. PLSR 

can also handle situations where the number of variables far exceeds the number of 

samples, which is typical for modelling with NIR data. 
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The Un scrambler allows for calculation of two different PLS algorithms. A PLS-l 

analysis allows only one Y -variable to be projected against the X matrix at a time, while 

a PLS-2 analysis allows several Y-variables to be projected against the X-matrix. Both 

PLS-l and PLS-2 models were constructed for different response variables. 

The first stage of PLS modeling is the calibration stage where the (X, Y) relationship 

is established. The prediction generally is the second stage of PLS modeling. Therefore, it 

is mandatory to start with a known set of corresponding X and Y data. From these the 

relevant PLS regression model is developed. The model may subsequently be used on 

new X measurements to predict new Y -values. In this study, the wood samples were 

divided into two parts, one calibration (training) and one prediction (test) set, built up of 

75% and 25% of the data respectively. For more information about multivariate analysis 

see reference (4). 

2.7.1. Calibration of Wood Properties 

During the calibration stage, a validation must be performed. Validation of a model 

means testing its performance according to an a priori given set of test result 

specifications. With cross validation, the same samples are used both for model 

estimation and testing. In this project, a full cross validation, or Leave-One-Out 

validation was employed. Full cross validation means that as many sub-models as there 

are objects are made, each time leaving out just one of the objects and only using this for 

testing. The squared difference between the predicted and the Y-value (residual) for each 
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omitted sample is summed and averaged, giving a validation Y -variance. Validation is 

done to determine modeling error and prediction error, outliers, optimal number of PLS 

components (pes) or model dimensionality, and trends. 

In order to detect sample patterns, groupings, similarities or differences, a PLS scores 

plot was analyzed. PLS scores are the sample coordinates along the model components. 

Two different sets of components can be considered, depending on whether one is 

interested in summarizing the variation in the X- or Y-space. The t-scores, which are the 

new coordinates of the data points in the X-space, are computed in such a way that they 

capture the part of the structure in X which is most predictive for Y; and u-

scores summarize the part of the structure in Y which is explained by X along a given 

model component. The relationship between t- and u-scores is a summary of the 

relationship between X and Y along a specific model component. For diagnostic 

purposes, this relationship was visualized using the X -Y Relation Outliers plot. This plot 

visualizes the regression relation along a particular component of the PLS model. It 

shows the t-scores as abscissa and the u-scores as ordinate. In other words, it shows the 

relationship between the projection of the samples in the X-space (horizontal axis) and 

the projection of these samples in the Y -space (vertical axis). A sample may be outlying 

according to the X-variables only, or to the Y-variables only, or to both. It may also not 

have extreme or outlying values for either separate set of variables, but become an outlier 

when the (X, Y) relationship is considered. In the X-Y Relation Outlier plot, such a 

sample stands out as being far away from the relation defined by the other samples. If a 

sample stands out in such a way that it is projected far away from the center along the 
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model component, it is an influential outlier. Such samples are dangerous to the model: 

they change the orientation of the component. If there is no data transcription error for 

that sample, one should investigate more and decide whether it belongs to another 

population. If so, that sample may be removed. If not, more samples of the same kind 

have to be gathered, to make the data more balanced. 

The number of PCs (factors) used for a model were selected by observing the response 

of the residual Y -variance with added factors. The residual validation variance is the 

mean square of all residuals, sample- or variable-wise. This is a measure of the error 

made when observed values are approximated by fitted values, i.e. when a sample or a 

variable is replaced by its projection onto the model. It expresses how much variation in 

the data remains to be explained once the current PC has been taken into account. The 

more PCs that are used in a model, the smaller the residual values of prediction validation 

are, but only to a point, which is the optimal number of PCs. The number of factors used 

in the final calibration is very important. The selection of too many factors will overfit 

the data and give a calibration that may only be suited to the data from which it is was 

derived. If not enough factors are selected, variation in the data will not be sufficiently 

described and underfitting occurs. The optimum number of factors for a calibration can 

be identified when the residual validation variance reaches a minimum and starts to 

plateau. However, any increase in the validation variance before the number of optimal 

PCs is reached is a bad sign, usually due to the presence of outliers, noise, non-linearities, 

etc. 
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The Predicted vs. Measured plot was used to check the quality of the regression 

model. In this plot the predicted Y-value from the model is plotted against the measured 

Y-value. If the model gives a good fit, the plot will show points close to a straight line 

through the origin and with slope equal to one. The coefficient of determination (R 2) of a 

regression model is a measure of the quality of the model, computed as the square of the 

correlation coefficient between predicted and measured values. Its value is always 

between 0 and 1. The closer the value to one, the better the model is. The R2 is displayed 

among the plot statistics of a Predicted vs. Measured plot. When based on the calibration 

samples, it tells about the quality of the fit. When computed from the validation samples 

it tells about the predictive ability of the model. Correlation is a unitless measure of the 

amount of linear relationship between two variables. The correlation is computed as the 

covariance between the two variables divided by the square root of the product of their 

vanances: 

! t(Ymj - YmjXYPj - YPj) 
Correlation = _n-,l,-"=_' r=====~--

~V(Ym)X V(yp) 
[11] 

[ 12] 

[ 13] 

where Ym is the measured Y of sample j and Ym is the average of all Y -measured values; 

YP is the predicted Y of sample j and YP is the average of all Y -predicted values; and n is 

the total number of samples. Correlation varies from -1 to + 1. Positive correlation 

indicates a positive link between the two variables, i.e. when one increases, the other has 
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a tendency to increase too. The closer to + 1, the stronger this link is. Negative correlation 

indicates a negative link between the two variables, i.e. when one increases, the other has 

a tendency to decrease. The closer to -1, the stronger this link is. Other parameters 

displayed among the plot statistics of a Predicted vs. Measured plot are root mean square 

error, standard error, and bias. 

There is an error component accumulating from each stage in the whole chain of 

sampling, preparation, and measurement through to data analysis. The error of either 

calibration or prediction validation can be expressed in several forms and is typically 

studied for varying number of PCs. The two most common forms are the residual Y-

variance (mentioned above) or the RMSE (Root Mean Square Error), expressed in 

original measuring units; the latter is simply the square root of the former. 

RMSE= [14] 

where Yj is the predicted value of sample j, Yi is the measured value of sample j , and n is 

the total number of samples. Besides telling the optimal model dimensionality, the error 

variance also tells about the model fit and prediction ability after adding one more 

component, then one more, etc. RMSEP (Root Mean Square Error of Prediction) and 

RMSEC (Root Mean Square of Calibration) are direct estimates of the prediction error 

and the modelling error in Y, respectively. RMSEP is defined as the square root of the 

average of the squared difference between predicted and measured Y -values of the 

validation objects. RMSEC is the corresponding measure of the model fit, calculated 

from the calibration objects only. The RMSEC is a measure of the model fit, i.e., how 
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well has the model been fitted to the training data set. However, this does not say much 

about how well the model will work for new X -data. If the purpose of the modeling is 

prediction, the error associated with predicting new samples in the future is needed. The 

RMSEP is an expression of the model's ability to predict new data. As is obvious from 

equation [14], the overall ability is best when the prediction variance or error is at its 

lowest. 

SEP and bias are two other statistical measures closely connected to RMSEP. Bias 

represents the averaged difference between predicted and measured Y-values for all 

samples in the validation set: 

I(Yj - yJ 
Bias = .'-j=-I __ _ [15] 

n 

Bias is a commonly used measure of the accuracy of a prediction model. Bias is also used 

to check if there is a systematic difference between the average values of the training set 

and the validation set. If there is no such difference, the bias will be zero. SEP, on the 

other hand, expresses the precision of results, corrected for bias: 

j=1 

n -1 
[16] SEP= 

If one can reasonably expect a normal distribution of the samples included in the 

calculation of the bias, 95% of them will have Y j -Y j ~ 2 x SEP and 5% of them will 

have Y j-Y j > 2 x SEP . This means that the uncertainty of the bias is directly dependent on 
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SEP. SEP increases when the Y -values (the reference values) are inaccurate. The 

relationship between RMSEP, SEP, and bias is: 

RMSEp2 ~ SEp2 + Bias2 

It follows that if models are unbiased SEP=RMSEP. 

[17] 

Finally, the regression coefficient line plot was used to determine variables that are 

significant in the PLS model. In a regression model equation, regression coefficients (B) 

are the numerical coefficients that express the link between variation in the spectra and 

variation in the response: 

Y = BO + B J xX-variable J + B2 x X-variable2 + ... Bn x X-variablen. [18] 

For PLS, the regression coefficients can be computed for any number of components. 

The regression coefficient line plot shows the regression coefficients for one particular 

response variable (Y), and for a model with a particular number of components. Each 

predictor variable (X) defines one point of the line. Predictors with a large regression 

coefficient play an important role in the regression model; a positive coefficient shows a 

positive link with the response, and a negative coefficient shows a negative link. 

Predictors with a small coefficient are negligible and the model can be recalculated 

without those variables. All information and equations above are discussed in detail in 

reference (4). 
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2.7.2. Prediction of Wood Properties 

After the best spectral pre-treatment was chosen, it was applied to both the calibration 

and the prediction sample sets. As was mentioned, calibration models were constructed 

with about 75% of the samples using full cross-validation. This fully cross-validated 

model was then used to predict the response of the test set that contained about 25% of 

the samples that were not included in the original model. This conservative approach 

ensured that the predictive capabilities of the model are reliable. The prediction models 

were analyzed by Y-Predicted vs. Y-Reference plot which gave the same statistical 

features as for the Predicted vs. Measured plot of the calibration model. Another useful 

plot was Predicted with Deviation. This is a plot of predicted Y -values for all prediction 

samples. The predicted value is shown as a horizontal line. Boxes around the predicted 

value indicate the deviation, i.e. whether the prediction is reliable or not. A large 

deviation indicates that the sample used for prediction is not similar to the samples used 

to make the calibration model. This is a prediction outlier meaning that the prediction 

sample does not belong to the same population as the samples upon which the model is 

based, and they cannot be trusted. The same information can be shown in a tabular form. 

All information above is discussed in detail in reference (4). 

2.7.2.1. Partial Least Squares Discriminant Analysis (PLS-DA) 

PLS-DA was used in classification of wood. PLS-DA involves developing a 

conventional PLSR model , but instead of a continuous variable the response variable is a 
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binary class indicator variable. If there are only two classes to separate, the PLS model 

uses one response variable, which codes for class membership as follows: 0 for members 

of one class, 1 for members of the other one. The PLS-l algorithm is then used. If there 

are three classes or more, PLS-2 is used. Each class is represented by an indicator 

variable, i.e., a binary variable with value 1 for members of that class, 0 for non

members. By building a PLS-2 model with all indicator variables as Y, one can directly 

predict class membership from the X-variables describing the samples. The model is 

interpreted by viewing Predicted vs. Measured for each class indicator Y-variable: Y

predicted> 0.5 means "member"; and Y-predicted < 0.5 means "non-member". Once the 

PLS-2 model has been checked and validated, a prediction can be run in order to classify 

a new set of samples. The prediction results can be interpreted by viewing the plot 

Predicted with Deviations for each class indicator Y -variable: samples with Y -predicted 

> 0.5 and a deviation that does not cross the 0.5 line are predicted members; samples with 

Y -predicted < 0.5 and a deviation that does not cross the 0.5 line are predicted non

members; and samples with a deviation that crosses the 0.5 line cannot be safely 

classified. In this study it was known that each wood specimen was either spruce, fir or 

pine. For this reason three binary variables were constructed, one for each tree species. 

Each wood specimen was assigned to the group for which the model had the highest 

estimated response. All information above is discussed in detail in reference (4). 
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3. Results and Discussion 

3.1. Spectral Pre-processing 

In order to establish the best cross validated calibration model, several pre-processing 

methods were investigated. The cross-sections of 57 random air-dried wood samples 

were first measured by NIR and then classified according to species by using PLS-DA 

with maximum of 10 PCs. The pre-processing techniques employed on the absorbance 

spectra of these samples were MSC, first- and second-derivatives. Spectra were smoothed 

and derived according to the Savitzky-Golay algorithm by means of a 7-point smoothing 

filter and a second-order polynomial for first-derivative and a 13-point smoothing filter 

and a third-order polynomial for second-derivative. Some of the pre-processing 

techniques were also used in combination, giving rise to a total of six pre-processing 

methods: none (only normalization), first-derivative, second-derivative, MSC, MSC+ 

first-derivative, and MSC+ second-derivative. Fig. 3.1- 3.6 show the Predicted vs. 

Measured plots for each species and a Residual Validation Variance plots for all the 

species together. Each Predicted vs. Measured plot was selected for the optimal PC which 

was determined from the Residual Validation Variance plot. The best calibration model 

was selected by means of the highest R2 for the lowest number of PCs. For all species the 

lowest number of PCs and highest R2 was obtained for the spectra treated by MSC+ 

second-derivative (Table 3.1). The MSC and second-derivative probably corrected for 

both light scattering effects such as varying path lengths due to different densities and 

chemical components of the wood species and instrument effects such as baseline shift 

(4) . These pre-processing techniques were therefore applied to all following analyses. 

97 



Fig. 3.1. PLS-DA regression model overview of normalized absorbance spectra: the upper and 
bottom right plots are Predicted vs. Measured plots for spruce and fir, respectively, with 8 PCS; 
and the upper and bottom left plots are the Predicted vs . Measured plot for pine with 8 PCs and 
the Residual Validation Variance plot for all species, respectively. 
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MSC: the upper and bottom right plots are Predicted vs. Measured plots for spruce and fir, 
respectively, with 7 PCs; and the upper and bottom left plots are the Predicted vs. Measured plot 
for pine with 7 PCs and the Residual Validation Variance plot for all species, respectively. 
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Fig. 3.3. PLS-DA regression model overview of normalized absorbance spectra transformed by 
first-derivative: the upper and bottom right plots are Predicted vs. Measured plots for spruce and 
fir, respectively, with 6 pes; and the upper and bottom left plots are the Predicted vs. Measured 
plot for pine with 6 pes and the Residual Validation Variance plot for all species, respectively. 
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Fig. 3.5. PLS-DA regression model overview of normalized absorbance spectra transformed by 
both MSC and first-derivative: the upper and bottom right plots are Predicted vs. Measured plots 
for spruce and fir, respectively, with 7 PCs; and the upper and bottom left plots are the Predicted 
vs. Measured plot for pine with 7 PCs and the Residual Validation Variance plot for all species, 
respectively. 
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Table 3.1. The rank and the coefficient of determination values for the three wood species as 
determined from their PLS-DA regression models based on normalized absorbance spectra pre
treated by various techniques. 

Wood Spectral Rank (optimal R2 

Species Processing number of pes) (%) 

Pine None 8 62 

MSC 7 64 

1 sl-derivative 6 63 

2nd-derivative 5 55 
MSC+l s1_ 
derivative 7 68 
MSC+2no_ 

derivative 5 58 

Spruce None 8 74 

MSC 7 60 

1 sl-derivative 6 60 

2nd -derivative 5 55 
MSC+l s1_ 
derivative 7 60 
MSC+2no_ 

derivative 5 58 

Fir None 8 67 

MSC 7 70 
1 sl_deri vati ve 6 68 

2nd-derivative 5 65 
MSC+l s1_ 
derivative 7 71 
MSC+2no_ 

derivative 5 69 

3.2. Instrument Reproducibility 

The cross sections of 20 wood samples containing fir and pine kept at constant MC 

and inside a dark room were measured by NIR twice within two months. The samples 

had fixed MC to avoid the effect of moisture on the species; they were also kept inside a 

dark room to prevent light effects on the species. The transformed absorbance spectra of 

these wood samples were compared by PLS-l. Fig. 3.7 is the validated regression 

overview of pine and Fig. 3.8 of fIT. As can be seen in the Residual Validation Variance 

plots of both of pine and fir, no separation due to NIR measurement of the same wood 
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samples at different periods was possible because there was an increase in Y-variance at 

PC 6 for pine (Fig. 3.7) and at PC 3 for fir (Fig. 3.8). The calibration Y-variance usually 

decreases at all times, since the PCs are found in such a way that the residuals are 

minimized in each step (4). In PLS an increase in the residual variance may indicate that 

there is no relationship between X and Y (4). In addition, the range of the score plots for 

both species was very limited meaning that the samples were very similar to each other 

(Fig. 3.7- 3.8). All this lead to the conclusion that the instrument was relatively 

reproducible for at least two months because very close NIR absorbences were obtained 

for the same wood samples measured twice within two months. 

Fig. 3.7. PLS-l regression validated model of reproducibility analysis of pine samples: the upper 
left plot is the Scores plot; the upper right plot is the Regression Coefficients plot for PC 2; the 
bottom left plot is the Residual Validation Variance plot; and the bottom right plot is the 
Predicted vs. Measured plot with 12 PCs. 
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Fig. 3.8. PLS-l regression validated model of reproducibility analysis of fir samples: the upper 
left plot is the Scores plot; the upper right plot is the Regression Coefficients plot for PC 2; the 
bottom left plot is the Residual Validation Variance plot; and the bottom right plot is the 
Predicted vs. Measured plot with 10 PCs. 
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3.3. Species Classification 

165 air-dried wood samples (55 of each species of SPF) were conditioned to constant 

MC and their cross-sectional surfaces were cut and sanded (ca. 10 mm) to avoid the 

confounding effects of both MC and weather. They were then measured by NIRS and 

their absorbance spectra were treated. The spectra of these samples were divided into 

calibration (75%) and prediction sets (25%) and analyzed by PLS-DA in order to classify 

the wood samples according to species. Fig. 3.9 shows the regression overview of the 

validated calibration model. The calibration model with 7 PCs was not very good having 

R2 and RMSEP of 55% and 32%,51 % and 33%, and 81 % and 21 % for pine, spruce, and 

fir, respectively (Fig. 3.9). In this model, 57% of the spectra explained 17% of variation 

due to species for PC 1 which separated fir from both pine and spruce; and 12% of the 
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spectra explained 15% of variation due to species for PC 2 which separated spruce from 

pine. Fig.3.10 and 3.11 are the regression coefficients plots for PC 1 and 2, respectively. 

For PC 1 the significant peaks were at 1201, 1310, 1869, 1924,2013,2109,2212, and 

2261 nm (Fig. 3.10). Table 3.2 presents the assignment of these peaks and Fig. 3.12 

describes their trend. Fir could be separated from spruce and pine due to very small 

differences in the amounts and types of lignin and extractives such as starch which were 

higher for fir ; and hemicellulose and cellulose which were higher for spruce and pine. For 

PC 2 the significant peaks of were at 1194, 1439, 1630, 1692, and 1931 nm (Fig. 3.11). 

Table 3.2 presents the assignment of these peaks and Fig. 3.13 describes their trend or 

lack of it. There was no clear separation between spruce and pine (Fig. 3.13) except for 

very small differentiation at 1439, 1630, and 1692 om indicating that pine was very 

similar to spruce but might have different amounts and/or types of hemicellulose and/or 

extractives. Table 3.3 presents the chemical composition of each of the species as was 

determined by various laboratories. It supports the former conclusions about species 

differentiation. When significant variables for species differentiation were chosen to 

construct a model, no improvements were seen (plots not shown) possibly because the 

whole spectrum was required for differentiation. In addition, no significant outliers were 

detected. 

Since separation was not very good, calibration models containing only two species 

were developed and they produced better fits (Fig. 3.14- 3.16). These calibration models 

had R2 and RMSEP of 83% and 21 %, respectively for pine and fir with 4 PCs; 84% and 

20% for spruce and fir with 5 PCs; and 50% and 36% for spruce and pine with 4 PCs. 
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These models were then used to classify wood species of a test set. Prediction results are 

shown in Fig. 3.17- 3.20 and Table 3.4. The best prediction models were the ones that 

included fir and pine (R2 = 86%, RMSEP = 19% for 4 PCs) and fir and spruce (R2 = 74%, 

RMSEP = 25% for 5 PCs) where all the species were predicted correctly. The maximum 

error for species differentiation exhibited by the models predicting species was 12% (5 

out of 42 samples were misclassified). 

Fig. 3.9. PLS-DA regression validated model of all species predictions: the upper left plot is 
Scores plot; the upper right plot is the Predicted vs. Measured plot for pine with 7 pes; the 
bottom left plot is the Predicted vs. Measured plot for spruce with 7 pes; and the bottom right 
plot is the Predicted vs. Measured plot for fir with 7 pes. 
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Fig. 3.10. Regression Coefficients of PC 1 from a PLS-DA regression validated model for species 
predictions 
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Fig. 3.11. Regression Coefficients of PC 2 from a PLS-DA regression validated model for species 
predictions 
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Fig. 3.12. Second derivative spectra of fir and spruce wood samples 
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Fig. 3.13. Second derivative spectra of spruce and pine wood samples 

0 .00006 
Une Pial 

0 .00004 

0 .00002 

o 

-0 .00002 

-0 .00004 

-0 .00006 

-0.00008 
Variables 

1.10608e-03nm 1.31028e-03nm 1.514<47e-03nm 1.71892e-03nm 1.92392e+03nm 2 .12972e+03nm 

Red-pine; green-spruce 

107 



Table 3.2. Chemical assignment of the absorbance bands required for SPF separation (2) . 

Wavelength 
(nm) Local Mode Structure 

1194,1201 CH stretch 2nd overtone CH3 groups in hemicellulose 

1310 CH combination CH3 groups in lignin 

1439 CH combination CH2 

1630 CH stretch lSI overtone =CH2 

Furanose/pyranose due to 
1692 CH stretch 151 overtone hemicellulose 

OH stretch+ CO stretch 2nd 

1869 overtone combination Cellulose 

1924, 1931 OH stretch+ OH bend combination Starch 

2013 OH combination Hydroxyl group 

2109 OH bend+ CO stretch combination Starch 
OH stretch+ CO stretch 

2212 combination Cellulose 

2261 CH stretch+CH2 deformation Starch 

Table 3.3. Chemical composition of eastern softwoods from the North America (percent oven
dry wood) (87) 

EthanoV Uronic 
Species Cellulose Lignin benzene Galactan Mannan anhydride Pentosans 
Balsam 

fir 42 29 3 1 12 3.4 11 
Black 
spruce 43 27 2 2 9.4 5.1 12 
White 
spruce 43 29 2 1.2 II 3.6 13 
Jack 
pine 43 29, 27 5 1.4 10 3.9 13 
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Fig. 3.14. PLS-DA regression validated model of pine and fir predictions: the upper left plot is 
Scores plot; the upper right plot is the Regression Coefficients plot for PC 1; the bottom left plot 
is the Residual Validation Variance plot; and the bottom right plot is the Predicted vs. Measured 
plot for fir with 4 PCs. 
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The regression coefficient plot for pine was the same but in opposite direction; and Predicted vs . Measured plot was the same for pine (not 
shown). 

Fig. 3.1S. PLS-DA regression validated model of spruce and fir predictions: the upper left plot is 
Scores plot; the upper right plot is the Regression Coefficients plot for PC 1; the bottom left plot 
is the Residual Validation Variance plot; and the bottom right plot is the Predicted vs. Measured 
plot for fir with 5 PCs. 
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The regression coefficient plot for spruce was the same but in opposite direction; and Predicted vs. Measured plot was the same for spruce 
(not shown). 
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Fig. 3.16. PLS-DA regression validated model of spruce and pine predictions: the upper left plot 
is Scores plot; the upper right plot is the Regression Coefficients plot for PC 2; the bottom left 
plot is the Residual Validation Variance plot; and the bottom right plot is the Predicted vs. 
Measured plot for pine with 4 PCs. 
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spruce (not shown). 

Fig. 3.17. PLS-DA regression prediction model of all species: the upper left plot is Predicted vs. 
Reference plot for fir with 7 PCs; the upper right plot is the Predicted vs. Reference plot for pine 
with 7 PCs; and the bottom left plot is the Predicted vs. Reference plot for spruce with 7 PCs. 
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Fig. 3.18. PLS-DA regression prediction model of fir and pine: the upper plot is Predicted vs. 
Reference plot for pine with 4 pes; and the bottom plot is the Predicted vs. Reference plot for fir 
with 4 pes. 
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Fig. 3.19. PLS-DA regression prediction model of fir and spruce: the upper plot is Predicted vs. 
Reference plot for spruce with 5 pes; and the bottom plot is the Predicted vs. Reference plot for 
fir with 5 pes. 
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Fig. 3.20. PLS-DA regression prediction model of spruce and pine: the upper plot is Predicted vs. 
Reference plot for spruce with 4 PCs; and the bottom plot is the Predicted vs. Reference plot for 
pine with 4 PCs. 
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Table 3.4. Prediction results for the validated PLS-DA calibration model s that classified species. 

Species 
included 

in the # of correct species type 
model predictions (114) #PCs R2 (%) RMSEP (11) 

Pine Fir Spruce Pine Spruce Fir Pine Spruce Fir 
Spruce, 
fir , and 

pine 13* 14 10* 7 56 36 71 0.31 0.38 0.25 
Pine and 

fir 14 14 N/A 4 86 N/A 86 0.19 N/A 0.19 
Fir and 
spruce N/A 14 14 5 N/A 74 74 N/A 0.25 0.25 

Pine and 
sPluce 12** N/A 12** 4 49 49 N/A 0.36 0.36 N/A 

* I pine was assigned as spruce; 3 spruces were not assigned to any of the species and I spruce was assigned as pine. 4 **2 pines were 
assigned as spruce and 2 spruces were not assigned to any of the species. 
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3.4. Analysis of Effects of Moisture Content and High Temperature 

Drying 

The wood of living trees contains a large amount of water, which often constitutes 

more weight than the actual wood. Water has a significant influence on wood: wood 

continually exchanges moisture with its surroundings. Changes in response to daily 

humidity fluctuations are small and usually of no consequence. However, changes that 

occur as a result of seasonal variation, although gradual, tend to be of more concern. 

Moisture in wood exists in two forms: free water, liquid filling the wood cell cavities 

which is held by capillary forces and bound water, liquid or vapour chemically bound 

(adsorbed) by hydrogen bonding to the wood cell walls. The attraction of wood for water 

arises from the presence of free hydroxyl (OH) groups in the cellulose, hemicellulose, 

and lignin molecules in the cell wall. Water molecules are first adsorbed 

monomolecularly (one per site) onto the wood. At higher MCs, additional water 

molecules first bind to the remaining sorption sites and then begin to polymoleculady 

adsorb onto each other. Therefore, hydroxyl groups of adjacent molecules can be 

mutually bonded. (6, 87) 

As wood dries, the free water in the cell cavities is drawn away first. Once the free 

water is removed, the bound water is gradually released from the cell walls. The MC at 

which all of the free water is removed from the cell cavities but the cell walls are still 

completely saturated is called fiber saturation point (FSP). At MC above the FSP the 
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physical and mechanical properties of wood remain constant as MC changes. At MC 

below the FSP the physical and mechanical properties of wood change as MC changes. 

Below the FSP, the forces holding the bound water to the wood become greater as MC 

decreases. As wood approaches the dry condition, most moisture is adsorbed in a 

monolayer. As drying continues the hydroxyl groups of wood components such as 

cellulose move closer together forming weak cellulose-to-cellulose bonds. (5,6,87) 

Because of the sorptive nature of wood, it has the ability to exchange water vapour 

with the surrounding air until it obtains moisture equilibrium with the air. Thus, wood is 

called a hygroscopic material. As the RH drops, it loses water; as the RH increases, the 

wood regains water. For a given RH level, a balance is eventually reached at which the 

wood is no longer gaining or losing moisture. When this balance of moisture exchange is 

established, the amount of water eventually contained in a piece of wood is called the 

equilibrium moisture content (EMC) of the wood. The EMC of wood varies directly with 

the ambient RH significantly and, to a lesser degree, inversely with the temperature. (5, 

87) 

Water in wood normally moves from high to low zones ofMC, meaning that the wood 

surface must be drier than the interior if moisture is to be removed. Drying can be divided 

into two phases: movement of water from the interior to the wood surface and 

evaporation of water from the surface. The surface fibers of most species reach moisture 

equilibrium with the surrounding air soon after drying begins. This is the beginning of the 

development of a typical moisture gradient. (5) 
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Water moves through the interior of wood as a liquid or vapour through various air 

passageways in the cellular structure of the wood, as well as through the wood cell walls. 

Water moves by two major mechanisms: capillary action (liquid) and diffusion of bound 

water (vapour). The rate at which moisture moves in wood depends on the RH of the 

surrounding air, the steepness of the moisture gradient, and the temperature of the wood. 

(6,87) 

A problem with NIR analysis of samples with high Me is the presence of several 

strong absorption bands in the NIR spectrum caused by water. These broad peaks obscure 

spectral information derived from some wood components. The most obvious pure water 

absorption peaks are the O-H first stretch overtone band at 1450 nm and the O-H stretch 

and O-H bending combination bands at 1930 nm. Each of these broad bands contains 

information on more than one hydrogen-bonded subspecies. It is known that variations in 

hydrogen-bonded molecular subspecies can cause band broadening and peak position 

shifts. Variations in hydrogen bonding (intra- and intermolecular) result in changes in the 

force constants of the X-H bonds. For example, when a hydrogen bond is formed, the 

force constant for the covalent O-H bond will decrease and the frequency of the O-H 

absorption band will decrease (equation [2] and [3]). The weak hydrogen bond is readily 

disrupted by thermal collisions and the O-H absorption band is broadened. (2) 
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3.4.1. Effect of Drying Analysis 

The cross sections of 30 oven-dried (MC=2%) wood samples (10 of each species of 

SPF) were measured by NIRS. Their transformed absorbance spectra were compared to 

both air-dried wood samples (MC=8%) and slightly wetter wood samples (MC=lO%) by 

using PLS-DA. The validated calibration model overview is shown in Fig. 3.21 and the 

prediction results in Fig. 3.22. The scores plot showed clustering of wood samples with a 

clear distinction between samples of high and low MCs (Fig. 3.22). The calibration 

model with 5 PCs was good having R2 and RMSEP of 97% and 8%, respectively (Fig. 

3.21). In this model, 72% variation in spectra explained 47% of variation due to drying 

condition of wood samples for the first PC (Fig. 3.21). The significant variables required 

for the separation due to drying conditions were at 1405 and 1979 nm (negative peaks); 

1446, 1849,2068 nm (positive peaks) (Fig. 3.21). Fig. 3.23 shows the raw spectra of 

oven-dried and MC=lO% wood samples. The absorption peak at 1930 nm decreased 

upon drying meaning that only water vibrations were involved. There was an overlap 

between oven-dried and 10% MC wood samples at 1460 nm meaning that other than 

water vibrations were involved i.e., the OR stretch first overtone of cellulose. All the 

samples in the test set were predicted accurately with R2 and RMSEP of 98% and 7%, 

respectively for 5 PCs independently of the wood species analyzed (Fig.3.22). No 

outliers were detected. When the former significant variables were used to construct both 

calibration and prediction models these models got worse (plots not shown). 
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Fig. 3.21. PLS-DA regression validated model of drying condition predictions: the upper left plot 
is Scores plot; the upper right plot is the Regression Coefficients plot for PC I for oven-dried 
samples; the bottom left plot is the Residual Validation Variance plot; and the bottom right plot is 
the Predicted vs. Measured plot for oven-dry with 5 PCs . 
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Fig. 3.22. PLS-DA regression prediction model of drying conditions of all species: the upper left 
plot is Predicted vs. Reference plot of wet wood samples with 5 PCs; the upper right plot is 
Predicted vs. Reference plot of air-dried wood samples with 5 PCs; and the bottom plot is the 
Predicted vs. Reference plot of oven-dried wood samples with 5 PCs. 
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Fig. 3.23. Raw spectra of oven-dried and 10% Me wood samples 
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The next step was to determine if variation due to drying conditions could affect 

species separation. In order to test that, PLS-DA calibration validated models were 

constructed based on species separation at all drying conditions. When all three species 

were included in the model with 11 PCs, R2 and RMSEP were 83% and 19%, 

respectively for pine; 70% and 26% for spruce; and 88% and 22% for fir (Fig. 3.24). In 

the scores plot, fir and spruce were separated from pine by PC 3 and fir was separated 

from spruce by PC 1 (Fig. 3.24). In this model, only 24% variation in spectra explained 

19% of variation due to species differentiation for the first PC (Fig. 3.24). Fig. 3.25 

shows the significant variables needed for the three species separation (discussed in 

section 3.3) for PC 3. Calibration models containing only two species were also 

constructed. They produced better models with R2 and RMSEP of 77% and 24%, 

respectively with 6 PCs for spruce and fir; and 85% and 20% with 8 PCs for pine and fir 
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(Fig. 3.26- 3.27). As can be seen in Residual Validation Variance plot, no separation was 

possible for spruce and pine due to increase in the residual variance at PC 1 (Fig. 3.28). 

No significant outliers were detected. 

Fig. 3.29- 3.31 and Table 3.5 include the prediction results for all the models 

constructed. The best prediction model was obtained for fir and pine (R2 = 85%, RMSEP 

= 19% with 8 PCs) where all the species were determined correctly. Despite the relatively 

low R2 values and high RMSEP of models created on the training sets, the maximum 

error for species differentiation exhibited by the test sets was 7% (2 out of 27 samples 

were misclassified). 

Fig. 3.24. PLS-DA regression validated model of all species predictions subjected to various 
drying conditions: the upper left plot is Scores plot; the upper right plot is the Predicted vs. 
Measured plot for spruce with 11 pes; the bottom left plot is the Predicted vs. Measured plot for 
pine with 11 pes; and the bottom right plot is the Predicted vs. Measured plot for fir with 11 pes. 
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Fig. 3.25. Regression Coefficients of PC 3 from a PLS-DA regression validated model for species 
predictions subjected to various drying conditions 
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Fig. 3.26. PLS-DA regression validated model of fir and pine predictions subjected to various 
drying conditions: the upper left plot is Scores plot; the upper right plot is the Regression 
Coefficients plot for PC 3; the bottom left plot is the Residual Validation Variance plot; and the 
bottom right plot is the Predicted vs. Measured plot for fir with 8 PCs. 
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The regression coefficient plot for pine was the same but in opposite direction; and Predicted vs . Measured plot was the same for pine 
(not shown). 
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Fig. 3.27. PLS-DA regression validated model of fir and spruce predictions subjected to various 
drying conditions: the upper left plot is Scores plot; the upper right plot is the Regression 
Coefficients plot for PC 3; the bottom left plot is the Residual Validation Variance plot; and the 
bottom right plot is the Predicted vs. Measured plot for fir with 6 PCs. 
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The regression coefficient plot for spruce was the same but in opposite direction; and Predicted vs. Measured plot was the same for 
spruce (not shown). 

Fig. 3.28. PLS-DA regression validated model of pine and spruce predictions subjected to various 
drying conditions: the upper left plot is Scores plot; the upper right plot is the Regression 
Coefficients plot for PC 2; the bottom left plot is the Residual Validation Variance plot; and the 
bottom right plot is the Predicted vs. Measured plot for pine with 7 PCs. 
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The regression coeffi cient plot for spruce was the same but in opposite direction; and Predicted vs . Measured plot was the same for 
spruce (not shown). 
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Fig. 3.29. PLS-DA regression prediction model of all species subjected to various drying 
conditions: the upper left plot is Predicted vs. Reference plot of fir with 11 PCs; the upper right 
plot is Predicted vs. Reference plot of pine with 11 PCs; and the bottom plot is the Predicted vs. 
Reference plot of spruce with II pes. 
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Fig. 3.30. PLS-DA regression prediction model of pine and flr subjected to various drying 
conditions: the upper plot is Predicted vs. Reference plot of pine with 8 pes; and the bottom plot 
is the Predicted vs. Reference plot of fir with 8 pes. 
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Fig. 3.31. PLS-DA regression prediction model of spruce and fir subjected to various drying 
conditions: the upper plot is Predicted vs. Reference plot of fir with 6 pes; and the bottom plot is 
the Predicted vs. Reference plot of spruce with 6 pes. 
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Table 3.5. Prediction results for the validated calibration PLS-DA regression model s that 
predicted species subjected to various drying conditions. 

Species 
included in # of correct species 
the model type predictions (19) #PCs R2 ( % ) RMSEP (II) 

Pine Spruce Fir Species Pine Spruce Fir Pine Spruce 
Spruce, fir , 

and pine 9 7* 9 11 59 17 78 0.3 0.43 
Pine and fir 9 N/A 9 8 85 N/A 85 0.19 N/A 

Fir and 
spruce N/A 8** 9 6 N/A 67 67 N/A 0.28 

Fir 

0.22 
0.19 

0.28 

* I spruce was assigned as fir and I spruce was not assigned to any of the species. ** I spruce was not assigned to any of the 
species. 

A validated model that simultaneously predicted species and drying condition was 

1.1 

developed (Fig. 3.32) and used to predict these variables. The calibration model with 11 

pes had R2 and RMSEP of 84% and 19%, respectively for pine; 70% and 26% for 

spruce; 77% and 23% for fir; and 98% and 6% for drying conditions. No significant 

outliers were detected. Prediction results for drying conditions and species are seen in 
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Fig. 3.33 and Table 3.6. Similar results were obtained when only two out of three species 

were used (Fig. 3.34- 3.46 and Table 3.6). Despite the relatively low R2 values and high 

RMSEP for species classification of models created on the training sets, the maximum 

error for species differentiation exhibited by the test sets was 7% (2 out of 27 samples 

were misclassified). In conclusion, both drying condition and species could be predicted 

simultaneousl y. 

Fig. 3.32. PLS-DA regression validated model of both all species and drying conditions 
predictions: the upper left plot is Predicted vs. Measured plot for drying conditions predictions 
with 11 pes; the upper right plot is the Predicted vs. Measured plot for spruce with 11 pes; the 
bottom left plot is the Predicted vs. Measured plot for fir with 11 pes; and the bottom right plot is 
the Predicted vs. Measured plot for pine with 11 pes. 
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Blue-air-dried wood samples; green- 10% Me wood samples; and red-oven-dried wood samples. The Predicted vs, Measured plots 
were simi lar for air-dry and wet samples (not shown). 

124 



Fig. 3.33. PLS-DA regression prediction model of both all species and drying conditions: the 
upper left plot is Predicted vs. Reference plot for oven-dry prediction with 11 pes; the upper right 
plot is the Predicted vs. Reference plot for spruce with 11 pes; the bottom left plot is the 
Predicted vs. Reference plot for fir with II pes; and the bottom right plot is the Predicted vs. 
Reference plot for pine with II pes. 
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Blue- air-dried wood samples; green- I 0% Me wood samples; and red- oven-dried wood samples. The Predicted vs. Measured plots 
were similar for air-dry and wet samples (not shown). 

Fig. 3.34. PLS-DA regression prediction model of both spruce and fir and drying conditions: the 
upper left plot is Predicted vs. Reference plot for drying condition prediction with 6 pes; the 
upper right plot is the Predicted vs. Reference plot for fir with 6 pes; and the bottom left plot is 
the Predicted vs. Reference plot for spruce with 6 pes. 
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Blue- air-dried wood samples; green- I 0% Me wood samples; and red- oven-dried wood samples. The Predicted vs. Measured plots 
were similar for air-dry and wet samples (not shown). 
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Fig. 3.35. PLS-DA regression prediction model of both pine and fir and drying conditions: the 
upper left plot is Predicted vs. Reference plot for drying condition prediction with 7 pes; the 
upper right plot is the Predicted vs. Reference plot for fir with 7 pes; and the bottom left plot is 
the Predicted vs. Reference plot for pine with 7 pes. 
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Blue- air-dried wood samples; green-I 0% MC wood samples; and red- oven-dried wood samples. The Predicted vs. Measured plots 
were similar for air-dry and wet samples (not shown). 

Fig. 3.36. PLS-DA regression prediction model of both pine and spruce and drying conditions: 
the upper left plot is Predicted vs. Reference plot for drying condition prediction with 9 pes; the 
upper right plot is the Predicted vs. Reference plot for pine with 9 pes; and the bottom left plot is 
the Predicted vs. Reference plot for spruce with 9 pes. 
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Blue- air-dried wood samples; green- I 0% MC wood samples; and red- oven-dried wood samples. The Predicted vs. Measured plots were 
similar for air-dry and wet samples (not shown). 
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Table 3.6. Prediction results for the validated calibration PLS-DA regression models that simultaneously predicted both species and drying 
conditions. 

Variables 
included in the # 

model # of correct predictions (/9) pes R2 (%) RMSEP (11) 
Oven- Oven- Oven-

Pine Spruce Fir dry dry Pine Spruce Fir dry Pine Spruce Fir 
Spruce, fu, and 

pine; air-dry, 
oven-dry, and 
wetter wood 

samples 9 8* 9 9 II 97 59 28 81 0.07 0.3 0.4 0.2 
Pine and fir; air-
dry, oven-dry, 

and wetter wood 
samples 9 N/A 9 9 7 97 81 N/A 81 0.08 0.22 N/A 0.22 

Fir and spruce; 
air-dry, oven-

dry, and wetter 
wood samples N/A 8** 9 9 6 97 N/A 67 67 0.08 N/A 0.28 0.28 

Pine and spruce; 
air-dry, oven-

dry, and wetter NI 
wood samples 8*** 8*** N/A 9 9 97 40 40 A 0.08 0.39 0.39 N/A 

• 1 spruce was assigned as both fir and pine. ** 1 spruce was not assigned to any of the species. *** 1 pine was assigned as spruce and 1 spruce was assigned as pine. 
• Similar results to that of oven-dry were obtained for air-dry and wet wood samples (not shown). 



3.4.2. Moisture Content Analysis 

Since the qualitative analysis worked well, a quantitative analysis was investigated. 

The same wood samples conditioned to different MC values (air-dry to FSP) were 

measured by NIR at specific equilibrium MCs. The treated absorbance spectra were then 

used for PLS analysis. Fig. 3.37 shows the PLS-1 regression calibration validated model 

overview for MC separation of all species together. No outliers were detected and thus all 

samples were kept in the calibration model. Scores plot showed clustering of wood 

samples of the same or similar MCs with a clear distinction between samples of high 

moisture and low MC (Fig. 3.37). The calibration model with 2 PCs was a good model 

having R2 and RMSEP of 94% and 5%, respectively (Fig. 3.37). In this model, only 46% 

variation in spectra explained 89% of variation in MC for the first PC (Fig. 3.37). The 

significant NIR wavelengths as seen in the regression coefficient plot were 1460, 1897, 

and 1992 nm (negative peaks) and 1365, 1470, 1835, and 2068 nrn (positive peaks). Fig. 

3.38 shows the raw spectra of wood samples at MC of 8% and 30%. The absorption peak 

at 1460 and 1940 nrn increased with increase in MC. These peaks are as a result of water 

vibrations. Fig. 3.37, on the other hand, mirrors the second derivative spectra with the 

absorption peaks pointing down rather than up. The second derivative spectrum is able to 

separate overlapping absorption bands because it is related to curvature and has the same 

sign as the curvature of a spectrum (4). For example, Fig. 3.38 shows a single absorption 

band at 1460 and Fig. 3.37 shows its second derivative. The left and right portions of the 

band are curved upward, so the second derivative is positive here (at 1365 and 1470 nm). 

The middle portion is curved downward, giving a negative second derivative with a 
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minimum at the peak value of the spectrum where the downward curvature is greatest (at 

1460 nm). When these variables were used to construct a calibration model, the 

prediction error increased possibly because other variables played a role in Me prediction 

(plots not shown). 

The calibration model was used to predict the Me values of the test samples. Fig. 

3.39 shows a plot of Predicted Me value using the calibration model vs. the laboratory 

measured Me, and a plot of Predicted Me with deviation vs. the test samples. The R2 and 

RMSEP were 91 % and 6%, respectively for a model with 2 pes. Thus, the Me could be 

well predicted independently of the wood species analyzed. 

Fig. 3.37. PLS-1 regression validated model of MC predictions of all species: the upper left plot 
is the Scores plot; the upper right plot is the Regression Coefficients plot for PC 1; the bottom left 
plot is the Residual Validation Variance plot; and the bottom right plot is the Predicted vs. 
Measured plot with 2 PCs. 
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Fig.3. 38. Raw spectra of wood samples conditioned to Me of 8% and 30% 
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Fig. 3.39. PLS-l regression prediction model of Me values of all species: the upper plot is 
Predicted vs. Reference plot with 2 pes; and the bottom plot is the Predicted with deviation plot 
with 2 pes . 
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To test whether variation in MC could affect species separation, PLS-DA calibration 

validated models were constructed based on species separation at all MC values. When 
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all three species were included, the calibration model with 9 PCs (Fig. 3.40) had R2 and 

RMSEP of 79% and 22%, respectively for pine; 70% and 26% for spruce; and 79% and 

22% for fir. The scores plot showed no clear clustering but some separation of fir from 

pine by PC 2 was observed (Fig. 3.40). In this model, only 31 % variation in spectra 

explained 9% of variation due to species differentiation for the first PC (Fig. 3.40). Fig. 

3.41 shows the significant variables needed for the three species separation (discussed in 

section 3.3) for PC 2 and separation of fir from pine was more obvious because of the 

strong inverse peaks of these species. Calibration models containing only two species 

were also constructed. They produced better models with more obvious clustering 

according to species and R2 and RMSEP of 79% and 23%, respectively with 7 PCs for 

pine and spruce; 80% and 23% with 7 PCs for spruce and fir; and 94% and 12% with 9 

PCs for pine and fir (Fig. 3.42- 3.44). No significant outliers were detected. 

Fig. 3.45- 3.48 and Table 3.7 include the prediction results for all the four models 

constructed. The best prediction models were obtained for fir and pine (R2= 90%, 

RMSEP = 16% with 9 PCs) and fir and spruce (R2= 79%, RMSEP = 23% with 7 PCs) 

where all the species were determined correctly. In order to reduce the confounding effect 

of moisture, species differentiation was tested by creating a model without the variables 

required for MC separation. However, the prediction was essentially unchanged (plots 

not shown). The reason for this might be that change in MC caused changes along the full 

NIR spectrum of the samples, as shown in Fig. 3.38. Despite the relatively low R2 values 

and high RMSEP of models created on the training sets, the maximum error for species 
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differentiation exhibited by the test sets was 10% (3 out of 30 samples were 

misclassified) . 

Fig. 3.40. PLS-DA regression validated model of all species predictions conditioned to various 
Me values: the upper left plot is the Scores plot; the upper right plot is the Predicted vs. 
Measured plot for pine with 9 pes; the bottom left plot is the Predicted vs. Measured plot for 
spruce with 9 pes; and the bottom right plot is the Predicted vs. Measured plot for fir with 9 pes. 

' .IOIG. 
PC2 

. ... IG] .... ," Ii ' 15 ' 

1U 11 
• ,4 , 

3q 
- . .... 1 

-1 . .,oa4 

.. . ... 1J ~ "ID : ' 10 

. • .. ' • '. ~J'"AI ,b '0 
o. 8., UD ~'D10 

PC, -1 

-y 
Elements: 
Slope: 
Offsel 
Correlation 
R· Squa,8 ' 
RMSEP: 
8EP: 
8las: 

====--:; •.• .,."5 .. c:.~-."' .• i'5-~3 i -'o"1:":::"",'oi;'-'';'i'.''''.''''.!..' _-"-_-"."' ..... """,'--."' .• ., .. "'."',--"."' ... "' .. "'3__ -0 .5 • 
• ~cI •••• , ..... . X--.I: 3'",2''' Y· ... I: .... ,... .,.d .... , ...... _. (Y-Af, PC): (pine ,g) 

-, 

PredlcIrM' Y ""..... Y 

Elemenls: 12D Elements: 
Slope ' 0 .135926 Slope: 
onset 0 .08951(1 onset 
Correlallon: 
R-Square . 
RMSEP 
GEP . 
Bias: 

0.832800 CorrelaHon: 
0 .696086 R-Square 
o 262062 RYSEP-
0.263156 SEP: 
0.001545 Bias. 

11 

-, 

120 
0.805425 
0.063103 
0.885164 

• 11 

-y ... , .. , .. 

......... y -...wedY 

~.=~=,,~ •• ~~~t:~'~K-__ .'~._"~.-~:c~'~~:(S~'~'"~'.~' .")~----·"'··~--~'~··---~'~· ·'--~'=~~"~.'~~~;~K~ __ .'~~-""~."p~~;~~~,.",.)~ ____ -2'~" ~ ______ ~"~' ________ ~'~" ~ 

Red-pine; blue-fir; green-spruce 

132 



Fig. 3.41. Regression Coefficients of PC 2 from a PLS-DA regression validated model of species 
predictions conditioned to various MC values 
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Fig. 3.42. PLS-DA regression validated model of pine and fir predictions conditioned to various 
MC values: the upper left plot is the Scores plot; the upper right plot is the Regression 
Coefficients plot for PC 3; the bottom left plot is the Residual Validation Variance plot; and the 
bottom right plot is the Predicted vs. Measured plot with 9 PCs. 
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Fig.3. 43. PLS-DA regression validated model of spruce and fir predictions conditioned to 
various MC values: the upper left plot is the Scores plot; the upper right plot is the Regression 
Coefficients plot for PC 3; the bottom left plot is the Residual Validation Variance plot; and the 
bottom right plot is the Predicted vs. Measured plot with 7 PCs. 
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Fig. 3.44. PLS-DA regression validated model of spruce and pine predictions conditioned to 
various MC values: the upper left plot is the Scores plot; the upper right plot is the Regression 
Coefficients plot for PC 2; the bottom left plot is the Residual Validation Variance plot; and the 
bottom right plot is the Predicted vs. Measured plot with 7 PCs. 
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Fig. 3.45. PLS-DA regression prediction model of all species conditioned to various Me values: 
the upper left plot is Predicted vs. Reference plot for pine with 9 pes; the upper right plot is 
Predicted vs. Reference plot for fir with 9 pes; and the bottom left plot is the Predicted vs. 
Reference plot for spruce with 9 pes. 
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Fig. 3.46. PLS-DA regression prediction model of pine and fir conditioned to various Me values: 
the upper plot is Predicted vs. Reference plot for fir with 9 pes; and the bottom plot is the 
Predicted vs. Reference plot for pine with 9 pes. 
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Fig. 3.47. PLS-DA regression prediction model of spruce and fir conditioned to various Me 
values: the upper plot is Predicted vs. Reference plot for spruce with 7 pes; and the bottom plot is 
the Predicted vs. Reference plot for fir with 7 pes. 
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Fig. 3.48. PLS-DA regression prediction model of spruce and pine conditioned to various Me 
values: the upper plot is Predicted vs. Reference plot for spruce with 7 pes; and the bottom plot is 
the Predicted vs. Reference plot for pine with 7 pes. 
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Table 3.7. Prediction results for all the validated calibration PLS-DA regression models of 
species conditioned to various Me values 

Species 
included in the # of correct species # 

model predictions (110) pes R2 (%) RMSEP (11) 
Pine Spruce Fir Pine Spruce Fir Pine Spruce Fir 

Spruce, fir, and 
pine 10 8* 9* 9 73 52 65 0.24 0.33 0.28 

Pine and fir 10 N/A \0 9 90 N/A 90 0.16 N/A 0.16 
Fir and spruce N/A 10 10 7 N/A 79 79 N/A 0.23 0.23 

Pine and spruce 9** \0 N/A 7 74 74 N/A 0.25 0.25 N/A 

* 2 spruces were assigned as fir and one fir was assigned as spruce. ** I pine was assigned as spruce. 

A validated model that simultaneously predicted species and Me was developed (Fig. 

3.49) and used to predict these variables. The calibration model containing all three 

species with 9 pes had R2 and RMSEP of 72% and 25%, respectively for pine; 55% and 

32% for spruce; 67% and 27% for fir; and 93% and 6% for Me with 2 pes. No 

significant outliers were detected. Prediction results for Me and species are seen in Fig. 

3.50 and Table 3.8. Similar prediction results were obtained when only two out of three 

species were used (Fig. 3.51- 3.53 and Table 3.8) (calibration models not shown). 

Despite the relatively low R2 values and high RMSEP for species classification of models 

created on the training sets, the maximum error for species differentiation exhibited by 

the test sets was 7% (2 out of 30 samples were misclassified) . In conclusion, both Me 

values and species could be predicted simultaneously. 
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Fig. 3.49. PLS-DA regression validated model of both all species and MC predictions: the upper 
left plot is Predicted vs. Measured plot for pine with 9 PCs; the upper right plot is the Predicted 
vs. Measured plot for spruce with 9 PCs; the bottom left plot is the Predicted vs. Measured plot 
for fir with 9 PCs; and the bottom right plot is the Predicted vs. Measured plot for MC% 
prediction with 2 PCs. 
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Fig. 3.51. PLS-DA regression prediction model of both spruce and fir and MC: the upper left plot 
is Predicted vs. Reference plot for MC% prediction with 2 PCs; the upper right plot is the 
Predicted VS. Reference plot for fir with 7 PCs; and the bottom left plot is the Predicted vs. 
Reference plot for spruce with 7 PCs. 
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Fig. 3.53. PLS-DA regression prediction model of both fir and pine and MC: the upper left plot is 
Predicted VS. Reference plot for MC% prediction with 2 PCs; the upper right plot is the Predicted 
vs. Reference plot for fir with 9 PCs; and the bottom left plot is the Predicted vs. Reference plot 
for pine with 9 PCs. 
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Table 3.8. Prediction results for the validated calibration PLS-DA regression models that simultaneously predicted both species and Me 
values. 

Species 
included in # of correct species RMSEP 
the model type predictions (110) #PCs R2(%) (135) RMSEP (11) 

Pine Spruce Fir Species MC% MC% Pine Spruce Fir MC% Pine Spruce Fir 
Spruce, fir , 

and pine 9* 10 9* 9 2 97 64 57 80 L.1 0.28 0.31 0.21 
Pine and fir 10 N/A 9** 9 2 96 85 N/A 85 1.25 0.19 N/A 0.19 

Fir and spruce N/A 10 9*** 7 2 96 N/A 85 85 1.43 N/A 0.19 0.19 
Pine and 
spruce 9**** 10 N/A 7 2 98 65 65 N/A 0.83 0.29 0.29 N/A 

* I pine and one fir were assigned as spruce. ** I fir was ass igned as pine. *** I fir was assigned as spruce. **** I pine was assigned as spruce. 
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3.S. Wood Weathering Analysis 

Weathering is the general term used to define the slow degradation of materials 

exposed to the weather. Wood weathering is surface degradation of wood that is initiated 

primarily by solar radiation, but other factors are also important. The wetting and drying 

of wood through precipitation, diurnal and seasonal changes in RH, temperature changes, 

oxygen, and human activities all contribute to the degradation of wood surfaces. 

It is primarily the UV portion of the solar spectrum that initiates the process of 

weathering. It is a photooxidation or photochemical degradation of the wood surface. The 

UV radiation has sufficient energy to chemically degrade wood structural components 

(primarily lignin). The degradation starts immediately after the wood is exposed to 

sunlight. First the color changes, then the surface fibers loosen and erode, but the process 

is rather slow. It can take more than 100 years of weathering to decrease the thickness of 

a board by 5-6 mm. (5) 

The UV and Vis solar radiation that reaches the earth's surface is limited to the range 

between 295-400 nm and 400-800 nm, respectively. In order for a photochemical 

reaction to occur, sufficient energy to disrupt a chemical bond (bond dissociation energy) 

must be absorbed by some chemical moiety in the system. Using equation [2], the energy 

for UV radiation at a wavelength of 295 nm is about 97 Kcal/mole and for 400 nm is 

about 72 Kcallmole. Several of the chemical moieties have bond dissociation energies 

well above the energy of terrestrial UV radiation and therefore cannot be affected by 
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natural UV radiation. The bond dissociation energy must be below 97 kcal/mole for the 

chemical moiety to absorb radiation. The bond dissociation energies for many of the 

carbon-oxygen moieties commonly found in lignin fall within the UV radiation range. (5) 

There have been many studies to investigate the mechanism of wood weathering, and 

it has been clearly shown that the absorption of a UV photon can result in the formation 

of a free radical, and that through the action of oxygen and water, a hydroperoxide is 

formed. Both the free radical and hydroperoxide can initiate a series of chain scission 

reactions to degrade the polymeric components of wood. Despite many studies spanning 

several decades, the mechanism is still not well defined and can only be represented in a 

general way (Fig. 3.54). (5) 

Fig. 3.54. Mechanism of photodegradation of wood (3) 

By comparing the energy available from the photons in the UV range of the spectrum, 

it is apparent that there is sufficient energy to break bonds in the chemicals that comprise 

wood. However, in order for a bond to break, energy must be absorbed by some 

component of the wood. The absorbed energy promotes the molecule to an excited state 

143 



that can be dissipated through a number of paths. The most benign would be a return to 

the ground state through dissipation of heat. Other alternatives would involve chemical 

reactions. One of the common chemical reaction paths following the absorption of a 

quantum of energy is chemical dissociation to form a free radical. Since wood does not 

normally have free radicals, their presence following UV irradiation signals the 

dissociation of a chemical bond of lignin moieties having a-carbonyl, biphenyl, or ring

conjugated double bond structures. From work on several lignin model compounds, Hon 

(88) demonstrated that the phenoxy radicals produced from phenolic hydroxyl groups by 

the action of light were the major intermediates formed in the photodegradation of lignin, 

and that these intermediates reacted with oxygen and demethylated to form an 0-

quinonoid structure. Free radicals generated in wood are also thought to react with 

molecular oxygen to form hydroperoxides. Additional reactions result in the formation of 

carboxyls, carbonyls, quinones, and loss of lignin. (88) 

The degradation of wood by UV light results in the reduction in the methoxyl and 

lignin content of wood, and an increase in its acidity and carbonyl content. IR 

spectroscopic characterization of UV -exposed wood surfaces has shown an increase in 

carbonyl and carboxylic functional groups, and a decrease in aromatic functional groups 

due to degradation of lignin. However, there can also be a decrease in carbonyl 

absorption due to leaching of the surface by rain/water as the exposure progresses. (5) 

Anderson (89) used a xenon light source to approximate natural UV radiation. They 

measured the surface degradation over 2400 hours of UV light exposure with daily water 

spray of 4 hours, or light without the water spray. The surface degradation of softwoods 
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was evaluated using reflectance Ff -JR. The carbonyl absorption increased in intensity 

during the early exposure then decreased (removed from the surface), and the aromatic 

absorption decreased. All softwoods had a distinctly cellulosic spectra following 2400 

hours of accelerated weathering (light and water), indicating a loss of lignin. A 

mechanism was proposed (Fig. 3.55). 

Fig. 3.SS. Lignin photooxidation mechanism (89) 
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60 samples (20 of each species of SPF) were artificially weathered for 0-8 weeks and 

then measured by NJRS every two weeks. Their transformed absorbance spectra were 

compared by using PLS-l. The validated calibration model is shown in Fig. 3.56 and the 

prediction results in Fig. 3.57. The scores plot showed clustering of wood samples 

according to weathering period by PC 1 (Fig. 3.56). The calibration model with 6 PCs 

was moderate with R2 and RMSEP of 87% and 12%, respectively which could be 

explained by non-linear changes with weathering time (Fig. 3.56). In this model , only 
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28% variation in spectra explained 67% of variation due to weathering period of wood 

samples for the first PC (Fig. 3.56). 

The significant variables needed for the separation due to weathering periods were at 

1960,2102, and 2199 nm (negative peaks); 1460, 1678,2006, 2288nm (positive peaks) 

(Fig. 3.56). Fig. 3.58 shows the raw spectra of non-weathered and weathered (2 and 8 

weeks) wood samples. The absorption band at 1678 nm which was assigned to CH 

stretch first overtone due to the aromatic portion of lignin (2) decreased with weathering 

period as a result of lignin degradation. The absorption band at 1960 nm which first 

increased with weathering and then decreased was attributed to the C=O stretch second 

overtone (2). The carbonyl absorption increased in intensity during the early exposure 

then decreased because of removal of lignin from the surface by water. This explains why 

the wood bleached eventually. The absorption bands at 1460 and 1931 and 2006 nm 

which first increased and then decreased were assigned to the OH stretch first overtone 

and the OH stretch and OH deformation combination, respectively (2). These absorptions 

first increased possibly due to soluble extractives which were brought by the water to the 

wood surface (explaining why the wood was darker at the early exposure times) and then 

they decreased due to their sequential removal from the surface probably together with 

cellulose and/or hemicellulose degradation. Degradation of hemicellulose could also be 

supported by the fact that the absorption band at 1712 nm which was attributed to the CH 

stretch first overtone due to hemicellulose (2) decreased with weathering. The absorption 

band at 2288 nm which was assigned to the CH stretch and CH deformation of methyl 

group (2) decreased with weathering as a result of lignin degradation. Finally, the 
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absorption bands at 2102 and 2198 nm were assigned to the CH stretch and C=O stretch 

(2) and thus, no obvious trend was seen. The samples in the test set were predicted based 

on weathering period with R2 and RMSEP of 85% and 12%, respectively for 6 PCs 

independently of the wood species analyzed (Fig. 3.57). No outliers were detected. 

Fig. 3.56. PLS-I regression validated model of weathering period predictions: the upper left plot 
is Scores plot; the upper right plot is the Regression Coefficients plot for PC 1; the bottom left 
plot is the Residual Validation Variance plot; and the bottom right plot is the Predicted vs. 
Measured plot with 6 PCs. 
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Fig. 3.57. PLS-l regression prediction model of weathering periods of all species: the upper plot 
is Predicted vs. Reference plot with 6 pes; the; and the bottom plot is the Predicted with 
deviation plot. 
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It was then determined whether surface changes due to weathering could affect 

species separation. To investigate this, PLS-DA calibration validated models were 

constructed based on species separation at all weathering periods. When all three species 

were included, a relatively poor calibration model based on species classification with 8 

PCs was obtained (Fig. 3.59) and R2 and RMSEP were 47% and 35%, respectively for 

pine; 42% and 34% for spruce; and 65% and 28% for fir. The scores plot showed no clear 

clustering but some separation of fir from pine and spruce by PC 2 was observed (Fig. 

3.59). In this model, only 33% variation in spectra explained 7% of variation due to 

species differentiation for the first PC (Fig. 3.59). Fig. 3.60 shows the significant 

variables needed for the three species separation (discussed in section 3.3) for PC 2 and 

again separation of fir from pine and spruce was more obvious because of the strong 

inverse peaks of these species. Calibration models containing only two species were also 

constructed. They produced better models with more obvious clustering according to 

species and R2 and RMSEP of 64% and 29%, respectively with 6 PCs for pine and fir; 

65% and 29% with 6 PCs for spruce and fir; and 51 % and 35% with 10 PCs for spruce 

and pine (Fig. 3.61- 3.63). No significant outliers were detected. 

Fig. 3.64- 3.67 and Table 3.9 include the prediction results for all the models 

constructed. The best prediction model was obtained for fir and spruce (R2 = 66%, 

RMSEP = 29% with 6 PCs) where all the species except 2 out of 48 were determined 

correctly. In order to reduce the confounding effect of weathering, species differentiation 

was tested by creating a model without the variables required for separation due to 

weathering. However, the prediction was essentially unchanged (plots not shown). The 
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reason for this might be that variation due to weathering caused changes along the full 

NIR spectrum of the samples, as shown in Fig. 3.58. Despite the relatively low R2 values 

and high RMSEP of models created on the training sets, the maximum error for species 

differentiation exhibited by the test sets was 8% (6 out of 75 samples were misclassified). 

Fig. 3.59. PLS-DA regression validated model of all species predictions whose surface was 
weathered for various periods: the upper left plot is Scores plot; the upper right plot is the 
Predicted vs. Measured plot for pine with 8 pes; the bottom left plot is the Predicted vs. 
Measured plot for spruce with 8 pes; and the bottom right plot is the Predicted vs. Measured plot 
for fir with 8 pes. 
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Fig. 3.60. Regression Coefficients of PC 2 from a PLS-DA regression validated model of species 
predictions whose surface was weathered for various periods. 

I.50E'04 ,---------------------------------, 

1.00E..o4 

5.00E..(I3 

--II, 

--pi", 

--spn..ce 

-5.00E+D3 

-1.00E+04 

-1.50E...o4 '---------------------------------' 
Wavelength (nm) 

Fig. 3.61. PLS-DA regression validated model of fir and pine predictions whose surface was 
weathered for various periods: the upper left plot is Scores plot; the upper right plot is the 
Regression Coefficients plot for PC 1; the bottom left plot is the Residual Validation Variance 
plot; and the bottom right plot is the Predicted vs. Measured plot for fir with 6 PCs. 
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Fig. 3.62. PLS-DA regression validated model of fir and spruce predictions whose surface was 
weathered for various periods: the upper left plot is Scores plot; the upper right plot is the 
Regression Coefficients plot for PC 2; the bottom left plot is the Residual Validation Variance 
plot; and the bottom right plot is the Predicted vs. Measured plot for fir with 6 PCs. 
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Fig. 3.63. PLS-DA regression validated model for pine and spruce predictions whose surface was 
weathered for various periods: the upper left plot is Scores plot; the upper right plot is the 
Regression Coefficients plot for PC 3; the bottom left plot is the Residual Validation Variance 
plot; and the bottom right plot is the Predicted vs. Measured plot for pine with 10 PCs. 
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Fig. 3.64. PLS-DA regression prediction model of all species whose surface was weathered for 
various periods: the upper left plot is Predicted vs. Reference plot of fir with 8 pes; the upper 
right plot is Predicted vs. Reference plot of pine with 8 pes; and the bottom plot is the Predicted 
vs. Reference plot of spruce with 8 pes. 

-. 

_ .... y 

Slope : 
Offset" 
Correlation: 
R· BQuare: 
RMSEP: 
SEP. 
Bias ' 

0 .671283 
01 32318 
0.191658 
0.622510 
0.29491 3 
0.2985 45 
0014400 

' .1 + ;'::;-:::.m:::.=::O:s:,cY_--;,;;". , 
S lop.: 
Onset 
Corrslalion. 
R~SQuare: 

0.5 RMSEP: 
SEP: 

II::: 
pine 

-0.5 

• 0.2 D .• 

II 
fl. 

r~"IK • 
1.1 D.I ... 

Fig. 3.65. PLS-DA regression prediction model of pine and fir whose surface was weathered for 
various periods: the upper plot is Predicted vs. Reference plot of pine with 6 pes; and the bottom 
plot is the Predicted vs. Reference plot of fir with 6 pes. 
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Fig. 3.66. PLS-DA regression prediction model of spruce and fir whose surface was weathered 
for various periods: the upper plot is Predicted vs. Reference plot of spruce with 6 pes; and the 
bottom plot is the Predicted vs. Reference plot of fir with 6 pes. 
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Fig. 3.67. PLS-DA regression prediction model of pine and spruce whose surface was weathered 
for various periods: the upper plot is Predicted vs. Reference plot of spruce with 10 pes; and the 
bottom plot is the Predicted vs. Reference plot of pine with 10 pes. 
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A validated model that simultaneously predicted species and weathering periods was 

developed (Fig. 3.68) and used to predict these variables. The calibration model had R2 

and RMSEP of 43% and 36%, respectively with 7 pes for pine; 43% and 34% with 7 

pes for spruce; 56% and 32% with 7 pes for fir; and 86% and 12% for weathering 

periods with 7 pes. No significant outliers were detected. Prediction results for 

weathering periods and species are seen in Fig. 3.69 and Table 3.10. The maximum error 

for species differentiation exhibited by the models predicting both species and weathering 

periods was 17% (13 out of 75 samples were misinterpreted) and therefore, both 

weathering periods and species could not be well predicted simultaneously when all the 

three species were included in the model. Better results were obtained when only two out 

of three species were used (Fig. 3.70- 3.72 and Table 3.10). 
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Table 3.9. Prediction results for the validated PLS-DA regression models that predicted species whose surface was weathered for various 
periods. 

Species # of correct # of correct 
included in species type species type 
the model predictions (127) predictions (/21) #PCs R2( % ) RMSEP (11) 

Pine Fir Spruce Pine Spruce Fir Pine Spruce Fir 
Spruce, fir, 

and pine 25 * 26* 18* 8 64 59 62 0.29 0.29 0.29 
Pine and fir 24** 25** N/A 6 65 N/A 65 0.29 N/A 0.29 

Fir and 
spruce N/A 26*** 20*** 6 N/A 66 66 N/A 0.29 0.29 

Pine and 
spruce 25 **** N/A 18**** 10 55 55 N/A 0.33 0.33 N/A 

* I pine was assigned fir and one pine was not assigned as any of the species; I fir was assigned as spruce; I spruce was assigned as fir and I spruce was not assigned as 
any of the species. **3 pines were assigned as fir; 2 firs were assigned as pine. *** I fir was assigned as spruce and I spruce was assigned as fir. ****2 pines were 
assigned as pine; 2 spruces were assigned as pine and I spruce was not assigned to any of the species. 
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Fig. 3.68. PLS-DA regression validated model of both all species and weathering periods 
predictions: the upper left plot is Predicted vs. Measured plot for weathering periods predictions 
with 7 pes; the upper right plot is the Predicted vs. Measured plot for pine with 7 pes; the 
bottom left plot is the Predicted vs. Measured plot for spruce with 7 pes; and the bottom right 
plot is the Predicted vs. Measured plot for fir with 7 pes. 
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Fig. 3.69. PLS-DA regression prediction model of both all species and weathering periods: the 
upper left plot is Predicted vs. Reference plot for weathering periods prediction with 7 pes; the 
upper right plot is the Predicted vs. Reference plot for fir with 7 pes; the bottom left plot is the 
Predicted vs. Reference plot for pine with 7 pes; and the bottom right plot is the Predicted vs. 
Reference plot for spruce with 7 pes. 
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Fig. 3.70. PLS-DA regression prediction model of both pine and fir and weathering periods: the 
upper left plot is Predicted vs. Reference plot for weathering periods prediction with 3 pes; the 
upper right plot is the Predicted vs. Reference plot for pine with 3 pes; and the bottom plot is the 
Predicted vs. Reference plot for fir with 3 pes. 
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Fig. 3.71. PLS-DA regression prediction model of both spruce and fir and weathering periods: the 
upper left plot is Predicted vs. Reference plot for weathering periods prediction with 6 pes; the 
upper right plot is the Predicted vs. Reference plot for spruce with 6 pes; and the bottom left plot 
is the Predicted vs. Reference plot for fir with 6 pes. 
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Fig. 3.72. PLS-DA regression prediction model of both spruce and pine and weathering periods: 
the upper left plot is Predicted vs. Reference plot for weathering periods prediction with 6 pes; 
the upper right plot is the Predicted vs. Reference plot for spruce with 6 pes; and the bottom left 
plot is the Predicted vs. Reference plot for pine with 6 pes. 
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Finally, a calibration model consisting of non-weathered wood samples and samples 

weathered for six weeks was developed (Fig. 3.73) and used to predict samples 

weathered for six weeks with weathered surface removed or not removed. It was assumed 

that the weathered samples with the freshly cut surface should be similar to the non-

weathered wood samples since weathering affected the wood surface only. Prediction 

results are shown in Fig. 3.74. 13 out of 15 weathered wood samples with freshly cut 

surfaces were assigned to non-weathered wood samples with R2 and RMSEP of 69% and 

28%, respectively; the rest were assigned to weathered wood samples whose surface was 

not cut (Fig. 3.74). In conclusion, the weathering did not affect the bulk of wood (at least 

to the depth of 10 mm) and so the confounding effect of weathering on species 

classification could be avoided by removing the weathered surface of wood to increase 

the prediction power. 
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Table 3.10. Prediction results for the validated PLS-DA calibration models that simultaneously predicted both species and weathering periods. 

Species # of correct # of correct 
included in species type species type 
the model predictions (/27) predictions (/21) #PCs R2 (%) RMSEP (11) RMSEP (18) 

Pine Fir Spruce Weathering Pine Spruce Fir Pine Spruce Fir Weathering 
Spruce, fir , 

and pine 22* 25 * 15* 7 87 47 36 76 0.35 0.34 0.24 1.02 
Pine and fir 26** 26** N/A 3 85 74 N/A 74 0.25 N/A 0.25 1.01 

Fir and 
spruce N/A 24*** 19*** 6 84 N/A 67 67 N/A 0.28 0.28 1.1 

Pine and NI 
spruce 25**** N/A 17**** 6 92 44 44 A 0.37 0.37 N/A 0.8 

* I pine was assigned as fir and 4 pines were not assigned to any of the species but closest to pine; 2 firs were not assigned to any of the species but closest to fir; 4 spruces were 
assigned as pine and 2 spruces were not assigned as any of the species but closest to spruce. ** I pine was assigned as flr and I fir was assigned as pine. ***3 fi rs were assigned as 
spruce; I spruce was assigned as fir and I spruce was not assigned to any of the species. ****2 pines were assigned as pine; 3 spruces were assigned as pine and I spruce was not 
assigned to any of the species. 

160 



Fig. 3.73. PLS-DA regression validated model of non-weathered wood samples and samples 
weathered for six weeks: the upper left plot is Scores plot; the upper right plot is the Regression 
Coefficients plot for PC 1; the bottom left plot is the Residual Validation Variance plot; and the 
bottom right plot is the Predicted vs. Measured plot for pine with 4 PCs . 
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Fig. 3.74. PLS-DA regression prediction model of weathered wood samples with and without 
freshly cut surface: the upper plot is Predicted vs. Reference plot for wood samples weathered for 
six weeks with 4 PCs; and the bottom plot is the Predicted vs. Reference plot for wood samples 
weathered for six weeks having fresh surface with 4 PCs. 
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4. Conclusions 

Optimal spectral treatment was determined. In this study the model with best 

predictive ability was obtained for normalized spectra transformed by MSC and second 

derivatization. The instrument reproducibility was also examined. The NIR spectrometer 

used in this study was found to be reproducible for at least two months. 

Wood samples having constant MC and freshly cut surface were used to predict wood 

species. Separation of fir from both pine and spruce was superior to separation of pine 

and spruce. Luckily, reliably sorting fir wood species from SPF is more important. The 

maximum error for species differentiation exhibited by the models predicting species was 

12%. Sorting by species is currently performed by eye and is difficult requiring an expert 

and always has an error associated with it. NIRS is amenable to automated analysis and 

has potential for quickly and relatively accurately identifying wood species. It would ease 

graders from a difficult task, while increasing product quality and decreasing production 

costs (51). 

Since the wood EMC varies with the ambient RH and temperature the wood MC 

values could be well predicted (RMSEP of 6%) independent of wood species. All the 

current methods used for MC determination are either lengthy or have a high error 

associated with them especially for determination of MC above FSP. NIRS, on the other 

hand, is quick and has the potential to predict MC values more accurately. When wood 

samples conditioned to various MC values (oven-dry to FSP) were used for species 
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differentiation, the number of pes and the prediction power increased slightly for each 

model compared to models where all wood species had a constant Me. The presence of 

the strong absorption bands in the NIR spectrum caused by moisture obscured spectral 

information derived from the wood and needed for species differentiation. It was not 

possible to delete the moisture wavelengths because the absorption at relevant 

wavelengths was so high that it impacted the whole NIR spectrum. However, species 

could still be predicted either separately or together with Me with a maximum error of 

10%. Therefore, it is not required to condition all the wood samples to a constant Me 

saving analysis time. 

Finally, since wood weathering leads to gradual surface degradation of wood and to 

eventual loss of lignin, the artificial weathering periods could be predicted independent of 

wood species. When wood samples at various weathering periods were used to predict 

species the models had lower prediction ability than the model composed of species 

having no weathering effect, indicating a confounding effect of weather. It was not 

possible to delete the weather-affected wavelengths because they contained information 

about chemical composition of the species. However, species could still be predicted 

either separately or together with weathering periods with a maximum error of 17%. If 

one wants to increase the prediction power, it is suggested to freshly cut the wood surface 

of all samples because weathering occurs only at the wood surface. 

Further experiments with significantly larger sample sizes will be needed to confirm 

this level of accuracy. Improvements in the prediction models are also possible. The close 
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proximity of the probe to the wood in this study (2 nun) may not be appropriate for mill 

application of NIRS and light sources should be investigated that not only cover a larger 

area of wood, but that also allow NIR to be detected from a greater distance to the 

surface. Determining if inclusion of both heartwood and sapwood spectra in calibration 

models can improve prediction should also be investigated. Finally, since it is easier to 

analyze either tangential or radial wood planes on-line, additional NIR analysis should be 

performed on these planes. 
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