Ryerson University

Digital Commons @ Ryerson

Theses and dissertations

1-1-2008

Design and implementation of programmable

pipelined FIR filter in FPGA

Ganendran Narasingavel
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

Narasingavel, Ganendran, "Design and implementation of programmable pipelined FIR filter in FPGA" (2008). Theses and
dissertations. Paper 156.

This Thesis Project is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and

dissertations by an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.


http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/156?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

Siho G o 7

DESIGN AND IMPLEMENTATION OF
PROGRAMMABLE PIPELINED FIR
FILTER IN FPGA

BY

Ganendran Narasingavel
BASc, University of Ottawa, Dec 2000

An engineering project presented to Ryerson University in partial
fulfillment of the requirements for the degree of Master of Engineering in
the program of Electrical and Computer Engineering

Toronto, Ontario, Canada, 2008
©Ganendran Narasingavel 2008

PROFERTY OF

EXEDELH UNETYRITY L IBRARY



Author’s Declaration

I hereby declare that | am the sole author of this project.

| authorize Ryerson University to lend this project to other institutions or individuals for the purpose of
scholarly research.

Gadendran Narasingavel

| further authorize Ryerson University to produce project by photocopying or by other means, in total or
in part, at the request of other institutions or individuals for the purpose of scholarly research.

Ga/‘iendran Narasingavel



Borrower’s Page

Ryerson University requires the signatures of all persons using or photocopying this report.

Please sign below, and give address and date.

Name Address Date Signature

jii




Abstract

Since the introduction of DSP blocks in commercial FPGAs such as Altera Stratix 11 and Xilinx
Virtex II, DSP applications are increasingly being implemented on FPGAs. This project
implements a pipelined digital FIR filter with programmable coefficients in an Altera Cyclone I1
FPGA. An automated test system is also constructed to verify the design. The project places equal
emphasis on implementing a programmable FIR as well as building an automated test system.
Also, we will evaluate the practicality of the design by comparing the design to the FIR IP core
provided by Altera.
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Introduction

1.1 Motivation

Traditionally, real-time DSP applications have been performed using either DSP processors
or custom application specific integrated circuits (ASICs). DSP chips have the advantage of
low design costs and flexibility but lack performance when DSP algorithms need parallel
execution [1]. In particular, a single DSP processor generally has limited number of multiply-
accumulate (MAC) unit and require many clock cycles to compute each output value [2,3].
To remedy this ASICs are used which achieved excellent performance; however, the cost
associated with ASICs are impractical for moderate-volume applications. Furthermore, it is
impossible to reprogram an ASIC once it has been manufactured. The recent advancements
in FPGA technology deliver programmability, higher performance and low development cost
required for DSP applications. In particular, fully parallel, pipelined DSP architectures
implemented in an FPGA can operate at very high data rates, making FPGAs ideal for high-

speed DSP applications. Consequently, DSP applications are increasingly implemented in

FPGAs.

This project focuses on Digital FIR filters due to its wide range of practical applications. FIR
filters are the fundamental building blocks in a wide range of DSP applications, such as
waveform shaping, anti-aliasing, band selection and low-pass filtering. On the other hand, a
filter’s characteristic is determined by the value of its filter coefficients. Therefore, it is
desirable and beneficial to be able to selectively program the coefficients of an FIR filter.
Such programmable FIR filters are necessary in systems that must support multiple
protocols and standards. As a result, the FIR filter in our design was made to be

programmable.



1.1 Objective

The main objective of this project is to implement a 32-tap pipelined programmable Finite
Impulse Response (FIR) filter on an Altera Cyclone II FPGA. The second goal of this project
is to build a hardware platform to verify this FIR filter in system level. Emphasis is placed
on studying different FIR architectures, FPGA realization of the FIR filter and building a
test platform for hardware emulation. The project has several other objectives in terms of
educational aspects: Gain experience in System On Chip (SOC) design, Interface Design and
Embedded System Design.

1.2 Report Structure

The rest of this report is divided into four sections. Section 2 presents an overview of existing
FIR filter architectures. Section 3 presents the design process including system specification,
system architecture, system component, implementation details and FPGA realization.
Section 4 will present the verification strategy used in this project. Section 5 will evaluate the
practicality of our design by comparing it to an Altera IP. Finally a conclusion and

references will be provided.



SECTION 2: Literature Survey

This section examines the intrinsic parallelism of the FIR algorithms, analyze suitable

architecture alternatives from the previous work, and make architectural decisions.

2.1 Theory

FIR filter is the fundamental building block in Digital Signal Processing and communication
systems. As a result, the whole system’s performance may very well depend on FIR filter’s
performance. An FIR filter’s action depends on its tap length and coefficient values. The
output of an L tap FIR filter depends on the previous L input samples. The basic operation
of a FIR filter is convolution of the input sequence by the corresponding filter coefficients.

The following equation represents a FIR filter operation:

-1
y[n] = Z h)x(l—n)  Equation (1)
=0

where x(1) input samples, h(l) is the filter coefficient and L is the tap length.

2.2 Related Work

There are three main FIR architectures namely Direct, Transposed and Serial Distributed
Arithmetic (DA). A detailed comparison between these three types of architectures is
presented in [4]. Sequential architectures share a single MAC resource making it very area
efficient at the expense of performance. Although DA type of implementation is suitable for
high-performance application, they do not take advantage of the DSP blocks embedded in
the FPGAs. This is because DA architectures uses sequence of table look-ups, additions,
subtractions, and shifts of the input data these operations efficiently map into Look Up
Tables (LUT) but not into the embedded DSP blocks. As a result, we will only discuss about

the Direct and Transposed architectures going forward.



2.2.1 Architecture Exploration

Parallel hardware must be used when high sampling rate applications are involved. The two
most popular parallel FIR architectures are the Direct and Direct Transposed forms. Even
though Direct-Form architecture has low fan out of the input signal and a constant register
width in the delay line they have a larger critical path due to the multi-operand adder. On
the other hand, the Transposed-Form has a shorter critical path but the fan out on the input
port grows linearly with the number of taps. In addition, Transposed-Form requires
increased number of registers to account for the increasing width of the sum [1]. Figures (1)
and (2) shows a direct and transposed structure of an FIR filter. Direct-Form is a direct
representation of the equation (1). The input sequence is shifted through a delay line,

multiplied with the corresponding coefficients and accumulated.
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Figure 1: Dhrect form

Transposed-Form is obtained using the flow-graph-reversal theorem [1]. That is the Direct-Form is

transposed by reversing the direction of all signal paths and interchanging the input with the output.
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It is still arguable, which architecture achieves the highest performance, Direct-Form or
Transposed-Form? According to [4], direct form architectures are suitable for area sensitive
small filter orders while transposed structures are suitable for large filter orders. However,
according to [1] replacing the multi-operand adder in the Direct Form with a pipelined
binary adder tree will achieve similar performance as the Transposed-Form with fewer
arithmetic resources. Therefore, a pipelined programmable FIR filter using Direct-Form and
binary adder tree structure will be implemented in this project. One other point is that the
binary adder tree is most efficient when the coefficients are in 2’s power therefore a 32-tap
filter is chosen for implementation. Figure 3 illustrates a 4th order pipelined FIR filter with

binary adder tree.
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Figure 3: 4% arder divect form pipelined FIR with binary adder tree



SECTION 3: Design & Implementation

3.1 System Overview

Our system is primarily a programmable pipelined FIR filter realized in an Altera Cyclone 11
FPGA (from here on this FIR filter module will be referenced as FILTER). This FILTER
module is then integrated into an overall system as shown in Figure 4. The FILTER module
communicates with the microprocessor for reloading its coefficients. The FILTER receives its
input samples from an On-Chip cache memory. The FILTER module receives its clock from
a Phase Locked Loop (PLL) module and communicates to the outside world through a
Universal Asynchronous Receiver/Transmitter (UART). All inter module communications
were handled by the Altera’s Avalon Bus.

3.1.1 Design Specification of the Overall System

First, processor gives the following inputs to the FIR module: a) starting address of the input
samples b) total byte count of the input samples. Next the processor issues a START
execution command and then polls for the first output to be ready. As soon as the START is
issued the FIR begin reading the input samples from the On-Chip RAM and calculates the
results. As soon as the first result becomes valid, the processor begins to read the results at
its own speed. Once all the input data have been processed the FIR informs the processor by
issuing a DONE execution command. The FIR cannot be reconfigured while it is in the
middle of processing a batch of input samples, except through a system reset. In case the

FIFO becomes full, the FIR core halts its execution and stop reading in any more new input.
The overall system should satisfy the following design requirements:

1. At every clock edge the system should be able to feed in a new input sample and
produces a new output sample after the latency period.

2. A data hand-off unit should be available to hand-off the data from the FIR’s clock
domain to the processor’s clock domain.

3. A master interface should be available to retrieve the samples from the memory
location specified by the processor.

4. A slave interface should be available to receive the coefficients from the processor and

to transfer the results back to the processor.
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5. FIR should be able temperately halt its operation as soon as the FIFO overflow.
Moreover, the FIR should be able to resume its operation from where it left off. (I.e.

the pipeline should resume without any additional latency).

3.2 System Architecture

The overall system implemented for testing the FIR differs from most of the conventional
designs. In this project the test platform was implemented as a System on Chip (SOC) for
design reuse purposes. For example, this test platform can be used to verify another custom
design by replacing the FILTER unit with the new design. Of course the new design should

have the interface to communicate with the Avalon Bus.

The overall test platform is pictured in Figure 4. As we can see, the target SOC is composed of a
processor (NIOS II), a memory, a clock generator (PLL), a communication medium (Avalon Bus) and
our FILTER unit. In this project the FILTER is composed of a FIR, a master interface, a slave
interface and a FIFO. The master interface can initiate data transfers from the on chip memory. The
slave interface can respond to the bus read/write within one clock period. Each of these components

will be explained in detail in the following section.

CHIOS 1 uP ? OnChip RAV

FILTER | UART  pLL

Figure 4: Overall System Arebitecture



3.2.1 Component Description

FILTER

This component will handle the FIR calculations of the input samples. This is a custom-logic
mainly composed of 2 modules: FIR calculation core and FIFO. The details are depicted in
Figure 7.

The FIR core is implemented as shown in Figure 3, utilizing a binary adder tree. Since the
FIR core is running on a faster clock than the rest of the design, data transfer between
modules need to be properly synchronized. Consequently, a simple data-hand off mechanism
is implemented using a FIFO.

The data-hand of mechanism functions as follows: As soon as a result is ready the FIR will
hand over the result to the FIFO and keep on calculating the next result without worrying if
the result has been passed to the processor. The FIFO will hold the result until the processor
is ready to read. If the FIFO becomes full the FIFO will inform the master interface to stop
reading anymore new samples from the memory. If the processor try to read from and empty

FIFO the FIFO will instruct the slave interface to issue a wait request to the processor.

Processor
The component will handle the following two main tasks: (a) Loading the filter coefficients,

(b) Controlling the test-automation.

Altera’s NIOS I1/s soft-core processor with 16kb-instruction cache was used in our design.

NIOS II processor is a general-purpose RISC processor core. Refer to [7] for more details.

On-Chip RAM
This component will store and deliver the input samples to the FILTER. A 20kb, 32-bit
width single I/0 port RAM block was used in our design.

PLL
This component will be used to build the clock for the FIR core. The FIR core clock is

currently set to 2 times of the master clock.



UART
This component will handle the communication between the SOC and the outside world. In

particular, to send calculated FIR results to the host computer.

Avalon Bus

This component will be the system bus which connects all the components described above.

3.3 Design Constraints and Choices

This section states the assumptions and the choices we made in building the FILTER and
the SOC platform.

3.3.1 Polling vs. Interrupts

In order to communicate the completion of the FILTER calculations to the Processor,
polling was implemented in our design as opposed to the preferred Interrupts technique.

Polling was chosen for its simplicity.

3.3.2 Software Reset

Once the START command is given the FILTER cannot be stopped, unless the FILTER has
finished processing the entire samples. The only way to get around this is by doing a hard

reset.

3.3.3 Pipeline Flushing

This design does not flush out the pipeline at the end because the pipeline was not flushed a
system reset is required before processing the next batch of data in order to clear all the
pipeline registers.



3.4 Design Details

The design of the overall system consists of hardware design, software design and hardware

software interface design.

3.4.1 Hardware Design

For each functional block illustrated in Figure 7, a behavioral model was developed in
Verilog. In our Verilog model the data and coefficient widths were parameterized for future
study purpose which will be later discussed in section 5. An automated test-bench was
developed for each module and verified before integration. All modules were synthesized

using Altera’s Quartus II.

3.4.1.1 FIR Filter Design

A behavioral model of the FIR was implemented in Verilog utilizing the FIR architecture
chosen from the literature survey (Figure 3). A block diagram of the FIR with the inputs

and outputs are shown in Figure 5.

clk

EETEE—
rst

enable
—P]

Coef 0

15

Coef 1
15

Coef 2
15

Coef 3

15

Data-in

15

Figare 5: Block Diagram of the FIR
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The task of calculating FIR was partitioned into four main modules as follows:

1) Shift Register
2) Multiplier
3) Adder Tree

4) pipeline controller

Only the multiplier circuitry was coded into a separate module. The pipeline controller
circuitry was implemented using a counter circuitry which was initialized with the latency
value and counted down to zero. The other two categories are straight forward and need no

further explanation.

3.4.1.2 FIFO Design

A behavioral HDL was developed for a synchronous FIFO. The data width and the depth of
the FIFO were parameterized. A block diagram detailing the input and the outputs of the
FIFO is given in Figure 6.

rd-en

wr-en

Data-in Data-out

15

Figure 6: Block Blagram of FIFO
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3.4.1.3 Interface Design

The interface has tow functionalities: a) It provides a mechanism to transfer data between
system bus and the FIR b) It controls the functionality of the FIR. An Avalon-MM Master

Interface and an Avalon-MM slave interface were used in this design. The behavioral model

of the master and slave interface was adapted from [8] and modified to suit the needs of our

project. These modifications will be detailed shortly. First, for the completeness of this report

the characteristics and the signals of the Avalon-MM master and slave interface are

reproduced here from reference [8].

Master Interface:

The Custom FIR’s Avalon-MM Master port has the following characteristics:

= Itis synchronous to the Avalon-MM master clock interface.

* It initiates master transfers to the system interconnect fabric.

Signal Name in HDL Avalon-MM Signal Width Dir Notes
Type
Avm_ml_address Address 32 Out Byte Address aligned on word boundary.
Avm—ml-byte—enable 4 Out Enables specific byte lanes on ports greater than 8 bits
avm_ml_read_n Read_n 1 Out Active low read request signal
Avm_ml_readdata Readdata 32 In Uni-directional data
Avm_ml_waitrequest Waitrequest 1 In Forces master port to wait until the system
interconnect fabric is ready to proceed with the transfer
Addr_reg Slave_port signal 32 In Deliver the starting address of the data samples
Len_reg Slave_port signal 16 In Deliver the byte count of the total sample to process.
Go Slave_port signal 1 In Initiate the read transfer
Slave_port signal 1 Out Avoid accepting new jobs till finish processing
Signal from FIFO 1 In Foree the master to stop reading in any new samples.
This will force the data_ready to low as well. Which
will halt the FIR
Data_in_ready FIR module signal 1 Out Enables the FIR module
Data_in FIR module signal 32 ouT Input Sample for FIR calculation
Table 1: Avalon-MM master port Input/Gutput signals [8]

12




Modifications to the Master Interface:

In Table 1 the omission and the addition of the interface signals are indicated by

strikethrough font and the underlined fonts. Particularly, the master interface was modified

to handle FIFO overflow. This requirement translates in to the following two tasks:

1. Master port should stop reading new samples when the FIFO is full.
2. Master port should stop the execution of the FIR when the FIFO is full.

Slave Interface

The slave port handles the simple read and writes transfers to the slave interface registers.

The register map is shown in Table 3. The slave port has the following characteristics:

Synchronous to the Avalon-MM clock interface

Readable and writeable.

Zero wait states for writing and one wait state for reading.

No setup or hold restrictions for reading and writing.

Uses native address alignment, because the slave port is connected to registers

rather than a memory device.

13



Signal Name in HDL Avalon-MM Signal | Width | Dir | Notes
Type

Avs sl address Address 6 in Byte Address aligned on word boundary.

Avs_sl_read_n Read_n 1 In Read request input

Avs_sl_write_n Write_n 1 In Write request input

Avs_sl_chipselect_n Chipselect 1 In Chip-select to slave port. Slave port ignores all other
signals unless it is selected

Avs_sl_readdata Readdata 32 In Uni-directional read data

Avs_sl-writedata ‘Writedata 32 In Uni-directional write data

Avs sl waiterequest Waiterequest 1 Out Forces the system interconnect to wait reading from
the FIR module.

FIFQ_Empty Signal from FIFO 1 In Force the slave port to generate a waitrequest.

Table 2: Avalan-MM slave port Input/Output signals

Modification to the Slave Interface:

The following modifications are done to the slave interface:

1. Registers were included to store the reloaded coefficient values.

2. The address width is increased to be able to handle the increased register space.

3. An additional waitrequest and FIFO_Empty signals were added to handle the FIFO

underflow.

14




3.4.1.4 Top-level Design

The top-level instantiates the FIR, FIFO, Avalon-MM master and slave interfaces. Figure 7
depicts the overall block level diagram of the FILTER. The FIFO module acts as the data
hand-off module. ~The data-handoff module has an overflow/underflow prevention
mechanism by communication with both master and slave interfaces. It can be seen from
Figure 7 that the FIFO informs the emptiness to the slave interface and its fullness to the
master interface. The FIFO module in our design has a depth of eight. However, the
behavioral code of the FIFO is parameterized thus it can be set to any desired depth.

Clock pll_cik

Input/Sink ¢si_clockreset_rasat n
imerface
. {clockreset)

avs_s1_address<2:0»
Avalon-MM avs_s1_read n
Slave avs_s1_wntes n
interface avs S1 writedata<31:0>
(s1) avs_s1_chipsslect n

avs s readdata<31:0>
avs_s1_waitrequest >l

 system Interconnect fabric

. S valon-MM avm_m1_waitrequest
data_in<31:0> \:‘mﬂ gl _ avm_m1_readdata<31:0>|

: dataw interface avm,_mtgﬁd;esse&:% >
. . (m1) avm m’wm LN

Figure Tt Top level block dingram
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3.4.2 Software Design

The operation of the FILTER is controlled by the NIOS II processor. To facilitate this, a set

of hardware registers were included in the slave interface. It is through these registers the

hardware and the software communicates. The software configures the FILTER by writing

values into its configuration registers. The software obtains information from the FILTER

by reading the status and result registers.

The layout of the register map is shown in Table 2. In order for the software to understand

the variables stored in the hardware registers NIOS II processor include two macros IORD

and IOWR. Using these two basic macros another set of more readable device access macros

were defined according to the register layout shown in Table 4. (See appendix C, fir_reg.h).

3.4.2.1 Address Mapping

The table below shows the address mapping of the Filter Interface

Register Name Offset Access | Description

Address 0x00 RW 32-Bit start address of the input samples

Length 0x04 +04 RW 16-bit byte count of the total data sample

Control 0x08 +08 RW Bit [0] is the GO bit which instructs the FIR to begin execution. Bit [7:1]
is reserved.

Coefficient 0 0xO0Cl1 +12 RW 16-bit coefficient

Coefficient 1 0x10 +16 RW 16-bit coefficient

Coefficient 2 0x18 +20 RW 16-bit coefficient

Coefficient 3 0x1C +24 RW 16-bit coefficient

Reserved 0x20-38 | -----e- Reserved for future enhancements. E.g. more taps

Result 0x3C +60 RO 32 —bit result of the FIR calculations

Status 0x40 +64 RO Bit [0] is the BUSY bit to indicate that the FIR still haven’t finish

processing the batch of data specified in the “length register”. Bit [1] is
the DONE bit to indicate that the FIR finish processing and ready for
new batch of data. Bit [2] is the OUT_VALID bit indication the processor
when the output becomes valid after latency period.

Table 3 Address Map
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3.4.4.2 Register Layout

The table below shows the layout of the registers.

Address

Reserved Length

Reserved GO
Reserved Coefficient 0

Reserved Coefficient 1

Reserved Coefficient 2

Reserved . ‘ . Cocfficient 3

Result

Reserved OUT_VALID DONE BUSY

Table & Heghster Lavout

3.4.3 System Integration Details

To simplify the process of attaching Altera 1Ps to a system interconnect, Altera provides a
tool named SOPC Builder, which takes care of the bus interface signals, bus protocol, as well
as any other interface issues. The crucial point to note here is that the SOPC Builder cannot
automatically generate the interface logic for custom-cores, unless they are built using the
standard Avalon Bus signals. This detail was already taken care of during the design phase
by naming the signals with the appropriate interface name as well as the correct signal type
(refer to Table 1). For example, in the signal name “Avs_sI_address” sl indicates that it is a
slave interface signal and the word “address” indicates that the signal is of type address. Once
the custom core was made SOPC compatible it was instantiated into the SOC System as

shown in Figure 4.

Once all the necessary connections were made in the SOPC builder GUI, a Verilog HDL files
defining the overall system was generated. This HDL file was then simulated in ModelSim to
verify the correctness of the design. The next section describes our verification strategy in

detail.
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SECTION 4: Verification

The process of verifying the design consumed more time than the design itself. This section
describes our verification approach and the test environment used in the verification process.
The objective of this section is not only to test out design, but also to automate the testing
process.

4.1 Module-Level Verification

Verifying the design started with the module level simulation. First, self-checking module-
level test benches were designed and simulated to exhaustively exercise the features in that

module. Once the entire module tests were completed, modules were integrated and verified.

4.1.1 RTL Simulation

RTL simulation was done using the ModelSim student version software. First, unit
simulation was carried out; then adjacent units were integrated and simulated. Strictly
speaking, each individual module and the top-level module were simulated with a self-
checking testbench. The necessary reference module was also developed either in Verilog or
C++ to facilitate self checking. As an example the self checking process implemented to
simulate the FIFO is illustrated in Figure 8.

o _y FIFO under Test ]

jre—— S—

: Random
. Stimulus
Generator

;
i
H
i

Reference FIFO

Figure §: Self-Checking architecture
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4.2 Top-Level Verification

Once all the filter components were integrated the top-level was simulated. Figure 9
illustrates the block diagram of the testbench used for top-level simulation. The testbench
consists of a Bus Functional Model (BFM) to simulate the READ and WRITE task of the
microprocessor, a Verilog ROM-Model to provide the input samples and a PLI routine to
generate the expected output results. The intended checker unit was not completed. The
design details of the BFM and Programming Language Interface (PLI) routines are described

in the following subsections.

(stimulus

eference C Model

Figure 9: Top-Level TestBench Block Diagram

4.2.1 Bus Functional Model Design

BFM is a simplified model that reflects only the I/0 behavior of a device (in our case a
processor) without modeling its internal details. Consequently, a BMF is designed to imitate
the READ and WRITE operation of the NIOS II microprocessor. This BFM was then used
to verify the interaction between the FILTER and the microprocessor. Figure 10 shows a
block diagram of the BMF designed for this simulation. Again this BFM is designed only to
co-op with the Fundamental Slave READ/WRIT transfers of the Avalon Bus.
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READ(....)
«—p

WRITE (... .)
«—

Figure 10: Block Diagram of BFM

4.2.2 Programmable Language Interface design

Simply said, PLI is a mechanism to invoke a C-language function from a Verilog simulator.
To verify the top-level a reference model of the FIR was implemented in C (See appendix C,
calculate_fir.c). Now the task is to make the Verilog simulator understand the C model and
properly execute it using Verilog simulator. Once it has been done the C function becomes a
PLI routine. In order for the simulator to understand the existence of the PLI routine the
compiled PLI routine was linked with the existing binary of the simulator. Further details
can be found in [10].

4.2.3 Gate-Level timing Simulation

The RTL simulation can only verify the functionality of the design. RTL simulation doesn’t
have any concept of timing. In order to verify if the timing requirements are met Gate-Level
Simulation (GLS) was performed.

After synthesis, a gate-level net-list was generated using Quartus II. This gate-level net-list
contains information about the incurred delay through each cell in a net-list. This

information is then used to verify if the design met the worst case timing.

4.3 System Level Verification

The whole system was simulated to verify the data paths only. The entire system was
emulated in hardware because the simulation was extremely slow. NIOS II IDE and DE2
board was used for hardware emulation. A test program was written in C-language to
facilitate the hardware emulation. The following sub sections describe these tow process in
detail.
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4.3.1 Hardware Emulation

Emulation was an important part of the overall verification because it enhances test
coverage far beyond what was possible with RTL simulation alone. There were two main
motivations for doing emulation. First, emulation helps to identify the corner cases missed in
simulation. Second, emulation was much faster than the RTL simulation, providing the

twofold benefit of shorter run time and increased coverage.

4.3.1.1 Emulation setup (Test Environment)

The overall SOC (Figure 4) was synthesized on to a Cyclone II FPGA. The Design Under
Test (DUT) was exercised through the NIOS II IDE running on a host-PC. Figure 11 below

illustrates our Emulation environment.

HIOS N up OnChip RAM

FILTER UART | pLL @_

Figure 11: Emulation Setup

For emulation a test program was written in C-language to exercise the DUT. The NI1OS 11
IDE was used for compiling the test program for the NI1OS II processor’s instruction set.
The compiled program was downloaded and executed in the NIOS II processor. The output
of the DUT was viewed using the NIOS I1 IDE.
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The IOWR (I/0 write) and IORD (I/O read) macros were used to access the registers in the
slave interface. At compile time these macros expand to the appropriate assembly instruction
to access the hardware registers in the device. Each of these macros uses a base address to
identify the component and offset to identify the appropriate register. Once the software
finished configuring the device registers (using IOWR) the DUT start its execution and write
the results into the result register. Finally the software read these results (using IORD) from
the result register and displays it in the NIOS IT IDE. These results were then manually

varied by comparing it with the outputs of the reference model.
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SECTION 5: Design Assessment

This section evaluates the merits of our design by comparing it to an Altera IP core. A

reference design was created with similar constraints for this analysis.

5.1 Reference Design Realization

Altera’s FIR Compiler v7.2 was used to parameterize and generate a Verilog HDL of the
reference design. A detail description of the FIR Compiler can be found in [12]. In order for a
fair comparison between the designs the following properties of the Altera IP was set to
reflect our custom design (FILTER):

= Coefficient Bit Width <15>

* Input Bit Width <15>

* Output Bit Width <15>: Three least significant bits were truncated.

®= Pipeline Level <1>

*= Coefficient Reload <yes>

* Clock to compute <1>: i.e. an input data is processed every 1 clock period and a new

output data is generated every clock period.

Once the Verilog code was obtained from the FIR compiler the code was synthesized,
analyzed and compiled. From the Analysis & Synthesis report following matrices was
collected: maximum clock speed, estimated total logic elements, total registers and the total

number of LUTSs. These results are summarized in Table 5 below.

Design Total LC LUTs Only Register Only | DSP Block Max
LC LC Usage (MHz)
(18x18)
Altera 3,549 1626 621 32 125
IP
Custom 3,666 332 1360 32 150
Logic

Fable 5: Summary of the Resulis
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150-125
Performance Increase relative to the Altera IP = -(—1-53—) x 100 = 20%

(3666—3549)

ot 0
2525 x 100 = 3%

Resource Usage Increase relative to the Altera IP =

As we can see from Table 5, our design can be synthesized with a 150 MHz clock while
Altera’s IP can only constrained for a maximum of 125 MHz clock. This gives our design a
20% performance increases.

On the other hand, our design uses slightly larger resources than the Altera IP. Both designs
use the same number of dedicated multipliers. However, our design uses 117 more logic cells
than the Altera’s IP. The following section gives a detail break down of the resource
consumption of both designs. Then tries to reason why our design consumes more recourse
compare to the Altera IP.

24



5.2 Comparison of Results

The tables 6 and 7 give a detail breakdown of the resource usage.

_|LUT/Regster LCs [DSP 1818

By Logic Cells | Dedicate... [LUTOnly LCs | Ragisiero. P
% Cyclone il: EP2C35FE72CE
350 FILTER 3666 {8 NUEH WG 1360EH  WHG 32 142
G200 ly_fodi32_flod 2744 By G BO WG wng 2 G
- 356 gyn f0:FIFD 2@ 288488 13013 28128 171071 o o
B 292 fi_tap_32FIR 23201472) 26201460} 1212 T 1853045 32 )
54 ead_mastermasterintedace 154154y  SO(S0y  104{108§  15{18 135035 9 o
w85 §1_slave saveinedace TEC{750) 565565} 1854185  I50(250) 31515 0 o

Enity Logic Calls | Dedicate... | LUT-Ondy LCs LUT/Regster LCs | DSP 1818 | Pins
&y Cyclone I EP2CI5F672CE
= Br_compler_iP 3545 2) 19230 1626 €@ 13020 2 78
S35 fir_compler_jp_sstfe_compler_ip_ast_jnst 332 @ 178400 154040 604  MEI@ 2 13
B30 br_compler ip_stfrcore 3009 () 150700 150040 4520 1057Q 2 o
253 auk_dspip_avaion,_streaming_cortroller_fr_72ietf_cid 18 (8) BB ) 14 70 o o
e 19743 167028) 3001 85(18) 8145 g 13
- auk_dspip_avaion_streaming_source fi_72souce  114(114)  102{102)  10(10) ES(65) 383039 0 ¢
- g prdygenabboc 12300 O S 5 6740) ) )
B35 old_hubsld_hub_inst W e7m 1308 1240 55(13) o ¢

Table 7: Resource usage break-down of the IP Core

As it can be seen from the detail break down of Tables 6 and 7, the custom logic consumes

slightly large number of logic cells (11% of the total) than the Altera IP core (10% of the

total).

The crucial difference is that the custom logic uses a large number of dedicated registers (43%
-increases) than the IP core. This is due to the fact that in our design the coefficients coming
in from the N10S IT processor were registered in the slave interface (Figure 7 & Table 4). The

IP core however reload the coefficients directly form a memory.
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Another observation is that both our FIR calculation core and Altera’s IP used 32, 18x18
dedicated multipliers. However, our FILTER core used only 2432 logic cell while Altera’s
FIR core used 3009 logic cells.

The other main different between these two designs are the custom logic uses the Avalon

memory mapped interface and the IP core uses the Avalon streaming interface.
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5.3 Future Work

In our present work, if we wanted to cascade multiple FIR modules an additional adder tree
should be implemented as shown in Figure 12. Moreover, a pipeline controller (not shown in
the figure) will also be required. The presence of the adder tree and the pipeline controller

forbids the design from scaling as we desire. Remedying this will be our future work.

H - - ; - H - -
z Deloyed | Delayed | " | pelayed velyed |+ | delved | | pelayed .
:-«y tap Input tap Input tap Input Input tap Input ; tap ,} Input tap
FIR FIR FIR FIR L oFIR FIR
. J |
! N Partial !
“ N o

Recnlt

v e

Reslilt

Partial

Results

Figure LI Example of caseading multiple FIR medules
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Conclusion

In this project we implemented a 32-tap pipelined programmable FIR filter that adopts the
direct form architecture. Our custom design can be used in higher sampling rate applications
than the Altera IP. It was observed that, with our assumptions, our design can achieve a

20% higher clock rate with only 3% area penalty.

In addition, a reusable hardware emulation platform was designed to verify the design. This
emulation platform can be used to verify other custom logics in system-level with minimal

modifications to the Avalon-Interface.

Due to timing limitation the effects of those results summarized in Table 5 were not studied

for varying filter sizes (i.e. increasing tap lengths). It will be an interesting future study.
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Appendix

A. Design File’s Directory Structure

MEngProjectGanen
|
2 v 2 L 2 L 2 L 2 L 2 4
FIR FIFO FIR_FIFO FILTER_4 FILTER_32 MASTER_IF SLAVE_IF SOPC_SYS
Fir.v Syn_fifo.v Fir_fio.v Fir_fio.v Master_ S1_slave.v
Multiplier.v Syn_fifo_tb.v Fir_firo.qpf Fir_firo.qpf Interface.v S1_slave.gpf
TB_fir.v Vsim.do Fir_tap_4.v Fir_tap_32.v Read_master
Vsim.do Muitiplier.v Multiplier.v .qpf
Syn_fifo.v Syn_fifo.v
| Gate_level_Sim ] I Functionald_sim 1 | Synthesis |
HAL <
inc <
software ¢

y

v

test_fir

test_fir_sys_lib

The design files, test cases, and the corresponding simulation scripts are arranged as shown in the above
diagram. Each folder contains the corresponding behavioral HDL, testbench, and the simulation script.
For synthesis, a separate directory is created and this directory includes a Quartus Il project file as well.
These files are with our research group and it can be obtained by contacting Dr. Andy G. Ye.
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B. Explanation of the directory structure and design files

File/Directory Name

Description

/FILTER_4

Contains HDL files and Run scripts for GateLevel Simulation,

Functional Simulation, and Synthesis

/Gate_level_sim

Contains the altera_library mapped netlist of the 4-tab FIR and the

simulation file

TB_top Gatelevel Simulation Testbench for the Top-level design
vsim.do ModelSim simulation script
top.vo gate-level netlist of the top-level design

pli_calculate_fir.dll

executable file of the PLI routine

/QuartusII_Synthesis

Contain all the HDL file and the Quartus II project for synthesizing the
FIILTER_4

Quartus II project which specify the working directory and the design

top.qpf involved design files.

fir_tap_4.v This file contain fir calculation core
syn_fifo.v This file contain the FIFO logic
fir_fifo.v fir and the FIFO modules put together

read_master.v

This file contain the logic for the Avalon-MM read master interface

This file contains logic for reading and writing to the FILTER_4

sl_slave.v (Software registers) and the slave interface to the Avalon_MM bus.
top.v This is the top-level of the FILTER_4
TB_top.v This is the top-level testbench

Files and scripts in the Functional Simulation directory are similar to that of Quartus I

Synthesis Directory. The next page will describe the SOPC SYSTEM directory.
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File/Directory Name

Description

/SOPC_SYSTEM

This directory Contains HDL files of the whole system, header files

defining the low-level hardware interface and C program to test the
FILTER’s hardware and software.

Sub-directory includes header files defining the low-level hardware

/inc interface
fir_reg.h Defines the macros to access registers in the FILTER component
/software Contains the test program to exercise FILTER’s H/'W & S/W

/test_SOPC_system

Contains NIOS I1 IDE project

/test_my_fir.c

test program write samples to the on chip ram, configure the filter and

read back the results and display it on the consol.

/test_SOPC_system_syslib

System Library needed for the NIOS II IDE project
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C. Software Source Code

fir_reg.h

/**i***i***i*******'k*******k***i***i***i*******************i***k***k***

*

* Licen
*

*
*

*

*

(c) 200
rved.

Altera Corporation,

San Jose, California,

***'A"k‘k******’k**‘A’*'k**'k**‘A"k’.‘r‘k*‘k’k*"k"kt‘:*‘k‘k*******'k‘k**‘k*‘ﬁ.‘*‘k'k‘)\:*‘k',‘:‘h"k"k“k*"A"k:‘:*'i"k*/

/*‘:‘r********7‘(***i***i***************k*******k***k***'k***i*******k'***i**/’

* Modified by N.Ganen to fit the custom component FIR filter *

* march

2008

*

/',‘:*‘A‘****‘k*******'.k'.‘.'**'***'ﬁ"k****'}:****‘k****‘ﬂ'*******‘A‘***‘A‘*‘k*‘ﬁ"k**‘k*‘k******‘k/'
7

#ifndef
#define

__FIR_REGS_H___
__FIR REGS_H___

#include <io.h>

/* Basic address,

#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define

read

IOADDR_MY_FIR_ADDR (base)
IORD_MY_FIR_ADDR (base)
IOWR_MY_FIR_ADDR (base, data)
IOADDR_MY_FIR_LENGTH (base)
IORD_MY_FIR_LENGTH (base)
IOWR_MY_FIR_LENGTH (base, data)
IOADDR_MY_FIR_CTRL (base)
IORD_MY_FIR_CTRL (base)
IOWR_MY_FIR_CTRL (base, data)
IOADDR_MY_FIR_COEF_O (base)
JORD_MY_FIR_COEF_O (base)
JOWR_MY_FIR_COEF_O0 (base, data)
IOADDR_MY_FIR_COEF_1 (base)
IORD_MY_FIR_COEF_1 (base)
IOWR_MY_FIR_COEF_1 (base, data)
IOADDR_MY_FIR_COEF_2 (base)
IORD_MY_FIR_COEF_2 (base)
IOWR_MY_FIR_COEF_2 (base, data)
IOADDR_MY_FIR_COEF_3 (base)
IORD_MY_FIR_COEF_3 (base)

IOWR_MY_FIR_COEF_3 (base, data)

and write macros.
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_ _IO_CALC_ADDRESS_NATIVE (base,
IORD (base, 0)
IOWR (base, 0, data)

_ IO_CALC_ADDRESS_NATIVE (base,
IORD (base, 1)
IOWR (base, 1, data)

__TO_CALC_ADDRESS_NATIVE (base,
IORD (base, 2)
IOWR (base, 2, data)

__TO_CALC_ADDRESS_NATIVE (base,
IORD (base, 3)
IOWR (base, 3, data)

_ _IO_CALC_ADDRESS_NATIVE (base,
IORD (base, 4)
IOWR (base, 4, data)

_ TIO_CALC_ADDRESS_NATIVE (base,
IORD (base, 5)
IOWR (base, 5, data)

_ JTO_CALC_ADDRESS_NATIVE (base,
IORD (base, 6)

IOWR (base, 6, data)

USA. *

3)

6)



#define IOADDR_MY_FIR_RESULT (base) __JIO_CALC_ADDRESS_NATIVE (base, 14)

#define IORD_MY_FIR_RESULT (base) IORD (base, 14)

#define IOADDR_MY_FIR_STATUS (base) __TIO_CALC_ADDRESS_NATIVE (base, 15)
#define IORD_MY_FIR_STATUS (base) IORD (base, 15)

/* Masks. */

#define MY_FIR_CTRL_GO_MSK (0x1)

#define MY_FIR_STATUS_DONE_MSK (0x2)

#define MY_FIR_LENGTH_MSK (OXFFFF)

#define MY_FIR_RESULT_MSK (OXFFFF)

/* Offsets. */

#define MY_FIR_CTRL_GO_OFST (0)
#define MY_FIR_STATUS_BSY_OFST (0)
#define MY_FIR_STATUS_DONE_OFST (1)

#endif /* __FIR_REGS_H */
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Test fir.c

JhkhhhhkhkdhhkhhkbohhkhhkhhAhkrhAhkrhhAAFrhkh AT Ak A rhAhkhAFr Ak bk rhhdrhhd T hhAdkrhhk A *hk kA *hkhdkhkiokwkhkwk

/

* Copyright (c¢) 2007 Altera Corporation, San Jose, California, USA. *
* All rights reserved. All use of this software and documentation is *
* subject to the License Agreement located at the end of this file below. *

FhAkXdhkhkdhhhkdhhhkdhrhkdhhhkdhhhkdhhikdhkhkhkxhhkkkhhkhkkkhdhkkhihhkxdkkhidxhhk k‘k*‘k*************/

/’k***v‘(***k*'*********.&****k***k***-k***k***'k***k***k***'iz***’1‘(******-k****‘k**'k****
* This is a simple C program that exercises the FILTER_4 component by

* writing to the onchp Ram with test data and then configuring the

* FILTER_4 to read back the calculated FIR results as well as

* the status regusters of the FILTER_4 using the IOWR and IORD

* as defined in the fir_regs.h file.

* Modified by Ganen 2008 March */

#include <stdio.h>

#include <stdlib.h>
#include ".\inc\fir_regs.h"
#include "system.h"
#include <alt_types.h>

//TOP_INST_RASE
// ONCHIP_MEM_BASE

7

write sample values into onchip ram

int set_buf_val( alt_u32* buffer, int length, alt_u32 val )
{

int ret_code = 0;

alt_u32 test_data = val;

int offset=0;

while (offset <= length )

{
printf( "TEST DATA := %d \n", test_data);
*(buffer + offset) = test_data;
if( *(buffert+offset) != test_data )
{
ret_code = -1;
}
for (int i = 0; i < 100; i++)
{
if (i<9) test_data = i*100; // 0,100,200,300
else test_data = (i + 92); // 101,102,103
}
offset++;
}
return( ret_code );
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/* This program points the checksum component at a small buffer and

* computes the checksum. */

int main()
{

// Point the buffer at the base of the onchip ram.
// base of onchip ram defined in system.h file "ONCHIP_MEM_BASE"
alt_u32* buf = (alt_u32*) ONCHIP_MEM_BASE;
alt_u64 addr_reg, length_reg, contorl_reg, coef(, coefl, coef2, coef3;
alt_u32 mem, fir_result;

int len = 170; // set the length to
int coef_0 =1; // initialize the coeff
int coef_1 =2;

int coef_2 =4;

int coef_3 =6;

int status;

int result;

int i;

// Set the buffer tc all OxF{'s.

printf( "Writing to test memory. \n");

if( (set_buf_val( buf, len, 0x0002 )<0) )

{
printf( "Error: Could not pre-set buffer at %d.\n", (int) buf );
return( -1 );

// IORD
// read mem

etup in alter_avalon_checksum_regs.h and io.h

{

for (i=0; i<30; i++){
mem = IORD (ONCHIP_MEM_BASE,1i);
printf( "memory:= %d\n", mem);

}

// Store the address (must be 32-bit word aligned address).
printf( "Writing to address register. \n");
JOWR_MY_FIR_ADDR( TOP_INST_BASE, ONCHIP_MEM_BASE );

printf( "Reading from address register. \n");
addr_reg = IORD_MY_FIR_ADDR(TOP_INST_BASE);
printf( "address register read success: %x\n", addr_req);

Store the length in bytes (up to a 16-bit value).
printf( "Writing to length register. \n");
IOWR_MY_FIR_LENGTH( TOP_INST_BASE, len );
length_reg = IORD_MY_FIR_LENGTH (TOP_INST_BASE);
printf( "Length register read success: %d\n", length_req);

printf( "Writing to coef registers. \n");
IOWR_MY_FIR_COEF_O (TOP_INST_BASE, coef_0);
IOWR_MY_FIR_COEF_1 (TOP_INST_BASE, coef_1);
IOWR_MY_FIR_COEF_2 (TOP_INST_BASE, coef_2);
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IOWR_MY_FIR_COEF_3 (TOP_INST_BASE, coef_3);

printf( "READING coef registers. \n");

printf ("coef_0:= %d\n", IORD_MY_FIR_COEF_O0 (TOP_INST_BASE));
printf ("coef_1:= %d\n", IORD_MY_FIR_COEF_1 (TOP_INST_BASE));
printf ("coef_2: %$d\n", IORD_MY_FIR_COEF_2 (TOP_INST_BASE));
printf ("coef_3:= %d\n",IORD_MY_FIR_COEF_3 (TOP_INST_BASE));

il

// Tell it to "go".
printf( "Writing to go bit in control register. \n");
IOWR_MY_FIR_CTRL( TOP_INST_BASE+MY_FIR_CTRL_GO_OFST, MY_FIR_CTRL_GO_MSK);

//Polling loop waiting for the component to be done.
printf( "Polling for DONE bit in status register. . . \n");
status = IORD_MY_FIR_STATUS( TOP_INST_BASE );
while( ! (status & MY_FIR_STATUS_DONE_MSK) )
{
status = IORD_MY_FIR_STATUS (TOP_INST_BASE);
fir_result = IORD_MY_FIR_RESULT (TOP_INST_BASE);
printf ("fir result := %d\n", fir_result);
}

printf( "Done bit asserted, exiting polling loop. \n");
printf( "Done reading fir result \n", (int) result );

return 0;
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calculate_fir.c

// THIS IS THE C MODEL OF THE FIR USED FOR THE PIL ROUTINE

// This code was compiled using in Microsoft visual C++ 2008

#include "veriuser.h" // this is the header file for the verilog simulator
// fir calculating function

int firFilter( int coefPtr[], int dataPtr [], int y[])

{
for (int n = 0; n < 99; n++) {
int sum=0;
for (int k = 0; ((n-k)> -1) &&( k< 4); k++){
int a=((n-k)<0)?20: (n-k);
sum += dataPtrla]*coefPtr(k];
}
y[n] = sum;
}
return 0;
}

extern "C" ___declspec(dllexport) PLI_INT32 CALCULATE_FIR()
{

io_printf ("\n\n**** Wellcome to the wonderful world of PLI ****\n");

int coef [4] ={1,2,4,6};
int data [99] ;
int y [99];

//initialize data array

for (int i = 0; i < 100; i++){
if (i<9) datali] = i*100;
else datali] = (1 + 92);
//printf("sE , %$0£A\n", (1%4),datalil);

}
firFilter (coef, data,vy);

for (int 1 = 0; 1 < 30; i++){

io_printf ("FIR_RESULT[%d] :=%0d\n",1i,y[i]);

io_printf ("\n\n\t End of PLI\n");
io—printf("'********************************************‘k**********\n")’o
io_printf (" Manually check the simulation results \n");

iO printf("***************************k********k**i*****************\\n");

return 0;

}

extern "C" __declspec(dllexport) s_tfcell veriusertfs[] = {
// this is the simulator specific part, this is for modelsim
{usertask, 0, 0, 0, CALCULATE_FIR, 0, "SCALCULATE_FIR"},
{0} // last entry must be 0

}i
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