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Abstract
Arif Jahangir
Master of Science - Computer Science
Ryerson University, Toronto, Canada, 2019
A COMPARATIVE STUDY OF THE IMPACT OF DATA AUGMENTATION IN

MACHINE LEARNING BASED CLASSIFICATION ACCURACY

Traumatic Brain Injury is the primary cause of death and disability all over the world. Monitoring
the intracranial pressure (ICP) and classifying it for hypertension signals is of crucial importance.
This thesis explores the possibility of a better classification of the ICP signal and detection of

hypertensive signal prior to the actual occurrence of the hypertensive episodes.

This study differ from other approaches as time series is converted into images by Gramian angular
field and Markov transition matrix and augmented with data. Due to unbalanced data, the effect of

smote extended nearest neighbour algorithm for balancing the data is examined.

We use various machine learning algorithms to classify the ICP signals. The results obtained shoe
that Ada boost performance is the best among compared algorithms. F1 score of the Ada boost is
0.95 on original dataset, and 0.9967 on balanced and augmented dataset. Quadratic Discriminant

Analysis F1 score is 1 when data is augmented and balanced.
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Chapter I - Introduction

1.1 Problem Statement

Traumatic Brain Injury (TBI) is the primary cause of death and disability all over the world among
children, youth and adult. Around 1.5 million Canadians live with the consequences of an acquired
brain injury. The yearly occurrence of TBI is more significant than that of Breast Cancer,
HIV/AIDS, Spinal Cord Injury, and Multiple Sclerosis combined [1].

Stabilizing a patient after traumatic brain injury is crucial for saving a patient from dead and further
deterioration of brain tissues. Monitoring the intracranial pressure (ICP) and classifying it for
hypertension signals in ICP becomes of crucial importance in this regard. This thesis will explore
the possibility of better classification of the ICP signal and detection the pattern of hypertensive

ICP signal prior to the actual occurrence of the hypertensive episodes [2].
1.2 Motivation

Traumatic brain injury (TBI) causes human to deviate from their normality. The first step from
preventing this is to save lives and stop further deviation. Monitoring and classifying ICP becomes

of utmost importance in this regard [1][2].

Different algorithms have different inner workings. The motivation of this thesis is to study
whether an inner algorithm working is sensitive to data representation or not. This study is
conducted to explore this. Information contained in different data representations is the same, but
different algorithms process data representation differently. Some algorithms may find it easy to
classify the data if data is presented in a certain manner while other algorithms may find it

challenging to classify if data is presented in that same manner.

The approach of this thesis is to present data in its original form to different algorithms and
compares its results to the results if the data is augmented with different representation. The
machine learning algorithms selected for this study are Nearest Neighbors, Naive Bayes, Gaussian
Process, Linear Support Vector Machine - Classification (SVM), RBF Support Vector Machine -
Classification (SVM), Quadratic Discriminant Analysis (QDA), Decision Trees, Ada Boost, and
Multi-Scale Convolutional Neural Networks (MCNN). Data is represented in its original time

series form as well as in Gramian Angular Plots representation and Markov Transition Fields



representation. Gramian Angular Plots representation and Markov Transition Fields representation
has been used before; this study explores these representations effects on above-mentioned

algorithm’s inner workings. Additionally, this study is conducted in the context of ICP signals.

Importance of this study is to explore whether data representation aids in classification or not
particularly on ICP signals. Another motivation of this thesis is to study the effects of balancing
the dataset with SMOTE ENN algorithm (section 4.3) and comparing how classifying abilities of
above-mentioned algorithms changes for both original dataset and augmented dataset with

different data representation.
1.3 Objectives and Methodology

The objective is to compare above-mentioned algorithms for four datasets listed below. To
compare the results of various above-mentioned algorithms, four datasets are passed through

various algorithms. Finally, comparison and analysis of all the results are investigated as follows:

Dataset is taken from MIMIC-II and CHARIS database.

Dataset is cleaned, and hypertensive signals are identified.

Hypertensive signal’s past six minutes segments are used as positive examples.

Rest of the signal are identified as negative examples.

Following datasets are constructed.
o Data without SMOTE ENN algorithm and without augmenting it with Gramian
angular field images and Markov transition matrix.
o Data with SMOTE ENN algorithm but without augmenting it with Gramian
angular field images and Markov transition matrix.
o Data without SMOTE ENN algorithm but augmenting it with Gramian angular
field images and Markov transition matrix.
o Data with SMOTE ENN algorithm and augmenting it with Gramian angular
field images and Markov transition matrix.
e Four datasets are then passed through the following algorithms.
o Nearest Neighbors
o Naive Bayes

o Gaussian Process



o Linear Support Vector Machine - Classification
o RBF Support Vector Machine - Classification
o Quadratic Discriminant Analysis

o Decision Trees

o Ada Boost

o Multi-Scale Convolutional Neural Networks

e Results of the above algorithms are compared and investigated.

MCNN is selected because it showed promising results in classifying various time-series datasets
[1]. MCNN is a multichannel convolutional neural network it is well suited to handle Gramian
Angular Plots images and Markov Transition Fields images as it is a convolutional neural network.
Gramian Angular Plots images and Markov Transition Fields images are different representations

of our original dataset. Figure 1.1 presents the schema of the thesis.

1.4 Contribution of this thesis

As illustrated above, ICP signals have been studied with many different methodologies. This thesis
contribution is to classify the hypertensive signal before the hypertensive state occurs by passing
the original data and data augmented with different data representation to various classification
algorithms mentioned above. The effect of balancing of data with Smote ENN is also studied.
Finally, the best algorithm among Nearest Neighbors, Naive Bayes, Gaussian Process, Linear
Support Vector Machine - Classification, RBF Support Vector Machine - Classification, Quadratic
Discriminant Analysis, Decision Trees, Ada Boost, and Multi-Scale Convolutional Neural
Networks on the given dataset is evaluated.

Though the neural network is applied before on ICP signal. ICP signals were treated as time series.
The contribution of this thesis is converting time series into images by using Markov transition
fields and Gramian angular field and using MCNN and other algorithms to classify hypertensive
and non-hypertensive signals. The Gramian angular field is essential in the analysis of ICP signal
because once we have transformed the rescaled time series into polar coordinates, we can easily
exploit the correlations within different time intervals. Markov transition field is vital in this regard
because it is similar to a framework for encoding dynamical transition statistics; the concept is
extended by representing the Markov transition probabilities serially, to preserve statistics in the

time domain.
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1.5 Structure of the Thesis

In chapter 2, the background information related to intracranial pressure is presented. Chapter 3
explains Gramian angular plots, Markov transition field and multi-scale convolutional neural
network. In chapter 4, the steps taken in order to clean and pre-process the datasets are illustrated
along with the theoretical underpinning of algorithms. In chapter 5, the results of our investigation
are presented. Chapter 6 provides a discussion about the results and the connection with the
theoretical structure of the algorithms. Finally, in chapter 7, the conclusion and future directions

are presented.



Chapter |1 - Background

Intracranial pressure is referred to as the pressure inside the skull due to brain tissues and
cerebrospinal fluid. This pressure is increased due to brain/head injury, bleeding in the brain, brain
tumour, swelling of the brain, excessive cerebrospinal fluid aneurysm or infections such as
encephalitis or meningitis. With the increase of intracranial pressure, an auto-regulatory process
exerts to produce equilibrium initially. If the volume is expanded beyond a certain point due to the
reason mentioned above, the auto-regulatory process breaks down, and ICP rises. The normal
range of ICP values is from 0-25 mm Hg. In children, the range is between 3 and 7 mm Hg, and

in infants, it is 1.5 to 6.0 mm Hg beyond these ranges ICP is considerate to be abnormal [1][2].

The increase in ICP can be divided into three stages. In stage 1, the autoregulatory mechanism
pulls processes towards equilibrium. Stage 2 represents intracranial hypertension. Key
characteristics of this stage include less neuronal oxygenation, and arteriolar vasoconstriction to
increase Cerebral perfusion pressure CPP. CPP is the remaining pressure gradient
producing cerebral blood flow to the brain. It must be upheld within thin limits since tiny pressure
could cause brain tissue to develop ischemic (having insufficient blood flow), and excessive blood
flow could raise intracranial pressure (ICP). Stage 3 is characterized when small changes in
volume correspond to substantial changes in ICP. In this stage, it becomes increasingly difficult to
squeeze blood into internarial space, which leads to ischemia and brain infarction. The further

increase can eventually be fatal [1][2].

Analysis of ICP signals for these stages is essential because they can be used to take timely
appropriate actions to remedy the problem. In effect, a predictive model -- that can forecast the
occurrence of different phases based on the past history of ICP -- will be beneficial from diagnostic
and treatment point of view. ICP signals have already been analyzed with various mathematical
techniques [1] [2] [5] [6] [7] [8] [9] [10] [11] [12]. In time-domain approaches, typically a number
of windows are created, and their mean, standard deviation and variance are calculated
accordingly, and then sing these parameters, regularities and irregularities cand classified. In the
frequency domain, different harmonics are ranked for the same. ICP signals have also been
subjected to wavelets analysis. Other methods of ICP signal analysis include approximate entropy

analysis and fractal analysis [27][28][29].


https://en.wikipedia.org/wiki/Pressure
https://en.wikipedia.org/wiki/Cerebral_blood_flow
https://en.wikipedia.org/wiki/Ischemic
https://en.wikipedia.org/wiki/Intracranial_pressure

2.1 Background of Intracranial Pressure

The main aim of understanding background information about ICP is to investigate the present
limitations and capabilities of past and current methods. Also, to observe and understand the ICP
time series and extract their inherent features around the homeostasis state perturbations. The
variations within physiological system signals are analyzed and captured through nonlinear
dynamics analysis by exploring various mathematical models and methods. This is done to
ascertain and investigate the reliability of different approaches in order to encode ICP information
in time and frequency domain. Another aim of presenting previous and current approaches is to
further translational research to explore whether these techniques can provide qualitative and
quantitative data that can be encoded into a small number of parameters or signals that can be
interpreted easily by clinicians.

The brain has an auto-regulatory mechanism to deal with a matter that accumulates abnormally. It
shifts cerebrospinal fluid volume along with cerebral blood volume to the outside of the brain.
This mechanism has a limit. When matter accumulates beyond this threshold system disruption
happens and break down is the result. When equilibrium vanishes, any further swelling shows
itself as an upsurge in ICP. It cannot be ascertained whether the upsurge is a primary or secondary
cause of the pathological mechanism. Nevertheless, the rise in ICP is associated with cerebral
ischemia, neurological deficit, and death. Majority of neurological intensive care exertions are

designed to treat intracranial hypertension [3] in order to boost patient health [4]-[6].

Pressure transducers are put in the intracranial spaces, particularly subdural, intraparenchymal,
epidural, and lateral ventricular regions. The bedside monitor is used to display the values from
pressure sensors. Table 2.1.1 shows the normal variations of the ICP signal with respect to age.

Table 2.1.1. Age vs Normal range of ICP signal

Age The normal range of ICP signal
Infants 1.5t0 6.0 mm Hg
Young Child 3to 7 mm Hg
Adults 0 to 15 mm Hg




According to The Brain Trauma Foundation 2007, 20 to 25 mm Hg should be considered as the
upper limit beyond which management of ICP should be introduced [1][2].

The Valsalva maneuver, sneezing, coughing, and specific forced body movements against
resistance cause changes in ICP values. These changes need to be filtered out to obtain the correct
value of the ICP signal. Physicians primarily measure ICP signals in patients with the comatose
condition to see deviations from normal related to various kind of brain damages particularly
stroke, trauma and deterioration of neurological health which are difficult to observe by the

methods of clinical checks.

Investigators primarily in the field of physics and engineering have studied various mathematical
models, techniques, and approaches to abstract prognostic and diagnostic parameters which are
discussed in subsequent sections of this chapter. These approaches are limited to research
applications. Recently ICP has been included in the list of physiological signals to be studied by

deep learning and traditional machine learning techniques.

2.2 Constituents of ICP Signal
ICP waveforms are a superposition of three waveforms. The pulse waveform, the respiratory
waveform, and the slow waveform. These waveforms are considered as harmonics components.

The pulse waveform is due to the cardiac cycle and contain:

a. Arterial pressure waves which consist of the percussion peak, the tidal peak, and the
dichotic peak.

b. Venous pressure waves

Peak amplitudes may be considered to be connected to variations in systemic arterial pressure,
brain tissue compliance, or the closure of the aortic valve. Slow waves are an important indicator
as it is shown that they are related to the fatal consequence in patients with traumatic brain injury

[7]. The frequency range of slow waves is between 0.05 to 0.0055 Hz [8].
2.2.1 What causes ICP waveform

The simultaneously interacting physiological process causes the emergence of ICP waveforms as
time-series data signal. The shape of the waveform is studied in the following two ways.



1. Awveraging values over time

2. Harmonics detailed analysis [9]

Many mathematical techniques, methodology and approaches can be applied to find the rate of
occurrences and frequencies of key pattern within the signal. These patterns can then be used for
predicting and anticipating adverse events. If such patterns can be found, then this pattern can
guide clinicians to desired therapies.

O’Phelan et. al. [10] reached a conclusion that ICP display characteristic patterns in the time
domain. They also suggested the requirement of finding ICP patterns and attaching a predictive
value on its manifestation in time. Lundberg classified the waveform[2]. Lundberg classification

consists of classifying a series of ICP wave into A, B, C waveforms:

e A waveform: is characterized by the sudden surge in ICP signal and maintenance of ICP
signal over 50 mm Hg for a duration of 5 to 20 minutes [2]. They indicate diminished brain
compliance [11] and are due to inadequate cerebral perfusion pressure and cerebral blood
flow.

e B waves form: are slow waves consisting of a range of amplitude between 10 to 20 mm
Hg. They are allied with respiratory cycles.

e C waves form: characterized as resulting from the interaction of cardiac and respiratory
waves signals. They are characterized as consisting of a frequency of 5 to 9 oscillation per
60 seconds [2].

2.2.2 I1CP waveform superimposed on the respiratory variation waves

It has been indicated that superimposition of respiratory variation waves on ICP signal in traumatic
brain injury patients gives insights into brain compliance. It has been shown that the waveforms
for inspiration and expiration are different in traumatic brain injury patients.

2.2.3 Mean ICP values

In the traditional monitor, the mechanism of displaying ICP signal consists of averaging over ICP
signal measured in divisions of millimetres of mercury that is in mm Hg during the small duration
of time. Standard deviation, variances and mean are computed for these durations [12]. After

surgery and traumatic brain injury, these simple statistics usually show dangerous trends.



Therefore it becomes imperative to control and reduce these simple ICP statistics values in patients
with elevated ICP [13].

The problem with mean ICP values is that they lack the dynamic features of the component signals
[14]. Environmental variations and methods of measurements also affect these mean values. To
overcome these difficulties [15], it is proposed that research should focus on identification of pulse
wave inside the ICP signal to calculate the average amplitude of the wave. It is suggested that it
will probably give a more conclusive and accurate description of intracranial compliance and will

have more predictive power [14].
2.3 Frequency domain

In the frequency domain of ICP signal analysis, we are mainly concerned with harmonics and its
interpretation [8]. Fast Fourier transform is used to identify and classify the harmonics of the
signal. Historically fast Fourier transform is used in the analysis of ICP waveform. This
methodology is shown to have a more reliable analysis as compared to ICP averaged over time
[12].

Wavelet analysis is also used to find wavelet components in the ICP waveforms. Wavelet analysis
gives us a result both in time and frequency domain. Wavelets are convolute over the entire signal.

This methodology encompasses features that are nonstationary [12].
2.4 Limitations of morphological analysis of ICP

In the morphological analysis of waveform, some technical factors introduce errors. Researchers
find great difficulty in isolating discreet ICP signal and peaks inside waveforms which are usually
irregular. There is a superposition of reference ICP wave and pulse wave. This morphs the overall
wave into a wave which has more rounded peaks [16].

Morphological analysis techniques are unable to differentiate the signal distortions caused by
postural variations, the interaction between the adjacent intracranial tissue and the pressure
transducer, patient motion, the monitor’s drift, disturbance of hardware connections, and volume

changes. This upsurges the noise to signal ratio and analysis of true signal becomes difficult [17].

Present-day research in the morphological analysis of ICP waveform concentrates in enhancing

the signal to noise ratio and more accurately identifying the peaks in the signal. Peak formations
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are the foundation of analysis, and therefore, they are vital to identify these distinctly [18]-[19].
Identification of peak signal gives insight into changes in the form of sub-peaks that are very
helpful both in time and frequency domain. Identification of the shape and periodicity of the
waveform correctly forms the foundation of analysis and interpretation of ICP signals.

2.5 ICP Waveform-Derived Indexes

Secondary indexes that may be helpful in identification of the onset perturbation in ICP waveform
has been investigated [20]. Analysis of intracranial ICP waveform decompensation and its
elastance capacity has been explored [20]. Researchers have suggested exploiting the standard
deviations regression plot and slope of mean ICP [20]. They have also proposed to exploit the
intersection of ICP pulse amplitude and slope of baseline ICP waveform [20]. Researchers believe
that these may indicate the perturbations in the underline mechanisms that cause perturbations in
the ICP waveform.

Derivation of secondary indices uses mean wave amplitude and mean values. It is suggested that
the pressure-volume graph may be drawn by pressure coefficient (RAP) and regression of
amplitude. It is also proposed that this can be considered as a correlational measure between the
amplitude of the pulse waveform and ICP signal. This can be considered as an indicator of the

cerebrospinal compensatory reserve [8].

Cerebrovascular pressure reactivity (CPR), which indicates the ability of smooth muscle tone
within the confined of cerebral arteries to correspond with the perturbations in transmural pressure
may also be an indicator of neurological compensation [21]. Czosnyka and Pickard [8] suggested
the pressure-reactivity index (PRX) indicate the correlation coefficient of mean ICP and arterial
blood pressure (ABP). (PRx) is used as a predictive parameter of deteriorated outcome after

traumatic brain injury [20].
2.6 Neural Networks

Presently neural networks and deep learning are being used to analyze and classify ICP waveforms.
It has been found that neural networks and deep learning approaches are more dependable
techniques as far as forecasting of future mean values of ICP signals is concerned. Neural networks
can dig into tiny time frames of ICP waveform, which are extracted from a complete time series.

For example, Deep Learning algorithms have been used to model the association between
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waveform morphology and hypertension in [22]. In another study [23], deep belief networks
(DBNs) were demonstrated to be adept at learning generative and discriminative characteristics
from the models; Arguments has been provided in favour of the suitability of these approaches to

classify ICP waveform with various features.

In [24], a neural network based approach was used to train to classify 60 cerebrospinal fluid pulse
pressure waveform (CSFPPW) in four dissimilar classes conferring to their morphology. The
efficacy of this method was compared to a proficient inspector’s classification. The morphology
of CSFPPW was logged in 60 patients. Results showed the general concordance in CSFPPW

classification between an artificial neural network, and the expert examiner was 88.3 %.

In another approach [25], the breakdown of an ICP signal into clinically relevant dimensions, to
permit the identification of important ICP waveform, was studied. It. The authors divided their
analysis into three stages. They started with multi-resolution convolution analysis for the main
signal decomposition. Afterwards, they created an impulse function with multiple factors that can
characterize any form in the signal under investigation. Lastly, they used localized optimization
technique to discover morphologies of concern in the decomposed ICP signals. It was shown that
the method works with performance receiver operator characteristic area below the curve figures
for each of the waveform categories, B wave, A wave, and C wave’s low, and high compliance
states of 0.694, 0.936, 0.698, and 0.676 were found respectively.

In another paper [26], ICP monitoring by means of texture features have been suggested. A mixture
of image processing approaches and a decision tree algorithm is used to assess ICP of traumatic
brain injury patients non-invasively. Furthermore, a visual analytics tool is applied to conduct an

outlier detection and interactive visual feature analysis.
2.7 ICP and Entropy

Entropy approaches are different from other approaches in the sense that they try to find regularity
in the signals while other approaches try to find an irregularity in the signal [27]. Approximate
entropy is defined as “the negative normal logarithm of the conditional probability that a dataset
of extent N will replicate itself again.” It examines a set of data series for emerging new patterns
and the frequency of their reappearance within the waveform. The ability of approximate entropy

to generate waveform randomness and to form a pattern is exploited [28]. Estimated entropy, along
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with Lempel-Ziv (LZ) compression entropy quantity [28] is used to measure drastic perturbations
in the ICP waveform in young patients suffering from austere traumatic brain injury. This is used

to explore the correlation with the mean ICP waveform.

The LZ compression entropy quantity is well-defined as “a nonparametric measure of complexity
for one-dimensional signal connected to the number of separate substrings and the rate of their
occurrence along with a given series.” The LZ recognizes new emerging patterns and replaces the
series with a reduced reference in order to compress the whole series into reduced sets as this
compression can reproduce the original signal from its reduced form, and it is considered as
lossless. The LZ can identify and differentiate the regularities in a time series. Researchers
conclude that the complexity of ICP waveform decreases during intracranial hypertension period.
These periods are labelled as “plateau wave” and are indicative of persistent elevations of ICP
waveform. The rise of pattern’s regularity in durations of intracranial hypertension indicate

secondary brain injury.

2.8 Non-Invasive method for ICP

In one non-invasive based approach for ICP [30], it was concluded that Blood Pressure, Mean
Arterial, Respiration, Diastolic Arterial, Heart Rate, ECG ST-segment levels, and Pulse are
strongly correlated with ICP and have the potential of predicting intracranial hypertension.
Elevated ICP periods and related physiological signals were then extracted from given datasets.
Based on ICP levels, “Severe Intracranial Hypertension,” “Intracranial Hypertension,” and
“Intracranial hypertension onset” events were identified. It was suggested that physiological
signals in TBI patients have the predictive power to predict undesirable events in the ICP

waveform.

In a study conducted on 31 traumatic brain injury patients [31], the principal component analysis
was applied to extract non-correlated feature selection. They concluded that two components could
be extracted from continuously gathered physiological signals of traumatic brain injury patients.
The result was examined by utilizing parallel analysis, Scree test, and Kaiser’s Criterion. The
power of prediction of these two components was confirmed as it achieved an error of 0.025 on

mean absolute error (MAE) score.

Another study [32] was done on 20 patients with TBI. K-means clustering investigation centred

on a wavelet was applied to identify configurations of physiological signals. They investigated
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variations in these configurations. Researchers concluded that this unsupervised method could be

a possible technique to identify patterns in the ICP waveform.

2.9 Main advantage of the proposed approach for classification of ICP signal

As discussed above, ICP signals are studied in both the time domain and the frequency domain.
They have also been investigated using wavelet and fractal analysis. Investigators have applied
ICP waveform-derived indexes to get insights into ICP signal. The exploitation of irregularities by
means of entropy exploration has also been studied. Researchers have also considered non-

invasive methods and neural networks.

The main advantage of the this thesis approach is in converting ICP signal into images, particularly
Gramian angular plots and Markov transition field images (section 3.1 and 3.2) . The Gramian
angular field is significant in the study of ICP signal for the reason that once we have transformed
the time series into polar coordinates, we can straightforwardly exploit the correlations inside
different time intervals. Markov transition field is central in this regard because it is comparable
to a framework for encoding dynamical transition statistics; the concept is drawn-out by

representing the Markov transition probabilities serially to preserve statistics in the time domain.

By using different data representation (images) of ICP signal, classification accuracy, precision,
recall and F1 score are investigated on the various machine learning algorithms such as Nearest
Neighbors, Naive Bayes, Gaussian Process, Linear Support Vector Machine - Classification
(SVM), RBF Support Vector Machine - Classification (SVM), Quadratic Discriminant Analysis
(QDA), Decision Trees, Ada Boost, and Multi-Scale Convolutional Neural Networks (MCNN)
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Chapter Il - Gramian Angular Plots, Markov Transition Field and
Multi-Scale Convolutional Neural Network (MCNN)

3.1 Gramian Angular Field

The Gramian angular field is contracted in the following way [4]. Assume we have a time series
X = {X1, X2, ..., Xn} Of n real-valued observations, To make all values fall in the interval [-1,1] we

rescale the values by:

(x; — max(X) + (x; — min(X))
max(X) — min(X)

X; =

(3.1.1)

In polar coordinates, we can characterize the rescaled time series X by taking a timestamp as the

radius and by converting the x;” as the angular cosine with the equation below [4]

¢ =arccos(x;), —1<x7 <1,x7 €X~

t;
t; EN

r:N'l

(3.1.2)

In the above equation, N and time stamp t; are a constant element to normalize the span of the

polar. ¢ is the polar angle and r is the radius of polar coordinates.

The polar coordinate grounded illustration is a new method to comprehend time series. As time
upsurges, corresponding values twist among various angular points on the spanning circles, like

water rippling. The coding map has two essential properties.

First, due to monotonicity of cos() function in the interval [0, pi], it is bijective. This transformation

produces only one map in polar coordinates with a distinctive inverse function.

Second, in the Cartesian coordinate system area does not depend on the absolute value of time. It
only depends on the time interval. While in polar coordinates it depends on both. In Cartesian

coordinates, the area S; ; in i, j dimensions are defined by.
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Sii=] ;((l’)) F(x(@®)dx(t) .
(3.1.3)
In the Cartesian coordinate system, the area is the same
Siivk = Sjj+k
(3.1.4)

In the above equation f(x(t)) has the identical values on [i, i + k] and [j, j + k]. While in polar
coordinates, the area S; ; is defined by way of
2(J)
siy= [ rlorae®)
B(0)
(3.1.5)

where @(i)and @(j) are two angles, and we are interested in the area between the two. r is the

radius then
Siivk = Sjj+k
(3.1.6)

the matching area from time stamp i to time stamp j is not only reliant on the time duration |i j|,
but also specified through the absolute value of j and i.

Once we have transformed the rescaled time series into polar coordinates, we can easily exploit
the correlations within different time intervals. By taking the trigonometric sum between each
point in time, we can calculate the correlation inside different time duration. The Gramian angular

plot G is contracted in the following way.

cos(@, +@,) -+ cos(®,+ D,)
G = : :
cos(@, + 01) - cos(P,+ D)

(3.1.7)
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The Gramian Angular Field has numerous benefits.

e It delivers a method to preserve the temporal dependence, as time rises as per the location
moves from top-left to bottom-right.

e The Gramian Angular Field encompasses temporal correlations

e The chief diagonal Gi,i is the singular situation when k = 0, which comprises the original
value/angular info. With the central diagonal, we will almost rebuild the time series data
from the high-level features learned by the deep neural network.

e The Gramian Angular Field is significant since the scope of the Gramian matrix isn - n
when the distance of the unprocessed time series is n. To decrease the dimension of the
Gramian Angular Field, we apply Piecewise Aggregation Approximation [36] to even the

time series and while preserving the trends.
3.2 Markov Transition Field

Markov Transition Field is similar to a framework of [37] for encoding dynamical transition
statistics; The concept is extended by representing the Markov transition probabilities serially, to

preserve statistics in the time domain [4].

If we have a time series X, we construct its Q quantile bins and allocate individually xi to the
conforming bins g; ( £ [1, Q]). In this manner, we build a Q by Q weighted adjacency matrix W
by calculating transitions midst quantile bins in the method of a first-order Markov chain along
the time axis. Elements of matrix W are denoted by wi;is specified by the frequency through which

a point in the quantile qi trails a point in the quantile g;.

After this we normalize wi;= 1, W is the Markov transition matrix. It is oblivious to the spreading
of X and temporal dependence on time steps which are denoted by t;. There is a lot of information
loss in getting rid of temporal dependence in matrix W. To overcome this disadvantage, Markov
Transition Field (MTF) matrix M is defined as follows [4]:

Wijix,€quxi€q; - Wijlxi€q;xn€q;

M =
Wijlxneqixi€q; - Wijlxpeqixneq;

(3.2.1)
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We construct a Q - Q Markov transition matrix by separating the data into Q quantile bins. The
quantile bins that encompass the data at time stamp i and j (temporal axis) are qi and q; (¢ € [1,
Q]). Mjj in MTF signifies the transition probability of gi -> qj . By considering the temporal

positions, MTF matrix is built, which contain the transition probabilities at time locations.

By conveying the probability commencing from the quantile at time footstep i to the quantile at
time footstep j at each pixel Mij , the matrix M essentially captures the multi-span transition

probabilities of the time series
Markov transition matrix has the following properties.

e  Mijjiji=« signifies the transition probability amid the points with time interval k. For
instance, Mijjji=1 demonstrates the transition progression along the time axis with a skip
footstep.

e The central diagonal Mii, which is a distinct situation when k = 0 engulfs the probability
from each quantile to itself

e Blurring kernel is applied to create the image extent controllable and computation more
effectual, Aggregation of the transition probabilities is done in every subsequence of length

m.
3.3 Time Series classification and why Multi-scale Convolutional Neural Network

ICP signal is a time series. Researchers have studied and tried to solve the problem of forecasting
time series’ class labels for nearly a couple of decades within the data mining and machine learning
community. There has been some significant advancement in the field and applications were found
in clinical prediction and biomedical field. These advancements still fall short of giving good
accuracy and efficiency. In the past approaches mostly involved pulling out discriminative features
within a time series by utilizing dynamic time warping (DTW) or wavelet transformations. These
discriminative features were then fed to the classifier. In these methods, feature extraction and
classification are two separate parts, which limits the accuracy of these methods. Features also

exist at different time scales, and this aspect is ignored in these methods.

There are two categories in which most time series classification approaches fall, distance-based
methods and feature-based methods. In the distance-based method, a similarity metric is evaluated.

Once we have the similarity metric, we can classify the time series with k- nearest neighbours or
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support vector machine. Most notably, the similarity metric used is dynamic time warping (DTW).
In DTW, two time series are aligned with dynamic warping to find the best fit. Dynamic

programming is used to do this.

In feature-based methods, feature vectors are formulated, and then these feature vectors are fed
into classification algorithms to generate classification. In clinical prediction time series is divided
into windows and features are extracted from these windows. Features can be as simple as mean
and standard deviation as well as sophisticated features derived from detrended fluctuation

analysis and spectral analysis.

In another approach to feature, extraction wavelets are used. In these methods, shapelets are
defined and considered as a signature subsequence. These shapelets are used in various ways; for
example, they are viewed as a dictionary with each shapelet as a word and time series is regarded
as a bag of words model. A more recent study [35] builds the feature vector by the minimum

distance between the shapelet and time series containing the shapelet.

A disadvantage of the shapelet method is that we have to search an ample space for discriminative
shapelets. To overcome this difficulty, Grabocka et al. [38] propose to jointly explore a collection
of shapelets simultaneously along with the classifier. The drawback of their method is that it can

only separate linear planes.

The convolutional neural network has shown promising results in the field of object recognition
[39], face detection [40], audio and speech analysis [41] and natural language processing. A key
reason for the success of the convolutional network is its ability to learn complex features by its
convolutional layers. It is natural to ask this question can convolutional neural networks be applied
to time series where CNN learns complex feature representations by itself and classify the time

series.

Cui et al [3] proposed a novel method of an end to end neural network model. Multi-Scale
Convolutional Neural Network (MCNN) integrates classification part and feature extraction part
into one scheme. They created a multi-branch layer and a convolutional layer that can be learned.
In the portion of the algorithm that runs the multi-branch layer, different scales and frequencies
are processed, and features are extracted, which shows superior features representations. We

propose to extend this framework by adding more branches to Multi-Scale Convolutional Neural
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Network (MCNN). We intend to add Gramian angular plots and Markov transition fields as two
new branches. Gramian angular plots and Markov transition fields all are images. The
convolutional neural network is suited to extract features from these images which are fed to the

full convolutional network.

The intuition behind this thesis is if we feed many more perspectives to full convolutional neural

network, it become easier for the network to classify the time series.
3.4 Multi-scale Convolutional Neural Network (MCNN)

Multi-scale Convolutional Neural Network (MCNN), a convolutional neural network precisely
planned for classifying time series. A characteristic feature of MCNN is that its first layer
encompasses several branches that perform various transformations of the time series, covering
those in the frequency and time domains, excavating features of various types and time scales.
After that dot product is applied to the transformation layer and 1-D learnable filter in the
convolutional layer. This is the typical method to acquire features in the convolutional neural
network. The result of feature knowledge in the branches is then concatenated and fed to the full
convolutional neural network. Figure 3.4 is the depiction of the overall architecture of MCNN by
Cui and el [3].

Fully connected  Softmax

predicted
label distribution

Figure 3.4. Overall Architecture of MCNN Zhicheng Cui and al [3]
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MCNN is one of our algorithm that is compared with other algorithms. There are three stages in
MCNN.

1) Transformation Stage
In the transformation stage, the signal is passed in three ways. First, the signal is given as
it is and is called the identity transformation. Secondly, the signal is downsized to capture
temporal patterns at different time scale. Overall all trends are reflected in long-term
features and while delicate features are present in short-term signals. Both are necessary
for classifying a time series. Transformation stage has three branches.
a) ldentity Branch

In Identity branch, the signal is passed as it is.

b) Down-sampling Branch

If we have a time series

T = {tl' tz, t3, t4, e wes aee tn}
(3.4.1)

And if k is the down-sampling rate, then we select only the kth and its multiple elements

of the series to form a new series.

n—1
k

T* = {t14rsils =012 s, ]

(3.4.2)

c) Multi-frequency branch
As noises correspondence to high-frequency signals, a varying degree of smoothness
to ICP signal in this branch is applied. Variation of time series signal can be reduced in
this manner. In this branch, various moving averages are applied to obtain various
degree of smoothness.

If we have a time series T

T = {ty,ty,t3,ty v e e, bt}

(3.4.3)
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We obtain new series T' by taking moving average according to the following formula,

where | is the window size of the moving average.

_ ti + ti+1 + ti+1 + TR +ti+l_1

!
T l

(3.4.4)

2) In the local convolution stage, numerous convolutional layers are used to excerpt the features
for each branch. In this stage, the convolutions are independent for different branches from each

other. Max pooling technique with multiple sizes is applied to the output of convolutional layers.

3) In the full convolution stage, all extracted features are concatenated, and several more
convolutional layers (each followed by max-pooling) are applied, after this fully connected layers,
and a softmax layer to produce the concluding output. In this end-to-end system, parameters are

trained via backpropagation.

3.5 Architecture of the MCNN algorithm augmented by Gramian angular plot branch and

Markov transition field branch

Figure 3.5.1 is the depiction of the architecture of the MCNN algorithm augmented by Gramian
angular plot branch and Markov transition field branch. As in this thesis, we are combining

MCNN, Gramian angular field, Markov transition field.
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Fig. 3.5.1. Architecture of proposed modification of MCNN. In the above figure first three branches are
from Cui and el [3]. Fourth and fifth branch are Gramian Angular Field (GAF) and the Markov
Transition Field (MTF) [4]. In the transformation stage and local convolution stage features are
extracted which are fed to full convolution stage which consists of convolution pooling, fully connected

layer and softmax layer.
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Chapter 1V - Data Preparation and Theoretical Underpinning

4.1 Data Acquisition and Data Preparation
4.1.1 Mimic Il (Multi-parameter Intelligent Monitoring In Intensive Care I1)

The MIMIC-I1 database consists of high-resolution signals. These are the time-series signal of vital
signs. It also contains static clinical records. The purpose of the database is to support
epidemiologic research and assessment of clinical decision support systems in the domain of
critical care medicine. The dataset is collected from Beth Israel Deaconess Medical Center. It
consists of 25,328 adult patients surgical and cardiac records. It was obtained from 2001 to 2007.
According to health act standards, the data is entirely de-identified. If the same patient was
admitted after 24 hours, the data, in that case, was recorded with a different ID. Time series are
updated at 1 Hz.

All data that do not contain ICP signal over their entire range was discarded. The dataset contains
only a small fraction of the data that includes ICP signals. Please see the appendix A for file names
that were selected from the MIMIC Il database. The segments were cross-checked with static

patient information to eliminate the duplicate data of the same patient.

The definition of intracranial hypertension is an elevation of ICP over 20mm Hg. The dataset was
imbalanced as only 10% positive labels were among the instances. This imbalance was handled
by the SMOTE+ENN algorithm (please see section 4.3) to create more similar examples of the

positive label.
4.1.2 CHARIS (Cerebral Haemodynamic Auto-regulatory Information System Database)

The CHARIS database consists of multi-channel records of arterial blood pressure (ABP), ECG,
and ICP (intracranial pressure) of individuals diagnosed with TBI (traumatic brain injury). The
purpose of the distribution of data to researchers is to systematize the analyses of appropriate
physiological signals and construct algorithms driven by data in search of possible predictors of

critical clinical events for individuals with significant brain injury.

The apparatus was installed in Robert Wood Johnson Medical Center of Rutgers University’s
surgical intensive care units (SICU). Data gathering units were coupled with patient monitors. The

apparatus was activated as soon as a patient arrived with a diagnosis of brain injury that requires
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an ICP bolt/ventriculostomy. Individuals were mostly ventilated and sedated. ICP was

uninterruptedly monitored with ventriculostomy.

General Electric TRAM-rac 4A was used to acquire the outputs from clinical monitors. The rate
of sampling was 50 Hz with a resolution of 1.41 mV at plus-minus 5 V, which corresponds to the
pressure resolution of 0.14 mmHg and a range of plus-minus 500 mmHg. ICP was uninterruptedly
recorded with micro-transducers (Camino Direct Pressure Monitor, Camino Laboratories, San

Diego, CA) that were implanted intra-parenchyma into the frontal cranium.
4.2 Data Cleaning

Data was collected from MIMIC-Il and CHARIS databases. They were first scanned for any value
higher than 100 Hg or negative values. Values higher than 100 Hg or negative values are caused
by the movement of apparatus and does not give us information about ICP. If any value was found
higher than 100 or negative, a NaN value replaced it. NaN values were subsequently replaced by
interpolating the values 50 steps before the NaN value and 50 steps after the NaN value. 50 steps
prior and after were chosen for obtaining a smooth spline for interpolation. The interpolated value

was placed where NaN valu