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Abstract 

Arif Jahangir 

Master of Science - Computer Science 

Ryerson University, Toronto, Canada, 2019 

 

A COMPARATIVE STUDY OF THE IMPACT OF DATA AUGMENTATION IN 

MACHINE LEARNING BASED CLASSIFICATION ACCURACY 

 

 

Traumatic Brain Injury is the primary cause of death and disability all over the world. Monitoring 

the intracranial pressure (ICP) and classifying it for hypertension signals is of crucial importance. 

This thesis explores the possibility of a better classification of the ICP signal and detection of 

hypertensive signal prior to the actual occurrence of the hypertensive episodes. 

This study differ from other approaches as time series is converted into images by Gramian angular 

field and Markov transition matrix and augmented with data. Due to unbalanced data, the effect of 

smote extended nearest neighbour algorithm for balancing the data is examined.  

We use various machine learning algorithms to classify the ICP signals. The results obtained shoe 

that Ada boost performance is the best among compared algorithms. F1 score of the Ada boost is 

0.95 on original dataset, and 0.9967 on balanced and augmented dataset. Quadratic Discriminant 

Analysis F1 score is 1 when data is augmented and balanced.   
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Chapter I - Introduction 

1.1 Problem Statement 

Traumatic Brain Injury (TBI) is the primary cause of death and disability all over the world among 

children, youth and adult. Around 1.5 million Canadians live with the consequences of an acquired 

brain injury. The yearly occurrence of TBI is more significant than that of Breast Cancer, 

HIV/AIDS, Spinal Cord Injury, and Multiple Sclerosis combined [1]. 

Stabilizing a patient after traumatic brain injury is crucial for saving a patient from dead and further 

deterioration of brain tissues. Monitoring the intracranial pressure (ICP) and classifying it for 

hypertension signals in ICP becomes of crucial importance in this regard. This thesis will explore 

the possibility of better classification of the ICP signal and detection the pattern of hypertensive 

ICP signal prior to the actual occurrence of the hypertensive episodes [2]. 

1.2 Motivation 

Traumatic brain injury (TBI) causes human to deviate from their normality. The first step from 

preventing this is to save lives and stop further deviation. Monitoring and classifying ICP becomes 

of utmost importance in this regard [1][2].  

Different algorithms have different inner workings. The motivation of this thesis is to study 

whether an inner algorithm working is sensitive to data representation or not. This study is 

conducted to explore this. Information contained in different data representations is the same, but 

different algorithms process data representation differently. Some algorithms may find it easy to 

classify the data if data is presented in a certain manner while other algorithms may find it 

challenging to classify if data is presented in that same manner.  

The approach of this thesis is to present data in its original form to different algorithms and 

compares its results to the results if the data is augmented with different representation. The 

machine learning algorithms selected for this study are Nearest Neighbors, Naïve Bayes, Gaussian 

Process, Linear Support Vector Machine - Classification (SVM), RBF Support Vector Machine - 

Classification (SVM), Quadratic Discriminant Analysis (QDA), Decision Trees, Ada Boost, and 

Multi-Scale Convolutional Neural Networks (MCNN). Data is represented in its original time 

series form as well as in Gramian Angular Plots representation and Markov Transition Fields  
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representation. Gramian Angular Plots representation and Markov Transition Fields representation 

has been used before; this study explores these representations effects on above-mentioned 

algorithm’s inner workings. Additionally, this study is conducted in the context of ICP signals. 

Importance of this study is to explore whether data representation aids in classification or not 

particularly on ICP signals. Another motivation of this thesis is to study the effects of balancing 

the dataset with SMOTE ENN algorithm (section 4.3) and comparing how classifying abilities of 

above-mentioned algorithms changes for both original dataset and augmented dataset with 

different data representation. 

1.3 Objectives and Methodology 

The objective is to compare above-mentioned algorithms for four datasets listed below. To 

compare the results of various above-mentioned algorithms, four datasets are passed through 

various algorithms. Finally, comparison and analysis of all the results are investigated as follows: 

 Dataset is taken from MIMIC-II and CHARIS database. 

 Dataset is cleaned, and hypertensive signals are identified. 

 Hypertensive signal’s past six minutes segments are used as positive examples. 

 Rest of the signal are identified as negative examples. 

 Following datasets are constructed. 

o Data without SMOTE ENN algorithm and without augmenting it with Gramian 

angular field images and Markov transition matrix. 

o Data with SMOTE ENN algorithm but without augmenting it with Gramian 

angular field images and Markov transition matrix. 

o Data without SMOTE ENN algorithm but augmenting it with Gramian angular 

field images and Markov transition matrix. 

o Data with SMOTE ENN algorithm and augmenting it with Gramian angular 

field images and Markov transition matrix. 

 Four datasets are then passed through the following algorithms. 

o Nearest Neighbors  

o Naïve Bayes 

o Gaussian Process 
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o Linear Support Vector Machine - Classification  

o RBF Support Vector Machine - Classification  

o Quadratic Discriminant Analysis  

o Decision Trees 

o Ada Boost 

o Multi-Scale Convolutional Neural Networks  

 Results of the above algorithms are compared and investigated. 

MCNN is selected because it showed promising results in classifying various time-series datasets 

[1]. MCNN is a multichannel convolutional neural network it is well suited to handle Gramian 

Angular Plots images and Markov Transition Fields images as it is a convolutional neural network. 

Gramian Angular Plots images and Markov Transition Fields images are different representations 

of our original dataset. Figure 1.1 presents the schema of the thesis. 

1.4 Contribution of this thesis 

As illustrated above, ICP signals have been studied with many different methodologies. This thesis 

contribution is to classify the hypertensive signal before the hypertensive state occurs by passing 

the original data and data augmented with different data representation to various classification 

algorithms mentioned above. The effect of balancing of data with Smote ENN is also studied. 

Finally, the best algorithm among Nearest Neighbors, Naïve Bayes, Gaussian Process, Linear 

Support Vector Machine - Classification, RBF Support Vector Machine - Classification, Quadratic 

Discriminant Analysis, Decision Trees, Ada Boost, and Multi-Scale Convolutional Neural 

Networks on the given dataset is evaluated. 

Though the neural network is applied before on ICP signal. ICP signals were treated as time series. 

The contribution of this thesis is converting time series into images by using Markov transition 

fields and Gramian angular field and using MCNN and other algorithms to classify hypertensive 

and non-hypertensive signals. The Gramian angular field is essential in the analysis of ICP signal 

because once we have transformed the rescaled time series into polar coordinates, we can easily 

exploit the correlations within different time intervals. Markov transition field is vital in this regard 

because it is similar to a framework for encoding dynamical transition statistics; the concept is 

extended by representing the Markov transition probabilities serially, to preserve statistics in the 

time domain. 
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Figure 1.1. The Schema of the Thesis 
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1.5 Structure of the Thesis 

In chapter 2, the background information related to intracranial pressure is presented. Chapter 3 

explains Gramian angular plots, Markov transition field and multi-scale convolutional neural 

network. In chapter 4, the steps taken in order to clean and pre-process the datasets are illustrated 

along with the theoretical  underpinning of algorithms. In chapter 5, the results of our investigation 

are presented. Chapter 6 provides a discussion about the results and the connection with the 

theoretical structure of the algorithms. Finally, in chapter 7, the conclusion and future directions 

are presented. 

  



6 
 

Chapter II - Background 

Intracranial pressure is referred to as the pressure inside the skull due to brain tissues and 

cerebrospinal fluid. This pressure is increased due to brain/head injury, bleeding in the brain, brain 

tumour, swelling of the brain, excessive cerebrospinal fluid aneurysm or infections such as 

encephalitis or meningitis. With the increase of intracranial pressure, an auto-regulatory process 

exerts to produce equilibrium initially. If the volume is expanded beyond a certain point due to the 

reason mentioned above, the auto-regulatory process breaks down, and ICP rises. The normal 

range of ICP values is from 0-25 mm Hg. In children, the range is between 3 and 7 mm Hg, and 

in infants, it is 1.5 to 6.0 mm Hg beyond these ranges ICP is considerate to be  abnormal [1][2]. 

The increase in ICP can be divided into three stages. In stage 1, the autoregulatory mechanism 

pulls processes towards equilibrium. Stage 2 represents intracranial hypertension. Key 

characteristics of this stage include less neuronal oxygenation, and arteriolar vasoconstriction to 

increase Cerebral perfusion pressure CPP. CPP is the remaining pressure gradient 

producing cerebral blood flow to the brain. It must be upheld within thin limits since tiny pressure 

could cause brain tissue to develop ischemic (having insufficient blood flow), and excessive blood 

flow could raise intracranial pressure (ICP). Stage 3 is characterized when small changes in 

volume correspond to substantial changes in ICP. In this stage, it becomes increasingly difficult to 

squeeze blood into internarial space, which leads to ischemia and brain infarction. The further 

increase can eventually be fatal [1][2].  

Analysis of ICP signals for these stages is essential because they can be used to take timely 

appropriate actions to remedy the problem. In effect, a predictive model -- that can forecast the 

occurrence of different phases based on the past history of ICP -- will be beneficial from diagnostic 

and treatment point of view. ICP signals have already been analyzed with various mathematical 

techniques [1] [2] [5] [6] [7] [8] [9] [10] [11] [12]. In time-domain approaches, typically a number 

of windows are created, and their mean, standard deviation and variance are calculated 

accordingly, and then sing these parameters, regularities and irregularities cand classified. In the 

frequency domain, different harmonics are ranked for the same. ICP signals have also been 

subjected to wavelets analysis. Other methods of ICP signal analysis include approximate entropy 

analysis and fractal analysis [27][28][29]. 

https://en.wikipedia.org/wiki/Pressure
https://en.wikipedia.org/wiki/Cerebral_blood_flow
https://en.wikipedia.org/wiki/Ischemic
https://en.wikipedia.org/wiki/Intracranial_pressure
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2.1 Background of Intracranial Pressure  

The main aim of understanding background information about ICP is to investigate the present 

limitations and capabilities of past and current methods.  Also, to observe and understand the ICP 

time series and extract their inherent features around the homeostasis state perturbations. The 

variations within physiological system signals are analyzed and captured through nonlinear 

dynamics analysis by exploring various mathematical models and methods. This is done to 

ascertain and investigate the reliability of different approaches in order to encode ICP information 

in time and frequency domain. Another aim of presenting previous and current approaches is to 

further translational research to explore whether these techniques can provide qualitative and 

quantitative data that can be encoded into a small number of parameters or signals that can be 

interpreted easily by clinicians. 

The brain has an auto-regulatory mechanism to deal with a matter that accumulates abnormally. It 

shifts cerebrospinal fluid volume along with cerebral blood volume to the outside of the brain. 

This mechanism has a limit. When matter accumulates beyond this threshold system disruption 

happens and break down is the result. When equilibrium vanishes, any further swelling shows 

itself as an upsurge in ICP. It cannot be ascertained whether the upsurge is a primary or secondary 

cause of the pathological mechanism. Nevertheless, the rise in ICP is associated with cerebral 

ischemia, neurological deficit, and death. Majority of neurological intensive care exertions are 

designed to treat intracranial hypertension [3] in order to boost patient health [4]-[6]. 

Pressure transducers are put in the intracranial spaces, particularly subdural, intraparenchymal, 

epidural, and lateral ventricular regions. The bedside monitor is used to display the values from 

pressure sensors. Table 2.1.1 shows the normal variations of the ICP signal with respect to age. 

Table 2.1.1. Age vs Normal range of ICP signal 

Age The normal range of ICP signal 

Infants 1.5 to 6.0 mm Hg 

Young Child 3 to 7 mm Hg 

Adults 0 to 15 mm Hg 
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According to The Brain Trauma Foundation 2007, 20 to 25 mm Hg should be considered as the 

upper limit beyond which management of ICP should be introduced [1][2]. 

The Valsalva maneuver, sneezing, coughing, and specific forced body movements against 

resistance cause changes in ICP values. These changes need to be filtered out to obtain the correct 

value of the ICP signal. Physicians primarily measure ICP signals in patients with the comatose 

condition to see deviations from normal related to various kind of brain damages particularly 

stroke, trauma and deterioration of neurological health which are difficult to observe by the 

methods of clinical checks. 

Investigators primarily in the field of physics and engineering have studied various mathematical 

models, techniques, and approaches to abstract prognostic and diagnostic parameters which are 

discussed in subsequent sections of this chapter. These approaches are limited to research 

applications. Recently ICP has been included in the list of physiological signals to be studied by 

deep learning and traditional machine learning techniques. 

 

2.2 Constituents of ICP Signal  

ICP waveforms are a superposition of three waveforms. The pulse waveform, the respiratory 

waveform, and the slow waveform. These waveforms are considered as harmonics components. 

The pulse waveform is due to the cardiac cycle and contain: 

a. Arterial pressure waves which consist of the percussion peak, the tidal peak, and the 

dichotic peak. 

b. Venous pressure waves 

Peak amplitudes may be considered to be connected to variations in systemic arterial pressure, 

brain tissue compliance, or the closure of the aortic valve. Slow waves are an important indicator 

as it is shown that they are related to the fatal consequence in patients with traumatic brain injury 

[7]. The frequency range of slow waves is between 0.05 to 0.0055 Hz [8]. 

2.2.1 What causes ICP waveform 

The simultaneously interacting physiological process causes the emergence of ICP waveforms as 

time-series data signal. The shape of the waveform is studied in the following two ways. 
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1. Averaging values over time 

2. Harmonics detailed analysis [9] 

Many mathematical techniques, methodology and approaches can be applied to find the rate of 

occurrences and frequencies of key pattern within the signal. These patterns can then be used for 

predicting and anticipating adverse events. If such patterns can be found, then this pattern can 

guide clinicians to desired therapies. 

O’Phelan et. al. [10] reached a conclusion that ICP display characteristic patterns in the time 

domain. They also suggested the requirement of finding ICP patterns and attaching a predictive 

value on its manifestation in time. Lundberg classified the waveform[2]. Lundberg classification 

consists of classifying a series of ICP wave into A, B, C waveforms: 

 A waveform: is characterized by the sudden surge in ICP signal and maintenance of ICP 

signal over 50 mm Hg for a duration of 5 to 20 minutes [2]. They indicate diminished brain 

compliance [11] and are due to inadequate cerebral perfusion pressure and cerebral blood 

flow. 

 B waves form: are slow waves consisting of a range of amplitude between 10 to 20 mm 

Hg. They are allied with respiratory cycles. 

 C waves form: characterized as resulting from the interaction of cardiac and respiratory 

waves signals. They are characterized as consisting of a frequency of 5 to 9 oscillation per 

60 seconds [2]. 

 

2.2.2 ICP waveform superimposed on the respiratory variation waves 

It has been indicated that superimposition of respiratory variation waves on ICP signal in traumatic 

brain injury patients gives insights into brain compliance. It has been shown that the waveforms 

for inspiration and expiration are different in traumatic brain injury patients. 

2.2.3 Mean ICP values 

In the traditional monitor, the mechanism of displaying ICP signal consists of averaging over ICP 

signal measured in divisions of millimetres of mercury that is in mm Hg during the small duration 

of time. Standard deviation, variances and mean are computed for these durations [12]. After 

surgery and traumatic brain injury, these simple statistics usually show dangerous trends. 
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Therefore it becomes imperative to control and reduce these simple ICP statistics values in patients 

with elevated ICP [13]. 

The problem with mean ICP values is that they lack the dynamic features of the component signals 

[14]. Environmental variations and methods of measurements also affect these mean values. To 

overcome these difficulties [15], it is proposed that research should focus on identification of pulse 

wave inside the ICP signal to calculate the average amplitude of the wave. It is suggested that it 

will probably give a more conclusive and accurate description of intracranial compliance and will 

have more predictive power [14]. 

2.3 Frequency domain 

In the frequency domain of ICP signal analysis, we are mainly concerned with harmonics and its 

interpretation [8]. Fast Fourier transform is used to identify and classify the harmonics of the 

signal. Historically fast Fourier transform is used in the analysis of ICP waveform. This 

methodology is shown to have a more reliable analysis as compared to ICP averaged over time 

[12]. 

Wavelet analysis is also used to find wavelet components in the ICP waveforms. Wavelet analysis 

gives us a result both in time and frequency domain. Wavelets are convolute over the entire signal. 

This methodology encompasses features that are nonstationary [12].   

2.4 Limitations of morphological analysis of ICP 

In the morphological analysis of waveform, some technical factors introduce errors. Researchers 

find great difficulty in isolating discreet ICP signal and peaks inside waveforms which are usually 

irregular. There is a superposition of reference ICP wave and pulse wave. This morphs the overall 

wave into a wave which has more rounded peaks [16]. 

Morphological analysis techniques are unable to differentiate the signal distortions caused by 

postural variations, the interaction between the adjacent intracranial tissue and the pressure 

transducer, patient motion, the monitor’s drift, disturbance of hardware connections, and volume 

changes. This upsurges the noise to signal ratio and analysis of true signal becomes difficult [17]. 

Present-day research in the morphological analysis of ICP waveform concentrates in enhancing 

the signal to noise ratio and more accurately identifying the peaks in the signal. Peak formations 
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are the foundation of analysis, and therefore, they are vital to identify these distinctly [18]-[19]. 

Identification of peak signal gives insight into changes in the form of sub-peaks that are very 

helpful both in time and frequency domain. Identification of the shape and periodicity of the 

waveform correctly forms the foundation of analysis and interpretation of ICP signals. 

2.5 ICP Waveform-Derived Indexes  

Secondary indexes that may be helpful in identification of the onset perturbation in ICP waveform 

has been investigated [20]. Analysis of intracranial ICP waveform decompensation and its 

elastance capacity has been explored [20]. Researchers have suggested exploiting the standard 

deviations regression plot and slope of mean ICP [20]. They have also proposed to exploit the 

intersection of ICP pulse amplitude and slope of baseline ICP waveform [20]. Researchers believe 

that these may indicate the perturbations in the underline mechanisms that cause perturbations in 

the ICP waveform.   

Derivation of secondary indices uses mean wave amplitude and mean values. It is suggested that 

the pressure-volume graph may be drawn by pressure coefficient (RAP) and regression of 

amplitude. It is also proposed that this can be considered as a correlational measure between the 

amplitude of the pulse waveform and ICP signal. This can be considered as an indicator of the 

cerebrospinal compensatory reserve [8].  

Cerebrovascular pressure reactivity (CPR), which indicates the ability of smooth muscle tone 

within the confined of cerebral arteries to correspond with the perturbations in transmural pressure 

may also be an indicator of neurological compensation [21]. Czosnyka and Pickard [8] suggested 

the pressure-reactivity index (PRx) indicate the correlation coefficient of mean ICP and arterial 

blood pressure (ABP). (PRx) is used as a predictive parameter of deteriorated outcome after 

traumatic brain injury [20]. 

2.6 Neural Networks 

Presently neural networks and deep learning are being used to analyze and classify ICP waveforms. 

It has been found that neural networks and deep learning approaches are more dependable 

techniques as far as forecasting of future mean values of ICP signals is concerned. Neural networks 

can dig into tiny time frames of ICP waveform, which are extracted from a complete time series. 

For example, Deep Learning algorithms have been used to model the association between 
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waveform morphology and hypertension in [22]. In another study [23], deep belief networks 

(DBNs) were demonstrated to be adept at learning generative and discriminative characteristics 

from the models; Arguments has been provided in favour of the suitability of these approaches to 

classify ICP waveform with various features. 

In [24], a neural network based approach was used to train to classify 60 cerebrospinal fluid pulse 

pressure waveform (CSFPPW) in four dissimilar classes conferring to their morphology. The 

efficacy of this method was compared to a proficient inspector’s classification. The morphology 

of CSFPPW was logged in 60 patients. Results showed the general concordance in CSFPPW 

classification between an artificial neural network, and the expert examiner was 88.3 %. 

In another approach [25], the breakdown of an ICP signal into clinically relevant dimensions, to 

permit the identification of important ICP waveform, was studied. It. The authors divided their 

analysis into three stages. They started with multi-resolution convolution analysis for the main 

signal decomposition. Afterwards, they created an impulse function with multiple factors that can 

characterize any form in the signal under investigation. Lastly, they used localized optimization 

technique to discover morphologies of concern in the decomposed ICP signals. It was shown that 

the method works with performance receiver operator characteristic area below the curve figures 

for each of the waveform categories, B wave, A wave, and C wave’s low, and high compliance 

states of 0.694, 0.936, 0.698, and 0.676 were found respectively. 

In another paper [26], ICP monitoring by means of texture features have been suggested. A mixture 

of image processing approaches and a decision tree algorithm is used to assess ICP of traumatic 

brain injury patients non-invasively. Furthermore, a visual analytics tool is applied to conduct an 

outlier detection and interactive visual feature analysis. 

2.7 ICP and Entropy 

Entropy approaches are different from other approaches in the sense that they try to find regularity 

in the signals while other approaches try to find an irregularity in the signal [27]. Approximate 

entropy is defined as “the negative normal logarithm of the conditional probability that a dataset 

of extent N will replicate itself again.” It examines a set of data series for emerging new patterns 

and the frequency of their reappearance within the waveform. The ability of approximate entropy 

to generate waveform randomness and to form a pattern is exploited [28]. Estimated entropy, along 
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with Lempel–Ziv (LZ) compression entropy quantity [28] is used to measure drastic perturbations 

in the ICP waveform in young patients suffering from austere traumatic brain injury. This is used 

to explore the correlation with the mean ICP waveform. 

The LZ compression entropy quantity is well-defined as “a nonparametric measure of complexity 

for one-dimensional signal connected to the number of separate substrings and the rate of their 

occurrence along with a given series.” The LZ recognizes new emerging patterns and replaces the 

series with a reduced reference in order to compress the whole series into reduced sets as this 

compression can reproduce the original signal from its reduced form, and it is considered as 

lossless. The LZ can identify and differentiate the regularities in a time series. Researchers 

conclude that the complexity of ICP waveform decreases during intracranial hypertension period. 

These periods are labelled as “plateau wave” and are indicative of persistent elevations of ICP 

waveform. The rise of pattern’s regularity in durations of intracranial hypertension indicate 

secondary brain injury. 

2.8 Non-Invasive method for ICP 

In one non-invasive based approach for ICP [30], it was concluded that Blood Pressure, Mean 

Arterial, Respiration, Diastolic Arterial, Heart Rate, ECG ST-segment levels, and Pulse are 

strongly correlated with ICP and have the potential of predicting intracranial hypertension. 

Elevated ICP periods and related physiological signals were then extracted from given datasets. 

Based on ICP levels, “Severe Intracranial Hypertension,” “Intracranial Hypertension,” and 

“Intracranial hypertension onset” events were identified. It was suggested that physiological 

signals in TBI patients have the predictive power to predict undesirable events in the ICP 

waveform. 

In a study conducted on 31 traumatic brain injury patients [31], the principal component analysis 

was applied to extract non-correlated feature selection. They concluded that two components could 

be extracted from continuously gathered physiological signals of traumatic brain injury patients. 

The result was examined by utilizing parallel analysis, Scree test, and Kaiser’s Criterion. The 

power of prediction of these two components was confirmed as it achieved an error of 0.025 on 

mean absolute error (MAE) score. 

Another study [32] was done on 20 patients with TBI. K-means clustering investigation centred 

on a wavelet was applied to identify configurations of physiological signals. They investigated 
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variations in these configurations. Researchers concluded that this unsupervised method could be 

a possible technique to identify patterns in the ICP waveform. 

2.9 Main advantage of the proposed approach for classification of ICP signal 

As discussed above, ICP signals are studied in both the time domain and the frequency domain. 

They have also been investigated using wavelet and fractal analysis. Investigators have applied 

ICP waveform-derived indexes to get insights into ICP signal. The exploitation of irregularities by 

means of entropy exploration has also been studied. Researchers have also considered non-

invasive methods and neural networks. 

The main advantage of the this thesis approach is in converting ICP signal into images, particularly 

Gramian angular plots and Markov transition field images (section 3.1 and 3.2) . The Gramian 

angular field is significant in the study of ICP signal for the reason that once we have transformed 

the time series into polar coordinates, we can straightforwardly exploit the correlations inside 

different time intervals. Markov transition field is central in this regard because it is comparable 

to a framework for encoding dynamical transition statistics; the concept is drawn-out by 

representing the Markov transition probabilities serially to preserve statistics in the time domain. 

By using different data representation (images) of ICP signal, classification accuracy, precision, 

recall and F1 score are investigated on the various machine learning algorithms such as Nearest 

Neighbors, Naïve Bayes, Gaussian Process, Linear Support Vector Machine - Classification 

(SVM), RBF Support Vector Machine - Classification (SVM), Quadratic Discriminant Analysis 

(QDA), Decision Trees, Ada Boost, and Multi-Scale Convolutional Neural Networks (MCNN) 
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Chapter III - Gramian Angular Plots, Markov Transition Field and 

Multi-Scale Convolutional Neural Network (MCNN) 

3.1 Gramian Angular Field  

The Gramian angular field is contracted in the following way [4]. Assume we have a time series 

X = {x1, x2, ..., xn} of n real-valued observations, To make all values fall in the interval [-1,1] we 

rescale the values by: 

 

𝑥𝑖
~ =

(𝑥𝑖 −max(𝑋) + (𝑥𝑖 −min(𝑋))

max(𝑋) − min(𝑋)
 

             (3.1.1) 

In polar coordinates, we can characterize the rescaled time series X by taking a timestamp as the 

radius and by converting the 𝑥𝑖
~ as the angular cosine with the equation below [4]  

𝜑 = arccos(𝑥𝑖
~) , −1 ≤ 𝑥𝑖

~ ≤ 1, 𝑥𝑖
~ ∈ 𝑋~ 

𝑟 =
𝑡𝑖
𝑁
, 𝑡𝑖 ∈ 𝑁 

             (3.1.2) 

In the above equation, N and time stamp ti are a constant element to normalize the span of the 

polar. 𝜑 is the polar angle and r is the radius of polar coordinates. 

The polar coordinate grounded illustration is a new method to comprehend time series. As time 

upsurges, corresponding values twist among various angular points on the spanning circles, like 

water rippling. The coding map has two essential properties.  

First, due to monotonicity of cos() function in the interval [0, pi], it is bijective. This transformation 

produces only one map in polar coordinates with a distinctive inverse function.  

Second, in the Cartesian coordinate system area does not depend on the absolute value of time. It 

only depends on the time interval. While in polar coordinates it depends on both. In Cartesian 

coordinates, the area 𝑆𝑖,𝑗 in i, j dimensions are defined by. 
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𝑆𝑖,𝑗 = ∫ 𝑓(𝑥(𝑡))𝑑𝑥(𝑡)
𝑥(𝑗)

𝑥(𝑖)
 . 

             (3.1.3) 

 In the Cartesian coordinate system, the area is the same 

𝑆𝑖,𝑖+𝑘 = 𝑆𝑗,𝑗+𝑘 

             (3.1.4) 

In the above equation f(x(t)) has the identical values on [i, i + k] and [j, j + k]. While in polar 

coordinates, the area 𝑆𝑖,𝑗
′ is defined by way of  

𝑆𝑖,𝑗
′ = ∫ 𝑟[∅(𝑡)]2𝑑(∅(𝑡))

∅(𝑗)

∅(𝑖)

 

               (3.1.5) 

where ∅(𝑖)𝑎𝑛𝑑∅(𝑗) are two angles, and we are interested in the area between the two. r is the 

radius then  

𝑆𝑖,𝑖+𝑘 = 𝑆𝑗,𝑗+𝑘 

             (3.1.6) 

the matching area from time stamp i to time stamp j is not only reliant on the time duration |i j|, 

but also specified through the absolute value of j and i.  

Once we have transformed the rescaled time series into polar coordinates, we can easily exploit 

the correlations within different time intervals. By taking the trigonometric sum between each 

point in time, we can calculate the correlation inside different time duration. The Gramian angular 

plot G is contracted in the following way. 

 

𝐺 = [
cos(∅1 + ∅1) ⋯ cos(∅1 + ∅𝑛)

⋮ ⋱ ⋮
cos(∅𝑛 + ∅1) ⋯ cos(∅𝑛 + ∅𝑛)

]     

         (3.1.7) 
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The Gramian Angular Field has numerous benefits.  

 It delivers a method to preserve the temporal dependence, as time rises as per the location 

moves from top-left to bottom-right.  

 The Gramian Angular Field encompasses temporal correlations  

 The chief diagonal Gi,i is the singular situation when k = 0, which comprises the original 

value/angular info. With the central diagonal, we will almost rebuild the time series data 

from the high-level features learned by the deep neural network. 

 The Gramian Angular Field is significant since the scope of the Gramian matrix is n ⇥ n 

when the distance of the unprocessed time series is n. To decrease the dimension of the 

Gramian Angular Field, we apply Piecewise Aggregation Approximation [36] to even the 

time series and while preserving the trends. 

3.2 Markov Transition Field  

Markov Transition Field is similar to a framework of [37] for encoding dynamical transition 

statistics; The concept is extended by representing the Markov transition probabilities serially, to 

preserve statistics in the time domain [4]. 

If we have a time series X, we construct its Q quantile bins and allocate individually xi to the 

conforming bins qj (j Ɛ [1, Q]). In this manner, we build a Q by Q weighted adjacency matrix W 

by calculating transitions midst quantile bins in the method of a first-order Markov chain along 

the time axis. Elements of matrix W are denoted by wi,j is specified by the frequency through which 

a point in the quantile qi trails a point in the quantile qj.  

After this we normalize wij = 1, W is the Markov transition matrix. It is oblivious to the spreading 

of X and temporal dependence on time steps which are denoted by ti. There is a lot of information 

loss in getting rid of temporal dependence in matrix W. To overcome this disadvantage, Markov 

Transition Field (MTF) matrix M is defined as follows [4]: 

𝑀 = ⌊

𝑤𝑖𝑗|𝑥1∈𝑞𝑖,𝑥1∈𝑞𝑗 … 𝑤𝑖𝑗|𝑥1∈𝑞𝑖,𝑥𝑛∈𝑞𝑗

⋮ ⋱ ⋮
𝑤𝑖𝑗|𝑥𝑛∈𝑞𝑖,𝑥1∈𝑞𝑗 … 𝑤𝑖𝑗|𝑥𝑛∈𝑞𝑖,𝑥𝑛∈𝑞𝑗

⌋ 

            (3.2.1) 
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We construct a Q ⇥ Q Markov transition matrix by separating the data into Q quantile bins. The 

quantile bins that encompass the data at time stamp i and j (temporal axis) are qi and qj (q Ɛ [1, 

Q]). Mij in MTF signifies the transition probability of qi -> qj . By considering the temporal 

positions, MTF matrix is built, which contain the transition probabilities at time locations. 

By conveying the probability commencing from the quantile at time footstep i to the quantile at 

time footstep j at each pixel Mij , the matrix M essentially captures the multi-span transition 

probabilities of the time series  

Markov transition matrix has the following properties. 

 Mi,j||ij|=k signifies the transition probability amid the points with time interval k. For 

instance, Mij|ji=1 demonstrates the transition progression along the time axis with a skip 

footstep.  

 The central diagonal Mii, which is a distinct situation when k = 0 engulfs the probability 

from each quantile to itself  

 Blurring kernel is applied to create the image extent controllable and computation more 

effectual, Aggregation of the transition probabilities is done in every subsequence of length 

m.  

3.3 Time Series classification and why Multi-scale Convolutional Neural Network 

ICP signal is a time series. Researchers have studied and tried to solve the problem of forecasting 

time series’ class labels for nearly a couple of decades within the data mining and machine learning 

community. There has been some significant advancement in the field and applications were found 

in clinical prediction and biomedical field. These advancements still fall short of giving good 

accuracy and efficiency. In the past approaches mostly involved pulling out discriminative features 

within a time series by utilizing dynamic time warping (DTW) or wavelet transformations. These 

discriminative features were then fed to the classifier. In these methods, feature extraction and 

classification are two separate parts, which limits the accuracy of these methods. Features also 

exist at different time scales, and this aspect is ignored in these methods.  

There are two categories in which most time series classification approaches fall, distance-based 

methods and feature-based methods. In the distance-based method, a similarity metric is evaluated. 

Once we have the similarity metric, we can classify the time series with k- nearest neighbours or 
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support vector machine. Most notably, the similarity metric used is dynamic time warping (DTW). 

In DTW, two time series are aligned with dynamic warping to find the best fit. Dynamic 

programming is used to do this.  

In feature-based methods, feature vectors are formulated, and then these feature vectors are fed 

into classification algorithms to generate classification. In clinical prediction time series is divided 

into windows and features are extracted from these windows. Features can be as simple as mean 

and standard deviation as well as sophisticated features derived from detrended fluctuation 

analysis and spectral analysis. 

In another approach to feature, extraction wavelets are used. In these methods, shapelets are 

defined and considered as a signature subsequence. These shapelets are used in various ways; for 

example, they are viewed as a dictionary with each shapelet as a word and time series is regarded 

as a bag of words model. A more recent study [35] builds the feature vector by the minimum 

distance between the shapelet and time series containing the shapelet. 

A disadvantage of the shapelet method is that we have to search an ample space for discriminative 

shapelets. To overcome this difficulty, Grabocka et al. [38] propose to jointly explore a collection 

of shapelets simultaneously along with the classifier. The drawback of their method is that it can 

only separate linear planes. 

The convolutional neural network has shown promising results in the field of object recognition 

[39], face detection [40], audio and speech analysis [41] and natural language processing. A key 

reason for the success of the convolutional network is its ability to learn complex features by its 

convolutional layers. It is natural to ask this question can convolutional neural networks be applied 

to time series where CNN learns complex feature representations by itself and classify the time 

series. 

Cui et al [3] proposed a novel method of an end to end neural network model. Multi-Scale 

Convolutional Neural Network (MCNN) integrates classification part and feature extraction part 

into one scheme. They created a multi-branch layer and a convolutional layer that can be learned. 

In the portion of the algorithm that runs the multi-branch layer, different scales and frequencies 

are processed, and features are extracted, which shows superior features representations. We 

propose to extend this framework by adding more branches to Multi-Scale Convolutional Neural 
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Network (MCNN). We intend to add Gramian angular plots and Markov transition fields as two 

new branches. Gramian angular plots and Markov transition fields all are images. The 

convolutional neural network is suited to extract features from these images which are fed to the 

full convolutional network.  

The intuition behind this thesis is if we feed many more perspectives to full convolutional neural 

network, it become easier for the network to classify the time series.   

3.4 Multi-scale Convolutional Neural Network (MCNN) 

Multi-scale Convolutional Neural Network (MCNN), a convolutional neural network precisely 

planned for classifying time series. A characteristic feature of MCNN is that its first layer 

encompasses several branches that perform various transformations of the time series, covering 

those in the frequency and time domains, excavating features of various types and time scales. 

After that dot product is applied to the transformation layer and 1-D learnable filter in the 

convolutional layer. This is the typical method to acquire features in the convolutional neural 

network. The result of feature knowledge in the branches is then concatenated and fed to the full 

convolutional neural network. Figure 3.4 is the depiction of the overall architecture of MCNN by 

Cui and el [3]. 

 

 

 

Figure 3.4. Overall Architecture of MCNN  Zhicheng Cui and al [3] 
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MCNN is one of our algorithm that is compared with other algorithms. There are three stages in 

MCNN. 

1) Transformation Stage 

In the transformation stage, the signal is passed in three ways. First, the signal is given as 

it is and is called the identity transformation. Secondly, the signal is downsized to capture 

temporal patterns at different time scale. Overall all trends are reflected in long-term 

features and while delicate features are present in short-term signals. Both are necessary 

for classifying a time series. Transformation stage has three branches. 

a) Identity Branch 

In Identity branch, the signal is passed as it is. 

b) Down-sampling Branch 

If we have a time series  

𝑇 = {𝑡1, 𝑡2, 𝑡3, 𝑡4, ……… . , 𝑡𝑛} 

           (3.4.1) 

And if k is the down-sampling rate, then we select only the kth and its multiple elements 

of the series to form a new series. 

𝑇𝑘 = {𝑡1+𝑘∗𝑖},𝑖 = 0,1,2, ……… . , [
𝑛 − 1

𝑘
] 

             (3.4.2) 

c) Multi-frequency branch 

As noises correspondence to high-frequency signals, a varying degree of smoothness 

to ICP signal in this branch is applied. Variation of time series signal can be reduced in 

this manner. In this branch, various moving averages are applied to obtain various 

degree of smoothness. 

If we have a time series T  

𝑇 = {𝑡1, 𝑡2, 𝑡3, 𝑡4, ……… . , 𝑡𝑛} 

 

             (3.4.3) 
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We obtain new series Tl by taking moving average according to the following formula, 

where l is the window size of the moving average. 

 

𝑇𝑙 =
𝑡𝑖 + 𝑡𝑖+1 + 𝑡𝑖+1 +⋯……… . .+𝑡𝑖+𝑙−1

𝑙
 

              (3.4.4) 

2) In the local convolution stage, numerous convolutional layers are used to excerpt the features 

for each branch. In this stage, the convolutions are independent for different branches from each 

other. Max pooling technique with multiple sizes is applied to the output of convolutional layers. 

3) In the full convolution stage, all extracted features are concatenated, and several more 

convolutional layers (each followed by max-pooling) are applied, after this fully connected layers, 

and a softmax layer to produce the concluding output. In this end-to-end system, parameters are 

trained via backpropagation. 

 

3.5 Architecture of the MCNN algorithm augmented by Gramian angular plot branch and 

Markov transition field branch 

Figure 3.5.1 is the depiction of the architecture of the MCNN algorithm augmented by Gramian 

angular plot branch and Markov transition field branch. As in this thesis, we are combining 

MCNN, Gramian angular field, Markov transition field.  
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Fig. 3.5.1. Architecture of proposed modification of MCNN. In the above figure first three branches are 

from Cui and el [3]. Fourth and fifth branch are Gramian Angular Field (GAF) and the Markov 

Transition Field (MTF) [4]. In the transformation stage and local convolution stage features are 

extracted which are fed to full convolution stage which consists of convolution pooling, fully connected 

layer and softmax layer. 
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Chapter IV - Data Preparation and Theoretical Underpinning  

4.1 Data Acquisition and Data Preparation 

4.1.1 Mimic II (Multi-parameter Intelligent Monitoring In Intensive Care II) 

The MIMIC-II database consists of high-resolution signals. These are the time-series signal of vital 

signs. It also contains static clinical records. The purpose of the database is to support 

epidemiologic research and assessment of clinical decision support systems in the domain of 

critical care medicine. The dataset is collected from Beth Israel Deaconess Medical Center. It 

consists of 25,328 adult patients surgical and cardiac records. It was obtained from 2001 to 2007. 

According to health act standards, the data is entirely de-identified. If the same patient was 

admitted after 24 hours, the data, in that case, was recorded with a different ID. Time series are 

updated at 1 Hz.  

All data that do not contain ICP signal over their entire range was discarded. The dataset contains 

only a small fraction of the data that includes ICP signals. Please see the appendix A for file names 

that were selected from the MIMIC II database. The segments were cross-checked with static 

patient information to eliminate the duplicate data of the same patient.  

The definition of intracranial hypertension is an elevation of ICP over 20mm Hg. The dataset was 

imbalanced as only 10% positive labels were among the instances. This imbalance was handled 

by the SMOTE+ENN algorithm (please see section 4.3) to create more similar examples of the 

positive label. 

4.1.2 CHARIS (Cerebral Haemodynamic Auto-regulatory Information System Database) 

The CHARIS database consists of multi-channel records of arterial blood pressure (ABP), ECG, 

and ICP (intracranial pressure) of individuals diagnosed with TBI (traumatic brain injury). The 

purpose of the distribution of data to researchers is to systematize the analyses of appropriate 

physiological signals and construct algorithms driven by data in search of possible predictors of 

critical clinical events for individuals with significant brain injury. 

The apparatus was installed in Robert Wood Johnson Medical Center of Rutgers University’s 

surgical intensive care units (SICU). Data gathering units were coupled with patient monitors. The 

apparatus was activated as soon as a patient arrived with a diagnosis of brain injury that requires 
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an ICP bolt/ventriculostomy. Individuals were mostly ventilated and sedated. ICP was 

uninterruptedly monitored with ventriculostomy.  

General Electric TRAM-rac 4A was used to acquire the outputs from clinical monitors. The rate 

of sampling was 50 Hz with a resolution of 1.41 mV at plus-minus 5 V, which corresponds to the 

pressure resolution of 0.14 mmHg and a range of plus-minus 500 mmHg. ICP was uninterruptedly 

recorded with micro-transducers (Camino Direct Pressure Monitor, Camino Laboratories, San 

Diego, CA) that were implanted intra-parenchyma into the frontal cranium.  

4.2 Data Cleaning 

Data was collected from MIMIC-II and CHARIS databases. They were first scanned for any value 

higher than 100 Hg or negative values. Values higher than 100 Hg or negative values are caused 

by the movement of apparatus and does not give us information about ICP. If any value was found 

higher than 100 or negative, a NaN value replaced it. NaN values were subsequently replaced by 

interpolating the values 50 steps before the NaN value and 50 steps after the NaN value. 50 steps 

prior and after were chosen for obtaining a smooth spline for interpolation. The interpolated value 

was placed where NaN values occur. From the dataset, sampling was done at 50 Hz. 

4.2.1 Identification of Hypertension Signals 

Hypertension signals were identified by scanning for any value that is greater than 20 Hg. It 

identified 6 minutes of data before the designated point and were extracted and labelled as positive 

examples. This was done for both datasets MIMIC II and CHARIS. These extracted positive 

examples were then deleted from the original data. The remaining data was divided into 6 minutes 

of duration signals and labelled as negative examples. The 6 minutes was found suiTable due to 

the following considerations: 

1. The length of ICP signals collected from the MIMIC and CHARIS datasets such 

that enough data is collected for training and testing phase. 

2. The clinical response time required for medical staff to take necessary actions to 

avoid the hypertensive state of patients. 
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Positive and negative examples were then combined into one dataset for both MIMIC II and 

CHARIS dataset. Figure 4.1 shows the pre-processing steps. 

 

 

  

Fig. 4.1. Pre-Processing Steps 
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4.3 SMOTE+ENN 

The resulting dataset was an imbalanced dataset with many more negative examples as compared 

to positive examples. The dataset was then treated with a SMOTE+ENN algorithm to balance the 

data. Smote oversamples the dataset by creating a synthetic data point for the minority class. It 

takes a vector from one of the minority class k neighbours. It then multiplies a random number x 

which is in between 1, and 0. Complement this to the current data point to create a new artificial 

data point.  

For individual point p in rear class:  

1. Calculate its k nearest neighbours in rear class.  

2. Arbitrarily choose r ≤ k of the neighbours, and it is done by replacement.  

3. Pick a random point p along the line and then join p and each of the r selected neighbours.  

4. Complement these fictitious points to the dataset with rear class.  

After SMOTE algorithm data was passed through the ENN (Extend natural neighbour) method. 

ENN creates a forecast in two-way communication. It takes into account the nearest neighbours of 

the test sample, and it considers the test sample as their nearest neighbours. It exploits the universal 

class-wise statistics from all training data by iteratively assuming every probable class 

memberships of a test sample. Extended nearest neighbour learns from the global distribution.  

4.3.1 ENN Algorithm 

Given an unknown sample X to be classified, it is iteratively assigned to each class j 

j = 1, 2, …, N, and predicts the class membership according to the formula. 

 

𝑐𝐸𝑁𝑁,𝑉1 = arg𝑚𝑎𝑥𝑗∈1,2,……..𝑁 {(
∆𝑛𝑗

𝑖 + 𝑘𝑖 − 𝑘𝑇𝑖
(𝑛𝑖 + 1)𝑘

)
𝑖=𝑗

−∑ (
∆𝑛𝑗

𝑖

𝑛𝑖𝑘
)

𝑁

𝑖≠𝑗
} 

                               (4.3.1) 

where 

k = user-defined parameter for nearest neighbours 

ni = number of training data for class i 
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ki = number of nearest neighbours of test sample X for class i 

Ti = generalized class wise statistics of class i 

∆𝑛𝑖
𝑗
= change of k nearest neighbours for class I when test sample X is labelled as belonging 

to class j 

After the balancing the data, Markov transition matrix is created for each example. The matrix is 

flattened and concatenated with each example. The same process is repeated with Gramian 

Angular field images. Each example is taken, and the corresponding Gramian Angular field image 

is created. Each image is then concatenated with the same example. Finally, the data is fed to 

classifying algorithms for classification.  

4.4 Data Statistics 

After eliminating all the signals that did not contain a full six minutes duration from the data, we 

were left with 2844 examples. From these examples, 2607 were negative examples containing 

normal activities of ICP signal and 237 were positive examples containing precursor signal of 

hypertensive activity. Table 4.4.1 illustrates this distribution. 

Table 4.4.1 Data distribution before Somte-ENN algorithm 

 

From the above dataset train and test dataset were created. 70% of data was selected for training 

purpose and 30% of data was selected for test purpose. Train dataset contained a total of 1990 

examples. From which 1825 were negative examples and 166 were positive examples. After 

balancing the dataset with Smote ENN, there were 1843 negative examples and 1813 positive 

examples. 
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Table 4.4.2 Data distribution for training before and after Somte-ENN algorithm 

 

 

 

Figure 4.4.1 gives us a sense of how much data was unbalanced, and Figure 4.4.2 provides a sense 

of how the dataset was balanced by Smote ENN algorithm. 

 

 

Test dataset set contained a total of 853 examples from which 782 were negative examples, and 

71 were positive examples. Table 3.4.5 illustrates this. 

  

Figure 4.4.1 Unbalanced training dataset 

 

Figure 4.4.2 Balanced training dataset after Smote-ENN algorithm 
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Table 4.4.3 Test data distribution 

 

Figure 4.4.3 gives us a sense of unbalanced test dataset 

 

 

  

4.5 Machine Learning Algorithms used for classification 

Following algorithms were used for classification: 

 Nearest Neighbors  

 Naïve Bayes 

 Gaussian Process 

 Linear Support Vector Machine - Classification (SVM) 

 RBF Support Vector Machine - Classification (SVM) 

 Quadratic Discriminant Analysis (QDA) 

 Decision Trees 

 Ada Boost 

 MCNN 

 

  

Figure 4.4.3 Unbalanced test data distribution 
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4.5.1 Nearest Neighbors 

K nearest neighbour’s (K-NN) algorithm can be classified as a non-parametric classifier. In feature 

space, the input of the classifier is k nearest neighbours. The output is a class membership. A 

voting strategy is applied for classifying class membership. Every neighbour votes for its class and 

a class is assigned to the observation according to majority vote. The K-NN algorithm is regarded 

as the simplest classification method in machine learning and can be considered as lazy learning 

or instance-based classification method. In this type of classification, method weights are assigned 

to each vote according to its distance from the observation. That is a weight of 1/d is attached to 

each vote where d is the distance of observation to the voting data point. 

 
i ii

qpqpd 2)(),(
 

              (4.5.1.1) 

where p and q are coordinates of point p and q 

𝑤 ≡
1

𝑑(𝑝, 𝑞)2
 

              (4.5.1.2) 

where xq and xi are coordinates of q and i th point. 

A grid search was applied on K-Neighbors Classifier with 10 fold cross-validation, and k was 

searched from 2 to 7, and the best results were obtained for k =3 for each dataset. 

 

4.5.2 Naïve Bayes 

Naïve Bayes is a straightforward classifying algorithm. It is based on the Bayes theorem. The term 

naïve comes from the assumption that the value of any features does not depend on any other 

feature. That is all the features are independent of each other.  

The conditional probability can be divided into 

𝑝(𝐶𝑘|𝑥) =
𝑝(𝑐𝑘)𝑝(𝑥|𝐶𝑘)

𝑝(𝑥)
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              (4.5.2.1) 

where Ck is the kth class, x is the observations, p(Ck |x) is the posterior probability, p(x| Ck) is the 

likelihood, p(Ck) is the prior probability, and p(x) is the evidence. And p(Ck, x1, x2, x3, …, xn) is 

defined as: 

𝑝(𝐶𝑘 , 𝑥1, 𝑥2, 𝑥3, …… . . 𝑥𝑛) = 𝑝(𝑥1, 𝑥2, 𝑥3, …… . . 𝑥𝑛, 𝐶𝑘) 

= 𝑝(𝑥1|𝐶𝑘) ∗ 𝑝(𝑥2|𝐶𝑘) ∗ 𝑝(𝑥3|𝐶𝑘) ∗ ………………𝑝(𝑥𝑛|𝐶𝑘) 

= 𝑝(𝐶𝑘)∏𝑝(𝑥𝑖|𝐶𝑘)

𝑛

𝑖=1

 

              (4.5.2.2) 

Under the naïve assumptions that all features are independent of each other. Classifier from the 

probability model 

𝑦⏞
ℎ𝑎𝑡

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝜖{1,2,3,……..,𝑘}𝑝(𝐶𝑘)∏𝑃(𝑥𝑖|𝐶𝑘)

𝑛

𝑖=1

 

              (4.5.2.3) 

The maximum a posteriori can be derived from the above formula. The Bayes classifier is the 

classifier that assigns a class label 𝑦⏞
ℎ𝑎𝑡

= Ck according to the above formula. No grid search was 

applied on naïve Bayes algorithm only ten-fold cross-validation was applied. 

 4.5.3 Gaussian Process 

A Gaussian random variable X is specified by its standard deviation 𝜎 and mean µ. The density 

function is defined as: 

𝑃[𝑋 = 𝑥] =
1

√2𝜋𝜎2
exp(

−(𝑥 − 𝜇)2

2𝜎2
) 

           (4.5.3.1) 

A multi-variate Gaussian random variable X is specified by its covariance matrix ∑ and its mean 

µ. The density function is then defined as: 
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𝑃[𝑋 = 𝑥] =
1

(2𝜋)
𝑘
2|∑|2

exp(−
1

2
(𝑥 − 𝑢)′∑(𝑥 − 𝑢)) 

           (4.5.3.2) 

A Gaussian process f(x) is an ensemble of random variables of which any finite set is a joint 

Gaussian distribution. A Gaussian process is defined by its covariance function K(x, y) and its 

mean µ. For n ∈ N and 𝑥1, 𝑥2……… . . 𝑥𝑛, we have 

(𝑓(𝑥1), 𝑓(𝑥2), ……… . . 𝑓(𝑥𝑛)~𝑁((µ𝑥1,µ𝑥2,…… . . µ𝑥𝑛), 𝐾) 

           (4.5.3.3) 

where N is a normal distribution and K is 

(
𝑘(𝑥1, 𝑥1) ⋯ 𝑘(𝑥1, 𝑥𝑛)

⋮ ⋱ ⋮
𝑘(𝑥𝑛, 𝑥1) ⋯ 𝑘(𝑥𝑛, 𝑥𝑛)

) 

           (4.5.3.4) 

The goal is to generate a Gaussian process with covariance K and mean µ. First, we calculate the 

Cholesky decomposition of K by: 

𝐾 = 𝐿𝐿𝑇 

(4.5.3.5) 

 

where L is lower triangular. We generate 

𝐮 = N(0, 𝐈) 

                 (4.5.3.6) 

where N is a Gaussian with 0 mean and standard deviation I which is the identity matrix. Then 

we calculate 

𝑥 = µ + 𝐿𝐮 

                    (4.5.3.7) 
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Finally, we calculate 

𝐄(x − u)(𝑥 − 𝑢)𝑇=LE[uuT]LT=K 

                                   (4.5.3.8) 

A grid search was applied for RBF parameter. Grid was [1.0, 1.1, 1.2, 1.3, 1.4, 1.5] with 10-fold 

cross-validation. RBF of 1.0 gave the best result. 

4.5.4 Support Vector Machine - Classification (SVM) 

A Support Vector Machine (SVM) implements classification by discovering the hyperplane that 

optimizes the margin intermediate the two classes. The vectors that outline the hyperplane are the 

support vectors. To describe an optimum hyperplane, we need to optimize the thickness of the 

margin (w) where x is observations and b the bias term. 

Hyperplane are defined by 

 

(𝑤. 𝑥 + 𝑏) ≥ ∀𝑥𝑜𝑓𝑐𝑙𝑎𝑠𝑠1(𝑤. 𝑥 + 𝑏) ≤ −1, ∀𝑥𝑜𝑓𝑐𝑙𝑎𝑠𝑠2 

              (4.5.4.1) 

 

𝑤

||𝑤||
. (𝑥2 − 𝑥1) = 𝑤𝑖𝑑𝑡ℎ =

2

||𝑤||
 

𝑤. 𝑥2 + 𝑏 = 1 

𝑤. 𝑥1 + 𝑏 = −1 

𝑤. 𝑥2 + 𝑏 − 𝑤. 𝑥1 − 𝑏 = 1 − (−1) 

𝑤. 𝑥2 −𝑤. 𝑥1 = 2 

𝑤

||𝑤||
(𝑥2 − 𝑥1) =

2

||𝑤||
 

              (4.5.4.2) 
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We calculate w and b by the solution of the following objective function using Quadratic 

Programming.  

𝑚𝑖𝑛
1

2
||𝑤||2 

𝑠. 𝑡. 𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥ 1, ∀𝑥𝑖  

             (4.5.4.3) 

If the data is linearly separable, in that case, SVM finds a unique global minimum. In the ideal 

case, SVM will discover hyperplanes that separate the data into two classes and maximizes the 

width of the margin. In real situation cases, some of the points are misclassified, and SVM 

discovers the hyperplane, which maximizes the margin and minimizes the incorrect 

misclassifications. 

The algorithm attempts to uphold the slack variable to zero while optimizing margin. Though, it 

does not diminish the number of misclassifications instead the sum of distances from the margin 

hyperplanes are minimized. The constraint for the equation becomes: 

𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥ 1 − 𝜀𝑖 , ∀𝑥𝑖𝜀𝑖 ≥ 0 

Objective function penalizes for misclassified instances and those within the margin: 

𝑚𝑖𝑛
1

2
||𝑤||2 + 𝐶∑𝜀𝑖

𝑖

 

             (4.5.4.4) 

The easiest method to distinguish the two clusters of data is with a straight line (one dimension), 

flat plane (two dimensions), or an N-dimensional hyperplane. There are circumstances where a 

nonlinear area can separate the clusters more ably. SVM computes this by means of a nonlinear 

kernel function to map the data into a different space.  

 If such a linear decision surface does not occur, the data is transformed into a much higher 

dimensional space (i.e., the feature space) where the splitting decision surface is found, 

 The feature space is built through a mathematical projection called kernel trick. 
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4.5.4.1 Kernel Trick 

The linear classifier relies on the inner product between vectors 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 

              (4.5.4.5) 

When mapping every data point into high-dimensional space through some transformation 

function 𝜑, the inner product turns out to be: 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜑(𝑥𝑖)
𝑇𝜑(𝑥𝑗) 

              (4.5.4.6) 

A kernel is a function that is the same as the inner product in some feature spaces. A kernel function 

subliminally maps to space lacking the need to compute 𝜑(𝑥). 

C and 𝛾 are the parameters for a nonlinear support vector machine (SVM) with a Gaussian radial 

basis function kernel. Intuitively, the gamma parameter describes how far the effect of a single 

training example reaches, with low values implies ‘far’ and high values implies ‘close.’ 

The gamma parameters can be considered as the inverse of the radius of influence of examples 

selected by the model as support vectors. 

The C parameter trades off misclassification of training examples against the simplicity of the 

decision surface. A low C makes the decision surface smooth, while a high C aims at classifying 

all training examples correctly by giving the model freedom to select more samples as support 

vectors. 

Grid Search and 10 fold cross-validation was applied with the following parameter  

C = [0.001, 0.01, 0.1, 1, 10] 

𝛾(gamma) = [0.001, 0.01, 0.1, 1, 2] 

Best value for Support Vector Classifier was found to be  = 2 and C = 1. 
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4.5.5 Quadratic Discriminant Analysis (QDA) 

In the quadratic discriminant analysis, two or more classes are separated by quadric surfaces. It is 

considered as the generalization of linear discriminant analysis by a degree of two. If we have a 

training set of x observation with the attached type of observation y, the problem is to classify any 

new observation into which y type it belongs. In Quadratic Discriminant Analysis, the correct 

solution is assumed to be of quadratic. It should be of the following kind. 

 

𝑋𝑇𝐴𝑋 + 𝑏𝑇𝑋 + 𝑐 

             (4.5.5.1) 

If we consider the particular case where each observation is of two measurements, then the 

resulting surfaces will be conic. That is either they are hyperbola, parabola, ellipse, circle or line. 

In this perspective, we say that quadratic discriminant analysis is the generalization of its linear 

counterpart.  

There are similarities and differences between quadratic discriminant analysis and linear 

discriminant analysis. As in linear discriminant analysis, it is supposed that classes are typically 

distributed. The difference between QDA and LDA is that there is no assumption on the covariance 

of every class as the normality assumptions consequences are that the best possible hypothesis test 

for a given measurement classification is the likelihood ratio test. 

If we suppose that there are only two classes that is y belongs to {0, 1}, and the means of two 

categories are 𝜇𝑦=0𝑎𝑛𝑑𝜇𝑦=1 and the covariance are Σ𝑦=0𝑎𝑛𝑑Σ𝑦=1 We can, in this case, 

calculate the likelihood ratio as follows: 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑟𝑎𝑡𝑖𝑜 =
√|2𝜋Σ𝑦=1

−1
exp(−

1
2 (𝑥 − 𝜇𝑦=1)

𝑇Σ𝑦=1
−1 (𝑥 − 𝜇𝑦=1))

√|2𝜋Σ𝑦=0
−1
exp(−

1
2 (𝑥 − 𝜇𝑦=0)𝑇Σ𝑦=0

−1 (𝑥 − 𝜇𝑦=0))
< 𝑡 

              (4.5.5.2) 
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The resulting surfaces from the above formula are quadratic or conic. Population mean and 

variance-covariance are substituted in the above equation. In this thesis, default parameters of Sci-

kit learn package for Quadratic Discriminant Analysis were used with tenfold cross-validation. 

4.5.6 Decision Tree and Ada Boost 

A decision tree entails a set of correct/false decision rules. This can be viewed as a game of various 

questions where we ask different questions centred on the answers to earlier questions, and then at 

the termination, we make an estimate grounded on all the answers. We can envisage a decision 

tree as a set of nodes (conforming to correct/false questions), each of which has two subdivisions 

reliant on the answer to the problem. Contrasting to real trees, we typically draw them with their 

“root” at the TOP, and the “leaves” at the bottom: 

A. How to pick nodes 

A selected attribute A, with K different values, splits the training set E into subsets E1, E2, …, Ek. 

The estimated entropy (EH) left over after trying to attribute A with branches i=1, 2, …, k is  

 

 

𝐸𝐻(𝐴) =∑
𝑝𝑖 + 𝑛𝑖
𝑝 + 𝑛

𝐻(
𝑝𝑖

𝑝𝑖 + 𝑛𝑖
,

𝑛𝑖
𝑝𝑖 + 𝑛𝑖

)

𝐾

𝑖=0

 

              (4.5.6.1) 

 

The following formula calculates the entropy 

 

𝐻 (
𝑝

𝑝 + 𝑛
,

𝑛

𝑝 + 𝑛
) = −

𝑝

𝑝 + 𝑛
𝑙𝑜𝑔2 (

𝑝

𝑝 + 𝑛
) −

𝑛

𝑛 + 𝑝
𝑙𝑜𝑔2(

𝑛

𝑝 + 𝑛
) 

              (4.5.6.2) 

 

Information gain (I) or a reduction in entropy for an attribute is calculated 

 

𝐼(𝐴) = 𝐻 (
𝑝

𝑝 + 𝑛
,

𝑛

𝑝 + 𝑛
) − 𝐸𝐻(𝐴) 

              (4.5.6.3) 
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The depth of a decision tree is the length of the largest path from a root to a leaf. The leaf is the 

endpoint of a tree. 

We create a node for an attribute that has the largest I(A). A grid search was used with tenfold 

cross-validation with the following parameters 

Depth = [2, 3, 4, 5, 6, 7, 8, 9, 10],  Leaf = [1, 5, 10, 15, 20] 

The best results were obtained at depth 5 and leaf 10. 

B. Random Forest 

A Random Forest entails an assembly or ensemble of simple tree predictors, each adept at making 

a response when offered with a set of predictor values. Aimed at classification problems, this 

response takes the arrangement of a class association, which links, or classifies, a set 

of independent predictor values with one of the classes present in the dependent variable. 

Otherwise, for regression problems, the tree response is an approximation of the dependent 

variable assumed the predictors. 

A Random Forest entails a random number of simple trees, which are used to decide the concluding 

outcome aimed at classification problems, the ensemble of simple trees votes for the entire 

prevalent class. In the regression problem, their responses are an averaged (taken the mean of) to 

obtain an approximation of the dependent variable.  

C. Bagging 

In ensemble algorithms, bagging procedures form a class of algorithms, which construct numerous 

occurrences of a black-box forecaster on random subsets of the original training set and then 

combined their specific predictions to create a final prediction. These procedures are used as a way 

to decrease the variance of a base estimator (e.g., a decision tree). 

D. Boosting 

Boosting is an alternative method for refining the prediction power from a decision tree. Boosting 

works likewise to bagging except that the trees are grown consecutively consuming information 

from formerly grown trees. Boosting also does not include bootstrapping, in its place each tree is 

fitted on an adapted version of the original data. 
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Instead of fitting a lone big decision tree which results in hard fitting the data, and possibly 

overfitting the boosting method learns slowly. Given the existing model, we fit a decision tree to 

the residuals from the model, rather than the result Y.  

Adaboost was grid searched with the following number of estimators [5, 10, 15, 20, 25, 30, 35, 40] 

and decision tree with above-mentioned grid search was used as a base estimator. A grid search 

was performed with tenfold cross-validation. The best result was found with 30 number of 

estimators with a depth of 10 and leaf of 15. 
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Chapter V - Results 

In this chapter, a Table providing precision, recall, accuracy, and F1 score (section 5.2) for each 

algorithm is presented. The experiments has been done using he following dataset: 

(i) The original dataset,  

(ii) The original dataset augmented by Markov transition fields and Gramian Angular 

Field, 

(iii) The original dataset passed through Smote ENN, and  

(iv) The original dataset augmented by Markov transition fields, Gramian Angular Field, 

and passed through SMOTE ENN Algorithm. After this, a description of the result of 

the algorithm is presented. 

The four metrics -- precision, recall, accuracy, and F1 -- are selected to measure the performances 

of all algorithms. Precision is selected because it is a measure of the fraction of correct positive 

selected among all selected positive. We consider recall because it is a measure of a collection of 

all true positive selected among all positives identified. Accuracy gives us an indication of how 

accurately a classifier is classifying. The most critical measure is F1 score not only because it is a 

measure that combines the measures of recall and precision but also because we are comparing 

datasets that are imbalanced with datasets that are balanced. 

5.1 Methodology 

Experiments were conducted on a machine with Intel processor core i7-7700HQ CPU @ 2.80Ghz 

2.80 GHz having a RAM of 16 GB and Nvidia GTX 1070 Ti with 8 GB of memory. Sci-kit learn 

was used for all the algorithms except MCNN: 

 Nearest Neighbors - A grid search was applied on K Neighbors Classifier with 10-

fold cross-validation. k was searched from 2 to 7, and the best results were obtained for 

k = 3, 

 Naïve Bayes - No grid search was applied on naïve Bayes algorithm only tenfold cross-

validation was applied, 
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 Gaussian Process - A grid search was applied for RBF parameter. Grid was [1.0, 1.1, 

1.2, 1.3, 1.4, 1.5] with ten-fold cross-validation. Best results were found for RBF of 

1.0, 

 Linear Support Vector Machine - Classification (SVM) and RBF Support Vector 

Machine - Classification (SVM) - Grid Search, and 10 fold cross-validation was 

applied with the following parameter  

C = [0.001, 0.01, 0.1, 1, 10],  = [0.001, 0.01, 0.1, 1, 2] 

Best value for Support Vector Classifier was found to be  = 2 and C = 1, 

 Quadratic Discriminant Analysis (QDA) - In this thesis, default parameters of sci-

kit learn package for Quadratic Discriminant Analysis were used with tenfold cross-

validation. 

 Decision Trees - A grid search was used with tenfold cross-validation with the 

following parameters 

Depth = [2, 3, 4, 5, 6, 7, 8, 9, 10], Leaf = [1, 5, 10, 15, 20] 

Best Results were obtained for depth 5 and leaf 10,  

 Ada Boost – Ada boost was grid searched with the following number of estimators [5, 

10, 15, 20, 25, 30, 35, 40] and decision tree with above-mentioned grid search was used 

as a base estimator. A grid search was performed with tenfold cross-validation. The 

best result was found with 30 number of estimators with a depth of 10 and leaf of 15, 

 Multi-Scale Convolutional Neural Networks (MCNN) - For window slicing, the 

length of slices was set to 0.9b where b is the initial length of the series. Number of 

filters was 256 for CNN. The space of hyper-parameters search was filter size, batch 

size and pooling factor. We used batch size of {4, 8, 16, 32, 64}. Filter sizes were 

searched in grid space of {3, 5, 7, 9}. Grid space for pooling was {2, 3, 5}. 256 neurons 

were used for fully connected layers, and 128 neurons were used for branches. We used 

a mini-batch stochastic gradient with momentum as the optimizing algorithm. Early 

stopping was applied to validation error to avoid overfitting.  
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5.2 Precision, Recall, Accuracy, and F1 score  

Normal signals are considered as negative examples, and hypertensive signals are considered as 

positive examples. Following metrics were used to evaluate the algorithms. 

Precision is defined by the following 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝒓𝒖𝒆𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 + 𝑭𝒂𝒍𝒔𝒆𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆
 

It is an indicator of how many true positives were selected from all positive selected. It is an 

indicator of how precise is an algorithm is. 

The recall is defined by 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝒓𝒖𝒆𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 + 𝑭𝒂𝒍𝒔𝒆𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆
 

It is an indicator of an algorithm’s ability to pick positives among all the positive in the dataset. 

Accuracy is defined by  

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝒓𝒖𝒆𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 + 𝑻𝒓𝒖𝒆𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 + 𝑻𝒓𝒖𝒆𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆 + 𝑭𝒂𝒍𝒔𝒆𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 + 𝑭𝒂𝒍𝒔𝒆𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆
 

Accuracy is an indicator of how accurately an algorithm predicts. 

F1 score is defined by 

𝑭𝟏𝒔𝒄𝒐𝒓𝒆 =
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
∗ 𝟐 

F1 score is a combination of precision and recall. If we want to see the combined effect of precision 

and recall, we use the F1 score. 

The confusion matrix is a matrix containing the horizontal axis as predicted results and the vertical 

axis as true results. With the help of the confusion matrix, we can see how many positive were 

classified accurately and how many were classified inaccurately. Similarly, from the confusion 

matrix, we can see how many negative were classified accurately and how many were classified 

inaccurately. Confusion matrices are presented in appendix B. 
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Results of algorithms are presented below. Discussion and insights as to why we were obtaining 

these results are presented in chapter 6. 

5.3 Nearest Neighbors  

Results of Nearest Neighbors are presented in Table 5.1. Nearest Neighbors performed the best 

with SMOTE ENN but without images augmentation. In fact augmentation of data with Markov 

transition fields and Gramian Angular Field images (MTF+GAFI) deteriorated its performance. 

SMOTE ENN algorithm for balancing the dataset enhanced its performance. Precision also 

decreased with augmenting data with MTF+GAFI. Robust precision increased to 100% by 

balancing the dataset with SMOTE ENN and augmenting the data with Markov transition fields, 

and Gramian Angular Field images.  

Table 5.1. Nearest Neighbors Accuracy, Precision, Recall, and F1 Score 

(i) original dataset, (ii) original dataset augmented by Markov transition fields and Gramian Angular Field,  

(iii) original dataset passed through Smote ENN, and (iv) original dataset augmented by Markov transition fields, 

Gramian Angular Field, and Passed Through Smote ENN Algorithm 

Algorithm Accuracy Precision Recall F1

Nearest Neighbors 

original dataset
0.9291 0.7500 0.0952 0.1690

original dataset augmented by Markov 

transition fields and Gramian Angular 0.9083 0.3281 0.4118 0.3652

original dataset passed through Smote ENN
0.9836 1.0000 0.9713 0.9854

original dataset augmented by Markov 

transition fields, Gramian Angular Field, 

and Passed Through Smote ENN 0.8326 1.0000 0.7755 0.8736  

5.4 Naïve Bayes 

Results of Naïve Bayes are presented in Table 5.2. Both images augmentation and SMOTE ENN 

algorithm enhanced Naïve Bayes accuracy. Though the overall performance of Naïve Bayes was 

relatively low as compared to other algorithms. Precision was excellent without enhancement by 

MTF+GAFI. In fact it deteriorated slightly with augmentation of MTF+GAFI. SMOTE ENN 

algorithm for balancing the dataset also slightly decreased its precision. But the combined effect 

of both augmentation by MTF+GAFI and SMOTE ENN enhanced its precision to 99%. Naïve 

Bayes recall on its own was not good, just over 9% on original dataset. MTF+GAFI augmentation 

increased it to 12%. A significant increase in recall came with balancing the dataset with SMOTE 

ENN. F1 Score of Naïve Bayes algorithm without balancing the data with SMOTE ENN is not 

very impressive. 
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Table 5.2. Naïve Bayes Accuracy, Precision, Recall, and F1 Score 

(i) original dataset, (ii) original dataset augmented by Markov transition fields and Gramian Angular Field,  

(iii) original dataset passed through Smote ENN, and (iv) original dataset augmented by Markov transition fields, 

Gramian Angular Field, and Passed Through Smote ENN Algorithm 

Algorithm Accuracy Precision Recall F1

Naïve Bayes

original dataset 0.2837 0.9841 0.0944 0.1722

original dataset augmented by Markov transition 

fields and Gramian Angular Field 0.6112 0.9412 0.1221 0.2162

original dataset passed through Smote ENN 0.6565 0.9768 0.6206 0.7590

original dataset augmented by Markov transition 

fields, Gramian Angular Field, and Passed 

Through Smote ENN Algorithm 0.8281 0.9961 0.7725 0.8702  

5.5 Gaussian process 

The accuracy of the Gaussian Process (Table 5.3) decreased with the enhancement of data with 

images, but its accuracy was increased to nearly 99% by balancing the data with the SMOTE ENN 

algorithm. Precision also decreased by augmenting the dataset with MTF+GAFI. But precision 

becomes 100% by balancing the data with the SMOTE ENN algorithm. The combined effect of 

MTF+GAFI augmentation and SMOTE ENN algorithm produced a precision of 99%. Similarly, 

the recall was decreased by augmenting the dataset set with MTF+GAFI, While SMOTE ENN 

raised the recall to 98%. The combined effect of MTF+GAFI and SMOTE ENN were nearly the 

same as SMOTE ENN alone. F1 score decreased with enhancement by MTF+GAFI. 

Algorithm Accuracy Precision Recall F1

Gaussian process

Original Dataset 0.9531 0.4762 0.8333 0.6061
Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field 0.9347 0.3725 0.4872 0.4222

Original Dataset Passed Through Smote ENN 0.9900 1.0000 0.9823 0.9911

Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field and Passed 

Through Smote ENN Algorithm 0.9910 0.9987 0.9858 0.9922
 

 

Table 5.3 Gaussian Process’ Accuracy, Precision, Recall, and F1 Score of (i) Original Dataset, (ii) 

Original Dataset Augmented by Markov transition fields and Gramian Angular Field, (iii) Original 

Dataset Passed Through Smote ENN, and (iv) Original Dataset Augmented by Markov transition fields 

and Gramian Angular Field and Passed Through Smote ENN Algorithm 
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5.6 Linear SVM 

Results of Linear SVM are presented in Table 5.4. The accuracy of Linear SVM was enhanced by 

augmenting the data with images. Accuracy was also improved by balancing the data with the 

SMOTE ENN algorithm. The precision of Linear-SVM increased from 7% to 84% with 

augmentation of MTF+GAFI. While precision went from 7% to 99% with the balancing of data 

with SMOTE ENN, the combined effect of enhancement of the dataset with MTF+GAFI and 

SMOTE ENN raised the precision to nearly 100%. The recall was 100% without augmentation of 

the dataset with MTF+GAFI and without balancing the dataset with SMOTE ENN. It decreased 

to 79% when we augmented the dataset with MTF+GAFI. Recall also dropped 3% when we 

balanced the dataset with SMOTE ENN. The combined effect of both augmentation with 

MTF+GAFI and the SMOTE ENN algorithm was to decreased the recall 2% from 100% that 

linear-SVM was able to achieve. F1score increased drastically with augmentation of MTF+GAFI. 

Algorithm Accuracy Precision Recall F1

Linear SVM

Original Dataset 0.9303 0.0794 1.0000 0.1471

Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field 0.9761 0.8431 0.7963 0.8190

Original Dataset Passed Through Smote ENN 0.9822 0.9949 0.9736 0.9841
Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field and Passed Through 

Smote ENN Algorithm 0.9887 0.9987 0.9821 0.9903  

5.7 SVM-RBF 

SVM-RBF best accuracy (Table 5.5) was without augmentation with images or SMOTE ENN 

algorithm for balancing the data. This was 93% and decreased to 57% with expanding with images 

and SMOTE ENN algorithm. Precision was 20% without augmenting the dataset with 

MTF+GAFI. It was raised to 56% when the dataset was supplemented with MTF+GAFI. Though 

SMOTE ENN alone increased the precision to 77%. The combined effect of SMOTE ENN and 

augmentation by MTF+GAFI raised the precision to 100%. The recall was 100% without 

Table 5.4 Linear SVM’s Accuracy, Precision, Recall, and F1 Score of (i) Original Dataset, (ii) Original 

Dataset Augmented by Markov transition fields and Gramian Angular Field, (iii) Original Dataset Passed 

Through Smote ENN, and (iv) Original Dataset Augmented by Markov transition fields and Gramian 

Angular Field and Passed Through Smote ENN Algorithm 
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augmentation with MTF+GAFI. The recall was 84% with images. The combined effect of 

enlarging the dataset with MTF+GAFI and SMOTE ENN algorithm the recall came out to be 57%. 

Algorithm Accuracy Precision Recall F1

RBF

Original Dataset 0.9399 0.2063 1.0000 0.3421

Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field 0.9359 0.5632 0.8473 0.6766

Original Dataset Passed Through Smote ENN 0.8760 0.7761 1.0000 0.8739
Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field and Passed Through 

Smote ENN Algorithm 0.5784 1.0000 0.5784 0.7329  

5.8 QDA 

QDA accuracy (Table 5.6) was 27% but augmenting the data with images its accuracy jumped to 

92%. Its accuracy also raised from 27% to 99% when data was balanced with SMOTE ENN. By 

combining the augmentation of data with images and SMOTE ENN algorithm, its accuracy 

jumped to 100%. Precision decreased when augmenting the dataset with MTF+GAFI from 96% 

to 35% but SMOTE ENN alone increased the precision to 100%. The recall was also decreased 

with the enhancement of a dataset with MTF+GAFI. But it increased to 99% by balancing the 

dataset with SMOTE ENN. The F1 score also decreased with MTF+GAFI augmentation. 

Algorithm Accuracy Precision Recall F1

QDA

Original Dataset 0.2704 0.9683 0.0916 0.1674
Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field 0.9221 0.3529 0.3830 0.3673

Original Dataset Passed Through Smote ENN 0.9950 1.0000 0.9911 0.9955
Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field and Passed Through 

Smote ENN Algorithm 1.0000 1.0000 1.0000 1.0000  

Table 5.6 QDA’s Accuracy, Precision, Recall, and F1 Score of (i) Original Dataset, (ii) Original Dataset 

Augmented by Markov transition fields and Gramian Angular Field, (iii) Original Dataset Passed Through 

Smote ENN, and (iv) Original Dataset Augmented by Markov transition fields and Gramian Angular Field 

and Passed Through Smote ENN Algorithm 

Table 5.5. SVM-RBF’s Accuracy, Precision, Recall, and F1 Score of (i) Original Dataset, (ii) Original 

Dataset Augmented by Markov transition fields and Gramian Angular Field, (iii) Original Dataset Passed 

Through Smote ENN, and (iv) Original Dataset Augmented by Markov transition fields and Gramian 

Angular Field and Passed Through Smote ENN Algorithm 
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5.9 Decision Tree 

The decision tree approach (Table 5.7) performed very well on its own. There was a slight 

increased in performance with the SMOTE ENN algorithm and data augmentation with images. 

Precision increased from 88% to 92% when we augmented the dataset with MTF+GAFI. SMOTE 

ENN alone increased the precision to approximately 99%. The combined effect of MTF+GAFI 

augmentation and the SMOTE ENN algorithm was to raise the precision to 100%.The recall was 

decreased when we augmented the dataset with MTF+GAFI from around 91% to 81%. Smote 

ENN alone increased the recall from 91% to 98%. The combined effect of both augmentations by 

MTF+GAFI and Smote ENN was to raise the recall to 99%. F1 score slightly decreased with 

enlargement of the dataset with MTF+GAFI. Decision tree diagrams are presented in appendix C. 

Algorithm Accuracy Precision Recall F1

Decision Tree

Original Dataset 0.9856 0.8889 0.9180 0.9032

Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field 0.9812 0.9216 0.8103 0.8624

Original Dataset Passed Through Smote ENN 0.9936 0.9987 0.9898 0.9942
Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field and Passed Through 

Smote ENN Algorithm 0.9962 1.0000 0.9935 0.9968  

5.10 Ada Boost 

Due to its similarity to the decision tree algorithm, the Ada Boost performed quite similar to a 

decision tree as far as accuracy is concerned. Precision (Table 5.8) increased from 90% to 94% 

when augmenting the dataset with MTF+GAFI. Smote ENN raised the precision to 100%, and the 

combined effect of both was also 100% of precision. The recall was 100% before it decreased to 

around 87% when we augmented the dataset with MTF+GAFI. Smote ENN increased the 

Table 5.7 Decision Tree’s Accuracy, Precision, Recall, and F1 Score of (i) Original Dataset, (ii) Original 

Dataset Augmented by Markov transition fields and Gramian Angular Field, (iii) Original Dataset Passed 

Through Smote ENN, and (iv) Original Dataset Augmented by Markov transition fields and Gramian 

Angular Field and Passed Through Smote ENN Algorithm 
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precision to about 99%, and the combined effect of both was also approximately 99% of precision. 

F1 Score decreased from 0.95 to 0.90 after augmenting the dataset with MTF+GAFI. 

Algorithm Accuracy Precision Recall F1

Ada Boost

Original Dataset 0.9928 0.9048 1.0000 0.9500

Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field 0.9874 0.9412 0.8727 0.9057

Original Dataset Passed Through Smote ENN 0.9964 1.0000 0.9936 0.9968
Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field and Passed Through 

Smote ENN Algorithm 0.9955 1.0000 0.9922 0.9961  

5.11 MCNN 

MCNN (Table 5.9) performed well on its own, but its accuracy slightly increased with the Smote 

ENN algorithm and data augmentation with images. Precision was 47% and it decreased to 26% 

with augmentation of the dataset with MTF+GAFI. But it increased to 91% with Smote ENN. The 

combined effect of both was to increase the precision to 93%. Recall increased from around 40% 

to approximately 80% when we augmented the dataset with MTF+GAFI. Smote ENN alone raised 

the recall to 95%, and the combined effect of both was also 95%. The F1 score was slightly 

decreased with data augmentation by MTF+GAFI. 

Algorithm Accuracy Precision Recall F1

MCNN

Original Dataset 0.9221 0.4706 0.4068 0.4364

Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field 0.9399 0.2698 0.8095 0.4048

Original Dataset Passed Through Smote ENN 0.9414 0.9164 0.9500 0.9329
Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field and Passed Through 

Smote ENN Algorithm 0.9515 0.9327 0.9572 0.9448  

Table 5.9 MCNN’s Accuracy, Precision, Recall, and F1 Score of (i) Original Dataset, (ii) Original Dataset 

Augmented by Markov transition fields and Gramian Angular Field, (iii) Original Dataset Passed Through 

Smote ENN, and (iv) Original Dataset Augmented by Markov transition fields and Gramian Angular Field 

and Passed Through Smote ENN Algorithm 

Table 5.8 Ada Boost’s Accuracy, Precision, Recall, and F1 Score of (i) Original Dataset, (ii) Original 

Dataset Augmented by Markov transition fields and Gramian Angular Field, (iii) Original Dataset Passed 

Through Smote ENN, and (iv) Original Dataset Augmented by Markov transition fields and Gramian 

Angular Field and Passed Through Smote ENN Algorithm 
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5.12 Summary  

The results obtained (Table 5.10) show the algorithms perform better when the dataset is first 

processed through Smote ENN algorithm. We can also conclude that balancing provide better 

results than augmentation. 
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Algorithm Accuracy Precision Recall F1

Nearest Neighbors 

Original Dataset 0.9291 0.7500 0.0952 0.1690

Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field 0.9083 0.3281 0.4118 0.3652

Original Dataset Passed Through Smote ENN 0.9836 1.0000 0.9713 0.9854

Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field and Passed 

Through Smote ENN Algorithm 0.8326 1.0000 0.7755 0.8736

Naïve Bayes

Original Dataset 0.2837 0.9841 0.0944 0.1722

Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field 0.6112 0.9412 0.1221 0.2162

Original Dataset Passed Through Smote ENN 0.6565 0.9768 0.6206 0.7590
Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field and Passed 

Through Smote ENN Algorithm 0.8281 0.9961 0.7725 0.8702

Gaussian process

Original Dataset 0.9531 0.4762 0.8333 0.6061
Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field 0.9347 0.3725 0.4872 0.4222

Original Dataset Passed Through Smote ENN 0.9900 1.0000 0.9823 0.9911

Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field and Passed 

Through Smote ENN Algorithm 0.9910 0.9987 0.9858 0.9922

Linear SVM

Original Dataset 0.9303 0.0794 1.0000 0.1471

Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field 0.9761 0.8431 0.7963 0.8190

Original Dataset Passed Through Smote ENN 0.9822 0.9949 0.9736 0.9841

Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field and Passed 

Through Smote ENN Algorithm 0.9887 0.9987 0.9821 0.9903

RBF

Original Dataset 0.9399 0.2063 1.0000 0.3421

Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field 0.9359 0.5632 0.8473 0.6766

Original Dataset Passed Through Smote ENN 0.8760 0.7761 1.0000 0.8739
Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field and Passed 

Through Smote ENN Algorithm 0.5784 1.0000 0.5784 0.7329

QDA

Original Dataset 0.2704 0.9683 0.0916 0.1674
Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field 0.9221 0.3529 0.3830 0.3673

Original Dataset Passed Through Smote ENN 0.9950 1.0000 0.9911 0.9955
Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field and Passed 

Through Smote ENN Algorithm 1.0000 1.0000 1.0000 1.0000

Decision Tree

Original Dataset 0.9856 0.8889 0.9180 0.9032
Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field 0.9812 0.9216 0.8103 0.8624

Original Dataset Passed Through Smote ENN 0.9936 0.9987 0.9898 0.9942

Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field and Passed 

Through Smote ENN Algorithm 0.9962 1.0000 0.9935 0.9968

Ada Boost

Original Dataset 0.9928 0.9048 1.0000 0.9500
Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field 0.9874 0.9412 0.8727 0.9057

Original Dataset Passed Through Smote ENN 0.9964 1.0000 0.9936 0.9968

Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field and Passed 

Through Smote ENN Algorithm 0.9955 1.0000 0.9922 0.9961

MCNN

Original Dataset 0.9221 0.4706 0.4068 0.4364
Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field 0.9399 0.2698 0.8095 0.4048

Original Dataset Passed Through Smote ENN 0.9414 0.9164 0.9500 0.9329

Original Dataset Augmented by Markov transition 

fields and Gramian Angular Field and Passed 

Through Smote ENN Algorithm 0.9515 0.9327 0.9572 0.9448  

Table 5.10 All Algorithm’s Accuracy, Precision, Recall, and F1 Score of (i) Original Dataset, (ii) Original 

Dataset Augmented by Markov transition fields and Gramian Angular Field, (iii) Original Dataset Passed 

Through Smote ENN, and (iv) Original Dataset Augmented by Markov transition fields and Gramian 

Angular Field and Passed Through Smote ENN Algorithm 
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Chapter VI - Discussion 

In this thesis, we explored the intracranial pressure (ICP) classification. We introduced a SMOTE 

ENN algorithm for balancing the data, and its effect was examined on the classification of ICP. 

The data was further augmented with Markov transition field, and Gramian angular field images 

and implications of this augmentation were also investigated. The information is divided into four 

sets 

1. Data without Smote ENN algorithm and without augmenting it with Gramian angular field 

images and Markov transition matrix. 

2. Data with Smote ENN algorithm but without augmenting it with Gramian angular field 

images and Markov transition matrix. 

3. Data without Smote ENN algorithm but augmenting it with Gramian angular field images 

and Markov transition matrix. 

4. Data with Smote ENN algorithm and augmenting it with Gramian angular field images and 

Markov transition matrix. 

These datasets were passed to following classification algorithms. 

 Nearest Neighbors  

 Naïve Bayes 

 Gaussian Process 

 Linear Support Vector Machine - Classification (SVM) 

 RBF Support Vector Machine - Classification (SVM) 

 Quadratic Discriminant Analysis (QDA) 

 Decision Trees 

 Ada Boost 

 Multi-Scale Convolutional Neural Networks (MCNN) 

The effect of Smote ENN and augmentation of data with Gramian angular field images and 

Markov transition field were compared to original ICP data for classification normal and 

hypertensive ICP signals. 
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6.1 Images Augmentation 

Data augmentation with MTF+GAFI correspondence to the expansion of data space. If data space 

is of dimension d, Markov transition fields image of dimension m, and Gramian Angular Field 

image of dimension g than by augmenting data with MTF+GAFI the dimension of data space 

becomes d*m*g where d, m, and g are spaces representing data in three different representation. 

This three representation of data are concatenated, and the data space of dimension d*m*g is 

created.  

6.2 Nearest Neighbors 

Nearest Neighbor algorithm accuracy decreases as data is augmented with MTF+GAFI. This is 

because of the expansion of space as it becomes difficult for Nearest Neighbors to be accurate in 

the expanded space. But as the Smote ENN connects the dots for minority class by linearity, it 

becomes easier for the Nearest Neighbor to be correct. The combined effects decrease the accuracy 

from which Smote ENN found. 

Recall shows the same trend. Precision decreases as it is picking false positive in the expanded 

space due to its near neighbour nature. While Smote ENN increases the precision as data is more 

connected linearly for the minority class, the combined effect of image augmentation and Smote 

ENN is also very good. F1 score increases with data augmentation by images, but Smote ENN 

increases F1score significantly. The combined effect is decreasing in the F1 rating.  

6.3 Naïve Bayes 

The accuracy of the Naïve Bayes algorithm increases due to augmentation of data with images. 

That is because P(x|C) that is the likelihood term increases due to augmentation and balancing of 

data. The combined effects of both superimpose each other in a constructive sense. Increase in 

likelihood term also increases the probability of picking false positive that is the reason we see a 

decrease in precision by augmenting the dataset with images. We also see the same effect of Smote 

ENN due to the same reason. 

Recall increases slightly because of the better estimate of the likelihood term with data 

augmentation with images. It increases significantly with Smote ENN algorithm. That is because 
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Smote ENN affects both the likelihood term as well as the probability of a class. The combined 

effect also superimposed in a constructive sense. The F1 score shows the same trend. 

6.4 Gaussian Process 

Accuracy, precision, recall, and F1 all decrease with data augmentation with images. This is 

because in expanded space we have three kinds of representation of the same data and covariance 

matrix among these three representations is a weaker covariance matrix as compared to the 

covariance matrix of single representation matrix. As Smote ENN balances the dataset, it has in a 

single representation the covariance matrix of single representation increases, which results in an 

increase in accuracy, precision, recall, and F1 score. 

If dataset augmentation with images occurs after the Smote ENN algorithm than the balancing of 

the dataset also increases the covariance matrix of three representation which results in an increase 

in accuracy, precision, recall, and F1 score. 

6.5 Linear Support Vector Machine - Classification (SVM) 

We see that augmenting the dataset with MTF+GAFI accuracy and precision increases as 

segmentation of space in d*m*g dimensional space is more accessible for support vector’s planes 

while recall decreases because in expanded space it becomes difficult to pick a more significant 

number of positive.  As the effect of Smote ENN is to introduce a particular kind of linearity among 

the minority class, therefore, it becomes easier for the linear support vector to find planes for 

segmentation. This is the reason that we see an increase in accuracy, precision as well as recall. 

If we see the F1 score, it increases with data augmentation with MTF+GAFI but increases 

significantly with Smote ENN algorithm and the combined effect of both makes an F1 score of 

around 0.99. 

6.6 RBF Support Vector Machine - Classification (SVM) 

Accuracy slightly increases with data augmentation with MTF+GAFI this is because Markov 

transition fields images are making it difficult for RBF to classify. We see accuracy decreasing 

with Smote ENN. This is because of linearity introduced among minority class by Smote ENN, 

which makes RBF challenging to classify. We also observe that accuracy decrease significantly if 
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we combine the effect of Smote ENN and data augmentation by MTF+GAFI. This is because of 

linearity introduce by Smote ENN and data augmentation by Markov transition fields Images. 

6.7 Quadratic Discriminant Analysis (QDA) 

Accuracy jumps significantly for QDA when data is augmented with images that may be because 

quadratic nature introduced in the dataset by polar coordinates. Accuracy also significantly jumps 

when data is passed to Smote ENN algorithm that is because QDA is a generalization of LDA and 

it can handle the linearity introduced by SMOTE ENN. The combined effect makes accuracy 

100%. 

The precision, on the other hand, decreases with image augmentation as Markov transition fields, 

and Gramian Angular Field images pick more false positives. But Smote ENN makes precision 

100%, and the combined effect is also 100%. 

The recall is also reduced with image augmentation as the expansion of space makes it difficult 

for QDA to pick positive examples from all the positive cases. But Smote ENN compensates this 

as the linearity nature of SMOTE ENN is selected very well by QDA. The F1 score shows a similar 

trend.   

6.8 Decision Trees 

The accuracy of the decision tree was excellent even without augmentation by images and without 

Smote ENN algorithm. Its accuracy decreased very slightly when images were augmented. As the 

data space expanded, it became somewhat tricky for the decision tree to classify. Smote ENN 

increased its accuracy somewhat because of linearity introduced by Smote ENN. The combined 

effect of  space expansion and Smote ENN has also improved accuracy. Precision increased with 

the expansion of data space, and it increased significantly with the Smote ENN algorithm. As an 

expansion of data space and linearity introduced in minority class due to Smote ENN aided 

decision tree to be more precise. 

Recall reduced with the expansion of data space as it becomes more challenging to pick the positive 

examples in an expanded space. But recall increased with Smote ENN as by balancing the data it 

becomes more comforTable for the decision tree to select the positive examples. The F1 score 

showed the same trend as mentioned above due to the same reasons.  
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6.9 Ada Boost 

As Ada boost is just an ensemble method of the decision tree, it shows the same trend as a decision 

tree. The reasons for these trends are also the same, which are described in decision tree discussion. 

The results of the Ada boost are slightly better than the decision tree is because it is an ensemble 

method. 

6.10 Multi-Scale Convolutional Neural Networks (MCNN) 

The accuracy of the multi-scale convolutional neural network increases somewhat with the 

augmentation of images due to the expansion of space by polar coordinates and Markov transition 

field. It becomes slightly more accessible for moving averages of MCNN and its frequency 

component to classify the data, but the increase is minimal. Smote ENN increase the ability for 

moving averages to find smother representations of data and thus its accuracy increase slightly. 

The Combined effect is also an increase in accuracy. 

Precision decreases with enhancing the dataset with images as it is finding the more false positive. 

The expansion of space with polar component and Markov transition field combined with moving 

averages and frequency components picks more false positives. While Smote ENN as it created 

linearity in positive examples; therefore, it becomes easier for MCNN to pick true positives, this 

is the reason that precision increases with Smote ENN. The combined effect is also an 

enhancement of precision. 

Recall increases with the enhancement of data with images as it is picking more positives from all 

positives. Expansion of space with moving averages and frequency components increases the 

ability to pull more and more positives from all positives. Same is the case with Smote ENN 

algorithm and combined constructive effect superposition of the previous to effects. 

F1 score decreases with images augmentation but increases with Smote ENN. MCNN did not show 

best results as compared to other algorithm. This is because number of training examples are just 

1990 for unbalanced datasets and 3656 for balanced dataset.      
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Chapter VII - Conclusion and Future Direction of Work 

7.1 Conclusion 

This thesis was an investigation in comparing various algorithm mentioned above and selecting 

the best algorithm for each dataset used in this thesis. The conclusion is presented below.  

Table 7.1 illustrates the best performance in each category. We clearly see that Ada boost is 

performing best in the majority of the categories, and QDA performance is best for the category 

where images are augmented, and data is passed through Smote ENN. 

- Accuracy 

Ada Boost is the best algorithm accuracy wise on a dataset without images (original dataset), a 

dataset with images, and dataset without images but with Smote ENN. While QDA has the best 

accuracy on the dataset without images but with Smote ENN. 

- Precision 

Naïve Bayes performance is best as far as precision is concerned on the dataset without images 

and dataset with images. Its precision decreases if the dataset is passed through Smote ENN 

algorithm. If the dataset is passed through Smote ENN algorithm, and the dataset is not augmented 

with images than nearest neighbours, and QDA has the best precision. On the other hand, if the 

dataset is passed through Smote ENN algorithm, and the dataset is also augmented by images than 

Ada Boost, Decision Tree, QDA, and Nearest Neighbors shows the best precision. 

- Recall 

On the original dataset, Ada Boost and Linear SVM has the best recall. Ada Boost also has the 

best recall on the dataset with images and dataset that has been passed by Smote ENN but not 

augmented by images. QDA has the best recall on the dataset that is passed through Smote ENN 

and augmented with images. 

- F1 Score 

Ada Boost has the best F1 score on the original dataset and dataset augmented with images. The 

Gaussian process has the best F1 score on the dataset that has been passed through Smote ENN 
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but is not augmented with images. While QDA has best F1 score on the dataset passed through 

Smote ENN algorithm, and when the dataset is augmented with images. 

From this study, we can conclude that Ada Boost is the most invariant to the data representation 

and distribution among the examined algorithms.  

Table 7.1 Best Performance for Accuracy, Precision, Recall, and F1 Score of Original Dataset, Original Dataset 

Augmented by Markov transition fields and Gramian Angular Field, Original Dataset Passed Through Smote ENN, 

and Original Dataset Augmented by Markov transition fields and Gramian Angular Field and Passed Through Smote 

ENN Algorithm 

Best Performance Accuracy Precision Recall F1 Score 

Original dataset 
Ada 
Boost Naïve Bayes 

Ada Boost, 
Linear SVM Ada Boost 

Original dataset augmented by 
Markov transition field and 
Gramian angular field 

Ada 
Boost Naïve Bayes Ada Boost Ada Boost 

Original dataset balanced by 
Smote-ENN 

Ada 
Boost Nearest Neighbors, QDA Ada Boost 

Gaussian 
process 

Original dataset augmented by 
Markov transition field and 
Gramian angular field and 
balanced by Smote ENN QDA 

Ada Boost, Decision Tree, QDA, 
Nearest Neighbors  QDA QDA 

 

7.2 Thesis contribution 

This thesis contribution is in exploring the effects of augmentation of datasets with different 

representations of the original dataset and investigation on the ability of classification of different 

classifying algorithms. In particular, Gramian Angular Plots representation and Markov Transition 

Fields representation were explored. 

This thesis also investigates the effects of balancing the dataset with Smote ENN algorithm and its 

effects on the ability to classify different algorithms. Finally, the combined effect of augmenting 

the dataset with Gramian Angular Plots representation and Markov Transition Fields 

representation and SMOTE ENN algorithm were studied.  

The contribution of this thesis is converting time series into images by using Markov transition 

fields and Gramian angular field and using MCNN as the convnet. 
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7.3 Direction of future work 

The future direction of this work is a further investigation in many different forms of representing 

the same dataset and exploring the effects in classifying ability of various classifying algorithms. 

The possible different representations can be Cylindrical and spherical coordinate systems 

representation, Homogeneous coordinate system representation, Curvilinear coordinates 

representation, Orthogonal coordinates representation, Skew coordinates representation, Log-

polar coordinate system representation, Plücker coordinates representation, Generalized 

coordinates representation, Canonical coordinates representation, Barycentric coordinates 

representation, Trilinear coordinates representation, and many other representations. 

The intuition behind exploring the different representation of the dataset for various algorithms is 

that the calculus of algorithms may match easily with the dataset representation. This may result 

in better classifying metrics. 

 

 

` 
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Appendix A 

From the MIMIC II database following segments were selected to extract ICP signals 

3142868, 

3148126,  

3160820,  

3169632,  

3189000,  

3270954,  

3270980,  

3309132,  

3319401, 

3365681,  

3453290,  

3487247,  

3543187,  

3562822,  

3624651,  

3629298,  

3642023,  

3655233, 

3656395,  

3668415,  

3688532,  
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3693937,  

3700665,  

3774557,  

3938777 
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Appendix B Confusion matrices  

B.1 Nearest Neighbors  

ML Classification without images 

 

 

 

ML classification with images 

 

 

 

  

Figure B.1.1 Nearest Neighbor Normalized Confusion Matrix Of Original Dataset 

  

Figure B.1.2 Nearest Neighbor Normalized Confusion Matrix Of Original Dataset 

Augmented with Markov transition fields and Gramian Angular Field images 
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ML Classification without images with Smote ENN 

 

 

 

ML Classifications with images after Smote ENN 

 

 

 

  

Figure B.1.3 Nearest Neighbor Normalized Confusion Matrix Of Original Dataset 

Passed Through Smote ENN algorithm 

  

Figure B.1.4 Nearest Neighbor Normalized Confusion Matrix Of Original Dataset 

Augmented with Markov transition fields and Gramian Angular Field images and 

Passed Through Smote ENN algorithm 
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B.2 Naïve Bayes 

ML Classification without images 

 

 

 

ML classification with images 

 

 

 

  

Figure B.2.1 Naïve Bayes Normalized Confusion Matrix Of Original Dataset 

  

Figure B.2.2 Naïve Bayes Normalized Confusion Matrix Of Original Dataset 

Augmented with Markov transition fields and Gramian Angular Field images 
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ML Classification without images with Smote ENN 

  

 

 

ML Classifications with images after Smote ENN 

 

 

 

  

Figure B.2.3 Naïve Bayes Normalized Confusion Matrix Of Original Dataset Passed 

Through Smote ENN algorithm 

  

Figure B.2.4 Naïve Bayes Normalized Confusion Matrix Of Original Dataset 

Augmented with Markov transition fields and Gramian Angular Field images and 

Passed Through Smote ENN algorithm 
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B.3 Gaussian process 

ML Classification without images 

 

 

 

ML classification with images 

 

 

 

  

Figure B.3.1 Gaussian Process Normalized Confusion Matrix Of Original Dataset 

  

Figure B.3.2 Gaussian Process Normalized Confusion Matrix Of Original Dataset 

Augmented with Markov transition fields and Gramian Angular Field images 
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ML Classification without images with Smote ENN 

 

 

 

ML Classifications with images after Smote ENN 

 

 

 

 

  

Figure B.3.3 Gaussian Process Normalized Confusion Matrix Of Original Dataset 

Passed Through Smote ENN algorithm 

  

Figure B.3.4 Gaussian Process Normalized Confusion Matrix Of Original Dataset 

Augmented with Markov transition fields and Gramian Angular Field images and 

Passed Through Smote ENN algorithm 
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B.4 Linear SVM 

ML Classification without images 

 

 

 

ML classification with images 

 

 

 

  

Figure B.4.1 Linear SVM Normalized Confusion Matrix Of Original Dataset 

  

Figure B.4.2 Linear-SVM Normalized Confusion Matrix Of Original Dataset 

Augmented with Markov transition fields and Gramian Angular Field images 
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ML Classification without images with Smote ENN 

 

 

 

ML Classifications with images after Smote ENN 

 

 

 

 

  

Figure B.4.3 Linear-SVM Normalized Confusion Matrix Of Original Dataset Passed 

Through Smote ENN algorithm 

  

Figure B.4.4 Linear-SVM Normalized Confusion Matrix Of Original Dataset 

Augmented with Markov transition fields and Gramian Angular Field images and 

Passed Through Smote ENN algorithm 
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B.5 SVM-RBF 

ML Classification without images 

 

 

 

 

 

 

  

Figure B.5.1 SVM-RBF Normalized Confusion Matrix Of Original Dataset 

  

Figure B.5.2 SVM-RBF Normalized Confusion Matrix Of Original Dataset Augmented 

with Markov transition fields and Gramian Angular Field images 
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ML Classification without images with Smote ENN 

 

 

 

ML Classifications with images after Smote ENN 

 

 

 

 

  

Figure B.5.3 SVM-RBF  Normalized Confusion Matrix Of Original Dataset Passed 

Through Smote ENN algorithm 

  

Figure B.5.4 SVM-RBF Normalized Confusion Matrix Of Original Dataset Augmented 

with Markov transition fields and Gramian Angular Field images and Passed Through 

Smote ENN algorithm 
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B.6 QDA 

ML Classification without images 

 

 

 

ML classification with images 

 

 

 

  

Figure B.6.1 QDA  Normalized Confusion Matrix Of Original Dataset 

  

Figure B.6.2 QDA Normalized Confusion Matrix Of Original Dataset Augmented with 

Markov transition fields and Gramian Angular Field images 
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ML Classification without images with Smote ENN 

 

 

 

ML Classifications with images after Smote ENN 

 

 

 

  

Figure B.6.3 QDA  Normalized Confusion Matrix Of Original Dataset Passed Through 

Smote ENN algorithm 

  

Figure B.6.4 QDA Normalized Confusion Matrix Of Original Dataset Augmented with 

Markov transition fields and Gramian Angular Field images and Passed Through Smote 

ENN algorithm 
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B.7 Decision Tree 

ML Classification without images 

 

 

 

ML classification with images 

 

 

 

  

Figure B.7.1 Decision Tree Normalized Confusion Matrix Of Original Dataset 

  

Figure B.7.2 Decision Tree Normalized Confusion Matrix Of Original Dataset 

Augmented with Markov transition fields and Gramian Angular Field images 
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ML Classification without images with Smote ENN 

 

 

 

ML Classifications with images after Smote ENN 

 

 

  

Figure B.7.3 Decision Tree Normalized Confusion Matrix Of Original Dataset Passed 

Through Smote ENN algorithm 

  

Figure B.7.4 Decision Tree Normalized Confusion Matrix Of Original Dataset 

Augmented with Markov transition fields and Gramian Angular Field images and 

Passed Through Smote ENN algorithm 
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B.8 Ada Boost 

ML Classification without images 

 

 

 

ML classification with images 

 

 

 

  

Figure B.8.1 Ada Boost Normalized Confusion Matrix Of Original Dataset 

  

Figure B.8.2 Ada Boost Normalized Confusion Matrix Of Original Dataset Augmented 

with Markov transition fields and Gramian Angular Field images 
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ML Classification without images with Smote ENN 

 

 

 

ML Classifications with images after Smote ENN 

 

 

 

 

  

Figure B.8.3 Ada Boost Normalized Confusion Matrix Of Original Dataset Passed 

Through Smote ENN algorithm 

  

Figure B.8.4 Ada Boost Normalized Confusion Matrix Of Original Dataset Augmented 

with Markov transition fields and Gramian Angular Field images and Passed Through 

Smote ENN algorithm 
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B.9 MCNN 

ML Classification without images 

 

 

 

ML classification with images 

 

 

 

 

  

Figure B.9.1 MCNN Normalized Confusion Matrix Of Original Dataset 

  

Figure B.9.2 MCNN Normalized Confusion Matrix Of Original Dataset Augmented 

with Markov transition fields and Gramian Angular Field images 
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ML Classification without images with Smote ENN 

 

 

 

 

ML Classifications with images after Smote ENN 

 

 

  

Figure B.9.3 MCNN Normalized Confusion Matrix Of Original Dataset Passed 

Through Smote ENN algorithm 

  

Figure B.9.4 MCNN Normalized Confusion Matrix Of Original Dataset Augmented 

with Markov transition fields and Gramian Angular Field images and Passed Through 

Smote ENN algorithm 
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Appendix C 

Following figures shows the decision tree of the four datasets. We can observe the branching points 

that decision tree took for the bifurcation for each category. It seems the first bifurcation for all 

category begins with data point 5999, which corresponds to starting of hypertensive signal in 

positive examples.  

 Decision tree of the dataset without images 

 

 

 Decision tree of the dataset with images 

 

 

 

  

Figure C.1 Decision tree of the dataset without images 

 

Figure C.2 Decision tree of the dataset with images 
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 Decision tree of the dataset without images and Smote ENN 

 

 

 Decision tree of the dataset with images and Smote ENN 

 

 

 

  

Figure C.3 Decision tree of the dataset without images and Smote-ENN 

and Smote-ENN 

 

Figure C.4 Decision tree of the dataset with images and Smote-ENN 

and Smote-ENN 
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