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ABSTRACT 

SYNTHESIS OF NANOPARTICLE NETWORKS BY FEMTOSECOND 

LASER ABLATION OF MICROPARTICLES 

Palneet Singh Waraich, Master of Applied Science, 2011 

Department of Mechanical and Industrial Engineering, Ryerson University 

 

The process of laser ablation has been adapted to generate nanoparticles from microparticles of 

the material, referred to as laser ablation of microparticles (LAM). The LAM process has been 

shown to generate finer nanoparticles than were previously possible through laser ablation of 

solid targets. 

 

In this thesis, a method of generating a 3D nanoparticle network using the LAM process has 

been proposed using a femtosecond laser. 3D nanoparticles were successfully generated through 

ablation of microparticle samples of lead oxide, nickel oxide and zinc oxide. The size of the 

nanoparticles in the generated network was significantly reduced in comparison with similar 

networks generated through laser ablation of solid targets. The method has been further extended 

to generate a unique alloy nanomaterial through the ablation of the microparticle containing 

powders of two metals (Aluminum and Nickel Oxide).  
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NOMENCLATURE 

ns   Nanosecond (10
-9

 s) 

ps   Picosecond (10
-12

 s) 

fs   Femtosecond (10
-15

 s) 

μs   Microsecond (10
-6

 s) 

ms   Millisecond (10
-3

 s) 

nm  Nanometer (10
-9

 m) 

μm   Micrometer (10
-6

 m) 

cm   Centimeter (10
-3 

m) 

in   Inches 

MHz   Megahertz (10
6
 Hz) 

kHz   Kilohertz (10
3
 Hz) 

W   Watt (J/s) 

GW   Gigawatt (10
9
 J/s) 

eV   Electron Volt 

K   Kelvin 

o
C   Degree Celsius 

J   Joule 

μJ   Micro-Joule (10
-6

 J) 

2D   2 Dimensional 

3D   3 Dimensional 

UV   Ultra violet 
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Te   Electron temperature 

Ti   Lattice temperature 

I(t)   Laser intensity at time t 

α   Absorption coefficient 

ke   Electron thermal conductivity 

I0  Intensity 

t   Time 

τL   Laser pulsewidth 

τe   Electron cooling time 

τi   Lattice heating time 

Fa   Ablation fluence 

Fth, øth   Threshold fluence 

D   Heat diffusion coefficient 

ρ   Density 

P   Average power of the laser pulse 

R   Reflection coefficient 

r   Reciprocal of pulse interval 

Ith   Threshold intensity 

F   Laser fluence 

T0   Temperature at time t = 0 

Ti   Initial temperature 

ω0   Radius of the laser focal spot 

λ0   Wavelength of the laser beam 
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Chapter 1: Introduction 

1.1 Nanoparticles and Their Applications 

The term nanoparticle refers to particles which have a diameter of 100nm or less. They have also 

been termed as ultra-fine particles. Nanoparticles have attracted a great deal of attention from the 

scientific community because of their enhanced optical, chemical and electrical properties in 

comparison to their macro counterparts. These enhanced properties are mainly due to large 

surface-to-volume ratio and the effect of quantum confinement. The advanced properties of the 

nanoparticles make them highly desirable for use in the development of different technological 

applications through advances in nanoscience and nanotechnology.  

 

The small size of the nanoparticles is responsible for the difference in properties in comparison 

to bulk materials. Some examples of the different properties of the nanoparticles are lower 

melting temperature [1], increased solid-solid phase transition pressure [2], decreases 

ferroelectric phase transition temperature [3], higher self-diffusion coefficient [4], modified 

thermophysical properties [5] and enhanced catalytic activity [6].  

 

The superior properties of the nanoparticles compared to their bulk materials makes them highly 

desirable for use in enhancing the existing technologies and developing emerging technologies 

for the 21
st
 century. Some of the applications of nanoparticles have been described below. 
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1.1.1 Nanoparticles as quantum dots 

Nanoparticle as a system can be referred to as a quantum dot or a zero dimension (0-D) structure. 

For such a system, the confinement of the electrons in a small domain results in new energy 

levels that are determined by quantum confinement effects. The creation of these new energy 

levels gives nanoparticles modified optoelectronic properties in comparison to the bulk material. 

These optoelectronic property modifications can be utilized for the development and 

enhancement of several electronic and optical devices. One of the fields where such properties 

have been used is the field of light emitting diodes (LEDs). Nanoparticles of CdSe have been 

used in voltage controlled LEDs, where red or green color is emitted based on the voltage 

applied [7]. Quantum dots can also be used in memory storage devices, where they can be 

arranged in a 3D array to which information can be written to and retrieved from. They can also 

be utilized to reduce the response time of a lot of microelectronic devices thus increasing their 

working efficiency [8]. 

 

1.1.2 Biomedical Applications 

The small size of the nanoparticles which is similar to that of biomolecules such as proteins 

makes them an excellent choice for biomedical applications. Nanoparticles can be used for 

applications such as drug delivery, bioimaging and biosensing etc. For diagnosis and other 

biomedical applications, the sensing of biological agents is very important. The unique 

physicochemical properties of the nanoparticles make them a suitable candidate for sensing 

applications. Some of the types of sensing techniques where nanoparticles have been 

successfully used are colorimetric sensing, fluorescence sensing and electrochemical sensing. 

The efficacy of the drugs can be enhanced by the use of drug delivery systems (DDS) which 
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improve the solubility and the bio-distribution of the drugs. The ability of the nanoparticles to 

conjugate with biomolecules such as proteins and DNA make them a potential DDS. [9] 

 

1.1.3 Gas Sensors 

A gas sensor consists of a material with measurable physical properties (electrical or chemical) 

which change in the presence of a gas. A number of nanoparticle baser gas sensor systems have 

been developed. Palladium nanoparticles, in the size range of 10-15nm, were used for the 

detection of hydrogen gas in a Pd-H system based gas sensor [10]. The use of nanoparticles in 

gas sensors has been shown to increase the sensitivity and improved the gas selectivity in 

comparison to non-nanoparticle based sensors [11]. 

 

1.2 Nanoparticle Synthesis: Traditional Methods 

Over the years, many methods have been used for the synthesis of nanoparticles. New methods 

are being researched and developed for the efficient generation of nanoparticles from a vast 

variety of materials. The generation of nanoparticles can be divided into two distinct approaches; 

top-down approach and bottom-up approach. The schematic in Figure 1-1 shows an illustration 

for the generation of the nanoparticles from the two approaches. In this section we discuss some 

of the methods for nanoparticle generation. 
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Figure 1-1: Illustrative representation of top-down and bottom-up approaches for generation of 

nanoparticles [12] 

 

1.2.1 Inert Gas Condensation 

It is one of earliest used methods for the synthesis of nanoparticles. It is well suited for the 

generation of nanoparticles from metals. Under this method, a solid material is heated till its 

evaporation point. The vapors are then mixed with a cool inert gas which rapidly cools them to 

form nanoparticles. Nanocomposites or other compounds can also be achieved by inserting a 
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reactive gas in the environment. Extensive research has been carried out to better control the size 

of the generated nanoparticles. It has been shown that the flow and mixing of the cool gas and 

the hot vapors as well as the pressure and the molecular weight of the inert gas affects the size of 

the nanoparticles generated. This method has been used for generating nanoparticles in the size 

range of 5nm to a few hundred nm. [8] 

 

1.2.2  Sputtering 

Sputtering is the method of vaporizing material from the surface of a solid through bombardment 

of high-velocity ions of an inert gas (or electrons) in vacuum, causing an ejection of atoms or 

clusters. As early as in 1982, nanoparticles of Ti and Al with size as small as 10nm were 

produced by this method [13]. One of the advantages of this method is that the incident ion or 

electron beam only heats the target material and thus the generated nanoparticles comprises 

mainly of the target material. 

 

1.2.3 Laser Vaporization 

This technique uses a laser which evaporates a sample target in an inert gas flow reactor. The 

source material is locally heated to a high temperature enabling vaporization. The vapor is 

cooled by collisions with the inert gas molecules and the resulting supersaturation induces 

nanoparticle formation. This method has been used for generating nanoparticles in the size range 

of 6 – 100nm from powders, single crystals and sintered blocks [14]. A modified method which 

combines laser vaporization of metal targets with controlled condensation in a diffusion cloud 

chamber was used to synthesize nanoscale metal oxide and metal carbide particles with a size 

range of 10-20 nm [15].  
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1.2.4 Mechanical Attrition 

Mechanical attrition is a „top-down‟ method of generating nanoparticles. In this process, 

nanoparticles are formed in a mechanical device in which energy is imparted to a course grained 

material to reduce particle size. The final size of the particles obtained depends on the milling 

time that the material has been exposed to. At long enough milling times, nanoparticles with 

sizes of 10 – 15nm has been obtained [16]. Figure 1-2 gives an example of the nanoparticles 

generated by this method. 

 

 

Figure 1-2: Nanoparticles obtained at different milling times a) 240hours; b) 168hours [16] 
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1.3 Nanoparticle Synthesis: Laser Ablation Methods 

The development of powerful lasers has opened up many new areas where laser processing can 

be used. One of the areas where laser processing has rapidly grown is the field of 

nanotechnology; specifically the development of laser ablation based methods for nanoparticle 

synthesis. The laser ablation methods for nanoparticle synthesis have been reviewed in this 

section. 

1.3.1 Laser Ablation 

Laser ablation is a technique where laser pulses are used to ablate a solid target placed in a 

gaseous or liquid environment leading to nanoparticle formation in form of nanopowder or 

colloidal solution. It is a straight forward method of generating nanoparticles in comparison to 

other traditional methods. Some of the advantages of the laser ablation method are; 

 Does not require long reaction times, high temperature environment. 

 Is free of multi-step chemical synthesis. 

 Can produce nanoparticles from vast range of materials ranging from metals to polymers 

to dielectric materials 

 The use of toxic and hazardous chemical precursors is not required 

 Nanoparticles produced in a vacuum or liquid are free of contaminants and thus can be 

used for biomedical applications 

 

The first ever generation of nanoparticles by the use of laser ablation was reported in 1981, 

where a Q-switched Nd:YAG laser was used for the generation of Cu clusters, then characterised 

as ultrafine particles [17]. In this method, laser ablation was combined with supersonic 
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expansion into vacuum. The method of laser ablation has since been greatly researched and 

refined for the generation of nanoparticles from a vast range of materials.  

 

M. Fumitaka et. al. (2000) produced nanoparticles of silver through laser ablation of a silver 

plate in aqueous solution of surfactants. The silver metal plate was placed in an aqueous solution 

of the surfactant CnH2n+1SO4Na; different surfactants were used with n=8, 10, 12 and 14. The 

ablation was carried out with a Nd:YAG laser having a pulse width of 10ns. Nanoparticles with 

an average size of ~10nm were reported to have been produced [18]. Figure 1-3a gives an 

example of the nanoparticles generated through this method. 

 

In another work, nanoparticles of gold were produced by ablation of a gold plate in an SDS 

solution using a Nd:YAG laser with a pulse width of 10ns. The variation in the size of the 

nanoparticles with varying concentrations of the SDS was studied. It was observed that the size 

of the gold nanoparticles decreased with an increase in the concentration of SDS [19].  Figure 

1-3b gives an example of the nanoparticles generated through this method. The use of SDS or 

other surfactants during laser ablation of a target in a liquid environment results in a reduced size 

distribution of the nanoparticles [18-20]. However Kabashin and Meunier reported nanoparticles 

in the size range of 3nm – 10nm by ablation of a gold target in pure deionized water [21]. 



 

9 

 

 

Figure 1-3: Nanoparticles produced by laser ablation of: a) Silver [18]; b) Gold [19] in an aqueous 

solution of SDS  

 

The work reviewed above focused on the dependence of nanoparticle size distribution on the 

characteristics of the environment in which the target was placed. Another parameter of laser 

ablation that has been examined is the wavelength of the laser beam and its effect on the size of 

the generated nanoparticles. Tsuji et. al. have studied the effect of laser wavelength on particle 

size. In their work, a silver metal target placed in a liquid environment of deionized water was 

ablated at wavelengths of 1064nm, 532nm and 355nm at a laser fluence of 36J/cm
2
. It was 

observed that the size of the nanoparticles went from 29nm to 12nm with the decrease in the 

wavelength of the laser beam. Thus the wavelength of the laser beam was shown to have an 

effect on the size of the nanoparticles generated [22]. 

 

The generation of nanoparticles through laser ablation has been restricted only to the ablation of 

target in a liquid environment. Research has also been done on the generation of nanoparticles by 

laser ablation in vacuum and in a background gas environment (air or other gases). In one such 

study, a Ti:sapphire laser with a pulse width of 120fs was used in the ablation of silicon target in 
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vacuum. The nanoparticles had a size distribution with a radius between 5nm and 25nm [23]. 

Figure 1-4 gives an example of the nanoparticles generated through this method. The analysis of 

the results indicated that nanoparticle formation did not occur through condensation process in a 

dilute atomic vapour, rather the nanoparticles were formed near the target surface as a result of 

ultrashort non-thermal melting and the consequent expansion into the vacuum of the material 

through extremely high temperatures and pressure created by the intense femtosecond laser pulse 

[23, 24].  

 

 

Figure 1-4: Silicon nanoparticles produced by femtosecond laser ablation of Si target in vacuum [23] 

 

The above section provided a review of the work that has been done in the field of nanoparticle 

generation through laser ablation. The mechanism for the generation of nanoparticles by laser 

ablation will be discussed in Chapter 2. 
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1.3.2 Laser Ablation of Microparticles (LAM) 

A new method of laser ablation has been studied in which the target material is not solid but is 

comprised of microparticles of the material of which nanoparticles are to be produced. This 

method is known as laser ablation of microparticles (LAM). The method of LAM capitalizes on 

the lack of a strong bonding between the microparticles to generate much finer nanoparticles at 

much lower laser energy than required for a solid feedstock target. 

 

The LAM process has been used for the generation of nanoparticles from glass microspheres 

[25], metal microparticles [26, 27] and alloys [26]. In the reported literature the microparticles 

were either applied on a substrate or were in a flowing aerosol when exposed to the laser. The 

generated nanoparticles were collected on a collector plate placed a certain distance away from 

the target surface. In all the cases, the nanoparticles were collected in a non-agglomerated state. 

A significant reduction in the size of the generated nanoparticles was observed when compared 

to the size of the nanoparticles generated through ablation of solid targets.  

 

C. Juang et. al. used an excimer laser with a wavelength of 249nm and a pulse width of 12ns to 

irradiate micron sized particles under normal atmospheric conditions. Soda lime glass 

microspheres with a mean diameter of 8μm were used for the experiment. An analysis was 

carried out on the size and the size distribution of the generated particles and their dependence on 

laser fluence. The experiments were carried out at laser fluence of 4.5, 6.0 and 7.5 J/cm
2
. The 

particles generated for each fluence setting were collected on a silicon substrate and analysed 

under a Scanning Electron Microscope (SEM). It was observed that the generated nanoparticles 

ranged in size from 20nm to 190nm for all the three cases. It was also noted that for the lowest 
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fluence, a peak in particle size distribution was observed at 80nm which shifted to 60nm for the 

highest fluence [25]. Figure 1-5 gives an example of the nanoparticles generated through this 

method. 

 

 

Figure 1-5: Laser ablation of glass microspheres; a) starting microspheres, b) generated glass nanoparticle 

[25] 

 

In another work, M.F. Becker et. al. used the process of LAM to ablate feedstock (comprised of 

micron sized powder) of silver, gold and permalloy to form nanoparticles. An excimer laser with 

a pulse width of 12ns was used to ablate the feedstock microparticles applied on to the surface of 

a UV transparent quartz slide. The microparticles had an average size of 2μm to 4μm and were 

dispersed on the quartz slide from a methanol suspension. The sample was ablated at different 

laser fluence. An increase in the mean diameter of the generated nanoparticles was observed with 

the increase in the laser fluence (opposite to the observation for glass microspheres, where the 
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diameter decreased with increasing laser fluence). The generated nanoparticles shown in Figure 

1-6 had a mean diameter in the range of 10nm to 100 nm.  

 

Figure 1-6: SEM image of the nanoparticles generated by laser ablation of gold microspheres [27] 

Apart from the generation of nanoparticles by the ablation of microparticles applied on a 

substrate, the LAM process was also used for generating nanoparticles from a flowing aerosol 

containing microparticles. In their work, W.T. Nichols et. al. reported the production of 

nanoparticles through laser ablation of a flowing aerosol of microparticles of silver. Silver 

microparticles with a mean size of 1.5μm in a flowing aerosol of nitrogen gas were ablated by an 

excimer laser at fluence ranging from 0.3J/cm
2
 to 4.2J/cm

2
. The generated nanoparticles were 

collected on an electrostatically charged carbon grid and analysed for size distribution. For all 

the cases, the nanoparticles obtained were spherical, non-agglomerated and were less than 20nm 

in size. [28] 
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The breakdown of the microparticles into nanoparticles has been explained on the basis of 

plasma breakdown and shockwave propagation through the microparticles. As per this theory, as 

the breakdown threshold of the material is achieved, a shockwave is generated. The shockwave 

propagates in two different directions; the primary shockwave propagates away from the material 

while the secondary shockwave propagates towards the material. As the shockwave travels 

through the feedstock, it compresses and heats the material to above its critical point. When the 

shockwave passes, the region right behind it has a much lower pressure which causes rapid 

condensation of the material. This rapid condensation leads to the formation of nanoparticles. 

 

The major advantage of the LAM process is the reduction in the amount of laser energy required 

to completely vaporize the metal particle; for the gold particles it was observed that total laser 

energy absorbed for complete vaporization was 25% of the net energy required. Due to the 

loosely packed nature of the microparticles, less laser energy is required for the initiation of the 

ablation process than compared to a solid target. 

 

1.4 Research Objectives 

The LAM process has been successfully used for the generation of nanoparticles from 

microparticles. This research will focus on microparticle ablation using a Mega-Hertz repetition 

rate femtosecond laser, with the aim of producing nanostructure of reduced particle size. In 

particular, the following studies will be conducted: 
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 Investigate mega-hertz repetition rate femtosecond laser ablation of microparticles. The 

nanostructure generated will be compared to similar structures generated through laser 

ablation of solid targets (Metals: Lead, Gold; Semi-conductor: Silicon; Dielectric: Glass) 

 LAM method for the generation of nanostructure will be examined for its use in the 

generation of an alloy nanostructure from pre-mixed two independent microparticle 

powders.  

 This study will also probe the feasibility of the LAM process in generating a nanostructure 

by the interaction of two materials, one in solid phase and the other in powder phase. 

 

1.5 Thesis Outline 

Chapter 2 of the thesis will be focused on the explanation of the process of laser ablation of 

solids. It will also give a detailed insight into the generation of nanoparticles through laser 

ablation. The last section of the chapter will be focused on the process of laser ablation of 

microparticles (LAM). 

 

Chapter 3 describes the experimental set-up that was used during the course of the study. The 

methods of sample preparation of the experiments are also mentioned in this chapter 

 

Chapter 4 gives an in-depth look into the generation of a 3D nanostructure through laser ablation 

of metallic microparticles. Experimental parameters and results are mentioned in this chapter. A 

section of the chapter is devoted to explaining the proposed mechanism for the nanostructure 

generation 
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Chapter 5 discusses the results of the experiment performed on the mixture of Al and NiO 

microparticles to obtain a combined nanostructure. A proposed mechanism for the mixing of the 

nanoparticle of the two microparticle powders through the ablation process is also talked about in 

this chapter. The results of the ablation of a microparticle powder on an aluminum foil are also 

presented. 

 

Chapter 6 concludes the thesis and talks about the future work that can be done in this field of 

research. 

 

 

  



 

17 

 

Chapter 2: Laser Ablation for Nanoparticle Synthesis 

2.1 Laser ablation process 

Before the generation of nanoparticles through laser ablation can be discussed, a better 

understanding of laser ablation as a process is required. This section provides an in-depth 

analysis into the process of laser ablation; fundamentals of the process and the proposed 

mechanisms are discussed in detail. 

 

Laser ablation refers to the process of material removal from the surface of the material upon 

irradiation by a laser beam. This technique has been in existence since the invention of the laser, 

where initially it was used for thin-film deposition. Only recently, has the laser ablation process 

been used in material processing other than pulsed laser deposition (PLD) and UV lithography 

etc. Laser ablation is based on the principle of capitalising on the high power laser pulses for the 

evaporation of a small amount of matter from the surface of the target.  

 

As the laser pulse hits the target, photons are absorbed in the surface layer via electronic 

processes. The absorbed energy gets transferred into the material by either electrons (in case of 

metals) or phonons (in case of non-metals). The relaxation time for metals (~ 10
-14

s) is much 

faster than for non-metals (> 10
-12

s), though when compared with the laser pulse duration the 

absorbed energy gets rapidly converted into heat. The absorbed energy heats the surface to 

beyond the melting point of the material. The melted surface begins to vaporize and the very 

high temperatures present at the surface cause ejection of molecules of the target. 
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In addition to the interaction between the laser and the target, laser-plasma, plasma-target, laser-

vapour and vapour-target interaction play an important role in the laser ablation process. One of 

the most important laser parameters for ablation is the laser pulse energy density (laser fluence) 

on the target surface. For sufficiently high laser fluence, rapid evaporation of the material occurs 

from a thin surface layer. This points to the existence of laser ablation threshold i.e for every 

material there exists a minimum laser fluence value (threshold fluence) below which ablation 

does not occur. The ablation rate increases non-linearly with increase in laser power density 

above the ablation threshold. 

 

The laser ablation process can be broken into three different steps: energy absorption, energy 

transfer and breakdown. The initiating step in laser ablation is the absorption of the laser energy 

by the target material, accomplished by either linear or nonlinear processes. The material in the 

focal region is heated to melting temperature and, depending on laser intensity and pulsewidth, 

subsequently to vaporization temperature. The absorption mechanisms depend on laser intensity, 

hence on laser pulse-widths for a given laser fluence. For metals and semiconductors, the main 

absorption mechanism for longer pulse-widths in linear absorption while nonlinear absorption 

becomes dominant at ultrashort pulse-widths. For dielectric materials, absorption has to come 

from nonlinear processes through laser-induced optical breakdown. Laser-induced breakdown is 

a process where a normally dielectric material is first transformed into absorbing plasma by the 

strong laser pulse. Subsequent absorption by the plasma of the laser energy causes heating that 

leads to irreversible damage to the host material. The nonlinear processes that cause breakdown 

are avalanche ionization and multiphoton ionization. 
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Figure 2-1: Illustration of avalanche ionization [29] 

In a dielectric material, the bound valence electrons have an ionization potential or bandgap 

greater than the laser photon energy. The bound electrons do not absorb the laser light at low 

intensities. However, in any material there are always some free or conduction electrons present, 

and they are the seed electrons for avalanche ionization as illustrated in Figure 2-1. The free 

electron can absorb laser energy when it collides with the bound electrons and the lattice through 

dephasing. This is the Joule heating process, also known as inverse Bremsstrahlung. The seed 

electron can be accelerated enough that its kinetic energy exceeds the ionization potential of the 

bound electron. Therefore the next collision with a bound electron will result in an ionization 

event if the free electron transfers nearly all its energy to the bound electron, resulting in two free 

electrons with low kinetic energies. This is called impact ionization. This process will repeat 

itself, leading to an avalanche where the free-electron density grows exponentially from the very 

low seed electron density. When enough bound electrons are ionized by this avalanche process, 

plasma with a critical density is created, and the dielectric material is broken down and becomes 

absorbing.  
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Figure 2-2: Schematic for multiphoton ionization [29] 

In case of ultrashort laser pulse – matter interaction, the laser field strength is very high for 

bound electrons of the dielectric material to be directly ionized through multiphoton absorption 

as illustrated in Figure 2-2. A bound electron can be lifted from its bound energy level or valence 

band to the free energy level or conduction band by simultaneously absorbing „m‟ photons in the 

laser pulse. This is called multiphoton ionization. The laser-induced breakdown process takes 

time to build up and depends on the laser field strength. It exhibits a threshold behavior, i.e., at a 

given laser pulsewidth, only when the laser field strength exceeds a certain threshold can the 

plasma density grow to the critical value where irreversible breakdown takes place. The 

threshold is customarily expressed as a laser fluence threshold as a function of pulsewidth.  

 

Once the plasma of free electrons generated by avalanche ionization reaches a high enough 

density, irreversible material breakdown and ablation begin. The electrons absorb laser energy by 

collisions with ions and are heated to high temperatures. At the same time, the electrons transfer 

energy to the ions and the lattice, and the material is heated up. The amount of energy transfer, 

hence the heating, during the laser pulse depends on the pulse duration and the energy coupling 
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coefficient. When melting or vaporization temperature is reached, the material is considered 

broken down and damaged. The breakdown is also accompanied by acoustic waves and optical 

plasma radiation. The rate of heating is determined by the rate of laser energy absorption and the 

rate of energy loss from the focus, mainly through thermal conduction away from the focus. The 

rate of laser energy absorption is approximately constant before the breakdown. 

 

2.2 Nanoparticles generated by laser ablation 

A schematic representation of the plume generation and the subsequent generation of 

nanoparticles is shown in Figure 2-3. 

 

Figure 2-3: Schematic representation of plume generation by laser ablation [30] 
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The incidence of the laser beam on the material surface delivers an enormous amount of power 

to a small region of the material. This concentration of energy onto such a small region results in 

the ejection of material from the surface as highly energetic species in the form of a dense plume. 

The plume expands adiabatically, compressing the surround environment (background gas or 

air). The interaction between the plume and the gas result in the generation of a shockwave at the 

interaction interface. As the plume expands, the plume species lose their energy at the interface 

resulting in the formation of a pressure gradient. The pressure gradient creates an internal 

shockwave that travels towards the centre of the plume. As the laser pulses stop hitting the target, 

the plume cools down resulting in the condensation, nucleation and clustering of the plume 

species. This results in the formation of nanoparticles. 

 

The mechanism discussed above gives a general insight into the generation mechanism of 

nanoparticles by laser ablation. However there are some fundamental differences in case of 

ultrashort pulse laser ablation and short/long pulse laser ablation. In case of ultrashort pulse laser 

ablation, the nanoparticles are ejected directly from the material surface through 

photomechanical effects. The ultrashort pulses result in superfast heating of the material and its 

conversion to a super-heated fluid accompanied with a build-up of extreme pressure. This leads 

to the ejection of the material from the surface of the target. 

 

2.3 Summary 

The advent of the laser technology opened new avenues for material processing. The laser 

ablation process provided an efficient method for micromachining of materials. Apart from 
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micromachining, the laser ablation process has been used for the generation of nanoparticles 

from a large range of materials. The mechanism for the removal of material through the ablation 

process has been mentioned as the heating of the material to above its critical point leading to the 

ejection of material from the top surface of the material. The ultrashort laser pulses have been 

found to be more effective in material removal through ablation in comparison with short/long 

laser pulses. 
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Chapter 3: Experimental Method 

3.1 Experimental Set-up 

Experiments were conducted using a direct-diode-pumped Yb-doped fiber oscillator/amplifier 

femtosecond laser system capable of delivering a maximum output power of 16 W at a repetition 

rate of 26 MHz. The laser central wavelength is 1030 nm and pulse duration of 214 fs. The laser 

beam was focused into a spot of 10 μm using a telecentric lens of 100 mm effective focal length. 

A quarter waveplate was aligned with the beam expansion to obtain circular polarization. A 

galvoscanner was used for high speed beam positioning in x-y axis. An acousto-optic modulator 

was used as an optical shutter. A two-axis precision translation stage with a smallest resolution 

of 1 mm and a range of 15 cm is used to locate the laser irradiation spot on the sample surface. 

The pulse repetition rate varied from 2 MHz to 26 MHz. Figure 3-1 gives the schematic 

representation of the experimental setup. 

 

3.2 Sample Preparation 

Under the extent of the thesis, microparticle containing powders of nickel oxide (NiO), lead 

oxide (Pb3O4), zinc oxide (ZnO) and aluminum (Al) were used; the size of the particles was in 

the range of 10μm to 50μm. For studying the feasibility of the LAM process for the generation of 

a 3D nanostructure, the microparticle powders of NiO, Pb3O4 and ZnO were ablated. The 

microparticles of the oxide samples were glued onto glass slides; a layer of glue was applied onto 

the glass slide and a very fine layer of the microparticle containing powder was sprayed to form 

a fine layer of the powder on the glass slide. While preparing the sample, care was taken to 
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maintain a uniform thickness of the layer of the microparticles. The glass slide was chosen as the 

substrate as it was transparent and would not itself be ablated during the ablation of the 

microparticle layer. Glue which was transparent after drying was used for the adhesion process. 

 

 

Figure 3-1: Schematic of the experimental set-up 

 

The glue was later shown in the analysis to not have any effect on the generated nanostructure. 

Figure 3-2 shows an SEM image of the prepared microparticle layer. The samples were ablated at 

the laser power of 16W, with a repetition rate of 25MHz and a dwell time of 0.1ms. 

S
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 AOM – Acousto-optic Modulator 

L – Lens 

WP – Wave Plate 

M – Mirror 

D – Diaphragm 

GS – Galvanoscanner 

TL – Telecentric Lens 

TS – Translation Stage 
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Figure 3-2: SEM image of the prepared microparticle layer of lead oxide (Pb3O4) 

To analyse the mixing of two individual metallic microparticle species, microparticles of Al and 

NiO were used. The microparticle powders were taken and pre-mixed in a 1:1 ratio (by volume) 

by creating an aqueous mixture in isopropanol and subjecting the mixture to supersonic 

vibrations. The aqueous solution was then exposed to air to evaporate the isopropanol. The 

obtained mixture of the microparticle powders was glued onto a silicon substrate. The silicon 

substrate was chosen as it made for a better SEM analysis background (did not show as much 

charging as the glass substrate). The samples were ablated at a laser power of 12W, repetition 

rate of 8MHz and dwell time 0.25ms. In another experiment, the probability of mixing between 

the microparticles and a solid target was analysed. For this experiment, an aluminum foil was 

glued onto a glass slide. A layer of the glue was applied to the foil surface and the microparticles 

of NiO sprayed on it.  
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3.3 Sample Analysis 

The ablated samples were analyzed for the nanostructure generated. The morphology was 

analyzed using a SEM (Hitachi S-5200 SEM) and a Transmission Electron Microscope (TEM) 

(Hitachi HD-2000 STEM). X-Ray Diffraction (XRD) analysis was also carried out on the ablated 

and non-ablated samples of lead oxide (Pb3O4) and nickel oxide (NiO), to confirm that the 

stoichiometry was maintained during the ablation process. Energy Dispersive X-Ray (EDX) 

analysis was carried out to determine the elements present in the generated nanostructures. 
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Chapter 4: Femtosecond laser ablation of metallic 

microparticles 

4.1 Introduction 

Earlier research conducted at the Laser Micro and Nano Fabrication Research Facility at Ryerson 

University showed that the use of megahertz laser ablation can generate fibrous nanoparticle 

networks from metals, dielectrics and a wide range of other material [31-33]. A lot of research 

has been focused on the generation of nano-networks through laser ablation of bulk substrates. 

The mechanism behind the generation of nano-networks through laser ablation has been found to 

be the agglomeration of the nanoparticles that are generate by the ablation of the substrate. Thus 

the size of the generated nano-network is dependent on the size of the agglomerated 

nanoparticles.  

 

In this chapter, the study on the generation of very fine nanoparticle networks by the process of 

laser ablation of microparticles will be discussed. The results of the laser ablation of 

microparticle sample will be presented. The observed results will be compared with similar 

results obtained through laser ablation of bulk material. Also discussed in this chapter is the 

proposed mechanism for the reduction in size of the nanoparticles leading to the formation of 

very fine nanoparticle networks.  
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4.2 Experimental Parameters 

The sample preparation methods are mentioned in Section 3.2. The prepared samples were 

ablated in an ambient air using a Yb-doped fiber amplified femtosecond laser. The ablation of all 

the samples was carried out with the same laser parameters. The laser parameters were set as 

follows: 

 Average power per pulse: 16W 

 Repitition rate: 25MHz 

 Dwell time: 0.1ms 

 

4.3 Results and Observations 

Figure 4-1 shows the SEM image of the 3D nanoparticle networks generated in an ablated 

sample of lead oxide (Pb3O4) microparticles. More images of the nanoparticle networks 

generated by the laser ablation of microparticles are included in the appendix. Appendix A 

shows the SEM images of the nanoparticle network obtained by ablation of microparticles of 

Lead Oxide (Pb3O4). Appendix B shows the SEM images of the nanoparticle network obtained 

by ablation of microparticles of Nickel Oxide (NiO). Appendix C shows the SEM images of the 

nanoparticle network obtained by ablation of microparticles of Zinc Oxide (ZnO). 
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Figure 4-1: Nanoparticle network growth in ablated Lead Oxide microparticles  

(Insert: Magnified image of nanostructure)  

 

In the traditional LAM process, the ablation process leads to the formation of nanoparticles only. 

A possible explanation for this is that the photo-ionization of the formed nanoparticles (due to 

the longer pulse duration of the nanosecond laser) prevented the agglomeration of the 

nanoparticles [26]. In the current experiment, the ultrashort pulse duration of the femtosecond 

laser does not provide enough time for the particles to be photo-ionized. Hence the generated 

nanoparticles agglomerate to form nanofibers. Thus the LAM process has been successfully used 

for the generation of nanofibers from microparticles. 

 

A comparison was carried out between the laser ablation of the microparticle containing sample 

and those generated through ablation of bulk lead sample. The first noticeable difference was the 

change in the threshold fluence for the initiation of ablation of the sample. The threshold fluence 

for the microparticle sample was calculated to be 0.0815J/cm
2
. While the threshold fluence for 

the bulk lead sample was determined to be 0.285J/cm
2
. The threshold fluence for the ablation of 



 

31 

 

the microparticle containing sample was 3.5 times less than the fluence for the ablation of the 

bulk substrate sample. 

 

The nanoparticle networks generated by LAM were compared to those generated by ablation of 

solid substrate. The comparison was carried out for the lead sample. The compared results are 

shown in the Figure 4-2, where the nanoparticle networks formed by ablation of microparticles 

of lead oxide are compared with the similar networks formed by the ablation of a solid target of 

bulk lead. 

 

 

Figure 4-2: Nanoparticle networks formed by ablation of: a) microparticles of lead oxide, b) bulk lead 

 

By comparing the nanoparticle networks from the two samples, there was found to be a 

difference in the size of the nanoparticle networks generated. The nanoparticle networks 

generated by the ablation of the solid substrate had a diameter in the range of 110-160nm. The 

diameter of the nanoparticle networks generated by the LAM process ranged from 60nm to 

90nm. There is a considerable shift in the diameter of the nanoparticle networks for the two 

samples though the same laser parameters were used for the two experiments.  
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A size distribution analysis of the bulk and microparticle sample was carried out. The result of 

the distribution analysis is as shown in the Figure 4-3. From the table it can be seen that the size 

of the generated nanoparticle structure for the microparticle sample is concentrated in the 60nm - 

70nm range. While in the case of the bulk sample, the size ranges from 100nm – 160nm with its 

peak at 130nm size. 

 

 

Figure 4-3: Size distribution for the microparticle sample and the bulk sample 

 

4.4 Discussion 

The formation of the nanoparticle networks has been attributed to the agglomeration of the 

nanoparticles generated by the laser ablation of the microparticles. Hence the shift in the 

diameter of the nanoparticle networks can be explained by the shift in the size of the generated 

nanoparticles.  

 

The explanation for the reduction of the nanoparticle size is obtained by analyzing the 

shockwave generated by the laser ablation process. One of the characteristics of the LAM 
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process is the concentration of the generated shockwave onto a smaller volume of the particles 

[28]. A schematic for the generation of shockwave and its propagation is shown in 

Figure 4-4. 

 

Figure 4-4: Schematic representation of the shockwave generated by laser ablation [34] 

 

After the ablation of the microparticles, two shockwaves are generated; an external shockwave 

and an internal shockwave as shown in Figure 4-4a. As the shockwaves expand into the 

background atmosphere, the external shockwave is slowed down. The faster travelling internal 

shockwave gets reflected off the slower moving external shockwave and travels towards the 

sample; shown in Figure 4-4b. The shockwave travelling into the sample creates a region of low 

pressure as it passes. Catastrophic condensation occurs in the low pressure region leading to the 

breakdown of the microparticles into nanoparticles [28, 34, 35]; the size of which is much 

smaller than that of the nanoparticles produced by the laser ablation of a bulk substrate. 

The XRD analysis of the ablated and the non-ablated sample was carried out to ascertain that the 

chemical composition of the two was maintained through the experiment. The result of the XRD 
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analysis on lead oxide (Pb3O4) sample pre- and post-ablation has been shown below. The XRD 

analysis result for nickel oxide (NiO) is included in Appendix D. 

 

Note: For the graphs shown in Figure 4-5 and Figure 4-6, there is a difference in the value 

obtained for intensity (measured in counts per second (cps)). This difference in the intensity does 

not imply a change in the stoichiometry of the material before and after ablation. The intensity 

value is dependent on the signal picked up by the sensor. The location of the peaks in the two 

graphs at precisely the same point indicates the uniformity of chemical composition. 

 

 

Figure 4-5: XRD graph for non-ablated sample of Pb3O4 microparticles 
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Figure 4-6: XRD graph for Pb3O4 microparticle sample post ablation 

 

To further ascertain the claim that the stoichiometry is maintained after ablation, the XRD data 

obtained for the ablated sample of lead oxide was compared with the XRD data for lead oxide 

found in the database (JCPDS file number 89-1947). The two data were in close agreement with 

each other; indicating that the beginning sample and the end product were of the same chemical 

composition. The similarity between the two data‟s suggests that the polymer contained in the 

glue has completely been vaporised by the interaction of the laser and hence does not interfere in 

the process of formation of the nanoparticle networks under investigation. A few extra peaks 

were observed during the comparison; these could be explained by considering the fact that the 

sample might have come in contact with some contaminants. 
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.  

Figure 4-7: Comparison of obtained and standard data for Lead Oxide; also shown are the prominent 

phases 

 

In Figure 4-7, a graph for the XRD data of the ablated lead oxide microparticle sample was 

superimposed onto the graph for lead oxide from the International Centre for Diffraction Data‟s 

database. The two graphs completely overlapped each other. The noise component is seen as the 

gray line. The prominent phases that were obtained are also shown in Figure 4-7; these peaks 

coincided with the peaks that were expected for a sample containing lead oxide (Pb3O4). 

 

4.5 Conclusion 

A new approach towards the generation of 3D nanoparticle networks has been presented in this 

study. Microparticle containing samples were ablated using a femtosecond laser and nanoparticle 

networks with a sub-100nm nanoparticle size range were observed. On comparison with the 

similar nanoparticle networks obtained through ablation of bulk material, a reduction of 

approximately 60nm in the size of the nanoparticles was observed. The reduction in size has 

been attributed to the propagation of the generated shockwave through the loosely packed 
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microparticles. Another significant observation was a 3.5 times drop in the ablation threshold 

fluence for the microparticles in comparison to the bulk sample of the same material.  

 

This study has shown that femtosecond laser ablation in an ambient environment can be used for 

generating a 3D nanoparticle network from microparticles without the use of external stimulants 

or catalysts. The technique thus presented can be used for efficient generation of nanoparticle 

networks from a vast array of materials without the use of toxic or hazardous chemical 

precursors.  
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Chapter 5: 3D nanostructure through laser ablation of 

mixture of Al and NiO microparticles 

5.1 Introduction 

Properties of materials have been shown to be different at the nano scale in comparison to the 

properties at the macro scale. Therefore, to utilize the advanced properties at the nano scale 

numerous methods have been developed for the generation of nanoparticles from a vast variety 

of materials. Nanoparticles generated from individual precursor materials (metals, polymers, 

semiconductors, dielectrics) have been shown to be useful for a lot of applications [25, 36-38]. 

However, one realm of nanoparticles that has not been studied is capitalization of the advanced 

properties of a group of nanoparticles in a combination to achieve a new material/alloy with 

properties superior to those of the nanoparticles of the individual materials.  

 

Over the years, non-conventional methods have been used for the synthesis of nanocrystalline 

alloys from immiscible metals. Methods such as ion beam mixing, sputtering, vapor deposition, 

thermal evaporation and laser ionization have been used for the synthesis of such alloys [39-43]. 

All these non-conventional methods take advantage of the theoretical predictions of lowered or 

suppressed phase separation at the nano scale [44, 45]. One theory has suggested the lack of 

nucleation barrier for the formation of segregated species at the nanoparticle size regime [46]. 

 

Some effort has been made to produce such nanoparticle alloys through laser ablation of 

colloidal solutions or powder suspensions of materials [47-51]. In all of these methods some kind 

of liquid solution of the materials is irradiated with the laser to generate the nanoparticles which 
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are a combination of the materials either in the form of a core-shell structure or a metastable 

alloy. These methods are limited by the preparation of such a liquid solution of the mixing 

materials.  

 

In the previous chapter, the generation of a 3D nanostructure upon ablation of a microparticle 

containing powder has been demonstrated [52]. This chapter studies the use of the ablation 

process presented in the previous chapter to generate a 3D nanostructure composed of a mixture 

of two materials that initially do not exist in a combined form. The generation of a 3D 

nanostructure by the laser ablation of a mixture of Nickel Oxide (NiO) and Aluminum (Al) 

microparticle powders is presented. In extension to the above results, also reported is the 

generation of 3D nanostructure through ablation of Nickel Oxide (NiO) powder layer on an 

Aluminum foil; the generated nanostructure shows a different type of material. 

 

5.2 Experimental Parameters 

The sample preparation methods are mentioned in Section 3.2. The prepared samples were 

ablated in an ambient air using a Yb-doped fiber amplified femtosecond laser. The ablation of all 

the samples was carried out with the same laser parameters. The laser parameters were set as 

follows: 

 Average power per pulse: 12W 

 Repitition rate: 8MHz 

 Dwell time: 0.25ms 
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5.3 Results and Discussion 

For the current study, a mixture of two microparticle containing powders was ablated and the 

nanostructure generated was analyzed. Figure 5-1 shows an illustrative depiction of the ablation 

process and the corresponding nanostructure generated. 

 

 

Figure 5-1: Laser ablation of a mixture of two microparticle containing powders 

 

The ablated samples were analyzed under the SEM to study the generated nanostructure. Figure 

5-2 shows the SEM images of the nanostructure generated by the laser ablation of a mixture of 

aluminum and nickel oxide microparticles. 
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Figure 5-2: SEM image of generated microstructure 

 

From Figure 5-2, it can be seen that the structure of the generated nanostructure is similar to the 

nanostructure obtained in the previous work. The EDX analysis confirmed the presence of both 

aluminum and nickel in the obtained nanostructure. Figure 5-3 presents the result of the EDX 

analysis carried on the sample.  

 

On a closer examination of the TEM images, two types of mixing were observed: 

1. Nanoparticles fused to form 3D nanostructures (Figure 5-4) 

2. Aluminum particles embedded in nickel nuclei (Figure 5-5) 
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Figure 5-3: EDX analysis result confirming presence of Al and Ni in the nanostructure 
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Figure 5-4: TEM image of the generated nanoparticle network 

 

In order to explain the post ablation mixing of the two powders, the fundamental behind the 

process of laser ablation for material removal has to be re-looked into. The method of material 

removal by laser ablation has been explained by the heating of the target material above its 

boiling temperature by the laser pulses, followed by rapid cooling once the laser pulses stop. 

When ablation of the target material is carried out in a background gas environment or in 

ambient air, the presence of the air/gas causes the re-deposition of the ablated material onto the 

target surface which does not take place for laser ablation in vacuum [53].  

 

In the current study, the technique demonstrated in the previous work (laser ablation of 

microparticles for generating a nanoparticle network) has been used for the ablation of a mixture 

of Nickel Oxide and Aluminum powders. Due to presence of two powders of two different 

chemical compositions, there is a difference in the boiling point of the two. This difference in the 
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boiling point becomes a factor during the cooling phase that follows after the laser pulses have 

stopped hitting the target. As per the material data for aluminum and nickel oxide, there is a huge 

gap in the boiling point temperature for the two materials. Nickel has a higher boiling point 

temperature (2730
o
C) than aluminum (2327

o
C). Thus after the laser pulses stop, during the rapid 

cooling phase, the nickel oxide solidifies faster than aluminum. The cooled nickel oxide provides 

nucleation sites for the cooling aluminum. This results in the deposition of the aluminum 

nanoparticles on nickel oxide nuclei; clearly observed in the TEM image shown in Figure 5-5. 

 

 

Figure 5-5: TEM image showing Al embedded in Ni nuclei 

 

Another aspect of laser ablation that has been recently highlighted is the presence of a 

temperature gradient that exists across the surface of the target material [54]. The temperature at 

the point where the laser directly hits is the highest and it decreases as we move away from the 

center. There is also the existence of isotherms across the target surface [54]. Taking into 
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account the above temperature gradient, the layer of mixture of aluminum and nickel oxide 

powders will be subject to different temperatures depending on the position from the point of 

laser impact. Thus there exists a variation in the extent of mixing of the two powders post 

ablation. Figure 5-6 shows the TEM images of the nanostructure generated in the area away from 

direct impact of the laser. 

 

 

Figure 5-6: TEM images of the generated nanostructure 

 

Figure 5-7 shows a closer comparison between the mixing at the centre and away from centre. 

The difference in the mixing becomes clearly visible in that in case of Figure 5-7a, the aluminum 

nanoparticles are embedded in a background of nickel while in Figure 5-7b aluminum and nickel 

oxide form interconnected chains and do not show signs of mixing between the two in the 

plasma state.  
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Figure 5-7: TEM images of bonding observed; a) at the center of laser impact, b) away from center 

In extension of the above study, the microparticles of aluminum were replaced by an aluminum 

foil. A layer of the microparticles of nickel oxide was applied onto the aluminum foil. The 

sample was then ablated and analyzed for nanostructure generation. The process is illustrated in 

Figure 5-8. 

 

 

Figure 5-8: Laser ablation of NiO microparticle layer applied to an aluminum foil 

For the current scenario, as shown in Figure 5-8, the laser was focused so as to ablate the 

microparticle layer and the aluminum foil simultaneously. The particles from the foil and the 

microparticle layer were ejected into the plume and upon subsiding of the laser pulses formed 

into nanoparticle networks. The generated networks showed certain extent of mixing between the 
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two materials. Figure 5-9 shows the SEM image of nanostructure obtained by the ablation of 

NiO microparticles coated on an Aluminum foil. 

 

 

Figure 5-9: SEM image of nanostructure generated by laser ablation of NiO microparticles on Al foil 

 

5.4 Conclusion 

In the current study, the process of laser ablation of microparticle for generating a nanostructure 

(as described in Chapter 4) has been successfully applied for the generation of a 3D 

nanostructure through laser ablation of a mixture of aluminum and nickel oxide microparticle 

containing powders. Apart from the generation of the nanostructure, mixing between the two 

powders is also observed. Two different types of mixing are observed; one where aluminum is 

embedded in a pool of nickel oxide and the other where nickel and aluminum are present in an 

agglomerated chain of their nanoparticles. The mixing has been explained by the difference in 
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the boiling point of the two powders and its effect during the rapid cooling phase after the end of 

the laser pulse train. This study provides an alternative for the synthesis of alloy nanomaterial. 

  



 

49 

 

Chapter 6: Conclusion and Future Work 

6.1 Contributions 

The main contributions of this research are: 

 Synthesised self-assembled agglomerated nanoparticle networks by femtosecond laser 

ablation of microparticle samples. 

 Generated nanoparticle agglomerates from microparticles by femtosecond laser ablation 

under ambient conditions; atmospheric conditions and without use of external catalysts or 

stimulants. 

 Generated an alloy nanostructure by femtosecond ablation of two metallic microparticle 

powders. 

 Demonstrated the use of femtosecond laser ablation for generating a nanostructure by 

ablation of two metals in different phases; one in microparticle powder form and the 

other in solid form. 

 

6.2 Conclusion 

Femtosecond laser ablation of bulk materials generates 3D nanoparticle networks when the laser 

pulse repetition rate is in the Mega Hertz (MHz) regime. The generated nanoparticles normally 

have diameters in the range of a few hundreds of nanometers. To further reduce the particle size, 

the process of laser ablation of microparticles (LAM); which has long been used for the 

generation of individual nanoparticles from microparticles, has been used for generating a 3D 
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nanoparticle network by using lead oxide (Pb3O4) microparticles, nickel oxide (NiO) 

microparticles and zinc oxide (ZnO) microparticles as precursors. 

  

The increased efficiency of the LAM process for generating nanoparticle networks in 

comparison to laser ablation of bulk material was demonstrated with lead samples; wherein the 

size of the generated nanoparticles was approximately 60nm smaller than those generated from 

ablation of bulk lead. Reduced laser fluence for the LAM process; attributed to the loosely 

packed nature of the microparticles, provided for nanostructure generation at lowered laser 

energy level.  

 

Apart from generation of nanostructure from microparticles of a single material, nanostructures 

were also obtained for ablation of a mixture of microparticle powders. The generated 

nanostructures showed mixing between the two microparticle materials (Al and NiO) during the 

ablation process; a fact highlighted by the EDX analysis. The difference in the boiling point of 

the two materials was proposed to be the cause of the mixing of NiO and Al during the 

condensation phase.  

 

6.3 Suggestions for Future Works 

The novel method of formation of an alloy nanoparticle network can be further expanded in 

various directions. The composition of the alloy obtained can be varied by changing the mixing 

ratio of the two powders. Also the effect of change in laser parameters can be studied. Research 

can also be carried out on the influence of the presence of a background gas on the alloy 

nanoparticle network obtained.  
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Appendix 

Appendix A: Nanoparticle networks from Pb3O4 microparticles 

 
Figure A-1: Nanofibrous structures by ablation of Pb3O4 microparticles 

 

 
Figure A-2: Nanofibrous structures by ablation of Pb3O4 microparticles 
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Figure A-3: Nanofibrous network growth on ablated microparticles 

 

 
Figure A-4: Nanofibrous network growing from ablated microparticles 
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Figure A-5: Images showing the fine nanoparticle network generated  
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Appendix B: Nanoparticle networks from NiO microparticles 

 
Figure B-1: Nanoparticle network generated by ablation of NiO microparticles  
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Appendix C: Nanoparticle networks from ZnO microparticles 

 
Figure C-1: Nanoparticle network generated by ablation of ZnO microparticles 
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Appendix D: XRD analysis of Nickel Oxide (NiO) microparticles 
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Appendix E: JCPDS – International Centre for Diffraction Data 

Datasheet for Pb3O4 
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Appendix F: List of Publications 

The following is the list of journal articles from the research conducted for this thesis work: 

1. P. S. Waraich, B. Tan and K. Venkatakrishnan, "Laser ablation of microparticles for 

nanostructure generation," Journal of Nanoparticle Research, pp. 1-6, 2011 

 

2. P. S. Waraich, B. Tan and K. Venkatakrishnan, “Al-NiO 3D nanostructure alloy by 

agglomeration of nanoparticles using mega-hertz frequency femtosecond laser,” (To be 

submitted September 2011)  
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