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The Dynamic Competition Hypothesis

Master of Science, 2018

Rehan Taj Malik

Applied Mathematics, Ryerson University

Abstract

We study competitive and negative interactions in real world social net-

work in which nodes represent agents and edges appear over discrete

time step. We consider directed social network of competing agents that

evolve dynamically over time, where directed edges represent some kind

of negative relationships between the agents in the social network.

We present a novel hypothesis to identify the alliances and leaders

within the the dynamic competition networks. We verify our hypothesis

by using historical voting data of the social game shows Survivor and

Big Brother.
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CHAPTER 1

Introduction

1.1. Motivation

We are connected to each other via our social interactions, either

as individuals or in large groups. A social network is a collection of

agents that are connected by some particular types of social interactions

such as friendship, enemies, likes or dislikes. We can observe, analyse

and measure social networks with the help of observable data. Social

Network Analysis (SNA) considers networks, where nodes are individual

agents in the network and edges are the relationship or links between

the agents. For example, we denote edges as following in Twitter, while

edges represent friendship in Facebook.

We may apply SNA [17] to analyse the networks in the field of eco-

nomics, computer science, political science, communication studies, ge-

ography, social psychology and also in reality shows in television. In

social networks, we often consider social interaction as a positive rela-

tionship such as friendship, likeness or some type of common interest

between the individuals or groups. We may also see the negative social

relationship in network, which is also play an important role to find the

hidden interactions between the connections.
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Bonato et al. [5], introduced the Iterated Local Transitivity (ILT)

model for a social networks. The central idea of ILT model is transi-

tivity : if x is a friend of y, and y is a friend of z, then x is a friend of z.

On the other hand Structural Balance Theory [9, 13] gives the inverse

idea: if x is an enemy of y, and y is an enemy of z, then x is a friend of

z.

As evidence of negative social interactions, we may consider the en-

mity between the nations, rival gangs or competition between players in

games. Another example is the stock market graph [4], where the nodes

are stocks and two stocks are adjacent if they are negatively correlated.

Based on the competitive and negative interactions in a social network,

we consider directed social networks of competing agents that evolve dy-

namically over time, where directed edges represent some kind of negative

relationships between the agents in the network. As an example relevant

to this thesis, a directed edge may be a vote of one contestant to other

in the game show Survivor. One of our main contributions, as first de-

scribed in Chapter 2, is the introduction of the Dynamic Competition

Hypothesis (DCH) to identify the alliances and top players within the

dynamic competition network. We verify our hypothesis by using the

voting history data of social game shows Survivor and Big Brother.
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1.2. Introduction to Graph Theory

In this section, we discuss some basic definitions from graph theory

which we use throughout our thesis. A graph G = (V,E) is a pair

consisting of a node set V = V (G), an edge set E = E(G) consisting of

pairs of nodes. Note that E is taken as a multiset, as its elements may

occur more than once. We write uv if u and v form an edge, and say

that u and v are adjacent.

A loop is an edge whose endpoints are equal. Multiple edges are edges

having the same pair of endpoints. We restrict our attention to simple

graphs ; that is, graphs without loops and multiple edges. Further, we

only consider finite graphs.

G H

Figure 1.1. G has multiple edges and a loop and H is a simple graph.

The degree of a node v in G, written degG(v), is the number of neigh-

bors of v in G. We will drop the subscript G if the graph is clear from

context.

The set of all nodes adjacent to a node u, is called the neighborhood

of a node u ∈ V (G), denoted by N(u). We denote N [u] be the closed

neighborhood of u, written as N [u] = N(u) ∪ {u}. We denote by |V (G|
3



the order of nodes V in G; the total number of nodes in V in graph G.

We denote by |E(G)| the order of edges E in G; the total number of

edges in E in graph G. We note that

|E| ≤
(
|V |
2

)
.

The degree of the node u ∈ V (G), denoted by deg(u) is equal to

the number of edges incident on u. The node u is leaf or pendant if

deg(u) = 1. The node u is isolated if deg(u) = 0.

Now we give an example of an undirected graph G = (V,E), where

the nodes V = {a, b, c, d} and edges E = {ab, bc, bd, da}.

d

a b

c

Figure 1.2. An undirected graph G = (V,E).

In Figure 1.2, node a is adjacent to nodes d and b but it is not adjacent

to c. The neighborhood of node a is the graph with two nodes d and b and

one edge connecting b and d. The degree of nodes are deg(a)=deg(d)=2,

deg(b)=3, deg(c)=1. We note that c is leaf.

The following is often referred to as the First Theorem of Graph The-

ory (which is included for completeness).
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Theorem 1. [5] If G is a graph, then we have that

∑
v∈V (G)

deg(v) = 2|E(G)|.

Proof. Let S =
∑

v∈V (G) deg(v). Notice that in S, we count each

edge exactly twice. Thus, S =
∑

v∈V (G) 2|E(G)| . �

A sequence of n nodes such that each node is adjacent to the next

node in the sequence, is called the path of order n. We denote this graph

by Pn and the length of the path is n− 1.

a b c d e

Figure 1.3. A path P5 of order 5 and length 4.

A walk in a graph G = (V,E) is an alternating sequence

W = 〈vo, e1, v1, e2, ..., vn−1, en, vn〉

between the nodes and edges such that ei = (vi−1, vi), for all vi ∈ V (G)

and ei ∈ E(G), i = 1, 2, ..., n. The number of edge-steps in the walk

called the length of the walk. A walk that begins and ends at the same

node is said to be closed walk. A walk that begins and ends at different

node called an open walk. A walk that does not pass through the same

edges twice is called a trail.

A graph G is said to be connected if for each distinct pair of nodes

u, v ∈ V (G) there is a path from u to v in graph G; otherwise the graph
5



G is disconnected. The distance from the nodes u to v is the length of

the shortest path from u to v in a connected graph G, denoted by d(u, v).

If u and v are in different components, then G is said to be disconnected

such that d(u, v) =∞.

G H

Figure 1.4. A connected graph G and a disconnected graph H.

The eccentricity of a node v, denoted by e(v), of a connected graph

G = (V,E) is the maximum distance from node v to any other node

u ∈ V (G); that is,

e(v) = max
u∈V (G)

{d(u, v)} .

The maximum eccentricity in a graph G is the diameter of a graph G,

denoted by diam(G); that is,

diam(G) = max
v∈V (G)

{e(v)} .
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The minimum eccentricity in the graph G is the radius of a graph G,

denoted by rad(G); that is,

rad(G) = min
v∈V (G)

{e(v)} .

A node with minimum eccentricity in a graph G is called a central node

and we write

e(v) = rad(G).

v5

v1

v3

v2

v4

Figure 1.5. A connected graph G on five nodes.

In Figure 1.5, the eccentricities of the nodes of graph G are e(v1) =

e(v5) = 3, and e(v2) = e(v3) = e(v4) = 2. The diameter and radius of G

are diam(G) = 3 and rad(G) = 2, respectively.

A graph H is a subgraph of a graph G when all of its nodes and edges

are contained in G. That is V (H) ⊆ V (G) and E(H) ⊆ E(G), which

we represent by H ⊆ G. A spanning subgraph H of a graph G is a

graph in which V (H) = V (G). A subgraph H = (V (H), E(H)) of graph

G = (V (G), E(G)) is said to be an induced subgraph of G, if for all
7



u, v ∈ V (H) joined by an edge (u, v) ∈ E(G) then (u, v) ∈ V (H), we

represent induced subgraph of G by H[G].

v1

v2 v3

v4 v1

v2 v3

v2 v3

v1

v2

v4v1

v3

G H

Q R

Figure 1.6. A graph G, a subgraph H, an induced subgraph Q, and a
spanning subgraph R.

A graph of n nodes is said to be complete or clique if all distinct nodes

are joined to each other by an edge. We represent a complete graph by

Kn.

K4 K6

Figure 1.7. Complete graphs K4 and K6.

A connected graph with n nodes is said to be a cycle in which the

number of nodes equal to the number of edges, we represent a cycle by

Cn. A graph with no cycle is said to be acyclic.
8



v1

v4

v2

v3v5

v6

Figure 1.8. A cycle C6.

Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs. A

homomorphism of G to H is a function f : V (G)→ V (H) such that for

all pair of nodes x, y ∈ V (G), xy ∈ E(G) implies that f(x)f(y) ∈ E(H).

We denote a homomorphism from G to H as G → H. An isomorphism

is a bijective function f : G → H such that xy is an edge in G if and

only if f(x)f(y) is an edge in H. Note that two isomorphic graphs share

all the same properties.

1

a

2

b

3

c

u t

s

rq

p

Figure 1.9. Isomorphic graphs.

A connected graph G = (V,E) that has no cycle is called a tree. A

node has degree one is called leaf in a tree, whereas branches are called

the edges in tree. In a graph in which all of whose connected components
9



are trees said to be forest ; the connected components of a graph is a

subgraph in which any two nodes are connected to each other by path.

Figure 1.10. Examples of Trees.

Here we include below some equivalent definitions of a tree (which we

include for completeness).

Theorem 2. [18] Given a graph G = (V,E) with |V (G)| = n, the

following are equivalent.

(a) G is a tree.

(b) G has no cycles.

(c) The number of edges of G is one less than the number of nodes of

G.

(d) Every pair of nodes u, v ∈ G is connected by unique path.

(e) Removing any edge from G gives a graph which is not connected.

We now define directed graphs. A graph G = (V,E) is said to be

directed graph or digraph if the edge set ei ∈ E(G) consists of ordered

node pairs (u, v), for all u, v ∈ V (G). The edge e is said to be directed

edge from u to v if it is associated with the pair (u, v) of nodes. The

number of edges incoming to a node called in-degree, denoted by deg−(u),
10



where u is a node. The number of edges outgoing from a node called out-

degree, denoted by deg+(u). A node has zero in-degree called source node,

where a node has zero out-degree called sink node. We have the following

theorem, which is part of folklore (which is included for completeness).

Theorem 3. For every digraph G,

∑
v∈V (G)

deg+(v) =
∑

v∈V (G)

deg−(v),

Proof. For every digraph G = (V (G), E(G)), an edge has two ends

with one end of the edge adding 1 to the out-degree of some v ∈ V (G),

while the other end of the edge adding 1 to the in-degree of the some

v ∈ V (G). �

In Figure 1.11, we find an example of a directed graph G with nodes

v1, v2, v3 ∈ V (G), deg−(v1) = 1, deg−(v3) = 2 and deg−(v2) = 0, where

deg+(v1) = 1, deg+(v2) = 2 and deg+(v3) = 0. We see that node v2 is a

source node and node v3 is sink node.

v1 v2

v3

Figure 1.11. A directed graph G.
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A digraph G is said to be weighted graph if all of its nodes or edges

assigned a weight. An edge-weighted graph has weight on its edges and

node weighted graph has weight on its nodes.

A set of nodes W ⊆ V(G) with no directed edges within W , then the

set W is an independent set.

v1 v2 v3 v4 v5

Figure 1.12. Independent set on 5 nodes.

An independent set W of a digraph G is said to be maximum if G

has no independent set W ′ such that |W ′| > |W |. The independence

number of G, denoted by α(G), is the number of nodes in a maximum

independent set of G. The edge density of the set of nodes S is the ratio

ED(S) =
|E(S)|(|S|

2

) .

See Figure 1.13 for an example.

v1

v5

v2v3

v4 v1

v2 v3

v5

v2

v4

v3

v1

P Q

R

Figure 1.13. ED(P) = 0.4, ED(Q) = 1, ED(R) = 1.3.
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1.3. Summary of the Thesis

In this chapter, we discussed the basic definitions and notation from

graph theory, citing various properties and theorems. In Chapter 2, we

will define centrality metrics on graphs, with the aim of determining

important nodes in social networks. We will discuss structural balance

theory and alliances in social networks. We will introduce and study

the properties of dynamic competition networks. We formulate the Dy-

namic Competition Hypothesis that detects the leaders and measures the

relative strength of the alliances in the social network.

In Chapter 3, we will present voting history data of four seasons from

U.S. Survivor and one data set from Big Brother. We will analyse and

verify these data sets by applying network metrics to validate the Dy-

namic Competition Hypothesis. We will find that the Dynamic Compe-

tition Hypothesis exactly predicts the alliances, top players and finalists

in the game shows.

In the last chapter, we summarize and discuss our results. We will

present open problems derived from our analysis and describe how the

Dynamic Competition Hypothesis can be applied in other types of com-

plex networks.

13



CHAPTER 2

The Dynamic Competition Hypothesis

In this chapter, we introduce and discuss structural balance theory.

We define a model of positive and negative relationships in a complete

graph. We discuss balanced and unbalanced graphs in signed social net-

works with examples. We define standard centrality metrics in network

science that will be used to state the Dynamic Competition Hypothesis in

Chapter 3. We introduce dynamic competition networks in real-world so-

cial networks. We formulate the Dynamic Competition Hypothesis with

the help of graph theoretic tools to identify the alliances and leaders in

a social network.

2.1. Structural Balance Theory

We discuss here the basic model of positive and negative relationships

modeled by a complete graph. Suppose we have a social network repre-

senting a set of people, in which everyone knows everyone; that is, there

is an edge joining each pair of nodes. We label each edge with either a

positive sign (+) or a negative sign (−). A positive edge between two

nodes denotes a positive relationship (such as friendship or an alliance)

and a negative edge between two nodes denotes a negative relationship
14



(such as hatred or competition). Such a labeled graph is called a signed

network.

In signed social networks, there is the concept of balanced and unbal-

anced cycles. A balanced cycle is defined as a cycle where the product of

all the signs are positive. Balanced graphs represent a group of people

who are unlikely to change their opinions of the other people in their

group. In contrast, the unbalanced graphs represent a group of people

who are very likely to change their opinions of the other people in their

group.

X Y

Z

−

−+

Figure 2.1. A signed graph.

The principles underlying structural balance are based on theories in

social psychology from the work of Heider in the 1940s [14], and the

theory was generalized and extended to the language of graphs with the

work of Cartwright and Harary in the 1950s; see [7, 8, 12]. The critical

idea of structural balance theory is that if we consider any two people in

isolation, then the edge between them can be + or −; that is, they are

either friends or enemies. But when we look at sets of three people at a
15



time, there are four distinct ways to label the three edges among three

people with +’s and −’s. We can differentiate these four possibilities as

follows.

X Y

Z

+

++

Figure 2.2. X, Y, Z are mutual friends: balanced.

In Figure 2.2, it is a natural situation if in a given set of three people

X, Y and Z, they have three positive signs among them: it corresponds

to three people who are mutual friends.

X Y

Z

+

−−

Figure 2.3. X and Y are friends with Z as a mutual enemy: balanced.

In Figure 2.3, it is also natural if a single positive sign and two negative

signs in the relations among the three people. It means that two of the

three are friends, and they have a mutual enemy in the third.
16



X Y

Z

+

−+

Figure 2.4. X is friends with Y and Z, but Y and Z are enemy to each
other : unbalanced.

In Figure 2.4, a triangle with two positive signs and one negative sign

corresponds to a person X who is a friends with each of Y and Z, but Y

and Z are not friend with each other. This type of labeling shows some

kind of psychological stress or instability between the relationships. In

this situation, there would be implicit forces pushing X to try to get Y

and Z to become friends (changing the Y Z edge label to +); or else for

X to side with one of Y or Z against the other (changing one of the edge

labels incident with X to a −).

X Y

Z

−

−−

Figure 2.5. X, Y and Z are mutual enemies: unbalanced.

17



In Figure 2.5, there are also sources of instability in an arrangement

where X, Y and Z are mutual enemies. In this situation, there would

be forces motivating two of the three people to become partners against

the third (changing one of the three edge labels to a +).

Due to the above reasons in the labeled triangles, we indicate the

triangles who have one or three + labels as balanced and triangles with

zero or two + labels as unbalanced. In structural balance theory, each

labeled triangle must have one or three positive edges.

We may view unbalanced triangles as sources of stress or psychologi-

cal dissonance, which strive to minimize in their personal relationships.

Hence, they will be less abundant in real social settings than balanced

triangles.

We next generalize our definition of structural balance of complete

graphs for groups of three nodes into an arbitrary number of nodes with

edges labeled by +’s and −’s. In particular, the labeled complete graph

is balanced if it obeys the following property:

Structural Balance Property : For every set of three nodes,

if we consider the three edges connecting them, either all

three of these edges are labeled +, or else exactly one of

them is labeled +.

We consider an example of two labeled networks in Figure 2.6. We see

that the labeled four-node complete graph on the left consists of two
18



groups of friends X, Y and Z, R, with negative relations between people

in different groups. It is balanced because each set of three nodes satisfies

the Structural Balance Property. The labeled four-node complete graph

on the right is not balanced because there are exactly two edges labeled

+ between three nodes X, Y , Z and the triangle Y , Z, R violates the

Structural Balance Property.

−

+

+

− −

−

−

−

+ +

+ −

X

Z

R

Y

Balanced Not banlaced

X Y

Z

R

Figure 2.6. The labeled four-node complete graph on the left is bal-
anced and on the right is unbalanced.

We see that there are only two basic ways for structural balance net-

work to occur: everyone likes each other (see Figure 2.2), or the net-

work consists of two groups of mutual friends with complete antago-

nism between the groups. This fact was originally discovered by Drown

Cartwright and Frank Harary in the 1950s.
19



Theorem 4. [8, 12] If a labeled complete graph is balanced, then

either all pairs of nodes are friends, or else the nodes can be divided into

two groups, X and Y , such that every pair of people in X like each other,

every pair of people in Y like other, and everyone in X is the enemy of

everyone in Y .

2.2. Centrality metrics in networks

In this section, we present some graph-theoretic terminology, and we

will define standard centrality metrics in network science that we will use

later. For example, by using various centrality metrics, we can find the

most influential nodes.

A network can be represented by its matrix called the adjacency ma-

trix. We define the adjacency matrix of a graph G = (V (G), E(G)) with

n nodes by the n× n matrix with entries Ai,j given by:

Ai,j =


1 if (vi, vj) ∈ E(G)

0 otherwise,

for all vi, vj ∈ V (G).

We consider an example to find the adjacency matrix of the following

graph, whose nodes are v1, v2, v3, v4, v5 and v6, respectively.
20



v6

v1

v2

v5

v4

v3

Figure 2.7. A directed graph.

The adjacency matrix of the directed graph in Figure 2.7 is the fol-

lowing:

Ai,j =



0 1 1 0 0 1

1 0 1 1 0 0

0 0 0 1 0 0

0 0 1 0 0 1

1 1 0 1 0 0

1 0 1 1 1 0


Degree centrality simply measures the degrees of nodes. Degree may

be interpreted in terms of the immediate risk of node catching whatever is

flowing through the network (such as a virus, influence, or information).

For a directed network, we define two types of degree centrality: in-degree

and out-degree.
21



Let Ai,j be the adjacency matrix of a directed graph. The in-degree

centrality xi of node i is equal to:

xi =
∑
k

Ak,i.

See Figure 2.8 for an example.

2

1

5

2

1

0

3
2

1

Figure 2.8. A directed graph with nodes labeled with their in-degree.

The out-degree centrality yi of node i is equal to:

yi =
∑
k

Ai,k.

See Figure 2.9 for an example.

We consider degree centrality as a local metric since it only considers

neighbors of nodes. For example, in an on-line social network such as

Facebook, degrees measure the relative popularity of users.

Betweenness centrality is an important statistical property of a net-

work. This is applied in many real-world problems, such as finding in-

fluential people in a social network, finding crucial hubs in a computer
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Figure 2.9. A directed graph with nodes labeled with their out-degree.

network, or finding border crossing points which have the most trade

flow. See [10, 11].

The betweenness of a node u in a graph G = (V,E) is computed as

follows:

(1) For each pair of nodes (v, w), compute the shortest paths between

them.

(2) For each pair of nodes (v, w), determine the fraction of shortest

paths that pass through the node u.

(3) Sum this fraction over all pairs of nodes (v, w).

More formally, we define the betweenness centrality of u by

B(u) =
∑

v,w∈V (G)\{u}

σvw(u)/σvw,

where σvw denote the total number of shortest one-way, directed paths

between v, w and σvw(u) denote the number of shortest one way, directed
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paths between v and w that pass through the node u. If there does not

exist any shortest path between v and w, then we have that B(u) = 0.

0 2 2 0

0

0

8 9 8

0

0

Figure 2.10. Two graphs with nodes labeled with their betweenness
centralities.

In connected graphs there is a natural distance metric between all

pairs of nodes, defined by the length of their shortest paths. The farness

of a node u is defined as the sum of its distances from all other nodes in

a graph. The farness of node u is defined by

F (u) =
∑

v∈V (G)

d(u, v).

Closeness centrality indicates how long it will take for information

from a given node to reach other nodes in the network. We describe

the closeness centrality as the reciprocal of the farness. For a connected

digraph G = (V,E) and a node v ∈ G, we define closeness centrality of

u by

C(u) =

 ∑
v∈V (G)\{u}

d(u, v)

−1

,

24



where d(u, v) is the distance measured by one-way, directed paths from

u to v. Thus, the more central a node is the lower its total distance from

all other nodes. Note that taking distances from or to all other nodes is

irrelevant in undirected graphs, whereas in directed graphs distances to

a node are considered a more meaningful measure of centrality; see [2].

Both closeness and betweenness are well-studied centrality measures

for complex networks; see [6]. For example, centrality of sports networks

is often used to rank teams; see [15].

0.143

0.167

0.1

0.143

0.1

Figure 2.11. A tree with nodes labeled with their closeness centralities.

In Chapter 3, we will apply network science in the social game show

Survivor. Given the nature of the voting network in Survivor, we also

consider the number of common out-neighbors as a key metric which

define as follows.

For nodes u, v, and w, we say that w is a common out-neighbor of u

and v if (u,w) and (v, w) are directed edges.
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Figure 2.12. The node w is the common out-neighbor of u and v.

For a pair of distinct nodes u, v, we define CON(u, v) to be the number

of common out-neighbors of u and v.

x

y

v

u

z w

Figure 2.13. The number of common out-neighbor of u and v is given
by CON(u, v)=3.

For a fixed node u, define

CON(u) =
∑

v∈V (G)

CON(u, v).

We call CON(u) the CON score of u.

For a set of nodes S with at least two nodes, we define

CON(S) =
∑
u,v∈S

CON(u, v).

We note that CON(S) is a non-negative integer.
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Figure 2.14. CON score of u=CON(u)=5.

For a set S of nodes, we denote its edge density by ED(S), and com-

pare this to that of an independent set . We observe that ED(S) may

be greater than 1 as there may be multiple edges in the digraphs as we

defined in Chapter 1 (see Figure 1.13).

If ED(S) ≤ ε, then a set S is said to be ε-near independent, where ε

is a non-negative real number. We measure the relative density of sets

of nodes by the parameter ε. If the set S is ε-near independent for some

positive value of ε then S is called near independent. Generally, in appli-

cations, we take ε to be small. The value of ε will often be heuristically

determined in a real-world networks by considering a ranking of subsets

by their edge density (we highlight that every set of nodes is ε-near inde-

pendent for a suitably chosen ε). We note that independent sets are near

independent by choosing the value of ε = 0.

In Figure 2.15, we consider two sets of nodes R and S where we have

that ED(R) = 0.6 and ED(S) = 1.2, respectively. We choose ε1 and

ε2 such that ε1 = 0.6 and ε2 = 1.3. We see that ED(R) ≤ ε1 and
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Figure 2.15. In these networks we have that ED(R) = 0.6 and ED(S) = 1.2.

ED(S) ≤ ε2, then we say that set R is ε1-near independent and set S is

ε2-near independent.

2.3. Dynamic Competition Networks

We consider a network G in which nodes represent agents, and there

may be directed edges from nodes u and v. We say G is a competition

network if agent u is in competition with agent v. A directed edge may

correspond to some kind of negative social interaction from nodes u to

v; that is, a directed edge (u, v) may represent a vote against v. Note

that competition networks need not be tournaments, which are directed

graphs isomorphic to those where every pair of nodes has exactly one

directed edge between them.

A competition network is said to be dynamic competition network if

directed edges are added over discrete time-steps. For example, in the
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game show Survivor, contestants cast votes against each other, and a

directed edge may be a vote of one contestant to other; see Chapter

3. We consider another example from real-world networks, where nodes

represents nation states and edges correspond to conflicts between them.

Dynamic competition networks may have multiple edges. In our thesis,

we focus on the underlying structure of social networks of competitors

which we call a dynamic competition network. Specifically, we focus on

the networks arising on the American television series Survivor and Big

Brother. Before we describe our hypothesis, we discuss some important

definitions which we use in our hypothesis and whole thesis.

Alliance means a bond or connection between families, states, indi-

viduals, or parties. In the real-world network, we find alliances in many

ways, for example:

(1) Companies with common economic interests.

(2) People who unite by relationship or friendship.

(3) Political parties.

(4) Friendly nation states.

We define alliances in the social game show Survivor, as groups of

contestants who work together to vote off contestants outside the alliance.

In particular, alliances are induced subgraphs of dynamic competition

networks. In the case of strong alliances, members of an alliance are less

likely to vote for each other.
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Persons that hold a dominant or superior position in the network are

called leaders and are able to exercise a high degree of control or influence

over others; that is, edges emanating from leaders may influence edge

creation in other agents. Leaders may be the winner in the game show

Survivor or may be the non-winning players with a strong hold on the

results of the game. Our main goal is to apply network science to help

determine alliances and leaders in dynamic competition networks arising

in social networks.

2.4. The Hypothesis

Structural Balance Theory posits relationships as either positive or

negative, and in our approach, we focus on negative relationships. We

apply network science to identify the alliance and top players within

a dynamic competition network such as Survivor. Players in Survivor

are represented by nodes and there is a directed edge from player x to

player y if x votes for y. The directed edges in Survivor correspond to

competition or rivalry between the players, and so correspond to nega-

tive relationships. Directed edges are added over discrete time steps in

dynamic competition network.

We indicate the top players in Survivor with their in-degree. Players

who have low in-degree to be considered as top players. Alliances have

low edge densities and are near independent. We note that the top
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players have high CON scores and we consider them as a leader within

the alliance.

An important measure of top players is the closeness. Players who

are centrally located in the network have highest closeness. We discover

that the closeness appears as a reliable predictor in Survivor.

The Dynamic Competition Hypothesis (or DCH) asserts that dynamic

competition networks arising from a social network satisfy the the fol-

lowing four properties.

(1) Alliances are near independent sets.

(2) Strong alliances have low edge density.

(3) Members of an alliance with high CON scores are more likely

leaders.

(4) Leaders exhibit high closeness, high CON scores, low in-degree,

and high out-degree.

We see the visualization of DCH in Figure 2.16. Now we observe that

the above four properties jointly support each other. When we detect

an alliance from property (1) then we are able to compute the strength

of an alliance relative to other alliances by using property (2). We can

separate leaders within alliances by applying property (3). Specifically,

we anticipate leaders to be in alliances because of having their eminent

local control in the alliances. We consider property (4) is independent of
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Figure 2.16. A heat map representation of dynamic competition net-
works according to the DCH, where nodes closer to the center have higher
closeness and CON scores. Larger nodes have higher CON scores, lower
in-degree, and higher out-degree. The induced subgraphs (which are the
circles) correspond to alliances.

alliances and we determine leaders through global metrics of the network;

that is, we measure closeness centrality.

In Chapter 3, we will test the Dynamic Competition Hypothesis (DCH)

with historical voting data from four seasons of the U.S. television social

game shows Survivor and one season from Big Brother.
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CHAPTER 3

Data and Methods

In this chapter, we provide background on the U.S. based social game

shows Survivor and Big Brother. We concentrate on four seasons from

Survivor and one season from Big Brother, in detail. We examine the vot-

ing data of these seasons by using tools from network science. We observe

that the Dynamic Competition Hypothesis (DCH) predicts the formation

of alliances and finalists with a high degree of accuracy. As indicated in

Chapter 2, the Dynamic Competition Hypothesis (or DCH) asserts that

the dynamic competition networks arising from a social network satisfy

the following four properties (which we restate for convenience):

(1) Alliances are near independent sets.

(2) Strong alliances have low edge density.

(3) Alliance members who have high CON scores are leaders.

(4) Leaders reveal high closeness, high CON scores, low in-degree,

and high out-degree.

3.1. Survivor

Survivor is a reality-based competition television show. Survivor is an

example of a social game, where social interactions establish the direction
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of the play and winners. We observe that there are versions of Survivor in

many countries. In our thesis, we consider the U.S. version of Survivor.

In Survivor, a group of contestants called survivors are marooned in

an isolated location, usually with a tropical climate. Survivors are forced

to provide food, water, and shelter for themselves with insufficient help

from the outside world. Survivors are split into two or more tribes, which

cohabitate and work together. As a tribe, the survivors must endure the

elements, build shelter, look for water, and scrounge for food and other

requirements for the whole period of the game, which is generally 39 days

in the U.S. version.

In particular, in the first half of the game, the tribes compete in

challenges, some for rewards of food, shelter, or luxury items, while others

are for immunity, preventing the winning tribe from having to go to the

tribal council. The losing tribe goes to tribal council, where they vote

out one of their own tribesman to eliminate them from the game.

In the second half of the game, the tribes are merged into a single

tribe, and the remaining survivors compete for individual rewards and

immunity. At subsequent tribal councils, eliminated players start to form

the jury, who sit in on all subsequent tribal councils but they do not

participate in the voting. When there are a small number of remaining

survivors who are finalists ; that is, only two or three, they attend the

final tribal council, where the jury is given the opportunity to ask them
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questions. After this, the jury members vote in favor of one of them to

become the Sole Survivor who receives a cash prize of one million dollars.

3.2. Big Brother

Big Brother is a reality-based competition television game show in

which a group of contestants are called HouseGuests. HouseGuests co-

habitate in a custom-built house under constant video surveillance. While

in the house, the contestants are isolated from the outside world; that is,

no phone, television, Internet, magazines, newspapers, or have no com-

munication with those not in the house. This rule could be broken in the

case of medical injury and any family emergency. The HouseGuests are

free to leave from the game but they are not allowed to entry back into

the house. HouseGuests could be expelled from the house if they break

the rules of the game.

Each week, the HouseGuests compete for the title of Head of House-

hold. Head of Household nominates two HouseGuests for eviction. The

HouseGuests vote to evict one of them. The HouseGuests who has the

most votes is evicted from the game. Once only two HouseGuests re-

main, the members of the Jury cast their votes for who should win the

series. The winner receives a cash prize of half a million dollars.

Various twists have been introduced during the seasons in both Sur-

vivor and Big Brother to keep the players vigilant and to avoid players

relying a similar game plan used in preceding seasons. For example, in
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Survivor, these twists include tribal switches, seasons starting with more

than two tribes, the ability to exile a player from a tribe for a short time,

hidden immunity idols that players can use to save themselves or others

at tribal council or special voting powers which can be used to influence

the result at tribal council. As a disclaimer, our use of network analysis

is insensitive to these twists.

3.3. Social Network Analysis tools

Social network analysis tools are used to identify, analyze, visualize

or simulate nodes (agents) and edges (relationships) from various types

of input data including mathematical models of social networks. There

are several tools available for analysis of social networks. We selected

the software Gephi [1], which is freely available for use and can handle

large graph sizes. Gephi is a tool to explore and understands graphs.

We used Gephi in our thesis for computing centrality metrics and the

visualizations of dynamic competition graphs.

We have gathered data from Survivor Wiki [16] and Big Brother Wiki

[3]. Data includes the information on contestants, their voting history

and tribes, and catalogues of alliances.

We now present the visualizations of dynamic competition networks

for Survivor and Big Brother. We discuss four seasons from Survivor;

that is, Borneo, China, Game Changer, and Heroes vs Healers vs Hustlers

(HHH), respectively. The reason for choosing these seasons is because
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Borneo and HHH introduce the new players and Game Changer includes

the returning contestants from the preceding seasons. In addition, several

new twists and changes have been made in these seasons. We also discuss

a data from Season 12 of Big Brother. We note that in both Survivor and

Big Brother, we choose data when all the players cast their votes against

each other. We also provide the tables which contains the summary of the

relevant network statistics. In the tables below, we list the contestants

in the order which they were voted out from the game. The winner of

the game is the first entry of the table and the others are placed by

when they were voted out from the game. We analyse the voting history

data from Survivor and Big Brother by using Gephi in which we check

whether the DCH predicts the top players (which may be the finalist)

and the emergence of the alliances. We use the abbreviations ID, OD, C,

CON, and B which stand for in-degree, out-degree, closeness centrality,

CON-score, and betweenness centrality, respectively.

3.4. Borneo

We discuss the first season of Survivor set in Borneo. Borneo con-

sisted of thirty-nine days of gameplay with sixteen competitors. The

sixteen contestants were split into two tribes of eight: Tagi and Pagong.

Both Tagi and Pagong coped equally in challenges but diverged in or-

ganisational structure. Three contestants from Pagong: Colleen, Jenna,

Gervase formed an alliance, called the Barbeque alliance, whereas the four
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contestants Richard, Rudy, Susan, and Kelly from other tribe formed an

alliance, called the Tagi alliance. The Tagi alliance voted as a block

to ensure their safety. The Tagi alliance took advantage of the lack of

voting strategy of other contestants. There was also a dispute in the

Tagi alliance as Kelly was considered untrustworthy. When ten players

remained, the contestants merged into one tribe. After merging in one

tribe, the Tagi alliance successfully used their votes to eliminate the other

contestants.

When only the Tagi alliance members remained in the game, we see

that the close allies Richard and Rudy voted for Susan, and Susan and

Kelly voted for Richard, so the vote ended with tie. After the revote,

Susan was eliminated because Kelly switched her vote from Richard to

Susan. Kelly also voted for Rudy after winning her last immunity chal-

lenge. Richard and Kelly were the finalists and Richard won the game

by 4− 3.

In Table 1, we see that Richard is the the Sole Survivor of the season.

We note that Richard has one of the highest closeness and CON scores.

Rudy and Susan have higher scores and closeness but high in-degree as

compared to Richard. We see that Kelly won four consecutive immunity

challenges near the end of the game and was ineligible for elimination.

Since Kelly voted for both Rudy and Susan, we note that this was the

decisive factor for her not winning the finale.
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Table 1. Survivor: Borneo, Season 1.

Name Tribe ID OD C CON B

Richard Tagi 6 10 0.737 42 28.7
Kelly Tagi 0 12 0.682 34 0
Rudy Tagi 8 11 0.778 45 36.483
Susan Tagi 7 10 0.778 44 16.467
Sean Tagi 9 9 0.7 38 17.917
Colleen Pagong 7 8 0.636 29 33.067
Gervaise Pagong 6 7 0.636 31 8.583
Jenna Pagong 11 6 0.583 27 27.85
Greg Pagong 6 5 0.412 15 4.833
Gretchen Pagong 4 4 0.56 17 7.233
Joel Pagong 4 3 0.412 17 1
Dirk Tagi 4 3 0.5 12 1.317
Ramona Pagong 6 2 0.412 10 17.733
Stacey Tagi 6 2 0.452 4 1.733
B.B. Pagong 6 1 0.298 5 0.333
Sonja Tagi 4 1 0.452 4 0.75

Figure 3.1. Survivor: Borneo.
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We note that comparing betweenness of the players is vague as a

predictor of leaders. For example, the betweenness of Richard, Kelly,

and Rudy are 28.7, 0, and 36.5, respectively. One of the reason behind

this is that the leaders tend to have lower in-degree, which may reduce

the number of paths traversing through them. In the other seasons of

Survivor, we do not consider, therefore, betweenness scores.

3.5. China

We next move to Survivor: China, which is the fifteenth season of

U.S. reality television show. The reason to choose China is because it

represents a sample after the game became more familiar to audiences,

where contestants better understood the mechanics of the game.

Two tribes, Fei Long and Zhan Hu, were predetermined prior to the

start of the game. Two alliances were formed in the tribes. Seven con-

testants formed the Fie Long alliance: Todd, Courtney, Amanda, Aaron,

Denise, James, and Frost and three contestants Pie-Gee, Erik, and Jaime

formed the Zhan Hu alliance.

The tribes merged in one tribe when ten contestants remained in

the game, with the advantage of given to the Fei Long alliance (which

comprised six contestants in the new tribe). After the elimination of two

of the Fie Long’s contestants, the remaining Fei Long members held on

to their lead, and Todd, Amanda, and Courtney’s alliance held strong.
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Todd, Amanda, and Courtney went to the final tribal council. Todd won

the game with four votes to Courtney’s two and Amanda’s one.

In Survivor: China, we note that in Table 2, Todd is the Sole Survivor.

From the table, we note that Todd has highest closeness and high CON

scores. Courtney and Amanda appear also as leaders based on their CON

scores.

Table 2. Survivor: China, Season 15.

Name Tribe ID OD C CON

Todd Fei Long 5 9 0.765 49
Courtney Fei Long 0 9 0.667 39
Amanda Fei Long 0 9 0.737 49
Denise Fei Long 3 9 0.722 40
Peih-Gee Zhan Hu 8 10 0.722 41
Erik Zhan Hu 5 9 0.722 41
James Fei Long 9 6 0.591 31
Frosti Zhan Hu 7 7 0.65 39
Jean-Robert Fei Long 12 4 0.5 23
Jaime Zhan Hu 7 5 0.481 26
Sherea Zhan Hu 6 4 0.448 24
Aaron Fei Long 3 2 0.406 12
Dave Zhan Hu 6 3 0.382 11
Leslie Fei Long 6 1 0.342 9
Ashley Zhan Hu 8 2 0.464 10
Chicken Zhan Hu 5 1 0.333 6
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Figure 3.2. Survivor: China.

3.6. Game Changers

We next turn to Survivor: Game Changers, as the third-to-last season

of the show. The twenty players were initially divided into two tribes:

Mana and Nuku. The Nuku fared much better in challenges and the

Nuku members were able to eliminate most of the members from the

Mana tribe. When the tribes merged, two main factions appeared: Power

Six alliance led by Sierra and Brad and Tavva alliance led by Andrea

and Cirie, with Sarah navigating between the two groups to eliminate

members from each. However, Sarah settled with Tavva to eliminate

the other alliance members. Sarah betrayed Tavva and then aligned

with Brad and Troyzan. Sarah, Brad, and Troyzan used a series of

immunities and advantages to secure the majority and reach the end of
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the game together. There were ten members in the jury and Sarah won

the game by taking seven votes with Brad’s three.

In Table 3, We see that the Sole Survivor Sarah had higher CON scores

and closeness than Brad and Troyzan. We note that Tai and Aubry had

higher closeness than Sarah, Brad and Troyzan and they also had the

high CON scores than both Brad and Troyzan. We note that Tai and

Aubry had high in-degrees than Sarah, Brad and Troyzan which likely

disadvantaged them to be in the final three.

Table 3. Survivor: Game Changer, Season 34.

Name Tribe ID OD C CON

Sarah Nuku 3 13 0.692 64
Brad Nuku 2 12 0.643 49
Troyzan Mana 2 12 0.643 55
Tai Nuku 12 13 0.72 56
Aubry Mana 9 13 0.72 61
Cirie Nuku 0 8 0.613 45
Michaela Mana 11 11 0.643 51
Andrea Nuku 14 8 0.581 39
Sierra Nuku 15 7 0.581 34
Zeke Nuku 11 6 0.6 39
Debbie Nuku 6 7 0.545 32
Ozzy Nuku 7 4 0.5 22
Hali Mana 8 5 0.474 28
Jeff Mana 6 5 0.529 33
Sandra Mana 5 5 0.581 34
JT Nuku 3 2 0.45 18
Malcom Mana 5 3 0.439 24
Caleb Mana 5 3 0.4 21
Tony Mana 7 2 0.439 15
Ciera Mana 9 1 0.4 8
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Figure 3.3. Survivor: Game Changer.

3.7. Heroes vs Healers vs Hustlers (HHH)

We now turn to the second-last season of Survivor: Heroes vs Healers

vs Hustlers (HHH) which is the 35th season. This season featured 18 new

players divided into three tribes based on a dominant perceived trait:

with Heroes representing courage, Healers representing compassion, and

Hustlers representing tenacity. The 18 players were initially divided into

three tribes: Levu (Heroes), Soko (Healers) and Yawa (Hustlers). Ryan

from the Hustlers tribe found a Super Immunity Idol that was only valid

at the first Tribal Council. As his tribe won immunity, he sent the Idol to

Chrissy who was a member of the losing Heroes tribe. Ryan and Chrissy

both became dominant players on their tribes, forming strong alliances
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with Devon and Ben, respectively. The Healers tribe went undefeated,

while the Heroes lost one member and the Hustlers lost two.

When the tribes were switched, Ryan and Chrissy aligned on the new

Soko tribe, working to eliminate the Healers and their allies. Three al-

liances were formed after the tribes merged in one tribe: that is, healers,

The Round Table, and Final Four alliance. Ryan and Chrissy brought

their former Heroes and Hustlers tribemates together against the Heal-

ers. When Chrissy won the final immunity challenge, she had to grant

one castaway additional immunity, which would force the remaining two

to compete against each other in a fire-making challenge to determine

the third finalist. She chose to save Ryan. Ben defeated Devon in the

firemaking challenge to join Chrissy and Ryan in the finals. At the final

tribal council, Ben won five jury votes, with Chrissy winning two votes,

and Ryan winning one. Ben was awarded the Sole Survivor of the season.

In Table 4, we see that Ryan and Devon had the highest overall close-

ness of 0.708 and highest overall CON scores of 47 and 55, respectively

followed by Chrissy whose closeness and CON score of 0.68 and 44, re-

spectively. However, Ben, the Sole Survivor, had lower CON score, close-

ness, and high in-degree than the other finalists; that is, 41, 0.63, and

11, respectively. Ben secured his place in the final three by successfully

playing three consecutive hidden immunity idols.
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Table 4. Survivor: Heroes vs Healors vs Hustlers (HHH), Season 35.

Name Tribe ID OD C CON

Ben Levu 11 11 0.63 41
Chrissy Levu 7 13 0.68 44
Ryan Yawa 2 14 0.708 47
Devon Yawa 2 11 0.708 55
Mike Soko 9 9 0.63 37
Ashley Levu 8 10 0.607 46
Lauren Yawa 3 7 0.63 39
Joe Soko 12 6 0.607 26
JP Levu 6 8 0.586 25
Cole Soko 7 4 0.531 26
Desi Soko 11 3 0.515 9
Jessica Soko 7 1 0.415 6
Ali Yawa 3 4 0.5 19
Roark Soko 3 1 0.415 6
Alan Levu 2 2 0.415 11
Patrick Yawa 5 2 0.405 6
Simone Yawa 5 1 0.293 4
Katrina Levu 5 1 0.386 5

Figure 3.4. Survivor: HHH.
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3.8. Big Brother

We now move to data from Survivor to another social game show: Big

Brother. We only focus on Big Brother 12 which is the twelfth season of

the U.S. version of the reality show. There were thirteen HouseGuests in

this season and they spent seventy five days. Hayden, Enzo, Lane, and

Matt formed an alliance called The Brigade. Hayden and Lane secured

their place in the final two. The jury voted to give Hayden the grand

prize by a vote of 4 to 3. Hayden received half a million dollars for

spending seventy five days in the Big Brother House.

Table 5. Big Brother, Season 12.

Name ID OD C CON

Hayden 3 16 0.923 44
Lane 3 10 0.857 46
Enzo 4 9 0.8 48
Britney 4 10 0.8 43
Regan 5 8 0.706 49
Brendon 7 9 0.706 40
Matt 9 7 0.632 35
Kathy 7 4 0.6 20
Rachel 8 6 0.667 24
Kristen 7 3 1 25
Andrew 9 2 1 17
Monet 8 1 1 10
Annie 11 0 0 0

In Table 5, we note that Hayden, the winner of the season, had highest

closeness and also the one of the high CON scores, with HouseGuests

Lane and Enzo rounding out the top three. Lane and Enzo emerged also

as leaders based on their scores.
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Figure 3.5. Big Brother, Season 12.

We discussed and analyzed the five seasons of two reality different

shows, it is clear that the data conforms to the predictions of the Dy-

namic Competition Hypothesis (DCH) with respect to leaders which may

be the winner of the game. We also found that the closeness is more pre-

dictive centrality measure than the betweenness in dynamic competition

networks.

3.9. Alliances

In this section, we analyzed the alliances of four seasons from Survivor

and one season from Big Brother. We computed their edge densities for

predicting the winner in the game. We see that all alliances are near

independent sets (with stronger alliances showing lower edge density),

and they conform to the Dynamic Competition Hypothesis.
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Table 6. Edge densities of the Alliances.

Season Winner Finalists Alliances ED

Borneo Richard Kelly
Barbecue: Colleen, Jenna, Ger-
vase

1.667

Tagi : Richard, Rudy, Susan,
Kelly

1.5

China Todd
Courtney

Fei Long : Todd, Courtney,
Amanda, Aaron, Denise, James,
Frosti

0.667

Amanda Zhan Hu: Peih-Gee, Erik, Jaime 0.0

Game
Changers

Sarah
Brad

Power Six : Sarah, Brad,
Troyzan, Sierra, Debbie, Tai

0.933

Troyzan
Tavua: Aubry, Cirie, Michaela,
Ozzy, Andrea, Zeke, Sarah

1.238

HHH Ben
Chrissy

Healers : Joe, Desi, Jessica, Cole,
Mike

0.6

Ryan
The Round Table: Chrissy, Ryan,
Devon, JP, Ben, Ashley, Lauren

0.905

Final Four : Ashley, Lauren, Ben,
Devon

1.333

BB 12 Hayden Lane
The Brigade: Enzo, Hayden,
Lane, Matt

0.5

In Table 6, we provide the edge densities of each alliance in the afore-

mentioned five seasons. We note that some alliances have high edge

density as compared to other alliances. Although, when we remove the

edges of those contestants who play against their alliance, then the al-

liance has lower edge density. For Example, in Survivor: Borneo, the

edge density of the Tagi alliance is 1.5 but when we narrow down the

alliances to subsets of finalist, then the edge density decreases: that is,

the edge density of the subset {Kelly,Richard} is 1 and {Richard,Rudy}

is 0. In the Fie-Long alliance in Survivor: China, the subset {Amanda,

Courtney, Todd} has edge density 0. We also see that in Round Table
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alliance in Survivor: HHH, the subset {Chrissy, Ryan, Devon} has edge

density 0.
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CHAPTER 4

Conclusion and Future Work

4.1. Conclusion

We introduced the notion of dynamic competition networks and stud-

ied their properties. In Chapter 2, we introduced structural balance

theory. We defined a model of positive and negative relationships in a

complete graph. We discussed, with examples, the balanced and unbal-

anced graphs in signed social networks. We also generalized the definition

of signed complete graphs for groups of three nodes into an arbitrary

numbers of nodes. We defined standard centrality metrics in network

science and some graph theocratic tools that were used to state of Dy-

namic Competition Hypothesis (DCH). We formulated and presented

the Dynamic Competition Hypothesis (DCH) which resolves dynamic

competition networks arising from social networks into alliances, detects

leaders, and measures the relative strength of alliances.

In Chapter 3, we discussed the background of U.S. reality television

social game shows Survivor and Big Brother. We focused and analysed

four seasons from Survivor and one season from Big Brother. We assessed

the Dynamic Competition Hypothesis (DCH) with voting data for these

seasons by using tools from network science. We observed that the DCH
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predicted the alliances corresponding to near independent sets, CON

scores accurately determine leaders of alliances, and leaders were detected

via their CON scores and closeness.

4.2. Future Work

In our thesis, we only analysed four seasons from U.S. Survivor and

one season from Big Brother. In future work, we will extract data from

all U.S. and international seasons of Survivor and Big Brother. We will

also verify the DCH more extensively for different data sets of Survivor

and Big Brother within the lens of structural balance theory and social

network analysis. A weakness with the hypothesis is that contestants

who remain longer stay in a season acquire more prestige simply because

of their survival. In particular, we note that all those players in Survivor

and Big Brother who remain long in the game, have a greater chance to

increase their CON-scores and other metrics.

In future work, we will analyse data at earlier stages of the formation of

the network. We can examine the DCH in the other fields; for examples,

we will consider food webs, geo political networks and subgraphs (with

negative ties) of the signed networks.

It would be intriguing to invert the DCH to determine the low ranked

members of dynamic competition networks. Additionally, it would be

convenient to develop a mathematical model anticipating the evolution of
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dynamic competition networks, which demonstrably simulate properties

anticipate by the DCH.
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