
Kernel k-MACE: Hypercube Unsupervised

Clustering Method

by

Faizan Ur Rahman

Bachelor of Applied Science, University of Toronto, 2015

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Applied Science

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2017

c©Faizan Ur Rahman 2017

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A

THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for

the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for

the purpose of scholarly research.

I understand that my dissertation may be made electronically available to the public.

ii

Kernel k-MACE: Hypercube Unsupervised Clustering Method

Master of Applied Science 2017

Faizan Ur Rahman

Electrical and Computer Engineering

Ryerson University

Abstract

Transforming data to feature space using a kernel function can result in better expression

of its features, resulting in better separability for some datasets. The parameters of the

kernel function govern the structure of data in feature space and need to be optimized

simultaneously while also estimating the number of clusters in a dataset. The proposed

method denoted by kernel k-Minimum Average Central Error (kernel k-MACE), esti-

mates the number of clusters in a dataset while simultaneously clustering the dataset

in feature space by finding the optimum value of the Gaussian kernel parameter σk.

A cluster initialization technique has also been proposed based on an existing method

for k-means clustering. Simulations show that for self-generated datasets with Gaus-

sian clusters having 10% - 50% overlap and for real benchmark datasets, the proposed

method outperforms multiple state-of-the-art unsupervised clustering methods including

k-MACE, the clustering scheme that inspired kernel k-MACE.

iii

Acknowledgements

First of all I would like to thank my supervisor Dr. Soosan Beheshti for her support,

encouragement and sincere advice throughout my MASc studies. For this, I am truly

grateful.

I would also like to thank the members of my thesis committee: Dr. Ling Guan, Dr.

Ebrahim Bagheri and Dr. Sri Krishnan for their valuable comments and recommenda-

tions.

I would also like to thank my colleague at Signal and Information Processing Lab,

Edward Nidoy for his help and support as well as the technical discussions which were

very beneficial for this research.

I would also like to thank my family for their love and support and hope that the

completion of this milestone will make them happy.

iv

Contents

Declaration . ii

Abstract . iii

Acknowledgements . iv

List of Tables . vii

List of Figures . viii

List of Appendices . ix

List of Abbreviations . xiv

1 Introduction 1

2 Background 5

2.1 Kernel Methods . 5

2.1.1 Kernel Basics . 5

2.1.2 Calculation of Kernel Feature Map 8

2.1.3 Visualizing the Kernel Feature Map 9

2.1.4 Kernel k-means . 9

2.2 k-MACE Algorithm . 11

2.3 Index Validation Methods for Cluster Evaluation 12

2.3.1 Gap Index . 12

v

2.3.2 Calinski-Harabasz Index . 13

2.3.3 Davies-Bouldin Index . 13

2.3.4 Silhouette Index . 14

3 Kernel k-MACE Clustering 16

3.1 Study and Analysis of Gaussian Kernel Functions 17

3.1.1 Gaussian Kernel Function . 17

3.1.2 Examining Gaussian Kernel and σk 18

3.2 Kernel k-MACE Algorithm . 23

3.2.1 Preliminaries and Notations . 23

3.2.2 Initial Data Assignment and Clustering for Kernel k-MACE . . . 24

3.2.3 ACE and Data Error in Kernel k-MACE 26

3.2.4 Estimating Zsm and m̂ . 28

3.2.5 Choosing the Gaussian Kernel Parameter σk 29

3.2.6 Time Complexity of Kernel k-MACE 31

4 Simulations and Results 33

4.1 Proposed Cluster Initialization Vs Random Cluster Initialization for Ker-

nel k-means . 33

4.2 Synthetic Datasets . 34

4.3 Real Datasets . 43

4.4 Normality Tests for Kernel k-MACE Evaluation 47

5 Conclusion and Future Work 49

vi

List of Tables

1 Table of symbols used for the formulation of k-MACE part 1 [29] xv

2 Table of symbols used for the formulation of k-MACE part 2 [29] xvi

3 Table of symbols used for the formulation of kernel k-MACE xvii

2.1 Common kernel functions . 7

4.1 Clustering results for synthetic datasets S1 - S6 41

4.2 Clustering results for synthetic datasets S10 - S15 42

4.3 Real Datasets . 43

4.4 Clustering results for real datasets . 46

vii

List of Figures

3.1 Surface in input space [31] . 17

3.2 Gaussian kernel feature space representation of the surface in Figure 3.1

for different values of σk [31] . 18

3.3 Plot of φ(S1) for different values of σk 20

3.4 Top view of φ(S1) for different values of σk 21

3.5 Plot of φ(S1) for σk = 109 and σk = 1016 21

3.6 Top view of φ(S4) for different values of σk 22

3.7 Zsm for dataset S1 . 27

3.8 Ysm for dataset S1 . 28

3.9 Plots showing Zsm for different values of σk from different angles 30

4.1 Proposed cluster initialization vs random cluster initialization 34

4.2 Datasets S1 - S6 . 36

4.3 Final clustering results for datasets S4, S5 and S6 using kernel k-MACE

and k-MACE . 38

viii

List of Appendices

Appendix 52

1 k-MACE 52

ix

List of Abbreviations

CNC Correct Number of Cluster

SVD Singular Value Decomposition

PCA Principal Component Analysis

ACE Average Central Error

NVI Normalized Variation Index

ARI Adjusted Random Index

KPCA Kernel Principal Component Analysis

DBSCAN Density Based Spatial Clustering of Applications with Noise

xiv

Table 1: Table of symbols used for the formulation of k-MACE part 1 [29]

Symbol Description

xN Dataset to be clustered

xi The ith element of dataset xN . Sampled from random vector X

N Number of data samples in dataset

d Dimension of data / Number of features

m Number of clusters

m̂ Estimated number of clusters

m Correct number of clusters

Cmj jth cluster in m-clustering step

cxmj True center of all the elements in cluster Cmj

ĉmj Center of cluster Cmj

nmj Number of elements in cluster Cmj

xmj All the elements of cluster Cmj

ximj ith element of cluster Cmj

xv

Table 2: Table of symbols used for the formulation of k-MACE part 2 [29]

Symbol Description

Ŵximj
Independent random vector that describes variation of ximj around its

true center

∧ximj Covariance matrix of Ŵximj

Zsmj Central error of cluster Cmj

Zsm Average central error of m-clustering step

Zsm , Zsm Upper bound and lower bound of Zsm , respectively

Ysmj Data error of cluster Cmj

Ysm Average data error of m-clustering step

Table 3: Table of symbols used for the formulation of kernel k-MACE

Symbol Description

φi The ith element of dataset φN . Sampled from random vector Φ

cΦ Center of random variable Φ

WΦ A dependent random vector that is describes variation of Φ around its center.
WΦ is a zero mean Gaussian distribution

Cφmj jth cluster in m-clustering step in feature space

cφmj True center of all the elements in cluster Cφmj

ĉφmj Center of cluster Cφmj

nφmj Number of elements in cluster Cφmj

φmj All the elements of cluster Cφmj

K Kernel function

G Kernelized distance matrix

σk Gaussian kernel function parameter

xvii

Chapter 1

Introduction

Clustering is a branch of unsupervised learning and is defined as the process of organizing

data samples into groups, such that a cluster contains samples which are similar to each

other and are dissimilar to samples belonging to other clusters. Clustering is a widely

researched field of machine learning and has applications in engineering, statistics, bioin-

formatics and finance etc. In computer science clustering algorithms are the backbone of

search engines [1]. In market analysis, clustering is used for market segmentation which

can be very helpful in identifying the target demographic of a product and in turn help

with advertising [2]. In academics, class performance can be better represented using

clustering which can be used as a reliable metric for evaluation of a professor’s teaching

methodology [3].

Clustering algorithms can be grouped into two main classes, hierarchical and partition

based clustering algorithms [4]. Partition based clustering methods group data into

non-overlapping clusters by iterative reassignment of data samples between clusters by

minimizing a cost function. Hierarchical clustering methods build a hierarchy of clusters

(dendrogram) and consist of an agglomerative or a divisive approach. In an agglomerative

1

CHAPTER 1. INTRODUCTION

approach, each data sample starts from its own cluster and gradually clusters are merged

as we ascend the dendrogram, whereas in a divisive approach all of the data samples

start in one cluster and clusters are divided as we descend the dendrogram. The splitting

location of the dendrogram provides us with the clustering solution. The assumption

regarding the structure of data being clustered is very important and governs the type of

clustering algorithm that should be used to cluster it. Partitional clustering methods are

generally used for clustering data with clusters having uniform or Gaussian distributions

whereas data consisting of arbitrary shaped clusters is clustered using hierarchy based

clustering algorithms.

In Unsupervised machine learning applications, kernel functions are used for better

data representation for pattern recognition [5][6]. The resulting data is then used for

tasks such as dimensionality reduction for feature selection and clustering [7]. Kernel

functions have been widely used for clustering data and the kernel k-means algorithm

is an implementation of k-means in a high dimensional space [8]. Kernel k-means is

a partition based clustering algorithm that transforms data in input space to a higher

dimensional (feature space) using a kernel function and then performs k-means clustering

in feature space. Kernel based clustering algorithms are generally used for clustering

non-linearly separable data. However they can also be used to better separate linearly

separable data by transforming it to feature space.

Kernel k-means has a high time complexity for very large datasets as the algorithm

computes the gram matrix for the input dataset, which contains the distance between

each data sample in feature space. Algorithms have been proposed to make kernel k-

means faster with little loss in clustering quality [9][10]. The single pass kernel k-means

clustering method proposes a method that traverses the dataset only once to compute

the clustering result and significantly reduces the computing time of the kernel k-means

2

CHAPTER 1. INTRODUCTION

algorithm [11]. Other approaches to reduce the computing time of Kernel k-means include

distributing the workload on multiple machines as proposed in [12].

Kernel k-means can also be used for clustering datasets that consist of clusters from

different distributions. The method proposed by [13] uses a unique kernel for each lo-

calized distribution of data resulting in better clustering results. Kernel k-means can

also be used to find overlapping clusters along with non-linearly separable clusters as

proposed in [14]. It should be noted that all the clustering methods stated above are not

completely unsupervised and require the number of clusters as an input.

Knowledge of the correct number of clusters (CNC) in a dataset is required as an

input by most clustering algorithms and an incorrect value of the number of clusters can

lead to incorrect clustering results. As CNC is not available in real life which is why

many clustering techniques focus on correctly estimating the CNC for clustering data

and these clustering techniques are called fully unsupervised clustering algorithms [15].

Kernel based clustering algorithms require the kernel parameters as an input in addition

to the number of clusters.

Fully unsupervised methods include kernel methods such as bee colony optimization

[16]. This method uses an evolutionary algorithm with kernel functions to correctly

estimate the number of clusters and assign data samples to these clusters. Another

fully unsupervised algorithm that uses Kernel Principal Component Analysis (KPCA) to

create rough clusters before using swarm intelligence to obtain the final clustering result

is proposed in [17]. Other methods proposed in [18] and [19] also obtain the CNC as well

as the correct clustering result using kernel functions. None of these methods estimate

the value of the kernel function parameter and use trial and error method to find the

parameter value that produces the best results.

The most common fully unsupervised clustering methods still rely on using internal

3

CHAPTER 1. INTRODUCTION

validation indices to estimate the number of clusters in a dataset. A validation index eval-

uates the clustering result based on the number of clusters chosen. The most commonly

used validation indices are Gap [20], Calinski-Harabasz [21], Davies-Bouldin [22] and Sil-

houette index [23]. These validation indices work alongside a clustering algorithm which

requires the number of clusters as an input [24]. The clustering algorithm clusters data

for each k (k is the number of clusters) from a range of values k = [kmin, kmin+1, ..., kmax].

The validation index evaluates the clustering result for each k and chooses the value of k

which optimizes the index. If a kernel based clustering algorithm is used alongside vali-

dation indices, the kernel parameter can be estimated from a provided range by choosing

the optimum value of the validation index which would correspond to both the estimated

number of clusters as well as the estimated parameter value.

Our Objectives: The focus of this thesis is to demonstrate the use of kernel func-

tions to create a fully unsupervised clustering algorithm based on the k-MACE clustering

scheme. We also aim to improve the clustering results of k-MACE for datasets containing

Gaussian clusters with various degrees of overlap.

Thesis Outline: This thesis is organized as follows: In Chapter 2, a background

of kernel functions and kernel methods is provided. The fully unsupervised clustering

scheme k-MACE, which inspired kernel k-MACE is also provided. In Chapter 3, Kernel

k-Minimizing Average Central Error (kernel k-MACE) for estimating the number of

clusters and the Gaussian kernel parameter for a dataset is proposed. Simulations and

results are discussed in Chapter 4. Conclusion and future works are provided in Chapter

5.

4

Chapter 2

Background

In this Chapter, we review kernel functions and their applications for clustering data.

In Section 2.1, we discuss the basics of kernels including the characteristics of a

kernel function, the kernel trick and commonly used kernel functions. The procedure for

calculating and visualizing the kernel feature map has also been discussed. The most

common kernel based clustering technique, kernel k-means has been discussed.

Section 2.2 discusses the k-MACE algorithm which is the motivation behind the

kernel k-MACE algorithm. The k-MACE algorithm performs signal denoising through

best basis selection and estimation of an unobservable error.

Section 2.3 discusses some common external validation indices.

2.1 Kernel Methods

2.1.1 Kernel Basics

Conventional partitional clustering methods including k-means, Fuzzy C-means and K-

medoids are efficient in clustering data in the input space [25][26]. The objective of k-

5

CHAPTER 2. BACKGROUND

means is to minimize a cost function by iteratively calculating distance between samples

in a dataset. Kernel functions are used to transform the data into a higher dimensional

space (called feature space F) and obtain the distance matrix of the dataset in feature

space F [27]. Distance matrix of a dataset contains the distance between data samples

in the dataset using a distance measure such as the Euclidean distance.

Transformation of a dataset into a higher dimensional space results in a better ex-

pression of features in the dataset making it easier to cluster using a clustering algorithm.

The biggest advantage of using a kernel function is that it calculates the distance be-

tween data samples in F without requiring any knowledge of the transformation function

φ (also known as feature map). Equation (2.1) defines a kernel function K in terms of φ.

K(Xi, Xj) = φ(Xi)
Tφ(Xj) (2.1)

The distance between two data samples Xi and Xj in F is defined by Equation (2.2).

The distance Equation (2.2) is simplified using the kernel trick by computing the dot

product in F using the kernel function K resulting in no need for the knowledge of φ,

where φ = X → F .

||φ(Xi)− φ(Xj)||2 = φ2(Xi)− 2φ(Xi)φ(Xj) + φ2(Xj)

= K(Xi, Xi) +K(Xj, Xj)− 2K(Xi, Xj)
(2.2)

Commonly used kernel functions are given in Table 2.1.

6

CHAPTER 2. BACKGROUND

Linear kernel K(Xi, Xj) = Xi
TXj

Polynomial kernel K(Xi, Xj) = (Xi
TXj + γ)δ

Gaussian kernel K(Xi, Xj) = exp(
−‖Xi−Xj‖2

2σ2)

Sigmoid kernel K(Xi, Xj) = tanh(γ(Xi
TXj) + θ)

Table 2.1: Common kernel functions

For K to be a kernel function, it must satisfy the following conditions:

• There must exist a feature space F for which K defines a dot product.

• G must be a symmetric matrix. Where G is the kernelized distance matrix obtained

using K for the corresponding dataset.

• G must be a positive semi-definite matrix (all eigenvalues should be positive).

• G must be an n × n matrix of pairwise distance between data samples in F for a

dataset X, where X contains n data samples.

Let X ∈ Rn×d be the input dataset with n samples and d dimensions. The kernelized

distance matrix G for the dataset is defined as G ∈ Rn×n. The distance between the

data samples Xi and Xj in F is defined by Equation (2.2). φ(Xi) and φ(Xj) are feature

mappings of points Xi and Xj in F .

The feature map for a kernel function can be derived mathematically. The feature

map for Polynomial kernel with parameters γ = 0 and δ = 2 is derived in Equation (2.3),

where Xi and Xj are 2D data samples. The kernel function transforms the dataset from

7

CHAPTER 2. BACKGROUND

2D to a 3D space.

K(

Xi1

Xi2

 ,

Xj1

Xj2

) = (Xi1Xj1 +Xi2Xj2)2

= (Xi1Xj1)2 + (Xi2Xj2)2 + 2Xi1Xj1Xi2Xj2

=
(
X2
i1,
√

2Xi1Xi2, X
2
i2

)T

X2
j1

√
2Xj1Xj2

X2
j2

(2.3)

2.1.2 Calculation of Kernel Feature Map

It is difficult and time consuming to derive the feature map of a given kernel function

analytically and a general method is needed to obtain the feature map for any kernel

function which is given below.

1. Obtain the kernelized distance matrix G for a dataset using a kernel function K.

2. Decompose matrix G using Singular Value Decomposition (SVD) which is a tech-

nique used to decompose a positive semi-definite matrix into its eigenvalues and

eigenvectors. SVD is used to decompose G into three matrices U , D and UT given

by Equation (2.4).

• Columns of matrix U contain the eigenvectors of G.

• D is a diagonal matrix containing eigenvalues of matrix G on its diagonal.

• UT is the transpose of matrix U and UUT = I, where I denotes the identity

matrix.

8

CHAPTER 2. BACKGROUND

G = UDUT (2.4)

3. The feature map of the complete dataset is denoted by φ(X) ∈ Rn×n and is obtained

using the formula φ(X) = (
√
DUT)T . Each row of φ(X) denotes the value of each

sample in F with each column denoting the dimension [28].

2.1.3 Visualizing the Kernel Feature Map

Feature maps depend completely on the kernel functions they are created by. Kernel

feature map is used to visualize the data in feature space however, the first two or three

principal components cannot completely show the structure of data in feature space. The

dimensions of data samples in feature space (using the method stated above) are equal to

the number of data samples in the dataset. Therefore the feature space for Polynomial

kernel of degree 2 would have N dimensions rather than 3 dimensions as in Equation

(2.3). To visualize a dataset with N dimensions in kernel space, we use SVD to obtain

the feature map φ of the dataset and then use PCA. Kernel PCA can also be used to

obtain the principal components of φ directly using the dataset X to visualize it using

3D plots.

2.1.4 Kernel k-means

A clustering method is needed to cluster a dataset after transforming it to feature space

using a kernel function K. Kernel k-means is a clustering algorithm similar to the k-

means clustering algorithm which uses kernel functions to calculate the distance between

data samples in feature space [8]. Kernel k-means clustering algorithm is used to cluster

data that is usually non-linearly separable in input space. Kernel k-means only returns

9

CHAPTER 2. BACKGROUND

the cluster memberships of all the data samples as compared to both cluster memberships

and cluster centers for each cluster in k-means.

Algorithm 1 Kernel k-means Algorithm

Require: Provide a clustering solution.
Input: Data set xN = [x1, x2, ..., xN], number of clusters m and parameters of the kernel

function being used
Output: The clustering solution [C1, C2, .., Ck]

1: Initialize each sample in the dataset to a random cluster
2: while new[C1, C2, .., Ck] 6= old[C1, C2, .., Ck] do
3: for each data sample xi, i = 1, ..., N do
4: for each cluster Cj, j = 1, .., k do
5: Calculate number of elements in cluster |Cj|
6: Calculate Gk(Cj) using (2.7)
7: Calculate Fk(Xi, Cj) using (2.6)
8: Find ‖φ(Xi)− µj‖2 using (2.5)
9: end for

10: Assign xi to its nearest cluster Cj using C(xi) = argmin(‖φ(Xi)− µj‖2)
11: end for
12: end while

There is no need to explicitly compute the centroid µj for each cluster as the kernel

trick simplifies the cost function in Equation (2.5). The cost function and Fk and Gk are

defined in Equations (2.5), (2.6) and (2.7) respectively.

‖φ(Xi)− µj‖2 = ‖φ(Xi)−
∑
Xl∈Cj

φ(Xl)

|Cj|
‖2

= φ(Xi)φ(Xi)− Fk(Xi, Cj) +Gk(Cj)

(2.5)

Fk(Xi, Cj) = − 2

|Cj|
∑
Xl∈Cj

φ(Xl)φ(Xi) (2.6)

10

CHAPTER 2. BACKGROUND

Gk(Cj) =
1

|Cj|2
∑
Xl∈Cj

∑
Xs∈Cj

φ(Xl)φ(Xs) (2.7)

2.2 k-MACE Algorithm

k-MACE is a fully unsupervised data clustering algorithm that clusters a dataset while

also estimating the Correct Number of Clusters (CNC) in the dataset [29]. k-MACE

initially clusters a dataset using the k-means algorithm. Statistical calculations shown

in Appendix 1 are performed on the clustering result to obtain the cluster compactness

and eventually estimate the number of clusters. The final clustering result is obtained

using the k-means clustering algorithm. The equations for k-MACE algorithm have been

provided in Appendix 1.

Algorithm 2 k-MACE Algorithm

Require: Estimate the number of clusters m̂ and provide a clustering solution.
Input: Data set xN = [x1, x2, ..., xN], range of m, [mmin,mmax]
Output: Estimated number of clusters m̂, and the clustering solution [Ĉ1, Ĉ2, .., Ĉm̂]

1: for (m = mmin;m ≤ mmax;m++) do
2: [Cm1, Cm2, .., Cmj] = kmeans(x,m)
3: for each cluster Cmj j = 1, ..,m do
4: Solve cluster compactness ysmj of cluster Cmj using (1.4)
5: end for
6: Solve for total cluster compactness ysm using (1.3)
7: end for
8: Solve for ∧̂xi from clustering solution [Ĉ0

1 , .., Ĉ
0
m̂0]

9: Use ∧̂xi and set α = 3
√
nmj to solve for the upperbound of ‖Amjcmj‖2

F

10: Use ∧̂xi to solve for E[Zsmj] using (1.12), (1.13) and V ar[Zsmj] using (1.14)

11: Set βN = N . The upperbound of Zsm , Zsm , can then be found using (1.17).
12: m̂ = arg minm(Zsm)
13: [Ĉ1, Ĉ2, .., Ĉm̂] = kmeans(x, m̂)

k-MACE results in correct estimation of number of clusters as well as accurate clus-

tering of synthetic datasets which have clusters resulting from Gaussian distributions.

11

CHAPTER 2. BACKGROUND

2.3 Index Validation Methods for Cluster Evaluation

Index validation methods are commonly used for evaluating the performance of a clus-

tering algorithm which makes them very attractive for estimating the CNC in a dataset.

External clustering validation indices such as ARI and NVI require the original labels of

the data samples to be known to evaluate the clustering result. However internal val-

idation indices such as Gap, Calinski-Harabasz, Davies-Bouldin and Silhouette use the

clustering result of a dataset to evaluate the clustering performance. These indices can

be used with any partitional or hierarchical clustering algorithm.

2.3.1 Gap Index

For a given dataset xN = [x1, x2, ..., xN] ∈ RN×d where each sample has d dimensions,

the distance between two data samples in denoted by di,j =
∑

(xi− xj)2. The clustering

result after clustering the data into k clusters is denoted by [C1, C2, ..., Ck]. The sum of

pairwise distances between all data samples belonging to cluster s is given by Equation

(2.8).

Ds =
∑
i,j∈Ck

di,j (2.8)

The within cluster sum of squares around cluster mean for all clusters is given by

Equation (2.9) where |Cs| denotes the number of data samples in cluster s. The Gap

index is then given by Equation (2.10) where En denotes the expected value of a sample

of size n from the reference data distribution. The estimated number of clusters m̂ is

equal to argmax
m

(GAP) [20].

Wk =
k∑
s=1

1

|Cs|
Ds (2.9)

12

CHAPTER 2. BACKGROUND

GAP (k) = En(log(Wk))− log(Wk) (2.10)

2.3.2 Calinski-Harabasz Index

Calinski-Harabasz index is given by Equation (2.11). BGSS is the between cluster disper-

sion defined by Equation (2.12) where cj denotes the center of cluster j and µx denotes

the mean of the dataset xN . WGSS is the within group scatter defined by Equation

(2.13). The estimated number of clusters m̂ is equal to argmax
m

(CH) [21].

CH(k) =
BGSS(N − k)

WGSS(k − 1)
(2.11)

BGSS =
k∑
j=1

|Cj|‖cj − µx‖ (2.12)

WGSS =
k∑
j=1

|Cj|∑
i=1

‖xij − cj‖ (2.13)

2.3.3 Davies-Bouldin Index

For a given clustering result, δj denotes the mean distance of data samples in the cluster

j to its center cj given by Equation (2.14). The difference between centers of clusters j

and k is given by Equation (2.15). The Davies-Bouldin index is then given by Equation

(2.16). The estimated number of clusters m̂ is equal to argmin
m

(DB) [22].

δj =
1

|Cj|
∑
i∈j

‖xij − cj‖ (2.14)

13

CHAPTER 2. BACKGROUND

∆j,k = ‖cj − ck‖ (2.15)

DBk =
1

k

k∑
j=1

maxj 6=j′
δj + δj′

∆j,j′
(2.16)

2.3.4 Silhouette Index

For a given clustering result, we calculate the average distance between a data sample i

in cluster j and every other data sample in cluster j. Call this distance ai. For a data

sample i not belonging to a cluster j, we calculate the average distance of this data sample

to each data sample in the cluster j and find the minimum of distance with respect to all

clusters. Call this value bi. The Silhouette coefficient is then given by Equation (2.17)

S(i) =
bi − ai

max(ai, bi)
(2.17)

The value of the Silhouette coefficient varies between 1 and -1 and the results closer

to 1 denote a better clustering result. The overall Silhouette coefficient S for a dataset

is obtained by averaging S(i) for the whole dataset. The estimated number of clusters

m̂ is equal to argmax
m

(S) [23].

14

Chapter 3

Kernel k-MACE Clustering

Unsupervised clustering methods that use kernel functions to cluster data in feature space

require two input parameters, the number of clusters in the dataset and the optimum

value of the kernel function parameter. Kernel based unsupervised clustering methods,

which estimate the number of clusters in a dataset [18] and [19] use the best possible

value of the kernel parameter by using trial and error method. The proposed method

estimates the correct number of clusters while also estimating the value of the Gaussian

kernel parameter σk that corresponds to the best clustering result for most datasets.

Section 3.1 discusses the Gaussian kernel function and the effect of changing the

Gaussian kernel parameter on data in feature space. Section 3.2 presents the proposed

method and its time complexity.

16

CHAPTER 3. KERNEL K-MACE CLUSTERING

3.1 Study and Analysis of Gaussian Kernel Func-

tions

3.1.1 Gaussian Kernel Function

The Gaussian kernel function is stated in Table 2.1. Data samples transformed using

Gaussian kernel lie on a hypersphere in feature space which is centered about the origin

and has a radius of 1 [30]. These data samples have the following properties.

• All the data samples which are N dimensional vectors, are linearly independent i.e.

no data sample can be represented by a linear combination of other data samples.

• The feature space of a Gaussian kernel has infinite dimensions.

Even though the feature space F for the Gaussian kernel is infinite dimensional, for a

dataset containing finite samples N , the feature map φ can be approximated using an N

dimensional feature map. The kernel feature map of a surface in input space in Figure

3.1 has been shown in Figure 3.2 for different values of the parameter σk of the Gaussian

kernel. It should be noted that γ = 1
2σ2
k
.

Figure 3.1: Surface in input space [31]

17

CHAPTER 3. KERNEL K-MACE CLUSTERING

Figure 3.2: Gaussian kernel feature space representation of the surface in Figure 3.1 for
different values of σk [31]

An explicit definition of the Gaussian kernel feature map φGauss using Taylor series

expansion is given in Equation (3.1) where σk is the Gaussian kernel parameter.

φGauss(x) = e
− x2

2σ2
k [1,

√
1

1!σ2
k

x,

√
1

2!σ4
k

x2,

√
1

3!σ6
k

x3, ...]T where x ∈ R1×d (3.1)

3.1.2 Examining Gaussian Kernel and σk

The dataset that needs to be clustered should be transformed into feature space such

that the clusters are easily separable. The feature map depends solely on the kernel

function and its parameters used. The parameter used with Gaussian kernel is called

σk for the entirety of this thesis. Consider the dataset S1 in Figure 3.3a. The dataset

consists of 6 clusters which can be easily separated using a clustering algorithm however

to demonstrate the effect of σk on the kernel feature map we have used SVD and PCA

to plot the first 3 principal components of the kernel feature map for different values of

σk. The plots of the first three principal components φ(S1) for values of σk = 0.01, 0.1,

1, 10 and 100 are shown in Figures 3.3b - 3.3f.

The top view of Figures 3.3d - 3.3f is shown in Figures 3.4a - 3.4c. The optimum

18

CHAPTER 3. KERNEL K-MACE CLUSTERING

value of σk has to be selected to obtain the best separation of clusters within a dataset

S1. From Figures 3.3 and 3.4 we can see that σk values less than 1 will not generate a

good separation of clusters in feature space. σk values of 1 and larger produce results

which show well separated clusters having a familiar looking profile as in the input space.

The profile of data is not completely visible in Figures 3.3d - 3.3f as PCA has been

applied to view φ(S1) which has N dimensions equal to the number of samples in the

original dataset. Very large values of σk such as 109 will still result in a good cluster

separation in feature space while retaining the profile of the clusters as shown in Figure

3.5a. Increasing σk further will result in the loss of the separation at σk = 1016 as shown in

Figure 3.5b. The range of σk that results in the visible separation of clusters is different

for different datasets. Figures 3.3 - 3.5 we can see that kernel transformation is not

required to separate data and S1 can be easily separated in input space.

19

CHAPTER 3. KERNEL K-MACE CLUSTERING

(a) Synthetic dataset S1 (b) φ(S1) for σk = 0.01

(c) φ(S1) for σk = 0.1 (d) φ(S1) for σk = 1

(e) φ(S1) for σk = 10 (f) φ(S1) for σk = 100

Figure 3.3: Plot of φ(S1) for different values of σk

20

CHAPTER 3. KERNEL K-MACE CLUSTERING

(a) Top view of φ(S1) for σk = 1 (b) Top view of φ(S1) for σk = 10

(c) Top view of φ(S1) for σk = 100

Figure 3.4: Top view of φ(S1) for different values of σk

(a) φ(S1) for σk = 109 (b) φ(S1) for σk = 1016

Figure 3.5: Plot of φ(S1) for σk = 109 and σk = 1016

Now concider the dataset S4 in Figure 4.2d. This dataset consists of 2 clusters with

21

CHAPTER 3. KERNEL K-MACE CLUSTERING

very different variances in close proximity of each other. The feature space representation

of the dataset using Gaussian kernel and values of σk = 50 are shown in Figure 3.6b. The

top view for the same plot is shown in Figure 3.6c. Figure 3.6b clearly shows the purple

cluster (having a Gaussian profile) beside the dark green cluster in 3D. The dataset S4

should be successfully clustered using kernel methods as kernel functions obtain a better

representation of data in feature space.

(a) Dataset S4 (b) φ(S4) for σk = 50

(c) Top view of φ(S4) for σk = 50

Figure 3.6: Top view of φ(S4) for different values of σk

22

CHAPTER 3. KERNEL K-MACE CLUSTERING

3.2 Kernel k-MACE Algorithm

Kernel k-MACE is based on the k-MACE clustering scheme but in comparison, both

clustering and the cluster evaluation of a dataset are done in the feature space F . To

accomplish this the kernel k-means algorithm has been combined with the k-MACE algo-

rithm to obtain kernel k-MACE algorithm. The clustering technique presented estimates

the number of clusters present in a dataset and evaluates the best partition while simul-

taneously estimating the optimum value for Gaussian kernel parameter σk from a range

of provided values.

3.2.1 Preliminaries and Notations

Tables 1 and 2 provide the list of symbols used for formulation of k-MACE. The cor-

responding equations are provided in Appendix 1. Table 3 provides the list of symbols

used for the formulation of kernel k-MACE.

Given a dataset of length N in feature space, φN = [φ1, φ2, . . . , φN]T where φi ∈ R1×d.

Each data sample φi is an array of length N , and each element of φi represents a feature.

The data model is given by Equation (3.2). Each sample φi of Φ results from zero mean

Gaussian noise (denoted by WΦ) being added to its mean (denoted by cΦ).

Φ = cΦ +WΦ (3.2)

The dataset consists of m̄ clusters where each data sample only belongs to one cluster.

φN = C1 ∪ C2 ∪ ... ∪ Cm (3.3)

23

CHAPTER 3. KERNEL K-MACE CLUSTERING

Data samples belonging to each cluster Cj can be represented by Equation (3.4).

φ1

...

φnj

 =

cφj
...

cφj

+

N (0,Σj)

...

N (0,Σj)

 (3.4)

3.2.2 Initial Data Assignment and Clustering for Kernel k-MACE

The input dataset needs to be clustered initially just as in k-MACE (Algorithm 2: step

2). k-MACE employs the k-means algorithm to cluster data in the input space while

kernel k-MACE uses kernel k-means to cluster data in feature space.

Kernel k-means requires every sample in the dataset to be assigned to a cluster ini-

tially. The original kernel k-means algorithm assigns every data sample to a cluster

randomly. An algorithm has been proposed to improve accuracy of clustering results

produced by the k-means algorithm in [32]. The same analogy has been used to extend

the algorithm to work with kernel k-means given in Algorithm 3. To our knowledge the

algorithm proposed in [32] has not been used to work with kernel methods. The method

in Algorithm 3 makes the kernel k-means algorithm converge faster.

24

CHAPTER 3. KERNEL K-MACE CLUSTERING

Algorithm 3 Initial cluster assignment

Require: Assign each data sample in x to a cluster.
Input: Data set xN = [x1, x2, ..., xN], number of clusters m
Output: Initial Clusters [C1, C2, .., Cm]

1: while new[C1, C2, .., Ck] 6= old[C1, C2, .., Ck] do
2: Compute kernelized distance given by (2.2) between each data sample xi and all

other data samples in xN .
3: Find closest pair of points in xN and form a set Ai(1 ≤ i ≤ m) containing the pair.

Remove the pair of points from xN .
4: Find a data sample in xN that is closest to Ai. Remove the data sample from the
xN .

5: Repeat step 4 until the number of data points in Ai reaches 0.75 ∗ (N/m).
6: if i < m then
7: i = i + 1 and repeat steps 2 - 5
8: end if
9: Find the mean of the data samples in Ai to obtain the initial centroids [ĉ1, ĉ2, .., ĉm]

for each set Ai(1 ≤ i ≤ m).
10: Compute kernelized distance between each data sample and all the centroids ob-

tained in step 9.
11: Find the closest centroid for each data sample and assign the to the cluster repre-

sented by the centroid.
12: Recalculate the centroids for each cluster.
13: Compute the distance of each data sample from the centroid of the nearest cluster.
14: if The distance ≥ the current cluster centroid distance then
15: The data sample stays in the cluster.
16: else
17: Compute kernelized distance between each data sample and all the centroids.

Assign the data sample to the cluster with the nearest centroid.
18: end if
19: Recalculate the centroids for each cluster
20: Repeat steps 13 - 19 until convergence
21: end while

Kernel k-means (Algorithm 1 in Chapter 2) takes as inputs, the initial clustering

assignments [C1, C2, .., Cm] for dataset xN , the number of clusters and the kernel function

parameters. The initial clustering assignments are obtained using Algorithm 3.

25

CHAPTER 3. KERNEL K-MACE CLUSTERING

3.2.3 ACE and Data Error in Kernel k-MACE

Average Central Error (ACE) and data error have been used in the k-MACE algorithm

[29]. k-MACE defines ACE in Equations (1.1) and (1.2) and the data error in Equations

(1.3) and (1.4) in Appendix 1 [29]. Average Central Error (ACE) is used for evaluating

the clustering results from kernel k-MACE for the provided range of m : [mmin, ...,mmax].

The minimum value of ACE corresponds to the estimated number of clusters in a dataset.

The true ACE for a dataset is not available but its upper and lowerbounds can be

estimated using probabilistic measures. The minimum of the upperbound of ACE will

correspond to the estimated number of clusters m̂ in a dataset. ACE is denoted by Zsm

and is defined as the average distance between the estimated cluster center and the true

cluster center. Kernel k-MACE defines Zsmj as Equation (3.5) where ||(∗)||F refers to

the Frobenius norm. Zsm is then calculated using Equation (1.1). The difference exists

because we want to obtain Zsm for a dataset in feature space. Figure 3.7 shows a plot of

Zsm for dataset S1.

Zsmj =
∥∥cφmj − ĉφmj∥∥2

F
(3.5)

26

CHAPTER 3. KERNEL K-MACE CLUSTERING

Figure 3.7: Zsm for dataset S1

cφmj is a matrix containing true cluster centers corresponding to each data sample in

cluster Cφmj in feature space and ĉφmj is a matrix containing the estimated cluster centers

corresponding to each data sample in cluster Cφmj in feature space from a clustering

solution.

It should be kept in mind that the Zsm being talked about here is the true Zsm which

is not known and Equations (1.1) and (3.5) are only used to define it. Our goal is to

estimate the upper and lower bounds of the Zsm .

Data error is denoted by Ysm and is defined as the distance of data samples assigned

to a cluster from the estimated cluster center otherwise known as cluster compactness

defined in Equations (1.3) and (1.4) for k-MACE in Appendix 1. The data error is

calculated for each clustering result from kernel k-means for the provided range of m and

is further used to calculate Zsm which is the Zsm upperbound. Kernel k-MACE defines

Ysmj in Equation (3.6) where φmj is a data sample. Ysm is then calculated using Equation

27

CHAPTER 3. KERNEL K-MACE CLUSTERING

(1.3). Figure 3.8 shows a plot of Ysm for dataset S1.

Ysmj =
∥∥ĉφmj − φmj∥∥2

F
(3.6)

Note that both the data samples and the estimated cluster centers are in feature space

F and are obtained by performing SVD on the kernelized distance matrix G.

Figure 3.8: Ysm for dataset S1

3.2.4 Estimating Zsm and m̂

The probabilistic bounds of Zsm can be calculated using Equations (1.5) - (1.18) in

Appendix 1. m̂ is then calculated from Zsm using equation (3.7)

m̂ = argmin
m

(Zsm) (3.7)

28

CHAPTER 3. KERNEL K-MACE CLUSTERING

3.2.5 Choosing the Gaussian Kernel Parameter σk

Kernel based unsupervised clustering methods find the kernel parameter based on trail

and error and dont have an automatic method of estimating it [16][17][18][19]. We obtain

the clustering result for a range of values of σk. A plot of the Zsm for the S1 dataset

(Figure 3.3a) for each value of σk is shown in Figure 3.9a. The side and top view of

the Figure are shown in Figures 3.9b and 3.9c respectively. We propose a method to

obtain the optimum value of σk that corresponds to the correct clustering result. The

red squares denote the minimum value of Zsm i.e. m̂ for each σk. To obtain the best σk,

we obtain the gradient of the red curve shown in Figure 3.9a and for each σk, add the

absolute value of the previous and the next gradient in Equation (3.8) after the peak.

The value of σk which corresponds to the maximum value of this sum is chosen and the

corresponding m̂ and clustering result are chosen as the correct result. This corresponds

to the 10th red square from the right which occurs at logσ2
k = 3 and is visible in Figure

3.9b which corresponds to m̂ = 6 which is visible in Figure 3.9c.

max
σk

(|d(min(Zsm(m− 1→ m,σk)))

dσk
+
d(min(Zsm(m→ m+ 1, σk)))

dσk
|)

for σk > max
σk

(min(Zsm(m,σk)))

(3.8)

29

CHAPTER 3. KERNEL K-MACE CLUSTERING

(a) Plot showing Zsm for different values of
σk

(b) Side view of plot showing Zsm for dif-
ferent values of σk

(c) Top view of plot showing Zsm for dif-
ferent values of σk

Figure 3.9: Plots showing Zsm for different values of σk from different angles

Figure 3.9a also shows that the overall Zsm corresponding to very small and very large

values of σk is very small. This is caused by the transformation of the dataset by the

kernel function. The values of σk with very small overall Zsm result in the transformed

data samples being very close to each other (while maintaining the same relative distance)

causing the data error Ysm to be small, resulting in a small estimate of Zsm compared

to values of σk closer to the peak. This can be seen by comparing Figures 3.3f and 3.3d

for dataset S1 by looking at their axes. We are checking for the values of σk after the

30

CHAPTER 3. KERNEL K-MACE CLUSTERING

peak because we know that the data retains its structure even for large values of σk as

shown in Figures 3.3 and 3.5 but loses its structure (therefore reducing the separability

of clusters) quickly as values of σk become less than 1. We are trying to find the σk

resulting in the biggest change in minimum value of Zsm after the peak and we know

that for very small values of σk the estimated number of clusters m̂ is less than CNC

as shown in the Figure 3.9a. The minimum Zsm rises as the distance between clusters

increases for increasing values of σk. For the value of σk at which m̂ increases to the

value of CNC, a rapid decrease in minimum Zsm occurs corresponding to the estimated

value of σk and the correct clustering result. This is also confirmed by external validation

indices which show that the best clustering results are generated for values of σk right

after the peak.

3.2.6 Time Complexity of Kernel k-MACE

Kernel k-means has computational complexity of O(N2l). Calculating the kernelized

distance matrix G has a computational complexity of O(N2d). The computational com-

plexity of the initialization algorithm (Algorithm 3) is O(N2). Time complexity of SVD is

O(N3) and the time complexity of PCA is also O(N3). The time complexity of k-MACE

is O(m′)×O(mNdl) [29]. Note that N is the number of samples in the dataset, d is the

dimensions of the dataset, l is the number of iterations, m is the number of clusters and

m′ = mmin −mmax. The total computational complexity of kernel k-MACE is given in

Equation 3.9

O(σ′k)×O(N3) (3.9)

Where σ′k = σkmin − σkmax
The pseudo-code for kernel k-MACE algorithm is given below.

31

Algorithm 4 Kernel k-MACE Algorithm

Require: Estimate the number of clusters m̂ and provide a clustering solution.
Input: Data set x = [x1, x2, ..., xN], range of m [mmin,mmax] and range of values for σk

= [σk1 , σk2 , ..., σkmax] with a fixed interval
Output: Estimated number of clusters m̂, the clustering solution [Ĉ1, Ĉ2, .., Ĉm̂] and the

optimum value of σk
1: for (σk = σk1 ;σk ≤ σkmax ;σk++) do
2: for (m = mmin;m ≤ mmax;m++) do
3: [Cm1, Cm2, .., Cmj] = kernelkmeans(x,m) with non-random initial cluster as-

signments
4: for each cluster Cmj j = 1, ..,m do
5: Solve cluster compactness ysmj of cluster Cmj using (3.6)
6: end for
7: Solve for total cluster compactness Ysm using (1.3)
8: end for
9: for (m = mmin;m ≤ mmax;m++) do

10: Calculate the covariance of each cluster for each mi

11: end for
12: Estimate the optimum Zsm and m̂ using the cluster covariances and Ysm by using

equations in Appendix 1
13: [Ĉ1, Ĉ2, .., Ĉm̂] = kernelkmeans(x, m̂) for each σk with non-random initial cluster

assignments
14: end for
15: Calculate the gradient of the minimum Zsm curve following the condition in (3.8) to

obtain the optimum σk, the final clustering solution and m̂

Chapter 4

Simulations and Results

4.1 Proposed Cluster Initialization Vs Random Clus-

ter Initialization for Kernel k-means

In Section 3.2.2, a new method of initial cluster assignment for data has been proposed.

The proposed cluster initialization is shown in Figure 4.1b for dataset E1 in Figure 4.1a.

Random cluster initialization is shown in Figure 4.1c. Clustering results for the dataset

E1 have been compared for both methods using external validation indices ARI and NVI.

Kernel k-means with proposed cluster initialization method results in an ARI and NVI of

0.93 and 0.12 respectively and kernel k-means with random cluster initialization results

in ARI and NVI of 0.80 and 0.19 respectively. The results have been obtained over an

average of 50 runs.

33

CHAPTER 4. SIMULATIONS AND RESULTS

(a) Synthetic dataset E1
(b) Result of proposed initial cluster as-
signment algorithm for dataset E1 in Fig-
ure 4.1a for m = 6

(c) Result of random cluster assignment for
dataset E1 in Figure 4.1a for m = 6

Figure 4.1: Proposed cluster initialization vs random cluster initialization

4.2 Synthetic Datasets

Kernel k-MACE is used to cluster synthetic datasets containing Gaussian clusters of

different characteristics. We have decided to use Gaussian and Polynomial kernel func-

tions for results, but we use trial and error to obtain the optimum parameter for the

Polynomial kernel. Each dataset consists of 300 data samples and has a CNC of 6.

34

CHAPTER 4. SIMULATIONS AND RESULTS

• Dataset S1: Gaussian clusters with uniform variance and fixed cluster center loca-

tions with no overlap, shown in Figure 4.2a.

• Dataset S2: Gaussian clusters with varying covariance and fixed cluster center

locations with no overlap shown in Figure 4.2b.

• Dataset S3: Gaussian clusters with varying variance and varying cluster center

locations with less than 10% overlap shown in Figure 4.2c

• Dataset S4: Gaussian clusters with varying variance, varying cluster center loca-

tions and two clusters in close proximity but with no overlap shown in Figure 4.2d

• Dataset S5: Gaussian clusters with varying variance, varying cluster center loca-

tions and two clusters with overlap between 10% and 50%, shown in Figure 4.2e

• Dataset S6: Gaussian clusters with varying variance, varying cluster center loca-

tions and three overlapping clusters with two clusters with almost 50% overlap

shown in Figure 4.2f

Kernel k-MACE was also used to cluster some high dimensional datasets S10 - S15.

• Dataset S10: Gaussian clusters with uniform variance and 10% chance of overlap

• Dataset S11: Gaussian clusters with varying variance and 10% chance of overlap

• Dataset S12: Gaussian clusters with varying covariance and 10% chance of overlap

• Dataset S13: Gaussian clusters with varying covariance and 50% chance of overlap

• Dataset S14: Gaussian clusters with varying variance and 50% chance of overlap

• Dataset S15: Gaussian clusters with uniform variance and 50% chance of overlap

35

CHAPTER 4. SIMULATIONS AND RESULTS

(a) Dataset S1 (b) Dataset S2

(c) Dataset S3 (d) Dataset S4

(e) Dataset S5 (f) Dataset S6

Figure 4.2: Datasets S1 - S6

36

CHAPTER 4. SIMULATIONS AND RESULTS

Clustering results from kernel k-MACE have been compared to well known index

validity methods such as Gap, Calinski-Harabasz, Davies-Bouldin and Silhouette. These

validation indices have been used alongside kernel k-means. Clustering results have also

been compared to other well known fully unsupervised clustering methods including G-

means and DBSCAN. Kernel based fully unsupervised algorithms proposed in [16], [17],

[18] and [19] have not been used for comparison as they do not estimate the optimum

value of the kernel parameter and most are computationally very complex. The clustering

results for synthetic datasets S1 - S6 are shown in Table 4.1 . logσ2
k values between -10

and 30 have been used with kernel k-MACE [34]. Each result is generated from an average

of 50 runs. ARI and NVI are the external clustering validation indices used to evaluate

the results where both range between 0 and 1. An ARI of 1 represents a clustering result

matching the true clustering of a given dataset while an NVI of 0 represents clustering

result matching the true clustering of a given dataset and vice versa. The best results

are in bold font.

Kernel k-MACE 1 is able to identify the correct number of clusters in datasets S1

- S5. Kernel k-MACE with Polynomial kernel is able to identify the correct number

of clusters for datasets S1, S2 and S4 - S6. Kernel k-MACE is also able to produce

the best clustering result for each dataset. k-MACE is able to correctly identify the

correct number of clusters in datasets S1 - S3 but has problem identifying clusters with

significantly different variances that overlap or are in very close proximity of each other.

As we have shown in Section 3.1, datasets S1 and S2 can be easily clustered in input

space. There is some minor overlap between clusters in dataset S3 but k-MACE is able

to correctly identify the clusters. The final clustering results for datasets S4, S5 and S6

are shown in Figure 4.3 for both kernel k-MACE as well as k-MACE.

1Kernel k-MACE itself only refers to the algorithm that uses the Gaussian kernel function. Use of
the algorithm with other kernel functions such as Polynomial will be explicitly stated

37

CHAPTER 4. SIMULATIONS AND RESULTS

(a) Final clustering result for dataset S4
using kernel k-MACE

(b) Final clustering result for dataset S4
using k-MACE

(c) Final clustering result for dataset S5
using kernel k-MACE

(d) Final clustering result for dataset S5
using k-MACE

(e) Final clustering result for dataset S6
using kernel k-MACE

(f) Final clustering result for dataset S6
using k-MACE

Figure 4.3: Final clustering results for datasets S4, S5 and S6 using kernel k-MACE and
k-MACE

38

CHAPTER 4. SIMULATIONS AND RESULTS

For both datasets S4 and S5, k-MACE is not able to distinguish between the two

overlapping clusters with significantly different variances. k-MACE can identify overlap-

ping clusters that are correlated but it is not able to differentiate between non-correlated

clusters that overlap and have significantly different variances [29]. kernel k-MACE on

the other hand identifies the 2 distributions as different and is able to correctly identify

the clusters. In Section 3.1 we have shown that kernel k-MACE is able to transform

Gaussian distributions into kernel space such that they retain the Gaussian profile as

in the case of dataset S4. The mere addition of more features to the dataset results in

correct clustering being possible for the kernel k-MACE algorithm. Kernel k-MACE is

equally efficient at clustering high dimensional gaussian distributions with varying de-

grees of overlap. This is shown by the clustering results in Table 4.2 (for datasets S10 -

S15) as k-MACE produces equally good clustering results as kernel k-MACE for datasets

with 15 dimensions and cluster overlap between 10% and 50%.

Kernel k-MACE also estimates the CNC for S5 dataset which has a greater degree

of cluster overlap as compared to S4. If the percentage overlap between clusters keeps

increasing and the variance of the overlapping clusters becomes similar, eventually kernel

k-MACE will fail to distinguish between the clusters in feature space. Dataset S6 is an

anomaly and is very hard to find in real life as two clusters have a very high degree of

overlap but consist only of two scalar features (two dimensions). Both kernel k-MACE

and k-MACE could not identify the correct number of clusters in this dataset.

G-means could not identify the CNC for all of the 2D datasets except S1. DBSCAN

was not able to identify the CNC for any 2D dataset. From the internal validation index

methods, Davies-Bouldin index worked well for both 2D and high dimensional datasets.

However the std[m̂] is large for all 4 methods because of the random initialization of

clusters before kernel k-means clustering is performed. Internal validation index methods

39

CHAPTER 4. SIMULATIONS AND RESULTS

produce worse results as compared to kernel k-MACE because they try to optimize a cost

function while kernel k-MACE probabilistically calculates the bounds of an unknown

error resulting in a better estimation of the number of clusters in a dataset.

Kernel k-MACE with Polynomial kernel is able to identify the CNC for most datasets

but does not generate the best clustering results. Polynomial kernel transforms data

into feature space such that data samples lie on a hyper-dimensional Polynomial surface

governed by the Polynomial kernel parameter. This generates better separation between

clusters for some datasets such as S6 as compared to the Gaussian kernel resulting in

the estimation of CNC. Kernel k-MACE with polynomial kernel is able to successfully

cluster the high dimensional datasets in Table 4.2 just like kernel k-MACE and k-MACE.

Polynomial kernel functions work well for clustering datasets containing Gaussian clusters

and produce comparable results to the Gaussian kernel function.

40

C
H
A
P
T
E
R

4.
S
IM

U
L
A
T
IO

N
S
A
N
D

R
E
S
U
L
T
S

Datasets S1 S2 S3 S4 S5 S6

m (CNC) 6 6 6 6 6 6

Kernel k-MACE
E[m̂]± std[m̂] 6± 0 6± 0 6± 0 6± 0 6± 0 5± 0
ARI 1 1 0.9 0.9 0.9 0.7
NVI 0 0 0.2 0.1 0.1 0.3

Kernel k-MACE
(Polynomial kernel)

E[m̂]± std[m̂] 6± 0 6± 0 5± 0 6± 0 6± 0 6± 0
ARI 0.9 0.9 0.7 0.9 0.8 0.7
NVI 0.1 0.2 0.3 0.1 0.2 0.4

k-MACE
E[m̂]± std[m̂] 6± 0 6± 0 6± 0 5± 0 5± 0 5± 0
ARI 1 0.9 0.9 0.8 0.8 0.7
NVI 0 0.1 0.2 0.1 0.1 0.3

G-means
E[m̂]± std[m̂] 6± 0 12± 0 15± 0 14± 0 12± 0 7± 0
ARI 1 0.7 0.7 0.7 0.8 0.8
NVI 0 0.2 0.3 0.3 0.2 0.3

DBSCAN
E[m̂]± std[m̂] 7± 0 7± 0 7± 0 4± 0 4± 0 9± 0
ARI 0.7 0.7 0.8 0.3 0.3 0.4
NVI 0.4 0.4 0.2 0.7 0.7 0.5

Kernel k-means +
GAP

E[m̂]± std[m̂] 5.8± 1.5 6.4± 0.9 6.2± 0.8 4.3± 1.3 3.9± 1.7 5± 0.8
ARI 0.8 0.9 0.8 0.6 0.5 0.6
NVI 0.2 0.1 0.2 0.3 0.4 0.4

Kernel k-means +
Calinski-Harabasz

E[m̂]± std[m̂] 6.8± 1 9.5± 3.5 6.8± 1.3 5.2± 0.8 5.4± 1.2 5.9± 1.1
ARI 0.9 0.8 0.8 0.7 0.7 0.7
NVI 0.1 0.2 0.2 0.2 0.3 0.3

Kernel k-means +
Davies-Bouldin

E[m̂]± std[m̂] 6.1± 0.7 7.1± 1.2 6± 0.6 5.4± 1 5± 1 5.1± 1.6
ARI 0.8 0.9 0.8 0.7 0.7 0.6
NVI 0.1 0.1 0.2 0.2 0.2 0.4

Kernel k-means +
Silhouette

E[m̂]± std[m̂] 6.5± 0.7 6.8± 0.8 6.2± 0.6 5.3± 1.2 5.7± 0.7 5.5± 1.6
ARI 0.9 0.9 0.8 0.7 0.7 0.6
NVI 0.1 0.1 0.3 0.3 0.2 0.4

Table 4.1: Clustering results for synthetic datasets S1 - S6

41

C
H
A
P
T
E
R

4.
S
IM

U
L
A
T
IO

N
S
A
N
D

R
E
S
U
L
T
S

Datasets S10 S11 S12 S13 S14 S15

m (CNC) 6 6 6 6 6 6

Kernel k-MACE
E[m̂]± std[m̂] 6± 0 6± 0 6± 0 6± 0 6± 0 6± 0
ARI 1 1 1 1 1 1
NVI 0 0 0 0 0 0

Kernel k-MACE
(Polynomial kernel)

E[m̂]± std[m̂] 6± 0 6± 0 6± 0 6± 0 6± 0 6± 0
ARI 1 1 1 1 1 1
NVI 0 0 0 0 0 0

k-MACE
E[m̂]± std[m̂] 6± 0 6± 0 6± 0 6± 0 6± 0 6± 0
ARI 1 1 1 1 1 1
NVI 0 0 0 0 0 0

G-means
E[m̂]± std[m̂] 15± 0 8± 0 9± 0 6± 0 13± 0 8± 0
ARI 0.7 0.9 0.8 1 0.7 0.9
NVI 0.3 0.1 0.2 0 0.3 0.1

DBSCAN
E[m̂]± std[m̂] 4± 0 8± 0 7± 0 7± 0 4± 0 12± 0
ARI 0.2 0.1 0.4 0.6 0.3 0.2
NVI 0.8 0.8 0.5 0.3 0.7 0.8

Kernel k-means +
GAP

E[m̂]± std[m̂] 4.6± 1.4 5.4± 1.2 8.4± 2.4 6.5± 0.7 6.1± 1.1 4.6± 1.5
ARI 0.7 0.1 0.8 0.2 0.6 0.7
NVI 0.3 0.9 0.2 0.6 0.5 0.4

Kernel k-means +
Calinski-Harabasz

E[m̂]± std[m̂] 6.7± 0.8 6.7± 0.7 6.6± 1.3 6.8± 0.6 6.1± 0.4 7.6± 2
ARI 0.9 0.9 0.9 0.9 0.9 0.9
NVI 0.1 0.1 0.1 0.1 0 0.1

Kernel k-means +
Davies-Bouldin

E[m̂]± std[m̂] 5.9± 0.7 5.4± 1 5.9± 0.6 5.9± 0.9 5.5± 0.8 5.8± 0.8
ARI 0.9 0.8 0.9 0.9 0.9 0.9
NVI 0.1 0.2 0.1 0.1 0.1 0.1

Kernel k-means +
Silhouette

E[m̂]± std[m̂] 6.4± 0.5 6.4± 0.9 6.5± 0.6 6.4± 0.9 6.9± 1.7 6.5± 1.1
ARI 0.9 0.9 0.9 0.9 0.9 0.9
NVI 0.1 0.1 0.1 0.1 0.1 0.1

Table 4.2: Clustering results for synthetic datasets S10 - S15

42

CHAPTER 4. SIMULATIONS AND RESULTS

4.3 Real Datasets

Real datasets used to evaluate the performance of the kernel k-MACE are given in Table

4.3. The datasets have been obtained from the UCI machine learning repository website

2.

Dataset Seeds Iris Wine Glass Soybean Vertebrate Thyroid

m̄ (CNC) 3 3 3 7 19 3 3

Dimensions 7 4 13 10 35 6 5

Table 4.3: Real Datasets

A brief description of each dataset is given below.

• Seeds: This dataset contains the X-ray imaging data of seeds of 3 different varieties

of wheat: Kama, Rosa and Canadian. Internal structure of the seed was visualized

using X-ray images.

• Iris: This dataset contains 3 classes of 50 instances each, where each class refers to

a type of iris plant. One class is linearly separable from the other 2; the latter are

not linearly separable from each other.

• Wine: This dataset results from the chemical analysis of wines grown in the same

region in Italy but derived from three different cultivars. The analysis determined

the quantities of 13 constituents found in each of the three types of wines.

• Glass: This dataset contains chemical composition data corresponding to different

types of glass containing 7 classes and 10 attributes.

2http://archive.ics.uci.edu/ml/

43

CHAPTER 4. SIMULATIONS AND RESULTS

• Soybean: This dataset contains soybean crop data containing 19 classes and 35

attributes.

• Vertebrate: The dataset contains data from patients belonging to one out of three

categories: Normal, Disk Hernia or Spondylolisthesis. The dataset contains 3

classes and 6 attributes.

• Thyroid: This dataset contains data from patients belonging to one out of three

categories: Normal, Hypothyroidism or Hyperthyroidism. The dataset contains 3

classes and 5 attributes.

Clustering results for real datasets are shown in Table 4.4. Each result is generated

from an average of 50 runs. ARI and NVI are the external clustering validation indices

used to evaluate the results. The best clustering results for each dataset are stated in

bold font. Kernel k-MACE provides the best estimate of m̂ for Seeds, Iris, Wine, Glass

and Soybean. A std[m̂] of 0 shows that the method is consistent which is due to the

proposed cluster initialization method in Section 3.2.2 which also results in better ARI

and NVI values than other methods for most datasets. Kernel k-MACE works well for

clustering high dimensional datasets such as Glass and Soybean.

Kernel k-means + GAP index also generates accurate clustering results on average but

the std[m̂] is high due to random assignment of data before kernel k-means, resulting in

different results each time the algorithm is run. The kernel k-MACE algorithm provides

poor clustering result for the Thyroid dataset in terms of ARI and NVI. The first three

principal components of the Thyroid dataset have been shown in Figure 4.4a. The

two overlapping clusters follow a Gaussian distribution while the third cluster (shown

in light green color) cannot be approximated as Gaussian due to the scatter of data

samples. Kernel k-MACE assumes that only a Gaussian distribution in the input space

44

CHAPTER 4. SIMULATIONS AND RESULTS

will replicate a Gaussian distribution in feature space, therefore the arbitrary shaped

cluster causes one of the two overlapping clusters to merge with it. The final clustering

result is shown in Figure 4.4b. G-means is not able to estimate the correct number of

clusters for any real dataset in Table 4.4. DBSCAN results in the correct number of

clusters for Iris dataset but totally fails to obtain any clustering result for Thyroid and

Vertebral datasets.

The high accuracy of E[m̂] of kernel k-means + GAP and kernel k-means + Davies-

Bouldin for the soybean and glass datasets strengthens the argument that kernel k-means

is able to find more accurate clustering partitions for real datasets as compared to k-means

based methods including k-MACE [29].

Kernel k-MACE with Polynomial kernel produces inferior results as compared to

kernel k-MACE for most real datasets. However kernel k-MACE with polynomial kernel

is able to estimate the CNC for the Vertebral dataset. This shows that the Gaussian

kernel function is better for clustering real datasets as compared to the Polynomial kernel

function.

(a) Plot of first three principal components of
the Thyroid dataset

(b) Plot of first three principal components
of the kernel k-MACE clustering solution for
Thyroid dataset

45

C
H
A
P
T
E
R

4.
S
IM

U
L
A
T
IO

N
S
A
N
D

R
E
S
U
L
T
S

Datasets Seeds Iris Wine Glass Soybean Vertebral Thyroid

m(CNC) 3 3 3 7 19 3 3

Kernel k-MACE
E[m̂]± std[m̂] 3± 0 3± 0 3± 0 7± 0 18± 0 2± 0 2± 0
ARI 0.7 0.8 0.4 0.2 0.4 0.3 0.1
NVI 0.5 0.3 0.7 0.7 0.4 0.7 0.9

Kernel k-MACE
(Polynomial kernel)

E[m̂]± std[m̂] 3± 0 3± 0 2± 0 4± 0 16± 0 3± 0 2± 0
ARI 0.7 0.7 0.3 0.2 0.4 0.1 0.1
NVI 0.5 0.5 0.7 0.7 0.5 0.9 0.9

k-MACE
E[m̂]± std[m̂] 3± 0 3± 0 3± 0 5± 0 12± 0 2± 0 2± 0
ARI 0.7 0.7 0.4 0.2 0.5 0.3 0.1
NVI 0.5 0.4 0.7 0.8 0.4 0.7 0.9

G-means
E[m̂]± std[m̂] 4± 0 4± 0 2± 0 11± 0 16± 0 5± 0 7± 0
ARI 0.3 0.5 0.2 0.1 0.3 0.3 0.1
NVI 0.7 0.6 0.7 0.9 0.8 0.8 0.9

DBSCAN
E[m̂]± std[m̂] 2± 0 3± 0 1± 0 2± 0 4± 0 1± 0 1± 0
ARI 0 0.5 0 0.2 0.1 0 0
NVI 1 0.6 1 0.8 0.5 1 1

Kernel k-means +
GAP

E[m̂]± std[m̂] 2.9± 0.6 3.2± 0.6 2.5± 4.5 6.4± 1.5 17.8± 3.7 1.7± 2.2 8.5± 3.6
ARI 0.6 0.7 0 0.2 0.4 0 0.2
NVI 0.5 0.4 1 0.8 0.5 1 0.8

Kernel k-means +
Calinski-Harabasz

E[m̂]± std[m̂] 3± 0 3.4± 0.5 9.6± 7 2.4± 0.5 4.1± 2.3 2.2± 0.4 4.7± 2.9
ARI 0.7 0.7 0 0.2 0.2 0.2 0.1
NVI 0.5 0.4 1 0.8 0.7 0.9 0.9

Kernel k-means +
Davies-Bouldin

E[m̂]± std[m̂] 2± 0 2± 0 3.3± 2.7 6.9± 3 15.9± 4.1 2.6± 2 5.4± 1.8
ARI 0.5 0.6 0 0.2 0.4 0.2 0.3
NVI 0.6 0.4 1 0.8 0.5 0.9 0.8

Kernel k-means +
Silhouette

E[m̂]± std[m̂] 2.1± 0.3 2± 0 2± 0 2.5± 0.8 14± 3 2.3± 0.7 3.8± 0.9
ARI 0.5 0.6 0 0.2 0.4 0.2 0.4
NVI 0.6 0.4 1 0.8 0.5 0.9 0.8

Table 4.4: Clustering results for real datasets

46

CHAPTER 4. SIMULATIONS AND RESULTS

4.4 Normality Tests for Kernel k-MACE Evaluation

Normality tests can be used to show that the clustering result generated by kernel k-

MACE will consist of clusters following a Gaussian distribution whether the dataset being

clustered consists of clusters following a Gaussian distribution or an unknown distribution

(arbitrary shaped clusters). The final clusters resulting from kernel k-MACE clustering

have been tested to check if they are normally distributed. The following normality tests

have been used [35][36][37].

• Jarque-Bera test

• Anderson-Darling test

• Lilliefors test

Each test evaluates a single dimension (feature) of a cluster at a time to check if

the hypothesis (data follows a normal distribution with an unknown mean and variance)

is true or false. For real datasets in Table 4.3 which are not generated from Gaussian

distributions, results from normality tests show that the clusters resulting from kernel

k-MACE follow a Gaussian distribution with at least 90% probability.

47

Chapter 5

Conclusion and Future Work

This thesis presents a kernel based clustering scheme which estimates the number of

clusters in a dataset while simultaneously estimating the value of the Gaussian kernel

parameter corresponding to the correct clustering result. Kernel functions transform

data into feature space which is governed by the value of the kernel function parameter.

Basics of kernel functions, kernel methods and some internal validation indices which can

be used as fully unsupervised clustering methods were discussed in Chapter 2.

Kernel k-MACE clustering scheme is presented in Chapter 3. Kernel k-MACE prob-

abilistically estimates the number of clusters for a given dataset in while also obtaining

the value of the Gaussian kernel parameter σk corresponding to the best clustering result.

Kernel k-MACE can be divided into three sections: Initialization and clustering of data,

cluster evaluation and estimation of the optimum value of σk. A cluster initialization

technique has been proposed to improve the results of kernel k-means which is the al-

gorithm used for clustering data in feature space. k-MACE is then used to evaluate the

clustering result in feature space. Finally the optimum value of the Gaussian kernel pa-

rameter is estimated from a given range, which is a major contribution of this research.

49

CHAPTER 5. CONCLUSION AND FUTURE WORK

The feature map of data is visualized and the effects of different values of σk on the

feature map are shown. Kernel k-MACE has a higher time complexity as compared to

k-MACE which is caused by the decomposition of the kernelized distance matrix using

SVD.

Simulations and results are provided in Chapter 4. The proposed cluster initialization

method improves the clustering results of kernel k-means when compared to random

cluster initialization. Results from synthetic datasets show that kernel k-MACE is able

to successfully cluster datasets containing overlapping Gaussian clusters with significantly

different variances and outperforms the methods used for comparison. This is the result of

transformation of data into higher dimensions resulting in a better separation of clusters.

However as the percentage of overlap increases beyond 40% and the variances become

similar, kernel k-MACE is not able to identify the clusters correctly. Kernel k-MACE

with polynomial kernel on the other hand is able to identify overlapping clusters with 50%

overlap outperforming kernel k-MACE for this specific case. Kernel k-MACE outperforms

methods used for comparison for most real datasets. Kernel k-MACE produces consistent

clustering results due to the use of proposed cluster initialization with kernel k-means.

Normality tests are used to evaluate the clustering results from kernel k-MACE to show

that the clusters are normally distributed and are independent of the distribution of the

original data.

The proposed method calculates the value of σk parameter for the Gaussian kernel

function using a non-generalizable method. An avenue for future research would be to

analytically estimate the best value of σk. Applications of kernel methods in clustering

show that they are most commonly used for clustering data which cannot be separated

in input space i.e. the data is non-linearly separable or arbitrary shaped. An interesting

topic for future research would be to extend kernel k-MACE for correctly estimating the

50

CHAPTER 5. CONCLUSION AND FUTURE WORK

number of clusters in an arbitrary shaped dataset containing non-linearly separable data.

Currently this cannot be done as the probabilistic estimation of the number of clusters

uses the assumption that the clusters in the dataset follow a Gaussian distribution. Kernel

k-MACE has been used with Gaussian and Polynomial kernel functions as Sigmoid kernel

requires the optimization of two parameters and therefore has not been used. Another

avenue for future research would be to extend kernel k-MACE to work with the Sigmoid

kernel and find its optimum parameters which should be straightforward.

51

Appendix 1

k-MACE

Average Central Error in k-MACE is given by Equations (1.1) and (1.2)

Zsm =
1

N

m∑
j=1

Zsmj (1.1)

and

Zsmj =
∥∥cxmj − cmj∥∥2

F
(1.2)

Data Error in k-MACE is given by (1.3) and (1.4)

Ysm =
1

N

m∑
j=1

Ysmj (1.3)

and

Ysmj = ‖xmj − cmj‖2
F (1.4)

Zsm is estimated by using Ysm for each clustering result corresponding to the provided

range of values of m. The expected value and variance of Ysm are given by Equations

52

APPENDIX 1. K-MACE

(1.5) and (1.6) respectively.

E[Ysm] =
1

N

m∑
j=1

E[Ysmj] (1.5)

V ar[Ysm] =
1

N2

m∑
j=1

V ar[Ysmj] (1.6)

The probabilistic bounds of ∆Smj in Equation (1.7) are given by Equation (1.8). These

are used to calculate the bounds of E[Zsmj] and V ar[Zsmj] in Equations (1.12), (1.13)

and (1.14).

‖∆Smj‖2
F ≤ ‖∆Smj‖2

F ≤ ‖∆Smj‖2
F (1.7)

‖∆Smj‖2
F = xSmj + kSmj

‖∆Smj‖2
F = xSmj − kSmj

(1.8)

xSmj = (mmj − kSmj)− α2
N

2

dnj

∑
xi∈Cmj

tr(∧xi)

where mwj =
nmj − 1

nmj

∑
xi∈Cmj

tr(∧xi)
(1.9)

kSmj = 2αN

[
vSml+

(
(4α2

N + 2d2)

d2n2
mj

∑
xi,xk∈Cmj ,i 6=k

tr(∧xi ,∧xk)

)
+

(
(4α2

N + 2d2n2
mj)

d2n2
mj

∑
xi∈Cmj

tr((∧xi)2)

)]1/2

(1.10)

53

APPENDIX 1. K-MACE

vSmj =
−4(mwj − ySmj)

dnmj

∑
xi∈Cmj

tr(∧xi) (1.11)

E[Zsmj] ≤ ‖∆Smj‖2
F +

1

nmj

nmj∑
i=1

tr(∧ximj) (1.12)

E[Zsmj] ≤ ‖∆Smj‖2F +
1

nmj

nmj∑
i=1

tr(∧ximj) (1.13)

V ar[Zsmj] =
2

n2
mj

∑
xi∈Cmj

tr((∧xi)2) +

2

n2
mj

∑
xi,xk∈Cmj ,i 6=k

tr(∧xi ,∧xk)
(1.14)

The expected value and variance of Zsm can be estimated using Equations (1.15) and

(1.16).

E[Zsm] =
1

N

m∑
j=1

E[Zsmj] (1.15)

V ar[Zsm] =
1

N2

m∑
j=1

V ar[Zsmj] (1.16)

The probabilistic bounds of Zsm can then be calculated using Equations (1.17) and

(1.18)

Zsm = E[Zsm] + βN
√
var[Zsm] (1.17)

54

APPENDIX 1. K-MACE

Zsm = E[Zsm]− βN
√
var[Zsm] (1.18)

55

Bibliography

[1] H. Zhang, B. Pang, K. Xie, H. Wu. “An Efficient Algorithm for Clustering Search En-

gine Results”, International Conference on Computational Intelligence and Security,

2006.

[2] Sara Dolnicar. “Data-driven Market Segmentation in Tourism - Approaches, Changes

Over Two Decades and Development Potential”, 15th International Research Con-

ference of the Council for Australian University Tourism and Hospitality Education,

pp. 346-360, 2006.

[3] Katherine Samuelowicz, John D. Bain. “Revisiting Academics Beliefs about Teaching

and Learning”, Higher Education, pp. 299-325, 2001.

[4] H. G. Wilson, B. Boots, A. A. Millward. “A Comparison of Hierarchical and Parti-

tional Clustering Techniques for Multispectral Image Classification”, IEEE Interna-

tional Geoscience and Remote Sensing Symposium, 2002.

[5] Ozer Sedat, Chen Chi H., Cirpan Hakan A. “A Set of new Chebyshev Kernel Functions

for Support Vector Machine Pattern Classification”, Pattern Recognition, vol 44, pp.

1435-1447, 2011.

[6] Liu Yi-Hung, Wu Chien-Te, Cheng Wei-Teng, Hsiao Yu-Tsung, Chen Po-Ming, Teng

Jyh-Tong. “Emotion Recognition from Single-trial EEG based on Kernel Fisher’s

57

BIBLIOGRAPHY

Emotion Pattern and Imbalanced Quasiconformal Kernel Support Vector Machine”,

Sensors (Basel, Switzerland), vol 14, pp. 13361-13388, 2014.

[7] Radha Chitta. “Kernel-Based Clustering of Big Data”, PhD thesis. Michigan State

University, 2015.

[8] Schlkopf, Bernhard, Smola, Alexander, Mller, Klaus-Robert. “Nonlinear Component

Analysis as a Kernel Eigenvalue Problem”, Neural Computation, vol 10, pp. 1299-

1319, 1998.

[9] Sarma T. H., Viswanath P., Reddy B. E. “A Fast Approximate Kernel k-means

Clustering Method for Large Data Sets”, IEEE Recent Advances in Intelligent Com-

putational Systems, pp. 545-550, 2011.

[10] Tzortzis G. F., Likas A. C. “The Global Kernel k-Means Algorithm for Clustering

in Feature Space”, IEEE Transactions on Neural Networks, vol 20, pp. 1181-1194,

2009.

[11] T Hitendra Sharma, P Viswanath, B Eswara Reddy. “Single Pass Kernel k-means

Clustering Method”, Indian Academy of Sciences, vol. 38, part 3, pp. 407-419, 2013.

[12] Nikolaos Tsapanos, Anastasios Tefas, Nikolaos Nikolaidis, Ioannis Pitas. “A Dis-

tributed Framework for Trimmed Kernel k-Means Clustering”, Pattern Recognition,

vol. 48, pp. 2685-2698, 2015.

[13] Lujiang Zhang, Xiaohui Hu. “Locally Adaptive Multiple Kernel Clustering”, Neu-

rocomputing, vol. 137, pp. 192-197, 2014.

[14] Chiheb-Eddine Ben NCir, Nadia Essoussi, Mohamed Limam. “Kernel-Based Meth-

ods to Identify Overlapping Clusters with Linear and Nonlinear Boundaries”, Journal

of Classification, vol. 32, pp. 176-211, 2015.

58

BIBLIOGRAPHY

[15] A. Lorette, X. Descombes, J. Zerubia. “Fully Unsupervised Fuzzy Clustering with

Entropy Criterion”, Proceedings 15th International Conference on Pattern Recogni-

tion, vol. 3, pp. 986-989, 2000.

[16] R.J. Kuo, Y.D. Huang, Chih-Chieh Lin, Yung-Hung Wud, Ferani E. Zulvia. “Au-

tomatic Kernel Clustering with Bee Colony Optimization Algorithm”, Information

Sciences, vol. 283, pp. 107-122, 2014.

[17] Lei Zhang, Qixin Cao. “A Novel Ant-based Clustering Algorithm using the Kernel

Method”, Information Sciences, vol. 181, pp. 4658-4672, 2011.

[18] Hong Jia, Yiu-ming Cheung, Jiming Liu. “Cooperative and Penalized Competitive

Learning with Application to Kernel-based Clustering”, Pattern Recognition, vol. 47,

pp. 3060-3069, 2014.

[19] Mark Girolami. “Mercer Kernel-Based Clustering in Feature Space”, IEEE transac-

tions on neural networks, vol. 13, no. 3, 2002.

[20] Tibshirani, Robert, Walther, Guenther, Hastie, Trevor. “Estimating the Number of

Clusters in a Data Set via the Gap Statistic”, Journal of the Royal Statistical Society,

vol. 63, pp. 411-423, 2001.

[21] T. Calinski, J. Harabasz. “A Dendrite Method for Cluster Analysis”, Communica-

tions in Statistics, vol. 3, no.1, pp. 1-27, 1974.

[22] D. L. Davies, D. W. Bouldin. “A Cluster Separation Measure”, IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. PAMI-1, no. 2, pp. 224-227, 1979.

[23] L. Kaufman, P.J. Rousseeuw. “Finding Groups in Data: An Introduction to Cluster

Analysis”, New York, NY: Wiley, 1990.

59

BIBLIOGRAPHY

[24] Camps-Valls Gustavo, Rojo-lvarez Jos L., Martnez-Ramn Manel. “Kernel Clustering

for Knowledge Discovery in Clinical Microarray Data Analysis in Chapter 3: Kernel

Methods in Bioengineering, Signal and Image Processing”, Idea Group Pub, 2007

[25] Dunn, J. C. “A Fuzzy Relative of the ISODATA Process and Its Use in Detecting

Compact Well-Separated Clusters”, Journal of Cybernetics, pp. 32-57, 1973

[26] Kaufman, L. and Rousseeuw, P.J. “Clustering by means of Medoids, in Statistical

Data Analysis Based on the L1Norm and Related Methods”, North-Holland, pp. 405-

416, 1987

[27] Lujiang Zhang, Xiaohui Hu. “Locally Adaptive Multiple Kernel Clustering”, Neu-

rocomputing, Elsevier B.V., vol. 137, pp. 192-197, 2014

[28] Alona Golts, Michael Elad. “Linearized Kernel Dictionary Learning”, IEEE Journal

of Selected Topics in Signal Processing, vol. 10, no. 4, 2016

[29] Edward Wyndel Nidoy. “k-MACE Clustering for Gaussian Clusters”, MASc thesis.

Ryerson University, 2016

[30] Michael Eigensatz. “Insights into the Geometry of the Gaussian Kernel and an Appli-

cation in Geometric Modeling”, Master’s thesis. Swiss Federal Institute of Technology

Zurich, 2006

[31] Lech Szymanski, Brendan McCane. “Visualising Kernel Spaces”, Image and Vision

Computing New Zealand (IVCNZ), pp. 449-452, 2011

[32] K. A. Abdul Nazeer, M. P. Sebastian. “Improving the Accuracy and Efficiency of the

k-means Clustering Algorithm”, Proceedings of the World Congress on Engineering,

vol 1, 2009

60

BIBLIOGRAPHY

[33] Edward Nidoy, Soosan Beheshti. “k-MACE Clustering”, IEEE Transactions on Sig-

nal Processing, Submitted for Publication, 2017

[34] Kuo-Ping Wu, Sheng-De Wang. “Choosing the Kernel Parameters for Support Vec-

tor Machines by the Inter-cluster Distance in the Feature Space”, Pattern Recognition,

Elsevier, vol 42, pp. 710-717, 2009

[35] Carlos M. Jarque, Anil K. Bera. “Efficient Tests for Normality, Homoscedasticity

and Serial Independence of Regression Residuals”, Economics Letters, pp. 255-259,

1980

[36] T. W. Anderson, D. A. Darling. “Asymptotic Theory of certain Goodness of Fit

Criteria based on Stochastic Processes”, Ann. Math. Stat, pp. 193-212, 1952

[37] Lilliefors, H. “On the Kolmogorov-Smirnov Test for Normality with Mean and Vari-

ance Unknown”, Journal of the American Statistical Association, vol 62, pp. 399-402,

1967

61

	Declaration
	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	List of Appendices
	List of Abbreviations
	Introduction
	Background
	Kernel Methods
	Kernel Basics
	Calculation of Kernel Feature Map
	Visualizing the Kernel Feature Map
	Kernel k-means

	k-MACE Algorithm
	Index Validation Methods for Cluster Evaluation
	Gap Index
	Calinski-Harabasz Index
	Davies-Bouldin Index
	Silhouette Index

	Kernel k-MACE Clustering
	Study and Analysis of Gaussian Kernel Functions
	Gaussian Kernel Function
	Examining Gaussian Kernel and k

	Kernel k-MACE Algorithm
	Preliminaries and Notations
	Initial Data Assignment and Clustering for Kernel k-MACE
	ACE and Data Error in Kernel k-MACE
	Estimating Zsm and
	Choosing the Gaussian Kernel Parameter k
	Time Complexity of Kernel k-MACE

	Simulations and Results
	Proposed Cluster Initialization Vs Random Cluster Initialization for Kernel k-means
	Synthetic Datasets
	Real Datasets
	Normality Tests for Kernel k-MACE Evaluation

	Conclusion and Future Work
	Appendix
	k-MACE
	Bibliography

