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Abstract

GEOMETRIC WATER-FILLING AND RADIO RESOURCE MANAGEMENT

c© Zhiming He, 2015

Doctor of Philosophy

Electrical and Computer Engineering

Ryerson University

This thesis considers the radio resource management (RRM) of advanced wireless communication

systems. With the emerging of more advanced and more complicated systems, such as cognitive

radio, nodes with energy harvesting capacities (green communications), and the application of

Multiple-Input Multiple-Output (MIMO) technology, RRM problems introduce more difficulties and

challenges to optimize system performances. Due to specific structure of communication systems,

water-filling (WF) plays an important role in RRM. This thesis introduces the fundamental theory

and development of WF algorithm. The proposed Geometric Water-Filling (GWF) is presented

and compared with the conventional WF algorithms. It can break through the limitations of the

conventional WF to solve the more complicated optimization problems in the advanced wireless

communication systems. For the application of the proposed GWF to solve the RRM problems

in the advanced MIMO communication systems, cognitive radio communication systems, green

communication systems and the “dual problems”, which are the sum power minimization problems,

of the throughput maximization problems is investigated in this thesis. Efficient algorithms are

presented to achieve the optimal resource allocation.
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Chapter 1

Introduction

The world is demanding more from wireless communication services now than ever before. Many

advanced wireless communication techniques, such as multiple-input multiple-output (MIMO), cog-

nitive radio (CR), and energy harvesting (EH) communications have attracted lots of research atten-

tion. For a wireless network operating in a fading environment, power and bandwidth are precious

radio resources which need careful planning. Reducing power consumption to satisfy the target

QoS requirement leads to enlarged system capacity and prolonged battery life. With the evolu-

tion to the more complicated wireless communication systems, the issues of optimal radio resource

management problems have become more and more important to achieve overall optimal system

design.

Water-filling has been an important algorithm for radio resource management (RRM) problem

in wireless communication systems. In this thesis, we present a new geometric water-filling (GWF)

algorithm, and explore its application in solving RRM problems for the advanced wireless commu-

nication systems. In the remaining of this Chapter, we will first review the advances in MIMO,

EH communication systems, and water-filling algorithm. In the subsequent chapters, we will fur-

ther discuss the application of water-filling algorithm to solve RRM problems in these advanced

communication systems.

1.1 Multiple Input Multiple Output System

The use of multiple antennas at the transmitter and receiver, i.e., Multiple-Input Multiple-Output

(MIMO) technology, constitutes a breakthrough ([5, p. 1]) in the design of wireless communication
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systems. MIMO technology is now at the core of several existing and emerging wireless standards ([5,

p. 18]). Exploiting multipath scattering, MIMO techniques have delivered significant performance

enhancements in terms of data transmission rate and interference reduction on point-to-point links.

In this thesis, we focus our attention on MIMO systems. Actually, we have also obtained the design

of multi-user SIMO systems [18].

1.2 Energy Harvesting Technology

In recent years, energy harvesting in green communications has attracted a lot of research attention

due to its environment friendly features. One possible technique to overcome the limitation of

battery lifetime is to harvest energy from the environment. In such systems, harvesting energy

has become a preferred choice for supporting green communications. However, harvesting energy

depends on natural conditions and thus is random over time. It owns causality of power usage,

corresponding to the dependence of harvested energy on time. As a result, the energy from this

constraint is often considered to regulate the overall energy flow of the system. For convenience,

this system is called the EH system in this thesis. The optimal radio resource allocation problem

to maximize system throughput turns out to be more complicated. In this thesis, the proposed

algorithms can be used for the maximum throughput problems and/or the minimum transmission

completion time problems.

1.3 Water-Filling Algorithm

In many engineering problems, water-filling plays an important role in radio resource management.

For communications, it stems from a class of the problems of maximizing the mutual information

between the input and the output of a channel with parallel independent sub-channels. With water-

filling, more power is allocated to the channels with higher gains to maximize the sum of data rates

or the capacity of all the channels. The solution to this class of the problems can be interpreted

by a vivid description as pouring limited volume of water into a tank, the bottom of which has the

stair levels determined by the inverse of the sub-channel gains.

The conventional way to solve the water-filling problem is to solve the Karush-Kuhn-Tucker

2



(KKT) conditions [2], and then find the water-level(s) and the solutions. In Chapter 2 or our pa-

per [19], we proposed a water-filling algorithm from geometric approach (GWF). GWF provides

the exact solutions, by a finite amount of computation or the basically arithmetic and logic op-

eration, to the power allocation problem and avoids the complexity to solve the KKT conditions

with non-linear equations. Due to complexity of solving the KKT conditions of the problem with

multiple variables, the GWF is easier to compute than the conventional water-filling and reveals

more useful information. GWF has also been extended to solve more general and more complicated

power allocation problems, e.g., the minimum sum power with the throughput and more constraints

in the following Chapter 6, or [21].

1.4 Organization of Thesis

In this thesis, GWF is proposed to compute the exact solutions to the maximum throughput prob-

lems with more constraints in Chapter 2. For the EH system, the coexisting system of EH with

MIMO, and the coexisting system of EH with power grid, new algorithms are proposed to compute

the exact solutions to the maximum throughput problems and/or the minimum transmission com-

pletion time problems in Chapters 3-5, respectively. A set of novel algorithms to compute the exact

solutions to the sum power minimization problems with more constraints are proposed in Chapter

6. Chapter 7 closes this thesis.
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Chapter 2

Geometric Water-Filling in RRM

In this thesis, we firstly introduce water-filling algorithms to solve power allocation problems. Two

water-filling approaches are presented. One is the conventional water-filling (CWF); and the other

one is the proposed geometric water-filling (GWF). GWF is further extended to efficiently solve a

class of power allocation problems with more complex structure which owns upper bounds of the

power variables. Computational complexities are investigated.

2.1 Problem Statement and Water-Filling

The water-filling problem can be abstracted and generalized into the following problem: given

P > 0, as the total power or volume of the water; the allocated power and the propagation path

gain for the ith channel are given as si and ai respectively, i = 1 . . .K; and K is the total number

of channels. Letting {ai}Ki=1 be a sorted sequence, which is positive and monotonically decreasing,

find that

max{si}Ki=1

∑K
i=1 log(1 + aisi)

subject to: 0 ≤ si, ∀i;∑K
i=1 si = P.

(2.1)

Since the constraints are that (i) the allocated power to be nonnegative; (ii) the sum of the power

equals P , the problem (2.1) is called the water-filling (problem) with sum power constraint. Note,

according to information theory, that si of log(1 + aisi) in (2.1) is a ratio, i.e., a numerical value

without any physical unit, under the assumption that the power of noise is 1. It is seen that this

assumption does not lose any generality. Thus, the si is the signal noise ration (SNR), although

4



this value is equal to the numerical value part of the transmitted signal power, under the assumption

that the power of noise is 1. Therefore, it does not depend on choice of physical units, such as Watt

or mW.

To find the solution to problem (2.1), we usually start from the Karush-Kuhn-Tucker (KKT)

conditions of the problem, as a group of the optimality conditions, and derive the system (2.2)

below from the KKT conditions,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

si =
(
μ− 1

ai

)+

, for i = 1, . . . , K,∑K
i=1 si = P,

μ ≥ 0,

(2.2)

where (x)+ = max {0, x}. μ is the water level chosen to satisfy the power sum constraints with

equality (
∑K

i=1 si = P ). The solution to (2.2) is referred to as a solution of the CWF problem (2.1).

It can be seen that the implied system (2.2) has been used to find the optimal solution. The

existence of its Lagrange multipliers and the implication mentioned above determine that enumera-

tion can be utilized to find the water level μ. In [36], how to solve the problems has been discussed

extensively. Complexity of the non-geometric approach to solve the problem (2.1) will be discussed

in Section 2.6. In the sequel of the chapter, when water-filling problem is mentioned, the power

sum constraint is always included.

2.2 Proposed Geometric Water-Filling Approach

In this chapter, we propose a novel approach to solve problem (2.1) based on geometric view. The

proposed Geometric Water-Filling (GWF) approach eliminates the procedure to solve the non-linear

system for the water level, and provides explicit solutions and helpful insights to the problem and

the solution.

Figs. 2.1(a)-(c) give an illustration of the proposed GWF algorithm, by analogy. Suppose there

are 4 steps/stairs (K = 4) with unit width inside a water tank. For the conventional approach, the

dashed horizontal line, which is the water level μ, needs to be determined first and then the power

allocated for each stair (water volume above the stair) is solved.

Let us use di to denote the “step depth” of the ith stair which is the height of the ith step to

5



the bottom of the tank, and is given as

di =
1

ai
, for i = 1, 2, . . . , K. (2.3)

di may take the same unit as si. Since the sequence ai is sorted as monotonically decreasing, the

step depth of the stairs indexed as {1, · · · , K} is monotonically increasing. We further define δi,j

as the “step depth difference” of the ith and the jth stairs, expressed as

δi,j = di − dj =
1

ai
− 1

aj
, for i ≥ j and 1 ≤ i, j ≤ K, (2.4)

where 1 ≤ i, j ≤ K means that 1 ≤ i ≤ K and 1 ≤ j ≤ K.

Instead of trying to determine the water level μ, which is a real non-negative number, we aim to

determine water level step, which is an integer number from 1 to K, denoted by k∗, as the highest

step under water. Based on the result of k∗, we can write out the solutions for power allocation

instantly.

Fig. 2.1(a) illustrates the concept of k∗. Since the third level is the highest level under water,

we have k∗ = 3. The shaded area denotes the allocated power for the third step by s∗3.

In the following, we explain how to find the water level step k∗ without the knowledge of the

water level μ. Let P2(k) denote the water volume above step k or zero, whichever is greater. The

value of P2(k) can be solved by subtracting the volume of the water under step k from the total

power P , as

P2(k) =
{
P −

[∑k−1
i=1

(
1
ak

− 1
ai

)]}+

=
{
P −

[∑k−1
i=1 δk,i

]}+

, for k = 1, . . . , K. (2.5)

Due to the definition of P2(k) being the power (water volume) above step k, it cannot be a negative

number. Therefore we use {·}+ in (2.5) to assign 0 to P2(k) if the result inside the bracket is negative.

The corresponding geometric meaning is that the kth level is above water. Note a reminder of the

definition of a special case for the summation is:

n∑
i=m

bi = 0, as m > n. (2.6)
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s2

d2 =
1
a2

d2 = 1/a2w2

δ3,1

Figure 2.1: Illustration for the proposed Geometric Water-Filling (GWF) algorithm. (a) Illustration
of water level step k∗ = 3, allocated power for the third step s∗3, and step/stair depth di = 1/ai. (b)
Illustration of P2(k) (shadowed area, representing the total water/power above step k) when k = 2.
(c) Illustration of P2(k) when k = 3. (d) Illustration of the weighted case.

Fig. 2.1(b) and Fig. 2.1(c) illustrate the concept of P2(k) for k = 2 and k = 3 respectively by the

shadowed area. As an example of Fig.2.1(c), the water volume under step 3 can be expressed as the

sum of the two terms: (i) the step depth difference between the 3rd and the 1st step, δ3,1, and (ii)

the step depth difference between the 3rd and the 2nd step, δ3,2. Thus, P2(k = 3) can be written as

P2(k = 3) = [P − δ3,1 − δ3,2]
+

and the above result is the shadowed area in Fig. 2.1(c), which is also an expansion of the composite

form of (2.5). Then, we are ready to have the following proposition:

Proposition 2.1. The explicit solution to (2.1) is:

si =

⎧⎪⎨
⎪⎩

sk∗ + (dk∗ − di) 1 ≤ i ≤ k∗

0, k∗ < i ≤ K,
(2.7)
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where the water level step k∗ is given as

k∗ = max
{
k
∣∣∣P2(k) > 0, 1 ≤ k ≤ K

}
(2.8)

and the power level for this step is

sk∗ =
1

k∗P2(k
∗). (2.9)

We can interpret Proposition 2.1 from Fig. 2.1. The first step of the proposed approach is to

find the water level step k∗. From Fig. 2.1, we can find that k = 3 is the maximal index that

makes P2(k) greater than zero. Therefore, based on (6.28), k∗ = 3 can be determined. Then the

power at this step sk∗ can be determined based on (6.29). For those steps with index higher than

k∗, no power is assigned. For those steps with index lower than k∗, their power levels are obtained

by adding sk∗ with the corresponding level depth difference with the k∗th step as shown in (2.7).

Proposition 2.1 provides an explicit constructed solution rather than the implicit solution. The

procedure eliminates solving the nonlinear equation as shown in (2.2) and the real number water

level μ, through finding the index k∗ of the highest “step” under the “water”. This idea will be

used in the followings, too. This point is just the distinct characteristic between CWF and GWF.

The proof of the optimality of the solution will be left to the next subsection when we discuss the

weighted case.

2.3 Generalization of Weighted Case

For the weighted case, the generalized problem can be stated as: given P > 0, as the total power

or volume of the water; the weights, the allocated power and the propagation path gain for the ith

antenna are given as wi, si and ai respectively, i = 1, . . . , K; and K is the total number of the

transmit antennas. Furthermore, the weighted coefficients wi > 0, i ∈ {1, . . . , K}, and {aiwi}Ki=1

being monotonically decreasing, find that

max{si}Ki=1

∑K
i=1wi log(1 + aisi)

subject to: 0 ≤ si, ∀i;∑K
i=1 si = P.

(2.10)
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Using the proposed geometric approach, we can extend the geometric relation for the weighted

case as shown in Fig. 2.1(d) to obtain the corresponding solution to (2.10). By the way, since the

power distribution is our major concern in this paper and RRM, the weights are not selected as

the optimization variables of the problem (2.10), like the most references on RRM. Also, the other

investigated problems follow this rule in this thesis.

In Fig. 2.1(d), the width of the ith stair/step is denoted as wi, by analogy. The value of 1/ai

denotes the volume under the ith step to the bottom of the tank. Hence, the step depth of the ith

step is given as

di =
1

aiwi

, i = 1, · · · , K. (2.11)

Then, P2(k), the water volume above step k, can be obtained using the similar approach as in

the previous subsection considering the step depth difference and the width of the stairs as,

P2(k) =
[
P −∑k−1

i=1 (dk − di)wi

]+
, for k = 1, . . . , K. (2.12)

As an example in Fig. 2.1(d), the water volume above step 1 and below step 3 with the width

w1 can be found as: the step depth difference, (d3 − d1) multiplying the width of the step, w1.

Therefore, the corresponding P2(k = 3) can be expressed as,

P2(k = 3) = [P − (d3 − d1)w1 − (d3 − d2)w2]
+,

which is an expansion of (2.12). Then we have the following proposition.

Proposition 2.2. The explicit solution to (2.10) is:

⎧⎪⎨
⎪⎩

si = [ sk∗
wk∗

+ (dk∗ − di)]wi, as 1 ≤ i ≤ k∗;

si = 0, as k∗ < i ≤ K,
(2.13)

where

k∗ = max
{
k
∣∣∣P2(k) > 0, 1 ≤ k ≤ K

}
(2.14)
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and the power level for this step is

sk∗ =
wk∗∑k∗

i=1wi

P2(k
∗). (2.15)

Proof of Proposition 2.2. System (2.13) implies that

wk∗

1
ak∗

+ sk∗
=

wi

1
ai
+ si

, as 1 ≤ i ≤ k∗. (2.16)

Let

λ =
wk∗

1
ak∗

+ sk∗
. (2.17)

From a geometric view, λ is the reciprocal of water level μ. According to the definitions of k∗ and

sk∗ , for k
∗ < i ≤ K, wk∗

1
ak∗

+sk∗
> wi

1
ai

+si
and si = 0.

Let

σi =
wk∗

1
ak∗

+ sk∗
− wi

1
ai
+ si

. (2.18)

Then ⎧⎪⎨
⎪⎩

σi > 0, if k∗ < i ≤ K

σi = 0, if 1 ≤ i ≤ k∗.
(2.19)

Therefore, the following system holds:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wi
1
ai

+si
− λ+ σi = 0, as 1 ≤ i ≤ K

si ≥ 0, ∀i
σisi = 0, ∀i
σi ≥ 0, ∀i∑K

i=1 si = P, λ ∈ R.

(2.20)

By observation, the equation and inequality set above is just a set of the KKT conditions of

the problem in Proposition 2.2 and the water level μ is equal to the reciprocal of the Lagrange

multiplier λ mentioned above. Note that the Lagrange function of the problem in Proposition 2.2

is

L({si}, λ, {σi}) =
∑K

i=1wi log (1 + aisi)− λ
(∑K

i=1 si − P
)
+

∑K
i=1 σisi. (2.21)
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Since it is a differentiable convex optimization problem with linear constraints, not only are the

KKT conditions mentioned above sufficient, but they are also necessary for optimality. Note that

the constraint qualification of the problem (2.10) holds. Proposition 2.2 hence is proved.

Similar to the unweighted case, the first step is to calculate P2(k), then find the water level

step, k∗, from (2.14), which is the maximal index making P2(k) nonnegative. The corresponding

power level for this step, sk∗ , can be obtained by applying (2.15). Then for those steps with index

higher than k∗, the power level is assigned with zero. For those steps below k∗, the power level is

assigned as in (2.13). The first term (sk∗/wk∗) inside the square bracket denotes the depth of the

k∗th step to the surface of the water. The second term inside the square bracket denotes the step

depth difference of the k∗th step and the ith step. Therefore, the sum inside the square bracket

means the depth of the ith step to the surface of the water. When this quantity is multiplied with

the width of this step, the volume of the water above this step (allocated power) can be then readily

obtained.

With the proposed GWF approach, the weighted problem could be solved straightforwardly,

avoiding complicated derivation and calculation. When the weighting factors are set to ones, the

corresponding unweighed case is obtained. In the following description of algorithm implementation

and proof, we only provide weighted case.

From Proposition 2.2, when k∗ is obtained, P2(k
∗) is given. Then it is memorized and only

multiplied by a constant to compute sk∗. Thus, searching k∗ is a key point for the proposed GWF

and the procedure is stated as follows:

1) Initialize Ws = 0;PM = P ∗ = P ; i = 1.

2) Compute Ws ← Ws + wi;P
∗ ← P ∗ − (di+1 − di)Ws. Then i ← i+ 1, where the symbol “←”

represents the assignment operation.

3) If P ∗ > 0 and i ≤ K, PM = P ∗, and repeat the step 2); else, output k∗ = i− 1,Ws = Ws−wi

and sk∗ =
wk∗

Ws
PM .

We can observe that sk∗
wk∗

+dk∗ is the water level due to
sk∗
wk∗

+dk∗ =
si
wi

+di, for 1 ≤ i ≤ k∗ in (2.13).

As an alternative to the enumeration search in the Algorithm GWF, a Fibonacci-like search is

possibly used to speed up finding k∗ due to (non-increasing) monotonicity of the sequence {P2(k)}.
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Without loss of generality, let Fibonacci approximation ratios be 1
3
and 2

3
for searching k∗. The

method can be described as:

1st Step. Assume that a = 1 and b = K.

2nd Step. If a = b, then k∗ = a and go to Step 3 of GWF.

Else, a1 = �a+ 1
3
(b− a)�, b1 = �a + 2

3
(b− a)�.

3rd Step. If P2(a1) ≤ 0, then b = a1 − 1 and go to the 2nd Step;

If P2(b1) > 0, then a = b1 and go to the 2nd Step;

If P2(a1) > 0 and P2(b1) ≤ 0, then a = a1, b = b1 − 1 and go to the 2nd Step.

The number of loops to search k∗ is reduced into a complexity level of log3(K).

2.4 Weighted Water-Filling with Individual Peak Power

Constraints

In this section, we extend the CWF problem to include individual peak power constraints (WFPP).

The weighted WFPP problem is stated as follows. Given P > 0, as the total power or volume

of the water; the allocated power and the propagation path gain for the ith antenna are given as

si and ai respectively, i = 1, . . . , K; and K is the total number of the transmit antennas. Also,

the weights wi > 0, ∀i, and without loss of generality, {ai ·wi}Ki=1 being positive and monotonically

decreasing, find that

max{si}Ki=1

∑K
i=1wi log(1 + aisi)

subject to: 0 ≤ si ≤ Pi, ∀i;∑K
i=1 si ≤ P.

(2.22)

Comparing the problem (2.22) with (2.10), the constraint of 0 ≤ si is extended to 0 ≤ si ≤ Pi,

i.e., additional individual peak power constraints, and
∑K

i=1 si = P to
∑K

i=1 si ≤ P . The problem

(2.22) is thus referred to as (weighted) water-filling with sum and individual peak power constraints

(WFPP). In this section, we discuss the solution to the WFPP problem. By the way, the discussed

problem above is of multi-user cases. According to the multi-user information theory, the optimal

capacity point set determined by the optimal power allocation is located at the boundary of the
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capacity region that is a polygon. Therefore, any optimal capacity point can be found by setting up a

group of weights of the target problem, like our (2.22). The detail can refer to [5] and its references

therein. As a simple explanation, a group of weights plays a role of adjusting priority of channels

to obtain the optimal power allocation.

Proposition 2.2 in section 2.3 provides an explicit solution using geometric view approach. In-

terestingly, the proposed GWF can be applied to the WFPP problem with some modifications.

The following presents an algorithm which is a modification of the above discussed GWF and it is

termed as the GWFPP.

For convenience, the expression (2.12) can further be extended into the expression:

P2(ik) =
[
P −∑|E|−1

t=1 (dik − dit)wit

]+
, for k = 1, . . . , |E|, (2.23)

where E is a subsequence of the sequence {1, 2, . . . , K}, |E| is the cardinality of the set E, so E can

be expressed as {i1, i2, . . . , i|E|}. Especially, if E is taken as the sequence {1, 2, . . . , K}, then the

extended expression is regressed into the original expression (2.12). Similarly, some corresponding

changes in (2.13)-(2.15) are also done (i.e., the subscripts of sequence are replaced with those of the

subsequence). For avoiding tediousness, these extended expressions are still labelled as (2.13)-(2.15)

in the following statement of Algorithm GWFPP.

Algorithm GWFPP:

Input: vector {di}, {wi}, {Pi} for i = 1, 2, . . . , K, the set E = {1, 2, . . . , K}, and P .

1) Utilize (2.13)-(2.15) to compute {si}.

2) The set Λ is defined by the set {i|si > Pi, i ∈ E}. If Λ is the empty set, output {si}Ki=1; else,

si = Pi, as i ∈ Λ.

3) Update E with E \ Λ and P with P −∑
t∈Λ Pt. Then return to 1) of the GWFPP.

Remark 1. Algorithm GWFPP is a dynamic power distribution process. The state of this

process is the difference between the individual peak power sequence and the current power distri-

bution sequence obtained by the Algorithm GWF. The control of this process is to use (2.13)-(2.15)

of the Algorithm GWF based on the state mentioned above. Thus, a new state for next time stage
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appears. Therefore, an optimal dynamic power distribution process, the GWFPP, with the state

feedback is formed. Since the finite set E is getting smaller and smaller until the set Λ is empty,

Algorithm GWFPP carries out K loops to compute the optimal solution, at most.

Similar to the proof of the Proposition 2.2, we can obtain the following conclusion:

Proposition 2.3: Algorithm GWFPP can provide the optimal solution to the problem (2.22).

Proof of Proposition 2.3. If the final set E in Algorithm GWFPP is empty, it implies that∑K
i=1 Pi ≤ P . Then it is seen that the optimal solution si = Pi holds, for any i.

If it is non-empty, observing the stricture of (2.22), Proposition 2.3 is easily proved, similarly to

the previous one.

2.5 Weighted Water-Filling with Group Bounded Power

Constraints

The weighted WFGBP problem is stated as follows. Considering a cognitive network, given P ≥ 0,

as the total power of the CRs or volume of the water; the allocated power, the propagation path

gain and the weight for the ith CR are given as sk, ak and wk(≥ 0) respectively, k = 1, . . . , K, where

K is the total number of the CRs; and let {χi}Ti=1 be a partition of the index set: {1, . . . , K}. For
convenience, the elements of χi can be listed, monotonically increasing, i.e., i1 < i2 < . . . < i(χi)

� .

P i and P i, under the assumption of 0 ≤ P i ≤ P i, denote the lower bound and the upper bound

of the power constraints for the ith group of the CRs, ∀i. The generalized weighted water-filling

problem with group bounded power constraints under consideration then reads

max{sk}Kk=1

∑K
k=1wk log(1 + aksk)

subject to: 0 ≤ sk, ∀k;∑K
k=1 sk ≤ P ;

P i ≤
∑

k∈χi
sk ≤ P i, i = 1, . . . , T.

(2.24)

Compared the problem (2.24) with (2.22), the constraints of 0 ≤ si ≤ Pi, ∀i, are generalized to

P i ≤
∑

k∈χi
sk ≤ P k, i.e., additional group bounded power constraints, the lower bounds of which

can be used to guarantee the fair transmitted rate from the ith group of CRs, whereas the upper

bounds of which can be used to limit interference of the group with the primary users, for any i.
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That is to say, adjusting the just mentioned lower bounds can make the rate more fair, due to the

relationship between the power and the rate; and adjusting the just mentioned upper bounds can

more reasonably control the interference from SUs, also due to the same cause. The problem (2.24)

is thus referred to as (weighted) water-filling with group bounded power constraints (WFGBP). In

this subsection, we discuss the solution to the WFGBP problem.

Due to the explicit solution using geometric view approach that is provided in Proposition 2.2,

interestingly, the proposed GWF can be applied to the WFGBP problem with some modifications.

The following presents an extended algorithm, which is a meaningful modification of the GWF and

is termed as the GWFGBP.

Note, as P ≤ ∑T
i=1 P i, it is seen that there does not exist any solution to problem (2.24);

whereas, as
∑T

i=1 P i ≤ P , problem (2.24) is regressed into a trivial case without the sum power

constraint. Hence,
∑T

i=1 P i ≤ P ≤ ∑T
i=1 P i is assumed.

If P i = 0, P i >> 0, ∀i, and the weights are equal, then problem (2.24) is reduced into the regular

case that can be solved by the conventional weighted water-filling problem [44]; and if χi is regressed

a singleton and P i = 0, ∀i, then problem (2.24) is reduced into the WFPP problem. Thus, (2.24)

is a more general form of the RRA problem.

To find the solution to (2.24), the generalized geometric water-filling algorithm for the group

bounded power constraints (GWFGBP) is presented as follows: Firstly, for integrity of this new

algorithm, let us re-visit the four concepts: (i) power (water volume) above level k, P2(k); (ii) power

allocated to the ith group tth channel, sit ; (iii) water level step k∗; and (vi) power allocated for the

water level step sik∗ as below:

P2(k) =

⎡
⎣P −

E�−1∑
t=1

(
1

aikwik

− 1

aitwit

)
wit

⎤
⎦
+

, for k = 1, . . . , E�, (2.25)

where E is a subsequence of the sequence {1, 2, . . . , K}, E� is the cardinality of the set E, so E can

be written as {i1, i2, . . . , iE�}. Note that k in P2(k) is a subscript of the subsequence {it}E�

t=1 under

the assumption: 1 ≤ i1 < i2 < . . . < iE� ≤ K in the given set E, and the sequence {1, 2, . . . , K} is

a subsequence of itself under the definition of subsequence.
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Also, note

sit =

⎧⎪⎨
⎪⎩

wit

((
sik∗
wik∗

+ 1
aik∗wik∗

)
− 1

aitwit

)
, 1 ≤ t ≤ k∗

0, k∗ < t ≤ E�,
(2.26)

where the water level step k∗ is given as

k∗ = max
{
k
∣∣∣P2(k) > 0, 1 ≤ k ≤ E�

}
(2.27)

and the power level for this step is

sik∗ =
1

k∗P2(k
∗). (2.28)

If water-filling is vividly described as pouring the water of volume P into a tank with the bottom of

E� stairs, then P2(k) is the water volume above the kth stair. Along this analogue understanding,

we can interpret the geometric meaning of these four concepts under the simple assumptions of

E = {1, 2, . . . , K}, similarly mentioned above. Using these four concepts, the steps of GWFGBP

can be described as below.

Algorithm GWFGBP:

Input: the channel gains {ak}Kk=1, the weights {wk}Kk=1, the group lower and upper power

bounds {P i, P i}Ti=1, the index set E = (E0 =){1, 2, . . . , K}, the partition {χi}Ti=1, the sum power

constraint P and i = 1.

1) Initialize Wis = 0;PM = P ∗ = P i; j = 1.

2) Update Wis with Wis + wij and P ∗ with P ∗ − (dij+1
− dij )Wis. Then increase the iteration

index j to j + 1, where the used symbols are referred in Proposition 2.2.

3) If P ∗ > 0 and j ≤ (χi)
�, PM = P ∗, and repeat the step 2); else, output k∗ = j − 1,

sik∗ =
wik∗

Wis
PM , increase the iteration index i to i + 1 , and then repeat the step 1), until

i = T . Thus, {sk}Kk=1 is obtained. Let E be updated with {1, . . . , K}, Pt with P and 1
ak

with

1
ak

+ sk, ∀k. Finally in this step, let n = 1 and Λ = ∅, where ∅ stands for the empty set.

4) Then utilize (2.25)-(2.28) to compute {si}, which appear in the left hand-side (LHS) of (2.26).

Successively, assign �sk with sk, ∀k.
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5) The set Λn is defined by the set {i|∑j∈χi
�sj > P i − P i, 1 ≤ i ≤ T}. If Λn is the empty

set, output the solution {sk + �sk}Kk=1 to the problem (2.24); else, let
∑

j∈χi
�sj = P i − P i,

as i ∈ Λn. Further, continuously utilize similar expressions to (2.25)-(2.28), these similar

expressions only changing from Pt to P i − P i and from E� to χi for any i ∈ Λn, and then

obtain �sj , j ∈ ∪i∈Λnχi. Let Λ = Λ ∪ Λn.

6) Update E with E \ (∪i∈Λnχi); Pt with Pt−
∑

i∈Λn
(P i−P i). Then increase the iteration index

n to n+ 1, and return to 4) of GWFGBP.

Remark 2. GWFGBP is also a dynamic power distribution process. The state of this process is

the difference between the group bounded power sequence and current power distribution sequence

obtained by (2.25)-(2.28). The control of this process is to use the mentioned similar expressions to

(2.25)-(2.28) based on the state mentioned above. Thus, a new state for next time stage appears.

Therefore, an optimal dynamic power distribution process, GWFGBP, with the state feedback is

formed. Since the finite set E is getting smaller and smaller until there exists n such that the set

Λn is empty, GWFGBP carries out T loops to compute the optimal solution, at most.

For optimality of the proposed GWFGBP, we can obtain the following conclusion:

Proposition 2.4: Algorithm GWFGBP can provide the optimal solution to the problem (2.24)

via finite computation.

Proof of Proposition 2.4. Without loss of generality, assume that the final set Λ in GWFGBP

is empty. It is seen that the optimal solutions {�sj}j∈χi
hold, for any i, with only requiring to satisfy∑

j∈χi
�sj ≤ P i − P i and also satisfy the total sum power constraint for {�sk}. Thus, appending

all the groups of the solutions from GWFGBP, we can obtain the solution to the problem (2.24)

and its optimality is proven as follows.

The final set E, as a non-empty set, implies that

1
1

ak∗wk∗
+ sk∗+�sk∗

wk∗

=
1

1
ajwj

+
sj+�sj

wj

, as {j, k∗} ⊂ E, (2.29)

and there exists χi such that
∑

j∈χi
�sj > 0. Thus, under

∑
j∈χi

�sj > 0, let

λ =
1

1
ak∗wk∗

+ sk∗+�sk∗
wk∗

(2.30)
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and then μj = 0 as �sj > 0 and j ∈ χi. Further, according to the definitions of k∗ and sk∗, for

j ∈ E and �sj = 0, since

1
1

ak∗wk∗
+ sk∗+�sk∗

wk∗

>
1

1
ajwj

+
sj+�sj

wj

(2.31)

holds, then let

μj =
1

1
ak∗wk∗

+ sk∗+�sk∗
wk∗

− 1
1

ajwj
+

sj+�sj
wj

> 0 (2.32)

and σi = σi = 0, as χi ⊂ E. If the set χi implies
∑

j∈χi
�sj = 0, then let

σi = λ− 1
1

ak∗
i
(χi)

wk∗(χi)
+

sk∗(χi)

wk∗(χi)

≥ 0, (2.33)

and σi = 0. Also, if sj > 0, let μj = 0; if sj = 0, let μj = λ− σi − ajwj ≥ 0, keeping the mentioned

values of σi and σi.

On the other hand, if i ∈ Λ and j ∈ χi, then

0 <
∑
j∈χi

�sj = P i − P i, (2.34)

σi =
1

1
ak∗(χi)

wk∗(χi)
+

sk∗(χi)
+�sk∗(χi)

wk∗(χi)

− λ ≥ 0, (2.35)

let σi = 0 and μj = 0, as �sj > 0. If �sj = 0, then

μj = λ+ σi − 1
1

ajwj
+

sj
wj

> 0 (2.36)

and σi = 0.

Therefore, there have been the Lagrange multipliers λ, {σi, σi}Ti=1 and {μk}Kk=1 obtained above,

the Lagrange function of which, for the problem (2.24), is:

L({sk}, λ, {σi}, {σi}, {μk})
=

∑K
k=1wk log (1 + aksk)− λ

(∑K
k=1 sk − P

)
− ∑T

i=1 σi(
∑

j∈χi
sj − P i) +

∑T
i=1 σi(

∑
j∈χi

sj − P i) +
∑K

k=1 μksk.

(2.37)

Further, by observation, they satisfy the KKT conditions. Since the problem (2.24) is a differentiable

convex optimization problem with linear constraints, not only are the KKT conditions mentioned
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above sufficient, but they are also necessary for optimality. Note that it is easily seen that the

constraint qualification of the problem (2.24) holds. Proposition 2.4 hence is proved.

Remark 3. If we chose the CWF to solve the problem (2.24), similarly, a non-linear system

with non-linear equations and inequalities in multiple dual variables would have had to be solved:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑T
i=1

∑
j∈χi

(
wj

λ+σi−σi
− 1

ai

)+

= P, as j ∈ χi, i = 1, 2, . . . , T ;

P i ≤
∑

j∈χi

(
wj

λ+σi−σi
− 1

ai

)+

≤ P i, as i = 1, 2, . . . , T ;

σi(
∑

j∈χi

(
wj

λ+σi−σi
− 1

ai

)+

− P i) = 0, as i = 1, 2, . . . , T ;

σi(
∑

j∈χi

(
wj

λ+σi−σi
− 1

ai

)+

− P i) = 0, as i = 1, 2, . . . , T ;

λ ≥ 0; σi ≥ 0, σi ≥ 0, as i = 1, 2, . . . , T.

(2.38)

There seems no existing result that can solve this system.

As a note, the proposed algorithms in this section can output the unique optimal solution to each

of the corresponding problems, since the objective function of each of the problems has a negative

definite Hessian matrix.

2.6 Numerical Results and Complexity Analysis

2.6.1 Numerical Results

As an illustration for the proposed algorithm, some numerical examples are provided in this sub-

section. To clearly account for procedures of the proposed algorithms, the simple and easily checked

parameters are used. This way can make readers grasp essence of procedures in the proposed algo-

rithms without being tangled with tedious numerical computation. It stems from loose assumption

by our approach.

Example 1. Instance a case of the water-filling with individual peak power constraints (WFPP)

problem:

max{si}2i=1

∑2
i=1 log(1 + aisi)

subject to: 0 ≤ si ≤ 2, ∀i;∑2
i=1 si ≤ 3.

(2.39)

where a1 = 1 and a2 = 0.2. The problem given is a WFPP problem. Utilizing the proposed

GWFPP, the result of the first loop is s1 = 2, as part of the solution based on the algorithm. The
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remaining of the solution, s2, is allocated with zero. The result of the second loop is s1 = 2 and

s2 = 1, as full entries of the solution. According to Proposition 2.3, the result of the second loop

is guaranteed to be the optimal solution. For comparison purpose, the solution to the CWF is also

plotted in Fig. 2.2. In Fig. 2.2, the step depth for channel 1 and channel 2 are 1 and 5 respectively,

as the reciprocal of their respective channel gains. Using the CWF, the solution is shown in Fig.

2.2(a): all the power is allocated to the first channel with good channel condition. If consider peak

power constraints check, s1 may be clipped as shown in Fig. 2.2(b). With the proposed GWFPP,

we can directly obtain the optimal solution as shown in Fig. 2.2(c).

(a)

55

(b)

1 1

(c)

1

5

(a)

55

(b)

1 1

(c)

1

5

s1 = 3

s1 = 2

s2 = 1

s1 = 2

Figure 2.2: Illustration for Example 1, results for CWF and GWFPP. (a) the CWF: without
peak power restriction check (s1 = 3, s2 = 0); (b) the CWF: s1 is clipped considering peak power
constraint; (c) GWFPP: s1 = 2, s2 = 1.

Example 2. Instance another case of the water-filling with the WFPP problem with multiple

channels:

max{si}8i=1

∑8
i=1 log(1 + aisi)

subject to: 0 ≤ si ≤ i, ∀i;∑8
i=1 si ≤ 30.

(2.40)

where ai = 1/i, ∀i. The step depth is then monotonically increase from 1 to 8, as shown in Fig.

2.3. For the CWF, without considering the peak power constraints, the water level is solved as

8.25, then the power allocation is shown in Fig. 2.3(a) and Fig. 2.4(a). Considering peak power

constraints, the power levels for channels 1-4 are clipped and are set to their peak values as shown

in Fig. 2.3(b). The CWF doesn’t tell us where to and how to assign the clipped power.
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Utilizing the proposed GWFPP, the result of the first loop is si = i, as i = 1, . . . , 4, as part of

the solution. The remaining entries of the solution are allocated with zero, as shown in Fig. 2.4(b).

The result of the second loop is si = i, as i = 1, . . . , 5, also as part of the solution. The remaining

entries of the solution are allocated with zero, as shown in Fig. 2.4(c). The results of the third loop

are si = i, as i = 1, . . . , 5; and si = 12− i, as i = 6, 7, 8, as full entries of the solution, as shown in

Fig. 2.4(d) and Fig. 2.3(c). According to Proposition 2.3, the result of the third loop is the optimal

solution.

water level

7

1
2

3
4

5
6

7
88

water level

1
2

3

1
2

3
4

5
6

7
8

4
5

6

1

(a) (c)(b)

water level

7

1
2

3
4

5
6

7
88

water level

1
2

3

1
2

3
4

5
6

7
8

4
5

6

1

(a) (c)(b)

s1 = 7.25 s1 = 1

Figure 2.3: Illustration for Power Allocation using the CWF and the proposed GWFPP for Example
2. (a) Results for the CWF; (b) the CWF, clipped s1 to s4 due to peak power restrictions; (c) Results
for GWFPP.

It is shown that the solution for the problem with sum power constraint only (see for example,

Fig. 2.3(a) and Fig. 2.4(a)) is different from the solution of the corresponding problem with added

peak power constraints (see for example, Fig. 2.3(c) and Fig. 2.4(d)). From Fig. 2.3, we can observe

that for more complicated problems, the conventional water-fill exhibits its limitations. The water

level is no longer a unique level. Thus, our approach using the concept of water-fill is more general

to solve the RRA problems.

Example 3. Instance a case of the weighted water-filling with individual peak power constraints

(WFPP) problem:

max{si}2i=1

∑2
i=1wi log(1 + aisi)

subject to: 0 ≤ si ≤ 2, ∀i;∑2
i=1 si ≤ 3,

(2.41)
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Figure 2.4: Optimal Power Allocation Results for Example 2. (a) solution from the the CWF; (b)
1st iteration results of GWFPP; (c) 2nd iteration results of GWFPP; (d) 3rd iteration results of
GWFPP.

where a1 = 2, a2 = 0.1, w1 = 0.2 and w2 = 0.8. Utilizing the proposed GWFPP, the result of the

first loop is s1 = 2, as part of the solution. The remaining of the solution, s2, is allocated with zero.

The result of the second loop is s1 = 2 and s2 = 1, as full entries of the solution. From Proposition

2.3, the result of the second loop is guaranteed to be the optimal solution. The result is illustrated

in Fig. 2.5. In this figure, for channel 1, the stair width is 0.2, specified by its weight factor. The

level depth is 1/(a1w1) = 2.5. Similarly, for the channel two, the stair width is 0.8 and the level

depth is 1/(a1w1) = 12.5. The power allocated for channel 1 is 2, so the water level for channel 1

is 10. For channel 2, the power is 1, the water level is 1.25. Again, water level is not unique for

different channels.

Example 4. As a last example, we instance a case of the weighted water-filling with group
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Figure 2.5: Illustration for Example 3 using GWFPP (s1 = 2, s2 = 1).

bounded power constraints (WFGBP) problem:

max{si}3i=1

∑3
i=1wi log(1 + aisi)

subject to: 0 ≤ si, ∀i;∑3
i=1 si ≤ 5;

1 ≤ s1 + s2 ≤ 2.5;

1 ≤ s3 ≤ 2.5,

(2.42)

where a1 = a2 = a3 = 1, w1 = 0.3, w2 = 0.2 and w3 = 0.5. Utilizing the proposed GWFGBP,

the result from 1)-3) of GWFGBP is: s1 = 0.8, s2 = 0.2 and s3 = 1. Then continuously using

4)-6) of GWFGBP, the optimal solution is: s1
∗ = 0.8 + 0.9 = 1.7, s2

∗ = 0.2 + 0.6 = 0.8 and

s3
∗ = 1 + 1.5 = 2.5.

The results are shown in Fig. 2.6, where the stair width for the three channels are 0.3, 0.2, 0.5

respectively specified by their weighting factors. The step depth is calculated as 1/(aiwi), leading

to the step depth values as 3.33, 5, and 2 respectively for the three channels. The water level for

channel 1 and channel 2 is the same, but different with that of channel 3. It is interesting to observe

that with the same path gain of these three channels, the channel with the highest weight factor,

channel 3, is not necessarily being assigned as the highest power level due to the structure of the

constraints.
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Figure 2.6: Illustration for Multi-User Power Allocation Results by GWFGBP.

2.6.2 Complexity Analysis

As stated in [36, Section 3], the conventional WF algorithm had an exponential worst-case complex-

ity of 2K , where K is the number of the channels, even though the channel gains had been sorted in

decreasing order. Pointing to this case, [36] proposed an improved algorithm with worst-case com-

plexity of K iterations. Since each iteration consists of multiple arithmetic and logical operations,

here we use total number of operations as a measure of the complexity level (See [38, Chapter 8]).

The CWF approach has a worst-case complexity of K iterations, i.e., total O(K2) fundamental

arithmetic and logical operations under the 2(K+1) memory requirement and the sorted parameters

{wkak}Kk=1 (e.g. see [37, p. 137], for more details).

The proposed GWF algorithm occupies less computational resource. It is seen that it needs K

loops at most to search k∗ and it needs 4 arithmetic operations and 2 logical operations to complete

each loop. Thus, the worst-case computational complexity of the proposed solution is 8K+2 (from

the operations of 6K+2+2K) fundamental arithmetical and logical operations under the 2(K+1)

memory units to store {di}, {wi}, Ws, and PM .

For GWFPP, it needs K loops to compute the optimal solution, at most. The required number

of operations is, at worst,
∑K

i=1(8i+2) = 4K2+6K fundamental arithmetical and logical operations.

For GWFGBP, it needs T loops to compute the optimal solution, at most. The required number

of operations, at worst, is O(K2) fundamental arithmetical and logical operations.
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In this complexity analysis, we didn’t take sorting procedure into consideration. It is stated

in [36] that the channel gain sequences come from the eigenvalues of a matrix and many of the

algorithms to compute the eigenvalues and eigenvectors already produce the eigenvalues sorted. As

a note, CWF and GWF assumed the channel gain sequences to have been sorted.
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Chapter 3

RRM in Wireless Communications with

Energy Harvesting Technology

3.1 Introduction

There has been recent research effort on understanding data transmission with an energy harvesting

transmitter that has a rechargeable battery for green communications [33, 43, 35, 25]. Recently,

based on [35], [14] further investigates the issues of power allocation problems to minimize the grid

power consumption with random energy and data arrival. In more detail, for the implied problem

that is a convex optimization problem, rather than the original non-convex problem, a solution is

computed. For convenience and without loss of generality, the process is considered as a discrete

time process. The simplest and useful system model, illustrated in Fig. 3.1, assumes that there

are K epochs in the time period or interval (0, T ]. For each epoch, an event occurs which may

be the consequence of channel fading gain variation and new energy harvested. At the beginning

of the process, a sequence of the fading gain is denoted by {ai}, the value of each term of which

depends on epoch i. Thus, ai corresponds to epoch i. Similarly, we denote the corresponding

sequence of harvested energy by {Ein(t)}, where Ein(t) is the observed harvested energy for epoch

t, t = 1, . . . , K. For convenience, Ein(t), where t = i, is also expressed by Ein(i), ∀i. This setting

leads to new design insights in a wireless link with a rechargeable transmitter and fading channels.

Besides the allocated power to be non-negative, sum of successively harvested energy over time

determines a more complicated power constraint. Generally, the incoming energy can be stored in
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Figure 3.1: Illustration of simple system instance

the battery of the rechargeable transmitter for future use. However, it cannot be used before its

arrival. This point is called causality. Often, this battery owns a great storage capacity and it is

hardly filled fully from the incoming harvested energy. This assumption is taken into account in

this chapter, i.e., the maximum energy capacity of the battery, Emax � 0. This assumption also

lays down a solid foundation to solve the cases of finite Emax in our incoming research outcome. In

this setting, we can compute optimal transmission schemes that adapt the instantaneous transmit

power to the variations in the energy and fading levels. Since the proposed optimal dynamic

transmission power allocation policy results from the recursive computing, which does not utilize

any information in time future, the optimal dynamic power allocation can provide the optimal

solution to the maximum throughput for every sub-process or time window from epoch 1 until

epoch k, as k = 1, . . . , K. This advantage owns more challenge and could be utilized to efficiently

solve other problems.

In recent years, energy harvesting green communication has attracted great research attention.

In [33], data transmission with energy harvesting sensors is considered, and the optimal online policy

for controlling admissions into the data buffer is derived using a dynamic programming framework.

Dynamic programming can offer a real-time feedback policy or control, i.e., considering the time

constraint of decisions, but it needs to store a family of offline policies. Further, its object is a

dynamic optimization problem model, including the dynamic state transition equation(s). To avoid

the curse of dimensionality, a “good” dynamic optimization problem model should be needed or

set up. In [43], energy management policies stabilizing the data queue are proposed for single-user

communication and under a linear approximation, some delay optimality properties are derived. In

[12], the optimality of a variant of the back pressure algorithm using energy queues is shown. In [35]
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and references therein, optimization approaches are considered to attempt to obtain the maximum

throughput over AWGN and fading channels. Successively, in [25], throughput optimal energy

allocation is studied for energy harvesting systems in a time constrained slotted setting. Especially

in recent work, [35] and [25] investigated the same objective function, in order to attempt to use

offline machinery and conventional water-filling approach which come directly from the the KKT

conditions of the target problem. For the fading channel cases, [35], at the first paragraph on page

1737, used the four sentences to define its “directional water-filling algorithm”. The third sentence

is a key point but it still used the term “directional water-filling algorithm” to define the algorithm.

Thus, a circular logic or definition seems generated. As a result, optimality of the algorithm is

not provided either. Since Algorithm 2, on page 4815 in [25], used its embedded Algorithm 1 to

compute the solution to the cases of the full side information, an infinitely iterated algorithm may

be required. The proposed algorithm in this chapter could overcome these weaknesses.

With water-filling, more power is allocated to the channels with higher gains to maximize the

sum of data rates of all the sub-channels [44]. The conventional way to solve the water-filling

problem is to solve the KKT conditions, and then find the water-level(s) and the solutions. In this

chapter, we exploit our proposed GWF presented in Chapter 2, and construct a recursive algorithm

to solve the target problem and then prove its optimality, referred as RGWF. We have shown that

GWF owns less computation. This advantage becomes more significant, especially when GWF is

utilized multiple times.

Compared with the existing results on energy harvesting, the proposed RGWF owns three

distinct characteristics: 1) for the fading channel cases, the algorithm is clearly defined; 2) it

provides the exact optimal solution via finite computation recursively; 3) its optimality is strictly

proven. Therefore, following the proposed algorithm, exact solution can be obtained for any sub-

process from time (0, T ]. Numerical examples provide detailed procedures for determining the

optimal solution by the proposed RGWF. The contents in this chapter corresponds to that in [20].

In fact, our proposed algorithm RGWF can lay down the solid fundamental of the “on-line” optimal

power or energy allocation for our future energy harvesting study. To the best knowledge of ours, the

existing “on-line” algorithms on energy harvesting are all suboptimal, without setting up the solid

fundamental.

In the remaining of the chapter, the proposed GWF is discussed in Section 3.2 with sum power
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constraint. The proposed power allocation problem and RGWF is further investigated in Section

3.3. The transmission completion time minimization problems and their solution are investigated

in Section 3.4. Numerical examples are presented in Section 3.5.

3.2 Extended GWF for Preparation of EH system

This section is only preparation for the incoming recursive GWF, in this chapter, to maximize the

throughput under the EH system. It is a somewhat extended version of GWF, mentioned in the last

chapter. If the readers are familiar with GWF and the extended index of the starting channel and

the ending channel, this section can be skipped over. For Let L and K be two positive integers and

L ≤ K to denote the index of the starting channel and the ending channel respectively. Often, L

is assigned to be 1. The water-filling problem can be abstracted and generalized into the following

problem: given P > 0, as the total power or volume of the water; the allocated power and the

propagation path gain for the ith channel are given as si and ai respectively, i = L . . .K; and

K − L + 1 is the total number of channels. Furthermore, the weighted coefficient wi > 0, ∀i, and
{aiwi}Ki=L being monotonically decreasing, find that

max{si}Ki=L

∑K
i=L wi log(1 + aisi)

subject to: 0 ≤ si, ∀i;∑K
i=L si = P.

(3.1)

Since the constraints are that (i) the allocated power to be nonnegative; (ii) the sum of the power

equals P , the problem (3.1) is called the water-filling (problem) with sum power constraint.

In this chapter, we propose a novel approach to solve problem (3.1) based on geometric view.

The proposed Geometric Water-Filling (GWF) approach eliminates the procedure to solve the non-

linear system for the water level, and provides explicit solutions and helpful insights to the problem

and the solution.

Similarly, Figs. 3.2(a)-(d) give an illustration of the proposed GWF algorithm. Suppose there

are 4 steps/stairs (L = 1, K = 4) inside a water tank. For the conventional approach, the dashed

horizontal line, which is the water level μ, needs to be determined first and then the power allocated

(water volume) above the step is solved.
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Let us use di to denote the “step depth” of the ith stair which is the height of the ith step to

the bottom of the tank, and is given as

di =
1

aiwi
, for i = L, L+ 1, . . . , K. (3.2)

Since the sequence aiwi is sorted as monotonically decreasing, the step depth of the stairs indexed

as {L, · · · , K} is monotonically increasing.

Instead of trying to determine the water level μ, which is a real nonnegative number, we aim to

determine water level step, which is an integer number from L to K, denoted by k∗, as the highest

step under water. Based on the result of k∗, we can write out the solutions for power allocation

instantly.

Fig. 3.2(a) illustrates the concept of k∗. Since the third level is the highest level under water,

we have k∗ = 3. The shadowed area denotes the allocated power for the third step by s∗3.
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Figure 3.2: Illustration for the proposed Geometric Water-Filling (GWF) algorithm. (a) Illustration
of water level step k∗ = 3, allocated power for the third step s∗3, and step/stair depth di =

1
aiwi

. (b)
Illustration of P2(k) (shadowed area, representing the total water/power above step k) when k = 2.
(c) Illustration of P2(k) when k = 3. (d) Illustration of the weights as the widths.

In the following, P2(k), the water volume above step k, can be obtained considering the step
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depth difference and the width of the stairs as,

P2(k) =
[
P −∑k−1

i=L (dk − di)wi

]+
, for

k = L, . . . , K.
(3.3)

where (x)+ = max{0, x}.
As an example in Fig. 3.2(c), the water volume above step 1 and below step 3 with the width

w1 can be found as: the step depth difference, (d3 − d1) multiplying the width of the step, w1.

Therefore, the corresponding P2(k = 3) can be expressed as,

P2(k = 3) = [P − (d3 − d1)w1 − (d3 − d2)w2]
+,

which is an expansion of (6.14). Then we have the following proposition for integrity.

Proposition 3.1. The explicit solution to (3.1) is:

⎧⎪⎨
⎪⎩

si =
[
sk∗
wk∗

+ (dk∗ − di)
]
wi, L ≤ i ≤ k∗

si = 0, k∗ < i ≤ K,
(3.4)

where

k∗ = max
{
k
∣∣∣P2(k) > 0, L ≤ k ≤ K

}
(3.5)

and the power level for this step is

sk∗ =
wk∗∑k∗

i=L wi

P2(k
∗). (3.6)

Proposition 3.1 has been proven above.

GWF can be regarded as a mapping from the point of parameters

{L,K, {wi}Ki=L, {ai}Ki=L, P}

to the solution {si}Ki=L and the important water level step index: k∗. That is to say, it can be
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written as a formal expression:

{{si}Ki=L, k
∗} = GWF (L,K, {wi}Ki=L, {ai}Ki=L, P ).

Note that, for concision and without confusion from context, we may write the right hand side of

the expression, mentioned above, as GWF(L,K) to emphasize time stages from L to K.

3.3 Maximizing Throughput in Fading Channel and Algo-

rithm RGWF

In this section, we firstly introduce the maximizing throughput problem in fading channel and the

conventional approach from its KKT conditions. Then, we present the proposed online geometric

algorithm.

3.3.1 Problem Statement and Conventional Approach

As shown in Fig. 3.1, we consider the time period from (0, T ]. The channel state changes or/and

energy arrives K times in this time period. Hence, we have K epochs, with Li being the time

length of the ith epoch. As a recall, {ai} and {Ein(i)} have been claimed above. Our objective is

to maximize the number of bits transmitted by the deadline T . The optimal power management

strategy is such that the transmit power is constant in each event epoch. Therefore, let us again

denote the transmit power in epoch i by si, for i = 1, . . . , K.

We have causality constraints due to energy arrivals and an Emax constraint due to finite battery

size. Hence, the optimization problem in this fading case becomes [35]:

max{si}Ki=1

∑K
i=1

Li

2
log(1 + aisi)

subject to: 0 ≤ si, ∀i;∑l
i=1 Lisi ≤

∑l
i=1Ein(i), as l = 1, . . . , K;∑l

i=1Ein(i)−
∑l

i=1 Lisi ≤ Emax, ∀l,

(3.7)

where if we interpret the observed properties of the optimal power allocation scheme as a water-

filling scheme mentioned above, Ein(i) units of water is filled into a rectangle of bottom width
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Li, ∀i. With the assumption of Emax � 0, the last constraint of (3.7) disappears. Note that the last

power sum constraint in this narrowed problem is of equality. Furthermore, for unifying parameter

notation, through a change of variables, we can obtain an equivalent problem to the narrowed one

by Emax � 0 as follows:

max{si}Ki=1

∑K
i=1wi log(1 + aisi)

subject to: 0 ≤ si, ∀i;∑l
i=1 si ≤

∑l
i=1Ein(i), ∀l,

(3.8)

where wi ← Li

2
, ai ← ai

Li
and si ← Lisi. Note that the symbol ← has been used at last section as

assignment operator.

To find the solution to problem (3.8), the parameters of which are given with off-line, the

conventional water-filling approach usually starts from the Karush-Kuhn-Tucker (KKT) conditions

of the problem as a group of the optimality conditions, then the following system in the variables

{si} and the dual variables can be written as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

si =

(
wi∑K
j=i λj

− 1
ai

)+

, for i = 1, . . . , K,

∑l
i=1wi

(
1

∑K
j=i λj

− 1
aiwi

)+

≤ ∑l
i=1Ein(l), ∀l

λj ≥ 0, ∀j

(3.9)

where λj is the dual variable corresponding to the jth sum power constraint, for any j. The solution

to (3.9) is the solution of the problem (3.8). However, it is not easy to solve (3.9).

3.3.2 Recursive Geometric Water-Filling and Its Optimality

In this section, we propose a novel approach to solve problem (3.8) using our proposed GWF

approach. Similar to those assumptions in [25, 35], the parameters of problem (3.8) are given. The

constraint in (3.8) can be expanded into a matrix form as

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

1 1

· · ·
1 1 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

s1

s2

...

sK

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑1
i=1 Ein(i)∑2
i=1 Ein(i)

...∑K
i=1 Ein(i)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.10)
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Note the coefficients matrix forms a triangle matrix, as a different mathematical structure from

that conventional Water-Filling deals with, mentioned before.

The proposed RGWF(K) is stated as in the following Algorithm description:

Algorithm 1 Pseudocode for RGWF

1: Initialize: L = 1, K, Ein(1), w1, a1;

2: Output the result for epoch 1:

RGWF(1) = s∗1 = Ein(1);

3: for L = 2 : 1 : K do

4: Input: {Ein(L), wL, aL};
5: {s′k}L−1

k=1 = RGWF(L− 1);

6: for n = L : −1 : 1 do

7: W = {wj}Lj=n;

8: A = {aj}Lj=n;

9: ST =
∑L−1

j=n s′j + Ein(L);

10: {{s∗k}Lk=n, k
∗} = GWF(n, L,W,A, ST );

11: if 1
ak∗wk∗

+ sk∗
w∗

k
≥ 1

an−1wn−1
+

s′n−1

wn−1
and s′n−1 > 0, or n == 1 then

12: Output: RGWF(L) = {s′1, . . . , s′n−1, s
∗
n, . . . , s

∗
L},

13: Move to next epoch, i.e., go to Line 16;

14: end if

15: end for

16: end for

RGWF is illustrated as follows. Based on Lines 1-2 of RGWF, as the base case of the recursive

definition, the inner loop (Lines 6-15) can be illustrated in Fig. 3.3 where it is assumed that the

current processing epoch L = 6. The optimal power allocation for the first 5 epochs has been

completed as shown in the shadowed area in Fig. 3.3(a). Epoch 6 is now under processing. Based

on Line 9, since there is no harvested energy input in epoch 6, the power level for epoch 6 is zero and

the water level is just the fading level. Line 10 calculates that k∗
e = 5 and then Line 11 compares

the water level of current processing window with that of k∗
eth epoch. Since the comparison in Line

11 does not hold, the algorithm goes back to Line 6 by decreasing n to 5 and then the processing

window is extended to include epochs 5 and 6 as shown in Fig. 3.3(b). Fig. 3.3(b) also shows
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(d)
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(b)
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Figure 3.3: Illustration for Algorithm RGWF (Line 6-15 for L = 6), harvested energy having been
allocated up to epoch 5; horizontal-wave shadowed areas denote power allocation for the processing
window; (a) n = 6, k∗

e = 5; (b) n = 5, k∗
e = 4; (c) n = 4, k∗

e = 3; (b) n = 3, k∗
e = 2;
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the power allocation from GWF(5,6) in Line 9 as the horizontal-wave shadowed areas. Still, the

comparison of the water level non-decreasing in Line 11 does not hold, the algorithm returns to

Line 6 again by decreasing n = 4. As shown in Fig. 3.3(c), the processing window is epochs 4 to 6.

The water level non-decreasing condition still is not satisfied. The processing window is extended

from epochs 3 to 6 as shown in Fig. 3.3(d). With the new water level in the processing window,

the water level non-decreasing condition up to epoch 6 is satisfied. As a result, RGWF(L = 6) is

solved which is recursively obtained from RGWF(L− 1 = 5) as illustrated in Fig. 3.3.

A summation is used in Line 8. If the lower limit of the summation is greater than the upper

limit, the result of this summation is defined as zero, as well known. Through this mechanism, the

solution {s∗i }Ki=1 is obtained as RGWF(K) within finite loops.

The proposed algorithm eliminates the procedure to solve the non-linear system (3.9) in multiple

variables and dual variables, provides online and exact solutions via finite computation steps, and

offers helpful insights to the problem and the solutions. To guarantee optimality of RGWF, we have

the following proposition:

Proposition 3.2. RGWF can compute the optimal exact solution to problem (3.8) within finite

loops.

Proof of Proposition 3.2. From the algorithm RGWF(K), there exists n1, where 1 ≤ n1 ≤
K − 1, and {s∗i }n1

i=1 = [RGWF(K)]|{1,...,n1}. Thus, there are the non-negative Lagrange dual vari-

ables {λi}n1
i=1 and {μi}n1

i=1 such that KKT conditions, of the restriction of the optimization problem

RGWF(K) to the set {1, . . . , n1}, hold. This restriction means a sub-problem:

max
{si}n1

i=1

n1∑
i=1

wi log(1 + aisi) (3.11)

subject to:
l∑

i=1

si ≤
l∑

i=1

Ein(i), (3.12)

0 ≤ si, as 1 ≤ l ≤ n1 − 1; (3.13)
n1∑
i=1

si =
n1∑
i=1

s∗i . (3.14)

Further, {λi, μi} correspond to the ith sum power constraint and power non-negativeness constraint,
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respectively. On the other hand,

{{s∗i }Ki=n1+1, k
∗} = GWF(n1 + 1, K, {wj}, {aj},

K∑
j=n1+1

s∗j ).

Thus, there are also the non-negative Lagrange dual variables λ and {μi}Ki=n1+1 that are the KKT

conditions of the following sub-problem:

max
{si}Ki=n1+1

K∑
i=n1+1

wi log(1 + aisi) (3.15)

subject to: 0 ≤ si, ∀i; (3.16)
K∑

i=n1+1

si =

K∑
i=n1+1

s∗i . (3.17)

Since GWF(n1 +1, K) has one sum power constraint and specific finite loop operations, we can

assign

λK = λ =
1

1
ak∗+wk∗

+ sk∗
wk∗

(3.18)

λK−1 = · · · = λn1+1 = 0 (3.19)

with the fine k∗, as the minimum positive step index of the set: {n1+1, . . . , K}, where the adjective
“fine” expresses that k∗ can be used to clarify whether the allocated power to be positive or zero,

and determine the water-level, at once. Also due to characteristics of the loop transition from n1+1

to n1 during carrying out RGWF(n1), and the points mentioned above, it is seen that the feasible

solution of {s∗i }Ki=1, computed by RGWF(K), is indeed the optimal solution to (3.8).

Therefore, Proposition 3.2 is proved.

Remark 1. RGWF is a recursive algorithm with the characteristics of optimal dynamic online

power distribution. Dynamics of this algorithm but that for the target problem is shown by the

generalized varying structure state equation on dynamics:

RGWF(L+ 1) = [[RGWF(L)]|Λ1 , [GWF(n, L+ 1)]|Λ2],

for L = 1, . . . , K − 1,
(3.20)

where n is the index of the starting epoch of the currently processing window (i.e., it satisfies Line
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11 of RGWF), the set Λ1 denotes {s′k}n−1
k=1 and this set is referred to in RGWF mentioned above, and

the set Λ2 denotes {sk}L+1
k=n and this set is referred to in (3) mentioned before. Thus, we extend the

concept of algorithm [53], as a static mapping to a dynamic mapping as a new concept of algorithm

to efficiently solve the problems. In this process, RGWF(L) can be regarded as the generalized

system state at the time stage (or epoch) L; GWF(n, L + 1) can be regarded as the generalized

system control at the time stage (or epoch) L; and then RGWF(L+ 1), as a state at the next time

stage, can be derived or determined from the previous state and control. Due to the optimality of

RGWF(L) from Proposition 3.2 for any L, the proposed algorithm is indeed an optimal dynamic

water-filling algorithm with high efficiency. In addition, the proposed algorithm RGWF(K) in this

section can output the unique optimal solution to the corresponding problem, since the objective

function of the problem has a negative definite Hessian matrix.

3.4 Transmission Completion Time Minimization

In previous section, RGWF was discussed to efficiently solve the throughput maximization problem.

In this section, RGWF is extended to solve the transmission completion time minimization problem.

Now assume that the transmitter has B bits to be transmitted to the receiver. Our objective now

is to minimize the time required to transmit these B bits. This problem is called the transmission

completion time minimization problem. In [46] and [50], this problem is formulated and solved for

an energy harvesting system in a non-fading environment. In [35], the problem is attempted to be

solved offline in a fading channel. In this chapter, we use the proposed RGWF to solve the problem

in a fading channel with recursive computation, referred to as RGWFn.

The transmission completing time minimization can be stated as follows, with assuming N to

be a positive integer and N ≤ K.

min
{{si}Ni=1,N}

N (3.21)

subject to:

N∑
i=1

wi log(1 + aisi) = B; (3.22)

0 ≤ si, ∀i; (3.23)
l∑

i=1

si ≤
l∑

i=1

Ein(i), l = 1, . . . , N. (3.24)
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The proposed RGWFn is presented in the algorithm description shown below.

Compared with the steps of RGWF, in the first line of the algorithm, RGWFn introduces

B as a parameter while others being the same. In line 8, RGWFn sequentially processes from

the second epoch to the Kth epoch to output the optimal value N∗ and its optimal solution:

{RGWFn(N∗), N∗}. Similarly, the inner “for” loop updates power levels for the current processing

epoch (L) and its previous L − n epochs to form a processing window. GWF algorithm is also

applied to this window to find a common water level. Note that a new “if” clause is inserted into

the outer level “if” clause (for the water level non-decreasing condition check). The function of this

inner “if” clause is to check whether the transmitted bits reach B. Therefore, it is the normal exit

of the algorithm (lines 23-28). For convenience, the condition of this new “if” clause is called the

criterion of RGWFn. This is also due to the importance of the criterion in the following proposition.
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Algorithm 2 RGWFn, Based on RGWF
1: Initialize: L = 1,K,B,Ein(1), w1, a1;

2: Output the result for epoch 1:

s′1 = RGWF(1) = Ein(1),

3: if
∑1

i=1 wi log (1 + ais
′

i) ≥ B then

4: RGWFn(1) = s∗1 = 1
aL

(2
B
wL − 1);

5: N∗ = 1;

6: Exit the algorithm;

7: end if

8: for L = 2 : 1 : K do

9: Input: {Ein(L), wL, aL};
10: {s′k}L−1

k=1 = RGWF(L− 1);

11: for n = L : −1 : 1 do

12: W = {wj}Lj=n;A = {aj}Lj=n;

13: ST =
∑L−1

j=n s′j + Ein(L);

14: {{s∗k}Lk=n
, k∗} = GWF(n, L,W,A, ST );

15: if n > 1 then

16: k∗e = max{k|s′k > 0, 1 ≤ k ≤ n− 1},
else k∗e = 1;

17: end if

18: if
1

ak∗wk∗
+ sk∗

w∗
k

≥ 1
akewke

+
s′ke
wke

then

19: RGWF(L) = {s′1, . . . , s′n−1, s
∗

n, . . . , s
∗

L};
20: T1 =

∑n−1
i=1 wi log (1 + ais

′

i);

21: T2 =
∑L

i=n wi log (1 + ais
∗

i );

22: T3 =
∑L−1

i=n wi log (1 + ais
∗

i );

23: if T1 + T2 ≥ B then

24: B1 = B − T1 − T3;

25: s∗L = 1
aL

(2
B1
wL − 1);

26: RGWFn(L) = {s′i}n−1
i=1 ∪ {s∗j}Lj=n;

27: N∗ = L;

28: Exit the algorithm;

29: end if

30: Move to next epoch, i.e., go to Line 31;

31: end if

32: end for

33: end for
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Proposition 3.3. If there does not exist L such that the criterion in RGWFn:

n−1∑
i=1

wi log (1 + ais
′
i) +

L∑
i=n

wi log (1 + ais
∗
i ) ≥ B (3.25)

holds, where the symbols in (3.25) keep the same meaning as those in the statement of RGWFn,

then there is no solution to problem (3.21). If the criterion holds, then the obtained N∗ is the

optimal value and {RGWFn(N∗), N∗} is the exact optimal solution.

Proof of Proposition 3.3. For the given B, if there does not exist L such that the criterion in

RGWFn:
n−1∑
i=1

wi log (1 + ais
′
i) +

L∑
i=n

wi log (1 + ais
∗
i ) ≥ B

holds, it implies that the optimal value of problem (3.8) is strictly less than B, corresponding to

Proposition 3.2. Thus, the first constraint of problem (3.21) never holds. Then there is no solution

to problem (3.21).

Then, assume that there exist N∗ and RGWF(N∗) such that

n−1∑
i=1

wi log (1 + ais
′
i) +

N∗∑
i=n

wi log (1 + ais
∗
i ) ≥ B,

where

RGWF(N∗) = {s′1, . . . , s′n−1, s
∗
n, . . . , s

∗
N∗}.

According to the obtained N∗ from the RGWFn algorithm, the optimal value of the problem

max
{si}Ni=1

N∑
i=1

wi log(1 + aisi)

subject to: 0 ≤ si, ∀i;
l∑

i=1

si ≤
l∑

i=1

Ein(i) for l = 1, . . . , N,

is less than B, where RGWF(N) is the optimal solution to this problem, for N = 1, . . . , N∗ − 1.

Hence, the optimal value of problem (3.21) is not less than N∗. Stemming from the statement of

RGWFn, {RGWFn(N∗), N∗} is a feasible solution to problem (3.21) and further N∗ is the evaluated

objective value of problem (3.21) at {RGWFn(N∗), N∗}. Thus, N∗ is a feasible value. Together
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with the mentioned fact that the optimal value of problem (3.21) is not less than N∗, as a result,

N∗ is the optimal value and {RGWFn(N∗), N∗} is the exact optimal solution to problem (3.21).

Therefore, Proposition 3.3 is proved.

Remark 2. RGWFn is an optimal dynamic progressive process to compute the transmission

completion time minimization. This progressive process is ended at current epoch and then output

the minimum completing time once the criterion is satisfied. Hence, it doesn’t need the informa-

tio/solution of the entire process of the problem(s).

In addition, given the lengths of epochs: {Li}, due to wi =
Li

2
, ∀i, the minimum transmission

completion time duration is 2
∑N∗

k=1wi, which can be computed by finding N∗.

3.5 Numerical Examples for RRM with Energy Harvesting

Transmission

The system model is static. However, our computation does not wait full information input but it

can compute the exact optimal solution through finite computation for every sub-process that starts

from epoch 1 and ends at epoch k, as k = 1, . . . , K, including the entire process. This point can also

lean toward designing other efficient algorithms, such as the algorithm to compute the minimum

transmission completion time to avoid a tedious and huge backlog of offline or static computation.

The minimum transmission completion time problem can be refereed to in [35] for details. Due to

the limit of pages, its discussion is omitted.

For simple illustration, we assume only three epochs, each with unit weight (wi = 1, i = 1, 2, 3).

At the beginning of each epoch, unit energy is harvested (Ein(i) = 1, i = 1, 2, 3).

Example 1. Suppose the fading profile for the three epochs is a1 = 1, a2 =
1
2
and a3 =

1
3
.

Epoch 1 is first scanned to output RGWF(1)=s1 = 1 as shown in Fig. 3.4(a). Now we move

to epoch 2 and apply GWF(2,2) and output s2 = 1. Check if the water level of epoch 2 (2+1=3)

is greater than the water level of epoch 1 (1+1=2). It is true then output the optimal solution at

epoch 2: s1 = 1; s2 = 1 as shown in Fig. 3.4(b). Similarly, for epoch 3, by applying GWF(3,3), we

have s3 = 1. Check the water level, it satisfies non-decreasing condition. So the algorithm outputs

the completed solution as shown in Fig. 3.4(c).

Example 1 is calculated out without power level adjustment. In the following example, we
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1
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(a) (b) (c)

2
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2 3
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(a) (b) (c)

2
1
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1

2
3

Ein(1) = 1 Ein(3) = 1Ein(2) = 1

s1 = 1

Figure 3.4: Procedures to solve Example 1: (a) s1 = 1; (b) s1 = 1, s2 = 1; (c) s1 = 1, s2 = 1, s3 = 1.

illustrate the power level adjustment procedure.

Example 2. Suppose the fading profile for the three epochs is a1 = 1, a2 = 2 and a3 = 3. For

this example, the proposed RGWF is illustrated in the following fig. 3.5.

(a) (b) (c)

1/2
1

1/3 1/2 1/3
1 1

1/2 1/3
(a) (b) (c)

1/2
1

1/3 1/2 1/3
1 1

1/2 1/3

Ein(2) = 1 Ein(3) = 1Ein(1) = 1

s1 = 0.75
s1 = 1

s1 = 11/18

Figure 3.5: Procedures to solve Example 2: (a) s1 = 1; (b) s1 = 0.75, s2 = 1.25; (c) s1 = 11/18, s2 =
20/18, s3 = 23/18.

First, we scan the first epoch and RGWF(1) output s1 = 1, as shown in Fig. 3.5(a). Then move

to the second epoch, by applying GWF(2,2), it gives s2 = 1. Now check the water level of epoch

2 is 1+1/2=1.5 and the water level for epoch 1 is 1+1=2. Water level non-decreasing condition

is violated. Power level adjustment procedure is triggered. By applying GWF to the first two

epochs, we have GWF(1,2)={s1 = 0.75, s2 = 1.25}. With this power adjustment, the new water

level for both epochs is 1.75, satisfying non-decreasing condition. The output for RGWF(2) is then

s1 = 0.75, s2 = 1.25 as shown in Fig. 3.5(b).
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Now we move to epoch 3, the output of GWF(3,3)=s3 = 1. The corresponding water level for

epoch 3 is 1+1/3, which is lower than the water level of the previous epoch (=1.75). Then the

power adjustment is triggered. The algorithm calculates the power allocation for current epoch

(epoch 3) and its previous epoch (epoch 2) to have output GWF(2,3)={s2 = 25
24
, s3 =

29
24
}. We move

to water level check step. The new water level of epoch 2 (1
2
+ 25

24
= 37

24
) is lower than the water level

of epoch 1 (1.75). Therefore, power adjustment needs to include epoch 1 as well. We then compute

GWF(1,3), the output is {s1 = 11
18
, s2 =

11
18

+ 1
2
, s3 =

11
18

+ 2
3
}, which is the completed output for the

optimal solution as shown in Fig. 3.5(c).

Example 3. Suppose the fading profile for the three epochs is a1 = 1, a2 = 1
2
and a3 = 1

3
;

the energy harvesting at the beginning of each epoch is Ein(1) = Ein(2) = Ein(3) = 2. The

information required for transmission is B = 3 bits (strictly speaking, B bits/Hz). Then the

minimizing transmission completion time problem is

min
{{si}Ni=1,N}

N (3.26)

subject to:

N∑
i=1

log(1 + aisi) = 3; (3.27)

0 ≤ si, ∀i; (3.28)
l∑

i=1

si ≤ 2l, l = 1, . . . , N. (3.29)

Epoch 1 is first scanned to output RGWF(1)= s1 = 2 as shown in Fig. 3.6(a). Since log (1 + 2) <

B(= 3), now we move to epoch 2 and apply GWF(2,2) and output s2 = 2. Check if the water

level of epoch 2 (2+2=4) is greater than the water level of epoch 1 (1+2=3). It is true then

output the temporary optimal solution at epoch 2: s1 = 2; s2 = 2 as shown in Fig. 3.6(b). Since

log (1 + 2)+log (1 + 1) < B(= 3), now we move to epoch 3 and apply GWF(3,3) and output s3 = 2.

Check if the water level of epoch 3 (3+2=5) is greater than the water level of epoch 2 (2+2=4).

It is true then output the temporary optimal solution at epoch 3: s1 = 2; s2 = 2; s3 = 2. Since

log 3 + log 2 + log 5
3
> B, B1 = 3 − (log 3 + log 2) = log 4

3
. Then, s3 = 1

1
3

(2log
4
3 − 1) = 3 × (1

3
) = 1.

Therefore, The optimal solution is {{s∗1 = 2, s∗2 = 2, s∗3 = 1}, N∗ = 3} and the optimal value is

N∗ = 3 as shown in Fig. 3.6(c).

Example 4. Suppose the fading profile for the three epochs is a1 = 1, a2 = 2 and a3 = 3;
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Figure 3.6: Procedures to solve Example 3: (a) s1 = 2; (b) s1 = 2, s2 = 2; (c) s1 = 2, s2 = 2, s3 = 1.

the energy harvesting at the beginning of each epoch is Ein(1) = Ein(2) = Ein(3) = 1. The

information required for transmission is B = log(20) bits. The minimizing transmission completion

time problem is described as

min
{{si}Ni=1,N}

N (3.30)

subject to:

N∑
i=1

log(1 + aisi) = log(20); (3.31)

0 ≤ si, ∀i; (3.32)
l∑

i=1

si ≤ l, l = 1, . . . , N. (3.33)

Epoch 1 is first scanned to output RGWF(1)= s1 = 1 as shown in Fig. 3.7(a). Since log (1 + 1) <

B(= log(20)), now we move to epoch 2 and apply GWF(2,2). It gives s2 = 1. Check the water level

of epoch 2 which is 1+1/2=1.5 and the water level for epoch 1 is 1+1=2. Water level non-decreasing

condition is violated. Power level adjustment procedure is triggered. By applying GWF to the first

two epochs, we have GWF(1,2)= {s1 = 0.75, s2 = 1.25}. With this power adjustment, the new

water level for both epochs is 1.75, satisfying non-decreasing condition. The output for RGWF(2)

is then s1 = 0.75, s2 = 1.25 as shown in Fig. 3.7(b). Since log (1 + 0.75) + log (1 + 2× 1.25) < B,

we move to epoch 3 and apply GWF(3,3). Similarly as in Example 2, the output of RGWF(3)

is {s1 = 11
18
, s2 = 11

18
+ 1

2
, s3 = 11

18
+ 2

3
}. Since log (1 + s1) + log (1 + 2s2) + log (1 + 3s3) > B,

B1 = log 20−log (1 + 11
18
)−log (1 + 2× 20

18
) = log (10× (18

29
)
2
). Then, s3 =

1
3
(2log (10×( 18

29
)
2
)−1) = 2399

2523
.

Therefore, the completed optimal solution is {{s∗1 = 11
18
, s∗2 = 20

18
, s∗3 = 2399

2523
}, N∗ = 3} as shown in

45



Fig. 3.7(c).

(a) (b) (c)

1/2
1

1/3 1/31/2
1 1

1/2 1/3
(a) (b) (c)

1/2
1

1/3 1/31/2
1 1

1/2 1/3

Ein(2) = 1 Ein(3) = 1Ein(1) = 1

s1 = 0.75
s1 = 1

s1 = 11/18

Figure 3.7: Procedures to solve Example 4: (a) s1 = 1; (b) s1 = 0.75, s2 = 1.25; (c) s1 = 11/18, s2 =
20/18, s3 = 2399/2523.
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Chapter 4

Optimal Recursive Power Allocation for

Energy Harvesting System with Multiple

Antennas

In this chapter, we investigate the optimal recursive power allocation policies with energy harvesting

wireless nodes equipped with multiple antennas in a fading channel.

This optimization problem includes several complex matrices as optimization variables. As a

difference, existing optimization theory and methods have been designed to solve these problems

over real space. Naturally, the optimization variables have been assumed to be points in the real

space. We proposed a transform approach and designed the algorithms for solving the throughput

maximization problem and transmission time minimization problem for a MIMO (multiple-input

multiple-output) system. The algorithms were further extended to solve throughput maximiza-

tion problem of a hybrid system with both harvesting energy and grid power. Numerical results

illustrated the algorithms steps and significant efficiency of the proposed algorithms.

To the best knowledge of the authors, there is no existing algorithms reported in the open

literature to obtain exact solutions to the proposed problems. Significant features of the proposed

algorithms include i) they provide the exact optimal solutions via efficient finite computation; ii)

optimality of the proposed algorithms is strictly proven.

With the property from the aid of the EH and the utilization of MIMO technology, a cooperative

MIMO EH communication system (MIMO EH) is formed. The introduction is stated in Section
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4.1. System models and proposed maximum throughput problems are mentioned in Section 4.2.

In order to find the solution to the maximum throughput problems, the recursive geometric water-

filling (RGWF) is then presented in Section 4.3. Then, for minimizing the transmission completion

time problems of the MIMO EH, the algorithms based on RGWF is presented in Section 4.4.

Extending the MIMO EH to the hybrid system of MIMO, EH and power grid is carried out in

Section 4.5. Numerical results and computational complexity are investigated in Section 6.

4.1 Introduction

Prolonging the lifetime of the batteries in wireless communication systems is extremely important.

One possible technique to overcome the limitation of battery lifetime is to harvest energy from the

environment, such as vibration absorption devices, solar energy, wind energy, thermal energy, and

other clean energy. In such systems, energy harvesting has become a preferred choice for supporting

“green communication”. Furthermore, the multiple-input multiple-output (MIMO) technology [5]

uses multiple antennas at either the transmitter or the receiver or both sides to significantly increase

data throughput and link range without additional bandwidth or transmitted power. Thus it plays

an important role in advanced wireless communication systems. The focus of this chapter is to

investigate the optimal power allocation policies to enhance transmission efficiency for wireless

communications with multiple antennas and energy harvesting in fading environment.

4.1.1 Our Work

In our recently published paper [19], we proposed an efficient geometric approach (GWF) to solve

water-filling problems. The proposed GWF, as a functional block, was recursively used to solve the

power allocation problem with energy harvesting under both fading and single input single output

(SISO) channels, i.e., single antenna cases, in [20]. In this chapter, we extend the algorithms in [20]

to the MIMO system to solve the problems with energy harvesting causal constraints. Note that

[20] cannot directly be used to solve the MIMO cases. Furthermore, it did not consider the related

problems under a hybrid system with the coexistence of harvested energy and grid power.

Due to the recursive feature and the repeatedly application of the GWF [19], the proposed

algorithms are referred to as RGWFM (Recursive GWF for MIMO) for throughput maximization

48



and RGWFMn/RGWFMt for transmission minimization problems. They can handle more general

cases of the multiple antennas than the cases of the single antenna [20].

Compared with the existing results, the proposed algorithms own two significant and distin-

guished features: i) it provides the exact optimal solution via finite computation with cubic polyno-

mial computational complexity; ii) its optimality is strictly proven. Due to the usage of recursion,

the solutions to a family of the maximum throughput problems for any of the sub-processes starting

from epoch 1 to epoch k, for k = 1, · · · , K, can be obtained (where K is the index of the last epoch

in the process).

Our major contribution in this chapter is: Using our earlier geometric water-filling theory,

the maximum throughput and the minimum transmission completion time problems for energy

harvesting with multiple antennas are solved with optimal and exact solutions. The throughput

maximization problem is further extended to a hybrid system including grid power and optimal

solutions being provided. To the best knowledge of the authors, no existing algorithms reported in

the open literature could provide exact solutions to the target problem.

4.2 System Model and Proposed Problems

In this section, since system model can be referred to in that of last chapter, we directly introduce

the transmission throughput maximization problem with energy harvesting in a fading channel. For

convenience and without loss of generality, the process is assumed to be a discrete time process.

For a MIMO-enhanced channel, assume that there are one receiver with Nr antennas, and one

transmitter or user, which is equipped with Nt antennas. The received signal at the ith epoch,

yi ∈ CNr×1, at the receiver is described as

yi = H†
ix

i + Z, Hi ∈ C
Nt×Nr , i = 1, 2, · · · , K, (4.1)

where Hi is the channel gain matrix; xi ∈ CNt×1 is the complex input signal vector transmitted at

the ith epoch and is assumed to be a Gaussian random vector, having zero mean for any i, and

{xi}Ki=1 are independent on the meaning of probability theory. The noise term, Z ∈ C
Nr×1 is an

additive Gaussian noise random vector, i.e., Z ∼ N(0, I). The channel input, {xi}Ki=1 and Z are also

assumed to be mutually independent. Furthermore, the covariance matrix of the transmit power at
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the ith epoch can be expressed as

Si
�
= E

[
xi(xi)†

]
, i = 1, 2, · · · , K. (4.2)

The total transmit power for the ith epoch is, therefore, Tr(Si). Note that Si, ∀i, is positively

semi-definite, i.e., Si � 0.

The objective is to maximize the number of bits transmitted by the deadline T , i.e., within the

K epochs. Thus, the proposed problem is:

min{Sk}Kk=1
−∑K

i=1
Li

2
log |I+H†

iSiHi|
Subject to: Si � 0, ∀i;∑l

k=1 LiTr(Sk) ≤
∑l

k=1Ein(k),

for l = 1, . . . , K.

(4.3)

Furthermore, for unifying parameter notation, through a change of variables, we can obtain an

equivalent problem, as follows:

min{Si}Ki=1
−∑K

i=1wi log |I+H†
iSiHi|

subject to: Si � 0, ∀i;∑l
k=1Tr(Sk) ≤

∑l
k=1Ein(k), ∀l,

(4.4)

where wi ← Li

2
, Hi ← Hi√

Li
and Si ← LiSi. Note that the symbol ← is the assignment operator.

Since the objective function of problem (4.4) with constraints has complex matrices Sis as the

optimized variables, and the existing optimization theory and method only solve the real space

problems, we need to transform problem (4.4) to an equivalent real form problem, which is stated

as follows.

min{si}Nt×K
i=1

−∑Nt×K
i=1 w[ i−1

Nt
]+1 log(1 + aisi)

subject to: 0 ≤ si, ∀i;∑Nt×l
i=1 si ≤

∑l
i=1Ein(i), ∀l,

(4.5)

where [ ] denotes the integral part of a real number. For simplicity, we write {w[ i−1
Nt

]+1} as {wi}. The
transformation for the mentioned equivalence between problem (4.4) and problem (4.5) is stated as
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follows. For problem (4.4), since

wi log |I+H†
iSiHi| = wi log |I+HiH

†
iSi|, ∀i, (4.6)

there is the eigenvalue decomposition such that HiH
†
i can be transformed into a diagonal matrix.

This procedure is that there exists a unitary matrix Ui such that

Λi = UiHiH
†
iU

†
i =⎛

⎜⎜⎜⎜⎝
a(i−1)×Nt+1

. . .

a(i−1)×Nt+Nt

⎞
⎟⎟⎟⎟⎠ ,

(4.7)

where Λi is a diagonal matrix and its diagonal element set {a(i−1)×Nt+j}Nt

j=1, as a sequence, is

monotonically decreasing. Thus,

wi log |I+HiH
†
iSi|

= wi log(|Ui||I+HiH
†
iSi||U†

i |)
= wi log |UiU

†
i + ΛiS

′
i|

= wi log |I+ Λ
1
2
i S

′
iΛ

1
2
i |, ∀i,

(4.8)

where S′
i = UiSiU

†
i for simplifying notation. Furthermore, problem (4.4) is equivalent to the

following problem:

min{S′

i}Ki=1
−∑K

i=1wi log |I+ Λ
1
2
i S

′
iΛ

1
2
i |

subject to: S′
i � 0, ∀i;∑l
k=1Tr(S

′
k) ≤

∑l
k=1Ein(k), ∀l.

(4.9)

From the well known Hadamard’s inequality on positive definite matrices and some matrix

operations, problem (4.9) is equivalent to problem (4.5). Note that, since problem (4.4) earlier

mentioned is equivalent to problem (4.9) from the shown derivation above, therefore, problem (4.4)

is equivalent to problem (4.5). As a result, we only need to compute the solution to problem (4.5),
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and the solution is denoted by {s∗i }. Successively, we can obtain

U†
i

⎛
⎜⎜⎜⎜⎝

s∗(i−1)×Nt+1

. . .

s∗(i−1)×Nt+Nt

⎞
⎟⎟⎟⎟⎠Ui, ∀i, (4.10)

as the solution to problem (4.4). As a note, equivalence between two optimization problems can be

guaranteed only by their having the same optimal value. Further, it needn’t require their objective

values to be the same for any independent variable.

To find the solution to problem (4.5), the conventional water-filling approach usually starts from

the Karush-Kuhn-Tucker (KKT) conditions of the problem, and try to solve a system of equations

and inequalities in many optimization variables {si} and the dual variables. Unlike the conventional

approach, our proposed algorithm directly and efficiently solves the target problem by recursion and

repeatedly application of our earlier proposed GWF. Due to our constructive solution, it also solves

the KKT conditions.

4.3 RGWFM - Recursive GWF for Multiple Antennas

In this section, we propose a novel approach to solve problem (4.5) using our proposed GWF

approach.

Since the proposed RGWFM is based on a generalized algorithm of GWF [19], this generalized

GWF is still termed as GWF that is concisely introduced as follows. GWF can be regarded as a

mapping from the point of parameters {L′, K ′, {wi}K ′

i=L′ , {ai}K ′

i=L′ , P} to the solution {si}K ′

i=L′ and

the important water level step index: k∗ (which is defined as the highest channel/level index under

water), where {ai} and {wi} are respectively fading gain vector and weight vector [19]; L′ and K ′

are two positive integers, to denote respectively the index of the starting channel and the ending

channel of a set of channels (for power allocation) sorted according to their channel gains, i.e.,

L′ ≤ K ′; and then K ′ − L′ + 1 is the total number of channels. Often, L′ is assigned to be 1. That

is to say, it can be written as a formal expression:

{{si}K ′

i=L′, k∗} = GWF(L′, K ′, {wi}K ′

i=L′, {ai}K ′

i=L′, P ). (4.11)
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Thus, if L′ = 1 and K ′ = K, this GWF is regressed into the original GWF. Since we often use the

first part, {si}K ′

i=L′ from GWF, we also write

{si}K ′

i=L′ = GWF(L′, K ′, {wi}K ′

i=L′, {ai}K ′

i=L′ , P ). (4.12)

Note that, for concision and without confusion from context, we may write the right hand side of

the expression as GWF(L′, K ′) to emphasize time stages from L′ to K ′. Furthermore, the detailed

definition, discussion and optimality proof of GWF can be referred to in [19].

Through the mechanism of recursion, the solution {s∗i }KNt

i=1 is obtained as RGWFM(K) within

finite loops. Note that in Line 8 shown, we used a summation. If the lower limit of the summation

index is greater than the upper limit, the result of this summation is defined as zero.

Algorithm 3 Pseudocode of RGWFM

1. Initialize: L = 1, Nt,K, P = Ein(1), {wk}Nt

k=1, {ak}Nt

k=1;
2. Output the result for epoch 1:

RGWFM(1) = GWF(1, Nt)|I = {s∗k}Nt

k=1.
3. For L = 2 : 1 : K,
4. Input:{Ein(L), {w(L−1)Nt+j, a(L−1)Nt+j}Nt

j=1};
5. {s′k}(L−1)Nt

k=1 = RGWFM(L− 1);
6. For n = L : −1 : 1,
7. W = {wj}LNt

j=(n−1)Nt+1;A = {aj}LNt

j=(n−1)Nt+1;

8. ST =
∑(L−1)Nt

j=(n−1)Nt+1 s
′
j +Ein(L);

9. {{s∗k}LNt

k=(n−1)Nt+1, k
∗}

= GWF((n− 1)Nt + 1, LNt,W,A, ST );
10. k∗e = max{k|s′k > 0, 1 ≤ k ≤ (n− 1)Nt};
11. If 1

ak∗wk∗
+ sk∗

w∗

k
≥ 1

akewke
+

s′ke
wke

,

12. output: RGWFM(L)
= {s′1, . . . , s′(n−1)Nt

, s∗(n−1)Nt+1, . . . , s
∗
LNt

},
13. Move to next epoch, i.e., go to Line 16;
14. End If
15. End For
16. End For

For algorithm RGWFM, all the parameters in problem (4.5) are given except optimization vari-

ables. The proposed algorithm eliminates the procedure to solve the non-linear system from the

KKT conditions in multiple variables and dual variables, provides exact solutions via finite compu-

tation steps, and offers helpful insights to the problem and the solutions. To guarantee optimality

of RGWFM, we have the following proposition:

Proposition 4.1. RGWFM can compute the optimal exact solution to problem (4.5) within
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finite loops.

Proof of Proposition 4.1. Problem (4.5) being given implies all the parameters being given

except optimization variables. From the algorithm RGWFM(K), there exists n1, where 1 ≤ n1 ≤
K − 1, and {s∗i }n1Nt

i=1 = [RGWFM(K)]|{1,...,n1Nt} = RGWFM(n1). Thus, there are the non-negative

Lagrange dual variables {λi}n1
i=1 and {μj}n1Nt

j=1 such that KKT conditions, of the restriction of the

optimization problem RGWFM(K) to the epoch set {1, . . . , n1}, hold. This restriction means a

sub-problem:

min{si}n1Nt
i=1

∑n1Nt

i=1 −wi log(1 + aisi)

subject to:
∑lNt

i=1 si ≤
∑l

i=1Ein(i), as 1 ≤ l ≤ n1 − 1;

0 ≤ si, ∀i;∑n1Nt

i=1 si =
∑n1Nt

i=1 s∗i .

(4.13)

Furthermore, {λi, {μj}} correspond to the ith sum power constraint and power non-negativeness

constraint, respectively. On the other hand, {s∗i }KNt

i=n1Nt+1 = GWF(n1Nt+1, KNt, {wj}, {aj},
∑KNt

j=n1Nt+1 s
∗
j).

Thus, there are also the non-negative Lagrange dual variables {λi}Ki=n1+1 and {μj}KNt

j=n1Nt+1 that sat-

isfy the KKT conditions of the following sub-problem:

min{si}KNt
i=n1Nt+1

−∑KNt

i=n1Nt+1wi log(1 + aisi)

subject to: 0 ≤ si, ∀i;∑KNt

i=n1Nt+1 si =
∑KNt

i=n1Nt+1 s
∗
i .

(4.14)

Since GWF(n1Nt + 1, KNt) has one sum power constraint and specific finite loop operations,

we can assign

λK =
1

1
ak∗+wk∗

+ sk∗
wk∗

(4.15)

λK−1 = · · · = λn1+1 = 0 (4.16)

with the fine k∗, as the minimum positive step index of the set: {n1Nt + 1, . . . , KNt}, where the

adjective “fine” expresses that k∗ can be used to clarify whether the allocated power to be positive

or zero, and determine the water-level. Also due to characteristics of the loop transition from n1Nt+

1 to n1Nt during carrying out RGWFM(n1) and GWF(n1Nt + 1, KNt, {wj}, {aj},
∑KNt

j=n1Nt+1 s
∗
j),

and the points mentioned above, it is seen that the feasible solution of {s∗i }KNt

i=1 , computed by
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RGWFM(K), is indeed the optimal solution to (4.5) due to the facts that {{λi}Ki=1, {μj}KNt

j=1 } are

the dual variables; they, together with {s∗i }KNt

i=1 , satisfy the KKT conditions of (4.5); and the

qualification of (4.5) holds.

Therefore, Proposition 4.1 is proved.

4.4 Transmission Completion Time Minimization

In previous section, RGWFM was discussed as a recursive water-filling to efficiently solve the

throughput maximization problem. In this section, RGWFM is used to solve the transmission

completion time minimization problem.

Now assume that the transmitter has B bits to be transmitted to the receiver. Our objective now

is to minimize the time required to transmit these B bits. This problem is called the transmission

completion time minimization problem. In [46] and [50], this problem is formulated and solved for

an energy harvesting system in a non-fading environment. In [35], the problem is discussed offline

in a fading channel by offering a condition the solution should meet. Single antenna problems are

investigated in those works. In this chapter, we use RGWFM to solve the target problem in a fading

channel with multiple antennas applying the recursion feature of the computation.

The transmission completion time minimization is categorized into two classes. The first class

assumes that the completion time is taken at the ends of the epochs as discrete time points. Since

T and {Li} are given, this class of problems just finds the minimum index of the epochs for

transmission. The second class of the problem assumes that the completion time is taken at a

time point which is continuously located in the interval [0, T ], as a continuous straight segment.

4.4.1 Discrete Transmission Completion Time Minimization

The discrete transmission completion time minimization problem can be stated as follows: assume

N to be a positive integer and N ≤ K, noting that the two notations N and Nt stand for the

different meanings that the former is the index of an epoch; but the latter is the number of the
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antennas equipped by a user. The problem can be written as

min{{si}NNt
i=1 ,N} N

subject to:
∑NNt

i=1 wi log(1 + aisi) = B;

0 ≤ si, ∀i;∑lNt

i=1 si ≤
∑l

i=1Ein(i), l = 1 . . . , K.

(4.17)

We use the RGWFM machinery to design a recursive algorithm to solve (4.17), referred to as

RGWFMn. The steps of the RGWFMn is presented in the algorithm description shown below.

Compared with the steps of RGWFM, in the first line of the algorithm, RGWFMn introduces

B as a parameter while others being kept unchanged. In Line 6, RGWFMn sequentially processes

from the second epoch to the Kth epoch to output the optimal value N∗ and its optimal solution:

RGWFM(N∗) with the target rate: B bits. Similarly, the inner “For” loop updates power levels for

the current processing epoch (L) and its previous (L− n+ 1) epochs to form a processing window.

GWF algorithm is also applied to this window to find a common water level. Note that a new

“If” clause is inserted into the outer level “If” clause (for the water level non-decreasing condition

check). The function of this inner “If” clause is to check whether and how the transmitted bits reach

B. Therefore, it is the normal exit of the algorithm (lines 19-20). For convenience, the condition

of this new “If” clause is called the criterion of RGWFMn. This is also due to the importance

of the criterion in the following proposition. As a note, truth of Line 4 is easily to test. Also,

Line 4 of RGWFMn provided a solution but this solution is not unique. However, this proposed

solution uses the least power to guarantee the rate requirement (= B). As a note, however, the

mentioned algorithm of RGWFM(K) can output the unique optimal solution to problem (4.5), since

the objective function of problem (4.5) has a negative definite Hessian matrix.

To guarantee optimality of RGWFMn, the proposition is stated as follows:

Proposition 4.2. If there does not exist L such that the criterion in RGWFMn:

∑(n−1)Nt

i=1 wi log (1 + ais
′
i) +

∑LNt

i=(n−1)Nt+1wi log (1 + ais
∗
i ) ≥ B (4.18)

holds, where the symbols in (4.18) keep the same meaning as those in the statement of RGWFMn,

then there is no solution to problem (4.17). If the criterion holds, then the obtained N∗ is the
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Algorithm 4 Algorithm RGWFMn, Based on RGWFM

1. Initialize: L = 1, Nt,K,Ein(1), {wk}Nt

k=1, {ak}Nt

k=1, B;
2. Output the result for epoch 1:

RGWFM(1) = GWF(1, Nt, {wi}, {ai}, Ein(1))|I
= {s∗k}Nt

k=1;

3. If
∑Nt

i=1wi log (1 + ais
∗
i ) ≥ B,

4. {s∗i }Nt

i=1 = GWF(1, Nt, {wi}, {ai}, P1),

where P1 =
∑k∗1

i=1[
1

ak∗1
( 2

B
w1

∏k∗1−1

i=1 (
ai
ak∗

1

)
)

1
k∗
1 − 1

ai
],

k∗1 = max {k|∏k−1
i=1 ( aiak ) < 2

B
w1 , 1 ≤ k ≤ Nt},

N∗ = 1, and then exit the algorithm;
5. End If
6. For L = 2 : 1 : K,
7. Input:{Ein(L), {w(L−1)Nt+j , a(L−1)Nt+j}Nt

j=1};
8. {s′k}(L−1)Nt

k=1 = RGWFM(L− 1);
9. For n = L : −1 : 1,
10. W = {wj}LNt

j=(n−1)Nt+1;A = {aj}LNt

j=(n−1)Nt+1;

11. ST =
∑(L−1)Nt

j=(n−1)Nt+1 s
′
j + Ein(L);

12. {{s∗k}LNt

k=(n−1)Nt+1, k
∗}

= GWF((n− 1)Nt + 1, LNt,W,A, ST );
13. k∗e = max{k|s′k > 0, 1 ≤ k ≤ (n− 1)Nt};
14. If 1

ak∗wk∗
+ sk∗

w∗

k
≥ 1

akewke
+

s′ke
wke

,

15. RGWFM(L) =
{s′1, . . . , s′(n−1)Nt

, s∗(n−1)Nt+1, . . . , s
∗
LNt

},
16. If

∑(n−1)Nt

i=1 wi log (1 + ais
′
i)+∑LNt

i=(n−1)Nt+1wi log (1 + ais
∗
i ) ≥ B,

17. B1 = B −∑(n−1)Nt

i=1 wi log (1 + ais
′
i)−∑(L−1)Nt

i=(n−1)Nt+1wi log (1 + ais
∗
i ),

18. {s∗i }LNt

i=(L−1)Nt+1 can be obtained, similar to Line 4,

19. RGWFM(L) =

{s′i}(n−1)Nt

i=1 ∪ {s∗j}LNt

j=(n−1)Nt+1,

20. N∗ = L, and then exit the algorithm;
21. End If
22. Move to next epoch, i.e., go to Line 25;
23. End If
24. End For
25. End For
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optimal value and the {RGWFM(N∗), N∗} is the exact optimal solution.

Proof of Proposition 4.2. For the given B, if there does not exist L and n such that the

criterion in RGWFMn,

∑(n−1)Nt

i=1 wi log (1 + ais
′
i) +

∑LNt

i=(n−1)Nt+1wi log (1 + ais
∗
i ) ≥ B, (4.19)

holds, it implies that the optimal value of problem (4.5) is strictly less than B, corresponding to

Proposition 4.1. Thus, the first constraint in problem (4.17) never holds. Then there is no solution

to problem (4.17).

Then, assume that there exist N∗ and RGWFM(N∗) such that

∑(n−1)Nt

i=1 wi log (1 + ais
′
i) +

∑N∗Nt

i=(n−1)Nt+1wi log (1 + ais
∗
i ) ≥ B, (4.20)

where

RGWFM(N∗) = {s′1, . . . , s′(n−1)Nt
, s∗(n−1)Nt+1, . . . , s

∗
N∗Nt

}. (4.21)

According to the obtained N∗ from the RGWFMn algorithm, the optimal value of the problem

min{si}NNt
i=1

∑NNt

i=1 −wi log(1 + aisi)

subject to: 0 ≤ si, ∀i;∑lNt

i=1 si ≤
∑lNt

i=1Ein(i) for l = 1, . . . , N,

(4.22)

is less than B, where RGWFM(N) is the optimal solution to this problem, for N = 1, . . . , N∗ − 1.

Hence, the optimal value of problem (4.17) is not less than N∗. Stemming from the statement of

RGWFMn, RGWFM(N∗) is a feasible solution to problem (4.17) and N∗ is the evaluated objective

value of problem (4.17) at RGWFM(N∗). Thus, N∗ is a feasible value. Together with the mentioned

fact that the optimal value of problem (4.17) is not less than N∗, as a result, N∗ is the optimal

value and {RGWFM(N∗), N∗} is the exact optimal solution to problem (4.17).

Therefore, Proposition 4.2 is proved.

Note that for the first constraint in (4.17), if the powers make the weighted sum-rate greater

than the target B, we may reduce the powers to make the weighted sum-rate equal to B. The

reduced powers is just a feasible solution and the sum power becomes less. This result comes from
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min{{si}NNt
i=1 ,t} t

subject to: 1 ≤ N ≤ K and N ∈ Z;

N1(t) = max{N |∑N
k=1Lk ≤ t};∑N1

l=1

∑Nt

j=1w(l−1)Nt+j · log(1 + a(l−1)Nt+j · s(l−1)Nt+j)+

( t
2
−∑N1

k=1wk) ·
∑Nt

j=1 log(1 + a(N1−1)Nt+js(N1−1)Nt+j) = B;

0 ≤ si, ∀i; 0 ≤ t ≤ T ;∑lNt

i=1 si ≤
∑l

i=1Ein(i), l = 1 . . . , K.

(4.23)

continuity of the throughput or rate constraint function and rest of the constraints. Therefore, the

problem that substitutes the inequality of “≥” for the equality of “=” in the first constraint, has

the same optimal solution set.

4.4.2 Continuous Transmission Completion Time Minimization

The continuous transmission completion time minimization problem can be stated as follows: as-

sume t to be a real number and N to denote the index variable of the sequence, consisting of the

ends for the progressive epochs, Z to denote the set of integers, and then the corresponding objective

function is shown as in (4.23) given in next page. Note the mentioned wi =
Li

2
, ∀i.

If Lebesgue-Stieltjes integration [11] is used for problem (4.23), it can make the expression

concise. The presented method is used to avoid introducing more abstract mathematical expressions.

We use the proposed RGWFMn to design a recursive algorithm to solve the continuous transmission

completion time minimization problem (4.23), referred to as RGWFMt. The steps of the RGWFMt

are stated below: RGWFMt only replaces Line 18 and the N∗ = L of Line 20 of RGWFMn with

the statement:

Δt∗ = 2B1∑Nt
j=1 log(1+a(N∗−1)Nt+js(N∗−1)Nt+j)

, (4.24)

and the statements:

N∗ = L, t∗ = Δt∗ +
∑N∗−1

k=1 Lk, (4.25)

respectively. The optimality proof of RGWFMt can be proven, similarly to that of RGWFMn:

Proposition 4.2. Therefore, its proof is ignored in this chapter.
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4.5 Extension to a Hybrid System Coexisting with Grid

Power

Since energy harvesting depends on natural condition and it is a random process, the energy from

power grid is often added as a supplementary source. The corresponding maximum throughput

problem of such a hybrid system can be stated as

min{Si,SG,i}Ki=1
−∑K

i=1wi log |I+H†
i (Si + SG,i)Hi|

subject to: Si � 0, ∀i;
SG,i � 0, ∀i;∑l

k=1Tr(Sk) ≤
∑l

k=1Ein(k), ∀l;∑K
k=1Tr(SG,k) ≤ E(G,total),

(4.26)

where SG,k, ∀k, is the power from power grid, and E(G,total) is the total energy from power grid. To

easily understand the essence and the proof of this extension and avoid more subscripts being used,

without loss of generality, let Nt = 1 in this section.

For problem (4.26), We add a statement

{s∗G,k}Kk=1 = GWF

(
1, K,W,

ak
1 + aks

∗
H,k

, E(G,total)

)
|I (4.27)

at the end of RGWFM for grid power allocation. We refer to this as RGWFMH. RGWFMH implies

that for this hybrid system, harvested energy is first allocated as in the algorithm RGWFM. The

results from RGWFM defines the new water tank bottom. The total available grid power is then

allocated again with water-filling algorithm.

Optimality of RGWFMH is stated and proven by the following proposition.

Proposition 4.3. RGWFMH can compute the optimal exact solution to the problem (4.26)

within finite loops.

Proof of Proposition 4.3. Similar to the transformation from (4.4) to (4.5), problem (4.26)

has its real representation or problem. For clarity, {sH,i} denotes the powers from energy harvesting

and {sG,i} from power grid.

According to Proposition 4.1, for the real form of problem (4.26) under E(G,total) = 0, there
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exist the optimal solution {sH,i}Ki=1 and the dual variables {λi, μi}Ki=1 satisfy the following KKT

conditions: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1

aiwi
+

sH,i
wi

=
∑K

k=i λk − μi, ∀i;

μisH,i = 0, sH,i ≥ 0, μi ≥ 0, ∀i;
λl(

∑l
k=1 sH,k −

∑l
k=1Ein(k)) = 0,∑l

k=1 sH,k ≤
∑l

k=1Ein(k), λl ≥ 0, ∀l.

(4.28)

We define the index set Λ1 as follows:

Λ1 = {i|sH,i > 0} = {it|1 ≤ i1 < i2 < . . . < it1 ≤ K}. (4.29)

Expression (4.29) combined with RGWFM(K), implies that

1

aikwik

+
sH,ik

wik

≤ 1

aik+1
wik+1

+
sH,ik+1

wik+1

, (4.30)

for any {ik, ik+1} ⊂ Λ1. Note that optimal solution satisfies the mentioned inequalities (4.30), but

only some variables which meet these inequalities cannot guarantee themselves to be (the part of)

the optimal solution.

Let

{{sG,k}Kk=1, k
∗} = GWF(1, K,W, { ak

1+akS
∗

H,k
}, E(G,total)). (4.31)

It is seen that

1

aitwit

+
sH,it

wit

+
sG,it

wit

=
1

ak∗wk∗
+

sG,k∗

wk∗
+

sG,k∗

wk∗
, (4.32)

for any {k∗, it} ⊂ Λ1, where 1 ≤ it ≤ k∗, ∀t.
Let μit = 0, as it ∈ Λ1; λ = 1

1
ak∗wk∗

+
sH,k∗

wk∗
+

sG,k∗

wk∗

; and λk∗ = λ and λl = 0, as l ∈ {1, 2, . . . , K} \

{k∗}. Also, μj =

(
λk∗ − 1

1
ajwj

+
sH,j
wj

)+

, as j ∈ {1, 2, . . . , K} \ Λ1. In addition, νit = 0, as it ∈ Λ1;

and νj =

(
1

1
ajwj

+
sH,j
wj

+
sG,j
wj

− λ

)+

, as j ∈ {1, 2, . . . , K} \ Λ1.

Therefore, the {sH,i, sG,i}Ki=1 mentioned above and the constructed dual variables {λi, μi}Ki=1 and

{λ, ν1, . . . , νK} satisfy the KKT conditions of the real form of problem (4.26), the Lagrange function
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of which is:

L({sH,i, sG,i}Ki=1; {λi, μi}Ki=1, {λ, ν1, . . . , νK})
= −∑K

i=1wi log(1 + ai(sH,i + sG,i))−
∑K

i=1 μisH,i

+
∑K

l=1 λl(
∑l

k=1 sH,k −
∑l

k=1Ein(k))

−∑K
i=1 νisG,i + λ(

∑K
k=1 sG,k − E(G,total)).

(4.33)

In addition, by observation, the general constraint qualification of problem (4.26) holds. Then

{sH,i, sG,i}Ki=1 computed by the proposed RGWFMH is the optimal solution to problem (4.26).

Therefore, Proposition 4.3 is proved.

As a remark, we should emphasize two points: (1) RGWFMH is actually a block coordinate

ascent algorithm (BCAA, to find maximum) ([2]). BCAA is only guaranteed to be infinite iterations

to find an optimal solution to the proposed problem. However, we further exploit the structure of

the proposed problem and then the proposed RGWFMH is designed. Further, RGWFMH just uses

one time iteration and rapidly obtains the optimal solution; (2) we may treat E(G,total) to be the

harvested energy at the starting of the first epoch and can obtain the equivalent solution, but we

cannot obtain or distinguish the optimal power allocation from the two different energy sources.

With the implementation of RGWFMH, this problem can be solved efficiently.

4.6 Numerical Examples and Computational Complexity

This section consists of two subsections: numerical examples and computational complexity analysis.

The former subsection firstly uses one simple example to clearly illustrate the procedures of the

proposed algorithms. Then two more complicated examples to compare with the primal-dual interior

point method (PD-IPM) which is now regarded as an efficient optimization algorithm with great

promise ([6] and references therein). The latter subsection discusses computational complexity

of the proposed algorithms, and arrives at the conclusion of polynomial complexity ([38]). Due

to exploiting the structure of the proposed problems, the proposed algorithms show significant

efficiency.

4.6.1 Numerical Examples

The proposed algorithms scan the epochs sequentially to obtain the optimal power allocation.
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Example 1. we assume that there are three epochs, each with unit length (Li = 1, i = 1, 2, 3)

and the same unit weight (wi =
1
2
, i = 1, 2, 3). To clearly account for the procedures of the proposed

algorithms, no power grid case is considered without loss of essence.

Let Nt = Nr = 2. At the beginning of each epoch, the energy is harvested as Ein(i) = 2, i =

1, 2, 3. The information required for transmission is B = 3 bits. Suppose the fading profile for the

three epochs is

H1 =
1√
2

⎛
⎜⎝ 1 −1

1 1

⎞
⎟⎠ ,H2 =

⎛
⎜⎝ 1 −1

1 1

⎞
⎟⎠ and

H3 =
√
2

⎛
⎜⎝ 1 −1

1 1

⎞
⎟⎠ .

(4.34)

First, RGWFM(1) outputs {s1 = 1, s2 = 1}, i.e., the allocated power sum is Tr(S1) = 2 to epoch

1, as shown in Fig. 4.1(a). The height of the blue (darker) stair bars denotes the reciprocals of the

fading gains, i.e., the height of the steps for water-filling [19]. The allocated powers are illustrated

by the height of the green (grey) bars. Along the axis of “Index of epoch”, the index of epochs

increases from left to right.

Then the process moves to the second epoch. By applying GWF(2,2), it gives {s3 = 1, s4 = 1}.
Now check the water level of epoch 2 is 1+1/2=1.5 and the water level for epoch 1 is 1+1=2.

Water level non-decreasing condition is violated. Power level adjustment procedure is triggered. By

applying GWF to the first two epochs, we have GWF(1,2)={s1 = 0.75, s2 = 0.75; s3 = 1.25, s4 =

1.25}. With this power adjustment, the output for RGWFM(2) is then {s1 = 0.75, s2 = 0.75; s3 =

1.25, s4 = 1.25}, i.e., Tr(S1) = 1.5 and Tr(S2) = 2.5, as shown in Fig. 4.1(b).

Now the process moves to epoch 3, the output of GWF(3,3)= {s5 = 1, s6 = 1}. The correspond-
ing water level for epoch 3 is 1 + 1

4
, which is lower than that of the previous epoch (=1.75). Then

the power adjustment is triggered. After twice power adjustment operations, the final output is

{s1 = 7/12, s2 = 7/12; s3 = 13/12, s4 = 13/12; s5 = 4/3, s6 = 4/3}, which is the completed output

for the optimal solution, i.e., Tr(S1) = 14/12,Tr(S2) = 26/12 and Tr(S3) = 8/3, as shown in Fig.

4.1(c).

In this example, the channel states (fading gains) for the three epochs are continuously im-

proving. Therefore, the harvested energy at the beginning of each epoch tries to flow to the later

epochs, leading to the uniform water level of these three epochs. In addition, if Nt = Nr = 1,
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the power gains are reduced into hi = 2i−1, i = 1, 2, 3, it can be calculated that the maximum

transmission throughput is 3 log (31/6). However, if Nt = Nr = 2, the maximum transmission

throughput is 2 log (8 · (19/12)3). Thus, the throughput ratio of the MIMO case to the SISO case

is 2·log (8·(19/12)3)
3·log (31/6)

.
= 1.40 by adding one more antenna at both the transmitter and the receiver.

Let us compute the solutions to two types of the minimum transmission completion time prob-

lems. For the final result over the entire process, the optimal solution is {{s1 = 7/12, s2 = 7/12; s3 =

13/12, s4 = 13/12; s∗5 = log (4 · (12/19)2), s∗6 = log (4 · (12/19)2)}, N∗ = 3} and the optimal value is

N∗ = 3, i.e., the allocated power is Tr(S3) = 2 log (4 · (12/19)2) to epoch 3, as shown in Fig. 4.1(d).

For continuous solution t, we obtain a different solution using RGWFMt: {s1 = 7/12, s2 =

7/12; s3 = 13/12, s4 = 13/12; s∗5 = 4/3, s∗6 = 4/3}, and

t∗ = 2 + 2B1∑Nt
j=1 log (1+a(N∗−1)Nt+js(N∗−1)Nt+j)

= 2 + log (4·(12/19)2)
log (1+4·4/3)

.
= 2.25.

(4.35)
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Figure 4.1: Procedures to solve Example 2: (a) Tr(S1) = 2; (b) Tr(S1) = 3
2
,Tr(S2) = 5

2
; (c)

Tr(S1) = 14
12
,Tr(S2) = 26

12
,Tr(S3) = 8

3
; (d) Tr(S1) = 7

6

.
= 1.17,Tr(S2) = 26

12

.
= 2.17,Tr(S3) =

2 log (4 · (12
19
)
2
)
.
= 1.35.

Through this simple example, the computation procedures and the effectiveness of the proposed

algorithms are well demonstrated. The following general example further reveals the effectiveness

of the proposed algorithms.

Example 2. The well known optimization algorithm, the primal-dual interior point method
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(PD-IPM), is chosen for comparison purpose due to its competitiveness in computing the solutions to

the convex optimization problems. The proposed minimum transmission completion time problems

are non-convex mixed integer optimization problems. As far as the authors’ knowledge, there is

no algorithm reported in the open literature which can compute the exact solutions to the target

problems. As a result, we only focus on the throughput maximization problem.

Figs. 4.2-4.4 are used to show the difference between PD-IPM and RGWFMH for the maximum

throughput problems, through some choices of the number of antennas (Nt) at the user or the

number of epochs (K). In calculation, the number of antennas at base station (Nr) is set to be

4. Channel gains are generated randomly using random Nr × Nt matrices with each entry drawn

independently from the standard Gaussian distribution. {Ein(k)} is the set of randomly chosen

positive numbers. The sum power constraint of the power grid E(G,total) is 5. A group of different

weights are also generated randomly. The chosen parameters mentioned above are assigned to both

algorithms with the identical values for comparability. In these figures, the circle markers and

the cross markers represent the results of the proposed RGWFMH and PD-IPM respectively. For

the proposed RGWFMH, since it uses recursion, no iteration is invoked. Therefore, the number

of iterations of the circles maps to one iteration. The obtained throughput is summarized in the

following table. The obtained throughput for PD-IPM is the result after 100 iterations.
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Figure 4.2: Weighted sum-rates (Unit: bits) of RGWFMH and PD-IPM, as K=10 and 15

With different parameters, the achieved throughput ratio of the PD-IPM to that of RGWFMH

is in the range of 0.33 to 0.49. These results show that the proposed RGWFMH exhibits much

better performance. It also shows that as the number of the antennas increases, the throughput or
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Figure 4.3: Weighted sum-rates (Unit: bits) of RGWFMH and PD-IPM, as K=10 and 15
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Figure 4.4: Weighted sum-rates (Unit: bits) of RGWFMH and PD-IPM, as K=10 and 15
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Table 4.1: Comparison of the achieved throughput (Nr = 4)
parameter PD-IPM RGWFMH ratio

K = 10, Nt = 1 3.67 9.15 0.40
K = 15, Nt = 1 3.84 11.36 0.34
K = 10, Nt = 2 7.11 17.77 0.40
K = 15, Nt = 2 6.91 20.79 0.33
K = 10, Nt = 4 10.11 20.76 0.49
K = 15, Nt = 4 9.32 22.95 0.41

the weighted sum-rate increases.

Example 3. For ease to follow the simulation results, a deterministic example is given. The

parameters are chosen as: assume there are five epochs with weight factor vector

W = {0.1633, 0.2132, 0.2282, 0.2035, 0.1918}, Ein(i) = 6, ∀i, E(G,total) = 5, the channel gain matrices

of the two by two antenna array are randomly generated as

H†
1 =

(
−0.2056 + 0.1700i −0.3895 − 0.6354i

0.2236 + 0.2518i 1.5094 − 1.0604i

)
;

H†
2 =

(
0.3851 − 0.2639i 1.6777 + 0.3762i

−0.1068 − 0.1593i −0.3660 − 0.9417i

)
;

H†
3 =

(
0.2877 + 0.5690i 0.5789 + 0.8900i

−0.2702 − 0.5321i −0.2975 − 0.5033i

)
;

H†
4 =

(
−0.2851 − 0.5181i 0.3035 − 0.1812i

0.1038 − 0.4797i 0.4999 − 0.4366i

)
;

H†
5 =

(
−0.7143 − 0.6832i −0.1870 − 0.7028i

0.2136 − 0.5346i 0.2199 − 1.1445i

)
.

(4.36)

The optimal power allocation of the harvested energy is:

{4.6740, 6.1910, 6.4261, 5.1950, 7.5139},

the ith member of which corresponds to the ith epoch. Similarly, the optimal power allocation of

the grid power is:

{0.6851, 0.8944, 0.9574, 0.8538, 1.6094}.

The throughput is illustrated in Figure 4.5. It is seen that the achieved throughput of the proposed

algorithm is 9.2, but the corresponding value of PD-IPM is 4.1, which reflects an almost 1.2 times

gain in the achieved throughput.
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Figure 4.5: Weighted sum-rates (Unit: bits) of RGWFMH and PD-IPM, as K=5

4.6.2 Computational Complexity Analysis

Since the proposed algorithms use the proposed real throughput mathematical representation by

the unitary similarity matrix transformation, the proposed algorithms need the unitary similarity

matrix transformation with computational complexity K ×O(N3
t ) (refer to [38]) for (4.5). Second,

to compute the optimal solution, RGWFMH, as a more general case than RGWFM, utilizes GWF∑K
L=1(1 + L)L/2 + 1 times, so it needs

∑K
L=1

∑L
k=1(8Ntk + 3) + 8NtK + 3 = 4NtK[K2 + 3K +

8]/3 + 3K(K + 1)/2 + 3, i.e., NtO(K3) fundamental operations (refer to [19]). Because a valid

algorithm needs to apply the proposed real throughput mathematical representation to avoid the

differentiability problem from the several complex optimization variables, therefore, the comparison

only focuses on the computational complexity led by the computation of the optimal solution. The

complexity of RGWFMH is rather low NtO(K3). For example, even let PD-IPM use the proposed

transform to obtain an equivalent real problem, however, for the ε solution, i.e., not the optimal

solution, it still needs a polynomial computational complexity: N3.5
t O(K3.5) log(1/ε) (refer to [55],

[7]). Hence, PD-IPM cannot guarantee to output the optimal solution by finite computation. Our

method eliminates any linear search but output the exact optimal solution with finite computation.

Note that the difference between iteration and recursion. The linear search is often computation

demanding. This is one weakness of PD-IPM. When the feasible set has the sharp boundary where

optimal point(s) is located and the objective function is non-linear, this weakness appears to be

more remarkable.
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Simply speaking, RGWFMH needs total K × O(N3
t ) + NtO(K3) basic operations to compute

the exact solution, while PD-IPM needs total K × O(N3
t ) +N3.5

t O(K3.5) log(1/ε) basic operations

to compute an ε solution.
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Chapter 5

Exact Solution of Non-Commutative

Composite Water-Fillings for EH and

Smart Power Grid Coexisting System

with Peak Power Constraints

Energy harvesting makes use of energy from the environment. However, since harvesting energy

depends on natural conditions, it is not a stable energy source. As a result, the energy from power

grid is often included to serve as a supplementary source to regulate the overall energy supply of the

system. Further, the powers from the power grid are often subject to the constraints of peak powers

and the energy budget. These constraints render solving the optimal power allocation problems

more difficult. In this chapter, we extend our recently proposed geometric water-filling (GWF) and

recursive geometric water-filling (RGWF) algorithms to solve the throughput maximization problem

and transmission completion time minimization problems, i.e., to make the power grid smart.

Importantly, it can compute the exact (optimal) solutions to the problems via finite computation

with lower computational complexity, compared with others. This point also lays down a solid

fundamental basis for real-time and dynamical resource allocation. Beside more strict discussion of

optimality for the proposed algorithms, numerical examples are presented to illustrate the detailed

procedures to efficiently obtain the optimal power allocation by the proposed algorithms. The

numerical example also shows the composite operation of the two water-fillings is non-commutative.
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5.1 Introduction

Often, the powers from the power grid are subject to the constraints of peak powers and the energy

budget. These constraints render solving the optimal power allocation problems more difficult. Ac-

cording to our best knowledge, there is no publication to handle them. Without more explanation,

in fact, the constraint, which seems to be a trivial case, of an optimization problem just brings a

significant watershed from classical to modern optimization. Although the presented throughput

maximization problem, as one of three presented problems, is a convex optimization problem, our

algorithm shows much more efficient computation than others, including the well-known efficient

primal-dual interior point method (PD-IPM) ([7] and references therein). This advantage is espe-

cially leaning forwards to the dynamic optimal power resource allocation of wireless communications.

For the other two non-convex optimization problems, this advantage is still kept.

In this chapter, GWFPP in [19] to solve the problems with peak power constraints, is utilized.

In detail, GWFPP and RGWF [20] are applied to form the two step distribution and the one

step adjustment with condition to obtain the optimal solution of the hybrid system for maximizing

system throughput. GWFPP and RGWF are all derived from our GWF. Also, it is shown that

these two water-filling steps are not commutative. Then the algorithm is developed to solve the

transmission completion time minimization problem. Both discrete time case (to find the index n

of the epoch to complete the transmission) and the continuous time case (to find time t to complete

the transmission) are investigated. By checking if the target B bits transmission is completed,

the algorithms are constructed and the optimality proof is provided. Note only for the simpler

transmission completion time minimization problem without the consideration of power grid and

its peak power constraints, [35] offered the scheme, not a detailed algorithm. Since the proposed

optimal power allocation policy mainly results from the recursive computing epoch by epoch, it does

not always need the information/solution of the entire process to solve the minimum transmission

completion time problem. This is a distinct feature of the proposed algorithms compared to the

algorithms reported in the open literature.

Note that, according to the definition of online algorithms ([1, p. 1430]), RGWF in the proposed

algorithms possess some characteristics of the online algorithms. This is because the family of

RGWF is defined by recursion, without extrapolation; and its input and computation choose the

way of piece-by-piece information in a serial fashion. Furthermore, since the powers from the power
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grid are, in practice, subject to the peak power constraints, these constraints are considered with a

more general form in this chapter.

In the remaining of this chapter, the system model and the problem statement are presented in

Section 5.2. Hybrid power allocation algorithm 1 (HPA1) for maximum throughput is investigated

in Section 5.3. For minimum discrete or continuous transmission completion time problems, we

can choose a similar approach, by the preceding two chapters, to handle them. Thus, solving such

a class of the minimum time problems is not presented. Numerical examples and computational

complexity discussion are presented in Section 5.4.

5.2 Problem Statement

In this section, the energy harvesting and the smart power grid coexisting system model in a

fading channel is presented, followed by the optimization problem to maximize the throughput. For

convenience and without loss of generality, the process is assumed to be a discrete time process, like

the previous ones. Besides the harvested energy Ein(i), the transmission is also connected with the

smart power grid. Let E(G,total) denote the energy budget of total energy supported by the power

grid. Also, we assume that EG,i ≥ 0, as the peak power constraint from the power grid for the ith

epoch, ∀i.
By interpreting the observed properties of the optimal harvested power allocation as a water-

filling scheme, Ein(i) units of water is filled into a rectangle container with bottom width Li

2
, ∀i.

The last weighted power sum constraint from energy harvesting forms an equality. Furthermore,

for unifying parameter notation, through a change of variables, we can obtain an equivalent target

problem as follows:

max{sH,i,sG,i}Ki=1

∑K
i=1wi log (1 + ai(sH,i + sG,i))

subject to: 0 ≤ sH,i, ∀i;
0 ≤ sG,i ≤ EG,i, ∀i;∑l

i=1 sH,i ≤
∑l

i=1Ein(i), ∀l;∑K
i=1 sG,i ≤ E(G,total),

(5.1)

where wi ← Li

2
, ai ← ai

Li
, sH,i ← LisH,i, sG,i ← LisG,i and EG,i ← LiEG,i, for any i. Note that the

symbol ← is the assignment operator. Without consideration of trivial cases, E(G,total) > 0 can be
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assumed. The second constraint remarkably increases difficulty to solve (5.1).

To find the solution to problem (5.1), the conventional water-filling approach starts to obtain

the Karush-Kuhn-Tucker (KKT) conditions of problem (5.1) as a set of optimality conditions, and

then it solves the conditions to determine the variables {sH,i, sG,i} and their duals:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sH,i + sG,i =
(

wi∑K
k=i λk

− 1
ai

)+

=
(

wi

μ+νi
− 1

ai

)+

,

for i = 1, . . . , K;

0 ≤ sH,i, ∀i;
0 ≤ sG,i ≤ EG,i,

νi(sG,i − EG) = 0, νi ≥ 0, ∀i;
λl(

∑l
i=1 sH,i −

∑l
i=1Ein(i)) = 0, λl ≥ 0,∑l

i=1 sH,i ≤
∑l

i=1Ein(i), 1 ≤ l ≤ K;

μ(
∑K

i=1 sG,i −E(G,total)) = 0, μ ≥ 0,∑K
i=1 sG,i ≤ E(G,total),

(5.2)

where the function (x)+ means (x)+ = x, for x ≥ 0, and (x)+ = 0, for x < 0. Furthermore,

νi is the dual variable corresponding to the constraint: sG,i ≤ EG,i, for any i; λl is the dual

variable corresponding to the lth harvested power sum constraint, for any l; and μ is the dual

variable corresponding to the total power sum constraint from the smart power grid. However, by

only observing or using the monotonicity information 1
∑K

j=i λj
with respect to i in the first KKT

condition related to the sums of pairs {sH,i, sG,i}, ∀i, it is not sufficient to obtain a solution. The

set of {μ, {νi}, {λl}} or {μ, {νi}, {
∑K

j=i λj}} needs to further satisfy other KKT conditions in order

to solve (5.2). The reciprocal of
∑K

j=i λj is called the water level at epoch i for the entire process

from epoch 1 to K. Thus, it is important information that the water level at epoch i depends on the

duration of the process (e.g., the water level at epoch i is normally different for processes [1, K1]

and [1, K2] where K1 and K2 are arbitrary ending epoch indexes). However, for system (5.2) in the

original variables and the dual variables, there appears to be no existing method available in open

literature to obtain an exact solution. The fact that the first equation in (5.2) is in the summation

form sH,i+sG,i, renders determining an optimal allocation solution from the harvested energy {sH,i}
and from the smart grid power {sH,i} separately, more difficult.
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5.3 Hybrid Power Allocation Algorithm 1 (HPA1) for Max-

imum Throughput

Since the proposed algorithms are based on GWF and GWFPP, they are concisely introduced as

follows.

In [19], we presented a geometric water-filling (GWF) approach for solving generalized radio

resource allocation problems. As an extension, let L and K be two positive integers and L ≤ K

denote the index of the starting channel and the ending channel, respectively. Then K−L+1 is the

total number of channels. Let P denote the total power for allocation. GWF can be regarded to as

a mapping from the point of parameters {L,K, {wi}Ki=L, {ai}Ki=L, P} to the solution {si}Ki=L and the

important water level step index: k∗. That is to say, it can be written as a formal expression [19]:

{{si}Ki=L, k
∗} = GWF

(
L,K, {wi}Ki=L, {ai}Ki=L, P

)
. (5.3)

Since we often only use the first part, {si}Ki=L from GWF, we also write

{si}Ki=L = GWF
(
L,K, {wi}Ki=L, {ai}Ki=L, P

) |I . (5.4)

Note that, for conciseness and without confusion from context, we may write the right hand side of

the expression as GWF(L,K) to emphasize time stages from L to K.

Let P i denote the peak power constraint for the ith channel, GWFPP can be expressed as [19]

{si}Ki=1 = GWFPP
(
1, K, {wi, ai, P i}Ki=1, P

) |I ,
E = GWFPP

(
1, K, {wi, ai, P i}Ki=1, P

) |II , (5.5)

where E is the final index set in which, there is no peak power constraint correspondingly, referring

to [19]. Further, for convenience, E may be written as {it|1 < i1 < · · · < i|E| ≤ K} where |E| is the
cardinality of the set E. Thus,

{{si}Ki=1, E} = GWFPP
(
1, K, {wi, ai, P i}Ki=1, P

)
.
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Without confusion,

GWFPP
(
1, K, {wi, ai, P i}Ki=1, P

) |I
can be regarded to as GWFPP

(
1, K, {wi, ai, P i}Ki=1, P

)
, due to a subordinate state of the final index

set E.

In this section, we propose a novel algorithm to solve problem (5.1) using GWF approach. The

last three constraints in (5.1) can be expanded into a matrix form and two scalar inequality forms,

respectively, as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

1 1

· · ·
1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

sH,1

sH,2

...

sH,K

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑1
i=1Ein(i)∑2
i=1Ein(i)

...∑K
i=1Ein(i)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

0 � sG,i � EG,i, for i = 1, . . . ,K,

sG,1 + · · · + sG,K � E(G,total),

where the empty elements inside the matrix denote zeros. The above coefficient matrix form a

triangle matrix for the variable {sH,i}Ki=1. The proposed algorithm to solve (5.1) is referred to as

the hybrid power allocation algorithm 1 (HPA1). The proposed HPA1(K) is stated by pseudocode,

attached at the end of this chapter. In the remaining of this section, algorithm description and

optimality analysis will be presented.

5.3.1 Two parts of HPA1(K) and Their Non-Commutativity

The proposed HPA1(K) consists of two parts: HPA1(K)|I for smart grid power allocation as

{s∗G,k}Kk=1 = HPA1(K)|I (5.6)

and HPA1(K)|II for harvested energy power allocation portion as

{s∗H,k}Kk=1 = HPA1(K)|II . (5.7)

From the definition of HPA1(K), it is seen that HPA1(K)|I is Algorithm GWFPP. GWFPP

is used twice in the proposed algorithm: HPA1(K), and then the final index set E also appears
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twice. To distinguish between the two Es, the first E is also denoted by E(1) and, i1 in E(1) by

i1(1). Similarly, we also have E(2) and i1(2). In addition, HPA1(K)|II is Algorithm RGWF [20],

in essence, with the only difference of the updated “step depths” or the updated channel gains.

The implemented order for GWFPP and RGWF is: using GWFPP as HPA1(K)|I to compute the

initial distribution of the powers from the power grid, then RGWF as HPA1(K)|II to compute

the allocation of the powers from energy harvesting, and finally using GWFPP again, under the

condition, to adjust the distributed powers from the power grid and then determine their allocation

in the updated HPA1(K)|I . In this way mentioned above, the entire optimal solution to the proposed

problem is obtained. Simply speaking, GWFPP is used twice; and between them, RGWF is used

once. The following Lemmas are proposed to study the optimality of HPA1.

Lemma 1. HPA1(K)|I can compute the optimal solution of problem (5.1) with finite loops,

under
∑K

i=1Ein(i) = 0.

Since HPA1(K)|I is Algorithm GWFPP, which has been detailed by [19], the proof of Lemma 1

can be referred to Proposition 3.1 in [19].

Lemma 2. HPA1(K)|II can compute the optimal solution of problem (5.1) with finite loops,

under E(G,total) = 0.

Since HPA1(K)|II is Algorithm RGWF, which has been detailed by [20], the proof of Lemma 2

can be referred to Proposition 2 in [20].

It is seen that GWFPP and RGWF can be regarded as two functions in

{1, K, {wi, ai, EG,i, Ein(i)}Ki=1, EG,total},

respectively. If

{1, K, {wi, EG,i, Ein(i)}Ki=1, E(G,total)}

are kept unchanged except {ai}, GWFPP can be written as GWFPP({ai}) to emphasize the rela-

tionship of the function in {ai}, so can RGWF. Since these two functions are the set-valued ones,

the kth evaluated value of the first function, GWFPP, is labelled as [GWFPP({ai})] |k, or simply

[GWFPP] |k, so is that of the second function, RGWF. Two composite functions are defined as

below.

(RGWF ◦GWFPP) � RGWF({ 1
1
ai
+ [GWFPP] |i}), (5.8)
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which refers the result by applying GWFPP to allocate the grid power first, followed by applying

RGWF to allocate the harvested energy. Thus, using (RGWF ◦ GWFPP) can output the powers,

respectively from the energy harvesting and the power grid, earlier outputting the powers from the

power grid and later the energy harvesting.

The second composite function, HPAF, is defined as:

HPAF = (GWFPP ◦ RGWF) � GWFPP({ 1
1
ai
+ [RGWF] |i}). (5.9)

Thus, HPAF|I = RGWF outputs the powers from the energy harvesting. HPAF|II = (GWFPP ◦
RGWF) outputs the powers from the power grid. Thus, using HPAF can also output the powers,

respectively from the energy harvesting and the power grid. However, the composite operation

mentioned above does not satisfy the commutative law, i.e., (RGWF ◦ GWFPP) �= HPAF. This

point is accounted for by the following example.

Example 5.3.1.

max{(sH,i,sG,i)}2i=1

∑2
i=1 log (1 + (sH,i + sG,i)

subject to: sH,i ≥ 0, i = 1, 2;

0 ≤ sG,1 ≤ 2;

0 ≤ sG,2 ≤ 0.5;∑l
i=1 sH,i ≤ l, l = 1, 2;∑2
i=1 sG,i ≤ 2.2.

(5.10)

According to the definitions of (RGWF ◦ GWFPP) and HPAF, the output of (RGWF ◦ GWFPP)

is {sH,1 = 0.4, sH,2 = 1.6; sG,1 = 1.7, sG,2 = 0.5}, at which the objective function value is log 9.61;

while that of HPAF is {sH,1 = 1, sH,2 = 1; sG,1 = 1.7, sG,2 = 0.5}, at which the objective function

value is log 9.25. Thus, the performance of (RGWF ◦GWFPP) is truly better than that of HPAF

due to log 9.61 > log 9.25. Then, the commutative law does not hold for this example. From this

example, it is seen that the target problem cannot be decomposed into two decoupled sub-problems

in the two classes of powers, respectively. Furthermore, HPAF, as the two water-fillings, RGWF

and GWFPP successively being applied, cannot guarantee to find the optimal solution.

In HPA1, in Line 3, GWFPP is applied to update the new step heights, which are formed by

the original fading gains and the power levels allocated in HPA1(K)|I . From Line 4 to Line 22,
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HPA1(K) computes the optimal solution for the harvested energy part, i.e., HPA1(K)|II to complete

the computation.

Note that based on GWFPP, the term (1/ai + sG,i)/wi denotes the overall step depth after the

power allocation of the power grid. Therefore, the reciprocal of (1/ai+sG,i) is ai/(1+aiSG,i), which

is equivalent to the channel gain used by RGWF in [19].

The proposed algorithm eliminates the procedures to solve the non-linear system (5.2) in multiple

variables and dual variables, provides exact solutions via finite computation steps, and offers helpful

insights to the problems and the solutions.

5.3.2 Optimality of HPA1

This subsection discusses optimality of the proposed HPA1.

Remark 1. HPA1|II is an optimal dynamic power distribution process. The dynamics of this

recursive process are shown by the generalized state equation:

HPA1(L+ 1)|II = [HPA1(L)|II ,GWF(n+ 1, L+ 1)|I ], for L = 1, . . . , K − 1, (5.11)

where n is the index of the starting epoch of the currently processing window. Note that the concept

of dynamic processes is not identical to that of dynamic programming. The value of n is determined

by HPA1(L)|II . In this process, HPA1(L)|II can be regarded as the generalized system state at the

time stage (or epoch) L; GWF(n + 1, L+ 1) can be regarded as the generalized system control at

the time stage (or epoch) L; and then HPA1(L + 1)|II , as a state at the next time stage, can be

derived or determined from its previous state and control. Due to optimality of HPA1(L)|II from

Lemma 2, for any L, the proposed algorithm is indeed an optimal and efficient forwarding dynamic

recursive water-filling algorithm.

Then, since Lemma 2 guarantees optimality of HPA1(K)|II under the special condition, and so

does Lemma 1, we may obtain the following conclusion of HPA1(K).

Proposition 5.1. HPA1 can compute the optimal exact solution to problem (5.1) within finite

loops.

Proof of Proposition 5.1. First, HPA1(K)|I is implemented. Thus, it is equivalent to Lemma

1 being used. According to Lemma 1, for problem (5.1) under
∑K

i=1Ein(i) = 0, there exist the
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optimal solution {sG,i}Ki=1 and the dual variables {λ(1), {ν(1)
i , μ

(1)
i }Ki=1} such that they satisfy the

following KKT conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1

aiwi
+

sG,i
wi

= λ(1) + ν
(1)
i − μ

(1)
i , ∀i;

μ
(1)
i sG,i = 0, sG,i ≥ 0, μ

(1)
i ≥ 0, ∀i;

ν
(1)
i (sG,i −EG,i) = 0, sG,i ≤ EG,i, ν

(1)
i ≥ 0, ∀i;

λ(1)
(∑K

i=1 sG,i −E(G,total)

)
= 0,∑K

i=1 sG,i ≤ E(G,total), λ
(1) ≥ 0.

Second, HPA1(K)|II is implemented. Thus, it is equivalent to Lemma 2 being used, however,

with the updated “step depths” 1
aiwi

+
sG,i

wi
, or the updated channel gains { ai

1+aisG,i
}.

According to Lemma 2 with the updated channel gains, for problem (5.1) under E(G,total) = 0,

there exist the optimal solution {sH,i}Ki=1 and the dual variables {λ(2)
i , μ

(2)
i }Ki=1 such that they satisfy

the following KKT conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1

aiwi
+

sH,i+sG,i
wi

=
∑K

k=i λ
(2)
k − μ

(2)
i , ∀i;

μ
(2)
i sH,i = 0, sH,i ≥ 0, μ

(2)
i ≥ 0, ∀i;

λ
(2)
i (

∑i
k=1 sG,k −

∑i
k=1Ein(k)) = 0,∑i

k=1 sG,k ≤
∑i

k=1Ein(k), λ
(2)
i ≥ 0, ∀i.

On the one hand, if E = ∅ (the empty set), let λG = 0; νG,i =
1

1
aiwi

+
sH,i+sG,i

wi

≥ 0 and μG,i = 0, as

1 ≤ i ≤ K. Also, let λH,i = λ
(2)
i , and μH,i = μ

(2)
i , for any i. Note that this set E mentioned above

is obtained, when GWFPP is used at the first time. On the other hand, if E �= ∅, and ∃i1 ∈ E such

that 1
ai1wi1

+
sH,i1

+sG,i1

wi1
≥ 1

aKwK
+

sH,K+sG,K

wK
, let λG = 1

1
ai1

wi1
+

sH,i1
+sG,i1

wi1

; νG,i =
1

1
aiwi

+
sH,i+sG,i

wi

−λG ≥ 0;

and μG,i = 0, as sG,i > 0 or the case of both sG,i = 0 and EG,i = 0, under 1 ≤ i ≤ K. Note that

this set E just mentioned above is obtained, when GWFPP is still used at the first time. Further,

if E �= ∅, then i1 ∈ E such that 1
ai1wi1

+
sH,i1

+sG,i1

wi1
≥ 1

akwk
+

sH,k+sG,k

wk
, where sG,k > 0, 1 ≤ k ≤ K.

Note that this set E just mentioned above is obtained, when GWFPP is used at the second time.

It has been emphasized that to distinguish between the two Es, the first E is also denoted by

E(1) and, i1 in E(1) by i1(1). Similarly, we also have E(2) and i1(2). Let λG = 1
1

ai1
wi1

+
sH,i1

+sG,i1
wi1

;

νG,i =
1

1
aiwi

+
sH,i+sG,i

wi

− λG ≥ 0; and μG,i = 0, as sG,i > 0 or the case of both sG,i = 0 and EG,i = 0,
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under 1 ≤ i ≤ K. Further, if sG,i = 0 and EG,i > 0, let νG,i = 0;μG,i = λG − 1
1

aiwi
+

sH,i+sG,i
wi

≥ 0 with

λG defined above. Also, it has been noted that the water level for each of the epochs in the set {i|1 ≤
i < i1(1)} keeps unchanged, although the adjustment is done or GWFPP is used twice; difference

between the water levels of epochs in the set {i|i1(1) ≤ i < i1(2)} is decreased; and difference

between the water levels of epochs in the set {i|i1(2) ≤ i ≤ K} is leaning forward to the same. Thus,

{λH,i, μH,i}Ki=1 can be easily constructed, similar to those in [20] together with the just mentioned

distinguishing characteristics. That is to say, according to the two sets of KKT conditions, the

definitions, or assigned and constructed values of the dual variables: {{λH,i, μH,i, νG,i, μG,i}, λG},
and the solutions {sH,i, sG,i}Ki=1 mentioned above, it is seen that these dual variables and solutions

also satisfy the following KKT conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1

aiwi
+

sH,i+sG,i
wi

= λG + νG,i − μG,i =
∑K

k=i λH,k − μH,i,

∀i;
μH,isH,i = 0, 0 ≤ sH,i, μH,i ≥ 0, ∀i;
μG,isG,i = 0, 0 ≤ sG,i, μG,i ≥ 0, ∀i;
νG,i(sG,i − EG,i) = 0, sG,i ≤ EG,i, νG,i ≥ 0, ∀i;
λH,l(

∑l
i=1 sH,i −

∑l
i=1Ein(i)) = 0, λH,l ≥ 0,∑l

i=1 sH,i ≤
∑l

i=1Ein(i), 1 ≤ l ≤ K;

λG(
∑K

i=1 sG,i − E(G,total)) = 0, λG ≥ 0,∑K
i=1 sG,i ≤ E(G,total),

where this set of KKT conditions is of problem (5.1), the Lagrange function of which is:

L ({sH,i, sG,i}; {λH,i, μH,i}, {λG, {νG,i, μG,i}})
=

∑K
i=1wi log(1 + ai(sH,i + sG,i)) +

∑K
i=1 μH,isH,i

− ∑K
l=1 λH,l

(∑l
k=1 sH,k −

∑l
k=1Ein(k)

)
+

∑K
i=1 μG,isG,i −

∑K
i=1 νG,i(sG,i −EG,i)

− λG

(∑K
i=1 sG,i −E(G,total)

)
.

In addition, we can observe that the general constraint qualification of problem (5.1) holds.

Then {sH,i, sG,i}Ki=1 computed by the proposed HPA1 is the optimal solution to problem (5.1).
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Therefore, Proposition 5.1 is proved.

Therefore, we settled the points: (1) HPA1 can compute the optimal solution only from the

causal information in finite steps. It does not need to solve any non-linear system, consisting of

many equations and inequalities in multiple dual variables; (2) the relationship between HPA1|I
and HPA1|II is determined; optimality of HPA1 stemming from HPA1|I and HPA1|II is revealed.

5.4 Numerical Example and Computational Complexity

HPA1 does not need to wait for the full information to be available but it can compute the exact

optimal solution through finite computation for every sub-process that starts from epoch 1 and ends

at epoch i, as i = 1, . . . , K. This point can also lean toward designing other efficient algorithms,

such as algorithms to compute the minimum transmission completion time.

5.4.1 Numerical Example

Example 1. PD-IPM is chosen for the purpose of comparison due to its competitiveness in com-

puting the solutions to the convex optimization problems. It has been known that the proposed

minimum transmission completion time problems are non-convex and mixing continuous with inte-

ger variable optimization problems. As far as the authors’ knowledge, there is no algorithm reported

in the open literature which can compute the exact solutions to these problems. As a result, we

only focus on the throughput maximization problem.

Figs. 5.1-5.3 are used to show the difference between PD-IPM and HPA1 for the maximum

throughput problems, through some choices of the number of epochs (K = 10, 15, 20). Channel

gains are generated randomly using random variables with the standard Gaussian distribution. For

convenience, {Ein(k) = 6, ∀k}. The sum power constraint of the power grid E(G,total) = K, and the

peak power constraints {E(G,k) = k, ∀k}. A group of different weights are also generated randomly.

The chosen parameters mentioned above are assigned to both algorithms with the identical values

for comparability. In these figures, the circle markers and the cross markers represent the results of

the proposed HPA1 and PD-IPM respectively. For the proposed HPA1, since it uses recursion, no

iteration is invoked. Therefore, the number of iterations of the circles maps to one iteration. The

obtained throughput is summarized in the following table. The obtained throughput for PD-IPM
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is the result after 100 iterations.
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Figure 5.1: Weighted sum-rates (Unit: bits) of HPA1 and PD-IPM, as K=10
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Figure 5.2: Weighted sum-rates (Unit: bits) of RGWFMH and PD-IPM, as 15

With different parameters, the achieved throughput ratio of the PD-IPM to that of HPA1 is

in the range of 0.55 to 0.70. These results show that the proposed HPA1 exhibits much better

performance. It also shows that as the number of the users increases, the throughput or the

weighted sum-rate increases.

As a supplement, for ease to follow the simulation results, a deterministic example is given.

The parameters are chosen as: assume there are five epochs with weight factor vector W =

(0.1633, 0.2132, 0.2282, 0.2035, 0.1918). Ein(k), {E(G,k), ∀k}, and E(G,total) are assigned by the same
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Figure 5.3: Weighted sum-rates (Unit: bits) of RGWFMH and PD-IPM, as K=20

Table 5.1: Comparison of the achieved throughput
parameter PD-IPM RGWFMH ratio

K = 10 1.30 1.84 0.70
K = 15 1.19 1.86 0.63
K = 20 1.14 1.87 0.61
K = 25 1.09 1.87 0.58
K = 30 1.07 1.88 0.57
K = 35 1.04 1.88 0.55

values as the ones mentioned above. Further the channel gains are generated as

(a1, a2, a3, a4, a5)

= (0.20562, 0.38512, 0.28772, 0.28512, 0.71432).
(5.12)

The optimal power allocation of the harvested energy is:

{0, 10.1359, 6.4885, 4.2572, 9.1185},

the ith member of which corresponds to the ith epoch. Similarly, the optimal power allocation of

the grid power is:

{0, 0.4705, 0, 0, 4.5295}.
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5.4.2 Computational Complexity Analysis

To compute the optimal solution, HPA1, utilizes GWF
∑K

L=1(1+L)L/2 times for RGWF(K), so it

needs
∑K

L=1

∑L
k=1(8k+3) = K(K+1)(8K+25)/6, i.e., O(K3) fundamental operations for utilizing

GWF (refer to [19]). Due to HPA1 also using GWFPP two time, this usage needs 8K2 + 14K

fundamental operations (refer to [19]). Therefore, HPA1 needs K(K+1)(8K+25)/6+8K2+14K,

i.e., O(K3) fundamental operations. Therefore, the complexity of HPA1 is rather low O(K3). As

a comparison, when PD-IPM being used can only obtain the ε solution, which is not the optimal

solution, it still needs a polynomial computational complexity: O(K3.5) log(1/ε) (refer to [55, 7]).

Hence, PD-IPM cannot guarantee to output the optimal solution by finite computation. Our

method eliminates any linear search but output the exact optimal solution with finite computation.

One weakness of PD-IPM is the linear search being used. When the feasible set has the sharp

boundary where optimal point(s) is located and the objective function is non-linear, this weakness

appears to be more remarkable. In addition, since PD-IPM requires efficiently compute the solution,

assuming the LU decomposition to be used, to the linear system which is determined by the fact that

the barrier function gradient is the difference between the objective function gradient and the linear

combination of the constraint function gradients, and the perturbed complementarity condition,

applying Newton’s method, it needs approximately 2
3
(4K + 1)3 fundamental operations. Together

with evaluation of the coefficient matrix of the linear system and the computation burden of the

linear search, PD-IPM requires an equivalent computational complexity, for each of iterations, to

that used totally for HPA1.

Simply speaking, HPA1 needs total O(K3) basic operations to compute the exact solution, while

PD-IPM needs total O(K3.5) log(1/ε) basic operations to compute an ε solution.
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Algorithm 5 Pseudocode for HPA1
1: Initialize:

L = 1,K,E(G,total), {wk, ak, P k = EG,k, Ein(k)}Kk=1;

2: Prepare:

HPA1(K)|I = {{s∗G,k}Kk=1, E} = GWFPP({ai}Ki=1);

3: Update:

{ak ← 1
1

ak
+s∗

G,k

}Kk=1;

4: Output the result for the epoch 1:

RGWF(L) = Ein(1);

5: for L = 2 : 1 : K do

6: Input: {Ein(L), wL, aL)};
7: {s′H,k}L−1

k=1 = RGWF(L − 1);

8: for n = L : −1 : 1 do

9: W = {wj}Lj=n;A = {aj}Lj=n;

10: ST =
∑L−1

j=n s′H,j + Ein(L);

11: {{sH,k∗}Lk=n, k
∗} = GWF(n, L,W,A, ST );

12: k∗e = max{k|s′H,k > 0, 1 ≤ k ≤ n− 1};
13: if

1
ak∗wk∗

+
sH,k∗

wk∗
≥ 1

ak∗
e
wk∗

e

+
sH,k∗

e

′

wk∗
e

then

14: output:

RGWF(L) = {s′H,1, . . . , s
′

H,n−1, s
∗

H,n, . . . , s
∗

H,L},
15: Move to the next epoch, i.e., go to Line 18;

16: end if

17: end for

18: end for

19: if E = ∅ or 1
ai1wi1

+
sH,i1+s∗G,i1

wi1
≥ 1

aKwK
+

sH,K+s∗G,K

wK
, where sH,i is the the ith member of RGWF(K) then

20: output of HPA1(K):

{s∗G,k}Kk=1 = HPA1(K)|I = GWFPP from Line 2;

{s∗H,k}Kk=1 =HPA1(K)|II = RGWF(K);

21: end if

22: HPA1(K)|I = {{s∗G,k}i1−1
k=1 ,GWFPP({ 1

1
akwk

+
sH,k
wk

}Kk=i1
);

HPA1(K)|II = {{s∗H,k}i1−1
k=1 ,RGWF({ 1

1
akwk

+
([HPA1(K)]|I )k

wk

}Kk=i1
).
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Chapter 6

Using GWF to Solve A Class of Sum

Power Minimization Problems

In this chapter, we first propose a generalized water-filling approach to solve the power allocation

problem of minimizing sum power while meeting the target sum rate constraint with weights.

Based on this sum power objective function, we extend the proposed method to more complicated

RRM problems with more stringent constrains. The proposed algorithms with this generalized

approach possess several distinguished features. They provide exact optimal solutions based on

non-derivative methods, as the implementation of the proposed algorithms invokes neither the

derivative nor the gradient. With geometric interpretation, the proposed algorithms provide more

insights to and intuitions of the problems and could be used to efficiently solve a family of the sum

power minimization problems. Optimality of the proposed algorithms is strictly proved. Numerical

results that illustrate the steps and demonstrate efficiency of the proposed algorithms are presented.

6.1 Introduction

Transmit power and data rates are two fundamental radio resources. The required Quality of Ser-

vice (QoS) can be satisfied by adjusting either power or rate or both in a complementary way.

The optimal allocation of these scarce radio resources for different users/channels directly affects

system performance. Therefore, for radio resource management (RRM) with different target and/or

priorities, the problems or mathematical models may be formulated through maximizing the ob-

jective function of transmission throughput (or sum rate), subject to the sum power constraint; or
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through minimizing the objective function of sum power, subject to the throughput constraint. In

this chapter, we simply refer to the former problem as the original RRM problem, and the latter

one as the (sum) power problem to distinguish itself from the original RRM problem.

6.1.1 Our Work for Sum Power Minimization Problem

In this chapter, a set of new problems are formed by changing the throughput of objective function,

in the original RRM problem, into the sum power; while by changing the sum power constraint,

in the original RRM problem, into the throughput constraint. At the same time, we will use

the operator of minimization for this set of new problems. Thus, this set of new problems are

readily distinguishable from the original RRM problems mentioned above. Correspondingly, this

set of problems, with the objective functions having (sum) power forms, are referred to as P-

GWF, P-WFPP, P-WFGPP, and P-WFGBP respectively here. These problems have their practical

applications. For example, when we consider different class of QoS services, the constraint of the

different lower and upper bounds of the power allocation is reflected in our target problems. Without

loss of clarity, we will use the same set of abbreviations to denote the problems and the algorithms

that solve the corresponding problems.

In this chapter, we significantly extend beyond earlier proposed approach [19] to solve the sum

power RRM problems, including the basic form (P-GWF) and its extended and generalized forms.

The stated generalized approach has a distinguished feature that the proposed algorithms start

from geometric interpretations of the target problems. These geometric interpretations and the

relationships they formed provide more insights into the problems; and such insights assist us to

efficiently solve the target problems with optimal solutions. The proposed algorithms possess sim-

ple procedures due to the fact that the proposed algorithms belong to the non-derivative methods

(which have been defined in [2]) that use neither the derivative nor the gradient during theirs

implementation. The proposed algorithm P-GWF for the basic sum power problem has two advan-

tages: it provides the exact solution, and thus eliminates the iterative steps of finding the water

level through solving the non-linear system. On the other hand, the machinery of the proposed

approach enabled us to solve the more generalized RRM problems with more stringent constraints.

In our numerical examples, it is shown that with optimal power allocation for the generalized RRM

problems, the water levels are different for the different constraints of lower and upper bounds.
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The conventional approach of determining the water level(s) might not be able to solve this kind

of generalized problems. The difference between our approach and those of others is summarized

below.

First, for the simple case of P-GWF problem that can be solved through the conventional ap-

proach, it is generalized into a weighted case in this chapter. Together, the corresponding algorithm

with less computation is also proposed.

Second, for the more complicated P-WFPP, P-WFGPP, and P-WFGBP cases, their solutions

cannot be computed exactly by the conventional approach, but these (optimal) solutions can be

computed exactly by our approach in this chapter.

Third, for each of these problems, our approach only takes a low degree polynomial compu-

tational complexity for the exact solution, unlike the popular primal-dual interior point method

(PD-IPM) that only computes an ε solution, which is not an optimal solution and requires more

computations (refer to [55, 7], and references therein).

Fourth, for the mentioned problems of P-WFPP, P-WFGPP, and P-WFGBP, similar results

have not been reported in the open literature, to the best of the authors’ knowledge. For example,

[19, 36] provided efficient algorithms for some RRM problems that have different structures, unlike

the structure of these target problems in this chapter. The approaches discussed in [19, 36] cannot

solve the target problems in this chapter. The proposed algorithms are novel and efficient.

In the remaining of the chapter, the problem statement, the conventional approach, and the

preparation or the illustration for the proposed P-GWF are discussed in Section 6.2. The extended

and generalized sum power RRM problems with additional stringent constraints are further in-

vestigated in Section 6.3. Numerical examples and complexity analysis are presented in Section

6.4. We provide where the strict optimality proofs appear for the extended and generalized algo-

rithms to compute the minimum sum power problems with more constraints, to meet some readers’

requirement.
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6.2 Generalized Water-Filling for Sum Power Problem

6.2.1 Problem Statement and Conventional Approach

The original basic RRM problem can be described by the following: given P > 0, which is the

total power or volume of the water; the allocated power and the propagation path gain of the ith

channel, which are denoted by si and ai respectively, i = 1 . . .K; and K which is the total number

of channels, letting {ai}Ki=1 be a sorted sequence with monotonically decreasing (the indexes can

be arbitrarily renumbered to satisfy this condition), in which ai > 0, ∀i, find a group of the powers

{si} to satisfy:

max{si}Ki=1

1
2

∑K
i=1 log2(1 + aisi)

subject to:
∑K

i=1 si = P ; 0 ≤ si, ∀i.
(6.1)

Extensive investigation to solve problem (6.1) has been reported in the open literature. Using a

geometrical approach to solve this problem has been discussed in our earlier chapter [19].

The basic sum power RRM problem can be stated as: given B > 0, which denotes the number of

the target transmission bits (or sum rate of the system), find a group of the powers {si} to satisfy:

min{si}Ki=1

∑K
i=1 si

subject to:
∑K

i=1
1
2
log2(1 + aisi) = B; 0 ≤ si, ∀i.

(6.2)

Note that if only the first constraint is substituted with 1
2

∑K
i=1 log2(1+aisi) ≥ B, the new problem,

as a convex optimization problem, is equivalent to (6.2). Solving problem (6.2) is important,

especially when saving energy/power is indeed the first priority of the system design.

Problem (6.1) is to solve the throughput maximization problem; while problem (6.2) is to solve

the sum power minimization problem. Generally, the solution to (6.1) can not be directly applied

to (6.2). This chapter focuses on the investigation of the solution to (6.2) and its extended and

more generalized forms.

To find the solution to problem (6.2), conventional approach usually starts from the equivalent

form of the Karush-Kuhn-Tucker (KKT) conditions of problem (6.2). This equivalent form is:

⎧⎪⎨
⎪⎩

si =
(
μ− 1

ai

)+

, for i = 1, . . . , K;∑
i∈{l|μ− 1

al
≥0, 1≤l≤K} log2(1 + aisi) = 2B;μ ≥ 0,

(6.3)
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where (x)+ = max {0, x}. μ is the water level chosen to satisfy the sum rate constraint with equality

(1
2

∑K
i=1 log2(1 + aisi) = B).

Enumeration can be utilized to find the water level μ in (6.3). This statement means that solving

the equation in μ: ∑
i∈{l|μ− 1

al
≥0, 1≤l≤k}

log2

(
1 + ai

(
μ− 1

ai

))
= 2B, (6.4)

can find the water level μ in (6.3), where the index k runs up from 1 to K. Further, after the

index k only runs some steps that are not greater than K, due to { 1
al
} keeping monotonicity, the

solution to (6.4) can be obtained. That is to say, we may use fewer steps to find μ. This algorithm

or solution to (6.3) is referred to as the conventional sum power water-filling algorithm or solution,

denoted by P-CWF. The detail can be furthermore referred to in [8]. Since P-CWF results from

the motivation to solve the system directly, it is a non-geometric approach.

6.2.2 Illustration of the Proposed Generalized Water-Filling Algorithm

(P-GWF)

In this section, we apply our proposed generalized water-filling methodology [19] to solve problem

(6.2). Similar to GWF [19], Figs. 6.1(a)-(c) illustrate the proposed P-GWF algorithm for the sum

power problems. Suppose there are 4 steps/stairs (K = 4) with unit width inside a water tank.

In the conventional approach, the dashed horizontal line, which is the water level μ, needs to be

determined first and then the powers (water volume above the step) are solved.

Let us use di to denote the “step depth” of the ith stair which is the height of the ith step to

the bottom of the tank, and is given below:

di =
1

ai
, for i = 1, 2, . . . , K. (6.5)

Since the sequence {ai} is sorted with monotonically decreasing, the step depth of the stairs indexed

by {1, · · · , K} is monotonically increasing.

Instead of trying to determine the water level μ, which is a real nonnegative number, we aim to

determine the highest (shallowest) water level step under water, which is an integer number between

1 and K, and denoted it by k∗. Based on the result of k∗, we can write out the solutions for power
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allocation in problem (6.2) instantly.

Fig. 6.1(a) illustrates the concept of k∗. Since the third level is the highest level under water,

we have k∗ = 3. The shaded area denotes the allocated power for the third step by s∗3.

We define the achieved data rate using power below step k by R(k) that can be expressed by

R(k) = 1
2

∑k−1
i=1 log2 (1 + ais(k)i)

= 1
2

∑k−1
i=1 log2

[
1 + ai

(
1
ak

− 1
ai

)]
= 1

2

∑k−1
i=1 log2

[
ai
ak

]
= 1

2
log2

[
Πk−1

i=1

(
ai
ak

)]
,

(6.6)

where si(k) =
1
ak

− 1
ai

in R(k). To include the case of k = 1 in (6.6), we define the two special cases

as follows:
∑n

i=m bi = 0, for m > n, and

Πn
i=mbi = 1, for m > n, (6.7)

where {bi} is assumed to be a general number sequence.
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Figure 6.1: Illustration for the proposed generalized Water-Filling Algorithm for the sum power
problems (P-GWF). (a) Water level step k∗ = 3, allocated power for the third step s∗3, and step/stair
depth di = 1/ai. (b) ER(k) (which is determined by the shadowed area, representing the total
water/power, up to, but excluding step k) when k = 2. (c) ER(k) when k = 3. (d) The weighted
case.

Let ER(k) denote the Exponential Rate function achieved with the power below step k, which
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can be written by

ER(k) = 22R(k) = Πk−1
i=1

(
ai
ak

)
, for k = 1, . . . , K, (6.8)

where the factor “2” in the exponent comes from the fractional coefficient before the sum of loga-

rithm functions in (6.6). Further the exponential rate target given is defined by η: η = 22B.

In the following, we explain how to find the water level step k∗ without the knowledge of the

water level μ. Fig. 6.1(b) and Fig. 6.1(c) illustrate the concepts of ER(k) achieved by the power

from the shadowed area for the cases of k = 2 and k = 3 respectively. As an example of Fig. 6.1(c),

the water volume under step 3 can be expressed as the sum of the two terms: (i) the step depth

difference between the 3rd and the 1st step, (1/a3−1/a1), and (ii) the step depth difference between

the 3rd and the 2nd step, (1/a3 − 1/a2). Thus, the achieved data rate using power under the 3rd

step can be written as

R(k = 3) = 1
2
log2

[
1 + a1

(
1
a3

− 1
a1

)]
+ 1

2
log2

[
1 + a2

(
1
a3

− 1
a2

)]
= 1

2
log2

[
a1a2
a23

]
.

(6.9)

Therefore, the corresponding ER(k = 3) is given by

ER(k = 3) = 22·R(k=3) =
a1a2
a23

, (6.10)

which is an expansion of the composite form of (6.8).

To clearly understand the procedures of the proposed algorithm, the line of the methodology is

briefly summarized by the following: using { 1
ak

− 1
ai
}k−1
i=1 , for k = 1, . . . , K, to define the achieved

data rate or the exponential rate sequence in k; using the exponential rate sequence to determine

the highest step k∗; and then this k∗ is used to compute the optimal solution to the target problem.

Thus, { 1
ak
− 1

ai
}k−1
i=1 , ∀k, is not guaranteed to be the optimal solution. It is only utilized for computing

the optimal solution in this proposed algorithm.

The explicit solution, on the other hand, is optimal, and its optimality proof to (6.2) will be

introduced, as an instance of the generalized case in following subsection.
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6.2.3 Extend to Weighted Case

For the weighted or generalized case, an extended problem can be stated as: given the weighted

coefficients wi > 0, ∀i, associated with {aiwi}Ki=1 which are assumed to be in decreasing order

(similar to the case in Subsection 6.2.1, the indexes can be arbitrarily renumbered to satisfy this

condition), find a group of the powers {si} which are the solutions to the following problem,

min{si}Ki=1

∑K
i=1 si

subject to: 1
2

∑K
i=1wi log2(1 + aisi) = B; 0 ≤ si, ∀i.

(6.11)

In Fig. 6.1(d), the width of the ith stair/step is denoted by wi. The term si denotes the allocated

power represented by the area above step i under water. The value of 1/ai denotes the area, under

the ith step to the bottom of the tank. Hence, the step depth of the ith step is given by

di = 1/(aiwi), i = 1, · · · , K. (6.12)

Then R(k) can be expressed by R(k) =

1
2

∑k−1
i=1 wi log2

[
1 + aiwi

(
1

akwk
− 1

aiwi

)]
= 1

2

∑k−1
i=1 wi log2

[
aiwi

akwk

]
= 1

2

∑k−1
i=1 log2

[
aiwi

akwk

]wi

.

(6.13)

The corresponding exponential rate function is

ER(k) = 22R(k) = Πk−1
i=1

(
aiwi

akwk

)wi

, for k = 1, . . . , K. (6.14)

Based on these extended definitions, we have the following proposition to compute the solution

to (6.11).

Proposition 6.1. The explicit solution, by finite amounts of computation, to (6.11) is:

si =

[
sk∗

wk∗
+ (dk∗ − di)

]
wi, for 1 ≤ i ≤ k∗; and si = 0, for k∗ < i ≤ K, (6.15)
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where

k∗ = max
{
k
∣∣∣ER(k) < η, 1 ≤ k ≤ K

}
(6.16)

with ER(k) defined by (6.14), the power level for this step is

sk∗ =
1

ak∗

[(
η

ER(k∗)

) 1
∑k∗

i=1
wi − 1

]
(6.17)

and the optimal sum power allocated in (6.11) is:

P ∗ =
k∗∑
i=1

[
1

ak∗wk∗
·
(

η

ER(k∗)

) 1
∑k∗

i=1
wi − 1

aiwi

]
wi. (6.18)

Prior to the formal proof, we first show how sk∗ in (6.17) is obtained, and whether {si} in (6.15),

including sk∗, is a feasible solution to (6.11). Using (6.15) and (6.16), the first constraint, i.e., the

rate constraint, of (6.11) leads to the following equation in sk∗:

B = 1
2

∑k∗

i=1wi log2(1 + aisi)

= 1
2

∑k∗

i=1wi log2[1 + aiwi(
sk∗
wk∗

+ 1
ak∗wk∗

− 1
aiwi

)]

= 1
2

∑k∗

i=1wi log2[aiwi(
sk∗
wk∗

+ 1
ak∗wk∗

)]

= 1
2

∑k∗

i=1wi log2{ aiwi

ak∗wk∗
[ak∗wk∗(

sk∗
wk∗

+ 1
ak∗wk∗

)]}
= 1

2

∑k∗

i=1wi log2(
aiwi

ak∗wk∗
) + 1

2
[log2(1 + ak∗sk∗)]

∑k∗

i=1wi.

(6.19)

So, this equation in sk∗ is further simplified as below:

B = 1
2

∑k∗

i=1wi log2(
aiwi

ak∗wk∗
) + 1

2
[log2(1 + ak∗sk∗)]

∑k∗

i=1wi. (6.20)

Finally, (6.17) is obtained by solving this equation: (6.20), and then {si} in (6.15) is the feasible

solution.

Proof of Proposition 6.1. The formal proof is stated as follows. System (6.15) implies that

wk∗

1
ak∗

+ sk∗
=

wi

1
ai
+ si

, for 1 ≤ i ≤ k∗. (6.21)
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Let

λ =

(
wk∗

1
ak∗

+ sk∗

)−1

. (6.22)

From geometric view, λ itself is the water level μ. According to the definitions of k∗ and sk∗ , for

k∗ < i ≤ K, wk∗
1

ak∗
+sk∗

≥ wi
1
ai

+si
and si = 0. This statement can be explained as follows: si = 0

first comes from (6.15). To show the inequality, assume to the contrary that, for k∗ < i ≤ K,

wk∗
1

ak∗
+sk∗

< wi
1
ai

+si
holds. That is to say, 1

ak∗wk∗
+ sk∗

wk∗
> 1

ak∗+1wk∗+1
. Then,

1 + aiwi(
1

ak∗wk∗
+

sk∗

wk∗
− 1

aiwi

) > 1 + aiwi(
1

ak∗+1wk∗+1

− 1

aiwi

), ∀i. (6.23)

The logarithm operation is applied to both sides of the inequality; and then the summation operation

with the weights is applied with the index running from 1 to k∗. Finally put the exponentiation on

the last result of both sides. As a result, η > ER(k∗+1). However, a contradiction of the maximum

k∗ not being maximum is acquired. Therefore, for k∗ < i ≤ K, wk∗
1

ak∗
+sk∗

≥ wi
1
ai

+si
.

Let σi = 1− λ wi
1
ai

+si
. Then

σi ≥ 0, for k∗ < i ≤ K; σi = 0, for 1 ≤ i ≤ k∗. (6.24)

Therefore, the following system holds:

⎧⎪⎨
⎪⎩

1− λwi
1
ai

+si
− σi = 0, for 1 ≤ i ≤ K; si ≥ 0, σisi = 0, σi ≥ 0, ∀i;∑K

i=1wi log2(1 + aisi) ≥ 2B, λ
[∑K

i=1wi log2(1 + aisi)− 2B
]
= 0, λ ≥ 0.

(6.25)

By observation, the equation and inequality set above is a set of the KKT conditions of the

problem in (6.11) and the water level μ is equal to the Lagrange multiplier λ mentioned above.

Note that the Lagrange function of the problem (6.11) is

L({si}, λ, {σi}) =
K∑
i=1

si − λ

[
K∑
i=1

wi log2 (1 + aisi)− 2B

]
−

K∑
i=1

σisi. (6.26)

Since problem (6.11) is, in essence, a differentiable convex optimization problem, not only are the

KKT conditions mentioned above sufficient, but they are also necessary for optimality. We observe

that the General Constraint Qualification of the problem holds. This (3.71) is often abbreviated as
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GCQ, for which, it is seen that Slater’s condition [7] is a special case and implies GCQ. Proposition

6.1 hence is proved.

Note that Proposition 6.1 is the first proposition in section 6.2 of this chapter.

Remark 1. Proposition 6.1, at the first line in the formal proof, stated that {sk}Kk=1 in (6.15)

implies (6.21), then the Lagrange multipliers are constructed by (6.22) and (6.24), and it is seen

that for {sk}Kk=1 in (6.15), there exists the group of Lagrange multipliers constructed above to satisfy

the KKT conditions of the problem (6.11). Therefore, according to optimization theory, {sk}Kk=1

in (6.15) is the optimal solution to problem (6.11). Within the statement of Proposition 6.1, it

is worth mentioning that (6.14) determines ER(k), then obtains k∗ by (6.16), and further sk∗ by

(6.17).

Thus, the first step is to calculate ER(k), then find the water level step, k∗ from (6.16), which is

the maximal index of ER(k) < η. The corresponding power level for this step, sk∗ , can be obtained

by applying (6.17). Then for those steps with index higher than k∗, the power level is assigned with

zero. For those steps below k∗, the power level is assigned by the first expression in (6.15). The

first term (sk∗/wk∗) inside the square bracket denotes the depth of the k∗th step to the water level.

The second term inside the square bracket denotes the step depth difference between the k∗th step

and the ith step. Therefore, the sum inside the square bracket means the depth of the ith step to

the water level. When this quantity is multiplied by the width of this step, the volume of the water

above this step (allocated power) can be obtained.

When the weighting factors are set to ones, a corollary of Proposition 6.1 is stated as follows.

Corollary 6.1. The explicit solution to (6.2) is:

si =

⎧⎪⎨
⎪⎩

sk∗ + (dk∗ − di) 1 ≤ i ≤ k∗

0, k∗ < i ≤ K,
(6.27)

where the water level step k∗ is given by

k∗ = max
{
k
∣∣∣ER(k) < η, 1 ≤ k ≤ K

}
(6.28)
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with ER(k) defined by (6.8), the power level for this step is

sk∗ =
1

ak∗

[(
η

ER(k∗)

) 1
k∗

− 1

]
(6.29)

and the optimal sum power allocated in (6.2) is:

P ∗ =
K∑
i=1

si =

k∗∑
i=1

[
1

ak∗
·
(

η

ER(k∗)

) 1
k∗

− 1

ai

]
. (6.30)

Note that the solution {si} expressed in (6.27) has an identical geometric form to that in [19].

However it is solved differently, since it is stemming from (6.28) and (6.29).

Similar to the weighed case, the first step of the proposed approach is to find the water level step

k∗ based on (6.28). Then the power sk∗ at this step can be determined based on (6.29). For those

steps with index higher than k∗, no power is assigned. For those steps with index lower than k∗,

their power levels are obtained by adding sk∗ to the corresponding level depth difference, between

the k∗th step and the ith step, which are shown in (6.27).

In the following descriptions of algorithmic implementation, only weighted case is provided.

From Proposition 6.1, when k∗ is obtained, ER(k∗) is known. Then it is memorized to compute

sk∗ . Thus, how to search k∗ is a key point for the proposed P-GWF. The procedure of P-GWF

approach is stated below:

Algorithm P-GWF:

1) Let η = 22B. Initialize Ws = 0;ERM = ER∗ = 1; i = 1. If K = 1, output the optimal solution

s∗1 =
1
a1
[η

1
w1 − 1]; else go to 2).

2) Compute Ws ← Ws + wi;ER∗ ← ER∗ · (di+1

di
)Ws. Then i ← i + 1, where the symbol “←”

represents the assignment operation.

3) If ER∗ < η and i < K, ERM = ER∗, and repeat the step 2); else, for ER∗ ≥ η, output

k∗ = i − 1,Ws = Ws − wi; for i = K and ER∗ < η, k∗ = i,Ws = Ws + wi and ERM = ER∗.

Finally, let sk∗ =
1

ak∗

[
( η
ERM

)
1

Ws − 1
]
.

We can observe that sk∗
wk∗

+ dk∗ is the water level due to sk∗
wk∗

+ dk∗ = si
wi

+ di, for 1 ≤ i ≤ k∗. In

addition, Ws and ERM are used, in each of the iteration, for a factor of less computation.
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6.3 Solving Generalized RRM Problem Using P-GWF

In this section, we generalize the basic sum power RRM problem (6.2) to the sum power problems

of WFPP, WFGPP, and WFGBP. The last case, P-WFGBP, is the most generalized RRM problem

which will strip down to the other forms when applied to special values of lower and upper bounds

and the number of its groups. To the best of the authors’ knowledge, there is no existing algorithm

reported in the open literatures to compute the exact solution for the generalized sum power problem

P-WFGBP.

6.3.1 Weighted Water-Filling with Individual Peak Power Constraints

(P-WFPP) for Sum Power Problems

Let Pi denote the peak power restriction of the ith channel. The weighted P-WFPP problem is

stated by

min{si}Ki=1

∑K
i=1 si

subject to:
∑K

i=1wi log2(1 + aisi) ≥ 2B; 0 ≤ si ≤ Pi, ∀i.
(6.31)

Comparing the problem (6.31) with (6.11), the constraint of 0 ≤ si is replaced with 0 ≤ si ≤ Pi,

i.e., adding additional individual peak power constraint, and
∑K

i=1wi log2(1+aisi) = 2B is replaced

with
∑K

i=1wi log2(1 + aisi) ≥ 2B. In fact, by properly further reducing some allocated power(s),

we can reach the equality constraint of the transmitted bits. Thus, problem (6.31) is reasonably

assumed here.

Proposition 6.1 in subsection 6.2.3 provides an explicit exact solution using the proposed ap-

proach. P-WFPP problem can be obtained with some modifications to P-GWF. For convenience,

the expression (6.14) can be extended into the expression:

ER(ik) = Πk−1
t=1

(
dik
dit

)wit

, for k = 1, . . . , |E|,

where E is a subsequence of the sequence {1, 2, . . . , K}, |E| is the cardinality of the set E, so E

can be expressed through {i1, i2, . . . , i|E|}. Especially, if E is taken as the sequence {1, 2, . . . , K},
then the extended expression is regressed into the original expression (6.14). Similarly, some corre-

sponding changes in (6.15)-(6.17) are also made (i.e., the subscripts of sequence are replaced with
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those of the subsequence). For avoiding notation-wise tediousness, these extended expressions are

still labelled by (6.15)-(6.17) in the following algorithm descriptions.

Algorithm P-WFPP:

Input: arrays {ai, wi, Pi} for i = 1, 2, . . . , K, the set E = {1, 2, . . . , K}, and η = 22B.

1) Utilize (6.15)-(6.17) to compute {si}.

2) The set Λ is defined by the set {i|si > Pi, i ∈ E}. If Λ is the empty set, output {si}Ki=1; else,

si = Pi, for i ∈ Λ.

3) Update E with E \ Λ and η with η/ [Πt∈Λ (1 + atPt)
wt]. Then return to 1) of the P-WFPP.

Remark 2. 3) in P-WFPP is a dynamic power distribution process. The state of this process

is the difference between the individual peak power sequence and the current power distribution

sequence obtained by P-GWF. The control of this process is to use (6.15)-(6.17) of Algorithm P-

GWF based on the state mentioned above. And, a new state appears for next time stage. Therefore,

a dynamic power distribution process, P-WFPP, with the state feedback is formed. Since the finite

set E is getting smaller and smaller until the set Λ is empty, P-WFPP carries out K loops to

compute the optimal solution, at most. In detail, updating E with E \ Λ is to remove the set

{i|si > Pi}, when si ← Pi, ∀i in the set. Then over the updated set E, the exponent rate η is

updated with η/ [Πt∈Λ (1 + atPt)
wt ] correspondingly. Further, the process of updating E and η is a

middle process, from the current state to form the current control, based on system theory.

For Algorithm P-WFPP, we can obtain the following results:

Proposition 6.2: P-WFPP can provide the exact optimal solution to the problem (6.31) by

finite amounts of computation.

Its proof can be referred to in [21].

6.3.2 Weighted Water-Filling with Group Peak Power Constraints (P-

WFGPP) for Sum Power Problems

Let {χi}Ti=1 be a partition of the index set: {1, . . . , K}. For convenience, the elements of χi can

be listed, monotonically increasing, i.e., i1 < i2 < . . . < i|χi|. Let P i(> 0) denote the upper or
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peak power bound of the power constraint for the ith group channels, ∀i. The weighted P-WFGPP

problem can be written by

min{si}Ki=1

∑K
i=1 si

subject to:
∑K

i=1wi log2(1 + aisi) ≥ 2B; 0 ≤ sk, ∀k;∑k∈χi
sk ≤ P i, i = 1, . . . , T.

(6.32)

Comparing the problem (6.32) with (6.31), we know that the constraints of 0 ≤ si ≤ Pi, ∀i, are
extended to 0 ≤ ∑

k∈χi
sk ≤ P i, i.e., if every χi is taken as a singleton, the problem (6.32) is

regressed into the problem (6.31).

To solve the problem (6.32), let us recall the original preliminary RRM problem and its solution

(GWF) reported in our earlier work [19], for preparation:

max{sk}K′

k=1

∑K ′

k=1wk log2(1 + aksk)

subject to:
∑K ′

k=1 sk ≤ Ptotal; 0 ≤ sk, ∀k.
(6.33)

GWF gives the following solution to (6.33) by [19]:

sm =

[
sk′∗

wk′∗
+ (dk′∗ − dm)

]
wm, for 1 ≤ m ≤ k′∗; sm = 0, for k′∗ < m ≤ K ′, (6.34)

where

k′∗ = max
{
k
∣∣∣P2(k) > 0, 1 ≤ k ≤ K ′

}
(6.35)

and the power level for this step is

sk′∗ =
wk′∗∑k′∗

m=1wm

P2(k
′∗), (6.36)

where

P2(k) =
[
Ptotal −

∑k−1
m=1 (dk − dm)wm

]+
, for k = 1, . . . , K ′, (6.37)

and

dm = 1/(amwm), m = 1, · · · , K ′. (6.38)

The following statement presents an algorithm which is a combination and modification of the

GWF and P-GWF. This algorithm is termed as the P-WFGPP.
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Similarly, for convenience, the expression (6.14) can be extended into the expression:

ER(ik) = Πk−1
t=1

(
dik
dit

)wit

, for k = 1, . . . , |E|,

where E is a subsequence of the sequence {1, 2, · · · , K}.

Algorithm P-WFGPP:

Input: Sets {ak, wk}Kk=1, {P i}T1=1, E = {1, 2, . . . , T}, and η = 22B.

1) Let n = 1 and Λ = ∅ (empty set). Utilize (6.15)-(6.17) to compute {sk}Kk=1.

2) The set Λn is assigned by the set {i|∑k∈χi
sk > P i, i ∈ E}. If Λn is the empty set, output

{si}Ki=1; else, Ptotal ← P i, K
′ ← |χi|, χi is renamed into the set {i1, . . . , iK ′}, and then utilize

(6.34)-(6.36) from GWF, for i ∈ Λn.

3) Update E with E \ Λn and η with η/ [Πi∈ΛnΠt∈χi
(1 + atst)

wt ]. Then n ← n + 1, K ←
K −∑

i∈Λn
|χi| and return to the second statement in 1) of the P-WFGPP.

Proposition 6.3: P-WFGPP can provide the exact optimal solution to the problem (6.32) by

finite amounts of computation.

Its proof can be referred to in [21].

6.3.3 Weighted Water-Filling with Group Bounded Power Constraints

for Sum Power Problem (P-WFGBP)

Let {χi}Ti=1 be a partition of the index set: {1, . . . , K}. Assume that 0 ≤ P i ≤ P i, and P i and P i

denote the lower bound and the upper bound of the power constraint for the ith group channels,

∀i. The weighted P-WFGBP problem is stated by

min{si}Ki=1

∑K
i=1 si

subject to:
∑K

i=1wi log2(1 + aisi) ≥ 2B; 0 ≤ sk, ∀k;
P i ≤

∑
k∈χi

sk ≤ P i, i = 1, . . . , T.

(6.39)

Comparing the problem (6.39) with (6.32), it is seen that the constraints of 0 ≤ ∑
k∈χi

si ≤ P i, ∀i,
are generalized to P i ≤

∑
k∈χi

sk ≤ P i, i.e., adding additional group lower bound power constraints.
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The lower bound of the additional constraint can be used to guarantee the fair transmitted rate

from the ith group transmission, whereas the upper bound of the additional constraint can be used

to limit the total interference from the ith group. The problem (6.39) is thus referred to as power

(weighted) water-filling with group bounded power constraints (P-WFGBP).

Similarly, due to the explicit solution using generalized view approach that is provided in Propo-

sition 6.1, the proposed GWF and P-WFGPP can be applied to the P-WFGBP problem with some

modifications. The following statement presents a generalized algorithm, which is based on a mean-

ingful combination and modification of the GWF and P-WFGPP.

Note, for the problem:

max{sk}k∈χi

∑
k∈χi

wk log2(1 + aksk)

subject to:
∑

k∈χi
sk = P i; 0 ≤ sk, ∀k,

(6.40)

its optimal value is denoted by V i, for i = 1, . . . , T . It can be observed that there does not exist

any solution to problem (6.39), if
∑T

i=1 V i < 2B. Further, if
∑T

i=1 V i = 2B, the optimal solution

to (6.40) denoted by {s∗k}k∈χi
, for i = 1, . . . , T , can determine the optimal solution, {{s∗k}k∈χi

}Ti=1,

to (6.39). Hence,
∑T

i=1 V i > 2B is assumed in the following. Further, P i, in the problem men-

tioned above, is replaced with P i, ∀i, and the corresponding optimal value is denoted by V i, ∀i. If∑T
i=1 V i ≥ 2B, the optimal solutions to the problems undergo a similar process to that mentioned

above. For i = 1, . . . , T , this constitutes an optimal solution to problem (6.39) and the optimal

value is
∑T

i=1 P i with practical meaning. Therefore, we only consider the cases under
∑T

i=1 V i > 2B,

which has been assumed before, together with
∑T

i=1 V i < 2B.

It is seen that if P i = 0, ∀i, then problem P-WFGBP (6.39) is reduced into problem P-WFGPP

(6.32); and if χi is regressed to a singleton and P i = 0, ∀i, then problem P-WFGBP (6.39) is reduced

into problem P-WFPP (6.31). Thus, problem P-WFGBP (6.39) is the most general form of the

RRA problems. It is called the generalized problem in this chapter. The corresponding algorithm

is described below.

Algorithm P-WFGBP:

Input: the channel gains {ak}Kk=1, the weights {wk}Kk=1, the group lower and upper power

bounds {P i, P i}Ti=1, the partition {χi}Ti=1 and the (weighted) sum-rate constraint B.
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1) Ptotal ← P i, K
′ ← |χi|, χi is written into the set {i1, . . . , iK ′}, and then utilize (6.34)-(6.36)

from GWF, for i = 1, . . . , T . Hence, the solutions {{s′it}t∈χi
}Ti=1 are obtained.

2) Update B with B − 1
2

∑K
k=1wk log2(1 + aks

′
k),

1
ak

with 1
ak

+ s′k, ∀k, and P i with P i − P i, ∀i.

3) Utilize P-WFGPP to compute {sk}Kk=1 as the optimal solution to (6.32) under the updated

parameters.

4) Output the optimal solution {sk} ← {sk + s′k} to the problem (6.39).

Remark 3. Due to its definition mentioned above, P-WFGBP carries out T loops to compute

the exact optimal solution, at most.

For optimality of the proposed P-WFGBP, we have the following conclusion:

Proposition 6.4: P-WFGBP can provide the exact optimal solution to the problem (6.39) via

finite amounts of computation.

Its proof can be referred to in [21].

Remark 4. If we chose an approach, similar to P-CWF to directly solve the class of problems

(6.39), a non-linear system with non-linear equations and inequalities in multiple dual variables (as

below) would have had to be solved in a difficult manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑T
i=1

∑
j∈χi

wj log2[1 + aj

(
wjλ

1+σi−σi
− 1

aj

)+

] ≥ 2B;

λ{∑T
i=1

∑
j∈χi

wj log2[1 + aj

(
wjλ

1+σi−σi
− 1

aj

)+

]− 2B} = 0;

P i ≤
∑

j∈χi

(
wjλ

1+σi−σi
− 1

aj

)+

≤ P i, for i = 1, 2, . . . , T ;

σi[
∑

j∈χi

(
wjλ

1+σi−σi
− 1

aj

)+

− P i] = 0, for i = 1, 2, . . . , T ;

σi[
∑

j∈χi

(
wjλ

1+σi−σi
− 1

aj

)+

− P i] = 0, for i = 1, 2, . . . , T ;

λ ≥ 0; σi ≥ 0, σi ≥ 0, for i = 1, 2, . . . , T.

(6.41)

For example, the system of (3) and (4) in [36] is defined, which was claimed to find a very

general multiple water level multiple constrained water filling result. However, it cannot be used

for the exact solution to the mentioned problem (6.39). The reason is stated as follows. It is seen

that sj =
(

wjλ

1+σi−σi
− 1

aj

)+

, for j ∈ χi, i = 1, 2, . . . , T , where {sj} is the solution to problem (6.39).

According to (3) in [36], the water levels should be taken as μk =
λ

1+σk−σk
, for k = 1, 2, . . . , T . Since

{sj} is the solution, it should also satisfy the second, and the fourth to the sixth constraints in the
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Figure 6.2: Illustration for Examples 1, 3, 4 respectively.

system (6.41). Thus, a further developed version from (4) in [36] cannot include only the water-levels

{μk}. It also should include other dual variables, as a prerequisite for solving the problem, although

(4) in [36] does not need the dual variables which correspond to non-negativeness constraints of the

solution {sj} due to using the function (·)+. This point for the assumed form (4) in [36] results in

[36] not being able to be used to solve the target problem (6.39).

The algorithms proposed in [19] are to compute the solutions to the maximum throughput

problems. The minimum sum power problems discussed in this chapter are different. In addition,

KKT conditions for these two cases are different. As a result, algorithms of [19] cannot directly be

used for the problems discussed here.

From duality between the throughput maximization and the sum power minimization, we can

obtain uniqueness of the solution, discussed in this section.

6.4 Numerical Results and Complexity Analysis

A few numerical examples are presented in this section to illustrate the steps of the proposed

algorithms.

Example 1. Instantiate a case of P-WFPP problem by

min{si}2i=1

∑2
i=1 si

subject to:
∑2

i=1 log(1 + aisi) ≥ 3; 0 ≤ s1 ≤ 1; 0 ≤ s2 ≤ 8,
(6.42)

where a1 = 1 and a2 = 0.5. Utilizing the proposed P-WFPP, the optimal solution is {s1 = 1, s2 = 6}
that is shown in Fig. 6.2(a).
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Figure 6.3: Illustration for Example 2, results for the first, second and third iterations respectively.

Example 2. Instantiate another case of P-WFPP problem with multiple channels:

min{si}8i=1

∑8
i=1 si

subject to:
∑8

i=1 log(1 + aisi) ≥ 7; 0 ≤ si ≤ i, ∀i,
(6.43)

where ai = 1/i, ∀i. That is to say, the step depth monotonically increases from 1 to 8, as shown in

Fig. 6.3 with the solution.

Using the proposed P-WFPP, the result of the first iteration is s6 = sk∗ = 6[( 128
64.8

)
1
6 − 1](

.
= 0.72)

and then {si = i}3i=1∪{si = s6+6−i}6i=4∪{si = 0}8i=7
.
= {si = i}3i=1∪{si = 6.72−i}6i=4∪{si = 0}8i=7.

The result of the second iteration is s8 = sk∗ = 8[(105
32
)
1
5 − 1](

.
= 2.146) and then {si = i}5i=1 ∪ {si =

s8 + 8 − i}8i=6(
.
= {si = i}5i=1 ∪ {si = 10.146− i}8i=6). The result of the third iteration is s8 = sk∗ =

8[(21
8
)
1
3 −1](

.
= 3.036) and then {si = i}5i=1∪{si = s8+8− i}8i=6(

.
= {1, 2, 3, 4, 5, 5.036, 4.036, 3.036}).

According to the algorithm and Proposition 6.2, the result of the third iteration is indeed the

optimal solution. These results are illustrated in Figs. 6.3(a)-(c).

Example 3. Instantiate a case of weighted P-WFPP problem by

min{si}2i=1

∑2
i=1 si

subject to:
∑2

i=1wi log(1 + aisi) ≥ 3; 0 ≤ si ≤ 12, ∀i,
(6.44)

where a1 = 1, a2 = 0.5, w1 = 0.4 and w2 = 0.6. Utilizing the proposed P-WFPP, the optimal result

is {s1 = 64
49

√
56− 1, s2 = 12}, which is shown in Fig. 6.2(b).

Example 4. As the last example, we instantiate a case of the sum power weighted water-filling
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with group bounded power constraints (P-WFGBP) problem by:

min{si}3i=1

∑3
i=1 si

subject to:
∑3

i=1wi log(1 + aisi) ≥ 3; 0 ≤ si, ∀i;
1 ≤ s1 + s2 ≤ 12; s3 ≤ 12,

(6.45)

where a1 = a2 = a3 = 1, w1 = 0.3, w2 = 0.2 and w3 = 0.5.

Utilizing the proposed Algorithm: P-WFGBP with inputting: χ1 = {1, 2}, χ2 = {3} and B ←
1.5. The optimal solution is {s1 = 22.8×30.7

50.5
− 1, s2 =

23.8

50.5×30.3
− 1, s3 =

22.8×50.5

30.3
− 1} which is shown

in Fig. 6.2(c), where the stair width for the three channels are 0.3, 0.2, 0.5 respectively specified

by their weighting factors. The step depth is calculated using 1/(aiwi), leading to the step depth

values of 10/3, 5, and 2 respectively for the three channels.

6.4.1 Complexity Analysis

For the non-weighted basic sum power water-filling problem (6.2), according to the expressions (9)

and (10) in [36, Section 3], the conventional (sum power) water-filling algorithm had an exponential

worst-case complexity [36, Section 3] of 2K , where K is the number of the channels, even though the

channel gains had been sorted in decreasing order. Pointing to this case, [36] and [8] proposed an

improved algorithm with worst-case complexity of K iterations. Since each iteration consists of the

multiple basic elementary function evaluations, the arithmetic operations, and the logical operations,

the proposed P-GWF is measured on these operations more accurately than the iterations. P-GWF

uses K iterations, each of which includes 8 operations: 1 basic elementary function evaluation (BE),

5 arithmetic operations (AOs), and 2 logical operations (LOs). For an algorithm, a total of these

numbers right down to such operation(s) can measure the complexity level of the algorithm [38,

Chapter 8].

The conventional approach [8, p. 310] requires a total of O(K2) operations which consist of

(K+1)K
2

+ 1 BEs, (K+1)K
2

+ 4 AOs and K LOs, under the K + 4 memory unit requirement with a

worst-case complexity of K iterations.

As mentioned above, the proposed P-GWF uses 8K operations, which consist of K BEs, 5K

AOs, and 2K LOs under the K + 4 memory unit requirement with a worst-case complexity of K

iterations.
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For P-WFPP, it needs K loops to compute the optimal solution, at most. The required number

of operations is, at worst,
∑K

i=1 8i = 4K2 +4K fundamental basic elementary function evaluations,

arithmetical and logical operations.

For P-WFGBP, it needs T loops to compute the optimal solution, at most, where T ≤ K.

The required number of operations, at worst, is T ×O(K2) fundamental basic elementary function

evaluations, arithmetical and logical operations. However, it is known from the prior works men-

tioned above that PD-IPM needs the computational complexity of O(K3.5log(1/ε)), to compute an

ε solution.

In this complexity analysis, we didn’t take sorting procedure into consideration. It is stated

in [36] that the channel gain sequences come from the eigenvalues of a matrix. There are many

algorithms to compute the eigenvalues and eigenvectors, with the eigenvalues sorted.
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Chapter 7

Conclusions

A few new algorithms are presented for the MIMO and EH maximum throughput problems, in this

thesis. Optimality proofs for the algorithms are also provided. Compared with existing methods

by others, our algorithms have the distinct characteristics: the proposed theory is strict and the

proposed computation is fast.

In detail, this thesis in Chapter 2 presents the efficient methods for computation of exact optimal

solutions to the problems with more and more constraints. It also constructs solutions to the

optimization problems based on the water-filling geometrical principle, and offers a formal proof of

optimality for the constructed solutions. Thus, the proposed methods can solve the problems the

conventional methods cannot. Further, they own the polynomial complexity, and the polynomial

has a lower degree.

This thesis also presents a new mathematical model up to the hybrid systems of the EH, MIMO

and power grid. The first, it designs the recursive geometric water-filling algorithm (RGWF) in

Chapter 3 for the EH system, stemming from GWF. Then it extends RGWF for finding the optimal

solutions of the new mathematical models with both the EH capability and the MIMO technology;

and those with hybrid power sources of EH and the grid power, in Chapters 4-5, respectively. In

addition, using GWF to compute the exact solutions to the sum power minimization problems, has

been presented in Chapter 6.

On the theoretical level, this thesis sets up a solid theoretical framework for the discussion of the

investigated algorithms for the target problems. Under such a framework, optimality proof for each

of our algorithms is presented. Note the difference between the recursive definition and the explicit
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definition (of an algorithm). This point can be referred to in any standard textbook on mathematical

logic. Then, it is omitted in this thesis. If the word of recursive has been mentioned for an algorithm

in this thesis, the algorithm is guaranteed to be recursive; else, it is not. In addition, this thesis

does not consider other objective functions, such as the one to look for the fairness purpose. Maybe

this fairness topic will be of our future research.

In addition, not only may the proposed approach keep up optimality of all the proposed water-

filling algorithms, but it also may lift the performance of computing objective values much more.

Numerical examples also show that utilization of the proposed algorithms can significantly improve

efficiency of the computation.

For the future, we can extend our approach to designing optimal on-line power allocation al-

gorithms for wireless communication systems, together with EH, MIMO and cognitive radio (CR)

techniques.
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