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ABSTRACT 

 

Autonomous Stereo Vision System for Depth Computation of Moving Object 

Master of Engineering 

2017 

 

Alejandro Emerio Alfonso Oviedo 

Master of Engineering Electrical and Computer Engineering 

Ryerson University 

 

This work targets one real world application of stereo vision technology: the computation of the 

depth information of a moving object in a scene. It uses a stereo camera set that captures the 

stereoscopic view of the scene. Background subtraction algorithm is used to detect the moving 

object, supported by the recursive filter of first order as updating method. Mean filter is the pre-

processing stage, combined with frame downscaling to reduce the background storage. After 

thresholding the background subtraction result, the binary image is sent to the software 

processing unit to compute the centroid of the moving area, and the measured disparity, estimate 

the disparity by Kalman algorithm, and finally calculate the depth from the estimated disparity. 

The implementation successfully achieves the objectives of resolution 720p, at 28.68 fps and 

maximum permissible depth error of ±4 cm (1.066 %) for a depth measuring range from 25 cm 

to 375 cm.  
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Chapter I Introduction 
 

From the beginning of the creation of digital images, one of the main goals of research 

has been to extract useful information from images, starting from enhancing the quality of the 

projection, to object detection, recognition, segmentation, and object tracking which was first 

done in two dimensions, and soon after in three dimensions as well.  

Through decades, there has been a significant interest in depth information to be able to 

incorporate a third dimension to tracking systems, thus a complete vision of a scene is obtained. 

Observing the way humans and animals solve this challenge, the main general algorithm of using 

two different views of a scene in order to be able to extract the depth information was generated. 

Several methods and algorithms, generally known as computer vision, have been developed 

based on this concept. Some of these algorithms are more complex than others according to their 

specifications and objectives. For example, approaches to determine the depth map or depth 

information of an entire scene are highly complex since they give more information. On the other 

hand, algorithms based only on features of a specific object being tracked are simpler.  

 Motivation 
 

Nowadays, with the increase of autonomy in the automobile industry, robotics, and 

security detecting, locating, and tracking objects in three dimensional scenes is becoming a 

common feature of most products. In the automotive industry, for instance, car development is 

heading towards autonomous emergency breaking systems, as well as the autonomous feature of 

following the vehicle in front, which, in both cases, involves recognizing shapes and keeping 

certain distance from them. In robotics, this technology is also used to avoid obstacles, as well as 

in the guidance of a caravan of several units. In this case, the first unit is the only one that has to 
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be guided. In security, for example, a stereo camera set can detect the distance of an approaching 

object, and set off alarms when a specified distance is reached. 

The main motivation behind this work is that, given the significance of the application of 

this technology currently, it is extremely important to design systems for implementation and 

verification in order to explore and evaluate their variants, issues, drawbacks, and best solutions 

from all possible approaches depending on the target application, and its specifications and 

constraints. 

 Objectives 
 

The general goal of this work is to implement a system able to perform the application of 

detecting, locating and tracking a moving object in a three dimensional scene, targeting its depth 

information. More specifically, the implemented system should be able to locate a moving object 

in the proximities in front of it. Another objective is to choose the platform and algorithms that 

allow the system to perform at the resolution 720p at 30 frames per second, and depth error no 

greater than ±4 cm. Finally, the last goal is to include the design of a verification platform as 

well. 

 Stages 
 

Accomplishing the general goal of this work sets a set of specific tasks or stages to be 

followed. These tasks are related to the specific objectives of this work such as detecting the 

moving object in the scene, locating the centroid of the object which is the reference point from 

which the object is tracked, and computing the object depth information. The stages are these:  

1. A research on algorithms for detecting movement in a scene has to be done, including 

the platforms needed for achieving this goal.  
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2. Once the moving area is detected, other algorithms are needed to create a reference point 

or centroid. Therefore, more research on algorithms has to be done for this purpose.  

3. At this point, the object is located in the two dimensional space, the horizontal and 

vertical, which brings the challenge of studying the methods and approaches for 

computing the third dimension, depth or distance, from the system to the centroid. 

4. After studying the range of possible algorithms and platforms, the next step is to choose 

the proper ones to achieve the objectives with more detailed specifications and 

constraints. 

5. The following step is to design the system from a high synthesis level, partitioning it into 

hardware and firmware components. This step requires analyzing the design in terms of 

which portions are either computationally intensive or algorithmically intensive, so the 

first ones are implemented in hardware and the second ones as firmware. 

6. Each component needs to be designed according to its functionality, data structure and 

interface.  

7. Finally, the last step is to implement and verify the full design on the hardware and 

software target platforms. 

 Original contribution 
 

This work consists of designing, implementing and verifying a solution to target a 

specific application. Therefore, its original contribution is described as follows: 

1. The research of suitable algorithms and target platforms to solve the application 

problem.  
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2. Several solutions and approaches from the wide range of algorithms and methods in the 

literature are analyzed in order to determine the most appropriate ones to meet the 

specified objectives.  

3. In addition, this work also presents an original design of the methods and algorithms 

selected, specifically oriented to the selected platform and application to meet its 

specifications and constraints.  

4. Finally, this project also designs and implements original verification methods to 

analyze the results of the proposed solution in terms of performance and accuracy.  

 Organization 
 

Chapter 2 provides a brief overview of some of the algorithms and technologies available 

and currently in research for developing a stereo vision system capable of locating and tracking a 

moving object in a 3D scene. It presents a review of algorithms for detecting and segmenting the 

moving object in static and dynamic backgrounds. From the wide range of existing methods for 

this purpose, the recursive filter of first order and PBAS are described. Furthermore, regarding 

object tracking, this chapter explains the effective Kalman Filter algorithm. In addition to this, 

for depth estimation, the approaches based on correlation and feature detection are reviewed. 

From the correlation methods, the SGM is comprehensively described as well. 

Chapter 3 is the first stage of the system design, where the suitable algorithms are 

selected and the system is partitioned according to the complexity of the selected algorithms. The 

general architecture is proposed, including the general blocks to capture the frames, detect and 

track the moving object, and compute the depth. The hardware and software architecture is 

described after partitioning the system. In general, a detailed plan of the system design is 

explained in this chapter. 



5 
 

Chapter 4 describes the details of the actual design, including its implementation and 

verification. This chapter begins with the specifications and the selection of the target platform. 

According to the specifications, the camera module is also selected, and its interface and features 

are explained. The hardware blocks are presented in detail one by one through their interface, 

algorithms and functionalities, data structure and data flow, and resources utilization. The 

software portion of the design is also described in this chapter, including initialization, 

configuration, and constraint verification. The results of this work are all presented in this 

chapter. 

Finally, chapter 5 provides a summary and some conclusions of the work, and highlights 

potential areas for future research.   
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Chapter II Background 
 

2.1 Introduction 
 

Several studies have been developed using different approaches to estimate the position 

of specific objects in a scene, and keep track of their trajectory. Recent studies have included 

stereo vision platforms and algorithms to estimate the depth of the object as well.  

Applications such as visual surveillance, traffic monitoring, vehicle tracking, autonomous 

navigation, aerospace, and computer vision have the basic requirement of identifying objects and 

locate them in a scene in real time. For this purpose, there is a wide range of algorithms, from 

general ones with great accuracy but slow and very expensive in resources utilization, to others 

with high speed and frame rate, inexpensive and accurate enough for the purpose of this specific 

application. 

This chapter overviews current algorithms and tools to carry out a complete positioning 

and tracking system for moving objects, such as stereo vision for the depth estimation, camera 

set calibration, moving object detection algorithms, as well as object tracking algorithms. 

2.2 Related Work 
 

Stereo Disparity: Disparity computation algorithms are usually classified in two groups. 

The first group comprises the most general approaches, which are based on the estimation of the 

disparity map by correlation-based methods. The second group includes algorithms that compute 

the disparity of the desired pixel only by mean of feature-based methods. The Feature-based 

method is commonly applied on object detection/tracking algorithms on both paired images, 

usually looking for pre-determined image characteristics such as object’s centroids, contours, 

edges and corners.  
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Correlation-based algorithms essentially find the correspondence of the pixels from one 

image on the other image by correlating their similarities. Implementing them requires the 

application of correlation matching methods like SAD (Sum of Absolute Differences), SSD 

(Sum of Square Differences) and CC (Cross-Correlation). Using these methods is very expensive 

computationally since the matching has to be executed several times, depending on the 

maximum intrinsic disparity in the stereo camera platform, which implies high latency and 

longer cycle times. However, it can be fully pipelined and parallelized, but the use of resources 

highly increases. 

The correlation-based algorithms may be classified as global and local [1]. Global 

methods exploit various techniques of global optimization of the whole disparity maps, while 

local methods provide the disparity maps using local optimization of the disparity map around a 

pixel only. 

Global methods include graph cuts technique and belief propagation technique. These 

contemporary algorithms provide relatively smooth disparity maps. Unfortunately, these 

methods are highly complex and expensive in terms of resources. They need significant 

processing power as well as large memory volume. Consequently, the real-time implementations 

of these methods are subject to extensive research. 

These computational demands produce significant problems in mobile implementations. 

For example, belief-propagation algorithm [2], used for depth estimation with VGA (640×480) 

resolution and 32 considered levels of disparities, might require as much as 80MB of space for 

message passing cache. Another more recent global approach is presented in [3], a sequential 

tree-reweighted message passing (TRW-S) that can be implemented in hardware and at the same 

time has reliable convergence achieving 22.8 fps for QVGA. 
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On the other hand, local methods use various types of block matching in order to find the 

disparity for each pixel independently. Large number of independent block matching allows for 

massive parallelization of the local disparity estimation algorithms. This enables the usage of 

even larger blocks (e.g. 35×35 pixels), which mostly provides disparity maps that are better 

compared to those obtained using small blocks. Unfortunately, large blocks are also very 

expensive computationally. Hence, the local methods with large blocks are implementable in 

real-time using the previously mentioned parallelization. 

An interesting approach [1] proposes a depth estimation method that would have the 

advantages of both local and global methods. It uses small-block matching and analyzes 

estimated disparity values to enhance spatial consistency of the output disparity map. This work 

achieved very good results, but for resolution 320x240 with only 32 disparity levels. Others like 

[4,5,6] applied Semi-Global Matching (SGM) methods by Census Transform and Hamming 

Distance as main matching approaches. 

In the work presented in [7], a Guided Image Filter (GIF) is proposed to reduce the 

complexity of the cost aggregation step, in local Adaptive Support Weight (ADSW) algorithms, 

for results in the HD video quality 1280x720 at 60 fps implemented on a Kintex-7 FPGA (Field 

Programmable Gate Array). 

On the other hand, more specific approaches to determine the position of a given object 

in the scene, such as feature-based algorithms, can be used as well with very effective results; it 

all depends on the characteristics of the application. For example, in [8], OpenCV library is used 

to track up to 8 specific bicolor targets attached to the objects, and then determine their center 

coordinates per camera. The difference between the two coordinates is the disparity of the 

particular object. A more sophisticated approach is presented in [9], where Histograms of 
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Oriented Gradients (HOG) is applied to detect vehicles on the road. Again, this is based on the 

same idea of creating a blob of the detected object, and then computing the centroid on each 

camera. Another feature-based method was implemented in [10] by using background 

subtraction to segment a moving object, and then determine its center of mass as centroid.  

The relationship between the disparity and the distance of the object in the scene depends 

on parameters defined by the geometry of the stereo set, which must be known and remain 

unchanged for the duration of the image pairs acquisition. Assuming that the two camera planes 

are perfectly parallel simplifies the algorithm of knowing disparity-depth relationship.  

However, even when the camera set is precisely built, the two camera planes will not be 

perfectly parallel. Moreover, the lenses induce distortions to each camera individually. To 

overcome these issues, a calibration process is required. Some works such as [8,9] perform 

calibration to adjust the individual camera distortion, as well as the camera planes, as a pre-

processing algorithm using OpenCV and Matlab, respectively. This calibration makes the post-

disparity processing easier by increasing delay and computation expenses at the pre-processing 

stage. 

Other works such as [10,11] propose taking several reference points to create a curve of 

disparity over distance. After obtaining the curve that best fits the experimental data, they are 

able to create a calibration post-processing function that has to be computed only once per frame. 

This last aspect confers a great advantage to this approach.  

Another interesting method is presented in [12], where both pre-calibration as well as 

post-calibration stages are applied to increase the accuracy of the system. 

Moving Object Detection and Tracking: Robust object detection and tracking are 

important components of many real world image processing and analysis systems. There are 
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countless applications in which these algorithms are needed, among them, autonomous guided 

vehicles, automated video surveillance systems and video traffic monitoring. For this section of 

the discussion, there are several related works as well. In [13], background subtraction was 

applied along with Canny edge detection to detect the boundaries of the object. In this case the 

background was known and static. A similar approach but using Sobel is presented in [14] and in 

[15] without applying any edge detection filter.  

The challenge in this case is that in many real world applications the background 

elements may not be static. In such cases, naive approaches like subtracting current frame and 

background image followed by thresholding are not enough to obtain accurate outcomes. On the 

other hand, false so-called “ghosts” may occur when an object stops moving. In this case, the 

object becomes part of the background and when it starts moving again is not detected.  

A recent approach, presented in [16], addresses this issue by offering an algorithm for 

dynamic background for object detection based on recursive filter of first order real-time 

updating background. To track the object, they applied Kalman filter so the trajectory is 

smoother.  

Others such as [17] implemented a Pixel-Based adaptive Segmenter (PBAS) foreground 

object detection algorithm, classified as multi-variant. This method combines the advantages of 

both recursive and non-recursive approaches. PBAS consists of creating a background model of 

𝑁 samples. What makes these algorithms different to any typical buffer method is that the 

relationship between the samples is not relevant. 

The challenge of handling small objects in complicated non-flat scenes is targeted in [18] 

with a more complex algorithm. In this paper, the authors present a robust method to effectively 

segment moving objects from a moving platform. They propose two-level registration to 
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estimate and compensate the camera motion. Then, to extract the potential foreground, they 

apply Gaussian mixture model. They also present the application of Hidden Markov Model 

(HMM) to classify the pixels. Finally, foreground objects are tracked by a particle filter to 

improve the detection accuracy.  

2.3 Theory 
 

This section reviews the most frequently used approaches for locating and tracking 

moving objects in a scene, with the particular inclusion of the depth estimation. 

2.3.1 Stereo Vision System 

 

In stereo vision, the distance from the object to the stereo camera set is computed by 

obtaining the disparity, which is the difference of the projected points on the two stereo images, 

and then applying trigonometry [6,10,19,20]. Using a general configuration of a camera set, 

where the cameras can be in any position with respect to each other, the equation system to solve 

the depth from the disparity is very complex. For this reason, it is preferable to establish some 

conditions in the design of the set of cameras, so the computation complexity decreases. Setting 

two identical cameras at the exact same high and with their image planes perfectly parallel 

allows us to measure the distance of the object by using the parallel equation related to the 

distance information. In such a case, the geometry parameters of the stereo system can be 

modeled as presented in Figure 2.1. 

Each image plane (𝑢, 𝑣) is perpendicular to the 𝑧 axis and parallel to the 𝑥, 𝑦 

coordination system plane. 𝑂𝑙 and 𝑂𝑟 are the centers of projection of each camera, and 𝑏 is the 

distance between them. 𝐴 is an object represented by only one point in the world at (𝑋, 𝑌, 𝑍). 

The plane created by 𝑏, 𝑂𝑙, 𝑂𝑟 and 𝐴 is called epipolar plane, which intersects the image planes 
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in lines called epipolar lines. In this particular case we are meeting the epipolar constraint as the 

two epipolar lines are parallel as well as the scan lines in each image plane. Meeting this 

constraint greatly benefits the algorithm, because it considerably reduces the search area to a 

single horizontal line. In Figure 2.2, the distance from the object 𝐴 to the center of projection 

plane is denoted by 𝑍.  

 
Figure 2.1 Stereo camera parallel model 

 

Via similar triangles, where one triangle is formed by (𝐴, 𝑝𝑙, 𝑝𝑟) and the other one by 

(𝐴, 𝑂𝑙, 𝑂𝑟), equation (2.1) below can be obtained, where 𝑥𝑙 and 𝑥𝑟 are the distances from the 

center of the image to the object projection. Let us say (𝑥𝑙 − 𝑥𝑟) is the disparity 𝑑. Then after 

rearranging and simplifying we can obtain (2.2). The conversion model of 𝑥𝑙 and 𝑥𝑟 from the 

image coordinate system to pixels can be obtained from the parameters of each camera model 

after calibration. 
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Figure 2.2 Triangulation model 

 

𝑏

𝑍
=
𝑏 + 𝑥𝑙 − 𝑥𝑟

𝑍 − 𝑓
 

(2.1) 

𝑍 = 𝑓
𝑏

𝑑
 

(2.2) 

2.3.2 Rectification and Calibration 

 

Usually, due to lens distortion or camera misalignment the epipolar lines are not parallel 

to the baseline, failing to meet the epipolar constraint. Therefore, equation (2.2) cannot be 

applied to compute the depth from the disparity. There are two general problems related to stereo 

vision set calibration: the first one emerges from having the individual cameras not calibrated, 

and the other one from having the stereo set not calibrated to meet the epipolar constraint. If the 

individual cameras are not calibrated, the problem is that the ground truth disparity for a specific 

depth may not be constant through the entire image due to the individual distortion on each 

camera. When the camera set does not meet the epipolar constraint, the depth cannot be 
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calculated by using the equation (2.2); therefore, a more complex method has to be applied to 

compute the triangulation.  

 These issues can be solved through a rectification process, which uses the parameters of 

each camera to undistort each image, and then, the parameters from the stereo camera set to 

rectify the images planes [5,6,8,12]. These parameters are predetermined by a calibration 

process, in which a regression method is used to determine the distortion of a predefined pattern, 

usually a checkerboard. The process of rectification is a series of rotations, translations and 

scaling.  

There are several tools, such as Matlab and OpenCV, to generate and apply the 

calibration parameters of individual cameras and stereo set. The process of applying this 

transformation to the incoming video stream is very complex and demands high computational 

power; hence, it is a factor that truly affects the performance of the system. 

 For systems based on correlation matching, this pre-processing rectification-calibration 

stage is critical. First, it simplifies the matching computation. Second, the better the calibration is 

the more accurate the disparity map will be. 

On the other hand, for feature-based systems there are other alternatives because the 

depth computation is just over a few points on the image. One of the alternatives for overcoming 

the epipolar constraint is the offline generation of the relationship between disparity and depth 

proposed by [10,11], for instance. This mechanism generates a curve from several reference 

points, which relates the disparity to depth. For this approach to be effective, it is required as 

many reference points as possible across the entire z-axis. This approach allows to generate two 

possible models: one depending only on disparity (better for systems with at least undistorted 

images), and another one depending on disparity, x and y (for systems without any kind of 
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calibration). The second model is more accurate, because it addresses each camera distortion and 

the epipolar constraint issue, but for the same reason it is also more complex. 

Generating these models requires a tool such as Matlab along with a curve fitting tool or 

algorithm such as least-square. The reference points may be automatically detected from the 

images using a similar checkerboard pattern and a feature detection algorithm. The application of 

this type of calibration is performed after the disparity calculation, which infers that there should 

be enough time to compute the distance until the next feature is detected and the next disparity is 

ready. 

2.3.3 Correlation-Based Algorithm 

 

Local approaches compute the matching cost just by aggregating neighbouring pixels for 

each disparity candidate. These neighbouring pixels are determined by a so-called support 

window, as shown in Figure 2.3. In the reference image, the support window is located centered 

on point 𝑥, while in the target image, there are 𝑑𝑚𝑎𝑥 support windows centered on points from 

𝑥 − 𝑑𝑚𝑎𝑥 to 𝑥 respectively [20]. As previously mentioned, cost aggregation functions are 

several from SAD, SSD, and CC to more hardware optimized versions like Census Transform 

and Hamming Distance. Then, after computing the aggregated cost of all the possible disparities 

of each pixel, the best disparity of each pixel is determined by the disparity with the best 

aggregated cost. 

 
Figure 2.3 Support windows on reference and target image 
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The number of operations in the local method can be dramatically reduced by optimizing 

the cost aggregation applying incremental techniques. The full cost aggregation for one disparity 

candidate requires the accumulation of the cost of all the neighbouring pixels, as presented in 

Figure 2.4.a. However, in Figure 2.4.b, 1D incremental optimization technique [21] is applied, 

reducing the computation of the cost aggregation of pixel 𝑥 + 1, just by updating the previous 

cost aggregation of 𝑥 by adding the costs in green and subtracting the costs in orange, which 

means adding the new column of the support window and subtracting the last column that is not 

part of the supporting window anymore. 

 
a-)                                                            b-) 

Figure 2.4 a-) Full Cost Computation. b-) 1D incremental optimization technique 

 

Adapting weight algorithms aggregate costs according to weights assigned by examining 

the image content [21]. The accumulation of costs of the support window depends on weights, 

that put more relevance in some points than in others. For instance, one common method is 

inspired by bilateral filtering, where points with similar magnitude to the central point have more 

influence in the overall cost. Another characteristic is that points closer to the central point have 

also more significance. 

Correlation methods with support window implicitly assume that all pixels within the 

windows have the same distance from the camera. Abrupt changes in depth discontinuity result 

in wrong correspondence calculation, thus in random disparity outcomes. Matching wrong 

content near depth discontinuities brings severe correlation errors, particularly for NCC. 

Consequently, SSD is used more often. In addition, SSD decreases errors due to matching non-
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corresponding pixels. Other non-parametric cost functions such as Rank and Census also reduce 

this problem. Adapting the size and shape of the window can also diminish this problem. 

Ultimately, a real solution is only possible by matching pixels individually instead of matching 

windows. 

Global Matching approaches use the entire image content to generate the 

correspondences by applying individual pixel correlation and smoothness constraints that 

penalizes discontinuities. The general global approach is commonly formulated as in (2.3). 

𝐸(𝐷) =∑{𝐶(𝑝, 𝐷𝑝) + ∑ 𝑃𝑇[|𝐷𝑝 − 𝐷𝑞| ≥ 1]

𝑞∈𝑁𝑝

}

𝑝

 

(2.3) 

 

The first term adds all pixels matching costs over the entire image, while the second term 

introduces a penalty for all pixels with neighbours that have a different disparity. Consequently, 

discontinuities are permitted only when the matching is stronger than the penalty. The disparity 

image 𝐷 is solved by minimizing (2.1). As this is a nondeterministic polynomial (NP) problem, 

many approximate solutions have been developed such as Graph Cuts and Belief Propagation, 

but they still have the drawback of low speed and memory consumption. 

Semi-Global Matching [5,6,22] effectively combines ideas of global and local algorithms 

for accurate pixel-wise matching at low runtime. The first SGM implementations used Mutual 

Information (MI), which is very suitable for unrectified images, because the transformations are 

irrelevant when only individual pixels are considered. The results of MI degrade with increasing 

local radiometric differences caused by shadows, for example. Furthermore, it does not scale 

well with increasing radiometric depth. 
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As an alternative, Census is identified as the most robust matching cost function for 

stereo vision. Census maps a support window surrounding the pixel in calculation, creating a 

vector that only scores if the compared pixel has a lower value than the center pixel. See Figure 

2.5 for an example of a transformation [4,20]. 

 
Figure 2.5 Census transformation 

 

Then, the matching cost is computed by the Hamming Distance of the bit vectors of the 

corresponding pixels from each image. Hamming Distance represents the amount of bit positions 

that are respectively different from comparing the two vector of the same size. Figure 2.6 

presents an example of this calculation, which is done by an 𝑋𝑂𝑅 operation of the two vectors 

and then counting the amount of ones of the result. 

 
Figure 2.6 Hamming Distance 
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The principle of Census makes it suitable for global and local radiometric changes. 

However, it is slightly inferior to MI, if there are only global radiometric changes, and better 

than MI, for local radiometric changes. The local radiometric changes are present in many real-

world applications. Pathwise Aggregation for SGM effectively penalizes minor disparity steps as 

expressed by (2.4) [6]. 

𝐸(𝐷) =∑{𝐶(𝑝, 𝐷𝑝) + ∑ 𝑃1𝑇[|𝐷𝑝 −𝐷𝑞| = 1]

𝑞∈𝑁𝑝

+ ∑ 𝑃2𝑇[|𝐷𝑝 − 𝐷𝑞| > 1]

𝑞∈𝑁𝑝

}

𝑝

 

(2.4) 

 

The second term adds a constant penalty 𝑃1 for all pixels 𝑞 in the neighbourhood 𝑁𝑝 of 

𝑝, for which the disparity slightly changes. It can be just 1 pixel. The third term adds a large 

penalty 𝑃2, for all larger disparity changes, where 𝑃2 ≥ 𝑃1. 

In order to avoid NP computation, which would be minimizing (2.4) in 2D, SGM brings 

a novel idea of computing along several paths, symmetrically from all directions. Usually 8 

optimization paths are used. Figure 2.7 shows the 8 paths approach. The number of paths should 

be at least 8. Using 16 paths provides a good coverage as well. 

 
Figure 2.7 Eight paths optimization 
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Equation (2.5), below, shows the cost path function. 𝐿𝑟(𝑝, 𝑑) is the cost of the pixel 𝑝 at 

disparity 𝑑, and 𝐶 is the pixelwise matching cost that could be either Census Transformation or 

MI.  

𝐿𝑟(𝑝, 𝑑) = 𝐶(𝑝, 𝑑)

+ min (𝐿𝑟(𝑝 − 𝑟, 𝑑), 𝐿𝑟(𝑝 − 𝑟, 𝑑 − 1) + 𝑃1, 𝐿𝑟(𝑝 − 𝑟, 𝑑 + 1)

+ 𝑃1,min
𝑖
𝐿𝑟(𝑝 − 𝑟, 𝑖) + 𝑃2) −  min

𝑘
𝐿𝑟(𝑝 − 𝑟, 𝑘) 

(2.5) 

The second term computes the minimum over four values. The first one is the path cost at 

the previous pixel, at the same disparity, and without any penalty. The second and third values 

are the path cost at the previous pixel, with the next lower and higher disparity, and with a small 

penalty 𝑃1 added to them. The last value is the minimum cost at the previous pixel over all 

disparities, with the additional higher penalty 𝑃2. The last term subtracts the minimum path cost 

of the previous pixel from the whole value. This is an approach to limit the constant increase of 

𝐿, keeping its value as 𝐿 ≤ 𝐶𝑚𝑎𝑥 + 𝑃2. The information from all the paths is combined for all 

the pixels and disparities by (2.6), and the disparity for each pixel corresponds to the minimum 

cost (2.7). 

𝑆(𝑝, 𝑑) =  ∑𝐿𝑟(𝑝, 𝑑)

𝑟

 (2.6) 

𝐷𝐿(𝑝) = argim
𝑑

𝑆(𝑝, 𝑑) (2.7) 

 

The pathwise cost solution does not handle occlusions. However, occlusions can be 

identified by computing the disparities separately in both directions, from left to right and from 

right to left, and comparing the results as a consistency check. Further post-processing steps are 
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possible for cleaning up the disparity image. All the inconsistent disparities are set to invalid, 

also known as holes. Finally, a hole filling stage is required. This step can be performed by a 

weighted median filter, for example.  

2.3.4 Feature-Based Algorithm 

 

Depending on the platform where the system will be implemented, it is sometimes too 

expensive performing either the lens distortion or the stereo system rectification to meet the 

epipolar constraint. For some other applications in which only a single object will be tracked, or 

even several objects, but all of them known, the feature-based approach is well known for its 

simplicity and less resources utilization. 

In all computer vision system whose main objective is tracking objects by movement, 

shape, color, or specific features, there will be always a blob. Therefore, from the blob we can 

compute either the centroid or center of mass. By executing this method from both cameras, left 

and right simultaneously, it is possible to establish a correspondence between the relative 

positions of the object from both points of view, which is the definition of disparity [8,9,10]. 

2.3.5 Moving Object Detection and Tracking 

 

The proper determination of an object motion is significantly important in future stages 

of computer vision systems, such as object tracking, recognition, and path planning. The main 

algorithms can be classified in three groups based on the method that they apply. These three 

groups are background subtraction, temporal difference of successive frames, and optical flow. 

Background subtraction is characterized by a simple pixel-by-pixel subtraction of a fixed 

reference frame or background, and the current frame, in order to determine the difference 

between them. The result difference is the area where the moving object is in the current frame. 
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On the other hand, the temporal difference of successive frames has the same principle as the 

background subtraction algorithm, but in this case the reference is not fixed, it is updated from 

previous frames. Finally, the optical flow approaches are more complex because they analyze the 

dynamic scene from a stream in time, and generate a complete motion field of every pixel. 

Background subtraction: can be generalized as shown in Figure 2.8, below, where the 

pre-processing stage could be any specific filter to target brightness changes due to camera 

exposure (poison noise), or just because of light changes in the scene. Well-known filters for this 

stage are the mean filter or the median filter. 

 
Figure 2.8 Generalized Background Subtraction method 

 

Each new frame after being pre-processed is subtracted from background. Then, in the 

segmentation stage, the result from the subtraction is compared to a threshold to create a binary 

image that contains the segmented object extracted from the background. This explanation is 

mathematically described by (2.8) below, where 𝑆(𝑥, 𝑦, 𝑡) is the result segmented image, 𝑇ℎ is 

the predetermine threshold, 𝐹(𝑥, 𝑦, 𝑡) is the current frame, and 𝐵(𝑥, 𝑦) is the reference or 

background. In 𝑆(𝑥, 𝑦), all pixels with value of ‘1’ are considered as moving objects. 

 

𝑆(𝑥, 𝑦, 𝑡) = {
1, 𝑖𝑓 |𝐹(𝑥, 𝑦, 𝑡) − 𝐵(𝑥, 𝑦)| > 𝑇ℎ
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  
(2.8) 
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A stage of post-processing that targets the noise introduced in the segmented image 

comes after the segmentation. At that point, the object in the segmented image does not have 

well defined borders. There are also several small artefacts in the rest of the image S creating 

false detected objects. This noise is usually attacked with either erosion mode or median filter. 

Dynamic Background: When scene changes can easily cause false positives results, such 

as tree branches moving by the wind, there are two effective methods to adequately update the 

background: the recursive filter of first order, and the PBAS algorithm. 

The recursive filter of first order is described by (2.9), where 𝐼𝑏𝑘(𝑥, 𝑦), 𝐼𝑏𝑘−1(𝑥, 𝑦) and 

𝐼𝑘(𝑥, 𝑦) are the current background, the previous frame and the current frame, respectively, [16]. 

Term 𝛼 is the recursive coefficient, which establishes the background-updating rate and has a 

value between 0 and 1.  

𝐼𝑏𝑘(𝑥, 𝑦) = (1 − 𝛼)𝐼𝑏𝑘−1(𝑥, 𝑦) + 𝛼𝐼𝑘(𝑥, 𝑦)   (2.9) 

 

When 𝛼 is large, the background adapts to changes rapidly. However, when 𝛼 is small, 

the system is more suitable for detecting slow velocity objects. When 𝛼 = 0, the new 

background will be equal to the previous one, then it will not be updated with the new frame. On 

the other hand, when 𝛼 = 1, the new background will be exactly equal to the new frame, keeping 

no information from the previous background. 

In contrast, PBAS, see original articles [17,23], is a more complex algorithm that includes 

segmentation and background model update. As mentioned before, PBAS is a pixel-based 

algorithm. In general, the background model is based on a buffer of 𝑁 samples recently observed 

from the video sequence 𝐵(𝑥𝑖) as shown in (2.10). The update of this model is performed by 

random samples with the probability determined by 𝑇(𝑥𝑖), which will be defined later. 
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𝐵(𝑥𝑖) = {𝐵1(𝑥𝑖),… , 𝐵𝑘(𝑥𝑖),… , 𝐵𝑁(𝑥𝑖)}   (2.10) 

 

Pixel 𝑥𝑖 is part of the background, when the distances between the value of the current 

pixel 𝐼(𝑥𝑖) and at least 𝑍 amount of samples from the background 𝐵(𝑥𝑖) are smaller than the 

threshold 𝑅(𝑥𝑖). Equation (2.11) describes the mathematical solution of this model. If 𝐹 is 1, the 

pixel 𝑥𝑖 is foreground, and background if 0. The distances are defined by the absolute values of 

the result of subtracting 𝐼(𝑥𝑖) and each background pixel from 𝐵(𝑥𝑖). 

𝐹(𝑥𝑖) = {
1, 𝑖𝑓 ∑{𝑑𝑖𝑠𝑡(𝐼(𝑥𝑖), 𝐵𝑘(𝑥𝑖)) < 𝑅(𝑥𝑖)} < 𝑍

𝑁

𝑘=0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   

(2.11) 

 

The background model update has to be performed to compensate the dynamic changes 

in the scene. There are two possible upgrading solutions: one liberal and the other one 

conservative. In the liberal one, all the pixels are updated, while in the conservative one only the 

ones marked as background are. The conservative method is more convenient because it avoids 

inclusion of foreground objects into the background model, which is the main disadvantage of 

the liberal method. However, the conservative method has its own particular problem, which is 

that once a pixel is updated as foreground, it will not be updated anymore, and therefore it will 

be stuck at that status forever. There is a solution that can be applied to prevent from getting this 

error, which is having a counter for the pixels marked as foreground, and then forcing an update 

once the counter reaches certain threshold. The update is done by, first, randomly selecting a 

sample from the background model 𝐵(𝑥𝑖), and then replacing it with the value of the pixel 𝐼(𝑥𝑖).  

Updating the threshold 𝑅(𝑥𝑖) is done dynamically, so the procedure adapts to the 

dynamics of the background. Having the measurement of the dynamic of the background is 
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based on the following procedure. First, whenever an update of the background model is 

executed, the minimum distance between 𝐼(𝑥𝑖) and 𝐵(𝑥𝑖) is saved in another array 𝐷(𝑥𝑖) =

{𝐷1(𝑥𝑖), … , 𝐷𝑁(𝑥𝑖)}. Thus, a history of minimum distances is created for the pixel 𝑥𝑖. The mean 

of the values stored in 𝐷(𝑥𝑖) defines �̅�𝑚𝑖𝑛(𝑥𝑖) and the dynamic of the background. Therefore, 

the decision threshold is dynamically adapted according to (2.12). In [30], the parameters 

𝑅𝑖𝑛𝑐

𝑑𝑒𝑐

= 0.05 and 𝑅𝑠𝑐 = 5 are set for a robust algorithm. 

𝑅(𝑥𝑖) = {
𝑅(𝑥𝑖)(1 − 𝑅𝑖𝑛𝑐

𝑑𝑒𝑐

), 𝑖𝑓 𝑅(𝑥𝑖) > �̅�𝑚𝑖𝑛(𝑥𝑖)𝑅𝑠𝑐

𝑅(𝑥𝑖) ∗ (1 + 𝑅𝑖𝑛𝑐/𝑑𝑒𝑐), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

(2.12) 

 

The probability of updating the pixel 𝑥𝑖 in the background model is given by (2.13), 

where 𝑇(𝑥𝑖) is the parameter that adjusts this probability for each pixel. 

𝑝 = 1/𝑇(𝑥𝑖)    (2.13) 

 

Updating the learning rate 𝑇(𝑥𝑖) is described by (2.14), where 𝑇𝑖𝑛𝑐 = 1 and 𝑇𝑑𝑒𝑐 = 0.05. 

𝑇(𝑥𝑖) is also limited between 2 and 200 to avoid erroneous results in highly dynamic and fully 

static backgrounds. 

𝑇(𝑥𝑖) =

{
 
 

 
 𝑇(𝑥𝑖) +

𝑇𝑖𝑛𝑐

�̅�𝑚𝑖𝑛(𝑥𝑖)
, 𝑖𝑓 𝐹(𝑥𝑖) = 1

𝑇(𝑥𝑖) −
𝑇𝑑𝑒𝑐

�̅�𝑚𝑖𝑛(𝑥𝑖)
, 𝑖𝑓 𝐹(𝑥𝑖) = 0

   

(2.14) 

 

Kalman Filter is a very popular and effective mechanism for object tracking 

[24,25,26,27] that not only smoothens the tracking trajectory of the object, but also corrects 
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possible errors from the position measuring system or sensor. In addition, it adds the possibility 

of temporarily track the object in momentarily occlusions and sensor failures. 

Its theory derives from the assumption that the state of a system at time t can be predicted 

from its previous state at time t-1 having the model of the entire system according to the equation 

(2.15). 

𝑋𝑡 = 𝐹𝑡𝑋𝑡−1 + 𝐵𝑡𝑢𝑡 + 𝑤𝑡 (2.15) 

 

In the previous equation, 𝑋𝑡 is the state vector, 𝑢𝑡 is the control input vector, 𝐹𝑡 is the 

state transition matrix that relates the states at time t-1, and t, 𝐵𝑡 is the control input matrix, 

which applies the effect of the vector 𝑢𝑡 on the state vector, and 𝑤𝑡 is the process noise for the 

state vector derived from a multivariate normal distribution with covariance given by the matrix 

𝑄𝑡. Then, there is an observation or measurement model described by equation (2.16), where, 𝑍𝑡 

is the vector of measurement, 𝐻𝑡 is the transformation matrix that relates the state vector and the 

measurement, and 𝑣𝑡is the measurement noise derivative from Gaussian white noise with 

covariance 𝑅𝑡. 

𝑍𝑡 = 𝐻𝑡𝑋𝑡 + 𝑣𝑡 (2.16) 

 

In case of one-dimensional tracking problem, the model gets the form of the motion 

equation (2.17). Here, the definitions are as follows: 𝑋𝑡 = [𝑋𝑡, 𝑉𝑡], where 𝑋𝑡 is tracked position 

and 𝑉𝑡 is the speed of change. 𝑡 − 1 represents the current state and 𝑡 the predicted state, 𝐹𝑡 =

[
1 ∆𝑡
0 1

]; 𝐵𝑡 = [
(∆𝑡)2

2

∆𝑡
], and 𝑢𝑡 a scalar number that represents the relationship between the forces 

that move and break the object. 
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𝑋𝑡 = 𝐹𝑡𝑋𝑡−1 + 𝐵𝑡𝑢𝑡   (2.17) 

 

The algorithm is based on two main procedures: prediction, and measurement update. 

The prediction equations are (2.17) and (2.18), where 𝑄𝑡 is the noise covariance related to the 

noise in the control inputs. For this specific problem 𝑄𝑡 can be defined as (2.19), where the 

noise magnitude will just amplify the specified noise model. 𝑃𝑡−1 is initially equal to 𝑄𝑡. 

𝑃𝑡 = 𝐹𝑡𝑃𝑡−1𝐹𝑡
𝑇 + 𝑄𝑡  (2.18) 

𝑄𝑡 =

[
 
 
 
∆𝑡4

4

∆𝑡3

2
∆𝑡3

2
∆𝑡2]

 
 
 

∗ 𝑛𝑜𝑖𝑠𝑒_𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒   

(2.19) 

 

The next procedure is the measurement update. This process is given by the equations 

(2.20) and (2.21), where 𝐻𝑡 = [1 0] and 𝐾𝑡 is the Kalman Gain. The Kalman Gain has to be 

updated before the measurement update process, which is before equations (2.20) and (2.21). It 

is represented by equation (2.22) below. In this example, 𝑅𝑡 is a scalar number with the 

measurement noise amplitude. 

𝑋𝑡 = 𝑋𝑡−1 + 𝐾𝑡(𝑍𝑡 − 𝐻𝑡𝑋𝑡−1)   (2.20) 

𝑃𝑡 = 𝑃𝑡−1 + 𝐾𝑡𝐻𝑡𝑃𝑡−1  (2.21) 

𝐾𝑡 = 𝑃𝑡−1𝐻𝑡
𝑇(𝐻𝑡𝑃𝑡−1𝐻𝑡

𝑇 + 𝑅𝑡)
−1  (2.22) 

 

At every measurement we wish to know the best possible estimate of the location of the 

object, the information for computing the estimation is provided by two sources. First, the 

estimation is made from the last known position and speed, and second from the real 
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measurement of the position. Therefore, one cycle of steps to compute Kalman algorithm are 

prediction applying equations (2.17) and (2.18). Then, there is an intermediate step to update 

the Kalman Gain using equation (2.22). Finally, the measurement update step is done with 

equations (2.20) and (2.21). 

2.4 Summary 
 

In this chapter, a general overview of algorithms and approaches for stereo vision, object 

detection, and object tracking applications was presented. In stereo vision applications, obtaining 

the depth information of the scene can be a highly computationally intensive process, demanding 

expensive resources. For this reason, choosing the right approach for the application is critical. In 

order to compute the depth information from a scene, the algorithms based on correlation are 

very accurate and effective, but at the same time highly computationally expensive. On the other 

hand, the feature-based algorithms are accurate and effective enough for some applications, with 

the advantage of being less complex, requiring less computational resources.  

Another algorithm also reviewed in this chapter was the Background subtraction, which 

is a well known approach to detect moving objects. It can be combined with the recursive filter 

of first order as background update algorithm for targeting dynamic backgrounds with great 

results. Finally, the trajectory of the tracking object can be smoothened by applying the Kalman 

filter. Kalman algorithm also allows to decrease measurement errors created by noise. 
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Chapter III System Architecture Development 
 

 Introduction 
 

In chapter I, the main objective of this work was defined as the implementation of a 

system able to perform the application of detecting, locating and tracking a moving object in a 

three dimensional scene. In order to achieve this general objective, the process was divided into 

different stages or tasks to be accomplished, such as detecting the moving object, computing its 

centroid, and then from the centroid calculating the depth. Still, all these steps are very general; 

therefore, in this chapter, they are described in detail. In addition, the selected algorithms to be 

used are described as well.  

 General Architecture 
 

In every computer vision algorithm images are needed. Consequently, a camera is 

required in order to capture the scene and its changes. Figure 3.1 shows the block diagram of the 

general architecture to be designed for this project in order to build a system able to perform the 

required application.  

 
Figure 3.1 General Architecture of proposed design 

 



30 
 

The first component to include in the system architecture is a Camera Module (CM) with 

the capability of streaming a video sequence taken from the scene in front of it. The CM outputs 

frame by frame the scene, allowing next modules to further analyze each frame. The Capture 

Frame Block (CFB) is a helper that understands the CM interface and converts the streaming 

frame into a regular interface for next modules. 

After capturing a frame, it is required to extract the area that is moving or changing in it. 

That is the reason why Detect Moving Area Block (DMAB) is placed after the CM. This module 

is in charge of segmenting each frame. Through this process a segment of the frame is marked as 

static (no moving object in this segment), and the rest is marked as moving (moving object in 

this segment). The Compute Centroid of Moving Area (CCMA) computes the reference point of 

the moving segment. This way, the system is able to track the moving object always according to 

the same reference. In this work, the center of the moving area is selected as centroid. Following 

the analysis in chapter II, to extract the depth information from a scene it is required to have two 

different points of view of the same scene at the same time –this is known as stereo vision. 

Hence, the portion of the system described so far is reproduced to acquire the second view of the 

scene. As a consequence, the system is made of two separated channels of CM, CFB, DMAB 

and CCMA, one for the left view, and one for the right view. These two channels are connected 

to the Compute Disparity Module. This module calculates the difference between the two points 

of view of the same object, which is known as disparity. Having this disparity as input, the next 

module, Compute Depth, is able to determine the distance from the object to the center of the 

stereo camera set. The last block, Display Result, is for debugging and verification purposes. 
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 Algorithm Selection and System Partitioning 
 

3.3.1 Hardware 
 

Detecting moving area 

In order to detect the moving object, this work proposes the algorithm background 

subtraction. Background subtraction is simple to design and it does not require many resources, 

as it works locally on each pair of pixels. This method subtracts each pixel of the current 

background from the corresponding one of the new frame. This characteristic makes it suitable 

for processing on a streaming data structure. Then, it compares the absolute value of the 

difference with a threshold to create a binary image that segments both portions of the frame, the 

static one and the moving one. Background subtraction is also very effective with some pre-

processing and post-processing filters.  

One of the challenges to overcome when using Background subtraction is to exclude 

lighting changes in the scene, and poison noise from being segmented as moving area. That is 

why the mean filter is selected in this case. This work combines mean filter with downscaling of 

the frame to solve this issue as pre-processing module before Background subtraction. 

Downscaling the frame allows the system to store the background directly in internal memory, 

which is faster. As a result, this part of the algorithm can be implemented in hardware. Each 

frame is captured and then downscaled to 1/𝑥 of the resolution by the mean of all the pixels in 

squared regions determined by 𝑥. Figure 3.2 represents an example of downscaling to 1/8 by 

mean of 8x8 pixels blocks (64 pixels). In this case, each block of 8x8 pixels in the bigger image 

becomes 1 pixel in the small image. For an initial resolution of 640x480, the 1/8 scaled 

resolution is 80x60 pixels.  
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Figure 3.2 1/8 Down-Scale example by mean of 8x8 pixels blocks 

 

Other small changes in the scene, known as Dynamic Background, are another important 

task to solve. A well-known recursive filter of first order background update is presented in this 

project to deal with this situation. As mentioned in chapter II, the recursive filter of first order 

background update is a pixel wise update algorithm. This feature makes it suitable for being 

implemented in hardware, as the involved operands per cycle are only the corresponding pixels 

of the new frame, and the current background frame already stored.  

3.3.2 Software 
 

Centroid 

Up until now, the design has created a binary image segmenting the area where there is 

movement. Subsequently, the centroid of this area has to be determined in order to track the 

target object. This project also has the objective of detecting multiple moving objects in future 

work. For this reason, the detection of centroids is left to be performed in software due to its 

complexity for multiple object detection. For the specific work presented here, the system only 

detects a single object.  
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The extraction of the centroid of the object presented in this work consists in determining 

first the bounding box that delimits the object, and then the center of such box, which is the 

centroid. The bounding box is determined by four sides: top, bottom, left, and right, where top is 

the minimum 𝑌 pixel position segmented as moving object, bottom is the maximum 𝑌, left is the 

minimum 𝑋 and right is the maximum 𝑋. The centroid is then computed as expressed by 

equations (3.1) and (3.2). 

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑_𝑋 = (𝑙𝑒𝑓𝑡 + 𝑟𝑖𝑔ℎ𝑡)/2 (3.1) 

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑_𝑌 = (𝑡𝑜𝑝 + 𝑏𝑜𝑡𝑡𝑜𝑚)/2  (3.2) 

Disparity 

Once the system has calculated the centroid of the moving area from the two cameras, it 

calculates the disparity by determining the difference between the two centroids 𝑋 coordinates. 

Being more specific about this calculation, a valid disparity is determined by (3.3). It is 

important to note that a valid disparity is when this difference is positive.  

𝐷𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 =  𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑_𝑋_𝐿𝑒𝑓𝑡 −  𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑_𝑋_𝑅𝑖𝑔ℎ𝑡 (3.3) 

 

This disparity value is known as the measured disparity, because it is calculated by 

processing the sensors, which are both, left and right, cameras. This measurement is not always 

perfect because it is subject to noise, either from the environment components or from the 

algorithm itself. That is the reason why an estimation approach on top of the measurement is 

considered in this work to compensate the noise and smoothen the tracking trajectory. The 

estimation approach is based on Kalman algorithm. This algorithm generally involves floating-

point computation, update and storage of almost all the variables implicated in the algorithm, and 
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update of the estimation model. According to these characteristics, Kalman algorithm is more 

appropriate for being implemented in software. 

Depth 

Depth computation is also a floating-point function based on the characteristics of the 

stereo vision camera set that is suitable for software as well. This function is a model that relates 

disparity to depth. This work determines the model of the stereo camera set offline. Taking 

pictures of several reference points where the distance is known, and then extracting the disparity 

for every reference point make possible to create the needed relationship function between 

disparity and depth. Afterwards, this information is entered in a math software tool to extract the 

function model.  

 Hardware Architecture 
 

In this section, the hardware architecture is explained in more detail. Figure 3.3 

represents a block diagram of the hardware architecture including all components proposed by 

this work to achieve its objectives. There are four main areas in this architecture: the algorithms 

implemented in hardware, a CPU (Central Processing Unit) platform to execute the software 

algorithms and configuration, the communication components between hardware and software, 

and finally verification components. 

First, the two stereo channels, left and right, require to be configured. At the start-up of 

the system, the CM is initialized and configured by the CPU with the desired frame resolution, 

output format, and several other parameters. At any point of execution, the CPU is able to reset 

the system and reconfigure the CM with a different set of parameters. The CPU transmits the 

CM configuration commands to the hardware module SCCB (Serial Camera Control Bus) which 
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is able to properly communicate with the CM using the SCCB standard protocol [28]. The output 

of the camera is connected to CFB. This module is also initialized and dynamically configured 

by the CPU with the frame resolution that the camera has been programmed. This block also has 

an enable signal connected to the CPU to either enable or disable the capturing process. When 

CFB switches from disable to enable, it waits for a valid start of frame to start capturing, this 

way the first frame is captured from its beginning. On the other hand, when it switches from 

enable to disable, it finishes capturing the entire frame it is currently on before stopping, again 

ensuring the full frame is acquired. 

 
Figure 3.3 Hardware Architecture of proposed design 

 

The CFB is connected to the Down-Scale Module (DSM), which is also configured by 

the CPU with the frame resolution the system is working with. According to the working 

resolution, this module is responsible for grabbing the frame coming from CFB and downscaling 

it 1/𝑥 of the resolution. First, the algorithm creates blocks of 𝑥 by 𝑥 pixels, and then computes 

the average of each block. Once it finishes with the full frame, it outputs the downscaled frame 

to the next module. 
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The downscaled frame is then passed as input to the Background Update and 

Synchronization Module (BUSM). This particular module is initialized and reconfigured by the 

CPU with the update rate parameter of the recursive filter of first order background update (α). In 

order to avoid a floating point computation because 0 < 𝛼 < 1, this work modifies the 

background update equation (2.9) from chapter II by transforming 𝛼 =
1

𝛽
 , where 1 ≤ 𝛽 ≤ 𝑚𝑎𝑥. 

Thus, the BUSM parameter is 𝛽 instead. The modified representation is presented by the 

expression (3.4). In this case, when 𝛽 is small, the background adapts to changes rapidly. On the 

other hand, when it is large, the system is more appropriate for objects moving slowly. 

𝐼𝑏𝑘(𝑥, 𝑦) =    
(𝛽 − 1)𝐼𝑏𝑘−1(𝑥, 𝑦) + 𝐼𝑘(𝑥, 𝑦)

𝛽
 

(3.4) 

The background storage elements have some intrinsic latency. This feature is the reason 

why the synchronization part of the module is intended to synchronize the incoming current 

frame pixel with its corresponding background pixel. This action requires some additional 

registers depending on the storage element latency. 

BUSM is connected to Background Subtraction Module (BSM). A pair of corresponding 

pixels, background and current frame, are the input to BSM, which subtracts them and computes 

the absolute value of the result. Then, the Thresholding Module (THM) compares the absolute 

value with a programmable threshold configured by the CPU. THM segments the image frame 

into two parts: moving area and static area. Its output is a binary image. Both binary images, 

from left and right cameras, are pushed to external memory through DMA (Direct Memory 

Access) for further processing by the CPU.  

As the images are binary, every pixel is one bit and DMA is able to transfer words of a 

predetermined size. Therefore, a serial-in parallel-out shift register is used to decrease the 



37 
 

amount of DMA transactions. The shift register accumulates the binary pixels into words of size 

equal to the DMA data bus size, decreasing the amount of transactions by that size. 

Debugging, verification, performance, and accuracy measurement are very important 

aspects to implement in every design. As part of the experimental setup, a UART communication 

channel connected to a PC, as well as VGA capability connected to a monitor are added to the 

system prototype. The UART channel introduces debugging capabilities by setting checkpoints 

so all the components are properly configured, dynamic reconfiguration of the segmentation 

threshold, background update rate, and resolution. In addition, it allows measuring performance 

by setting extra checkpoints to make sure that the frame rate specification is met. Also, in terms 

of accuracy, the system is able to display the exact depth value that it computes, this way the 

result can be compared with the ground truth. VGA capability connected to a monitor is another 

way of performance verification by visualizing how fast and precise the trajectory of the object is 

updated.  

 Software Architecture 
 

The software architecture includes the algorithmically intensive methods of the design, 

and it is divided into three main parts: initialization frame acquisition, and depth computing. In 

the initialization and start stages, the system configures for the first time all the components and 

sets all the variables, starts the system, and then enters in a loop executing compute depth block. 

Segmented frame acquisition is the block called when the DMA receives a segmented frame. 

This block initiates the reception of another frame and computes the bounding box and centroid 

of the received frame. Finally, compute depth block waits for the two frames, left and right, to be 

ready, which means received and calculated centroid. Then, it computes the measured disparity, 

the estimated disparity by Kalman algorithm, and depth, and finally shows the results. 
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3.5.1 Initialization, start and operation block 
 

Initialization is where the software algorithm starts. It starts off by configuring the 

general platform components as presented in Figure 3.4. The first component to be initialized is 

the UART communication with the PC to start debugging the system immediately. Right after, 

the DMA for left channel, and then the DMA for right channel are also configured. Then the 

system setups the interrupt controller, so the two DMA channels can interrupt when a full 

segmented frame is received. After the general components are initialized, the application 

specific components are configured as well. This part of the process begins by configuring the 

CM. The CPU writes the proper registers of the camera with the correct parameters. This way, it 

delivers the frames accordingly. The most important parameters that define the behaviour of the 

rest of the modules are the resolution and the output format. The CFB and DSM are also 

initialized with that same resolution. Then, the BUSM is also configured with the parameter 

background update rate according to the scene speed. Lastly, the software initializes the THM 

passing the segmentation threshold parameter to it. 

After initializing and configuring the general platform and the application specific 

components, the system is ready to switch to operation mode. Starting the operation mode is 

done by enabling the CFB. Then the CFB starts capturing frames and passing them to the rest of 

the system. Once started, the application enters in a loop of depth computing and showing 

results. At this time, the block that computes the depth is called.  
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Figure 3.4 Software Architecture: Initialization, start and operation block 

 

3.5.2 Segmented frame acquisition block 
 

 The segmented frame acquisition block has two main parts: the DMA interrupt handler, 

and, after it, a section to determine the bounding box and centroid. This block is repeated, as 

there are two acquisition channels, left and right. Figure 3.5 represents the segmented frame 

acquisition block. The DMA interrupt handler will be called when an entire segmented frame is 

received. Each channel invokes its own handler. Inside the interrupt handler, the application 

acknowledges receiving the frame, initializes the DMA channel to receive another frame, and 

calls the block for computing the bounding box and centroid. Once the bounding box and 

centroid are ready, it sets a flag for that channel to tell that it is ready for depth computing. The 
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block that computes depth is always waiting for these two flags to be ready to be able to go 

ahead and determine the depth from the left and right centroids. 

 
Figure 3.5 Software Architecture: Segmented frame acquisition block, Left and Right Channels 

 

3.5.3 Compute depth block 
 

 The compute depth block is invoked after enabling CFB. Then, the application enters in 

a loop where it waits for both receiving channels’ flags to be ready. Once they are both ready, the 

block computes the depth, shows the results, resets the flags, and returns back to waiting again. 

Figure 3.6 shows the block diagram of this portion of the application. 

The first step is to calculate the measured disparity by subtracting the x axis of both 

channels’ centroids as previously presented in equation (3.3). Then, this new measured disparity 

is used as the input to Kalman algorithm to compute the estimated disparity. Kalman parameters 

for the specific model of disparity will be determined experimentally. The model for disparity is 

a one variable estimation and its speed of change. After setting the initial values of the Kalman 

parameters, they can be dynamically modified according to changes in the behaviour of the 

model. In this work, only fixed parameters are used.  
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Figure 3.6 Software Architecture: Compute depth block 

 

The disparity estimated by Kalman is converted into depth by using a model of the stereo 

camera set that relates disparity to depth. In this work, the stereo camera set model is a function 

previously determined offline that takes as input the estimated disparity and computes the depth. 

If the stereo camera set is changed, the model has to be recalculated and updated in the 

application. 

Finally, the system shows the results in two different ways. The first way is by sending 

the depth through UART to the connected PC in order to show the exact measurement of the 

depth in a terminal window. The second way is more visual, as it represents a two-dimensional 

tracking map on the attached monitor. The depth is represented on the monitor by scaling it 

according to the monitor resolution and the depth range of measurement. The equation (3.5) 

describes this solution, where 𝑉𝑟𝑒𝑠 is the vertical resolution, 𝐷𝑒𝑝𝑡ℎ𝑚𝑎𝑥 is the maximum, 

𝐷𝑒𝑝𝑡ℎ𝑚𝑖𝑛 is the minimum depth that the system wants to represent on the monitor, and 

𝑉𝑒𝑟𝑃𝑜𝑠𝑉𝐺𝐴 is the vertical position where the object has to be drawn on the monitor to represent 

its position. 
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𝑉𝑒𝑟𝑃𝑜𝑠𝑉𝐺𝐴 =   
𝐷𝑒𝑝𝑡ℎ ∗ 𝑉𝑟𝑒𝑠

𝐷𝑒𝑝𝑡ℎ𝑚𝑎𝑥 − 𝐷𝑒𝑝𝑡ℎ𝑚𝑖𝑛 
 

(3.5) 

 

After showing the results, the application resets the ready flag of both segmented frame 

acquisition channels and returns back to main to wait for the next set of ready frames. 

 Summary 
 

In this chapter, the general architecture of the system was presented with the main 

objective of locating and tracking a moving object targeting its depth information. As a general 

approach to achieve the main objective of this work, the system first detects the moving object in 

the scene from two different views, and then computes the centroid of the object as well from the 

two different perspectives. The system calculates the disparity using the difference from the two 

centroids, and finally the depth information from the disparity.  

The general architecture includes two video acquisition channels, left and right, to 

capture the scene from two different views. Each channel is filtered by mean filter, then down-

scaled to reduce the background storage. Background subtraction is the main algorithm 

implemented to detect the moving object. The background is updated applying the recursive 

filter of first order on the previous background and the new frame. The Background subtraction 

and segmentation modules create a segmented binary image with the information of the moving 

area from each channel. These segmented binary images are sent to a CPU via DMA to extract 

the bounding boxes and the centroids of the moving object per channel. Finally, the CPU is also 

in charge of computing the disparity from the centroids and smoothen its trajectory using 

Kalman filter. The CPU then calculates the depth of the object evaluating the disparity in the 

stereo camera system model.  
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Chapter IV Implementation, Verification and Analysis 
 

4.1 Introduction 
 

In the previous chapter, the algorithms to be use to accomplish the objective of this work 

were selected, analyzed and partitioned. In this chapter, the software and hardware 

implementation of those algorithms is explained accordingly. In addition to this, the 

specifications of the design are presented, and the platform selected for the system prototype is 

also described. 

4.2 Specifications 
 

In this section, the first set of specifications is presented. These specifications are based 

on the main objective of this work, which is to implement a system able to detect, locate and 

track a moving object in a three dimensional scene, at the resolution 720p at 30 frames per 

second. The 720p video standard is the resolution of 1280 horizontal lines and 720 vertical lines, 

for a total of 921600 pixels per frame. As it is at 30 frames per second, one full frame including 

visible and non-visible area happens in 33.33 ms. The design most be able to process a full set of 

stereo vision frames in less than 33.33 ms. The implementation requires a feature to measure the 

specified performance as well as the accuracy of the depth tracking. 

4.3 Platform 
 

The general platform required to implement the set of algorithms selected in this work 

includes the following components: a set of two cameras to build the stereo vision set, a 

development board to implement the hardware and software design, a PC, and a monitor. In this 

particular case, the camera selected is the Omnivision Complementary Metal–Oxide–
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Semiconductor (CMOS) OV5642 [28, 29, 30], which is able to provide the resolution and the 

frame rate specified. This work proposes the Digilent ZYBO development board [31] as 

hardware/software platform because it includes a Xilinx Zynq-7000 family [32, 33], the Z-7010. 

The Z-7010 is based on Xilinx System-on-Chip (SoC) architecture, which integrates a dual-core 

ARM processor with Xilinx 7-series Field Programmable Gate Array (FPGA) logic. This 

development board is equipped with one PMOD (Peripheral Module) port connected to the CPU 

for configuring the camera and four more PMOD ports directly connected to logic useful for 

interfacing the cameras output and further processing. 

4.3.1 Omnivision (CMOS) OV5642 Camera Module 
 

The OV5642 camera module is a low voltage, high performance 5 megapixels CMOS 

image sensor. It provides all required image processing functions, including exposure control, 

gamma, white balance, color saturation, hue control, compression engine, etc. This module has 

an image array capable of operating at up to 7.5 frames per second (fps) in 5-megapixel 

(2592x1944) resolution and YUV output format. Error! Reference source not found. presents 

the camera pinout with description. The OV5642 can also operate at the following resolutions: 

▪ 1080p (1920x1080) at 15 fps YUV 

▪ 720p (1280x720) at 30 fps YUV 

The specifications dictate that 720p at 30 fps is the resolution and frame rate at which the 

system should operate; therefore, the camera module has to be programmed to run as the 

specifications. Figure 4.1 below shows the OV5642 interface used in this work with 8 bits of 

data. The camera module is powered from a single +3.3V power supply. An external clock 

provides the clock source for the camera module through xclk pin, which is generated inside 

FPGA logic. With proper configuration of the camera internal registers via SCCB interface 
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(SIOC, SIOD), the camera supplies pixel clock (pclk) and data (data[7:0]) back to the FPGA 

with synchronization signals like href and vsync. One full PMOD port is required to interface the 

data lines and power the camera. Four more lines are also needed for synchronization signals. In 

addition, two extra lines from the same PMOD are used for configuration. The camera is 

configured to have href active high and vsync active low. The data output is programmed for 

YUV422 (UYVY).  

 
Figure 4.1 OV5642 8-bits data interface 

 

As stated before, the CM is configured to output a resolution 1280x720 in the format 

UY1VY2. The following format transmits two pixels using 4 bytes. The two chrominance, U and 

V components are the same for the two corresponding pixels. On the other hand, luminance Y1 

and Y2 are the brightness components of the first and second pixel respectively. In this work, 

only luminance is used as image information, which means that only the gray scale information 

from the scene is processed. In Figure 4.2, the output row timing diagram is presented. The 

luminance value of the first pixel (Y1) is the second data byte transmitted by the camera. Then, 

the second pixel (Y2) is the fourth byte. Note that href and Data have to be sampled at the rising 

edge of pclk. The signal href tells that the camera is transmitting a valid row and, as discussed 
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before, it is active high. Therefore, when href is high, for every rising edge of pclk there is a 

valid byte on data bus that must be sampled. 

 

 
Figure 4.2 OV5642 Output row timing diagram 

 

The frame timing format is shown in Figure 4.3 below. The signal vsync is active low and 

represents that a valid frame is being transmitted. Inside the active state of vsync (low), there are 

720 href high states representing the 720 rows. The camera maximum pclk frequency is 96 MHz 

for a 30 fps YUV output data format at 720p resolution. Therefore, the proposed design has to be 

able to perform at a frequency of at least 100 MHz to properly process the scene at 720p and 30 

fps. 

 
Figure 4.3 OV5642 Frame timing diagram 
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4.3.2 Digilent ZYBO development board 
 

From all the features the Digilent Zybo development board includes, this description only 

focuses on the ones related to this work. As mentioned before, this board offers as main 

computational power a SoC from the Xilinx Zynq-7000 family, the Z-7010, which contains a 

dual-core ARM processor Cortex-A9 and FPGA logic equivalent to Artix-7. Zybo board is a 

ready-to-use platform great for prototype designs. It can handle a wide variety of embedded 

applications because of its computational power, interfaces, and availability of expansion. Its 

main features related to this work are as follows: 

▪ 650 MHz dual-core ARM processor Cortex-A9 

▪ DDR3 memory controller with 8 DMA channels and 512MB x32 DDR3 with 

1050Mbps bandwidth 

▪ Low-bandwidth peripheral controller: UART 

▪ Reprogrammable logic equivalent to Artix-7 FPGA 

▪ 16-bits per pixel VGA source port 

▪ On-board JTAG (Joint Test Action Group) programmable and UART to USB 

converter 

▪ Six PMOD connectors 

4.4 Hardware Implementation 
 

4.4.1  Capture Frame Block (CFB) 

 

The Capture Frame Block is the module that interfaces the CM. In general terms, it is 

driven by the clock generated by the CM (pclk) and has three sets of interfaces: CM interface, 

standard axi_stream interface, and configuration interface. Figure 4.4 shows the three interfaces 
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presented in CFB. The signals pclk, vsync, href and data come from the CM. The axi_stream 

interface includes all the necessary signals to transfer the captured pixels to further processing 

blocks, as a standard communication interface. Its signals are identified with the prefix 

“m_axis_” followed by the name of the signal [34]. The last interface is connected to the CPU 

for configuration and control such as frame resolution, enable, capture, and reset.  

 
Figure 4.4 CFB block interface 

 

The CM interface was explained earlier in this chapter. The axi_stream and the 

configuration interfaces are as follows: 

• m_axis_tvalid: (output) when active, the value on m_axis_tdata is valid to be 

sampled.  

• m_axis_tlast: (output) when active, indicates the last pixel of a row. 

• m_axis_tdata: (output) data value of the pixel (luminance). 

• m_axis_tuser: (output) when active, indicates the first pixel of a frame. 

• m_axis_tready: (input) when active, the next module is ready to receive data. 

• aclk: clock to synchronize the next module. 

• rst: (input) resets the module to its initial state. After reset, the module maintains 

the last configured resolution. 
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• en: (input) enables the capturing mode. 

• resolution: (input) signal used to set the horizontal resolution. 

• wen: (input) write enable signal to write the resolution. 

 

There are several parallel functionalities implicated in this module. Initially, the inputs 

coming from the camera are all registered, consequently all these processes work on the 

registered input signals. That is one more clock cycle to be added to the latency of the module. In 

this description, the signals with “_registered” at the end of the name are the input signals 

already registered in a previous cycle. The module has an initial default resolution, which can be 

reprogrammed at any time following the sequence of disable capturing, write resolution, wait for 

the equivalent time of one full frame and then enable the capturing back again. The horizontal 

resolution is used to determine the end of every row in the image frame. Figure 4.5 presents the 

flow of configuring the horizontal resolution, the eol (end of line) computation, and the sof (start 

of frame) detection. The register address is initialized with zero when vsync_registered is not 

active for blank interval between frames. 

 
Figure 4.5 CFB eol, sof and resolution configuration 
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The challenge of detecting the active portion of a frame starts from detecting when 

vsync_registered is active. When it is not active, the address register should be reset as well as a 

flag for extracting only the luminance (href_last) from data input. At this point, enable capturing 

is also checked and set to internal registers (reg_en). The signals href_last and reg_we are used 

to extract only the Y from the data input in the format of UYVY, which is every other data input 

byte starting from excluding the first byte of every horizontal line. Notice that address is 

incremented when reg_we is active, meaning the new pixel value has been captured.  

 
Figure 4.6 CFB Detecting active portion of frame, enabling capturing and filtering valid portion of data input 

 

Finally, if the internal register for enable capturing (reg_en) is active, the module is in 

operational mode by assigning the internal registers to the output. A valid output is set by reg_we 

through m_axis_tvalid. Figure 4.7 shows the output assignment functionalities. Note that when 

capturing is disabled the outputs are set to zero. In addition, the output clk is the same as the 

input. Data input is registered one more time when href is active, and it is always connected to 

data output (m_axis_tdata). CFB works with the clock generated by the CM. Consequently, a 

FIFO (First-in First-out) with two clock inputs is needed to cross to the internal clock domain. 
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One side of the FIFO is connected to the CFB synchronized by aclk, and the other side is 

connected to DSM synchronized by an internal clock at higher frequency. 

 
Figure 4.7 CFB output assignment 

 

The CFB module has a latency of three clock cycles. The resources used by this module 

are summarized in Table 4.1 for a maximum resolution of 720p. 

 

Resources Utilization Available Utilization % 

Slice LUTs (Luck-Up-Table) 130 17600 0.74 

Slice Registers (Flip-Flops) 51 35200 0.14 

Table 4.1 CFB resources utilization based on target platform Xilinx Zynq-7010 architecture 

 

4.4.2 Down-Scale Module (DSM) 

 

DSM downscales the image frame captured by the CFB, with the purpose of filtering 

small lighting changes in the background scene and camera noise, and decreasing the amount of 

memory needed to store the background. The algorithm is based on dividing the image into 

square blocks of a predetermined size, and then computing the mean of all the pixels in each 

block. The scaled image is composed by all the calculated mean values. As the image pixels 

come in streaming mode, starting from the top-left pixel, row by row, the approach followed by 

this module is as follows. At first, there is a register of size equal to the amount of blocks in a 

row, which holds the mean of every block. For every pixel, its horizontal position is calculated to 
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determine which block it belongs to, and then average its value with the average already stored 

in the corresponding register. For example, if the block size is 8x8 pixels, the three least 

significant bits of the horizontal position hold the pixel horizontal position inside the block. 

Then, the rest of the bits specifies the block itself. Also, using this example, when the three least 

significant bits of the horizontal and vertical positions are equal to block size minus one, it 

determines the end of every block, so a pixel of the scaled image has to be released as output.  

DSM is connected to the clock domain crossing FIFO in turn connected to CFB. As the 

CM cannot be interrupted, the CFB cannot be interrupted either as a consequence. If any delay in 

further modules occurs, this FIFO is able to accumulate the values until the system is ready 

again. Figure 4.8 presents the module interface. It has three groups of interfaces: resolution 

configuration, slave axi_stream as input, and master axi_stream as output. 

 
Figure 4.8 DSM block interface 

 

The resolution configuration interface is connected to the CPU. The slave axi_stream 

interface is connected to the previous module, which is the FIFO connected to the CFB. The 

master axi_stream interface is connected to the next module BUSM. The purpose of each of the 

signal is as follows:  
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• s_axis_tvalid: (input) when active, the value on s_axis_tdata is valid to be 

sampled.  

• s_axis_tready: (output) when active, tells the previous module that it is ready to 

receive data.  

• s_axis_tlast: (input) when active, indicates the last pixel of a row. 

• s_axis_tdata: (input) data value of the pixel (luminance). 

• s_axis_tuser: (input) when active, indicates the first pixel of a frame. 

• m_axis_tvalid: (output) when active, the value on m_axis_tdata is valid to be 

sampled.  

• m_axis_tready: (input) when active, the next module is ready to receive data.  

• m_axis_tlast: (output) when active, indicates the last pixel of a row. 

• m_axis_tdata: (output) data value of the pixel. 

• m_axis_tuser: (output) when active, indicates the first pixel of a frame. 

• aclk: clock of the module. 

• rst: (input) resets the module to its initial state. After reset, the module maintains 

the last configured resolution. 

• resolution: (input) signal used to set the either horizontal or vertical resolution. 

• hor_ver: (input) signal used to define whether the value in input resolution is 

either horizontal or vertical. 

• wen: (input) write enable signal to write the selected resolution. 

 

Like all the modules in this work, the input signals are registered in every clock cycle. 

There is a first functionality that computes the horizontal and vertical positions, and accumulates 
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the pixel value with the corresponding block average register. Figure 4.9 shows the block 

diagram of these functionalities. The signals with “_registered” at the end of the name are the 

input signal already registered in a previous cycle. This functionality uses the registered input 

signals tvalid_registered, tuser_registered, and tlast_registered to determine a valid input, start 

of frame and end of line. However, it delays the increment of the position by one cycle as well as 

temporal registers for tvalid (reg_tvalid) and tlast (reg_tlast), for the next pipelined functionality 

to work properly with the result of the pixel accumulation. 

 
Figure 4.9 DSM pixel position and data input accumulation functionalities 

 

The next pipelined functionality receives the result of the accumulation and either 

updates the block average register or finishes the mean computation and transmits the result. If 

the pixel position is inside the block, the design updates the block average register. On the other 

hand, if it is the last pixel of the block, the design divides the corresponding average register by 

the amount of pixels per block finishing the average computation. This division is substituted 

with a shift to the right. In this particular example, the block size is 8x8 pixels, the least 
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significant bits are 3, and as the division is by 64, the right shifting is by 6 bits. The amount of 

bits to be shifted is calculated by log2(𝑏𝑠𝑖𝑧𝑒 ∗ 𝑏𝑠𝑖𝑧𝑒). Notice that sof of the scaled image is not 

at position zero of the input image, because it is at the end of the first block. 

 
Figure 4.10 DSM eol, sof, average division and output assignment 

 

The DSM module has a latency of three clock cycles. The resources utilized by this 

module are summarized in Table 4.2 for a maximum resolution of 720p. 

 

Resources Utilization Available Utilization % 

Slice LUTs (Luck-Up-Table) 1089 17600 0 

Slice Registers (Flip-Flops) 2300 35200 0 

Table 4.2 DSM resources utilization based on target platform Xilinx Zynq-7010 architecture 
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4.4.3 Background Update and Synchronization Module (BUSM) plus Background Subtraction 

(BSM), and Thresholding Module (THM) 

 

In this section, the Background Update and Synchronization Module (BUSM), the 

Background Subtraction Module (BSM), and the Thresholding Module (THM) are designed 

together as one single unit. BUSM uses two memory elements to store the background. It 

switches the memories in a way that one stores the current background and is read, and the other 

one is written with the new background. The new background is calculated using the value read 

from the current background memory, the pixel value from the current frame and equation (3.4) 

from chapter III. Background subtraction and thresholding are computed using the same two first 

operands and the equation (2.8) from chapter II. Figure 4.11 shows the interface of the combined 

design with the typical axi_stream slave input interface as well as the master output interface. 

Note that output m_axis_tdata is only a one-bit signal because the result of this module is a 

binary image. The background update rate (beta) and segmentation threshold (seg_th) are also 

inputs to the module as configuration interface. 

 
Figure 4.11 BUSM-BSM-THM block interface 

 

In the first clock cycle, all the input signals are registered. In the second clock cycle, the 

input values registered in cycle one are then visible to the functionality described in Figure 4.12. 
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At this cycle, the registered values are registered again to pass them to the next functionality in a 

pipeline mode. In addition, this part of the module determines the valid start of frame by 

checking on tvalid and tuser signals, with the purpose of initializing the address to access the 

background memory, reading the new values of threshold and beta, and switching the 

background memories. If it is not a start of frame state, it only increments the background 

memory address. 

 
Figure 4.12 BUSM-BSM-THM sof initialization and valid input operation 

 

There are two memory elements as storage component in this module. Part of the 

acceleration was to use the FPGA dedicated memory resources BRAM (Block Random Access 

Memory), which are very close related to the FPGA logic, providing clock cycle read and write 

operations for high speed functionalities. In Figure 4.13, the distribution of these memories is 

described. The calculated new background, denoted by the signal reg_1_new_bg, is the input to 

the memories, and the selected output is the current background (curr_bg). The signal sig_mux 

selects the memory to be read and the one to be written. The memory with the current 

background is read first, then, after computing the new background, it is written in the other 

memory. 
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Figure 4.13 BUSM-BSM-THM Current background and new background memory distribution 

 

The computation of background subtraction, thresholding and new background is shown 

in Figure 4.14. This block diagram represents a pipeline distribution of registers and operations 

implicated in this functionality. The signals reg_0 and reg_1 represent the added registers to 

compensate the memory latency of two cycles. The memories are configured to register the 

output values. This registration step adds one more cycle to their intrinsic latency of one clock 

cycle. The operations of multiplication and addition for new background are set in the same 

clock cycle, because it makes use of FPGA dedicated DSP (Digital Signal Processing) resources, 

which save on FPGA logic and accelerate the operation. The writing address is the same as the 

reading address with some delay to be synchronized with the new background result 

(reg_1_new_bg). The signal reg_3_tvalid goes through the same process because it represents 

the write enable signal (wen) of the memories. 
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Figure 4.14 BUSM-BSM-THM Computation of background subtraction, thresholding and new background 

 

BUSM-BSM-THM has a latency of 5 clock cycle to the output and 6 to write the new 

background to memory. After the latency it outputs one result per cycle time, which is one clock 

cycle. The resources used by this module are summarized in Table 4.3 for a maximum resolution 

of 720p. 

 

Resources Utilization Available Utilization % 

Slice LUTs 190 17600 1.08 

Slice Registers 104 35200 0.30 

Memory (BRAM) 8 60 13.33 

DSP 1 80 1.25 

Table 4.3 BUSM-BSM-THM resources utilization based on target platform Xilinx Zynq-7010 architecture 
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4.4.4 Serial-In Parallel-Out Shift Register 
 

At this point, the input image to the Shift Register module has the format of 1-bit per 

pixel, and the signal tlast is active at the end of every row. This module converts the previous 

format into an array of 32-bits words with only one tlast at the end of the whole frame. As the 

DMA system is able to transmit 32-bits word to DRAM, it is worthy to employ some resources 

to reduce the amount of DMA transactions. Reducing these transactions reduces the DMA 

interruptions along with the CPU interruptions as well, reflecting an improvement in 

performance. DMA will interrupt only once a full frame has been transmitted. Notice in Figure 

4.15 that input s_axis_tdata is 1-bit wide, and m_axis_tdata is 32-bits wide. 

 
Figure 4.15 1-bit Serial-In to 32-bit Parallel-Out Shift Register block interface  

 

There are two main functionalities in this module, one to count the amount of rows to 

determine the end of the frame, and another one to do the conversion to 32-bits, and transmit the 

result when 32 bits have arrived. In the first clock cycle, all the inputs are registered. In the 

second cycle, only the values of tvalid, tlast, and tdata are registered again to be passed to the 

next functionality in a pipeline mode. Figure 4.16 shows that the signal last_counter is 

incremented until it gets the value of vres (vertical resolution), then it is reset. The second 
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functionality checks for tlast to be active and last_counter to be zero, which means it is the last 

pixel of the frame, therefore tvalid_out and tlast_out have to be set to active. If it is not the end 

of the frame yet, the data out is shifted anyways and the new data is concatenated. Then, the 

condition of full register (counter_32bit = 31) is also checked to activate tvalid_out and transmit 

the register. If the register is not full yet, counter_32bit is incremented. 

 
Figure 4.16 1-bit Serial-In to 32-bit Parallel-Out Shift Register functionalities block diagram 

 

This module has a latency of three clock cycle to the output. The resources utilized by 

this module are summarized in Table 4.4 for a maximum resolution of 720p. 

 

Resources Utilization Available Utilization % 

Slice LUTs 17 17600 0.1 

Slice Registers 49 35200 0.14 

Table 4.4 Serial-In Parallel-Out Shift Register resources utilization based on target platform Xilinx Zynq-7010 architecture 
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4.4.5 Serial Camera Control Bus (SCCB) 
 

In order to configure the CM, the CPU has to send the configuration commands to the 

SCCB module, and then this one to the camera. The commands are sets of 24-bits words stored 

in DRAM, 16 bits for the register address and 8 bits for the value. The amount of registers to be 

written in one configuration could be about 600 and the SCCB communication is quite slow 

(400KHz clock maximum). That is why, it is very convenient to use DMA to send the 

commands, so the CPU can continue with other tasks. The SCCB block is connected to the CPU 

through another DMA channel configured as read only. Hence, the CPU executes one simple 

DMA transfer, with the initial DRAM address where the commands are stored, and the amount 

of commands to be transmitted. This approach adds one more DMA channel to the system along 

with one more FIFO and some other integration components. Table 4.5 below shows the 

resources used by this component without taking into account the storage component (FIFO) 

connected between SCCB and DMA.  

 

Resources Utilization Available Utilization % 

Slice LUTs 59 17600 0.34 

Slice Registers 93 35200 0.26 

Table 4.5 SCCB resources utilization based on target platform Xilinx Zynq-7010 architecture 

 

In order to change the resolution, it is required to first disable the frame capturing. Then, 

the system waits for the next DMA interruption, which means that the system is completely 

disabled. At this state, the system is ready to receive the new configuration. After reconfiguring 

the modules with the new resolution, the camera module can be reconfigured. Then, the system 

can be set back to enable again.  
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4.5 General Hardware Characteristics and Performance 
 

It is important to mention that in addition to the FIFO included in between CFB and 

DSM, more FIFO modules were included as well to connect every module up to DMA in order 

to ensure proper connectivity. All these FIFOs are 32 words deep except for the one connected to 

DMA, which is 1024, to guarantee one row computation if the CPU is delayed for any reason. 

After every row, there is a blank spot that provides some extra time to advance with the 

computation. These FIFO components are original IP cores from Xilinx, FIFO Generator version 

12.0 [35]. They are configured as axi_stream interface, and only the one connected to CFB has 

two independent clocks. The DMA components are also property of Xilinx, AXI Direct Memory 

Access version 7.1 [36], configured as write channel only. 

In general, the hardware implementation, consists of two modules CFB, two DSM, two 

BUSM-BSM-THM, two Serial-In Parallel-Out Shift Registers, three DMA modules, two SCCB 

modules, one Zynq processing unit with all the necessary connectivity components, and the 

GPIO modules for enabling and configuration. When a pixel arrives to the CFB, the hardware 

implementation adds a latency of 22 clock cycles up to DMA. This means that the segmented 

binary frame result is ready in DRAM, 22 clock cycles plus DMA latency after the last pixel 

arrives to CFB. By adding this latency to the time that the CPU takes to process the two 

segmented frames, the total latency is obtained. The total latency is described in next sections. 

The hardware implementation is designed in pipeline mode, which makes it able to properly 

handle the camera clock streaming data at 96 MHz, by performing at a frequency slightly higher 

of 100 Mhz. 
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 Table 4.6 presents the resources utilized by the entire system. There are still resources 

for either increasing the operation resolution or adding more functionalities and filters, which 

may improve the accuracy of the system.  

 

Resources Utilization Available Utilization % 

Slice LUTs 7193 17600 40.87 

Slice Registers 10245 35200 29.11 

Memory (BRAM) 25 60 41.67 

DSP 1 80 1.25 

IO 48 102 47.06 

Clocking 6 32 18.75 

Processing Unit 7 1 1 100 

Table 4.6 Entire Implementation resources utilization based on target platform Xilinx Zynq-7010 architecture 

 

4.6 Software Implementation 
 

This section describes the software algorithms designed to be implemented in the CPU 

core included in the target platform. The last hardware components in the processing pipeline are 

the DMA blocks to transmit the segmented binary image to DRAM, and interrupt the CPU for 

further processing. Once the CPU is interrupted by a channel, it reconfigures the channel to 

receive the next frame, and processes the bounding box and centroid of the corresponding binary 

image. The CPU proceeds to compute the measured disparity, then the estimated disparity by 

Kalman algorithm, and finally it calculates the depth and shows the results. 

4.6.1 Initialization, Start and Operation Block 
 

This is the first section of the software algorithm. In this part the components are 

initialized and configured, and the start command for operation mode is given. First, the platform 

components such as DMA, Interrupt controller, and GPIO (General-purpose input/output) are 
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initialized and configured. Then, the system components are also initialized such as CM 

parameters, CFB resolution, DSM resolution, BUSM-BSM-THM beta and threshold, and the 

Shift Register vertical resolution. Once the configuration is done, the start command for 

initiating capturing is released by enabling CFB. 

Initially, the platform components have to be checked to retrieve their hardware 

configuration and ensure that they are present. If they are present, the retrieved hardware 

configuration is used to create an instance of both DMA controllers, which is the next step. The 

same procedure is used for the interrupt controller, and the GPIOs. There are several GPIO 

components, one for each of the system components that require configuration. Using these 

instances, the platform and system components are configured.  

The next step is to connect the DMA interrupt handlers to the interrupt controller and 

enable them. By this step, the system gets ready to be interrupted by both DMA channels once 

they acquire one full frame each. The handler subroutines are functions corresponding to each 

DMA channel that will be called when the DMA interrupts. If the CPU is inside one of these 

functions, it means that a full frame is already in DRAM. Each handler is related to a channel; 

this way the channel can be identified. In the next section the DMA interrupt handler is fully 

described. Then, an initial simple DMA transfer is started. At this point, both DMA channels are 

waiting for data to transfer to DRAM. This simple transfer is started with two parameters, the 

DRAM initial location, where the DMA will start coping the data, and the length of the packet to 

receive. 

The initial location is a 32-bits address in the dedicated DRAM space allocated for this 

purpose. Calculating the length needed is as follows. In case of 720p resolution (1280x720 

pixels), the downscaled image is 160x90 pixels, which is equivalent to 14400 pixels. The result 
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of the segmentation is an image of the same amount of pixels but each pixel is only 1-bit wide. 

Then, after the Shift Register, the result packet is 14400 bits divided by 32 bits, which is equal to 

450 words of 32 bits each. Initializing a DMA transfer requires this amount to be based on bytes, 

so the length is 1800 bytes. 

After the CM is configured, the rest of the system components are initialized as well, 

such as CFB horizontal resolution, DSM horizontal and vertical resolution, BUSM-BSM-THM 

background update rate (beta) and segmentation threshold, and Shift Register vertical resolution. 

The platform components configuration is done only once when the system starts up. 

However, the system components configuration can be done at any time when changes to system 

parameters are required. Beta and segmentation threshold can be changed without the need of 

resetting the system. However, for horizontal and vertical resolution, the system must be reset. 

Once the platform and system components are configured and initialized, frame capturing 

can start. After configuring the CM, it starts sending frame information to CFB, but if this one is 

disabled, it does not receive any data. When enabling CFB, it starts receiving the data coming 

from CM, processing it, and transferring it for further processing by the next modules. At this 

point, the system is fully operating. Then, the software algorithm enters in the loop of computing 

depth. Computing depth block is described later in this chapter. 

The CPU running at 650 MHz, takes 18 us to initiate and configure the platform 

components and the system components except CM. Then, to configure the CM, it takes 53.571 

ms because the SCCB is a standard bus limited to 400 KHz communication frequency. 

4.6.2 Segmented Frame Acquisition Block (DMA Interrupt Handler) 
 

During the configuration steps, the DMA interrupt handler was connected to the interrupt 

controller in order to make the CPU to jump and execute this function once a segmented frame is 
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acquired. There are four main functionalities inside this handler: servicing the interrupt, checking 

for frame rate violation, setting up the DMA to receive the next frame, and computing the 

bounding box and centroid of the moving object, if there is one in the received frame. Figure 

4.17 describes the main steps to accomplish the objectives of this function. Servicing the 

interrupt requires to read the status of the interrupt controller that contains the current asserted 

interrupt, and then use this information to acknowledge that the same interrupt is being 

processed. 

The frame rate violation process is a step to verify that the performance of the software 

algorithm is meeting the required frame rate. The software algorithm has to process a full 

segmented frame before the next frame is completely acquired. The flag “progress” is set to 

IN_PROGRESS while a frame is being processed, and to NO_PROGRESS when finished. If a 

new frame is acquired and this flag is still at IN_PROGRESS state, an error condition is 

generated. Otherwise, the software algorithm is capable of meeting the frame rate specification.  

This work uses two buffers that are switched per received frame. With this approach, 

while one frame is being processed, the next one is being acquired at the same time. To 

accomplish this idea, it is necessary to have a flag to track which buffer is being used for 

acquiring and for processing at every interrupt. After knowing which buffer is for acquiring and 

which one for processing, a next acquisition is started using the right buffer for this purpose at 

this time, and the other buffer is used for the next processing step, which is computing the object 

bounding box and centroid. 
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Figure 4.17 Frame acquisition block diagram (DMA Interrupt handler) 

 

Computing the bounding box and the centroid of the segmented object is a method based 

on going through all the pixels that conform the image to find the top, bottom, left, and right 

positions of the boundaries of the segmented object. Once the entire image is processed, the 

center of that box (centroid) can be calculated. Figure 4.18 presents the algorithm used by this 

work to compute the bounding box and centroid. As the segmented image is stored in DRAM in 

a format where each bit represents a binary pixel, the approach is to process each bit of every 32-

bits word in the buffer. If the bit is ‘1’, it means that the pixel it represents is part of the moving 

object. As the processing goes from the top-left corner of the image to the bottom-right, the 

vertical position of the first pixel to be object is the top border of the bounding box. The bottom 

border is the vertical position of the last object pixel. The left and right borders are the most left 

and right horizontal positions respectively. If there is at least one object pixel, it means that the 

object was actually detected by that camera, so the algorithm defines that frame as “VALID”. 

Only when both frames are valid, the depth can be computed. The bounding box is then up-

scaled back to its original resolution. The centroid, X and Y coordinates are calculated by 
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computing the center of left and right borders, and top and bottom borders, respectively. At the 

end, the centroid progress flag is set to “DONE” to let the rest of the algorithm know that it can 

proceed with depth calculation. 

 
Figure 4.18 Bounding box and centroid computation 

 

A performance measurement block was added right at the beginning of the interrupt 

handler. The system was able to measure its performance in terms of frame rate by using this 

block. The time it takes from one interrupt to the next one should be approximately 33.33 ms in 

order to tell that the objective of 30 fps is achieved. The performance measurement block 
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detected that the average interrupt interval was about 34.867 ms, equivalent to approximately 

28.68 fps. In the next segment, the performance of the software implementation is described as 

the time it takes from DMA interrupt to depth computation. 

4.6.3 Computing Depth Block 
 

This block is executed in a loop where three functionalities are computed in sequential 

order. First, this block waits for both frames, left and right, to be pre-processed up to bounding 

box and centroid computation, which means that it waits for centroid progress flag to be 

“DONE” in both channels. Then, it processes the disparity, if the centroids are valid, applies 

Kalman to the measured disparity to calculated the estimated one, and finally converts estimated 

disparity to depth or distance from the stereo camera set origin to the object. Notice in Figure 

4.19, where this process is described, how the measured disparity is checked to be positive for a 

valid measurement, then a flag for depth condition is set as either valid or invalid accordingly. At 

the end of this step, the centroid flag is set as “NOT_DONE” and the progress flag as 

“NO_PROGRESS” to wait again for the next frame to come. 

The Kalman algorithm for one variable model is used by this work to smoothen the 

measured disparity. In order to simplify the Kalman disparity model, an offline transformation of 

the matrixes involved in the model and their operations was performed, and some of the 

parameters were experimentally adjusted. As the tracking of the disparity is a one-dimensional 

problem, the prediction model is taken from the example in chapter II. In this work, the software 

approach represents the matrixes as arrays starting from the top-left element row by row.  
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Figure 4.19 Depth computing block 

 

The first step is to predict the next state of the object disparity by equation (2.17) in 

chapter II. After working out this matrix equation, the linear equations derived from it are as 

presented in equation (2.1), and (2.2), where 𝑋[0] is the estimated disparity,  

𝑋[1] is the speed of change, ∆𝑡 = 1 𝑎𝑛𝑑 𝑢 = 0.005. 

𝑋[0] = 𝑋[0] + 𝑋[1]∆𝑡 + 𝐵[0]𝑢 (4.1) 

𝑋[1] = 𝑋[1] + 𝐵[1]𝑢 (4.2) 

 

The next step in the prediction state is to estimate the next covariance 𝑃 using the 

equation (2.18) in chapter II. As 𝑃 is a matrix of four elements, it generates four linear equations 

(4.3), (4.4), (4.5), and (4.6), where the noise magnitude that multiplies 𝑄 is 0.001. 
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𝑃[0] = 𝑃[0] + 𝑃[2]∆𝑡 + 𝑄[0] (4.3) 

𝑃[1] = 𝑃[1] + 𝑃[3]∆𝑡 + 𝑄[1] (4.4) 

𝑃[2] = 𝑃[0]∆𝑡 + 𝑃[2]∆𝑡2 + 𝑃[2] + 𝑄[2] (4.5) 

𝑃[3] = 𝑃[1]∆𝑡 + 𝑃[3]∆𝑡2 + 𝑃[3] + 𝑄[3] (4.6) 

 

After the prediction state, then comes the measurement updating state that starts with 

updating the Kalman Gain matrix 𝐾, which is only two elements generating just two linear 

equations shown by (3.1) and (3.2) bellow, where 𝑅2 is 1. 

𝐾[0] = 𝑃[0]/(𝑃[0] + 𝑅2) (4.7) 

𝐾[1] = 𝑃[2]/(𝑃[0] + 𝑅2) (4.8) 

 

The next step in the updating state is to update the state estimate 𝑋 and the covariance estimate 

𝑃, which is performed by using the equations (2.20) and (2.21), respectively, found in chapter II. 

As described before, the state estimate is a two element matrix that generates two linear 

equations shown below in equations (4.9) and (4.10), where 𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 is the disparity 

previously calculated from the subtraction of the X coordinate of both centroids. The covariance 

estimation linear equations are presented in (4.11), (4.12), (4.13), and (4.14). The estimated 

disparity 𝑋[0] from (4.9) is the value used to calculate the depth in the next procedure of 

converting disparity to depth. 

X[0] = X[0] + K[0](disparitymeasured − X[0]) (4.9) 

𝑋[1] = 𝑋[1] + 𝐾[1](𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑋[0]) (4.10) 

𝑃[0] = (1 − 𝐾[0])𝑃[0] (4.11) 

𝑃[1] = (1 − 𝐾[0])𝑃[1] (4.12) 
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𝑃[2] = (1 − 𝐾[0])𝑃[0] + 𝑃[2] (4.13) 

𝑃[3] = (1 − 𝐾[0])𝑃[1] + 𝑃[3] (4.14) 

  

Calculating the depth from the estimated disparity is the next and final step to be 

performed by the software system to achieve the objectives of this work. The model disparity-

depth is created offline. Then, using the estimated disparity 𝑋[0] as input in that model, the depth 

can be obtained.  

The disparity-depth model is created by taking as many images as possible from both 

cameras of a known object at different depths. The object centroid is extracted from those 

images. Then, the disparity is calculated from the centroids. Disparity and depth build a ground 

truth curve used to determine the equation of their relationship. Figure 4.20 shows the curve 

disparity over depth for the stereo camera set built by this work at a resolution of 720p. The 

reference points were limited to the range from 25 cm to 375 cm. This lower limit is set because 

the fields of view of both cameras do not overlap each other at that distance; consequently, the 

center of the object is not projected on both cameras at the same time. At the upper boundary, the 

changes in disparity are very small, greatly affecting the accuracy of the result.  
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Figure 4.20 Disparity/Depth ground truth curve built from the extracted reference points 

 

The created model that best fits the ground truth includes two different functions for two 

regions. The ground truth is divided into two regions: one for disparity less or equal to 272, and 

another one when greater than 272. Therefore, before evaluating the disparity, the right model is 

selected according to the disparity. For the section (≤ 272), the curve fits a 6th degree polynomial 

model, and for the rest (> 272) fits a cubic model. In Table 4.7, the parameters of the models are 

shown. Figure 4.21 presents the model over the ground truth curve. Notice the greatest offset is 

at 272 when the switching of models occurs. 
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Region (disparity ≤ 272) 

𝑦 = 𝑝1𝑥
6 + 𝑝2𝑥

5 + 𝑝3𝑥
4 + 𝑝4𝑥

3 + 𝑝5𝑥
2 + 𝑝6𝑥 + 𝑝7 

Region (disparity > 272) 

𝑦 = 𝑝1𝑥
3 + 𝑝2𝑥

2 + 𝑝3𝑥 + 𝑝4 

𝑝1 = 3.4716𝑒 − 11 𝑝1 = −9.2084𝑒 − 07 

𝑝2 = −4.4035𝑒 − 08 𝑝2 = 0.0016047 

𝑝3 = 2.3067𝑒 − 05 𝑝3 = −0.97846 

𝑝4 = −0.0064193 𝑝4 = 240.5 

𝑝5 = 1.0101 - 

𝑝6 = −86.927 - 

𝑝7 = 3406 - 

Table 4.7 Models that fit the ground truth curve in two regions 

 

 

Figure 4.21 Disparity/Depth model over ground truth 

   

As mentioned before, the depth measurement range is limited from 25 cm to 375 cm. The 

upper boundary is where the disparity is about 87 pixels and the accuracy is ±4 cm, meeting one 

the accuracy specifications of this work. The maximum percentage error of the measurement is 

1.066 %. Figure 4.22 presents the error in depth according to the disparity. This error is 

determined by the stereo camera set design, the characteristics of the cameras, and their 

resolution. Changing the distance in between the cameras, moves the range closer or further, but 
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keeps the same range. On the other hand, increasing the resolution decreases the error, increasing 

the depth range. 

 

Figure 4.22 Relation Disparity/Depth Error Range 

 

In terms of performance, this work analyses the time the software implementation takes 

to completely process the two segmented frames and finally compute the depth. The CPU takes 

from 445 us to 625 us depending on the size of the moving object. Since the hardware latency is 

insignificant compared to the software latency, the total latency of the system is in the range of 

the software latency. Another analysis from these values is that the software design is able to 

perform its functionalities in the period of time in between two frames, which is 33.33 ms, 

according to the frame rate specification for this work. There is a substantial difference in the 

performance of the software design and the specification. Therefore, the software 

implementation is able to easily handle higher resolutions. The software design resulted in the 

amount of data presented in Table 4.8. 
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Text Data BSS Dec Hex 

48840 3176 35812 87828 15714 

Table 4.8 Software Implementation building result 

 

4.7 Showing Results 
 

As a method of showing the computed results, the UART to USB communication 

channel is used to send the exact calculated depth from the processing unit to a PC. This channel 

is also allocated for debugging and reconfiguring the system. For the particular function of 

showing the depth result, an interface such the one presented in Figure 4.23 is used. This result is 

compared with the actual distance at which the object is, and then an evaluation is done. If the 

object is either not present in one of the cameras, or simply there is not object, the depth is 

declared Invalid as shown in Figure 4.24. This information can be sent to another module for 

further processing or actuation. 

 
Figure 4.23 Depth result when moving object is 80 cm far away from the camera set 

 

 
Figure 4.24 Invalid depth result 
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For visual performance measurement and better debugging, a display connection is also 

added to the design. Figure 4.25 shows on the display a two dimensional space with the two 

cameras as reference points. In addition, the horizontal lines are one meter apart. The object is 

represented by the block close to the one-meter horizontal line, for a depth of 80 cm. 

 
Figure 4.25 Display for visual performance measurement and debugging 

 

4.8 Power Consumption Control 
 

In terms of power consumption control, this work proposes the approach of adding clock 

power down capability when the system is not capturing. This approach utilizes the IP Core 

property of Xilinx, Clocking Wizard (version 5.1) [37]. This core generates several clocks from 

one single clock source, with a feature of reset and power down in case of energy saving modes 

are required. Figure 4.26, below, presents the diagram of the clock power down system. The 

CPU generates the signal clk_power_down that controls the clocks generated by Clocking 

Wizard Module. If clk_power_down is active, the four generated clocks are shut down, putting 

the dependent blocks in standby mode. Using this strategy reduces the power consumption by 

23.08 % during standby mode. Table 4.9 compares the energy consumption characteristics of the 

implementation with first just the platform by itself without any configuration, then the 

implementation in standby mode, and finally the implementation in operating mode.  
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Figure 4.26 Clock Power Down Control Diagram 

 

System Current (mA) Power (W) 

Not configured Platform 250 1.250 

Configured Platform, Standby (including cameras) 350 1.750 

Configured Platform Operating (including cameras) 455 2.275 

Table 4.9 Implementation DC characteristics 

 

4.9 Summary 
 

In this chapter, the set of specifications of the system was presented, which is to 

implement a system able to detect, locate and track a moving object targeting its depth 

information, at the resolution 720p at 30 frames per second. In order to achieve this goal, the 

hardware platform was also selected and described, which is the Omnivision OV5642 camera 

module and the Digilent ZYBO development board. In addition to this platform, a PC and a 

display were also added to the prototype setup for debugging and testing purposes. The specific 

hardware and software implementations were explained in detail including block diagrams, 

interfaces and resources utilization. 

The hardware implementation represented less than 50% of the available resources of the 

SoC platform. The software processing unit is able to process the two segmented frames and 
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finally compute the depth in the range of 445 us to 625 us meeting the specifications of 30 fps. 

The measurement range of the system was limited to 375 cm maximum to meet the requirement 

of ±4 cm of maximum error.   
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Chapter V Summary and Future Work 
 

Stereo vision is a difficult and computationally demanding problem with many useful 

applications. The inspiration driving this work was to research, design, implement, and verify the 

application of this technology in a real world problem, and to expose its variants, modifications, 

advantages, and issues according to the specifications and constraints of the specific problem. 

The real world problem targeted by this work is the computation of the depth information of a 

moving object in a scene. This is the reason why its main objective is to build a system able to 

perform the application of detecting and tracking a moving object in a three dimensional scene, 

at 720p of resolution, 30 frames per second and with depth error no greater than ±4 cm, for a 

maximum percentage error in the measurement of 1.066 %. 

This work successfully accomplished its specific task of researching a wide range of 

algorithms related to possible solutions for this problem. Several approaches were introduced, 

such as stereo disparity computation based on correlation algorithms and feature algorithms. 

Correlation algorithms were also extended to global and local approaches because of their 

complexity. The significance of calibration and its variants were also presented. In addition to 

this, methods to detect moving objects were also described, such as background subtraction. In 

this case, this work specifically examined the issues and the solutions for different background 

dynamic. Finally, Kalman algorithm was proposed as very effective method to track objects and 

smoothen their trajectories. 

From the previously researched algorithms, some were deeply analyzed and selected to 

be part of the solution proposed by this work. Two independent vision channels from a stereo 

camera set were used to capture the stereoscopic view of the scene. Background subtraction was 

the main algorithm for detecting the moving object. The background subtraction was supported 
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by the recursive filter of first order as background update method, and mean filter as pre-

processing approach. The mean filter was combined with the downscaling of the frame, in order 

to reduce the background storage resources. The result of the background subtraction was 

segmented by thresholding to create a binary image. This image was later sent to DRAM for 

further processing by the CPU. The algorithms were partitioned in hardware and software 

portions according to their computationally or algorithmically intensive behaviour. DMA 

technology was used to transmit the segmented images to DRAM without interrupting the CPU. 

Once the segmented stereo frames were in DRAM, the CPU was given the tasks of computing 

the centroid of the moving area, the measured disparity, estimating the disparity by Kalman 

algorithm, and finally calculating the depth from the estimated disparity. 

This work introduced the platform to be used for implementation of the design and 

verification of the specifications and constraints. The target platform as hardware/software 

computational power was the Digilent Zybo development board. The cameras used were 

OmniVision OV5642. A PC was also used to visualize the exact value of the depth, as well as for 

debugging and performance verification. In addition to this, a display was connected as a 

performance measurement. 

The implementation successfully achieved the objectives of resolution 720p, and 

maximum permissible depth error of ±4 cm. To accomplish the goal of the maximum depth 

error, the depth measurement range was limited to a maximum distance of 375 cm, because 

further than that the error would be greater than ±4 cm. The depth limit could be improved by 

increasing the resolution of the cameras. The operation frame rate was about 28.68 fps, because 

that is the actual frame rate coming from the camera module. The system is capable of handling 

the exact 30 fps required to meet the objectives, but the cameras were about 1.32 fps slower. 
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Using higher performance and quality cameras guarantees an improvement in the operation 

frame rate. 

The hardware portion has a latency of 22 clock cycles, and the cycle time is one clock 

cycle. The entire system has a latency that mostly depends on the software portion, which is in 

the range of 445 us to 625 us, depending on the size of the moving object. This is the time the 

CPU takes to process the two segmented frames up to have the depth information. The system 

configuration time depends directly on the camera module configuration, which takes about 

53.571 ms, because the cameras use SCCB communication channel at 400 MHz maximum 

frequency. The hardware resources utilized by the design were below 50 % of the target 

platform, allowing room for improvement and future work. 

In terms of power consumption, the implementation requires 2.275 W in operating mode, 

and 1.750 W in standby mode. This power consumption takes into account the entire system, 

including the cameras’ consumption. The clock power down control is very useful to reduce 

power if standby mode is required. The reduction is about 23.08 %. 

 Future Work 
 

There are several paths for future research that could be explored in relation to this work. 

As this work has focused on detecting and tracking just one moving object in the scene, a future 

improvement is to implement an algorithm to detect and track several objects individually. As 

noted in chapter 3, the centroid computation of one single object could be easily executed by 

hardware, but the algorithm for multiple objects is too complex, therefore it is better executed by 

software. This is precisely what was proposed in chapter 3 of this work: to execute the bounding 

box and centroid of the moving object by software in order to build the base architecture for 

future multiple objects detection. 
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Camera calibration and undistortion are improvements to be added in future work. 

Individual camera undistortion guarantees a uniform distribution of the disparity along the entire 

image, which results in a uniform depth wherever the object is located in the scene. Stereo 

calibration simplifies the model that relates depth and disparity, and also improves the 

calculation of parameters of the model by completely automating this process. 

This work is focused on performing at least at 30 fps, which limits the resolution to 720p 

according to the camera performance. Therefore, by using higher performance and quality 

cameras, this resolution will be increased, amplifying the measurement range and its accuracy. 

Along with the resolution, a future upgrade to this work is the use of more storage for the 

background, avoiding losing quality when downscaling the image. 

The clock power down control manages only the system components related to hardware 

processing. In future work, the goal will be controlling more components, such as platform 

components and the CPU itself, by stopping or decreasing the operation frequency of more clock 

domains. This will definitely improve the energy consumption of the system in standby mode. 
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Glossary of Acronyms and Abbreviations 
 

2D: Two dimensional. 

3D: Three dimensional. 

ADSW: Adaptive Support Weight. 

ARM: Acorn RISC Machine 

BRAM: Block Random Access Memory. 

BSM: Background Subtraction Module. 

BUSM: Background Update and Synchronization Module. 

CC: Cross-Correlation. 

CCMA: Compute Centroid of Moving Area. 

CFB: Capture Frame Block. 

CM: Camera Module. 

CMOS: Complementary Metal–Oxide–Semiconductor. 

CPU: Central Processing Unit. 

DDR3: Double data rate type three SDRAM (DDR3 SDRAM) is a type of synchronous dynamic 

random-access memory (SDRAM). 

DMA: Direct Memory Access. 

DMAB: Detect Moving Area Block. 

DRAM: Dynamic Ramdom-Access Memory 

DSM: Down-Scale Module. 

DSP: Digital Signal Processing. 

FIFO: First-in First-out. 

FPGA: Field Programmable Gate Array. 
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fps: Frames per Second. 

GIF: Guided Image Filter. 

GPIO: General-purpose input/output. 

HMM: Hidden Markov Model 

HOG: Histograms of Oriented Gradients 

IP Core: Intellectual property core. 

JTAG: Joint Test Action Group 

KHz: Kilohertz 

LUT: Luck-Up-Table. 

mA: Milliampere 

Matlab: Multi-paradigm numerical computing environment and programming language. 

MB: Mega Bytes. 

Mbps: Mega Bit per Second. 

MI: Mutual Information. 

NP: Nondeterministic Polynomial 

OpenCV: Library of programming functions mainly aimed at real-time computer vision. 

PBAS: Pixel-Based adaptive Segmenter. 

PMOD: Peripheral Module. 

QVGA: Quarter of area of VGA. Standard video resolution 320×240 pixels. 

SAD: Sum of Absolute Differences. 

SCCB: Serial Camera Control Bus. 

SGM: Semi-Global Matching. 

SoC: System-on-Chip. 
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SSD: Sum of Square Differences. 

THM: Thresholding Module. 

TRW-S: Sequential tree-reweighted message passing. 

UART: Universal Asynchronous Receiver/Transmitter. 

VGA: Video Graphics Array. Standard video resolution 640×480 pixels. 

W: Watt. 

YUV: Colorspace. The Y component determines the brightness of the color (referred to as 

luminance or luma), while the U and V components determine the color itself (the 

chroma). 

  

 

 

 


