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Abstract

Since multi-modal data contain rich information about the semantics presented in the

sensory and media data, valid interpretation and integration of multi-modal information

is recognized as a central issue for the successful utilization of multimedia in a wide range

of applications. Thus, multi-modal information analysis is becoming an increasingly im-

portant research topic in the multimedia community. However, the effective integration

of multi-modal information is a difficult problem, facing major challenges in the identifi-

cation and extraction of complementary and discriminatory features, and the impactful

fusion of information from multiple channels. In order to address the challenges, in

this thesis, we propose a discriminative analysis framework (DAF) for high performance

multi-modal information fusion.
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The proposed framework has two realizations. We first introduce Discriminative

Multiple Canonical Correlation Analysis (DMCCA) as the fusion component of the

framework. DMCCA is capable of extracting more discriminative characteristics from

multi-modal information. We demonstrate that optimal performance by DMCCA can be

analytically and graphically verified, and Canonical Correlation Analysis (CCA), Multi-

ple Canonical Correlation Analysis (MCCA) and Discriminative Canonical Correlation

Analysis (DCCA) are special cases of DMCCA, thus establishing a unified framework for

canonical correlation analysis.

To further enhance the performance of discriminative analysis in multi-modal infor-

mation fusion, Kernel Entropy Component Analysis (KECA) is brought in to analyze

the projected vectors in DMCCA space, and thus forming the second realization of the

framework. By doing so, not only the discriminative relation is considered in DMCCA

space, but also the inherent complementary representation of the input data is revealed

by entropy estimation, leading to better utilization of the multi-modal information and

better pattern recognition performance.

Finally, we implement a prototype of the proposed DAF to demonstrate its perfor-

mance in handwritten digit recognition, face recognition and human emotion recognition.

Extensive experiments show that the proposed framework outperforms the existing meth-

ods based on similar principles, clearly demonstrating the generic nature of the frame-

work. Furthermore, this work offers a promising direction to design advanced multi-modal

viiv



information fusion systems with great potential to impact the development of intelligent

human computer interaction systems.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, with the development of science and technology, especially sen-

sory technologies, human can obtain more and more data easily. How to

analyze or process these massive data to gain useful information is becom-

ing a challenging but necessary research topic. Moreover, in many fields

of studies, information about a given phenomenon is obtained through

different types of acquisition techniques and multiple sources, and the

availability of such multi-modal data has been growing with extremely

fast pace [1]. Therefore, effective utilization and integration of the con-

tents across multiple distinct yet complementary sources of information

for improving multimedia analysis and pattern recognition performance is

becoming an increasingly important research topic in information science

[2]. Due to the rich characteristics of natural processes and environments,

and technological constraints, it is rare that a single modality provides

complete understanding thereof. Thus, unimodal based pattern analysis

and recognition systems usually affords low level of performance due to

1



1.1. MOTIVATION CHAPTER 1. INTRODUCTION

the drastic variation and noisy nature of the acquired signals, which leads

to insufficient and inaccurate pattern representation of the perception of

interest [3].

The increasing availability of multiple data sets that contain informa-

tion, obtained using different acquisition methods from the same system,

introduces new degrees of freedom that raise questions beyond those re-

lated to analyzing each data set separately. Joint analysis of multiple

data sets has since been the topic of extensive research, and leaped sig-

nificantly forward in the late 1960s/early 1970s with the formulation of

concepts and techniques of data fusion [4, 5]. However, until rather re-

cently, these data fusion methodologies were largely confined within the

limits of psychometrics and chemometrics, the communities in which they

evolved. With recent technological advancement, the availability of data

sets that correspond to the same phenomenon has increased, leading to

the development of multi-modal information fusion. Multi-modal data are

associated with high-impact commercial, social, biomedical, environmen-

tal, military applications. Thus, the drive to develop new and efficient

analytical methodologies is high and reaches far beyond pure academic

interest.

In general, natural integration of multiple media, their associated fea-

tures, or the intermediate decisions to perform an analysis task is referred

to as multi-modal fusion [6]. Multi-modal data contain a combination of

information content from different sources in various presentation format-

s. The combination of multi-modal data may potentially provide a more

complete and discriminatory description of the intrinsic characteristics of

the patterns, and produce improved system performance than using a sin-

2



CHAPTER 1. INTRODUCTION 1.1. MOTIVATION

Figure 1.1: The natural multi-modal fusion system-Human Brain

gle modality only [7]. As we know, the human brain is arguably the best

natural fusion system which collects information from different sensory

modalities, such as sight, sound, touch, smell, self-motion, and taste, etc.

to gain meaningful perceptual experiences shown in Figure 1.1 [3].

Generally speaking, an information fusion analysis task involves pro-

cessing of multi-modal data to obtain valuable insights about the data, a

situation, or a high level activity. Examples of information fusion analy-

sis tasks include semantic concept detection, face recognition, audiovisual

emotion recognition, human tracking, event detection, etc. Multimedia

data used for these tasks could be sensory (such as audio, video, RFID)

or non-sensory (such as WWW resources, database). The fusion of mul-

tiple modalities can provide complementary information and increase the

accuracy of the overall decision making process. For instance, fusion of

audio-visual features along with other textual information have become

more effective in detecting events from a team sports video [8], which

would otherwise not be possible by using a single information source.
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Multi-modal information fusion is also of great importance for human

computer interaction (HCI), human-computer communication (HCC), se-

curity/surveillance and many other areas. Specially, we take human com-

puter interaction as an example. Since the conventional human computer

interfaces [9, 10, 11] are considered too restrictive for natural interaction

between human and computer, a great deal of efforts have been spent on

numerous non-intrusive sensors so that users can conduct their activities

in a more natural way without feeling the presence of these sensors. The

intention of the users can be inferred from many data sources including

voice, facial expression, gesture, and so on. This necessitates the employ-

ment of multi-modality data [12].

Motivations for multi-modal information fusion are many. They in-

clude obtaining a more unified picture and global view of the system at

hand; improving decision making; exploratory research; answering specific

questions about the system, such as identifying common versus distinctive

elements across modalities or time; and in general, extracting knowledge

from data for recognition. However, although massive work has already

been done in the related field (see, for example, [13, 14, 15, 16, 17, 18] and

references therein), the knowledge of how to actually exploit the additional

diversity that multiple data sets offer is still at its very preliminary stage.

For example, although multi-modal data can potentially provide a more

complete and discriminatory description of the intrinsic characteristics of

the pattern, multiple types of data may carry redundant, or even contra-

dictory information. Hence, utilizing useful data and eliminating conflict

information based on effective fusion algorithms become another increas-

ingly essential research topic in information fusion.
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In addition, multi-modal information fusion is at its preliminary stage

for several reasons [19]. First, the data are generated by very complex sys-

tems: biological, environmental, sociological, and psychological, to name

a few, driven by numerous underlying processes that depend on a large

number of variables to which we have no access. Second, due to the aug-

mented diversity, the number, type, and scope of new research questions

that can be posed is potentially very large. Third, working with hetero-

geneous data sets such that the respective advantages of each data set

are maximally exploited, and drawbacks suppressed, is not a task clearly

defined.

Considering the above mentioned issues, an effective multi-modal in-

formation fusion scheme is urgently needed. Therefore, in this thesis, we

propose a novel discriminative analysis framework (DAF) which is able

to more effectively utilize complementary and discriminative information,

eliminate redundancy and improve the overall recognition performance.

1.2 Objective

Research in multi-modal information fusion has achieved substantial ad-

vances, especially in recent years. Nevertheless, perfectly emulating the

information fusion capacity of the human brain is still far from accom-

plished. Ideally, the fusion method should be capable of taking full advan-

tage of information collected from multiple sources and bearing a better

description of the intended perception.

This thesis proposes a novel DAF for multi-modal information fusion.

The framework has two realizations. First, discriminative multiple canon-

ical correlation analysis (DMCCA) is introduced as the fusion function of
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Figure 1.2: The general block diagram of the proposed DAF for multi-modal information
fusion.

the framework to extract the discriminative representations from multiple

data/information sources for multi-modal analysis and fusion. Then kernel

entropy component analysis (KECA) is brought in to improve the perfor-

mance of the DMCCA-based fusion function. A general block diagram of

the proposed DAF is depicted in Figure 1.2. The circled areas in Figure

1.2 indicate fusing different features together. To achieve this objective,

we need to address a number of challenges, which will be presented in the

following section.

1.3 Challenges

The motivation for studying better information fusion techniques is to ob-

tain a more reliable analysis and accurate recognition performance. How-

ever, the benefits usually come with a certain price, and to accomplish the

task better, the challenges resulted from the analysis process have to be
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properly addressed [17, 20]. Although many attempts have been made to

improve information fusion techniques, it is still a very challenging field

due to several reasons. The majority of these reasons arise from the data

to be fused, imperfection and diversity of the sensory technologies, and

the nature of the application environment which are summarized below:

* Data imperfection : data provided by sensors is always affected by

some level of impreciseness as well as uncertainty in the measurements.

* Outliers and spurious data : the uncertainties in sensors may also

come from the ambiguities and inconsistencies present in the environment

[21].

* Conflicting data : fusion of such data can be problematic especially

when the fusion system is based on evidential belief reasoning and Demp-

ster’s rule of combination [22].

* Data modality : sensor networks may collect the qualitatively similar

(homogeneous) or different (heterogeneous) data such as auditory, visual,

and tactile measurements of a phenomenon.

* Data correlation : this issue is particularly important and common

in distributed fusion settings, e.g., wireless sensor networks where some

sensor nodes are likely to be exposed to the same external noise biasing

their measurements.

* Data alignment/registration : sensor data must be transformed from

each sensor’s local frame into a common frame before fusion occurs. Such

an alignment problem is often referred to as data registration. Data reg-

istration is of critical importance to the successful deployment of fusion

systems in practice.

* Data dimensionality : the measurement data could be pre-processed,
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either locally at each of the sensor nodes or globally at the fusion center

to be compressed into lower dimensional data, assuming a certain level of

compression loss is allowed.

While many of the aforementioned problems have been identified and

actively investigated, no existing information fusion algorithm is capable

of addressing all these problems. In this thesis, the following challenges

will be addressed.

1. First, although intuition indicates that fusion of multi-modal data

should help in many information processing tasks, it is not necessarily al-

ways true. The major difficulties lie in the identification of the inherent

relationship between different modalities, and the design of a fusion strat-

egy that can effectively utilize the complementary information presented

in different channels.

2. It is important for a fusion method to be able to identify the dis-

criminatory representation amongst different modalities. Most existing

methods only reveal the relation among different modalities while ignor-

ing the discriminative relation among different classes [23]. In addition,

multi-modal data may carry redundant or even contradictory information.

It is necessary to extract more discriminatory description of the intrinsic

characteristics from the multi-modal data. DMCCA is selected to fulfill

this purpose in this work.

3. Finally, although there are numerous methods proposed for informa-

tion fusion, the theoretical foundation of these methods largely depend on

the second order statistics, such as variance, correlation, mean square error

and so on. Since the second order statistics are only optimal for Gaussian-

like distribution [24] and sensitive to the choice of input parameters [25],
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a poor estimator is likely obtained if the underlining distribution greatly

differs from Gaussian and possesses a large number of parameters. KECA

was proposed to solve this problem [26]. It utilizes descriptor of entropy

estimation to extract a more complementary representation of input data

other than the second order statistics, leading to improved performance.

However, unsupervised in nature, it only puts the information or data

from different channels together without considering the discriminatory

representation of the input information or data sources.

Although many investigations have been carried out to address these

challenges, the performance of information fusion systems are still far from

satisfactory. To obtain good fusion performance, this thesis focuses on de-

veloping methodology to properly treat the three issues.

1.4 Main Contributions

In this thesis, we propose a DAF which attempts to utilize the discrim-

inant analysis and entropy-estimation of multi-modal data to enhance

multi-modal information fusion. It is driven by several machine learn-

ing fundamentals, both supervised and unsupervised. For the supervised,

benefiting from the discriminative power of DMCCA, we learn and selec-

t the discriminative representation among original multi-modal data. On

the other hand, the unsupervised is used to extract the complementary in-

formation based on entropy-estimation from the extracted discriminative

representation. Therefore, the proposed DAF is able to achieve the tasks

of the identification and extraction of complementary and discriminatory

representation simultaneously. The contributions are summarized below:

1. We present the DMCCA as the first realization of the DAF for

9



1.4. MAIN CONTRIBUTIONS CHAPTER 1. INTRODUCTION

multi-modal information fusion, extracting the discriminative representa-

tion from original multi-modal data effectively. Furthermore, we mathe-

matically verify that the best performance by DMCCA achieves when the

number of projected dimensions is smaller than or equals to c, the number

of the classes being studied. Based on this property, we may just start at

dimension c and then perform a localized search around c to find the best

performance, leading to significant reduction in computational cost. This

is a particularly attractive feature when dealing with large scale problems.

2. We further verify that canonical correlation analysis (CCA), mul-

tiple canonical correlation analysis (MCCA) and discriminative canonical

correlation analysis (DCCA) are special cases of DMCCA, thus establish-

ing a unified framework for canonical correlation analysis.

3. We then propose KECA plus DMCCA (KECA+DMCCA) as an-

other realization of the DAF for multi-modal information fusion. By com-

bining the entropy-estimation property of KECA and the discriminative

power of DMCCA, KECA+DMCCA transforms the original multiple in-

formation into the discriminative multiple canonical correlation analysis

space to reveal discriminative representation and eliminate redundant in-

formation among different multiple variables. Then KECA is applied to

the projected vectors in the DMCCA space. By doing so, not only the

discriminative representations are considered, but also the complementary

relationship of the input data is revealed by KECA, improving the recog-

nition/classification accuracy. Moreover, we mathematically verify that

the optimal performance by KECA+DMCCA achieves with c (the num-

ber of the classes being studied) independently projected vectors. It is a

particularly attractive property when solving large scale problems.
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4. Taking into consideration of the limitations of existing fusion meth-

ods, we propose a novel graphic approach for selecting optimal projection

in multi-modal information fusion as an extension of contribution 1. By

graphically examining the transformation matrix, the proposed approach

identifies the optimal projection and, in turn, the optimal feature sets in

the transformed domain for final recognition.

1.5 Thesis Organization

The rest of this thesis is organized as follows.

Chapter 2 starts with an introduction of multi-modal information fu-

sion, which is followed by a review on the recent advances on the three

levels of information fusion: feature/data level, score level and decision

level. An introduction to Information Theoretic Learning (ITL) methods

to information fusion is then presented. Finally, we briefly discuss some

representative applications in multi-modal information fusion fields.

Chapter 3 first briefly presents the fundamentals of CCA, DCCA and

MCCA, and then formulates DMCCA. In the process, we analytically

demonstrate that the optimally projected dimension by DMCCA can be

quite accurately predicted, leading to both superior performance and sub-

stantial reduction in computational cost. After that, the relation between

CCA, DCCA, MCCA and DMCCA is analyzed. Finally, a novel graphic

approach for selecting optimal projection in multi-modal information fu-

sion is presented.

Chapter 4 presents the entropy-estimation based discriminative analy-

sis method integrating KECA and DMCCA to extract discriminatory rep-

resentations and identify the inherent complementary relationship among

11
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different modalities beyond the second order statistics, further improving

the recognition accuracy.

Chapter 5 examines the performance of the proposed DAF in several

applications, ranging from multi-feature fusion to multi-modal fusion.

Chapter 6 summarizes the works presented in this thesis and outlines

possible directions for future research.
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Chapter 2

Background

This chapter begins with a general overview of information fusion, in-

cluding the definition of multi-modal information fusion and three fusion

levels. Following that, we review the recent advances in the areas of in-

formation fusion, intelligent feature level fusion, Information Theoretic

Learning (ITL) methods in information fusion, and some representative

applications.

2.1 An Overview on Information Fusion

The proliferation of multimedia content and the advances in sensing tech-

nology have enabled and encouraged the design and development of com-

putationally efficient and economically feasible multi-modal systems for a

broad spectrum of application scenarios. Multimedia, by name and defini-

tion, contains a combination of information contents from different media

sources in various content forms. Examples include audio, video, image

and text, each of which can be deemed as a modality in a multi-modal

multimedia representation. The integration of multi-modality data con-
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tains more information about the semantics presented in the medium, and

provides a more comprehensive description of the patterns or perceptions

of interest [27].

Multi-modal information fusion refers to a process which achieves more

reliable and robust analysis performance by integrating a set of multi-

ple data sources, extracted features, and intermediate decisions [28]. It

has drawn increasingly extensive interest in both research and industri-

al sectors, in a plethora of applications such as security and surveillance,

video conferencing, video streaming, education and training, healthcare,

database management, and human computer interaction (HCI). It is worth

pointing out that multi-feature fusion is a special case of multimodal fu-

sion. In multi-feature fusion, different sets of features are extracted from

the same modality data but with different extraction methods, and thus

highly likely carry richer information. Therefore, the fusion of the multi-

feature sets could lead to better recognition results.

Regarding the existing approaches, there are three levels of information

fusion: feature/data level, score level and decision level [29]. Data/feature

level fusion combines the original data or extracted features through cer-

tain strategies before classification [30]. For instance, by concatenating the

feature vectors of different modalities, a new vector is formed to represent

the multi-modal information. Since feature level contains richer informa-

tion about the raw data, the fusion at feature level is expected to perform

better in some scenarios in comparison with fusion at score level and de-

cision level. Moreover, fusion at the feature/data level has the advantages

to provide the classifiers with better discriminatory representations by

exploiting the co-variation and correlation between different modalities.
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Figure 2.1: Feature level fusion for audiovisual information

For example, concatenating the feature vectors which have been extracted

from two modalities, like audio and video signals, is a typical application

of multi-modal information fusion. Figure 2.1 shows a schematic repre-

sentation of audiovisual fusion at feature level. In Figure 2.1, features are

extracted from different data channels, such as audio and video streams.

The extracted features are first merged by feature fusion unit, and then

the combined feature vector is input into classifiers for further analysis.

Fusion at the score level combines the scores generated from different

modalities through a rule based scheme, or in a pattern classification sense

in which the scores are taken as new input features of a classification al-

gorithm [31]. At score level, it is possible to combine scores obtained from

the same modalities or different ones. Its advantages include simple im-

plementation and scalability. This level of fusion can be divided into two

categories, combination and classification. Regarding combination, the

input matching scores are combined by normalizing them into the same
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Figure 2.2: Score level fusion for audiovisual information

range. In terms of classification, the matching scores are viewed as input

features for a second level classification. However, the fusion at score level

has disadvantages, such as inability to utilize correlation at feature level

and tedious learning process. Figure 2.2 shows a schematic representation

of audiovisual fusion at score level. The data from different streams are

extracted into feature vectors. The feature vectors are transformed into

matching scores in score fusion module. Score fusion module integrates

the scores and obtains the final result.

There are a number of typical applications of score level fusion. For

example, Karthik et al. presented quality-based score level fusion in multi-

biometric system [32]. The quality of biometric samples has a significant

impact on the accuracy of a matcher. Therefore, dynamically assigning

weights to individual matchers based on the quality of samples can im-

prove the overall recognition performance of a multi-biometric system.

The likelihood ratio-based fusion scheme takes into account the quality of
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the biometric samples while combining the match scores provided by the

matchers. Another recent application is a score level fusion framework of

multi-modal biometrics using triangular norms presented by Hanmandlu

[33]. The scores from multiple biometrics are combined using triangular

norms (T-norms). T-norms achieve better performance over the tradi-

tional methods like SVM and linear regression. In addition, Dass et al.

described an optimal framework for combining the matching scores from

multiple modalities using the likelihood ratio statistics of the generalized

densities estimated from the genuine and impostor matching scores [34].

The fusion approaches for combining the generalized densities include cop-

ula models which consider the dependence between the matching scores,

and the product rule which assumes independence between the individual

modalities.

The decision level fusion usually generates the final results based on the

decisions made from individual classifiers or modalities using rule based

methods such as AND, OR, and majority voting [35, 36]. Generally s-

peaking, decision level fusion needs employment of independent classifiers

for every modality and integration of the likelihood scores based on the s-

trategies of reliability estimation. The organization of the correspondence

between the channels is made during the integration step only. However,

the fusion at decision level might lose too much useful information.

Some researchers have successfully adopted decision level fusion strat-

egy. For example, Zhou et al. presented a facial expression recognition

method based on global and local features with decision level fusion [37].

Local directional pattern (LDP) global features of the whole face are ex-

tracted, which can guarantee basic expression difference and decrease the
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Figure 2.3: Decision level fusion for audiovisual information

influence of non-facial region. Local directional pattern variance (LDPv)

descriptor is used to extract local features of regions of eyes and mouth,

and extrude their contribution on expression changes. After feature ex-

traction, instead of simple feature concatenation, a decision level fusion

for global LDP feature and local LDPv feature is selected. Another in-

teresting study is on decision level integration system for multi-modal

emotional expression analysis presented by Metallinou [38]. Face, voice

and head movement cues for emotion recognition are estimated and the

classifiers are integrated using a Bayesian framework. The facial classifier

has the best performance followed by the voice and head classifiers, and

the multiple modalities seem to carry complementary information, espe-

cially for happiness. Decision fusion increases the average accuracy from

55% to about 62%. Wang et al. [7] proposed a Kernel Cross-Modal Factor

Analysis method for audiovisual emotion recognition. It achieves 85.00%

and 78.00% performance on RML database and eNTERFACE database,
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respectively.

In general, the selection of a fusion level is dependent on the charac-

teristics of the data and the requirements of the application problem on

hand. The three fusion levels, the feature/data level fusion, decision lev-

el fusion and score level fusion, delegated by multi-classifier combination,

have been researched extensively in pattern recognition, information fusion

and human-computer interaction (HCI), and have been applied success-

fully to handwritten character recognition, face recognition and emotion

recognition. [39, 40, 41].

2.2 Intelligent Feature Level Fusion

Although research in information fusion has advanced substantially in re-

cent years, realistically emulating the information fusion capacity of the

human brain is still far from accomplished. Major issues arise from the

data to be fused, imperfection and diversity of the sensor technologies,

and the nature of the application environment [13]. Therefore, intelligent

feature level fusion has drawn significant attention from the research com-

munities of multimedia and biometrics due to its capacity of information

preservation and impressive progress has been made [42, 43].

The advantage of the feature level fusion is as follows. As different

feature vectors extracted from the same pattern tend to reflect differen-

t characteristics of the pattern, optimally combining these features not

only keeps the effective discriminant information, but also eliminates the

redundant information to certain degree. This property is especially im-

portant to classification and recognition of large scale database in high

dimensional feature space. Among them, serial feature fusion [44] was
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the early winner. However, after serial feature extraction, how to select

low-dimensional discriminative feature vectors for effective recognition re-

mains an open challenge.

In addition, a number of systems based on feature level fusion have

been developed. For example, Yang et al. described a feature level fu-

sion framework using fingerprint and finger-vein for person identification

[45]. The fingerprint and finger-vein features are first extracted using a

unified Gabor filter framework. Then a supervised local-preserving canon-

ical correlation analysis method is employed to generate fingerprint-vein

feature vectors in feature level fusion. The nearest neighborhood classifier

is used for person identification. This approach has a high capability in

fingerprint-vein based person recognition as well as multi-modal feature

level fusion. Ross et al. presented several feature level fusion strategies

using hand and face biometrics, such as fusion of Principal Component

Analysis (PCA) and Linear Discriminant Analysis (LDA) coefficients of

face, fusion of face and hand modalities, and fusion of LDA coefficients

corresponding to the R,G,B channels of a face image [46]. It is shown that

the feature selection scheme ensures that redundant feature values are de-

tected and removed before invoking the matcher. Recently, Feng et al.

presented a common theoretical framework for multiple model fusion at

feature level using multi-linear subspace analysis [47]. One disadvantage

of multi-linear approach is that it is hard to obtain enough training obser-

vations for tensor decomposition algorithms. To overcome this difficulty,

the M2SA algorithm [48] is adopted to reconstruct the missing entries of

the incomplete training tensor. This framework is applied to the problem

of face image analysis using Active Appearance Model (AAM) [49] to vali-
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date its performance. Evaluations of AAM using the proposed framework

are conducted with promising results.

Recently, there has been extensive interest in the analysis of correla-

tion based approaches for multi-modal information fusion. The objective

of correlation analysis is to identify and measure the intrinsic association

between different modalities, by which the discriminant information car-

ried by all modalities pertaining to certain semantic is determined. Hu et

al. [50] proposed a large margin multi-metric learning (LM3L) method for

face and kinship verification in the wild. It jointly learns multiple distance

metrics under which the correlations of different feature representations of

each sample are maximized, and the distance of each positive pair is less

than a low threshold and that of each negative pair is greater than a high

threshold, simultaneously. However, LM3L is only used to address the

face and kinship verification problem at present.

Canonical correlation analysis (CCA) is a statistical method dealing

with the mutual relationship between two random vectors, and a valuable

multi-data processing method [51, 52, 53]. Sun et al. [54] proposed to use

CCA to identify the correlation information of multiple feature stream-

s of an image signal, and demonstrated the effectiveness of the method

in handwritten character recognition and face recognition. CCA has also

been applied to audiovisual based talking-face biometric verification [55],

medical image analysis [56], and audio-visual synchronization [57]. How-

ever, in many practical problems dependencies between two signals cannot

be described by simple linear correlation. If there is nonlinear correlation

between the two variables, CCA may not correctly correlate this relation-

ship. Kernel canonical correlation analysis (KCCA) [58, 59], a nonlinear
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extension of CCA via the kernel trick to overcome this drawback, has been

developed for the fusion of global and local features for target recognition

[60], fusion of ear and profile face for multi-modal biometric recognition

[61], fusion of text and image for spectral clustering [62], and fusion of

labelled graph vector and the semantic expression vector for facial expres-

sion recognition [63], to name a few.

However, by CCA and KCCA, only the correlation between the pairwise

samples is revealed. This correlation neither well represents the similarity

between the samples in the same class, nor does evaluate the dissimilarity

between the samples in different classes. To tackle the problem, a super-

vised learning method, namely discriminative CCA (DCCA) is proposed

[64, 65, 23]. It simultaneously maximizes the within-class correlation and

minimize the between-class correlation, thus potentially more suitable for

recognition tasks than CCA.

Nevertheless, the CCA, KCCA, and DCCA merely deal with the mu-

tual relationships between two random vectors, limiting the application of

these techniques if there are multiple random vectors. Multi-set canonical

correlation analysis (MCCA) is a natural extension of two-set canonical

correlation analysis. It is generalized from CCA to deal with multi-modal

features. The idea is to optimize characteristics of the dispersion matrix

of the transformed variables to obtain high correlations between all new

variables simultaneously. The method is not confined and the optimiza-

tion takes place subject to different chosen constraints and orthogonality

criteria. MCCA has been applied for inclusion in geographical information

systems (GIS) [66], joint blind source separation [67] and blind single-input

and multiple-output (SIMO) channels equalization [68]. However, MCCA
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does not explore the discriminatory representation and is not capable of

providing satisfactory recognition performance.

2.3 Information Theoretic Learning

In information fusion, there is another, probably more pressing issue, to

be addressed. Although there are numerous methods proposed for infor-

mation fusion, the theoretical foundation of these methods largely depend

on the second order statistics, such as variance, correlation, mean square

error and so on. Since the second order statistics are only optimal for

Gaussian-like distribution [24] and sensitive to the choice of input param-

eters [25], a poor estimator is likely obtained if the underlining distribution

greatly differs from Gaussian, failing to reveal the nature of input data.

To overcome this problem, one of the new solutions is information theo-

retic learning (ITL), a terminology perhaps first used by Watanabe [69].

Using the ITL solutions, we can employ the mathematical theory of infor-

mation initially developed by Claude Shannon [70]and Alfred Renyi [71]

to quantify global scalar descriptors of the underlying probability density

function.

Information theory was first conceptualized by Claude Shannon to deal

with the problem of optimally transmitting messages over noisy channels

[70]. The strategy proposed by Shannon was quickly accepted by the sci-

ence and engineering communities and had an immediate impact on the

design of communication systems. After the pioneering work of Shannon,

information theory became a field of scientific studies and new discoveries

have been brought to light based upon Shannon’s fundamental concepts.

Moreover, information theory has also been utilized in the areas of physic-
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s, statistics, and biology as well as in field of engineering, for example

machine learning and signal processing [72, 73, 74].

One of the most important ITL descriptors is entropy [71]. Hence there

rises wide interest in better understanding the properties and applications

of entropy. It is believed that entropy can quantify the data’s statistical

structure more precisely in comparison with the second order statistics

which is still the mainstream of statistical signal processing [75]. In ITL,

the second order moments are substituted by a geometric interpretation

of data in functional space. In this functional space, variance is replaced

by entropy, correlation is replaced by correntopy, and mean square error

(MSE) is replaced by minimum error entropy (MEE) [25].

As a novel entropy-estimation-based information fusion method, ker-

nel entropy component analysis (KECA) was proposed [26] and achieved

85.00% and 86.00% performance on RML dataset and eNTERFACE dataset,

respectively. Unlike the existing methods which depend on the second or-

der statistics, KECA is based on the information theory and preserves the

maximum Renyi entropy of the input data with the smallest number of

extracted features. It utilizes descriptor of information entropy to achieve

improved performance [26]. This is the most significant property of KE-

CA. Furthermore, KECA is a feature transformation technique projecting

original space onto a feature subspace spanned by the kernel principal axes

corresponding to the largest contribution of Renyi entropy [76]. Its map-

ping result is greatly different from the existing methods, such as kernel

principal component analysis (KPCA), kernel canonical correlation anal-

ysis (KCCA), etc. By sorting the associated eigenvalues from the highest

to the lowest, KECA selects the information with high significance and
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ignores that with less significance based on the entropy estimation [77].

From the information-theoretic point of view, KECA is able to identify the

optimal transformation which preserves as much information entropy as

possible between input space and kernel feature subspace with the small-

est number of features. Therefore, the information contents are maximal-

ly similar between two different feature spaces [78]. Moreover, from the

viewpoint of information fusion, KECA helps derive a unsupervised fusion

method which can realize a more complete and precise representation of

multiple information sources [79].

However, straightforward utilization of KECA simply puts the infor-

mation or features from different channels together without considering

the intrinsic structure and relationship among them, likely resulting in

unsatisfied performance.

2.4 Applications

With the rapid development of advanced multi-disciplinary technologies

for acquiring, storing and transmitting massive big data, multi-modal

information fusion has attracted growing attention recently, in both a-

cademia and industry. It has been applied to diverse domains, such as

Internet of things, Robotics, Manufacturing, Engineering, Natural Lan-

guage Processing (NLP) and medical informatics [80].

In practice, humans make extensive use of real-time big data simul-

taneously sourced from multiple cognitive sensors such as sight, sound,

touch, smell, self-motion and taste, for both perceiving and interacting

with the world. Therefore, effective interpretation and analysis of human

behavior characteristics are of fundamental significance in the design of
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intelligent human computer interaction systems. But the traditional hu-

man computer interfaces are not ideal for natural communication between

humans and computers. Hence the need for more friendly and natural

communication interface between humans and machines has arisen, and

extensive efforts have been committed to improve non-intrusive sensors

which could help users communicate freely [81]. Among them, voice and

face information are two of the most natural, passive, and noninvasive

types of traits [82, 83, 84, 85]. They can be easily captured by low-cost

sensing devices, making them more economically feasible for potential de-

ployment in a wide range of applications. In addition, many methods

[86, 83, 87] have been proposed for information fusion based recognition

tasks such as handwritten digit recognition, face recognition and so forth

[88, 89, 90, 91, 92, 93, 94].

2.5 Summary

In this chapter, we first reviewed multi-modal information fusion from

three different performance levels. After that, we presented the recent

advances in intelligent feature level fusion. Then, we discussed the utiliza-

tion of information theoretic learning (ITL), kernel entropy component

analysis (KECA) in particular, in solving the second order statistic prob-

lems and related applications. Finally, some representative applications

are presented.

Existing research work is the foundation of our study. By reviewing the

related literature, we identified critical challenges, such as complimentary

representations, discriminative representations, and second-order statistic-
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s, which have not been properly addressed yet. These challenges inspire

the research carried out in this thesis.
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Chapter 3

Discriminative Multiple Canonical

Correlation Analysis for

Multi-modal Information Fusion

In this chapter, we study the first realization of the DAF using Discrim-

inative Multiple Canonical Correlation Analysis (DMCCA) as the fusion

function for multi-modal analysis as shown in Figure 3.1. The circled areas

in Figure 3.1 indicate fusing different features together. We will analyti-

cally verify the following characteristics of DMCCA:

1. Benefiting from the discriminative characteristic of DMCCA, we

can identify and extract the discriminatory representation among differ-

ent modalities.

2. An important property of DMCCA is analytically verified. It shows

that the number of projected dimensions corresponding to the optimal

recognition accuracy is smaller than or equals to the number of classes

being classified.

3. Canonical correlation analysis (CCA), multiple canonical correlation

analysis (MCCA) and discriminative canonical correlation analysis (DC-
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Figure 3.1: The proposed DAF using DMCCA as the fusion function for multi-modal
information fusion.

CA) are special cases of DMCCA, thus establishing a unified framework

for canonical correlation analysis for information fusion in the transformed

domain.

4. We propose a novel graph representation approach for selecting

optimal projection in multi-modal information fusion which substantially

minimizes the effort of finding the optimal or near-optimal dimension of

the features in the projected space.

3.1 Canonical Correlation Analysis

The aim of CCA is to find basis vectors for two sets of variables such

that the correlation between the projections of the variables onto these

basis vectors are mutually maximized. Simultaneously, it needs to satisfy

the canonical property that the first projection is uncorrelated with the
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second projection, etc. To do so, all useful information, be it common to

the two sets or specific to one of them, is maximumly preserved through

the projections.

Let x ∈ R m, y ∈ R p be two sets variables of the entries, and m, p

being the dimensions in x and y, respectively. The CCA finds a pair of

directions ω1 and ω2 to maximize the correlation between the projections

of the two canonical vectors: X = ωT
1 x, Y = ωT

2 y, which can be written

as follows:

argmax
ω1,ω2

ω1
TRxyω2, (3.1)

where Rxy = xyT is the cross-correlation matrix of the vectors x and y.

Simultaneously, x and y should satisfy the following condition to guar-

antee the first projection is uncorrelated with the second projection (canon-

ical property):

ω1
TRxxω1 = ω2

TRyyω2 = 1. (3.2)

By solving the above optimization problem using the algorithm of La-

grange multipliers, we obtain the following relationship [57]:[
0

Ryx

Rxy

0

]
ω=μ

[
Rxx

0

0

Ryy

]
ω, (3.3)

where μ is the canonical correlation value and ω = [ωT
1 , ω

T
2 ]

T is the pro-

jected vector. Then equation (3.3) can be solved using the generalized

eigenvalue (GEV) method.
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3.2 Discriminative Canonical Correlation Analysis

The purpose of DCCA is to maximize the similarities of any pairs of sets of

within-class while minimizing the similarities of pairwise sets of between-

class, as mathematically expressed in [64, 65]:

T = argmax
T

tr(T TSwT )/tr(T
TSbT ), (3.4)

where T is the discriminant function and Sw, Sb relate to the within-class

scatter matrix and between-class scatter matrix respectively.

The solution to equation (3.4) is obtained by solving the following GEV

problem:

SbT = λSwT. (3.5)

For detailed information, please refer to [64].

3.3 Multiple Canonical Correlation Analysis

MCCA can be viewed as a natural extension of the two-set canonical

correlation analysis [95]. Given M sets of random variables x1, x2, · · · xM
with the dimensions of m1,m2, · · ·mM . The objective of MCCA is to find

ω = [ω1
T , ω2

T · · ·ωM
T ]T which satisfies similar requirement as CCA and

described as:

argmax
ω1,ω2···ωM

1

M(M − 1)

M∑
k,l=1
k �=l

ωk
TCxkxl

ωl(k �= l) (3.6)
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subject to
M∑
k=1

ωk
TCxkxk

ωk = M, (3.7)

where Cxkxl
= xkxl

T . Solving (3.6) by the method of Lagrange multipliers

yields

1

M − 1
(C −D)ω = βDω, (3.8)

where

C =

⎡
⎢⎢⎣

x1x1
T . . . x1xM

T

... . . . ...

xMx1
T · · · xMxM

T

⎤
⎥⎥⎦ (3.9)

D =

⎡
⎢⎢⎣

x1x1
T . . . 0

... . . . ...

0 · · · xMxM
T

⎤
⎥⎥⎦ . (3.10)

and β is the generalized canonical correlation.
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3.4 Concept of Discriminative Multiple Canonical

Correlation Analysis

One of the major challenges in information fusion is to identify the dis-

criminatory representation amongst different modalities. In this section,

we introduce discriminative multiple canonical correlation analysis (DM-

CCA) to address this problem. Although Generalized multi-view analysis

(GMA) [96] and Multi-view Discriminant Analysis (MDA) [97] are also

proposed to solve the multi-view (multimodal) problem, there exist ob-

vious differences among them. To be specific, the differences between

DMCCA and GMA are:

1. In GMA, the discriminability is obtained within each feature, while

in DMCCA it is achieved by using all features.

2. In GMA, the cross-view correlation is obtained only from observa-

tions corresponding to the same underlying sample, while in DMCCA it

is obtained from all observations from different feature sets.

3. GMA has to deal with has a great number of parameters especially

when the number of features is large. However, DMCCA works with a

small number of parameters.

Different from the purpose of MDA to maximize the between-class vari-

ations and minimize the within-class variations from both intra-view and

inter-view in the common space, the purpose of DMCCA is to simulta-

neously maximize the within-class correlation and minimize the between-

class correlation, helping reveal the intrinsic structure and discriminatory

representation from different sources/modalities, and improve the recog-

nition accuracy.
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The advantages of DMCCA for multi-modal information fusion rest on

the following facts:

1. DMCCA involves modalities/features having a mixture of correlated

(modality-common information) components and achieving the maximum

of the correlation [57]. Therefore, DMCCA possesses the maximal com-

monality of multiple modalities/features.

2. The within-class and the between-class correlations of all modali-

ties/features are considered jointly to extract more discriminative infor-

mation, leading to a more discriminant common space and better gener-

alization ability for classification from multiple modalities/features.

3.4.1 Derivation of the DMCCA

Let P sets of zero-mean and unit variance random features be x1 ∈
Rm1, x2 ∈ Rm2, · · · xP ∈ RmP for c classes and Q = m1+m2+ · · ·mP . Con-

cretely, DMCCA aims to seek the projection vectors ω = [ω1
T , ω2

T , · · ·ωP
T ]T

(ω1 ∈ Rm1×Q, ω2 ∈ Rm2×Q, · · ·ωP ∈ RmP×Q) for information fusion so that

the within-class correlation is maximized and the between-class correla-

tion is minimized. Based on the definition of CCA and MCCA, DMCCA

is formulated as the following optimization problem:

argmax ρ
ω1,ω2···ωP

=
1

P (P − 1)

P∑
k,m=1
k �=m

ωk
T

∼
Cxkxm

ωm (3.11)

subject to
P∑

k=1

ωk
TCxkxk

ωk = P, (3.12)
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where
∼

Cxkxm
= Cwxkxm

− δCbxkxm
(δ > 0), Cxkxk

= xkxk
T . Cwxkxm

and Cbxkxm

denote the within-class and between-class correlation matrixes, respective-

ly.

Let xi = [xi1
(1), xi2

(1) · · · xin1

(1), · · · xi1(c), xi2(c) · · · xinc

(c)] ∈ Rmi×n, then

enil
= [0, 0, · · · 0,︸ ︷︷ ︸

l−1∑
u=1

niu

1, 1, · · · 1︸ ︷︷ ︸
nil

0, 0, · · · 0︸ ︷︷ ︸
n−

l∑
u=1

niu

]T ∈ Rn (3.13)

1 = [1, 1, · · · 1]T ∈ Rn, (3.14)

where i is the number sequence of the random features, n is the total

number of training samples, xij
(d) denotes the j th sample in the dth class,

respectively, and nil is the number of samples in the lth class of xi set.

c∑
l=1

nil = n, (3.15)

where c is the total number of classes. Note that, as the random features

satisfies the property of zero-mean, it can be shown that:

xi · 1 = 0. (3.16)

Then, the within-class correlation matrix between sets xk and xm, Cwxkxm

can be written as:

Cwxkxm
=

c∑
l=1

nkl∑
h=1

nml∑
g=1

xkh
(l)xmg

(l)T

=
c∑

l=1

(xkenkl
)(xmenml

)T

= xkAxm
T ,

(3.17)
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where

A =

⎡
⎢⎢⎣
⎛
⎜⎜⎝

Hni1×ni1
. . . 0

... Hnil×nil

...

0 . . . H
nic×nic

⎞
⎟⎟⎠
⎤
⎥⎥⎦ ∈ Rn×n (3.18)

with Hni1×ni1
in the form of ni1×ni1 and all the elements in Hni1×ni1

being

unit values. Similarly, the between-class correlation matrix Cbxkxm
is in the

form of:

Cbxkxm
=

c∑
l=1

c∑
q=1
l �=q

nkl∑
h=1

nmq∑
g=1

xkh
(l)xmg

(q)T

=
c∑

l=1

c∑
q=1

nkl∑
h=1

nmq∑
g=1

xkh
(l)xmg

(q)T−
c∑

l=1

nkl∑
h=1

nml∑
g=1

xkh
(l)xmg

(l)T

= (xk1)(xm1)
T − xkAxm

T

= −xkAxm
T .

(3.19)

Substituting equations (3.17) and (3.19) into (3.11) yields:

argmax ρ
ω1,ω2···ωP

= 1
P (P−1)

P∑
k,m=1

ωk
T

∼
Cxkxm

ωm

= 1+δ
P (P−1)

P∑
k,m=1

ωk
TxkAxm

Tωm,

(3.20)

subject to
P∑

k=1

ωk
TCxkxk

ωk = P. (3.21)
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Using Lagrangian multiplier criterion to solve (3.20) results in the follow-

ing expression

1+δ
P−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 x1Ax2
T x1Ax3

T . . . x1AxP
T

x2Ax1
T 0 x2Ax3

T . . . x2AxP
T

x3Ax1
T x3Ax2

T

...

0 . . . x3Axp
T

xPAx1
T xPAx2

T xPAx3
T . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
ω

= ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1x1
T 0 0 . . . 0

0 x2x2
T 0 . . . 0

0 0
...

x3x3
T . . . 0

0 0 0 . . . xPxP
T

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

ω

(3.22)

It is further rewritten in a compact form:

1 + δ

P − 1
(C −D)ω = ρDω, (3.23)

where

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1x1
T x1Ax2

T x1Ax3
T . . . x1AxP

T

x2Ax1
T x2x1

T x2Ax3
T . . . x2AxP

T

x3Ax1
T x3Ax2

T

...

x3x3
T . . . x3Axp

T

xPAx1
T xPAx2

T xPAx3
T . . . xPxP

T

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.24)
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D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1x1
T 0 0 . . . 0

0 x2x2
T 0 . . . 0

0 0
...

x3x3
T . . . 0

0 0 0 . . . xPxP
T

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.25)

C −D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 x1Ax2
T x1Ax3

T . . . x1AxP
T

x2Ax1
T 0 x2Ax3

T . . . x2AxP
T

x3Ax1
T x3Ax2

T

...

0 . . . x3AxP
T

xPAx1
T xPAx2

T xPAx3
T . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.26)

ω = [ωT
1, ω

T
2, · · ·ωT

P ]
T . (3.27)

Since (1 + δ/P − 1) is a constant, it has no influence to the projection

matrix ω, and thus will be ignored in the following analysis. Equation

(3.23) is further written in the form of:

x1Ax2
Tω2 + x1Ax3

Tω3 + · · ·+ x1AxP
TωP = ρx1x1

Tω1

x2Ax1
Tω1 + x2Ax3

Tω3 + · · ·+ x2AxP
TωP = ρx2x2

Tω2
...

xPAx1
Tω1 + xPAx2

Tω2 + · · ·+ xPAxP−1
TωP−1 = ρxPxP

TωP

(3.28)

Based on the definition of
∼

Cxkxm
and equation (3.23), the value of ρ

plays a critical role in evaluating the relationship between within-class

and between-class correlation matrixes. When the value of ρ is greater
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than zero, the corresponding projected vector ω contributes positively to

the discriminative power in classification while the projected vector ω cor-

responding to the non-positively values of ρ would result in reducing the

discriminative power in classification. Clearly, the solution obtained is the

eigenvectors associated to the positive eigenvalues in equation (3.23).

Commonly, it is known that the time taken greatly depends on the com-

putation of the projective vectors to extract discriminative features. When

the rank of eigen-matrix is very high, the computation of eigenvalues and

eigenvectors will be time-consuming. To address this problem effectively,

an important property of DMCCA is proved here. That is the number of

projected dimension d corresponding to the optimal recognition accuracy

is smaller than or equals to the number of classes, c, or mathematically:

d ≤ c (3.29)

Now we will show that d does satisfy inequality (3.29). From equation

(3.18), the rank of matrix A satisfies

rank(A) ≤ c (3.30)

Then, equation (3.30) leads to:

rank(xiAxj
T ) ≤ min(ri, rA, rj), (3.31)

where ri, rA, rj are the ranks of matrices xi, A, xj ( i, j ∈ [1, 2, 3, ..., P ]),

respectively.

Due to the fact that rank(A) ≤ c, equation (3.31) satisfies

rank(xiAxj
T ) ≤ min(ri, c, rj), (3.32)

40



CHAPTER 3. DISCRIMINATIVE MULTIPLE CANONICAL CORRELATION
ANALYSIS FOR MULTI-MODAL INFORMATION FUSION 3.4. DMCCA

when c is less than ri and rj, equation (3.32) is written as

rank(xiAxj
T ) ≤ c (3.33)

Otherwise, equation (3.32) satisfies

rank(xiAxj
T ) ≤ min(ri, rj) < c (3.34)

On the other hand equation (3.28) can be written as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1A(x2
Tω2 + x3

Tω3 + · · ·+ xP
TωP ) = ρx1x1

Tω1

x2A(x1
Tω1 + x3

Tω3 + · · ·+ xP
TωP ) = ρx2x2

Tω2
...

xPA(x1
Tω1 + x2

Tω2 + · · ·+ xP−1
TωP−1) = ρxPxP

TωP

(3.35)

Equation (3.35) is further expressed as:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ζ1)
−1x1A(x2

Tω2 + x3
Tω3 + · · ·+ xP

TωP ) = ω1

(ζ2)
−1x2A(x1

Tω1 + x3
Tω3 + · · ·+ xP

TωP ) = ω2
...

(ζP )
−1xPA(x1

Tω1 + x2
Tω2 + · · ·+ xP−1

TωP−1) = ωP

(3.36)

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ζ1 = ρx1x1
T

ζ2 = ρx2x2
T

...

ζP = ρxPxP
T

(when xixi
T is non− singular) (3.37)
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or

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ζ1 = ρx1x1
T + σ1I1

ζ2 = ρx2x2
T + σ2I2

...

ζP = ρxPxP
T + σpIp

(when xixi
T is singular) (3.38)

where Ii ∈ Rmi×mi and σ1, σ2, ...σp are constants.

Since rank(A) ≤ c and ωi ∈ Rmi×Q(i = 1, 2, ...P ), based on equation

(3.36), the rank of ωi satisfies

rank(ωi) ≤ c(i = 1, 2, ..., P ) (3.39)

Then the fused feature of Yi(i = 1, 2, ...P ) can be written as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Y1 = ω1
Tx1

Y2 = ω2
Tx2

...

Yp = ωP
TxP

(3.40)

Let (ω)d be the projected matrix with DMCCA achieving optimal per-

formance and (ω)d ∈ RQ×d. (ω)d is written as follows:

(ω)d=

⎡
⎢⎢⎢⎢⎣

ω11, ω12, ..., ω1d

ω21, ω22, ..., ω2d
...

ωP1, ωP2, ..., ωPd

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

(ω1)d

(ω2)d
...

(ωp)d

⎤
⎥⎥⎥⎥⎦ (3.41)
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Then ω, (ω)d and (ωi)d(i = 1, 2, ...p) satisfy the relationship:

ω =

⎡
⎢⎢⎢⎢⎣

ω1

ω2
...

ωP

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

ω11 ω12 ... ω1d ω1(d+1) ... ω1Q

ω21 ω22 ... ω2d ω2(d+1) ... ω2Q
... ...

ωP1 ωP2 ... ωPd ωP (d+1) ... ωPQ

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

(ω1)d, ω1(d+1), ..., ω1Q

(ω2)d, ω2(d+1), ..., ω2Q
...

(ωP )d, ωP (d+1), ..., ωPQ

⎤
⎥⎥⎥⎥⎦

= [(ω)d, 0, ..., 0︸ ︷︷ ︸
Q−d

] + [ω−[(ω)d, 0, ..., 0︸ ︷︷ ︸
Q−d

]](0 ∈ RQ)

(3.42)

inserting (3.42) into (3.40) yields:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y1 = ω1
Tx1 = [(ω1)d, 01, ..., 01︸ ︷︷ ︸

Q−d

]Tx1 + [ω1−[(ω1)d, 01, ..., 01︸ ︷︷ ︸
Q−d

]]Tx1

Y2 = ω2
Tx2= [(ω2)d, 02, ..., 02︸ ︷︷ ︸

Q−d

]Tx2 + [ω2−[(ω2)d, 02, ..., 02︸ ︷︷ ︸
Q−d

]]Tx2

...

Yp = ωp
Txp= [(ωp)d, 0p, ..., 0p︸ ︷︷ ︸

Q−d

]Txp + [ωp−[(ωp)d, 0p, ..., 0p︸ ︷︷ ︸
Q−d

]]Txp

(3.43)

where 0i(i = 1, 2, ..., p) is in the form Rmi.

Based on equation (3.40), d should satisfy inequality (3.44)

d ≤ min(m1,m2, ...,mP ) (3.44)
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Simultaneously, since rank(ωi) ≤ c and Yi possesses the same number of

rows, d satisfies the relation (3.45)

d ≤ min[rank(ω1), rank(ω2), ..., rank(ωp)] ≤ c (3.45)

considering (3.44) and (3.45) together, d should satisfy (3.46){
d ≤ min(m1,m2, ...,mP )

d ≤ c
(3.46)

Now, we analyze the following two cases.

1. when c satisfies (3.47)

c ≤ min(m1,m2, ...,mP ) (3.47)

combining (3.44) and (3.45) leads to

d ≤ c (3.48)

2. when c satisfies (3.49)

c > min(m1,m2, ...,mP ) (3.49)

combining (3.44) and (3.45) leads to

d ≤ min(m1,m2, ...,mP ) ≤ c (3.50)

In summary,

d ≤ c (3.51)
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To achieve the optimal recognition accuracy, we select the c projected

vectors from the eigenvectors associated with the c different largest eigen-

values in equation (3.23).

Since [ωi−[(ωi)d, 0i, ..., 0i︸ ︷︷ ︸
Q−d

]]Txi and [0i, ..., 0i︸ ︷︷ ︸
Q−d

]Txi have no contribution to

the optimal fused result of Yi, the optimal performance reached by DM-

CCA when, d, the projected dimension is less than or equals to c, as

expressed in (3.52)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y1,optimal= [(ω1)d, 01, ..., 01︸ ︷︷ ︸
Q−d

]Tx1 = (ω1)d
Tx1 ∈ Rd(d <= c)

Y2,optimal = [(ω2)d, 02, ..., 02︸ ︷︷ ︸
Q−d

]Tx2 = (ω2)d
Tx2 ∈ Rd(d <= c)

...

Yp,optimal = [(ωp)d, 0p, ..., 0p︸ ︷︷ ︸
Q−d

]Txp = (ωp)d
Txp ∈ Rd(d <= c)

(3.52)

Thus, expressions in (3.52) lead to the proof of (3.29).

Specifically, if the feature space dimension equals Q, the computational

complexity of DMCCA is on the order of O(Q*c), instead of O(Q*Q), as

other transformation-based methods require (such as MCCA). Thus, this

property is not only analytically elegant, but practically significant when

c is small compared with the feature space dimension (which includes

emotion recognition, digit recognition, English character recognition, and

many others), where c ranges from a handful to a couple of dozens, but

the feature space dimension could be hundreds or even thousands.

In summary of the discussion so far, the information fusion algorithm

based on DMCCA is given below:
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Step 1. Extract information from multi-modal sources to form the

training sample spaces.

Step 2. Convert the extracted information into the normalized form

and compute the matrices C and D.

Step 3. Compute the eigenvalues and eigenvectors of equation (3.23).

Step 4. Obtain the fused information expression from equation (3.52),

which is used for classification.

3.4.2 Relation Between CCA, DCCA, MCCA, and DMCCA

In this subsection, we will demonstrate that CCA, MCCA and DCCA are

special cases of DMCCA.

1) Relation with DCCA [23]: when P=2, equation (3.23) turns into the

following form:

(C −D)ω = ρDω (3.53)

where

C =

[
x1x1

T

x2Ax1
T

x1Ax2
T

x2x2
T

]
(3.54)

D =

[
x1x1

T

0

0

x2x2
T

]
(3.55)

Thus, it transforms into the method of DCCA, only dealing with the mu-

tual relationships between two random vectors. Since DCCA is a special

case of DMCCA, it also possesses this discriminative property. Note, the

authors of [23] were the first to perform dimensionality reduction using

this property with DCCA, but did not provide a concrete proof.

2) Relation with MCCA [66]: when A is an identity matrix, the matrices
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C and D of the DMCCA can be written as:

C =

⎡
⎢⎢⎣
⎛
⎜⎜⎝

x1x1
T . . . x1xP

T

... . . . ...

xPx1
T · · · xPxP

T

⎞
⎟⎟⎠
⎤
⎥⎥⎦ (3.56)

D =

⎡
⎢⎢⎣
⎛
⎜⎜⎝

x1x1
T . . . 0

... . . . ...

0 · · · xPxP
T

⎞
⎟⎟⎠
⎤
⎥⎥⎦ (3.57)

It transforms into the method of MCCA.

3) Relation with CCA [54]: when P=2 and A is an identity matrix, the

matrixes C and D of the DMCCA can be described as:

C =

[
x1x1

T

x2x1
T

x1x2
T

x2x2
T

]
(3.58)

D =

[
x1x1

T

0

0

x2x2
T

]
(3.59)

It transforms into the method of CCA. Since there are no within-class

and between-class correlation considered, CCA and MCCA do not possess

the discriminative power as DMCCA. In addition, the best performance

of CCA (and MCCA) is not predictable.

3.4.3 A Novel Graph Representation Approach for Selecting

Optimal Projection

As aforementioned, information fusion is becoming a key research area

with applications to various multimedia analysis tasks. Feature level fu-
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sion has been considered as a most promising fusion method due to the

rich information presented at this level. A critical operation of feature lev-

el fusion is the projection of the features onto a space which best presents

the information for recognition. However, the identification of the optimal

projection of the multi-modal features onto the projected space remains a

difficult task.

In this subsection, we present a novel graph representation approach

for selecting optimal projection in information fusion which substantially

minimizes the effort of finding the optimal or near-optimal dimension of

the features in the projected space.

In general, the solutions to a large number of multi-modal information

fusion methods are obtained by utilizing the algorithm of matrix trans-

formation. Some unsupervised and supervised examples are PCA, CCA,

Cross-Modal Factor Analysis (CFA) [98], Entropy Component Analysis

(ECA), Fisher Linear Discriminant Analysis (FLDA) and their kernel ver-

sions [99, 100, 7, 76, 101]. The solution to matrix transformation is usu-

ally the eigenvectors associated with the eigenvalues in a form of equation

(3.23):
1

P − 1
inv(D) ∗ (C −D)ω = ρω (3.60)

where inv() refers to the inverse transform of a matrix. However, unless

the covariance matrices D have full rank, the block matrix in equation

(3.25) is singular. An approach [102] to dealing with singular covariance

matrices and to controlling complexity is to add a multiple of the identity

matrix λI(λ > 0) to D. Thus, the generalized form of equation (3.60) can

be written as:
1

P − 1
inv(D+) ∗ (C −D)ω = ηω (3.61)
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where

D+ =

{
D when D is a full rank matrix

D + λI when D is a singular matrix

η =

⎛
⎜⎜⎝

η1 . . . 0
... . . . ...

0 · · · ηQ

⎞
⎟⎟⎠

(3.62)

In equation (3.62), ηi is the criterion to seek the projection vectors for

feature extraction. Hence, the value of ηi is the key parameter to the effect

of selecting features. A larger ηi corresponds to the more discriminative

features, while a smaller ηi corresponds to the less discriminative features.

Thus, it is reasonable to evaluate the final multi-modal information

fusion results by criterion J(η)

J(η) =

Q∑
i=1

ηi (3.63)

where ηi is the ith eigenvalue of equation (3.62).

Then we plot the graph of the proposed criterion J(η). Close exam-

ination of the graph reveals that the proposed approach can accurately

estimate the dimension of the features in the projected space for opti-

mal recognition without actually carrying out the complete experiment.

Therefore, it is not only analytically elegant, but practically significant

especially for fusion in feature space of very high dimensions. Examples

to demonstrate the effectiveness of this graph representation approach will

be presented in Chapter 5.
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3.5 Summary

In this chapter, we introduce a discriminative multiple canonical correla-

tion analysis approach for multi-modal analysis and fusion. At first, it

finds projection directions to maximize the within-class correlation and

minimize the between-class correlation among multiple information/data

to identify the discriminative representation between different modalities

effectively. Second, based on the proposed DMCCA, we verify that the

best performance by discriminative representation achieves when only a

small fraction of the data needs to be analyzed. After that, we estab-

lish a unified framework for canonical correlation analysis for information

fusion in the transformed domain. Finally, we present a graph represen-

tation method on selecting optimal projection in multi-modal information

fusion. By examining the transformation matrix, the proposed approach

identifies the optimal projection and, in turn, the optimal feature sets in

the transformed domain for final recognition.
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Chapter 4

KECA plus DMCCA for

Multi-modal Information Fusion

The effective interpretation and integration of multiple information con-

tent are important for the efficacious utilisation of multimedia in a wide

variety of application context. There are two major challenges for infor-

mation fusion: 1) how to identify the complementary representation from

multiple information/data; and 2) how to extract discriminatory represen-

tation from individual channels or data sources.

In chapter 3, DMCCA provides a way to find projection directions

to maximize the within-class correlation and minimize the between-class

correlation among multiple information/data sources in order to identi-

fy the discriminatory representation between different modalities. In this

chapter, benefiting from the discriminatory representation extracted by

DMCCA, we propose the second realization of the DAF, a novel method

integrating KECA and DMCCA as the fusion component of the framework

to address the two challenges simultaneously. Profiting from the proposed

method, we can identify and extract the complementary and discriminative

51



4.1. INTRODUCTION
CHAPTER 4. KECA PLUS DMCCA FOR MULTI-MODAL INFORMATION

FUSION

representation synchronously, achieving improved recognition accuracy.

4.1 Introduction

It is a well known fact that the second order statistics such as variance

and correlation is the theoretical foundation of the majority of existing in-

formation fusion methods [26]. For these methods, feature transformation

is usually based on top eigenvalues and the corresponding eigenvectors

of certain matrices. Since the second order statistics is only optimal for

Gaussian-like distribution, it could be a poor estimator, if the distribu-

tion from multiple modalities differs greatly from Gaussian. This issue

motivates researchers to apply Information Theoretic Learning (ITL) as

an alternative to solve fusion problems [103].

In ITL, one of the most important descriptors is entropy. Therefore,

there rises wide interest in better understanding the properties and appli-

cations of entropy. It is known that entropy can quantify the statistical

structure of a dataset more precisely in comparison with the second order

statistics which is still the mainstream of statistical signal processing [104].

As a recently proposed entropy measurement method, KECA has been

studied in order to obtain more appropriate representations for informa-

tion fusion than the second order statistics. However, as an unsupervised

method, KECA only preserves the maximum Renyi entropy of the input

data with the smallest number of extracted features without considering

the similarity between the samples in the same class, or the dissimilarity

between the samples in different classes, resulting in losing discriminato-

ry representation of the multi-modal information [105]. Therefore, in this

chapter, we propose using KECA plus DMCCA (KECA+DMCCA) as the
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Figure 4.1: KECA+DMCCA as the fusion component in the proposed DAF

second realization of the fusion component of the proposed DAF to solve

this problem. The schematic representation of the proposed method is

shown in Figure 4.1.

The remainder of this chapter is organized as follows. Section 4.2

briefly describes entropy estimation. Based on entropy estimation, we re-

view the method of KECA in multi-modal information fusion in Section

4.3. Section 4.4 presents the proposed realization KECA+DMCCA of the

DAF. Finally, we summarize the chapter in Section 4.5.

4.2 Entropy Estimation

4.2.1 Shannon Entropy

The concept of Shannon entropy was introduced as a measure of statistical

uncertainty. In the field of thermodynamics, Shannon entropy is a physical

concept which correlates with the quantity of kinematic randomness, while

in the area of information theory, entropy is no longer a physical concept
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and it stands for a concept which provides a mathematical tool to quantify

and formulate the nature of information [106]. Shannon entropy plays a

central role in information theory. This entropy is believed to be able to

measure the amount of the information contained in a series of events,

which can be expressed as follows.

H(X) = −
∫

f(X) log f(X), (4.1)

or in the discrete form

H(X) = −
∑
m

p(Xm) log p(Xm), (4.2)

where f(X) and p(Xm) are the continuous and discrete probability density

function of data sets respectively, and m is the total number of data sets

in the discrete case.

The concept of information is so rich that perhaps there is no single

definition which is able to quantify information properly. Entropy can be

interpreted as a means of quantifying information content. A fundamental

property of entropy is that with a single scalar, it measures the uncertainty

in a form of probability density [107]. It can also be extended to measure

dissimilarity between data. Furthermore, the entropy measure has been

showed to be an appropriate descriptor of the hyper-volume spanned by a

high dimensional probability density. Therefore, Shannon theory is used

to derive a set of estimators to apply entropy as cost functions in machine

learning. It has been applied in a variety of fields from basic sciences such

as biology and physics to different engineering discipline.
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4.2.2 Renyi Entropy

In 1960, Alfrd Rnyi introduced a parameterized family of uncertainty mea-

sures Hα(X), now known as the Renyi entropy [108]. In information the-

ory, the Renyi entropy generalizes the Hartley entropy, the Shannon en-

tropy, the collision entropy and the min entropy. In practical applications,

Renyi entropy is one of the widely used generalizations of information

entropy [108]. Renyi wanted to find the most general class of informa-

tion measure which preserved the additivity of statistically independent

systems. Renyi entropy of order α of a random variable X is written as

Hα(X) =
1

1− α
log(

∫
fα(X)dX), (4.3)

or

Hα(X) =
1

1− α
log(

N∑
m=1

pXm

α), (4.4)

where α >= 1. At a deeper level, Renyi entropy measure is much more

flexible than Shannon entropy due to the parameter α. An interesting

observation is that Shannon entropy can be considered as a special case of

Renyi entropy when α converges to one [109]. We usually choose α = 2 as

the fundamental descriptor, because it gives us a computationally efficient

entropy estimator. Here, continuous Renyi quadratic entropy is given by

H(X) = − log(

∫
p2(X)dx), (4.5)

where p(X) is probability density function (PDF) generated by the data

sets x1, x2, ...xN . The main reason why Renyi quadratic entropy is em-

ployed is that the entropy value can be elegantly estimated by PDF p(X).
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Then the entropy can be estimated by replacing probability density func-

tion with non-parametric density estimator.

4.2.3 Kernel Method

Kernel method is widely used in nonlinear problem of data analysis, and

one of the most well-known applications is support vector machine [110].

The bottleneck of nonlinear problem is a large number of high-dimensional

classifiers; hence the computation would become expensive. Kernel method

provides a way to simplify the computation, and the calculation can be

executed efficiently in the space provided by the algorithms expressed in in-

ner products [111]. Therefore, the fundamental principle of kernel method

is mapping the original data onto a feature space by a non-linear trans-

formation and employing linear algorithms in the new space.

Given a set X including samples xk ∈ Rn. Each vector xk is projected

from the input space, Rn, to a high dimensional feature space, Rf , by a

nonlinear mapping function ϕ : Rn → Rf , f > n. Then a kernel function

is a function k that satisfies

k(xi, xj) = 〈ϕ(xi), ϕ(xj)〉 . (4.6)

It is known that an explicit expression of non-linear mapping ϕ is dif-

ficult to determine. However, kernel lets us calculate inner products in

a feature space of possibly infinite dimensionality directly without hav-

ing to deal with the explicit mapping ϕ. This means that any linear

machine learning algorithm expressed via inner products can solve non-

linear problems by operating in a high-dimensional feature space. How-

ever, the kernel function must satisfy the Mercers condition, i.e., positive
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semi definite. Some widely used kernel functions include linear kernel

k(xi, xj) = 〈xi, xj〉, polynomial kernel k(xi, xj) = (< xi, xj > +1)o and

Gaussian kernel k(xi, xj) = exp((−‖xi − xj‖2)/2σ2).

The kernel matrix K contains all the evaluation of kernel function k.

From the kernel, we know that this matrix also contains all evaluation

of inner products between the data points in the feature space. The ex-

pression is given by Ki,j = k(xi, xj) = 〈ϕ(xi), ϕ(xj)〉, or in matrix form

Kn,n =

⎡
⎢⎢⎣

k(x1, x1) · · · k(x1, xn)
...

k(xn, x1) k(xn, xn)

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

〈ϕ(x1), ϕ(x1)〉 · · · 〈ϕ(x1), ϕ(xn)〉
...

〈ϕ(xn), ϕ(x1)〉 〈ϕ(xn), ϕ(xn)〉

⎤
⎥⎥⎦ ,

(4.7)

where n is the number of samples in the original space.

Hence, kernel method is used to develop nonlinear generalization of any

algorithm which can be cast in terms of inner products. For instance, ker-

nel principal component analysis (KPCA) and kernel linear discriminant

analysis (KLDA) are typical extensions of the corresponding linear algo-

rithms by applying the kernel method on every inner product evaluation.

4.3 Kernel Entropy Component Analysis

4.3.1 Parzen Window Density Estimator

The strategies of density estimator can be divided into parametric method

and nonparametric method [112]. Parametric models are restricted in their
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representation capability, but we have to make assumptions of signal mod-

els and have knowledge of the signals which we are dealing with. On the

other hand, nonparametric density estimation technique provides the free-

dom of representing signal distributions based on the observed samples.

Nonparametric estimators yield well-behaved gradient algorithms which

can optimize adaptive system parameters [113]. A number of nonpara-

metric density estimation methods are available, but we focus on Parzen

windowing which is also known as kernel density estimation. Parzen win-

dowing is a computationally simple approach which can yield both contin-

uous and smooth estimation of information-theoretic quantities for adap-

tive signal processing and learning algorithms [114].

As already stated, we need to deal with the issue of estimating entropy

directly from samples in a nonparametric way, since it is not prudent to

make an assumption of a parametric probability density function (PDF)

model. It is essential to develop cost measures derived directly from data

without further assumptions to capture as much data structure as possi-

ble. We use the direct approach of estimating the scalar value of Renyi

quadratic entropy from samples by using Parzen window density estimator.

It could estimate the probability distribution without any assumptions of

parameters or shapes. Parzen windowing can be viewed as natural im-

plementation of kernel function and creates a close connection between

information theory and kernel method. Given N independent and iden-

tically distributed samples {x1, x2, ...xN} from a random variable. The

expression of Parzen window density estimator is given by

−
f(x) =

1

Nh

N∑
i=1

K(
x− xi

h
), (4.8)
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where K() is the kernel and h is a smoothing parameter called width.

In the general framework of Parzen windowing, the rectangular kernel-

s can be replaced by smoother kernel functions, for example Gaussian

distribution function. Parzen windowing provides density estimation of

information theoretic quantities, and a non-parametric density estimator

is obtained by replacing the actual PDF by its Parzen window density

estimator. Therefore, by utilizing Parzen windowing method, the non-

parametric estimator for entropy does not require an explicit estimation

of probability density function.

4.3.2 KECA with Application to Information Fusion

The continuous Renyi quadratic entropy is given by

H(p) = − log(

∫
p2(x)dx) = − log V (p), (4.9)

where V (p) =
∫
p2(x)dx = E{p(x)}. V (p) is considered as expectation

w.r.t. the density p(x). In order to estimate the value of entropy, we only

need to consider the quantity V (p) =
∫
p2(x)dx, since the logarithm is a

monotonic function. To estimate V (p), Parzen window density estimator

is applied. Parzen window density estimator using the kernel notation on

N samples is written as follows

−
p(x) =

1

Nσ

∑
xj∈D

K(
x− xj

σ
) =

1

N

∑
xj∈D

kσ(x, xj), (4.10)

where kσ(x, xj) is the kernel centered at xj, and σ is kernel size. We

assume a positive semi-finite Parzen window with Gaussian kernel. There

is no single best method to choose the kernel size, so we need to be careful
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and establish best procedures to select σ of the kernel. The convolution

theorem for Gaussian function states that the convolution of two Gaussian

functions is another Gaussian function with σ =
√
σ12 + σ12. In other

words, the integral of the product of two Gaussians is exactly evaluated as

the value of the Gaussian computed at the difference of the arguments and

whose variance is the sum of the variances of the two original Gaussian

functions. Hence we rearrange terms of Parzen window density estimator

and obtain the following nonparametric estimator for Renyi entropy.

−
V (p) =

1

N

N∑
i=1

−
p(xi) =

1

N

1

N

N∑
i=1

N∑
j=1

kσ(xi, xj) =
1

N 2
1TK1, (4.11)

where element (i, j) of the N × N kernel matrix K is equal to kσ(xi, xj),

and 1 is a N × 1 vector containing all ones. Therefore Renyi quadratic

entropy is compactly expressed in terms of the kernel matrix. This result

is obtained by noticing that the Gaussian maintains the functional form

under convolution. However, other kernel functions cannot result in such

convenient evaluation of the integral. It is shown that entropy value is a

scalar, but one of the intermediate steps is to estimate the PDF, which is

much harder in high-dimensional spaces. By employing continuous Renyi

quadratic entropy, we can bypass the explicit need to estimate the PDF

and obtain the entropy evaluation of the data using algebraic operations.

Furthermore, Renyi entropy estimator can be expressed in terms of

eigenvalues and eigenvectors of the kernel matrix through eigen-decomposition.

The eigen-decomposition of K is shown below

K = EDET , (4.12)
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where D is a diagonal matrix storing the eigenvalues λ1, λ2, ...λN and E

is a matrix with the corresponding eigenvectors α1, α2, ...αN as columns.

Hence the empirical Renyi entropy estimator equals to the elements of

the corresponding kernel matrix. Substituting (4.12) into (4.11) yields the

following expression

−
V (p) =

1

N 2
1TK1 =

1

N 2
1TEDET1 =

1

N 2

N∑
i=1

(
√
λiαi

T1)
2
, (4.13)

where λi and αi are the i -th eigenvalue and eigenvector of kernel matrix

K.

The above expression is known as entropy-value in KECA. The total

entropy value is estimated by the joint contribution from all the
√
λiαi

T .

Apparently, since both eigenvalues and eigenvectors make contribution-

s to the entropy estimator, instead of selecting the largest eigenvalues,

KECA selects eigenvalues and eigenvectors based on the largest entropy

estimation. This is the most significant property of KECA. Furthermore,

KECA is a feature transformation technique projecting original space onto

a feature subspace spanned by the kernel principal axes corresponding to

the largest contribution of Renyi entropy. Its mapping result is greatly

different from the existing methods, such as kernel principal component

analysis (KPCA), kernel canonical correlation analysis (KCCA), etc.

By sorting the associated entropy from the highest to the lowest, KECA

selects the information with high significance and ignores the data with

less significance based on the entropy estimation. From the information-

theoretic point of view, KECA is able to identify the optimal transforma-

tion which preserves as much as information entropy between input space
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and kernel feature subspace with the smallest number of features. There-

fore, the information contents are maximally similar between two different

feature spaces. Moreover, from the viewpoint of information fusion, KE-

CA helps derive a fusion method which can realize a more complete and

precise representation of multiple information sources. Information fusion

based on KECA can reduce the dimensionality of input feature vector,

while retaining most of the useful information content of the original da-

ta. The motivation of information fusion based on KECA is rooted in the

fact that the data carried by different modalities usually have intrinsic as-

sociation. It is essential to take full advantage of the correlation between

them and extract the most discriminant and representative patterns from

the input data.

To exploit the complementary representation of multi-modal data, an

optimal mathematical framework for feature level information fusion based

on KECA is presented [24]. The following steps summarize the procedure

of feature transformation and fusion based on KECA.

(1) The feature vector X = [x1, x2, ...xN ] is the input data which requires

feature transformation and fusion.

(2) Gaussian function is chosen as kernel function and the kernel matrix

K with elements Ki,j = k(xi, xj) is obtained.

(3) Conduct the eigen-decomposition of K and calculate K = EDET .

(4) Choose the first n largest entropy estimation corresponding to
√
λiαi

T .

(5) From φT
kecaφkeca = (D

1
2ET )T (D

1
2ET ) = EDET = K to calculate the

kernel feature space data set φkeca = (D
1
2ET ).

(6) Complete the feature transformation by φkeca.

Since KECA does not suffer from the limitation of Gaussianity which
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is inherent in cost functions based on the second order moments, better

information fusion performance is achieved by information theoretic de-

scriptors of entropy combined with nonparametric PDF estimators. The

proposed method reduces the dimensionality of the features by eliminating

data redundancy and utilizes data complementarity in the form of entropy

measures. KECA brings about robustness and generality, and improves

performance in many realistic scenarios. Nevertheless, as an unsupervised

method, KECA merely puts the information or features from different

channels together simply without considering the intrinsic structure and

relationship, likely resulting in unsatisfied recognition performance. To

solve these issues, the second realization of DAF, KECA plus DMCCA

(KECA+DMCCA) is proposed in section 4.4.

4.4 The Proposed KECA+DMCCA

In this section, we present using KECA plus DMCCA (KECA+DMCCA)

as the fusion component of the proposed framework for information fu-

sion. With this method, we are more likely to identify and extract the

complementary and discriminative representation among different modal-

ities simultaneously, thus potentially improving recognition accuracy.

Given P sets of zero-mean random features x1 ∈ Rm1, x2 ∈ Rm2, · · · xP ∈
RmP for c classes and Q = m1+m2+· · ·mP . Let X1, X2, ..., · · ·XP denote

the projections of the P discriminative vectors in discriminative multiple

canonical correlation analysis space and n is the total number of training

samples, i.e.

X1 = ω1
Tx1; X2 = ω2

Tx2; ... XP = ωP
TxP , (4.14)
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where ω1, ω2, ...ωP are the projected vectors in DMCCA space.

Combining equations in (4.14) into matrix vector form leads to⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X1 = ω1
Tx1

X2 = ω2
Tx2

...

XP = ωP
TxP

=

⎡
⎢⎢⎢⎢⎣

ω1
T 0 · · · 0

0 ω2
T · · · 0

...

0 0 · · · ωP
T

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

ω1 0 · · · 0

0 ω2 · · · 0
...

0 0 · · · ωP

⎤
⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎣

x1

x2
...

xP

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x1

x2
...

xP

⎤
⎥⎥⎥⎥⎦ (4.15)

Then equation (4.15) is further written as

X =

⎡
⎢⎢⎢⎢⎣

X1

X2
...

XP

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

ω1 0 · · · 0

0 ω2 · · · 0
...

0 0 · · · ωP

⎤
⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎣

x1

x2
...

xP

⎤
⎥⎥⎥⎥⎦ (4.16)

Since the number of training samples is n, X can also be expressed as

X =
[ ∼
X1,

∼
X2, ...

∼
Xn

]
(4.17)

64



CHAPTER 4. KECA PLUS DMCCA FOR MULTI-MODAL INFORMATION
FUSION 4.4. KECA+DMCCA

Based on the definition of KECA, KECA+DMCCA is formulated as

V (p) =
1

n

n∑
i=1

1

n

n∑
j=1

kσ(
∼
Xi,

∼
Xj) =

1

n2
1T

∼
K 1. (4.18)

The projection of KECA+DMCCA onto the ith principal axis in the kernel

feature space is defined as

ΦKECA+DMCCA = (D′
i)

1
2E ′T

i , (4.19)

where D′
i is the ith eigenvalue and E ′

i is the corresponding ith eigenvec-

tors of
∼
K.

Since the rank of ωi in DMCCA satisfies relation (4.20)

rank(ωi) ≤ c(i = 1, 2, ..., P ) (4.20)

and

ω = [ωT
1, ω

T
2, · · ·ωT

P ]
T , (4.21)

the number of maximum linearly independent group of ω in DMCCA is

less than or equals to the number of the classes, which can be written as

follows

ωc
j = [a

′
1, a

′
2, ...a

′
c]

⎡
⎢⎢⎢⎢⎣

ω
′
1

ω
′
2

...

ω
′
c

⎤
⎥⎥⎥⎥⎦ , (4.22)
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where ωc
j is the j th column vector of the matrix ω and a

′
1, a

′
2...a

′
c are the

weights of the maximum linearly independent group ω
′
1, ω

′
2...ω

′
c.

Since there are Q projected vectors in DMCCA space, the total entropy

of the DMCCA is written as follows:

Htotal = −Pωc
1
logPωc

1
− Pωc

2
logPωc

2
− ...− Pωc

Q
logPωc

Q
, (4.23)

where Pωc
j
is the probability of ωc

j (j=1,2...Q).

Equation (4.23) is further rewritten as:

Htotal = −Pωc
1=a1ω

′
1+a2ω

′
2+...+acω

′
c
logPωc

1=a1ω
′
1+a2ω

′
2+...+acω

′
c

−Pωc
2=b1ω

′
1+b2ω

′
2+...+bcω

′
c
logPωc

2=b1ω
′
1+b2ω

′
2+...+bcω

′
c
− ...

−Pωc
Q=q1ω

′
1+q2ω

′
2+...+qcω

′
c
logPωc

Q=q1ω
′
1+q2ω

′
2+...+qcω

′
c

, (4.24)

where a1, a2...ac, b1, b2...bc,...,q1, q2...qc are the weights of ω1,ω2,...,ωQ. As

ω
′
1, ω

′
2...ω

′
c are the vectors of the maximum linearly independent group,

they are independent variables. Pωc
j
(j=1,2...Q) is further written as:

Pωc
j=j1ω

′
1+j2ω

′
2+...+jcω

′
c
= j1Pω

′
1
+ j2Pω

′
2
+ ...+ jcPω′

c
, (4.25)

where j1, j2...jc are the weights of ω
c
j. Therefore, equation (4.24) is rewrit-

ten as follows:

Htotal = F (ω
′
1, ω

′
2, ..., ω

′
c), (4.26)

where F is a function only containing variables ω
′
1, ω

′
2,...ω

′
c. We can ob-

tain the total information entropy of DMCCA with the first c projected

vectors corresponding to largest eigenvalues to form the maximum linearly

independent group. Moreover, it is known that the entropy will not be

improved during the transform of KECA. Hence, we can achieve the opti-
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mal results of information fusion with KECA+DMCCA by the c linearly

independent projected vectors ω
′
1, ω

′
2...ω

′
c.

Specifically, benefiting from this property, if the feature space dimension

equals to Q and the number of the training samples is n, the computa-

tional complexity of KECA+DMCCA is on the order of O(n2 ∗ c), instead
of O(n2 ∗ Q). Thus, this property is not only analytically elegant, but

practically significant when c is small compared with the feature space

dimension. Examples include emotion recognition, digit recognition, and

many others, where c ranges from a handful to a couple of dozens, but

the feature space dimension could be hundreds or even thousands.

In summary, the information fusion algorithm based on KECA+DMCCA

is given below:

Step 1. Extract information from multi-modal sources to form the

training sample spaces.

Step 2. Convert the extracted information into the normalized form

and compute the matrices C and D in equations (3.20) and (3.21).

Step 3. Compute the eigenvalues in the matrix ρ and eigenvectors in

the matrix ω of equation (3.19).

Step 4. Select the c projected vectors from the eigenvectors collection

associated with the c different largest eigenvalues in equation (3.19).

Step 5. Find the discriminative projections of the original multi-modal

feature/data in DMCCA space.

Step 6. KECA is applied to the discriminative projections achieving

information fusion of KECA+DMCCA.

In essence, KECA+DMCCA transforms the original multiple input in-

formation/data sources into the DMCCA space at first. Since DMCCA
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can be seen as a way of guiding discriminative feature selection toward the

underlying semantics to find basis vectors for different sets of variables, it

reveals discriminative representation among different multiple variables.

In addition, based on the definition of canonical correlation, the trans-

formed sets of linear combinations are those with the largest correlation

subject to the condition that they are orthogonal to the former canonical

variables. Therefore, it also eliminates redundant information effectively

before KECA is implemented. After that, KECA is applied to the dis-

criminative vectors in the DMCCA space. Thus, the discriminatory and

complementary representations of input data beyond the second order s-

tatistics are revealed together, improving the recognition accuracy.

4.5 Summary

In this chapter, firstly, we study the entropy estimation and KECA, which

are expected to reveal more complementary representation than the second

order statistics from the multiple input sources. After that, we investigate

the second realization of the proposed DAF for information fusion, which

integrates KECA and DMCCA together. Based the proposed fusion com-

ponent, not only the discriminative representation is considered, but also

the complementary representation of input data is revealed in the space

of KECA, instead of that of the second order statistics. Moreover, we

mathematically verify that the optimal performance by KECA+DMCCA

achieves with c independent projected vectors. It is a particularly attrac-

tive property when solving large scale problems. Finally, since the kernel

method is applied to the proposed discriminative method, it provides a

more effective method to solve nonlinear problems in information fusion.
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Chapter 5

Experimental Results and Analysis

A multimedia analysis task involves processing multi-modal data to ob-

tain valuable insights about the data, a situation, or a higher level activity.

In what follows, firstly, we present feature extraction and implementation

of the proposed DAF in handwritten digit recognition, face recognition

and human emotion recognition. After that, we conduct experiments on

Mixed National Institute of Standards and Technology (MNIST) hand-

written digit database, ORL face database, and Ryerson Multimedia Lab

(RML) [91]and eNTERFACE [115] emotional database to demonstrate the

generic nature and the effectiveness of the proposed DAF for multi-modal

information fusion.

5.1 Introduction

For handwritten digit recognition, its main application areas fall in postal

mail sorting, bank check processing and form data entry. Face recognition

is a vitally important research area spanning multiple fields and disci-

plines. It is essential for effective communications and interactions among
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people with applications to bankcard identification, mugshot searching,

surveillance systems, etc. Emotion recognition has been playing an im-

portant role in our daily social interactions and activities. Automated

machine recognition of human emotion has been recognized as a key tech-

nology for building a more natural and friendly communication interface

between humans and computers. The emotional state of an individual can

be inferred from different sources such as voice, facial expressions, body

language, ECG, and EEG. Among them, voice and face are two of the

most natural, passive, and noninvasive types of traits, the study of which

is the focus of this thesis.

5.1.1 Handwritten Digit Recognition

Handwritten digit recognition plays a significant role in several applica-

tions such as cheque processing and the automatic sorting of postal mail

[116]. Recognition of handwritten digits is a difficult task due to the wide

variety of styles, sizes and orientations of digit samples for the same writ-

er and between different writers. In addition, there are two challenges in

handwritten digit recognition due to the nature of the handwriting style

[117].

a. Different writing styles and pens lead to strongly varying appearances.

b. The inherent variation in writing styles at different instances.

Recently, numerous works have been developed for the evaluation of

handwritten digit recognition algorithms. They differ in the feature extrac-

tion and classification stages employed. Nishida [118] proposes a grammar-

like model for applying deformations to structures composed of primitive

strokes. Lam and Suen [119] use a two-stage method for recognition, in
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which samples are first classified by their structure using a tree classifier.

Cheung et al. [120] model characters with a spline, and assume that the

spline parameters have a multivariate Gaussian distribution. A Bayesian

approach is then used to determine the character class, with the model

parameters as prior and the image data parameters as likelihood. Revow

et al. [121] model digits as ink-generating Gaussian “beads” strung along

a spline outline. Characters are matched through deformation of the s-

pline and adjustment of the bead parameters.

In general, the performance of handwritten digit recognition depends on

the feature extraction approaches. For feature extraction of digit recogni-

tion, various approaches using the global features and the local structural

features, have been presented in [122].

Gabor transform has been widely applied to handwritten digit recog-

nition, face recognition and emotion recognition, etc [123, 124, 125, 126].

An important property of Gabor transform is that it has optimal joint

localization, or resolution in both the spatial and the spatial-frequency

domains to extract global features. In addition, it has been shown to be a

good fit to the receptive field profiles of simple cells in the striate cortex.

The Gabor filter, based on a multi-channel filtering theory, is designed for

information processing in the early stages of the human visual systems.

As a local feature extraction method, Zernike moments are widely used

to handwritten digit recognition [116]. In general, moments are pure sta-

tistical measure of pixel distribution around the center of gravity of the

image and allow capturing global shapes information [127]. They describe

numerical quantities at some distance from a reference point or axis. Z-

ernike moments are a class of orthogonal moments and have been shown
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to be effective in terms of image representation. Advantages of Zernike

moments can be summarized as follows:

a. The magnitude of Zernike moment has rotational invariant property.

b. They are robust to noise and shape variations to some extent.

c. Since the basis is orthogonal, they have minimum redundant informa-

tion.

d. An image can better be described by a small set of its Zernike moments

than any other types of moments such as geometric moments.

In this thesis, Gabor features and Zernike moments features are ap-

plied together to the information fusion on handwritten digit recognition

problem.

5.1.2 Face Recognition

Automatic recognition of human faces has been an active research area in

recent years. In addition to the importance of pure research, it has a num-

ber of commercial and law-enforcement applications such as surveillance,

security, telecommunications and human-computer intelligent interaction,

etc. Various approaches for face recognition have been proposed and they

can be roughly classified into either analytic or holistic approaches.

Analytic approaches use things such as distances and angles between

fiducial points on the face, shapes of facial features and local features. The

main advantage of analytic approaches is to allow for a flexible deforma-

tion at the key feature points so that pose changes can be compensated

for. While analytic approaches compare the salient facial features detected

from the face, holistic approaches make use of the information derived from

the whole face. More detailed literature on face recognition approaches
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can be found in [128, 129, 130].

Despite remarkable progresses so far, the general task of face recogni-

tion remains a challenging problem. This is mainly due to the complex

distortions that can be caused by variations in illumination, facial expres-

sions and poses. It is widely believed that local features in face images

are more robust against such distortions and a spatial frequency analysis

is often desirable to extract such features. With good characteristics of

spatial frequency localization, Gabor transform is a good candidate for

this purpose [125].

In addition, in the evaluation the proposed method for face recogni-

tion, we extracted the histogram of oriented gradient (HOG) and local

binary patterns (LBP) to represent the global features. Therefore, in this

thesis, benefiting from fusing the HOG, LBP and Gabor wavelets features

together, it is expected to achieve improved performance.

5.1.3 Emotion Recognition

5.1.3.a Audio Emotion Recognition

Speech is one of the most essential and natural verbal channels to transmit

human affective states and it is easily accessible for emotion recognition.

A detailed review of the cutting-edge works for audio emotion recognition

can be found in [131]. The performance of speech emotion recognition

based on information fusion has also been investigated by numerous work-

s in the literature [24, 132].

Human speech contains not only linguistic content but also cues show-

ing emotions of the speakers. Since audio features have been heavily used

in emotion recognition, one of the important issues is the extraction of
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speech features which characterize the emotional states efficiently without

depending on lexical content or speakers. The widely used features are

categorized into continuous features and spectral features [133, 134, 135].

Continuous speech features have been heavily used in emotion recogni-

tion, since they have been found to represent the most significant charac-

teristics of emotional content in verbal communication. It is believed that

continuous features such as pitch and energy convey much of the temporal

information and always serve as the primary indicator of a speaker’s emo-

tion states. Continuous features are known as prosodic features. Because

of temporal information present in speech signals, continuous speech fea-

tures are superior in terms of classification time and accuracy.

In addition to time-dependent continuous features, spectral features are

often selected as another representation for speech signals. Spectral fea-

tures have different representations of the signal nature. Moreover, due

to the fact that there are limited number of spectral features to study,

the algorithms of feature selection based on spectral features are executed

faster, and the training of classifiers is more efficient. The widely used

spectral features include MFCC (Mel-frequency cepstral coefficient) and

Formant Frequency (FF), which will be used in this thesis.

5.1.3.b Visual Emotion Recognition

Visual information is a most direct method of interaction between human

and machine, and rich emotional information can be conveyed through the

human face. In general, the face region is detected from the image first,

and then facial expression information is extracted from the observed facial

images [91].
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Many solutions have been proposed to process facial expressions and

identify the emotional information. Existing solutions for visual emotion

recognition can be roughly categorized into two groups. One is to treat

the human face as a whole unit [136], and the other is to represent the face

by prominent components, such as the mouth, eyes, nose, eyebrow, and

chin [137]. The analysis of facial components is critically dependent on the

accurate localization of the local features. Further, focusing on only a few

facial components, the representation of the discriminant characteristics

of human emotions might be inadequate. In this thesis, we perform visual

emotion recognition by treating the face as a holistic pattern and the visual

information is represented by Gabor wavelet features.

5.2 Feature Extraction

In this subsection, we present the feature extraction on handwritten digit

recognition, face recognition, audio and visual emotion recognition, which

corresponds to the left most block in Figure 1.2 redrawn here as Figure

5.1.

5.2.1 Handwritten Digit Feature Extraction

Gabor filters, which operate directly on gray-level handwritten digit im-

ages, is chosen to extract features for handwritten digit recognition. Gabor

filters have several advantages. First, Gabor features have been used for

capturing local information in both spatial and frequency domains from

images, as opposed to other global techniques such as Fourier Transforms.
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Figure 5.1: Feature extraction in the proposed DAF

Second, Gabor filters are orientation specific. This property allows us to

analyze stroke directions in the handwriting. Third, the filtering output

is robust to various noise components since Gabor filters use information

from all pixels in the kernel.

Despite the advantages, Gabor filter based feature selection methods

are normally computationally expensive due to high dimensional Gabor

features. In this thesis, we use 24 Gabor filters; 4 for scaling and 6 for

orientation. In addition, we consider the mean and standard deviation of

the magnitude of the transform coefficients of each filter as the features.

The other feature, Zernike polynomials are orthogonal series of basis

functions normalized over a unit circle. The complexity of these polyno-

mials increases with increasing polynomial order. To calculate the Zernike

moments, the image (or region of interest) is first mapped to the unit disc

using polar coordinates, where the center of the image is the origin of the

unit disc. The pixels falling outside the unit disc are not considered. The

76



CHAPTER 5. EXPERIMENTAL RESULTS AND ANALYSIS 5.2. FEATURE

coordinates are then decided by the length of the vector from the origin to

the coordinate point. An important attribute of the geometric representa-

tions of Zernike polynomials is that lower order polynomials approximate

the global features of the shape/surface, while the higher ordered polyno-

mials capture local shape/surface features. Zernike moments are a class

of orthogonal moments and have been shown to be effective in terms of

image representation [138].

In this thesis, we extracted three features for handwritten digit recog-

nition:

24-dimensional: the mean of the digit images transformed by the Gabor

filters.

24-dimensional: the standard deviation of the digit images transformed

by the Gabor filters.

36-dimensional: Zernike moment features.

5.2.2 Face Feature Extraction

Face recognition using Gabor features has attracted considerable attention

in computer vision, image processing, pattern recognition, and so on. Ga-

bor filters can exploit salient visual properties such as spatial localization,

orientation selectivity, and spatial frequency characteristics [139]. In this

thesis, we uses 4 filters for scaling and 6 filters for orientation. Moreover,

we take the mean and standard deviation of the magnitude of the trans-

form coefficients of each filter as the features.

Furthermore, in the evaluation the proposed method for face recog-

nition, we extracted the histogram of oriented gradient (HOG) [140] and

local binary patterns (LBP) [141] features to represent the global features.
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Therefore, we extracted the following three kinds of features:

36-dimensional: HOG feature.

33-dimensional: LBP feature.

48-dimensional: Gabor transformation feature with the mean and stan-

dard deviation of the face images transformed by each filter.

5.2.3 Audio Feature Extraction

For emotional speech, a good reference model is the human hearing sys-

tem. Previous works have explored several different types of features. In

this thesis, three of the most popular audio features, Prosodic, MFCC and

Formant Frequency (FF), are utilized to represent audio characteristics in

emotion recognition.

The collected emotional data usually contain noise due to the back-

ground and “hiss” of the recording machine. Generally, the presence of

noise will corrupt the signal, and make the feature extraction and classifi-

cation less accurate. In this work, we perform noise reduction by thresh-

olding the wavelet coefficients [91]. Leading and trailing edges are then

eliminated since they do not provide useful information. To perform spec-

tral analysis for feature extraction, the preprocessed speech signal is seg-

mented into speech frames using a Hamming window of 512 points with

50% overlap.

Prosodic Feature

Prosody is mainly related to the rhythmic aspects of the speech, and

is normally represented by the statistics and variations of fundamental

frequency, intensity, speaking rate, etc. In this thesis, we extracted 25
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Figure 5.2: Extracted prosodic features

prosodic features as listed in Figure 5.2 [91]. The pitch is estimated based

on the Fourier analysis of the logarithmic amplitude spectrum of the signal

[142]. The energy features are extracted in time domain and represented

in decibel (dB). Pitch variation rate Rvar and pitch rising/falling ratio Rrf

are calculated respectively as

Rvar =
Nrise +Nfall

Nframe
(5.1)

Rrf =
Nrise

Nfall
(5.2)

where Nframe is the number of speech frames, Nrise and Nfall are the num-

ber of speech frames with continuous rising and falling pitch respectively.
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Speaking rate is approximated by

Rspk =
1

mean segment length
=

N
N∑
i=1

Ti

(5.3)

where Ti is the length of voiced segment i and N is the number of voiced

segments. The voiced segments are defined as the segments of speech

signal between pauses.

Pitch slope of each rise and each fall is calculated as

Spitch =
|fmax − fmin|
tend − tstart

(5.4)

where fmax and fmin denote the maximum and minimum pitch value on

the rise (fall) respectively. tstart and tend represent the starting and ending

time of the rise (fall).

MFCC

Mel-frequency Cepstral Coefficient (MFCC) is a popular and powerful

analytical tool in the field of speech recognition. The purpose of MFCC is

to mimic the behavior of human ears by applying cepstral analysis. In this

thesis, the implementation of MFCC feature extraction follows the same

procedure as described in [143]. The MFCC is computed based on speech

frames. However, the lengths of the utterances are different, and thus the

total number of coefficients is different. In order to facilitate classification,

the features of each utterance mapped to the feature space should have

the same length. Furthermore, with a feature vector of high dimension,

the computational cost is high. Usually, in speech recognition, the total
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number of coefficients being used is between nine and thirteen. This is

because most of the signal energy is compacted in the first few coefficients

due to the properties of the cosine transform. In this thesis, we take

the first 13 coefficients and then calculate the mean, median, standard

deviation, max, and min of each coefficients as the extracted features to

produce a total number of 65 MFCC features.

Formant Frequency

The formant frequency estimation is based on modeling the speech signal

as if it were generated by a particular kind of source and filter [91]. To

find the best matching system, we use the formant frequency features.

In order to make the size of the formant frequency features uniform, and

come up with a compromise between the imitation efficiency of the vocal

tract system and dimensionality of the feature space, we take the mean,

median, standard deviation, max and min of the first three formant fre-

quencies as the extracted features. In this way, we extract a total number

of 15 formant frequency features from each utterance.

In summary, three of the audio features are described as follows:

25-dimensional Prosodic features.

65-dimensional MFCC features (the mean, median, standard deviation,

max, and min of the first 13 MFCC coefficients).

15-dimensional Formant Frequency features (the mean, median, stan-

dard deviation, max and min of the first three formant frequencies).

The procedure of audio feature extraction for emotion recognition is

shown in Figure 5.3.
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Figure 5.3: Extracted audio features

5.2.4 Visual Feature Extraction

In this thesis, we perform visual analysis by treating the face as a holistic

pattern. A face detect scheme based on HSV color model is used to detect

the face from the background. The visual information is represented by

Gabor wavelet features.

Different approaches of face detection have been studied in the past.

The face detection scheme that we used in this thesis is the Planar en-

velope approximation method [144] in HSV color space. After applying

skin segmentation, some non-skin regions such as small isolated blobs and

narrow belts are inevitably observed in the resultant image as their color

falls into the range of skin color space. We apply morphological operations

to implement the cleaning procedure. As shown in Figure 5.4 [91], the de-

tected face region is mapped back to the original image, and cropped such

that the major components of the face are included. The cropped face

region is normalized to a gray-level image of size 128 × 128 as the input
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Figure 5.4: Procedure of the applied face detection scheme

Figure 5.5: Example of Gabor wavelet transformed image

to the Gabor filter bank.

Using Gabor wavelet features to represent facial expressions have been

explored and shown to be very effective in the literature [145]. It allows

description of spatial frequency structure in the image while preserving

information about spatial relations. In this thesis, the Gabor filter bank is

designed using the algorithm proposed in [139], which consists of filters in

4 scales and 6 orientations. Figure 5.5 shows an example of Gabor wavelet

transformed face image [91]. For an input image of size of 128 × 128,

128 × 128 × 4 × 6 = 393216 Gabor coefficients are generated. With a

feature space of such high dimensionality, the computational cost is also
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Figure 5.6: Extracted visual features

high, and thus this full feature space is unsuitable for practical applica-

tions. We therefore consider the mean, standard deviation and median of

the magnitude of the transform coefficients of each filter as the features.

This results in a feature vector of 72 dimensions.

In summary, three of the visual features are extracted as follows:

24-dimensional Gabor transformation features: the mean of the face im-

ages transformed by each filter.

24-dimensional Gabor transformation features: the standard deviation

of the face images transformed by each filter.

24-dimensional Gabor transformation features: the median of the face

images transformed by each filter.

The procedure of visual feature extraction for emotion recognition is

shown in Figure 5.6.

5.3 Classification Method

For recognition, we use the algorithm proposed in [146]. The procedure is

summarized below:
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Given two sets of features represented by two feature matrices

X1 = [x11, x
1
2, x

1
3, ...x

1
d] (5.5)

and

X2 = [x21, x
2
2, x

2
3, ...x

2
d]. (5.6)

dist[X1X2] is defined as

dist[X1X2] =
d∑

j=1

∥∥x1j − x2j
∥∥
2
, (5.7)

where ‖a− b‖2 denotes the Euclidean distance between the two vectors a

and b.

Let the feature matrices of the N training samples be F1, F2, ...FN and

each sample belong to some class Ci (i = 1, 2...c), then for a given test

sample I, if

dist[I, Fl] = min
j

dist[I, Fj](j = 1, 2...N) (5.8)

and

Fl = Ci, (5.9)

the resulting decision is I = Ci.

5.4 Experimental Performance Evaluation and Anal-

ysis on DMCCA

In this section, we evaluate the effectiveness of the proposed DAF with

DMCCA as the fusion function on MNIST handwritten digit database,
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�

Figure 5.7: Example images from the MNIST database

�

�

Figure 5.8: Images of two persons in the ORL database

ORL face database, and human emotion recognition on RML and eNTER-

FACE audiovisual databases, which corresponds implicitly to the DAF

block in Figure 5.1 or explicitly in Figure 3.1.

The MNIST database, or modified NIST database, is constructed out

of the original NIST database. All the digits are size normalized, and cen-

tered in a fixed size image where the center of gravity of the intensity lies

at the center of the image with 28 * 28 pixels which take on binary values.

Example images from MNIST database are shown in Figure 5.7. In the

experiments, we select 1500 samples to form the training subset and 1500

samples as the testing subsets, respectively.
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The ORL database (http://www.cam-orl.co.uk) contains images from

40 individuals, each providing 10 different images. Each image is normal-

ized and centered in a gray-level image with size 64*64, or 4096 pixels

in total. Ten sample images of two subjects from the ORL database are

shown in Figure 5.8. In the experiment, the proposed algorithm is tested

on the whole ORL database. The evaluation is based on cross-validation,

where each time five images of each subject are randomly chosen for train-

ing, while the remaining five images are used for testing. Thus, the training

sample set size is 200 and the testing sample set size is 200.

The RML database [91] consists of video samples of the six principal e-

motions (angry, disgust, fear, surprise, sadness and happiness), performed

by eight subjects speaking six different languages (English, Mandarin, Ur-

du, Punjabi, Persian, and Italian). The fame rate for the videos is 30 fps

with audio recorded at a sampling rate of 22050 Hz. The spatial reso-

lution of the image frames is 720*480 pixels, and the face region has an

average size of 112*96 pixels. The eNTERFACE database [115] contains

video samples from 43 subjects, also expressing the six basic emotions,

with a sampling rate of 48000 Hz for English audio channel and a video

frame rate of 25 fps. The image frames have a size of 720*576 pixels, with

the average size of the face region around 260*300 pixels. Example facial

expression images from RML and eNTERFACE are shown in Figure 5.9.

In the experiment, 288 samples of eight subjects from RML database

and 456 samples of ten subjects from eNTERFACE database are select-

ed, respectively. We divide the samples from RML database into training

and testing subsets containing 192 and 96 samples, respectively. For eN-

TERFACE database, samples are divided into training and testing subsets
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Figure 5.9: Example facial expression images from the RML (Top two rows) and eN-
TERFACE (Bottom two rows) Databases

including 360 and 96 samples, respectively.

5.4.1 Handwritten Digit Recognition

For handwritten digit recognition, mean, standard deviation and Zernike

moments correspond to the feature extraction block in Figure 3.1. The

performance of mean, standard deviation and Zernike moments is first e-

valuated shown in Table 5.1. The recognition accuracy is calculated as the

ratio of the number of correctly classified samples over the total number

of testing samples.

From Table 5.1, the standard deviation (52.60%) and Zernike momen-

t (70.20%) features achieve better performance than the mean (49.13%),

and therefore will be used in CCA and DCCA which only take two sets

of features. In addition, the performance based on the method of serial

fusion with standard deviation & Zernike moment and that with all the
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Table 5.1: Results of handwritten digit recognition with a single feature

Single Feature Recognition Accuracy

Mean 49.13%

Standard Deviation 52.60%

Zernike 70.20%

three features are implemented, respectively. The experimental results are

shown in Table 5.2.

Table 5.2: Results of handwritten digit recognition by serial fusion

Serial Fusion Recognition Accuracy

Standard Deviation & Zernike 70.20%

All of the three features 70.33%

Next, the comparison among DMCCA, serial fusion, CCA, MCCA, and

DCCA are implemented. The overall recognition rates are given in Figure

5.10, with DMCCA providing the best performance, clearly showing the

discriminative power of the DMCCA for information fusion in handwrit-

ten digit recognition. From the figure, it is clear that the application of

DMCCA achieves the best performance when the projected dimension d

equals to 9 < 10 = c, the number of classes, confirming nicely with the

mathematical analysis in Chapter 3. Moreover, the optimal recognition

accuracies with different methods are presented in Table 5.3.
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Figure 5.10: Handwritten digit recognition experimental results of different methods on
MNIST Database

5.4.2 Face Recognition

For face recognition, HOG, LBP and Gabor features in a face image cor-

respond to the feature extraction block in Figure 3.1.

The performance of using HOG, LBP and Gabor features is shown in

Table 5.4. From Table 5.4, it suggests we use the HOG (90.50%) and Ga-

bor (85.50%) which provide the best individual performance as the input

to CCA and DCCA. We also experimented on the method of serial fusion

with HOG & Gabor features, and all the three features, respectively, with

the performance shown in Table 5.5.

90



CHAPTER 5. EXPERIMENTAL RESULTS AND ANALYSIS
5.4. EXPERIMENTAL PERFORMANCE EVALUATION AND ANALYSIS ON

DMCCA

Table 5.3: The optimal handwritten digit recognition accuracies with different methods

Methods Optimal Recognition Accuracy

DMCCA 82.60%

MCCA 73.60%

DCCA 79.27%

CCA 75.60%

Table 5.4: Results of face recognition with a single feature

Single Feature Recognition Accuracy

HOG(ORL) 90.50%

LBP(ORL) 77.50%

Gabor(ORL) 85.50%

The performance by the methods of CCA, MCCA, DCCA, and DM-

CCA is shown in Figure 5.11. From the experimental results, clearly,

DMCCA provides more effective modeling to handle the face recognition

problem. Moreover, DMCCA achieves the optimal performance when the

projected dimension d is equal to 28, which is less than the number of

classes (c=40). The optimal recognition accuracies with different method-

s are presented in Table 5.6.

5.4.3 Emotion Recognition

In this subsection, we will first evaluate feature fusion in emotion recog-

nition using audio features and visual features, respectively. Then the
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Table 5.5: Results of face recognition by serial fusion

Serial Fusion Recognition Accuracy

HOG & Gabor(ORL) 77.50%

All of the three features(ORL) 77.50%
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Figure 5.11: Face recognition experimental results of different methods on ORL Database

evaluation will move on to audiovisual bimodal emotion recognition.

5.4.3.a Audio Emotion Recognition

In the experiments of audio emotion recognition, Prosodic, MFCC and

Formant Frequency features correspond to the feature extraction block in

Figure 3.1. For bench mark purpose, the performance of using Prosodic,

MFCC and Formant Frequency features in emotion recognition is first e-

valuated, and tabulated in Table 5.7.
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Table 5.6: The optimal face recognition accuracies with different methods

Methods Optimal Recognition Accuracy

DMCCA 98.00%

MCCA 94.50%

DCCA 97.00%

CCA 94.50%

Table 5.7: Results of emotion recognition with single audio feature

Single Feature Recognition Accuracy

Prosodic(RML) 45.83%

MFCC(RML) 34.38%

Formant Frequency(RML) 22.92%

Prosodic(eNTERFACE) 55.21%

MFCC(eNTERFACE) 39.58%

Formant Frequency(eNTERFACE) 31.25%

Table 5.7 suggests we should use the Prosodic (45.83%, 55.21%) and

MFCC (34.38%, 39.58%) features which perform better than Formant Fre-

quency individually, in CCA and DCCA which only need to take two sets

of features. We also experimented on the method of serial fusion on RML

and eNTERFACE databases with Prosodic & MFCC features, and all of

the three features, respectively. The results are shown in Table 5.8.

Then, we compare the performance of DMCCA with serial fusion, C-
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Table 5.8: The experimental results of audio emotion recognition with serial fusion

Serial Fusion Recognition Accuracy

Prosodic & MFCC(RML) 36.46%

All of the three features(RML) 29.17%

Prosodic & MFCC(eNTERFACE) 40.63%

All of the three features(eNTERFACE) 34.38%
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Figure 5.12: Audio emotion recognition experimental results of different methods on
RML Database

CA, MCCA and DCCA. The overall recognition accuracies are shown in

Figure 5.12 and Figure 5.13. Moreover, the optimal recognition accuracies

with different methods are presented in Table 5.9. Clearly, the discrimi-

nation power of the DMCCA provides a more effective modelling of the

relationship between different features and achieves better performance

than the other methods.
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Table 5.9: The optimal audio emotion recognition accuracies with different methods

Methods Optimal Recognition Accuracy

DMCCA (RML) 68.75%

MCCA (RML) 54.17%

DCCA (RML) 64.58%

CCA (RML) 63.54%

DMCCA (eNTERFACE) 72.92%

MCCA (eNTERFACE) 63.54%

DCCA (eNTERFACE) 68.75%

CCA (eNTERFACE) 65.63%
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Figure 5.13: Audio emotion recognition experimental results of different methods on
eNTERFACE Database
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5.4.3.b Visual Emotion Recognition

In the experiments of visual emotion recognition, mean, standard deviation

and median features correspond to the feature extraction block in Figure

3.1. We apply DMCCA to fuse the visual features extracted from RML

and eNTERFACE databases, respectively. For benchmark purpose, the

performance of using mean, standard deviation and median features is

evaluated. The results are shown in Table 5.10.

Table 5.10: Results of visual emotion recognition with single Gabor feature

Single Feature Recognition Accuracy

Mean(RML) 60.42%

Standard Deviation(RML) 65.63%

Median(RML) 56.25%

Mean(eNTERFACE) 75.00%

Standard Deviation(eNTERFACE) 80.21%

Median(eNTERFACE) 72.92%

From Table 5.10, it is observed that the features of mean (60.42%,

75.00%) and standard deviation (65.63%, 80.21%) achieve better perfor-

mance in visual emotion recognition compared with the feature of median

(56.25%, 72.92%). Thus, in the following experiments, we will use mean

and standard deviation features in CCA and DCCA. The experiments us-

ing serial fusion with mean & standard deviation features, and all of the

three features are also performed and summarized in Table 5.11.
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Table 5.11: The experimental results of visual emotion recognition with serial fusion

Serial Fusion Recognition Accuracy

Mean & Standard Deviation(RML) 71.83%

All of the three features(RML) 64.58%

Mean & Standard Deviation(eNTERFACE) 79.17%

All of the three features(eNTERFACE) 80.21%
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Figure 5.14: Visual emotion recognition experimental results of different methods on
RML Database

The overall recognition results are illustrated in Figure 5.14 and Fig-

ure 5.15. In addition, the optimal recognition accuracies with different

methods are presented in Table 5.12. Again, it shows that the proposed

DMCCA outperforms the other methods.
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Table 5.12: The optimal visual emotion recognition accuracies with different methods

Methods Optimal Recognition Accuracy

DMCCA (RML) 76.04%

MCCA (RML) 72.92%

DCCA (RML) 72.92%

CCA (RML) 72.92%

DMCCA (eNTERFACE) 82.29%

MCCA (eNTERFACE) 77.08%

DCCA (eNTERFACE) 80.21%

CCA (eNTERFACE) 76.04%
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Figure 5.15: Visual emotion recognition experimental results of different methods on
eNTERFACE Database
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5.4.3.c Audiovisual Emotion Recognition

For audiovisual emotion recognition, audio features (Prosodic, MFCC &

Formant Frequency) and visual features (mean, standard deviation & me-

dian) correspond to the left most feature extraction block in Figure 3.1.

From the previous experiments, it is shown that the Prosodic features in

audio and standard deviation of Gabor Transform coefficients in visual

images are more likely to result in better performance in emotion recogni-

tion compared with other features. Therefore, in the following, we will use

Prosodic and standard deviation for the methods of CCA and DCCA in

audiovisual multimodal fusion. Besides, the results of serial fusion on all

the six audiovisual features are also investigated, and the overall recogni-

tion accuracy is 30.28% for RML database and 35.42% for eNTERFACE

database. The performance by the methods of serial fusion, CCA, MCCA,

DCCA, audio multi-feature DMCCA, visual multi-feature DMCCA and

audiovisual DMCCA for the two datasets are shown in Figure 5.16 and

Figure 5.17, respectively. Moreover, the optimal recognition accuracies

with different methods are presented in Table 5.13.

5.4.4 Computational Efficiency

From the experimental results, clearly, the discrimination power of the

DMCCA provides a more effective modeling of the relationship among

multiple information sources. Another advantage of DMCCA is the com-

putational efficiency, especially when the number of classes being studied

is small. Without loss of generality, we take the audiovisual emotion recog-

nition as an example to demonstrate this advantage. Since Ekman’s six
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Table 5.13: The optimal audiovisual emotion recognition accuracies with different meth-
ods

Methods Optimal Recognition Accuracy

DMCCA (RML) 82.29%

MCCA (RML) 77.08%

DCCA (RML) 68.75%

CCA (RML) 61.46%

DMCCA (eNTERFACE) 85.42%

MCCA (eNTERFACE) 80.17%

DCCA (eNTERFACE) 77.08%

CCA (eNTERFACE) 64.00%
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Figure 5.16: Audiovisual emotion recognition experimental results by different methods
on RML Database
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Figure 5.17: Audiovisual emotion recognition experimental results by different methods
on eNTERFACE Database

basic emotional states are used in the work, c equals to six and the di-

mension of audiovisual features (M=177) is equal to dimension of audio

features (105) plus dimension of visual features (72). Therefore, the ratio

of O(M *c) to O(M *M ) is about 1:30 and the level of efficiency by the

proposed over MCCA is quite significant. To further show the efficiency

of the proposed method, we investigate the actual running time of the

proposed method and that of the MCCA in emotion recognition. All ex-

periments are performed on a PC with Windows 7 operation system, Intel

i7-3.07GHz CPU & 10 G RAM and the algorithms are coded in MATLAB

2013b. For the RML database, the running time of the proposed method

is 129.43s while that of MCCA is 11043s. The ratio of computational times

is 129.43 : 11043 = 1: 85.3. For the eNTERFACE Database, the running

time of the proposed method is 224.3s while that of MCCA is 15048s. The
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ratio is 224.3 : 15048 = 1: 67. In both cases, the proposed method shows

remarkable advantage in terms of computational efficiency over MCCA.

5.4.5 Comparison with the Method of Embedding DCCA (ED-

CCA)

To further demonstrate the effectiveness of DMCCA on multimodal fusion,

we applied the method of DCCA with embedding (named as EDCCA) to

bimodal emotion recognition and compared with DMCCA. There are six

sets of features for bimodal emotion recognition. Three are audio: Prosod-

ic, MFCC and Formant Frequency; and three are visual: Mean, Standard

Deviation and Median calculated from Gabor wavelet transform. Nat-

urally, we embed the three audio features together and the three visual

features together, and perform EDCCA on the two embedded features.

The overall recognition accuracies by EDCCA on RML and eNTERFACE

datasets are shown in Figure 5.18 and Figure 5.19.

From Figure 5.16 to Figure 5.19, we observe the following in terms of

optimal performance:

1) RML: 82.29% (DMCCA, Green line in Figure 5.16) > 79% (EDCCA)

> 69% (DCCA, Blue line in Figure 5.16)

2) eNTERFACE: 85.42% (DMCCA, Green line in Figure 5.17) > 78%

(EDCCA) > 77% (DCCA, Blue line in Figure 5.17)

Therefore, properly embedding all features in two sets did improve the

performance of DCCA in this example, but it is still inferior to the perfor-

mance of DMCCA. Moreover, when the fusion involves features from three

or more modalities, it is difficult, if not impossible, to design a reasonable

embedding strategy. On the other hand, with a sound theoretical founda-
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Figure 5.18: Performance on audiovisual fusion on emotion recognition with the method
of EDCCA (RML Dataset)
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Figure 5.19: Performance on audiovisual fusion on emotion recognition with the method
of EDCCA (eNTERFACE Dataset)

tion, DMCCA can handle fusion involving any number of modalities.

From the above experimental results, it can be seen that the recog-
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nition accuracy of serial fusion is generally worse than CCA and related

methods, and fusion does not help as shown in Table 5.2, Table 5.8 and

Table 5.11, justifying that simply putting the features from different chan-

nels together without considering the intrinsic structure and relationship

results in low recognition accuracy.

An important finding of the research is that, the exact location of opti-

mal recognition performance occurs when the number of projected dimen-

sion d is smaller than or equals to the number of classes, confirming nicely

with the mathematical analysis presented in Chapter 3. The significance

here is that, we only need to calculate the first d (is smaller than or equal-

s to the number of classes) projected dimensions of DMCCA to obtain

the desired recognition performance, eliminating the need of computing

the complete transformation processes associated with most of the other

methods, and thus substantially reducing the computational complexity

to obtain the optimal recognition accuracy.

5.4.6 Graphical Identification of The Optimal Performance by

DMCCA

In this subsection, we present the calculation of J(η) with DMCCA for

selecting optimal projection with the results shown in Figure 5.20 to Fig-

ure 5.23, which graphically illustrate the relationship between optimal

projected dimensions and the recognition performance using the proposed

criterion J(η) in equation (3.63). In Figure 5.20 and Figure 5.21, criteri-

on J(η) reaches the maximum when the projected dimension is nine for

MNIST database and 28 for ORL database, respectively. In the Figures

5.22, criterion J(η) reaches the maximum when the projected dimension
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Figure 5.20: The calculation of J(η) with the DMCCA for handwritten digit recognition
on MNIST Database

is six for RML database which is equal to the number of classes (c=6).

Similarly, the dimension of five is observed for the eNTERFACE database

as shown in Figure 5.23. The graphical presentation again confirms nicely

with the mathematical analysis presented in Chapter 3.

5.5 Performance Evaluation and Analysis with KE-

CA plus DMCCA

We applied the DAF with KECA plus DMCCA (KECA+DMCCA) as the

fusion function on handwritten digit recognition, face recognition, human

emotion recognition, which corresponds implicitly to the DAF block in

Figure 5.1 or explicitly in Figure 4.1. The same experiment setup as that

used in testing DMCCA is employed for consistence.

To demonstrate the effectiveness of the entropy estimation in informa-
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Figure 5.21: The calculation of J(η) with the DMCCA for face recognition on ORL
Database
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Figure 5.22: The calculation of J(η) with the DMCCA for audiovisual emotion detection
on RML Database

tion fusion, the method of KPCA is also implemented and the optimal

accuracy is given in different experiments.
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Figure 5.23: The calculation of J(η) with the DMCCA for audiovisual emotion detection
on eNTERFACE Database

5.5.1 Handwritten Digit Recognition

During the experiments, we also implemented the methods of DMCCA

and KECA for the purpose of comparison. Since the kernel functions

and the corresponding parameters affect the performance of kernel based

algorithms significantly, we have conducted extensive experiments using

Gaussian functions with σ = 1, 10, 100, 1000, 10000. The performance

comparison is shown in Figure 5.24 and the optimal accuracies with d-

ifferent methods are given in Table 5.14. Obviously, the proposed KE-

CA+DMCCA outperforms DMCCA, KECA and KPCA.

5.5.2 Face Recognition

In the experiment, similarly, the training sample set size is 200 and the

testing sample set size is 200. The Gaussian functions with σ =1, 10,
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Figure 5.24: Experimental results of handwritten digit recognition with DMCCA, KECA
and KECA+DMCCA on MNIST database ( σ =1, 10, 100, 1000, 10000 )

100, 1000, 10000 is implemented to demonstrate the effectiveness of the

proposed framework. Then, the performance by the methods of DMCCA,

KECA, and KECA+DMCCA is shown in Figure 5.25 and the optimal

recognition accuracies are shown in Table 5.15. From the experimental re-

sults, clearly, KECA+DMCCA provides more effective modeling to handle

the face recognition problem.

5.5.3 Emotion Recognition

5.5.3.a Audio Emotion Recognition

In the experiments, we used Gaussian functions as the kernel with σ

=1, 10, 100, 1000, 10000. Then, we compare the performance of KE-
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Table 5.14: The optimal handwritten digit recognition accuracies with different methods

Methods Optimal Recognition Accuracy

KPCA 67.47%

KECA 70.27%

DMCCA 82.60%

KECA+DMCCA 84.27%

Table 5.15: The optimal face recognition accuracies with DMCCA, KECA, KPCA and
KECA+DMCCA

Methods Optimal Recognition Accuracy

KPCA 85.00 %

KECA 94.50%

DMCCA 98.00%

KECA+DMCCA 99.00%

CA+DMCCA with DMCCA and KECA. The overall recognition accura-

cies are shown in Figure 5.26 and Figure 5.27. Furthermore, the optimal

recognition accuracies with different methods are summarized in Table

5.16. Clearly, KECA+DMCCA outperforms DMCCA, KECA and KP-

CA.

Note, KECA merely puts the information or features from different

channels together without considering the intrinsic structure and relation-

ship. Therefore, when it is used in information fusion and there are very

different performances among original features such as the performances
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Figure 5.25: Experimental results of face recognition with DMCCA, KECA and KE-
CA+DMCCA on ORL database ( σ =1, 10, 100, 1000, 10000 )
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Figure 5.26: Experimental results of audio emotion recognition with DMCCA, KECA
and KECA+DMCCA on RML database ( σ =1, 10, 100, 1000, 10000 )
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Figure 5.27: Experimental results of audio emotion recognition with DMCCA, KECA
and KECA+DMCCA on eNTERFACE database ( σ =1, 10, 100, 1000, 10000 )

of Prosodic( 45.83%, 55.21% ), MFCC( 34.38%, 39.38% ) and Formant

Frequency( 22.92%, 31.25% ) on RML and eNTERFACE database, there

is no guarantee that KECA achieves higher recognition accuracy than the

single feature. On the other hand, in KECA+DMCCA, not only the dis-

criminative representations are considered by DMCCA, but also the com-

plementary representations of the input data are revealed in the space of

KECA, improving the recognition or accuracy than the original features.

5.5.3.b Visual Emotion Recognition

In this subsection, we conduct experiments using KECA+DMCCA on

RML and eNTERFACE visual emotion database, respectively. The over-

all recognition accuracies are shown in Figure 5.28 and Figure 5.29. In

addition, the optimal recognition accuracies with different methods are
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Table 5.16: The optimal audio emotion recognition accuracies with DMCCA, KECA,
KPCA and KECA+DMCCA

Methods Optimal Recognition Accuracy

KPCA (RML) 27.08%

KECA (RML) 32.29%

DMCCA (RML) 68.75%

KECA+DMCCA (RML) 71.88%

KPCA (eNTERFACE) 25.00%

KECA (eNTERFACE) 35.41%

DMCCA (eNTERFACE) 72.92%

KECA+DMCCA (eNTERFACE) 75.00%

presented in Table 5.17. Again, the comparison shows that the proposed

KECA+DMCCA outperforms the other methods.

5.5.3.c Audiovisual Emotion Recognition

In the following experiments, three audio features (Prosodic, MFCC, For-

mant Frequency) and three visual features (Mean, Standard Deviation,

Median) are used. The performance of DMCCA, KECA and KECA+DMCCA

is illustrated in Figure 5.30 and Figure 5.31. The optimal recognition ac-

curacies with different methods are given in Table 5.18.

From the above experimental results, it can be seen that the recogni-

tion accuracies of KPCA and KECA are generally worse than DMCCA

and KECA+DMCCA justifying that simply putting the features from d-
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Table 5.17: The optimal visual emotion recognition accuracies with DMCCA, KECA,
KPCA and KECA+DMCCA

Methods Optimal Recognition Accuracy

KPCA (RML) 57.29%

KECA (RML) 67.71%

DMCCA (RML) 76.04%

KECA+DMCCA (RML) 78.13%

KPCA (eNTERFACE) 20.83%

KECA (eNTERFACE) 77.08%

DMCCA (eNTERFACE) 82.29%

KECA+DMCCA (eNTERFACE) 84.38%

ifferent channels together without considering the intrinsic relationship

and discriminative representation results in low recognition accuracy. On

the other hand, since the discriminative representations are considered by

DMCCA and the complementary representation of the input data is re-

vealed by KECA, the performance of KECA+DMCCA is better than the

other methods compared in all cases.

5.6 Summary

In this chapter, the proposed DAF with DMCCA and KECA+DMCCA

as the fusion functions is applied to handwritten digit recognition, face

recognition and emotion recognition.
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Figure 5.28: Experimental results of visual emotion recognition with DMCCA, KECA
and KECA+DMCCA on RML database ( σ =1, 10, 100, 1000, 10000 )
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Figure 5.29: Experimental results of visual emotion recognition with DMCCA, KECA
and KECA+DMCCA on eNTERFACE database ( σ =1, 10, 100, 1000, 10000 )
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Table 5.18: The optimal audiovisual emotion recognition accuracies with DMCCA, KE-
CA, KPCA and KECA+DMCCA

Methods Optimal Recognition Accuracy

KPCA (RML) 27.08%

KECA (RML) 37.50%

DMCCA (RML) 82.29%

KECA+DMCCA (RML) 86.46%

KPCA (eNTERFACE) 26.04%

KECA (eNTERFACE) 40.61%

DMCCA (eNTERFACE) 85.42%

KECA+DMCCA (eNTERFACE) 88.54%

Since DMCCA can be seen as a way of guiding discriminative feature

selection toward the underlying semantics to find basis vectors for different

sets of variables, it reveals discriminative representations among different

multiple variables. In addition, based on the definition of canonical cor-

relation, the transformed sets of linear combinations are those with the

largest correlation subject to the condition that they are orthogonal to

the former canonical variables. Therefore, it also eliminates redundant

information effectively. Hence DMCCA improves recognition performance

with substantially reduced dimensionality of the feature space, leading to

efficient practical pattern recognition.

Different form the methods of DMCCA and KECA, KECA+DMCCA

transforms the multiple input information/data into the discriminative

multiple canonical correlation analysis space at first. After that, KECA
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Figure 5.30: Experimental results of audiovisual emotion recognition with DMCCA,
KECA and KECA+DMCCA on RML database ( σ =1, 10, 100, 1000, 10000 )
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Figure 5.31: Experimental results of audiovisual emotion recognition with DMCCA,
KECA and KECA+DMCCA on eNTERFACE database ( σ =1, 10, 100, 1000, 10000 )
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is applied to the discriminative vectors in the DMCCA space. Therefore,

not only the complementary representations of input data are revealed by

entropy estimation, but also the discriminative representations are consid-

ered by DMCCA. After processed by the proposed fusion method, most

of useful information is properly preserved and improved recognition ac-

curacy is achieved. Experimental results show that the proposed DAF

outperforms the existing methods based on similar principles.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

With the rapid development of advanced multi-disciplinary technologies

for acquiring, storing and transmitting massive amount of data, multi-

modal information processing has attracted rapidly growing attention re-

cently, in both academia and industry. Multi-modal data/information

research challenges, particularly related to fusion and perception, are u-

biquitous in diverse domains, such as Internet of things, Robotics, Manu-

facturing, Engineering, Natural Language Processing (NLP) and Medical

Informatics. Next-generation cognitive agents will require to be appropri-

ately equipped with multi-modal information fusion and perception capa-

bilities to carry out cognitive tasks such as perception, action, affective and

cognitive learning, decision making and control, social cognition, language

processing and communication, reasoning, problem solving, and conscious-

ness.

Despite recent progress in the multi-disciplinary area of multi-modal fu-

sion, there remain outstanding challenges for effectively exploiting multi-
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modal information in practical environments, in particular for untapped

real-world applications in diverse disciplines. In this thesis, a discrim-

inative analysis framework (DAF) is introduced to handle multi-modal

information fusion. First, discriminative multi-modal canonical correla-

tion analysis (DMCCA) is proposed for multi-modal information fusion to

extract the discriminative representation from the input multi-modal data.

After that, DMCCA is integrated with kernel entropy component analysis

(KECA) to further improve the performance of the DAF for multi-modal

information fusion. Then the proposed DAF is applied to handwritten

digit recognition, face recognition and emotion recognition to demonstrate

the generic nature and effectiveness of the proposed framework.

After a comprehensive background study in Chapter 2, we introduce

DMCCA for multi-modal analysis and fusion in Chapter 3. DMCCA

finds projection directions to maximize the within-class correlation and

minimize the between-class correlation among multiple information/data

sources in order to identify the discriminative representation among differ-

ent modalities effectively. In addition, we verify that the best performance

by discriminative representation achieves when only a small fraction of the

data needs to be analyzed. Furthermore, a unified framework for canonical

correlation analysis is established for information fusion in the transformed

domain. Finally, we present a method on graph representation for select-

ing optimal projection in multi-modal information fusion.

In Chapter 4, firstly, we study entropy estimation and KECA, which are

expected to reveal more complementary representations than the second

order statistics from the multiple input sources. After that, we inves-

tigated the proposed discriminative method KECA plus DMCCA (KE-
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CA+DMCCA) for information fusion. Based the proposed method, not

only the discriminative representations are considered by DMCCA, but

also the complementary representations of input data are revealed in the

space of KECA, resulting in further improved recognition performance.

In Chapter 5, we evaluate the effectiveness of the proposed framework

on MNIST handwritten digit database, ORL face database, RML emotion

database and eNTERFACE emotion database. Experimental results show

that the proposed framework outperforms the methods based on similar

principles.

6.2 Future Work

Based on the current work, we propose the following possible directions

for future research. In this thesis, a connection between information theo-

ry and information fusion has been built, but the concepts of information

theory studied in the thesis are only entropy. Actually, there are more

sophisticated tools in information theory such as joint entropy, mutual en-

tropy, mutual information, etc., which can potentially help explore more

complementary representations among different modalities. The applica-

tion of information theory enables us to consider the problem of infor-

mation fusion from the viewpoint of the nature of information instead of

statistics. We believe that the direction of integrating information theory

and information fusion needs more work.

The second direction is from big data perspective. Since high volumes

of multimedia, such as audio, video and images, are being generated daily,

we should consider information fusion of multimedia data as a problem

of big data. For the big data, it requires more sophisticated algorithms
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for content analysis than those working on previous databases with limit-

ed data. Therefore, we should pay attention on how to effectively realize

information fusion for massive multimedia data from widely distributed

data sources.

Moreover, based on the above discussions, it is clear that research on

information fusion algorithms and systems is becoming more and more

common-place. There are a number of areas in the information fusion

community that will most likely be highly active in the near future. With

information fusion algorithms extending their applications from the statis-

tics domain to many other fields such as robotics, sensor networks, and

image processing, the need for standard fusion evaluation strategies ap-

plicable independent of the given application domain will grow more than

ever. As a result, the fusion community will be driven towards devel-

opment and wide spread adoption of such strategies, the investigation

of which will be our future research focus. Undoubtedly, this trend will

motivate more extensive research on topics related to the performance of

information fusion systems. We believe multi-modal information fusion for

multimedia analysis is a promising research area and will play increasing

important roles in our future life.
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