
THE EFFECT OF PARALLEL EXECUTION ON MULTI-SITE COMPUTATION

OFFLOADING IN MOBILE CLOUD COMPUTING

by

Muhammad Ismail Sheikh

B.A.Sc., Ryerson University, 2015

A thesis presented to Ryerson University in partial fulfillment of the

requirements for the degree of Master of Applied Science

in the program of Electrical and Computer Engineering

Toronto, Ontario, Canada, 2018

© Copyright 2018 by Muhammad Ismail Sheikh

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for

the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

I understand that my thesis may be made electronically available to the public.

iii

THE EFFECT OF PARALLEL EXECUTION ON MULTI-SITE

COMPUTATION OFFLOADING IN MOBILE CLOUD

COMPUTING

Muhammad Ismail Sheikh

Master of Applied Science

Department of Electrical and Computer Engineering

Ryerson University, 2018

Abstract

The demand for running complex applications on smart mobile devices is rapidly increasing.

However, the limitations of resources are restricting the development of intensive applications on

these devices. The restrictions can be overcome by offloading the computation of an application

in the powerful cloud servers. The objective of the computation offloading is to offload the parts

of an application to the cloud server to minimize the response time, energy consumption and

monetary cost of the application. Unlike prior work in computation offloading, this work considers

the effect of parallel execution—on different devices (external parallelism) and on the different

cores of a single device (internal parallelism). This work models each device as a multi-server

queueing station. It uses genetic algorithm to determine the near-optimal offloading allocation.

The results show that considering the effect of parallel execution yields better pareto-optimal

solution for the allocation problem compared to excluding parallelism.

iv

Acknowledgments

I would like to thank my supervisor, Dr. Olivia Das for her guidance, encouragement, and her

financial support. I greatly appreciate the opportunity she provided me to carry out the research

under her supervision. I would like to express my sincerest gratitude for her continuous

constructive feedback on the challenges and problems I faced during this Research. It was my

pleasure to work under her supervision to contribute my part in the area of mobile cloud

computing.

I would also like to thank the thesis defense committee members, Dr. Anpalagan, Dr. Yang, Dr.

Jaseemuddin, and Dr. Das for their time and effort to review my thesis and to provide constructive

feedback.

I also want to thank my parents, my wife and other family members for their guidance, financial

and emotional support throughout my academic and professional career. Their continuous prayers,

and blessings cannot be explained in words which shaped my personality and helped me face all

the challenges in my life.

Last but not least, I would like to thank my Shaykh, Hazrat Khawaja Abdullah Jan Sahib, who

motivated me to continue my studies after I moved to Canada in 2007. He guided me with his

blessings and prayers on all the challenges I faced in my life.

v

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

List of Tables ix

List of Figures xi

1. Introduction 1

1.1. Motivation 1

1.2. Research Problem 3

1.3. Contribution 4

1.4. Research Overview 5

1.5. Thesis Outline 6

2. Background 7

2.1. Mobile Cloud Computing 7

2.2. Single-Site Offloading Framework 7

2.3. Multi-Site Offloading Framework 9

2.4. Contribution to the Literature 10

2.5. Genetic Algorithm 11

2.5.1. Initialization 11

2.5.2. Selection 12

2.5.3. Crossover 12

2.5.4. Mutation 12

2.5.5. GA Objectives 13

vi

2.5.6. Fitness Function 13

3. The Pareto-Optimal Solution 14

3.1. Definition and Computing Parameters 15

3.2. Model without Considering Parallel Execution of Tasks 19

3.2.1. Response Time 19

3.2.2. Energy Consumption 19

3.2.3. Execution Cost 21

3.3. Introductory Example 1 22

3.4. Evaluating a given allocation without Considering Parallel Execution

 of Tasks (for the introductory example) 26

3.4.1. Response Time 26

3.4.2. Energy Consumption 27

3.4.3. Monetary Cost 29

3.5. Near-Optimal Allocation(s) using Genetic Algorithm without Considering Parallel

 Execution (for the Introductory Example) 30

3.5.1. GA Parameters 30

3.5.2. No Offloading 31

3.5.3. Single-Site Offloading 32

3.5.4. Multi-Site Offloading 32

3.6. Our Model considering Parallel Execution of Tasks 33

3.6.1. Definition 34

3.6.2. Job Generation 36

3.6.3. External Parallel Execution 38

3.7. Evaluating a given allocation Considering Only External Parallelism

 (for the introductory example) 39

3.8. Near-Optimal Allocation(s) using Genetic Algorithm Considering Only External

vii

 Parallelism (for the Introductory Example) 43

3.8.1. No Offloading 43

3.8.2. Single Site Offloading 44

3.8.3. Multi-Site Offloading 45

3.9. Evaluating a given allocation Considering both Internal and External

 Parallelism (for the introductory example) 46

3.10. Near-Optimal Allocation(s) using Genetic Algorithm Considering both Internal and

 External Parallelism (for the Introductory Example) 50

3.10.1. No Offloading 51

3.10.2. Single Site Offloading 51

3.10.3. Multi-Site Offloading 53

3.11. Summary 54

4. Case Study 56

4.1. Mobile Application Specification 56

4.2. Model Specification 59

4.2.1. Mobile Device 59

4.2.2. Mobile User Profile 60

4.2.3. Cloud Server d1 60

4.2.4. Cloud Server d2 60

4.2.5. Device to Device Bandwidth 61

4.2.6. Genetic Algorithm Configuration 61

4.2.7. System Configuration 62

4.3. Results and Discussions 62

4.3.1. Including or excluding parallel execution to find the near-optimal offloading

Allocation 64

4.3.1.1. Response Time 64

viii

4.3.1.2. Energy Consumption 66

4.3.1.3. Monetary Cost 67

4.3.2. Evaluating the effect of multi-core devices on near-optimal offloading allocation 69

4.3.2.1. Case1: No Offloading 70

4.3.2.2. Case 2: Single Site offloading 72

4.3.2.2.1. 1-Core each Resource 73

4.3.2.2.2. 2-Core in each Resource 74

4.3.2.2.3. 4-Core in each Resource 75

4.3.2.3. Case 3: Multi-Site Offloading 75

4.3.2.3.1. 1-Core each Resource 77

4.3.2.3.2. 2-Core each Resource 77

4.3.2.3.3. 4-Core each Resource 78

4.3.3. Summary 78

5. Conclusion 80

5.1. Conclusion 80

5.2. Future Work 81

References 83

ix

List of Tables

Table 1: GA with no offloading .. 31

Table 2: GA Offloading with one VM .. 32

Table 3:GA Offloading with two VM ... 33

Table 4: Jobs scheduled in the Mobile Device d0 .. 39

Table 5: Jobs scheduled in the Cloud Server d1 .. 40

Table 6: Jobs scheduled in the Cloud Server d2 .. 41

Table 7: External Parallel Execution Gain .. 42

Table 8: External Parallel Execution with no offloading .. 43

Table 9: External Parallel Execution with single-site offloading (one VM) ... 44

Table 10: External Parallel Execution with multi-site offloading (two VMs) .. 45

Table 11: Jobs scheduled in the Mobile Device d0 .. 46

Table 12: Jobs scheduled in the Cloud Server d1 .. 47

Table 13: Jobs scheduled in the Cloud Server d2 .. 48

Table 14: External and Internal Parallel Execution Gain .. 49

Table 15: Internal and External Parallel Execution with no offloading .. 51

Table 16: Internal and External Parallel Execution for single-site offloading (with one VM) 52

Table 17: Internal and External Parallel Execution for multi-site offloading (with two VMs) 53

Table 18: Summary of Results for the Introductory Example ... 55

Table 19: Near-optimal Solution and Minimum Corresponding Response Time 64

Table 20: Near-optimal Solution for Energy Consumption .. 66

Table 21: Cost Objective with respect to Response Time ... 68

Table 22: Near-optimal Energy Consumption with Cost .. 69

Table 23:Offloading Allocation for No-Offloading .. 71

Table 24:Offloading Allocation for Single-Site Offloading .. 73

file:///D:/DropBox/Dropbox/MASC/Thesis_Paper/Thesis/Thesis%204.29.18.docx%23_Toc512780751
file:///D:/DropBox/Dropbox/MASC/Thesis_Paper/Thesis/Thesis%204.29.18.docx%23_Toc512780752

x

Table 25: Offloading Allocation for Multi-Site Offloading .. 76

Table 26: Effect Of The Number Of Cores In Each Device On Near-Optimal Offloading Allocation 79

file:///D:/DropBox/Dropbox/MASC/Thesis_Paper/Thesis/Thesis%204.29.18.docx%23_Toc512780753

xi

List of Figures

Figure 1: A Simple Workflow Graph .. 22

Figure 2: The time-weighted workflow graph corresponding to the offloading allocation a. 25

Figure 3: The device du modeled as a multi-server queueing station with ru number of servers 34

Figure 4: Call graph of the face recognition application ... 56

Figure 5: Workflow - Graph of a Face Recognition Application .. 57

Figure 6: Simplified Work-Flow graph of Face Recognition Application .. 58

Figure 7: Internal Parallel Execution for No-Offloading .. 71

Figure 8: Internal Parallel Execution for Single-Site Offloading .. 73

Figure 9: Internal Parallel Execution for Multi-Site Offloading ... 76

file:///D:/DropBox/Dropbox/MASC/Thesis_Paper/Thesis/Thesis%204.29.18.docx%23_Toc512780719
file:///D:/DropBox/Dropbox/MASC/Thesis_Paper/Thesis/Thesis%204.29.18.docx%23_Toc512780720

1

Chapter 1: Introduction

1.1 Motivation

The demand of mobile devices is continuously increasing in our daily lives through their new

impressive features such as face recognition, augmented reality and interactive gaming. However,

these functionalities are offered through specific applications which are resource-hungry and

demand intensive computation as well as high energy consumption. Further, the mobile devices

are very resource constrained due to their physical size, limited processing speed, and battery life.

These limitations cause excessive resistance in the development of these impressive applications.

One promising approach to deal with the resource limitations of mobile devices is to use

computation offloading. Computation offloading is a solution to improve the capability of mobile

applications by migrating heavy computation tasks of an application to powerful servers in the

cloud [18]. Computation offloading can save energy and prolong the battery life of mobile devices

by running computation-intensive tasks in the cloud servers, which will drain a device’s battery if

executed locally. Computation offloading can improve the response time of the mobile application

by running some tasks on the cloud servers (assuming that the processing speed of the cloud servers

is higher than the mobile device). However, there are some factors that adversely affect the

efficiency of offloading such as, the amount of data that must be transferred among the mobile

device and the cloud servers, and the communication bandwidth between them. Computation

offloading also incurs the following monetary cost for the mobile user:

(i) The user has to pay for the renting cost of the cloud servers for the duration of the

application execution

2

(ii) In case of excessive data exchange between the mobile device and cloud servers, the user

may have to pay for the additional data usage if it exceeds the monthly subscription.

Thus, a mobile device should judiciously determine whether to offload computation, what tasks

(i.e. parts) of an application should be offloaded, and to which servers in the cloud. Further, the

code offloading can be deployed either by offloading any method, any thread or any class of an

application to the cloud server. The greatest benefit from computation offloading can be obtained

by finding the optimal allocation for the tasks of an application to different devices (i.e. the mobile

device and the cloud servers) that minimizes the application objective. The objectives can be the

total response time, the mobile battery energy required for the computation, or the monetary cost

incurred by the user for the execution on the cloud servers. The workflow (the execution sequence

of tasks) of a mobile application may not be linear, i.e. it may contain tasks that can execute in

parallel in multiple different resources. The computation offloading can be further enhanced due

to this non-linear property of the workflow, by adopting parallelism in the task execution. It can

be implemented among the different computation resources (i.e. mobile device and cloud servers),

referred to as external parallelism or to different processing cores of a single device, referred to as

internal parallelism in this research. Both external and internal parallel execution can significantly

improve the mobile application response time based on the offloading allocation. As a result, the

energy consumption and the monetary cost needed to run the application will also be affected

depending on the offloading allocation.

3

1.2 Research Problem

Mobile Cloud Computing (MCC) has dramatically improved from its initial term of cyber-

forging and continuously getting substantial attention of researchers, investors, and analysts due

to its ability to leverage execution of an applications from mobile device to powerful cloud

server(s). There has been continuous research conducted in the area of MCC to make it more

convenient and user-friendly to the end user. The current literature emphasizes on both, the single-

site as well as multi-site code offloading, between the mobile device and cloud servers. However,

to the best of our knowledge, the current research in the models of code offloading is still

performing the computation of an application among different resources sequentially by adding

the execution time of all parallel tasks. This assumption of sequential execution of the parallel

tasks dramatically affects the prediction of overall response time and energy consumption of the

mobile application.

Further, there are diverse types of mobile device users whose objectives, needs, and perceptions

of the mobile applications are different. For example, some users are aggressive and their main

concern is the performance, some are conservatives and their concern is the battery life of their

mobile device and others are reluctant to spend any additional cost on the application execution.

Thus, to make the code offloading more reliable and available to these diversified users, it must

be multi-objective. To the best of our knowledge, the current literature focuses on the application

response time and energy consumption for computation offloading. However, the monetary cost

which arises by renting the cloud servers as well as the network service charges of the mobile

device are ignored. Thus, to achieve a more accurate estimate of code offloading, the network

charges and cloud service renting cost should also be considered. This research proposes a unique

4

multi-site code offloading model by considering external and internal parallel execution of the

application tasks with the consideration of multiple objectives, i.e. the response time, the energy

consumption and the monetary cost to provide a user with more realistic and near-optimal code

offloading allocation.

1.3 Contributions

This thesis solved the problem of multisite offloading of mobile applications. Our work goes

beyond existing approaches by considering parallel execution of tasks during offloading decision

in contrast to others who primarily focused on sequential executions.

The contributions of this thesis are as follows:

1. It proposes a theoretical framework for the near-optimal offloading allocation problem in

multi-site offloading scenario.

2. It uses genetic algorithm to find the near-optimal allocation of tasks to different devices.

The genetic algorithm iteratively evaluates multiple allocations to find the near-optimal

solution.

3. To evaluate an offloading allocation, we propose a new algorithm that computes the

application’s response time, the energy consumption on the mobile device, and the

monetary cost. Our algorithm accounts for the execution dependencies of the tasks and the

parallel execution of tasks across the cores of a device as well as across different devices.

4. We implement our novel algorithm that considers parallel execution of tasks, and an

existing algorithm that ignores the parallel execution of tasks. We accomplish this

5

implementation using an existing library of genetic algorithms in Java (the MOEA

Framework [15]).

5. We compare and analyze our novel algorithm against the existing algorithm for a real-

world face recognition application. The results show that accounting for the effect of

parallel execution yields better near-optimal solution for the allocation problem compared

to not accounting for parallelism at all.

The results of this analysis are incorporated into a research manuscript and submitted to the 26th

IEEE International Symposium on the Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS 2018) in Milwaukee, Wisconsin, USA [29].

1.4 Research Overview

The response time and energy consumption are the key elements in the performance and reliability

of an application. The enhancement of these two factors can open a straight path of the

development of the intensive applications such as face recognition and GPS services on mobile

devices. The code offloading framework has the capability of dramatically improving these two

factors at a tiny processing cost by leveraging the intensive execution from resource hungry mobile

processor to the powerful cloud server. This research compares the enhancement of the response

time and energy consumption of an application with the required additional processing cost as a

multi-objective code offloading framework. The trade-off between the Response Time, the Energy

Consumption and the monetary cost is further examined by introducing parallel execution amongst

different available code offloading sites (VMs) as well as partitioning between different cores of

the processors using Genetic Algorithm (GA). The GA finds the near-optimal values of the

Response Time, the Energy Consumption and the monetary cost by examining the solution

6

population in all possible scenarios such as complete offloading to the cloud server(s), or

performing total local execution (in the mobile device), or performing hybrid execution between

the cloud server(s) and the mobile device.

1.5 Thesis Outline

This thesis consists of total six chapters. A brief description of each chapter is as follows:

Chapter 1:

The first chapter provides the introduction. It summarizes the motivation behind this

research and provides a brief overview of the research.

Chapter 2:

This chapter provides a background of available code offloading frameworks, their solution

to the research problem, along with limitations and areas of improvement on each

framework. It also summarizes our contribution to the literature.

Chapter 3:

This chapter illustrates our multi-objective framework that accounts for the effects of

internal and external parallelism on offloading allocation problem.

Chapter 4:

This chapter compares the effect of external and internal parallel execution with the

sequential execution proposed in the current literature though a real-world face recognition

application.

Chapter 5:

This chapter provides the conclusions and the future work.

7

Chapter 2: Background

Mobile devices are an inseparable part of our daily life and continuous research has been conducted

to make them more user-friendly and intuitive by enabling new and updating existing features on

them. Cloud Computing offers several different on-demand services such as Infrastructure as a

Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS) to ease the resistance

of the development of intensive application on mobile devices. [2] The utilization of these cloud

services on a mobile device refers to Mobile Cloud Computing (MCC). [4], [22].

2.1 Mobile Cloud Computing

Mobile Cloud Computing (MCC) enables the execution of intensive applications such as face

recognition and augmented reality on resource constrained mobile devices. The primary role of

the MCC is to serve as a terminal between the resources-rich cloud server and resource constrained

mobile device to improve the application execution time as well as to reduce the application energy

consumption [19]. One of the method of creating a server-client bridge is called code offloading.

There are several existing code offloading frameworks which one can use based on their objective

such as improving response time, and reducing the energy consumption of a mobile application.

2.2 Single-Site Offloading Frameworks:

The MAUI [7] proposes an offloading framework based on the reduced energy consumption by

using the integer linear programing to find the near-optimal offloading solution [14]. The MAUI

framework provides method level code offloading and requires the developer to manually annotate

the methods which can be offloaded to the cloud server. This framework maps the application as

8

a call graph where methods are represented by vertices and their invocation is represented by the

edges [7].

The Clone-Cloud [6] provides a transparent code migration code offloading framework based on

the energy consumption and execution time [12]. This framework uses a combination of static

analysis and dynamic profiling to automatically partition the application and migrate the thread of

the application to the cloud server. This framework converts the problem as a tree-diagram.

The ThinkAir [17] framework focuses on the scalability of cloud VM and dynamically scales the

cloud server instances to allow parallel execution of offloading code on multiple instances [3]. As

in MAUI, this framework also requires the application developer to manually annotate part of the

code which can be offloaded to the cloud server. This framework contains an execution controller

which determines the execution time, energy consumption and cost of offloading before generating

offloading policy.

The COMET (Code Offloading by migrating execution transparently) provides a transparent code

migration through distributed shared memory (DSM) between the mobile device and cloud server

[13]. Similar to CloneCloud, this framework does not require manual annotation from the

developer on the application code. It contains an automated code profiler to analyze the application

for the offloading policy.

The framework in [11] dynamically partition the application by classify each task as offloadable

or unoffloadable to minimize the response time and energy consumption. Their model constructs

9

the application as weighted consumption graph (WCG) to estimate the computational and

communication cost and optimize it using min-cut offloading partitioning algorithm (MCOP).

2.3 Multi-Site Offloading Framework:

Multi-Site code offloading is a well-regarded approach for minimizing energy consumption of the

mobile application. [26]. To the best of our knowledge, multi-site code offloading is considered

by [24, 21, 14, 26].

The [24] multi-site code offloading framework assumes each cloud server has different

computational capacities and network bandwidth. The application in this model is represented as

a graph partitioning problem where nodes refer to computation module and edges refer to the

interaction between modules. This model assigns weight to all nodes and edges to minimize the

computation and communication cost using 0-1 Integer Linear programming (ILP) problem. The

model is motivated by the data-centric offloading to provide solution to applications that requires

multiple sources of data.

The [21] research developed an Energy Efficient Multisite Offloading (EMSO) algorithm by

formulating partition problem as 0-1 Integer Linear programming (ILP). They perform object level

offloading based on the constructed Weight Object Relation Graph (WORG) dynamic profiling.

Using static analysis, weight is assigned to the nodes and edges of the graph to find the near-

optimal offloading solution.

10

The energy-efficient multisite offloading policy [EMOP] in research [26] optimizes the application

energy consumption using discrete time Markov chain (DTMC) model. It uses value iteration

algorithm (VIA) to determine the offloading policy for the Markov chain model. Their model

considers heterogeneity of offloading sites and perform data and process-centric offloading.

2.4 Contribution to the literature:

To the best of our knowledge, all single-site or multi-site frameworks mentioned in section 2.4 and

section 2.5 uses a binary decision variable to decide whether a task of an application should be

offloaded to the cloud server or be processed locally in the mobile device. However, our model

introduces a multi-state decision variable to decide if the task should be offloaded to the cloud

server or process locally in the mobile device. The states of the decision variable are equal to the

number of computing resources available for the execution. Similar to the offloading framework

of Sinha et al. [24], our model also allows each cloud server a different computational capacity

and network bandwidth. The multi-state decision variable finds and offloads the application tasks

to the cloud server using genetic algorithm.

In addition to that, all single-site and multi-site offloading frameworks focuses on the minimization

of the response time and energy consumption. However, the monetary offloading cost which arises

from the mobile data network and renting cloud servers are being ignored in the process. Our

partitioning model optimizes the application based on three objectives: minimize the response

time, minimize the energy consumption, and minimize the operating cost; and produces pareto-

optimal solutions using genetic algorithm. The user can choose any pareto-optimal solution for

code offloading based on the current state of the mobile battery and network bandwidth.

11

In the current literature, the partitioning of an application with multiple parallel nodes, is the

addition of the computational time of the nodes. However, if the parallel nodes are assigned to the

multiple different cloud servers, the computational time is the maximum time of all nodes since

the execution is parallel among all resources. Our model addresses this issue and introduces a

queue to each cloud server to perform parallel execution of the parallel nodes to further improve

the application response time prediction. Our model takes into consideration, multi-processor code

offloading since the cloud servers are equipped with the multiple processors and available for code

offloading.

2.5 Genetic Algorithm

The genetic algorithm (GA) has been the most popular technique in computation research [25]

widely used in the area of mobile computing. The research [5], [9] and [28] uses genetic algorithm

to find the near-optimal offloading solution for the code offloading problem. The genetic algorithm

starts with a set initial population and produces new solutions based on the probability of crossover

and mutation. It uses the fitness function to examine the solution and optimizes the objectives of

the application.

2.5.1 Initialization:

In initialization, the user defines the initial population size, the probability of crossover and

mutation. The GA initializes the user pre-defined population size of chromosomes. In computation

offloading problem, each chromosome refers to a unique offloading solution.

12

2.5.2 Selection:

Selection is the process of choosing two chromosomes from the population to recombine for

generating new population via crossover or mutation. The purpose of selection is to filter

individuals in the hope that their offspring (chromosome) has higher fitness.

2.5.3 Crossover

The crossover operator is to combine two sets of chromosomes to generate new offspring(s)

(chromosomes). It is applied to selected individuals with the hope that they produce child(ren)

with better fitness. The process of recombination is as follow:

1. The selection operator selects at random a pair of two chromosomes to mate

2. A random cross-site is selected in the gene

3. The position values are swapped between both chromosomes following the cross-site to

produce new offspring(s).

2.5.4 Mutation

The mutation operator slightly modifies chromosomes to improve the fitness and avoid early

convergence. It prevents the algorithm to get trapped in the local minimum. The crossover exploits

the chromosome to find the better solution and mutation helps in the exploration of the whole

search space. There are different forms of mutation, for different kinds of representation. A simple

mutation is about inverting the value of each gene with the user pre-defined probability.

13

2.5.5 GA Objectives:

The GA has the ability to optimize multiple objective of the application simultaneously. In a multi-

objective problem there is no best solution with respect to all objectives. Thus, it produces the

pareto-optimal solution for the objectives which cannot be simply compared with each other.

2.5.6 Fitness Function:

The fitness function consists of mathematical model of GA objective. In this research, the fitness

function consists of three objectives: minimize response time, minimize energy consumption, and

minimize monetary cost of the offloading problem.

14

Chapter 3: The Pareto-Optimal Solution

In this chapter, the theoretical research framework is discussed to find a near-optimal offloading

allocation for the multi-objective code offloading problem. The gain due to the external and

internal parallel execution, the relevant definitions, and computing parameters to achieve the near-

optimal offloading solution will also be discussed in this chapter. The conversion of a mobile

application to workflow graph and the effect of genetic algorithm will be discussed in this chapter.

This chapter is organized as follow:

3.1: Definitions and Computing Parameters

3.2: Model without Considering Parallel Execution of Tasks

3.3: Introductory Example

3.4: Evaluating a given allocation without Considering Parallel Execution of Tasks (for

the introductory example)

3.5: Near-Optimal Allocation(s) using Genetic Algorithm without Considering Parallel

Execution (for the Introductory Example)

3.6: Our Model considering Parallel Execution of Tasks

3.7: Evaluating a given allocation Considering Only External Parallelism (for the

introductory example)

3.8: Near-Optimal Allocation(s) using Genetic Algorithm Considering Only External

Parallelism (for the Introductory Example)

3.9: Evaluating a given allocation Considering both Internal and External Parallelism

(for the introductory example)

3.10: Near-Optimal Allocation(s) using Genetic Algorithm Considering both Internal and

External Parallelism (for the Introductory Example)

15

3.1 Definitions and Computing Parameters:

Definition 1 (Mobile application): A mobile application is invoked by a mobile user through

his/her mobile device for a particular purpose. A mobile application typically consists of several

tasks.

Definition 2 (resource). A resource can be either the mobile device (from which the computation

can be offloaded) or a remote cloud server. Let D be the set of all devices. The set D contains the

mobile device and the K cloud servers. The set D thus has K+1 elements.

𝐷 = {𝑑0, 𝑑1, 𝑑2, … 𝑑𝑘}

Where 𝑑0is the mobile device and 𝑑1, 𝑑2, … . . 𝑑𝑘 represent the cloud servers.

Definition 3 (Mobile device). A mobile device is a cell-phone or any portable device that can

connect to the internet and request execution of application tasks from computing clouds. The

mobile device d0 is a homogenous multi-core device which is modeled as a five tuple <

𝑏0, 𝑛0, 𝑠0, 𝑝𝑐0, 𝑝𝑑0, 𝑝𝑖0 > where 𝑏0 is the current battery percentage of the mobile device, 𝑛0 is

the number of processors in the mobile device, and for each processor 𝑠0 is the processing speed

of that processor (in million instructions per second), 𝑝𝑐0 is the computation power consumption,

𝑝𝑑0is the power consumption for communication (send and receive data), and 𝑝𝑖0 is the power

consumption while the device is idle.

Definition 4 (Remote Cloud Servers). In this work, a mobile device can offload its computation

to more than one cloud servers. A cloud server is a homogenous multi-core computational resource

16

(e.g. a virtual machine) that can execute tasks of a mobile application. A cloud server

𝑑𝑐 𝑤ℎ𝑒𝑟𝑒 𝑐 = 1, 2, …𝐾 is modelled as a three tuple < 𝑛𝑐, 𝑠𝑐, 𝑟𝑐 > where 𝑛𝑐 is the number of

cores in the cloud server, 𝑠𝑐 is the processing speed of each core (in million instructions per

second), and 𝑟𝑐 is the monetary rate of renting the cloud server from the cloud provider (in dollars

per minute). It is assumed that if a cloud server is used for executing certain tasks of a mobile

application, then the mobile user must rent the server from the cloud provider for the whole

duration of execution of the application.

Definition 5 (Device-to-device bandwidth): The current data bandwidth between any two devices

must be known. This is necessary to estimate the communication time between the two devices for

data transfer. Let bandwidth (𝑑𝑢, 𝑑𝑣) be the bandwidth between device 𝑑𝑢 and device 𝑑𝑣, where

u, v = 0, 1, 2, …K, and u is not equal to v.

Definition 6 (Mobile User Profile): Usually a mobile user pays a fixed monthly monetary cost to

the internet service provider for uploading and downloading data from the internet. This fixed cost

is charged for a limited fixed amount of data regardless of whether the user uses this data or not.

If the user goes over the limited amount, a different monetary rate for consumption is applied to

the additional amount consumed. For example, let a mobile user pays 25 dollars per month for

1GB data and if the user goes over 1GB, then a rate of 30 cents per MB will be charged for the

additional amount. A mobile user profile is modelled as a two tuple 〈 𝜌, 𝛼 〉where 𝜌 is the current

remaining amount of data left from the fixed portion and 𝛼 is the monetary rate for the additional

amount of data (in dollars per MB).

17

Definition 7 (Mobile Application Workflow): The workflow of a mobile application defines the

execution sequence of the tasks. It is modelled as a workflow graph 𝐺 = (𝑇, 𝐸) where the set of

vertices 𝑇 = {𝑡1, 𝑡2, … 𝑡𝑁} represents the N tasks of the mobile application and the set of edges

𝐸 = {𝑒 (𝑡𝑖, 𝑡𝑗) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑡𝑖 , 𝑡𝑗 ∈ 𝑇} defines the inter-dependency between the tasks.

A task of the mobile application receives some input data and produces some output data. All the

tasks of a mobile application may not be suitable for offloading to remote cloud servers. A task

may not be offloadable if it needs access to local components (such as a camera or other sensors)

or its execution on a remote cloud server might cause security problems.

In the workflow graph 𝐺, each task 𝑡𝑖 ∈ 𝑇 is modelled as a two tuple < 𝑜𝑖, 𝜔𝑖 > where 𝑜𝑖 is the

type (true for offloadable or false for non-offloadable) of the task 𝑡𝑖 and 𝜔𝑖 is the amount of CPU

cycles (in million instructions) required for execution of task 𝑡𝑖.

Each directed edge 𝐸 = {𝑒 (𝑡𝑖, 𝑡𝑗) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑡𝑖, 𝑡𝑗 ∈ 𝑇} represents the dependency of 𝑡𝑗 on 𝑡𝑖 for

execution. Each edge 𝑒 (𝑡𝑖 , 𝑡𝑗) is associated with a value < 𝜔𝑖𝑗 > where 𝜔𝑖𝑗 represents the

amount of data that needs to be communicated between the devices executing the tasks 𝑡𝑖 and 𝑡𝑗.

This data transfer does not happen if the tasks 𝑡𝑖 and 𝑡𝑗 are executed on the same device. Let

𝑠𝑜𝑢𝑟𝑐𝑒(𝑡𝑖) be the set of tasks on which the task 𝑡𝑖 depends on for execution. Let 𝑠𝑖𝑛𝑘(𝑡𝑖) be the

set of tasks which depends on task 𝑡𝑖 for execution. We define the level of task 𝑡𝑖, 𝑙𝑒𝑣𝑒𝑙(𝑡𝑖) be the

maximum of the levels of the tasks on which 𝑡𝑖 depends on for execution plus 1, i.e.

𝑙𝑒𝑣𝑒𝑙(𝑡𝑖) = 𝑚𝑎𝑥 {𝑙𝑒𝑣𝑒𝑙(𝑠𝑜𝑢𝑟𝑐𝑒(𝑡𝑖))} + 1

18

For a given offloading allocation[𝑓1, 𝑓2, … , 𝑓𝑁], we can construct a time-weighted workflow graph

𝑇𝑊𝐺 = (𝑇, 𝐸) from the workflow graph G as follows: Each vertex 𝑡𝑖 ∈ 𝑇 is associated with a

weight 𝑤𝑖that represents the time to execute the task 𝑡𝑖 on computation resource 𝑓𝑖. 𝑤𝑖 can be

computed by dividing the amount of CPU cycles required for execution of task 𝑡𝑖 by the processing

speed of single core for device 𝑑𝑢 i.e. 𝑤𝑖 =
𝜔𝑖

𝑆𝑢
⁄ . Each 𝑒(𝑡𝑖, 𝑡𝑗) such that 𝑡𝑖, 𝑡𝑗 ∈ 𝑇 is associated

with a weight 𝑤𝑖𝑗 that represents the communication time needed for data transfer when task 𝑡𝑖

will be executed on device du (i.e. 𝑓𝑖 = 𝑑𝑢) and task 𝑡𝑗 will be executed on device 𝑑𝑣 (i.e. 𝑓𝑗 =

 𝑑𝑣). This communication time depends on the amount of the data that needs to be transferred and

the bandwidth between the devices 𝑑𝑢 and 𝑑𝑣. Thus, 𝑤𝑖𝑗 can be computed as:

𝑤𝑖𝑗 =
𝜔𝑖𝑗

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝑑𝑢,𝑑𝑣)
⁄ 𝑤ℎ𝑒𝑟𝑒 𝑑𝑢 ≠ 𝑑𝑣 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑤𝑖𝑗 = 0

Definition 8 (Offloading Allocation): In a multi-server offloading scenario, each offloadable

task of a mobile application can be allocated to run on either the mobile device or on one of the

remote cloud servers. Each non-offloadable task must be allocated to run on the mobile device.

An offloading allocation is defined as one such allocation of tasks of the workflow graph to

devices. An offloading allocation a, of the tasks in set T to the devices in set D is represented as

[𝑓1, 𝑓2, … , 𝑓𝑁] where each 𝑓𝑖 = 𝑑𝑢 where 𝑢 = 0, 1, 2, …𝐾.

3.2 Model without Considering Parallel Execution of Tasks

In this section, a mathematical model is represented, which can be used to calculate the theoretical

values of any offloading allocation a. It consists of response time 𝑅𝑇𝑎 of the application, battery

energy consumption 𝐸𝑎 of the mobile device, and monetary cost 𝐶𝑎 that will be incurred for the

19

mobile user for executing the application according to the allocation a. This model does not

consider the parallel execution of tasks. Here we follow the philosophy of the works in [24] and

[27].

3.2.1 Response Time:

The response time is the sum of the execution time of each task 𝑇 = {𝑡1, 𝑡2, … 𝑡𝑁} and

communication time of all edges 𝐸 = {𝑒 (𝑡𝑖, 𝑡𝑗) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑡𝑖, 𝑡𝑗 ∈ 𝑇}

𝑅𝑇𝑎 = ∑𝑤𝑖
𝑡𝑖∈𝑇

+ ∑ 𝑤𝑖𝑗
𝑒(𝑡𝑖,𝑡𝑗)∈𝐸

 (1)

Where 𝜔𝑖 is the amount of CPU cycles (in million instructions) required for execution of task 𝑡𝑖.

Each edge 𝑒 (𝑡𝑖, 𝑡𝑗) is associated with a value < 𝜔𝑖𝑗 > where 𝜔𝑖𝑗 represents the amount of data

that needs to be transferred between the devices executing the tasks 𝑡𝑖 and 𝑡𝑗 for communication.

3.2.2 Energy Consumption:

The energy consumption of an offloading allocation is the sum of execution energy,

communication energy and idle energy. The energy consumption for an offloading allocation a is

as follow:

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑤𝑖
𝑡𝑖∈𝑇,
𝑓𝑖=𝑑0

∗ 𝑝𝑐0 (2)

The execution energy is a product of the execution time 𝑤𝑖 of the mobile processor with the user

pre-defined value of the execution power 𝑝𝑐0

20

𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑤𝑖𝑗
𝑒(𝑡𝑖,𝑡𝑗)∈E,

𝑓𝑖≠𝑓𝑗 𝑎𝑛𝑑

 𝑒𝑖𝑡ℎ𝑒𝑟 𝑓𝑖=𝑑0
𝑜𝑟 𝑓𝑗=𝑑0

∗ 𝑝𝑑0 (3)

The communication energy is the product of the communication time 𝑤𝑖𝑗 of each edge 𝑒(𝑡𝑖 , 𝑡𝑗) ∈

E with the user pre-defined 𝑝𝑑0.

𝐼𝑑𝑙𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑤𝑖

𝑡𝑖∈𝑇,
𝑓𝑖≠𝑑0

∗ 𝑝𝑖0 + ∑ 𝑤𝑖𝑗
𝑒(𝑡𝑖,𝑡𝑗)∈E,

𝑓𝑖≠𝑓𝑗≠𝑑0

∗ 𝑝𝑖0 (4)

The idle Energy is the sum of the amount of time the local processor is idle when the execution is

taking place in other computing resources (cloud servers) and the amount of communication time

between two cloud servers where local processor is staying idle.

Thus, the mathematical model of energy consumption is given below.

Ea = ∑ 𝑤𝑖
𝑡𝑖∈𝑇,
𝑓𝑖=𝑑0

∗ 𝑝𝑐0 + ∑ 𝑤𝑖𝑗
𝑒(𝑡𝑖,𝑡𝑗)∈E,

𝑓𝑖≠𝑓𝑗 𝑎𝑛𝑑

 𝑒𝑖𝑡ℎ𝑒𝑟 𝑓𝑖=𝑑0
𝑜𝑟 𝑓𝑗=𝑑0

∗ 𝑝𝑑0 + ∑ 𝑤𝑖

𝑡𝑖∈𝑇,
𝑓𝑖≠𝑑0

∗ 𝑝𝑖0 + ∑ 𝑤𝑖𝑗
𝑒(𝑡𝑖,𝑡𝑗)∈E,

𝑓𝑖≠𝑓𝑗≠𝑑0

∗ 𝑝𝑖0 (5)

3.2.3 Execution Cost:

The execution cost of an application is dependent on the user mobile network package and cloud

VM renting cost based on the offloading allocation a. It is assumed that the monthly subscription

21

is limited and 𝜌 is the current remaining amount of data available for offloading and 𝛼 is the

monetary rate for the additional amount of data (in dollars per MB).

The cost is calculated by calculating the additional data required 𝐷𝑎 for any offloading allocation

a

𝐷𝑎 = (∑ 𝑤𝑖𝑗 ∗ 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝑓𝑖, 𝑓𝑗))

𝑒(𝑡𝑖,𝑡𝑗)∈E,

𝑓𝑖≠𝑓𝑗 𝑎𝑛𝑑

𝑒𝑖𝑡ℎ𝑒𝑟 𝑓𝑖=𝑑0
𝑜𝑟 𝑓𝑗=𝑑0

− 𝜌 (6)

Where 𝐷𝑎 is the difference between the remaining network data bandwidth and required network

bandwidth.

𝐶a =

{

 ∑ RTa

K

c=1,
if any 𝑓𝑖 = 𝑑𝑐,ti∈T

∗ 𝑟c 𝑖𝑓 𝐷𝑎 < 0

∑ RTa
K

c=1,
if any 𝑓𝑖 = 𝑑𝑐,ti∈T

∗ 𝑟c + (Da ∗ α), 𝑖𝑓 𝐷𝑎 > 0

 (7)

Thus, the execution cost 𝐶a is the sum of the products of total response time RTa of an allocation

a with cloud server operating charges if there is no additional network data bandwidth 𝐷𝑎 is

required. In case, if there is additional network data bandwidth required, the network charges (Da ∗

α) are added in the overall cost.

3.3 Introductory Example

Workflow Graph:

22

Figure 1 shows a workflow graph example consisting of seven different tasks for a mobile

application. Similarly, there are three different resources available for execution, local mobile

device, and cloud servers 𝑉𝑀1𝑎𝑛𝑑 𝑉𝑀2. Such that each of these seven tasks can be either

offloaded to one of the cloud server (𝑉𝑀1, 𝑉𝑀2) or executed in local processor. The goal is to

process all seven tasks in the shortest possible time with minimum consumption of mobile energy

and with spending lowest processing cost possible.

In Figure 1, the task 𝑡1must be executed first. When it is finished, the tasks 𝑡2, 𝑡3, 𝑡4and 𝑡5 can

execute in parallel. When task 𝑡2 finishes, task 𝑡6 can start its execution. Similarly, when

tasks 𝑡3, 𝑡4, 𝑡5 and 𝑡6 are finished, task 𝑡7 can begin execution. Once task 𝑡7 is finished, the

execution of the mobile application is complete.

Figure 1: A Simple Workflow Graph

In Figure 1 above, the task 𝑡1 is non-offloadable task whereas tasks 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6 and 𝑡7 are

offloadable tasks. Each task in this example needs to execute 4 million of instructions for

completion. Each edge between 𝑡1 and 𝑡𝑗 is labelled with the amount of data that needs to be

transferred between the devices executing the tasks 𝑡𝑖 and 𝑡𝑗 for communication. For example, if

<true, 4>

<false, 4>

<true, 4>

<true, 4>

t1

t2

t4

t5

t6

t7

t3

<true, 4>

<true, 4>

<true, 4>

<1>

<1>

<4>

<4>

<1>

<16>

<16>

<16>

<4>

23

the tasks 𝑡5 and 𝑡7 are executed on different devices, then 16MB of data needs to be transferred

between those devices. The details of the workflow graph in Figure 1 is as follow:

𝑠𝑜𝑢𝑟𝑐𝑒(𝑡1) = { } 𝑎𝑛𝑑 𝑠𝑖𝑛𝑘(𝑡1) = { 𝑡2, 𝑡3, 𝑡4, 𝑡5}

𝑠𝑜𝑢𝑟𝑐𝑒(𝑡2) = {𝑡1} 𝑎𝑛𝑑 𝑠𝑖𝑛𝑘(𝑡2) = {𝑡6}

𝑠𝑜𝑢𝑟𝑐𝑒(𝑡3) = {𝑡1} 𝑎𝑛𝑑 𝑠𝑖𝑛𝑘(𝑡3) = {𝑡7}

𝑠𝑜𝑢𝑟𝑐𝑒(𝑡4) = {𝑡1} 𝑎𝑛𝑑 𝑠𝑖𝑛𝑘(𝑡4) = {𝑡7}

𝑠𝑜𝑢𝑟𝑐𝑒(𝑡5) = {𝑡1} 𝑎𝑛𝑑 𝑠𝑖𝑛𝑘(𝑡5) = {𝑡7}

𝑠𝑜𝑢𝑟𝑐𝑒(𝑡6) = {𝑡2} 𝑎𝑛𝑑 𝑠𝑖𝑛𝑘(𝑡6) = {𝑡7}

𝑠𝑜𝑢𝑟𝑐𝑒(𝑡7) = {𝑡3, 𝑡4, 𝑡5, 𝑡6} 𝑎𝑛𝑑 𝑠𝑖𝑛𝑘(𝑡7) = { }

𝑙𝑒𝑣𝑒𝑙(𝑡1) = 1

𝑙𝑒𝑣𝑒𝑙(𝑡2) = 𝑙𝑒𝑣𝑒𝑙(𝑡3) = 𝑙𝑒𝑣𝑒𝑙(𝑡4) = 𝑙𝑒𝑣𝑒𝑙(𝑡5) = 2,

 𝑙𝑒𝑣𝑒𝑙(𝑡6) = 3

 𝑙𝑒𝑣𝑒𝑙(𝑡7) = 4.

Time-Weighted Workflow Graph for the allocation 𝒂 = [𝒅𝟎, 𝒅𝟐, 𝒅𝟏, 𝒅𝟏, 𝒅𝟏, 𝒅𝟎, 𝒅𝟐]:

Let us refer Example-1 whose workflow is shown in Figure 1. Let the mobile user gets 1GB of

data per month as part of monthly subscription. Let us assume that out of 1GB, 500MB is unused

and the charge for using additional data is 2 cents per MB of data such that

〈 𝜌, 𝛼 〉 =< 500𝑀𝐵, 0.2 𝑑𝑜𝑙𝑙𝑎𝑟𝑠/𝑀𝐵 >

24

For the mobile user profile. Further, let’s assume that the current state of the mobile device is

described as:

< 𝑏0, 𝑛0, 𝑠0, 𝑝𝑐0, 𝑝𝑑0, 𝑝𝑖0 > = < 95%, 1𝐶𝑜𝑟𝑒, 1000𝑀𝐼𝑃𝑆, 0.5𝑊, 0.25𝑊, 0.15𝑊 >

The mobile device is currently at 95% battery remaining, only has 1 processing core, 1𝑀𝐼𝑃𝑆 is

the processing speed of the core and 0.5, 0.25 and 0.15 𝑤𝑎𝑡𝑡𝑠 will be the execution,

communication, and being idle power consumption. Let us consider that there are two cloud

servers 𝑑1and 𝑑2 where the offloadable tasks can be allocated. The cloud resources configuration

is as follow

𝑑1 = < 𝑛1, 𝑠1, 𝑟1 > = < 4𝐶𝑜𝑟𝑒, 2000𝑀𝐼𝑃𝑆, 0.03 𝑑𝑜𝑙𝑙𝑎𝑟𝑠/𝑀𝑖𝑛 >

𝑑2 = < 𝑛2, 𝑠2, 𝑟2 > = < 4𝐶𝑜𝑟𝑒, 4000𝑀𝐼𝑃𝑆, 0.05𝑑𝑜𝑙𝑙𝑎𝑟𝑠/𝑀𝑖𝑛 >

𝑑1 is described as i.e. it has 1 core, 2 MIPS is the speed of the core, and 0.03 dollars is the charge

per minute for renting 𝑑1. Similarly, the cloud server 𝑑2 also has 1 core, with MIPS core speed

and 0.05 dollars per minute renting charge. The data transfer bandwidth among different resources

is assumed to be:

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝑑0, 𝑑1) = 1𝑀𝐵𝑃𝑆

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝑑0, 𝑑2) = 2𝑀𝐵𝑃𝑆

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝑑1, 𝑑2) = 4𝑀𝐵𝑃𝑆

25

Such that the bandwidth between local mobile device 𝑑0 and cloud server 𝑑1 is 1MBPS and the

bandwidth between mobile device 𝑑0 and cloud server 𝑑2 is 2MBPS. Finally, the data bandwidth

between two cloud servers is 𝑑1and 𝑑2 is 4MBPS.

Let’s consider the following offloading allocation 𝑎 = [𝑑0, 𝑑2, 𝑑1, 𝑑1, 𝑑1, 𝑑0, 𝑑2] for the tasks

[𝑡0, 𝑡1, 𝑡2, 𝑡3,𝑡4, 𝑡5, 𝑡6, 𝑡7] respectively. The time-weighted workflow graph corresponding to Figure

1 is shown in Figure 2. In Figure 2, all the weights (on the vertices and the edges) are in seconds.

Figure 2: The time-weighted workflow graph corresponding to the offloading allocation a.

The Figure 2 above shows the time-weighted workflow graph of Figure 1 for the offloading

allocation a. The task t1 and t2 are assigned to the local mobile device so their execution time is 4

seconds. The task t3, t4 and t5 execution times are 2 seconds since the cloud server d1 speed is

2MIPS. Similarly, the task t2, t7 execution times are only 1 seconds since cloud server d2 speed is

4MIPS.

The communication time between edges 𝑒(𝑡1, 𝑡2), 𝑒(𝑡2, 𝑡6), and 𝑒(𝑡6, 𝑡7) is 2 seconds since the

bandwidth between mobile device and cloud server d2 is 2MBPS. Similarly, the communication

 1 4

t1

t2

t4

t5

t6

t3

1

2

2

2

4

1

1

2

2

1

4

4

4

2

t7

26

time between the edges 𝑒(𝑡1, 𝑡3), 𝑒(𝑡1, 𝑡4), and 𝑒 (𝑡1, 𝑡5) is 1 seconds since the bandwidth between

mobile device and cloud server d1 is 1MBPS. Finally, the communication time between the edges

𝑒(𝑡3, 𝑡7), 𝑒(𝑡4, 𝑡7), and 𝑒(𝑡5, 𝑡7) is 4 seconds since the bandwidth between two cloud servers d0

and d1 is 4MBPS.

3.4 Evaluating a given allocation without Considering Parallel Execution of Tasks (for the

introductory example)

In this section, for the introductory example in section 3.3, we compute the Response Time,

Energy Consumption and Monetary Cost for a given allocation 𝑎 = [𝑑0, 𝑑2, 𝑑1, 𝑑1, 𝑑1, 𝑑0, 𝑑2]

without considering parallel execution.

3.4.1 Response Time

Corresponding to each offloading allocation a, we can compute the response time 𝑅𝑇𝑎 of the

mobile application, battery energy consumption 𝐸𝑎 in the mobile device, and monetary cost 𝐶𝑎

that will be incurred for the mobile user for executing the application according to the allocation

a. The computation of these three measures is given in the next section. The response time for

Figure 2 workflow graph can be calculated using equation (1). It is as follow:

𝑅𝑇𝑎 = ∑𝑤𝑖
𝑡𝑖∈𝑇

+ ∑ 𝑤𝑖𝑗
𝑒(𝑡𝑖,𝑡𝑗)∈𝐸

∑𝑤𝑖
𝑡𝑖∈𝑇

= (4 + 1 + 2 + 2 + 2 + 4 + 1) = 16

∑ 𝑤𝑖𝑗
𝑒(𝑡𝑖,𝑡𝑗)∈𝐸

= (2 + 1 + 1 + 1 + 2 + 4 + 4 + 4 + 2) = 21

𝑅𝑇𝑎 = 37𝑠𝑒𝑐

27

The Overall response time 𝑅𝑇𝑎 for the offloading allocation a for Figure 2 is 37 seconds which

includes the computation time of 16 seconds and the communication time of 21 seconds.

3.4.2 Energy Consumption:

The energy consumption for the offloading allocation a is the sum of computation energy,

communication energy and idle energy. The computation energy can be calculated using equation

(2) which is as follow:

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑤𝑖
𝑡𝑖∈𝑇,
𝑓𝑖=𝑑0

∗ 𝑝𝑐0 = (4 + 4) ∗ 0.5 = 4.0 𝐽𝑜𝑢𝑙𝑒𝑠

Computation energy is equal to the local mobile device assigned tasks (t1, and t6) execution time

multiply by the user pre-defined computation power 𝑝𝑐0 of the mobile processor which is equal to

0.5 Watts. The total Computation energy for the offloading allocation a is 4 Joules. Similarly, the

communication energy can be calculated by using equation (3) which is as follow:

𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑤𝑖𝑗
𝑒(𝑡𝑖,𝑡𝑗)∈E,

𝑓𝑖≠𝑓𝑗 𝑎𝑛𝑑

 𝑒𝑖𝑡ℎ𝑒𝑟 𝑓𝑖=𝑑0
𝑜𝑟 𝑓𝑗=𝑑0

∗ 𝑝𝑑0

= 0.25 ∗ (2 + 1 + 1 + 1 + 2 + 2) = 2.25 𝐽𝑜𝑢𝑙𝑒𝑠

The communication energy is equal to the sum of all edges where local mobile processor is either

sending or receiving the offloading data from any other resource i.e. edges 𝑒(𝑡1, 𝑡2),

28

𝑒(𝑡1, 𝑡3), 𝑒(𝑡1, 𝑡4), 𝑒(𝑡1, 𝑡5), 𝑒(𝑡2, 𝑡6)and 𝑒(𝑡2, 𝑡7) multiply by the user pre-defined

communication power 𝑝𝑑0 which is equal to 0.25 Watts. The communication energy of the

offloading allocation a is 2.25 Joules. Finally, the idle energy can be calculated by the equation

(4) which is as follow:

𝐼𝑑𝑙𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑤𝑖

𝑡𝑖∈𝑇,
𝑓𝑖≠𝑑0

∗ 𝑝𝑖0 + ∑ 𝑤𝑖𝑗
𝑒(𝑡𝑖,𝑡𝑗)∈E,

𝑓𝑖≠𝑓𝑗≠𝑑0

∗ 𝑝𝑖0

= 0.15 ∗ ((1 + 2 + 2 + 2 + 1) + (4 + 4 + 4)) = 3 Joules

The idle energy is the sum of all computation tasks which are offloaded to any cloud server d0

and d1, (t2, t3, t4, t5, and t7) multiply by the user pre-defined idle power 𝑝𝑖0. Also, all edges

communication time where local mobile processor is not involved i.e.

𝑒(𝑡3, 𝑡7), 𝑒(𝑡4, 𝑡7)and 𝑒(𝑡5, 𝑡7) multiply by idle power 𝑝𝑖0 which is 0.15 Watts. The total idle

energy for the offloading allocation is 3 Joules for the offloading allocation a. Thus, the total

power of the offloading allocation a can be calculated by the equation (5)

𝐸𝑎 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝐸𝑛𝑒𝑟𝑔𝑦 + 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐸𝑛𝑒𝑟𝑔𝑦 + 𝐼𝑑𝑙𝑒 𝐸𝑛𝑒𝑟𝑔𝑦

= 4 + 2.25 + 3 = 9.25 𝐽𝑜𝑢𝑙𝑒𝑠

The total energy consumption for the offloading allocation a is the sum of computation energy,

communication energy, and idle energy which is 9.25 Joules.

29

3.4.3 Monetary Cost:

The computation cost of the offloading allocation a can be calculated using the cost equation (7)

which is as follow:

Cost = 𝐶a + (Da ∗ α), if Da > 0 𝑒𝑙𝑠𝑒 𝐶a

Since the remaining data limit in the user wireless plan is assumed to be 500MB and the offloading

allocation a does not exceed the remaining data limit so there is no on additional charge on the

user wireless network plan, resulting Da is 0. However, the renting of cloud servers, d1 and d2, for

the application duration of 37 seconds incur monetary processing cost 𝐶𝑎 which is as follow.

𝐶𝑎 = 37 ∗ (
0.03

60
) + 37 ∗ (

0.05

60
) = 4.9

𝑐𝑒𝑛𝑡𝑠

𝑚𝑖𝑛𝑢𝑡𝑒

The monetary cost 𝐶𝑎 of the offloading allocation a is the renting cost of cloud server d1 which is

0.03 cents/minute as well as the renting cost of cloud server d2 which is 0.05 cents/minute multiply

by the response time of the application which is 37 seconds. The total monetary cost of the

offloading allocation a is equal to 4.9 cents/minute.

Thus, the response time of the workflow graph presented in Figure 2 for the offloading allocation

𝑎 = [𝑑0, 𝑑2, 𝑑1, 𝑑1, 𝑑1, 𝑑0, 𝑑2] is 37 seconds with the overall energy consumption of 9.25 Joules

and the processing cost of 4.9 𝑐𝑒𝑛𝑡𝑠/𝑚𝑖𝑛𝑢𝑡𝑒

30

3.5 Near-Optimal Allocation(s) using Genetic Algorithm without Considering Parallel

Execution (for the Introductory Example)

In this section, we will apply Genetic Algorithm (GA) to find the near-optimal offloading

allocation for the introductory example provided earlier (section 3.3). The GA will start with a set

number of offloading solutions’ population which is defined by the user. Using the fitness function,

it will generate new offloading solutions’ genes based on the mutation and crossover operator

probability. In the exploration of the near-optimal solution, the GA will consider multi-objectives

to find an offloading allocation which has minimum response time, energy consumption and

processing cost of the application.

3.5.1 GA Parameters:

The genetic algorithm parameters are as follow:

Initial Population Set: 100 solutions

Number of evaluations to find the near-optimal solution: 10,000

Mutation Algorithm: Uniform Mutation (UM)

Probability of Mutation: 1/Number of Tasks = 1/7 = 0.143

Crossover Algorithm: Subset Crossover (SSX)

Probability of Crossover: 0.9

The GA starts with an initial population of 100 solutions and iterate on the initial population for

10,000 evaluations. Each evaluation generates a new gene, based on the mutation or crossover

operator probability. The mutation algorithm is chosen to be a Uniform Mutation (UM) with a

probability of 0.03. The uniform mutation mutates each decision variable in the gene by selecting

31

a new value within its bound uniformly at random [15]. Similarly, the crossover algorithm is

chosen to be Subset Crossover (SSX) with a probability of 0.9. The subset crossover swaps half

of the non-matching decision variable between two parent’s genes [15].

Next, we will show the results of the introductory example (section 3.3) by applying GA. The GA

will be applied for three cases: allocate all the tasks on only local mobile processor (no offloading);

allocating the tasks among the local mobile processor and one VM (single-site offloading); and

allocating the tasks among the local mobile processor and two VMs (multi-site offloading).

3.5.2 No offloading

When applying GA with a local processor, there is only one offloading allocation – which is all

tasks must be executed in the local processor. The GA reveals the following offloading allocations

for only the local processor resource d0.

Table 1: GA with no offloading

Name Offloading Allocation Response Time

(Sec)

Energy

(Joules)

Cost

(cents/min)

a1 [𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0] 28.0 14.00 0.00

The allocation a1 determines the 𝑅𝑇𝑎 = 28 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, 𝐸𝑎 = 14.0 𝐽𝑜𝑢𝑙𝑒𝑠, 𝐶𝑜𝑠𝑡 = 0 𝑐𝑒𝑛𝑡𝑠/𝑚𝑖𝑛.

Thus, the processing of all task in the example 1 will required 28 seconds which will consume 14

Joules of mobile power and there will not be any additional processing cost since there is no

offloading is possible for this configuration.

32

3.5.3 Single Site Offloading

In this configuration of a local processor with one VM, since each element can have a value of

either 0 (Local) or 1 (VM), the available offloading allocations are 27 = 128. GA will start with

the initial population of 100 solution and generate new solution to find the near-optimal solution.

In this configuration task 𝑡0 is forced to be executed in the local processor, since example 1 refer

to a mobile application and offloading should start from the local processor. All other tasks of the

application will be processed in the local processor or the cloud server. The GA provides the

following offloading allocations:

Table 2: GA Offloading with one VM

Name Offloading Allocation Response Time

(Sec)

Energy

(Joules)

Cost

(cents/min)

a1 [𝑑0, 𝑑1, 𝑑1, 𝑑1, 𝑑1, 𝑑1, 𝑑1] 23.0 05.55 1.15

a2 [𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0] 28.0 14.00 0.00

 The GA suggest the two offloading allocations 𝑎1 and 𝑎2 for the user to choose based on their

application objective. First offloading allocation, 𝑎1, which provides the minimum 𝑅𝑇𝑎1 =

23 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, 𝑎𝑛𝑑 𝐸𝑎1 = 5.55 𝐽𝑜𝑢𝑙𝑒𝑠, however the user will be charged a processing fee of

𝐶𝑜𝑠𝑡 = 1.15 𝑐𝑒𝑛𝑡𝑠/𝑚𝑖𝑛. Similarly, the offloading allocation 𝑎2 does not have any processing

cost, 𝐶𝑜𝑠𝑡 = 0.00 𝑐𝑒𝑛𝑡𝑠/𝑚𝑖𝑛. However, the application takes longer to complete 𝑅𝑇𝑎2 =

28 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 and it will consume 𝐸𝑎2 = 14.0 𝐽𝑜𝑢𝑙𝑒𝑠 of the mobile battery.

3.5.4 Multi-Site offloading

In the configuration with the local processor with two VMs, each element of the offloading solution

can have three states, 0 (local), 1 (VM1), 2 (VM2) so there are 37 = 2187 different available

33

offloading allocations. The GA starts with the initial population of 100 solutions and generates a

new gene using either crossover or mutation. It observes the behavior of the new gene to explore

the near-optimal solution. Like the local processor with one VM configuration, the task 𝑡0 is forced

to be processed in the local processor, and all other tasks can be processed in the local processor

or any available cloud server. The GA provides two different offloading allocations:

Table 3:GA Offloading with two VM

Name Offloading Allocation Response Time

(Sec)

Energy

(Joules)

Cost

(cents/min)

a1 [𝑑0, 𝑑2, 𝑑2, 𝑑2, 𝑑2, 𝑑2, 𝑑2] 13.5 03.76 1.125

a3 [𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0] 28.0 14.00 0.00

The GA suggests two different offloading allocations 𝑎1, 𝑎𝑛𝑑 𝑎2, for the user to choose based on

their current state of the mobile device. If the user wants to optimize the response time and energy

consumption of the mobile application, the user can choose offloading allocation 𝑎1 which

produces 𝑅𝑇𝑎1 = 13.5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, 𝐸𝑎1 = 3.775 𝐽𝑜𝑢𝑙𝑒𝑠 but require 𝐶𝑜𝑠𝑡 = 1.125𝑐𝑒𝑛𝑡𝑠/𝑚𝑖𝑛.

Likewise, if the user is hesitant to spend any additional cost on the application, they can use the

allocation 𝑎2 which does not have any processing cost, 𝐶𝑜𝑠𝑡 = 0.00𝑐𝑒𝑛𝑡𝑠/𝑚𝑖𝑛. However, the

application takes longer to complete at 𝑅𝑇𝑎2 = 28 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 and it will consume 𝐸𝑎2 =

14.0 𝐽𝑜𝑢𝑙𝑒𝑠 of the mobile battery.

3.6 Our Model considering Parallel Execution of Tasks

In this section, we describe our new algorithm to evaluate an allocation that considers both

(external and internal) parallel execution of the application tasks. The external parallelism is

among different available computing resources, and internal parallelism among different

34

processing cores of a single computing resource. The goal is to explore for an offloading allocation

with minimum Response Time, Energy Consumption, and Monetary Cost.

The model of the internal parallelism of a device 𝑑𝑢(where u = 0, 1, 2, …K) with 𝑟𝑢 cores is shown

in Figure 3 below,

Figure 3: The device du modeled as a multi-server queueing station with ru number of servers

The Figure 3 above represents a device 𝑑𝑢 as a single multi-server queueing station that consists

of a job queue and 𝑟𝑢 number of identical servers. The ru cores of the queuing station perform

internal parallelism for the device du. Similarly, for the model of external parallelism, we assume

that the parallelism can exist among different devices and each device maintains its own queue.

3.6.1 Definitions:

1. Each action which is required in the workflow graph shown in the Figure 2 above, is referred

to a Job.

2. A job can be scheduled to execute on any available device.

3. There can be three kinds of jobs with respect to the execution of task ti:

3.1. receiveJob (tj, ti):

The execution of this job represents receiving of data—produced by task tj—by the device

hosting task ti. This data will be needed for executing the task ti. This job is relevant when

tasks tj and ti are hosted in different devices.

1

2

ru

35

3.2. executeJob(ti):

 The execution of this job represents execution of the task ti.

3.3. sendJob (ti, tj):

 The execution of this job represents sending of data—produced by task ti—from the

device hosting task ti to the device hosting task tj. This data will be needed for executing

the task tj. This job is relevant when tasks ti and tj are hosted in different devices.

4. Each job has a depth. The depth of a job captures its dependencies on other jobs. For example,

a job with depth 2 will need information from one or more jobs at depth 1

5. Each job has arrival time, start time, service time and end time.

5.1. The arrival time denotes the time when the job can be started to run if a server in the

scheduled device is free. Otherwise, if all the servers are busy, then the job must wait in

the queue of the scheduled device.

5.2. The start time denotes the time instant when one of the servers of the scheduled device

starts processing the job.

5.3. The service time denotes the time needed for processing the job.

5.4. The end time denotes the time instant when the job processing is complete, i.e. end time =

start time + processing time.

6. Each core in a device can be either in busy state or idle state.

6.1. The core is in busy state means that it is busy processing a job.

6.2. The core is in idle state means that the core is idle.

7. Each core has computation time and communication time associated with it

7.1. The computation time denotes the time the core spends in executing tasks.

7.2. The communication time denotes the time the core spends in sending or receiving data.

36

3.6.2 Job Generation

The process of generating, assigning appropriate time and processing Execution_Jobs,

Receiving_Jobs, and Send_Jobs are as follows:

Step-1:

In this step, we generate jobs and schedule them in relevant devices. We set the arrival times,

service times and depth for the jobs.

totalJobsList = {}

For each ti ∈ 𝑇 processed in the order of increasing levels:

1. receiveJobsList(ti) = {}

2. For each task tj ∈ 𝑠𝑜𝑢𝑟𝑐𝑒(𝑡𝑖) where 𝑓𝑗 ≠ 𝑓𝑖:

2.1. Schedule a receiveJob(tj, ti) on the device fi such that:

2.1.1. the arrival time of this job will be the start time of sendJob(tj, ti) (the job

sendJob(tj, ti) should already be scheduled on device fj)

2.1.2. the service time of this job will be 𝑤𝑗𝑖,

2.1.3. the depth of this job will be the depth of sendJob(tj, ti) plus 1.

2.2. Add the job receiveJob(tj, ti) to the two lists receiveJobsList(ti) and totalJobsList.

3. Schedule a executeJob(ti) on the device fj such that:

3.1. The arrival time of this job will be the maximum of the end times of the jobs in the

receiveJobsList(ti)

3.2. The service time of this job will be 𝑤𝑖

3.3. The depth of this job will be 3*level(ti)-2.

4. Add the job executeJob(ti) to the list totalJobsList.

37

5. For each task tk ∈ 𝑠𝑖𝑛𝑘(𝑡𝑖) where 𝑓𝑘 ≠ 𝑓𝑖:

5.1. Schedule a sendJob(ti, tk) on the device fi such that:

5.1.1. The arrival time of this job will be the end time of the executeJob(ti)

5.1.2. The service time of this job will be 𝑤𝑖𝑘

5.1.3. The depth of this will be the depth of executeJob(ti) plus 1.

5.2. Add the job sendJob(ti, tk) to the list totalJobsList.

Step-2:

In this step, we process all the jobs to set the start time and end time for each of them.

Process each job in the totalJobsList in the order of increasing depths as follows:

1. Obtain the time instant t when one of the cores of the job’s scheduled device will be

free. Let the core which will be free at time t be p.

1.1. If the arrival time of this job is greater or equal to t, then set the start time of this

job = its arrival time. Otherwise, set the start time of this job = t.

1.2. Set the end time of this job = its start time + its service time. Let the time period,

end time of this job minus start time of this job, be b.

1.3. Set the state of the core p to be busy for the time period b. If this job is an

executeJob, add the time period b to the computation time of core p, otherwise add

b to the communication time of core p.

Step-3:

Compute the required measures as follows:

1. Compute the response time RTa as:

38

1.1. RTa = maximum of the end times of the jobs which are at the highest depth.

2. Compute the energy consumption Ea on the mobile device d0, as follows:

2.1. Energy consumption of each core p can be computed as (computation time of p) * 𝑝𝑐0

+ (communication time of p) * 𝑝𝑑0 + (RTa – computation time of p - communication

time of p) * 𝑝𝑖0

2.2. Ea = ∑ (Energy consumption of each core 𝑝)
𝑛0
𝑝=1

3. Compute the monetary cost, Ca, using equation (7)

3.1. Since the value of RTa may be different when parallel execution is considered, the cost

Ca may be different in case of parallel execution as well.

For a given allocation a, the values of the three performance measures will likely vary when

considering or ignoring parallelism in the execution. Hence, the near-optimal allocation(s) that

minimizes one or more of these measures may also vary as well when parallelism is considered.

3.6.3 External Parallel Execution

External parallel execution involves multiple task processing at the same instance of time among

different available resources. The ideal parallel execution, without considering latency and

communication overhead losses, can be represented by the following equation below [38]

𝑅𝑇𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =
𝑅𝑇𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

𝑁
⁄ (𝑣𝑖𝑖𝑖)

Where 𝑅𝑇𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 refer to response time of an application, 𝑅𝑇𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 refer to the sequential time

of an application and 𝑁 refer to identical available computing resources. In this section, the gain

of external parallel execution will be analyzed for the same introductory example 1 mentioned

39

above. To model the external parallelism, we assume that the parallelism can exist among the

devices and each device maintains its own queue.

3.7 Evaluating a given allocation Considering Only External Parallelism (for the

introductory example)

The effect of external parallel execution for the time-weighted workflow graph with the offloading

allocation a = [d0, d2, d1, d1, d1, d0, d2] is represented by the table of jobs for each available

computing resource. The table 4, 5, and 6 below represents the schedule of jobs, i.e. the depth,

service_time, arrival_time, start_time and end_time for each available computing resource d0, d1

and d2 respectively. In this section, all the devices have one processor, thus no internal parallel

execution is considered. However, external parallelism among the different processing resources

is considered since they can execute tasks in parallel. The Table 4 below represents the jobs which

are handled by the resource Mobile Device d0.

Table 4: Jobs scheduled in the Mobile Device d0

Job

Number

Job Type Job

Depth

Service

Time

(Sec)

Arrival

Time

(Sec)

Start

Time

(Sec)

End

Time

(Sec)

0 execute(t1) 1 4 0 0 4

1 sendJob(t1, t2) 2 2 4 4 6

2 sendJob(t1, t3) 2 1 4 6 7

3 sendJob(t1, t4) 2 1 4 7 8

4 sendJob(t1, t5) 2 1 4 8 9

5 receiveJob(t2, t6) 6 2 7 9 11

6 execute(t6) 7 4 11 11 15

7 sendJob(t6, t7) 8 2 15 15 17

40

From Table 4 above, we see that the mobile device d0 throughput total 8 jobs in which only one

is Receive_Job and two are Execute_Jobs and total five jobs are Sent_Jobs. Similarly, the device

d0 spend 8 seconds for computation, and 9 secs for communication. All jobs except Job number 5

are started processing on their arrival time however, job number 5 (receiveJob(t2, t6)) arrives at the

time = 7 seconds but wait in the queue until time = 9 when the mobile device d0 becomes available.

The total time for all the jobs in the mobile device d0 is 17 seconds.

The Table 5 below shows the jobs schedule for cloud server d1

Table 5: Jobs scheduled in the Cloud Server d1

Job

Number

Job Type Job

Depth

Service

Time

(Sec)

Arrival

Time

(Sec)

Start

Time

(Sec)

End

Time

(Sec)

0 receiveJob(t1, t3) 3 1 6 6 7

1 receiveJob(t1, t4) 3 1 7 7 8

2 receiveJob(t1, t5) 3 1 8 8 9

3 execute(t3) 4 2 7 9 11

4 execute(t4) 4 2 8 11 13

5 execute(t5) 4 2 9 13 15

6 sendJob(t3, t7) 5 4 11 15 19

7 sendJob(t4, t7) 5 4 13 19 23

8 sendJob(t5, t7) 5 4 15 23 27

The Table 5 above shows the jobs schedule in the Cloud Server d1. Server d1 throughput total 9

jobs which includes equal number of three jobs for ReceiveJobs, ExecuteJobs, and SendJobs. The

server d1 spends three seconds on ReceiveJobs, 6 seconds on executeJobs and 12 seconds on the

SentJobs. In server d1, Job number 3-8 encounter the server in busy state and wait for its

availability in the queue. Job 3 (execute(t3)) must wait for 2 seconds in the queue before it can be

processed. Job 4, 5, 6, 7, 8 required the queue wait time to be 3, 4, 4, 6, 8 seconds respectively.

The total time the cloud server d1 takes to process all the jobs is 27 seconds.

41

The Table 6 below represents the Jobs schedule for Cloud Server d2

Table 6: Jobs scheduled in the Cloud Server d2

Job

Number

Job Type Job

Depth

Service

Time

(Sec)

Arrival

Time

(Sec)

Start

Time

(Sec)

End

Time

(Sec)

0 receiveJob(t1, t2) 3 2 4 4 6

1 execute(t2) 4 1 6 6 7

2 sendJob(t2, t6) 5 2 7 7 9

3 receiveJob(t3, t7) 6 4 15 15 19

4 receiveJob(t4, t7) 6 4 19 19 23

5 receiveJob(t5, t7) 6 4 23 23 27

6 receiveJob(t6, t7) 9 2 15 27 29

7 execute(t7) 10 1 29 29 30

The Table 6 above shows the jobs schedule in the Cloud Server d2. Server d2 throughput total 8

jobs which includes five ReceiveJobs, and only one ExecuteJobs and one SendJobs from task t2.

Similarly, t7 is the last task in the workflow graph so it does not contain any SendJobs. The server

d2 spends 16 seconds on ReceiveJobs, 2 seconds on executeJobs and 2 seconds on the SentJobs.

In server d2, Job 6 must wait for availability in the queue otherwise all jobs are processed upon

their arrival time. The total time the cloud server d2 takes to process all the jobs is 27 seconds.

As per Step-3 of our algorithm, we compute:

𝑅𝑇𝑎 = 𝑒𝑛𝑑 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑗𝑜𝑏 (𝑒𝑥𝑒𝑐𝑢𝑡𝑒(𝑡7)) = 30 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

Since this job execute(t7) has the highest depth in the task graph so the response time will be the

end time of job execute(t7). The energy consumption can be calculated using equation (5). where

computation time is 8 seconds, communication time is 9 seconds and idle time is 13 seconds

𝐸𝑎 = (0.5) ∗ 8 + (0.25) ∗ 9 + 0.15 ∗ (30 − 17) = 8.2 𝐽𝑜𝑢𝑙𝑒𝑠

42

The energy consumption for the offloading allocation a with external parallel execution is 8.2

Joules. Finally, the cost can be calculated using equation (7)

 𝐶𝑎 = 30 ∗ (
0.03

60
) + 30 ∗ (

0.05

60
) + 0 = 0.04 𝑐𝑒𝑛𝑡𝑠/𝑀𝑖𝑛𝑢𝑡𝑒𝑠.

Thus, the allocation a = [d0, d2, d1, d1, d1, d0, d2] with the server queue takes 30 seconds to process

and it requires 8.2 Joules of energy with only the processing cost of only 4 cents/Minutes. The

following Table 7 below represents all three GA objectives for offloading allocation a = [d0, d2,

d1, d1, d1, d0, d2] for no queue model (i.e. without parallelism) and for queue based model (i.e. with

external parallelism).

Table 7: External Parallel Execution Gain

Allocation Config Response

Time

(Sec)

Energy

Consumption

(Joules)

Processing

Cost

(Cents/Min)

[d0, d2, d1,

d1, d1, d0,

d2]

No Queue 37 9.25 4.9

With

Queue

30 8.2 4.0

Thus, the above Table 7 shows that introducing the queue in the work-flow graph reduces the

response time to 30 seconds from 37 seconds. Also, the energy consumption on the mobile

processor is reduced to 8.2 Joules instead of 9.25 Joules. Finally, the processing cost is reduced to

4.0 cents/minute instead of 4.9 cents/minutes.

43

3.8 Near-Optimal Allocation(s) using Genetic Algorithm Considering only External

Parallelism (for the Introductory Example)

Let’s introduce the genetic algorithm on the above queuing model of the work flow graph

presented in Figure 2 with the following GA parameters:

Initial Population Set: 100 solutions

Number of evaluations to find the near-optimal solution: 10,000

Mutation Algorithm: Uniform Mutation (UM)

Probability of Mutation: 1/Number of Tasks = 1/7 = 0.143

Crossover Algorithm: Subset Crossover (SSX)

Probability of Crossover: 0.9

Framework: MOEA Framework

 As in non-queuing model, we will be performing the GA on the following three configurations.

3.8.1 No offloading:

When applying GA with only the mobile processor configuration, there is only one offloading

allocation – which is all tasks must be executed in the local processor. The results of the offloading

allocation of the work-flow graph for Figure 2 above are shown in Table 8 below:

Table 8: External Parallel Execution with no offloading

Name Offloading Allocation Response Time

(Sec)

Energy

(Joules)

Cost

(cents/min)

a1 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0 28.0 14.00 0.00

Since there is no internal parallel execution in the configuration of no offloading, so the result of

parallel execution queueing model are same as in no queue model (Figure 2). The GA reveals that

44

response time of the queuing model for allocation a1 is 𝑅𝑇𝑎1 = 28 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, 𝐸𝑎1 =

14.0 𝐽𝑜𝑢𝑙𝑒𝑠, 𝐶𝑎1 = ₡0.

3.8.2 Single Site Offloading:

The number of available offloading allocation in parallel execution model and no queue model are

same (27 = 128). However, the parallel execution model can save the queue of jobs for each

processor until the processor is not available for execution. GA will start with the initial population

of 100 solution and generates new solution on each iteration to find the near-optimal solution. The

task 𝑡0 is forced to be executed in the local processor as it is in the no queue model. The genetic

algorithm provides three solutions after exploration. As such, the user will decide which objective

is more important for their current mobile device configuration. The following Table 9 below

represents the offloading allocation suitable in the presence of only one VM.

Table 9: External Parallel Execution with single-site offloading (one VM)

Name Offloading Allocation Response Time

(Sec)

Energy

(Joules)

Cost

(cents/min)

a1 𝑑0, 𝑑0, 𝑑1, 𝑑1, 𝑑1, 𝑑1, 𝑑1 19.0 06.15 0.95

a2 𝑑0, 𝑑1, 𝑑1, 𝑑1, 𝑑1, 𝑑1, 𝑑1 21.0 05.05 1.05

a3 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0 28.0 14.00 0.00

The above Table 9 presents the offloading allocation in the presence of one VM. The offloading

allocation a1 provides the lowest response time which is 19 seconds. However, it consumes 6.15

joules of energy with the processing of 0.95 cents/min. The user would choose this allocation if

the user is concerned about the application response time, has a decent charge on their mobile

device and is willing to pay the additional cost of 0.95 cents/min. The allocation a2 is the power

saving option, which minimizes the energy with a small trade-off on the response time and the

45

operating cost. This allocation provides the response time to be around 19 seconds with the energy

consumption to be lowest as 5.05 Joules and the operating cost is 1.05 Cents/min. The offloading

allocation a3 does not add any additional operating cost on the application execution and process

all task in the local mobile device d0 . This allocation provides the response time to be 28 seconds

with energy consumption of 14 Joules and no additional operating cost.

3.8.3 Multi-Site Offloading

In this configuration of a local processor with two VMs, each element of the offloading solution

can have three states, 0 (local), 1 (VM1), 2 (VM2) so there are 37 = 2187 different available

offloading allocations as it is in non-queuing model. It is important to note that, in this model, each

resource can store the queue for the upcoming jobs to process them in parallel. The GA starts with

the initial population of 100 solutions and generates a new gene using either crossover or mutation.

It observes the behavior of the new gene to explore the near-optimal solution. Like local processor

with one VM configuration, the task 𝑡0 is forced to be processed in the local processor, and all

other tasks can be processed in the local processor or any available cloud server. The GA provides

four different offloading allocations after the exploration of the problem. The offloading

allocations are as follow:

Table 10: External Parallel Execution with multi-site offloading (two VMs)

Name Offloading Allocation Response Time

(Sec)

Energy

(Joules)

Cost

(cents/min)

a1 𝑑0, 𝑑2, 𝑑2, 𝑑2, 𝑑2, 𝑑2, 𝑑2 15.0 04.15 1.25

a2 𝑑0, 𝑑0, 𝑑1, 𝑑1, 𝑑1, 𝑑1, 𝑑1 19.0 06.15 0.95

a3 𝑑0, 𝑑1, 𝑑1, 𝑑1, 𝑑1, 𝑑1, 𝑑1 21.0 05.05 1.05

a4 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0 28.0 14.00 0.00

The Table 10 above presents the GA suggested code offloading allocations for the work-flow

graph with two VMs. The allocation a1 provides the lowest possible response time of 15 seconds

46

and the lowest energy consumption of 4.15 Joules, with the trade-off of an exceptionally high

additional operating cost of 1.25 cents/minute. The GA also provide allocations to the user which

are average for all three objectives and the user can may use them if they are suitable for their

current mobile configuration.

3.9 Evaluating a given allocation Considering both Internal and External Parallelism (for

the introductory example)

In this section, we will enhance further the queuing model presented in Example 1 for the

offloading allocation a = [d0, d2, d1, d1, d1, d0, d2] with the implementation of internal parallel

execution. We will be assuming that each available computing resource has 2 cores which can be

used for parallel execution. There are three available resources for the offloading allocation a, the

sequence of the jobs for each resource are shown in the tables below.

Table 11: Jobs scheduled in the Mobile Device d0

Job

Number

Job Type Processor Job

Depth

Service

Time

(Sec)

Arrival

Time

(Sec)

Start

Time

(Sec)

End

Time

(Sec)

0 execute(t1) 𝑃1 1 4 0 0 4

1 sendJob(t1, t2) 𝑃1 2 2 4 4 6

2 sendJob(t1, t3) 𝑃2 2 1 4 4 5

3 sendJob(t1, t4) 𝑃2 2 1 4 5 6

4 sendJob(t1, t5) 𝑃1 2 1 4 6 7

5 receiveJob(t2, t6) 𝑃1 6 2 7 7 9

6 execute(t6) 𝑃1 7 4 9 9 13

7 sendJob(t6, t7) 𝑃1 8 2 13 13 15

From Table 11, shows the jobs schedule for the mobile device d0. We see that the processor P1 of

mobile device d0 handles total 6 jobs which includes one Receive_Job, two Execute_Jobs, and total

47

three Sent_Jobs. Similarly, the processor P2 handles only two Sent_Jobs. Further, P1 spends 8

seconds for computation, 7 seconds for communication but P2 does not perform any computation,

and only spend 2 seconds for communication. All jobs except Job number 4 are started processing

upon their arrival time however, Job number 4 (sendJob(t1, t5)) arrives at the time = 4 seconds but

wait in the queue for 2 seconds until any processor (P1 or P2) is available. The total time for all the

jobs in the mobile device d0 is 15 seconds.

Table 12: Jobs scheduled in the Cloud Server d1

Job

Number

Job Type Processor Job

Depth

Service

Time

(Sec)

Arrival

Time

(Sec)

Start

Time

(Sec)

End

Time

(Sec)

0 receiveJob(t1, t3) 𝑃1 3 1 4 4 5

1 receiveJob(t1, t4) 𝑃1 3 1 5 5 6

2 receiveJob(t1, t5) 𝑃1 3 1 6 6 7

3 execute(t3) 𝑃2 4 2 5 5 7

4 execute(t4) 𝑃1 4 2 6 7 9

5 execute(t5) 𝑃2 4 2 7 7 9

6 sendJob(t3, t7) 𝑃1 5 4 7 9 13

7 sendJob(t4, t7) 𝑃2 5 4 9 9 13

8 sendJob(t5, t7) 𝑃1 5 4 9 13 17

The Table 12 above shows the jobs schedule in the Cloud Server d1. The processor

𝑃1 of Cloud Server d1 throughput total 6 jobs which includes three ReceiveJobs, one ExecuteJobs,

and two SendJobs. The processor 𝑃1 perform 2 seconds on computation and 11 seconds on

communication. However, the processor 𝑃2 handles total three jobs which includes two

ExecuteJobs and one SendJobs. The processor 𝑃2 spends 4 seconds on computation and 4 seconds

on communication. In server d1, only Job number 6 (sendJob(t3, t7)) encounter the server in busy

state and wait for its availability in the queue for 2 seconds. The total time the cloud server d1 takes

to process all the jobs is 17 seconds.

48

Table 13: Jobs scheduled in the Cloud Server d2

Job

Number

Job Type Processor Job

Depth

Service

Time

(Sec)

Arrival

Time

(Sec)

Start

Time

(Sec)

End

Time

(Sec)

0 receiveJob(t1, t2) 𝑃1 3 2 4 4 6

1 execute(t2) 𝑃1 4 1 6 6 7

2 sendJob(t2, t6) 𝑃1 5 2 7 7 9

3 receiveJob(t3, t7) 𝑃1 6 4 9 9 13

4 receiveJob(t4, t7) 𝑃2 6 4 9 9 13

5 receiveJob(t5, t7) 𝑃1 6 4 13 13 17

6 receiveJob(t6, t7) 𝑃2 9 2 13 13 15

7 execute(t7) 𝑃1 10 1 17 17 18

The Table 13 above shows the jobs scheduled in the Cloud Server d2. The processor

𝑃1 of Cloud Server d2 throughput total 6 jobs which includes three ReceiveJobs, two ExecuteJobs,

and only one SendJobs. The processor 𝑃1 perform 2 seconds on computation and 12 seconds on

communication. However, the processor 𝑃2 handles only two SendJobs and spends 6 seconds on

communication. In server d2, all jobs start upon their arrival and no job wait in the queue for the

processor availability. The total time the cloud server d2 takes to process all the jobs is 18 seconds.

As per Step-3 of our algorithm, we compute:

𝑅𝑇𝑎 = 𝑒𝑛𝑑 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑗𝑜𝑏 (𝑒𝑥𝑒𝑐𝑢𝑡𝑒(𝑡7)) = 18 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

 The job execute(t7) has the highest depth in the workflow graph thus the response time of the

offloading allocation a is the end time of this job which is only 18 seconds. The energy

consumption can be calculated using equation (5). where computation time is 8 seconds,

transmission time is 9 seconds and idle time is only 3 seconds

𝐸𝑎 = (0.5) ∗ 8 + (0.25) ∗ 9 + 0.15 ∗ (18 − 15) = 6.7 𝐽𝑜𝑢𝑙𝑒𝑠

49

The energy consumption for the offloading allocation a with external and internal parallel

execution is reduced to 6.7 Joules. Finally, the cost can be calculated using equation (7)

 𝐶𝑎 = 18 ∗ (
0.03

60
) + 18 ∗ (

0.05

60
) + 0 = 0.024 𝑑𝑜𝑙𝑙𝑎𝑟𝑠/𝑀𝑖𝑛𝑢𝑡𝑒𝑠.

The renting cost of cloud server d1 is 0.03 and renting cost of cloud server d2 is 0.05 in the model

specification in section 3.3 above. Since the communication data for the offloading allocation a

does not exceed the remaining wireless network data allowance so there Da is 0. The total cost of

the offloading allocation is 2.4 cents/ minutes.

Thus, the allocation a = [d0, d2, d1, d1, d1, d0, d2] with the server queue takes 18 seconds to process

and it requires 6.7 Joules of energy with only the processing cost of only 2.4 cents/Minutes. The

following Table 14 below represents all three GA objectives for offloading allocation a = [d0, d2,

d1, d1, d1, d0, d2] for no queue model (i.e. without parallelism) and for queue based model (i.e. with

external parallelism).

Table 14: External and Internal Parallel Execution Gain

Offloading

Allocation

Config Response

Time

(Sec)

Energy

Consumption

(Joules)

Processing Cost

(Cents/Min)

[d0, d2, d1, d1,

d1, d0, d2]

No Queue 37 9.25 4.9

Queuing Model with External

Parallel

30 8.2 4.0

Queuing Model with Internal

and External Parallel

18 6.7 2.4

50

Thus, the above Table 14 shows that performing internal and external parallel execution reduces

the response time to 18 seconds from 37 seconds from no queue model. Also, the energy

consumption on the mobile processor is reduced to 6.7 Joules instead of 9.25 Joules from no queue

model. Finally, the processing cost is reduced to 2.4 cents/minute instead of 4.9 cents/minutes

from no queue model.

3.10 Near-Optimal Allocation(s) using Genetic Algorithm Considering both Internal and

External Parallelism (for the Introductory Example)

Let’s introduce the genetic algorithm on the above of the work flow graph presented in example 1

above for the near-optimal offloading allocation. The genetic algorithm parameters are as follow:

Initial Population Set: 100 solutions

Number of evaluations to find the near-optimal solution: 10,000

Mutation Algorithm: Uniform Mutation (UM)

Probability of Mutation: 1/Number of Tasks = 1/7 = 0.143

Crossover Algorithm: Subset Crossover (SSX)

Probability of Crossover: 0.9

Framework: MOEA Framework

 As in previous configurations, the GA will be performed on the following three

configurations. To visualize the gain of internal parallel execution, we will be assigning

two processor to each resource processing the following three configurations,

No_Offloading, Offloading_With_1VM, and Offloading_With_2VM.

51

3.10.1 No offloading

When applying GA with only the mobile processor configuration, provides only one offloading

allocation – which is all tasks must be executed in the local processor. The offloading allocation

details of the task graph is shown in the Table 15 below.

Table 15: Internal and External Parallel Execution with no offloading

Name Offloading Allocation Local

Processor

Throughput (sec)

Response

Time

(Sec)

Energy

(Joules)

Cost

(cents/min)

a1 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0 𝑃1𝐶𝑜𝑚𝑝 = 20

𝑃1𝑇𝑟𝑎𝑛𝑠 = 0

𝑃2𝐶𝑜𝑚𝑝 = 8

𝑃2𝑇𝑟𝑎𝑛𝑠 = 0

20 15.8 0

The above Table 15 above shows that there is only one offloading allocation for the configuration

of only local mobile device with two processor. The processor 𝑃1 throughput 5 compute jobs which

takes 20 seconds to complete. Similarly, processor 𝑃2 handles only 2 jobs which takes 8 seconds

to complete. Since there is no external parallel execution among resources so there are no

communication jobs in this configuration. The allocation a1 reduces the response time to 20

seconds and energy consumption to 15.8 joules with no operating cost.

3.10.2 Single Site Offloading

In this configuration, there are two available resources, local mobile device and cloud VM1 each

with two available processors. The task 0 of this allocation is forced to be executed in the local

mobile device and all other resources can be assigned to any resource. The results of this

configuration are shown in the table 16 below.

52

Table 16: Internal and External Parallel Execution for single-site offloading (with one VM)

Name Offloading Allocation Local

Processor

Throughput

VM1

Processor

Throughput

RT

 (Sec)

Energy

(Joules)

Cost

(cents/

min)

a1 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0 𝑃1𝐶𝑜𝑚𝑝 = 20

𝑃1𝑇𝑟𝑎𝑛𝑠 = 0

𝑃2𝐶𝑜𝑚𝑝 = 8

𝑃2𝑇𝑟𝑎𝑛𝑠 = 0

𝑃1𝐶𝑜𝑚𝑝 = 0

𝑃1𝑇𝑟𝑎𝑛𝑠 = 0

𝑃2𝐶𝑜𝑚𝑝 = 0

𝑃2𝑇𝑟𝑎𝑛𝑠 = 0

20.00 15.80 0.00

a2 𝑑0, 𝑑1, 𝑑1, 𝑑1, 𝑑1, 𝑑1, 𝑑1 𝑃1𝐶𝑜𝑚𝑝 = 4

𝑃1𝑇𝑟𝑎𝑛𝑠 = 4

𝑃2𝐶𝑜𝑚𝑝 = 0

𝑃2𝑇𝑟𝑎𝑛𝑠 = 3

𝑃1𝐶𝑜𝑚𝑝 = 8

𝑃1𝑇𝑟𝑎𝑛𝑠 = 4

𝑃2𝐶𝑜𝑚𝑝 = 4

𝑃2𝑇𝑟𝑎𝑛𝑠 = 3

16.00 6.90 1.60

The Table 16 above presents two possible offloading allocation a1 and a2 for this configuration.

The allocation a1 does not offload any task to the VM and execute all task in the mobile device

and the results are same as no offloading configuration. However, the allocation a1 offload all task

to the VM1 except task 0 which is forced to mobile device. The mobile device throughput 1

compute and 4 sends job. The processor 𝑃1 of mobile device spends 4 seconds on computation and

4 seconds on communication and 𝑃2 spends on 3 seconds on communication, no computation is

performed by processor 𝑃2 of mobile device. The VM1 throughput 6 compute_jobs and 4 receive

jobs. The processor 𝑃1 of VM1 spends 8 seconds on computation and 4 seconds on communication

and processor 𝑃2 spends 4 seconds on computation and 3 seconds on communication. The response

time, energy consumption and operating costs are 16 Seconds, 6.90 Joules and 1.60 cents/min

respectively.

53

3.10.3 Multi-Site Offloading

In this configuration, there are two cloud servers added to the mobile device each has two

processors for internal parallel execution. The offloading allocation for this configuration is shown

in the Table 17 below.

Table 17: Internal and External Parallel Execution for multi-site offloading (with two VMs)

Name Offloading

Allocation

Local

Processor

Throughput

VM1

Processor

Throughput

VM2

Processor

Throughput

RT

 (Sec)

Energy

(Joules)

Cost

(cents/

min)

a1 [𝑑0, 𝑑0, 𝑑0,
𝑑0, 𝑑0, 𝑑0, 𝑑0]

𝑃1𝐶𝑜𝑚𝑝 = 20

𝑃1𝑇𝑟𝑎𝑛𝑠 = 0

𝑃2𝐶𝑜𝑚𝑝 = 8

𝑃2𝑇𝑟𝑎𝑛𝑠 = 0

𝑃1𝐶𝑜𝑚𝑝 = 0

𝑃1𝑇𝑟𝑎𝑛𝑠 = 0

𝑃2𝐶𝑜𝑚𝑝 = 0

𝑃2𝑇𝑟𝑎𝑛𝑠 = 0

𝑃1𝐶𝑜𝑚𝑝 = 0

𝑃1𝑇𝑟𝑎𝑛𝑠 = 0

𝑃2𝐶𝑜𝑚𝑝 = 0

𝑃2𝑇𝑟𝑎𝑛𝑠 = 0

20.00 15.80 0.00

a2 [𝑑0, 𝑑2, 𝑑2,
𝑑2, 𝑑2, 𝑑2, 𝑑2]

𝑃1𝐶𝑜𝑚𝑝 = 4

𝑃1𝑇𝑟𝑎𝑛𝑠 = 2

𝑃2𝐶𝑜𝑚𝑝 = 0

𝑃2𝑇𝑟𝑎𝑛𝑠 = 1.5

𝑃1𝐶𝑜𝑚𝑝 = 0

𝑃1𝑇𝑟𝑎𝑛𝑠 = 0

𝑃2𝐶𝑜𝑚𝑝 = 0

𝑃2𝑇𝑟𝑎𝑛𝑠 = 0

𝑃1𝐶𝑜𝑚𝑝 = 3

𝑃1𝑇𝑟𝑎𝑛𝑠 = 2

𝑃2𝐶𝑜𝑚𝑝 = 3

𝑃2𝑇𝑟𝑎𝑛𝑠 = 1.5

9.50 4.60 1.58

The Table 17 above presents the offloading allocation of offloading with two VM configuration.

Like offloading with one VM, GA explore two offloading allocation a1 and a2. The offloading

allocation a1 perform all tasks to mobile device to reduce the operating cost as in no offloading

allocation. However, offloading allocation a2, executes all task to the VM2 except task 0 which is

forced to compute in the mobile device. The mobile device throughput 1 compute and 4 sends job.

The processor 𝑃1 of mobile device spends 4 seconds on computation and 2 seconds on

communication and 𝑃2 spends 1.5 seconds on communication, no computation is performed by 𝑃2

of mobile device. The VM2 throughput 6 compute_jobs and 4 receive jobs. The processor 𝑃1 of

VM2 spends 3 seconds on computation and 2 seconds on communication and processor 𝑃2 spends

54

3 seconds on computation and 1.5 seconds on communication. The response time, energy

consumption and operating costs are 9.50 Seconds, 4.60 Joules and 1.58 cents/min respectively.

3.11 Summary

In the section, we will be summarizing the gain of all three configurations without queue, (Section

3.5) external parallel execution (Section 3.8) and internal and external parallel execution (Section

3.10). The Table 18 below represents the near-optimal offloading allocation for all three

configurations along with the GA objectives values. It is observed that GA objectives do not

change in the No_offloading scenario for the with_queue and external parallel execution

configurations since the execution is sequential in both scenarios. In a multi-objective offloading

problem there is no global best solution, it is dependent on the user mobile status. If the user wants

to run the application on performance mode, an offloading allocation which provides low response

time should be chosen. Similarly, if the user wants to perform the execution in the power saving

mode, they can pick the allocation with lowest response time. If the user wants to save the

additional processing cost, they can use No_Offloading scenario.

55

Table 18: Summary of Results for the Introductory Example

Config Offloading

Scenario

Offloading

Allocation

RT

(Sec)

Energy

(Joules)

Cost

ℂ/min)

No Parallel

Execution

Without Queue

No Offloading 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0 28.0 14.00 0.00

Single-Site

Offloading

𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0 28.0 14.00 0.00

𝑑0, 𝑑1, 𝑑1, 𝑑1, 𝑑1, 𝑑1, 𝑑1 23.0 05.55 1.15

Multi-Site

Offloading

𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0 28.0 14.00 0.00

𝑑0, 𝑑2, 𝑑2, 𝑑2, 𝑑2, 𝑑2, 𝑑2 13.5 03.76 1.125

External Parallel

Execution

No Offloading 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0 28.0 14.00 0.00

Single-Site

Offloading

𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0 28.0 14.00 0.00

𝑑0, 𝑑1, 𝑑1, 𝑑1, 𝑑1, 𝑑1, 𝑑1 21.0 05.05 1.05

𝑑0, 𝑑0, 𝑑1, 𝑑1, 𝑑1, 𝑑1, 𝑑1 19.0 06.15 0.95

Multi-Site

Offloading

𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0 28.0 14.00 0.00

𝑑0, 𝑑1, 𝑑1, 𝑑1, 𝑑1, 𝑑1, 𝑑1 21.0 05.05 1.05

𝑑0, 𝑑0, 𝑑1, 𝑑1, 𝑑1, 𝑑1, 𝑑1 19.0 06.15 0.95

𝑑0, 𝑑2, 𝑑2, 𝑑2, 𝑑2, 𝑑2, 𝑑2 15.0 04.15 1.25

External and

Internal Parallel

Execution

No Offloading 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0 20.0 15.80 0.00

Single-Site

Offloading

𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0 20.0 15.80 0.00

𝑑0, 𝑑1, 𝑑1, 𝑑1, 𝑑1, 𝑑1, 𝑑1 16.0 6.90 1.60

Multi-Site

Offloading

𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0, 𝑑0 20.0 15.80 0.00

𝑑0, 𝑑2, 𝑑2, 𝑑2, 𝑑2, 𝑑2, 𝑑2 9.50 4.600 1.58

56

Chapter 4: Case Study

In this chapter we will analyze a real-world face recognition application problem to answer the

following questions:

• Does consideration of parallel execution of different tasks of an application while solving

the offloading allocation problem influence the near-optimal solution?

• What is the effect of multi-core devices on the near-optimal solution of the offloading

allocation problem?

4.1. Mobile Application Specification

In this section, the proposed code offloading framework will be evaluated for external and internal

parallel execution using a real-world face recognition based on the call graph presented in [27]

shown in Figure 4 below

Figure 4: Call graph of the face recognition application

57

The Figure 4 above represents the call graph of the face recognition application which is built

upon an open source code to implement the Eigen face recognition algorithm [27]. The call

graph is structured by analyzing the application with Soot tool and building a network and

energy profiler. Each step in the call graph has two bold lines where the first line represents the

class name and bottom bold line with colon represents the method name of that class for the

application. The execution time for each step is presented in ms (milli-seconds) and the data

transfer between two steps is presented in KB (killo-bytes). For the analysis of our project, we

convert, the call graph into a work-flow graph which is shown in Figure 5 below.

The Figure 5 above represents the work-flow graph of the face recognition example from [27]. It

has total 15 tasks [𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7, 𝑡8, 𝑡9, 𝑡10, 𝑡11, 𝑡12, 𝑡13, 𝑡14, 𝑡15] which must be

executed to complete the application. Each task ti, in the graph below is represented with a tuple

of two <oi, wi> where oi is the type (true for offloadable, false for non-offloadable) of ti and wi is

FaceBundle
:submitFace

EigenFaceCreator
:readImage

Jama.Matrix
:transpose

<0.003>

<12>

<12.003>
t1

<true, 68.6>

Jama.Matrix
:times

t2

<true, 33>

t3

<true, 2.2>

Jama.Matrix
:eig

t4

<true, 516.6>

EigenFaceCreator
:submit

t5

<true, 77.7>

JPGFile
:readImage

t7

<true, 516.5>

EigenFaceCreator
:computeBundle

t10

<true, 722.2>

EigenFaceCreator

:submitSet t13

<true, 1464>

EigenFaceCreator
:readFaceBundles

t15

<false, 1555.3>

TestFaceRecognition
:main

t14

<false, 137.8>

EigenFaceCreator
:checkAgainst

t11

<true, 80.7>

t12

<true, 35.9>

t6

<true, 192>

EigenFaceCreator
:saveBundle

t8

<true, 75.2>

JPGFile
:<init>

t9

<true, 2.2>

FaceBundle
:compute

<19.806>

<0.0>

<10.206>

<10.204>

<0.6752>

<0.0>

<10.206>

<1.0242>

<0.6>

<0.0002>

<0.00029>

Figure 5: Workflow - Graph of a Face Recognition Application

58

the amount of CPU cycles MI (in million instructions) required for execution of task ti. The <wij>

for each edge e(ti, tj) is the amount of data (in MB) that needs to be transferred between the tasks

ti and tj for communication. The communication data transfer is zero if the tasks ti and tj are

executed on the same device. The execution times wi for each task ti where i < 0< N of the

application is converted in MI from ms. we assume that the mobile device has one core with

processing speed of 1000 MIPS. Using this assumption, we convert all tasks execution time from

milliseconds to million instructions. As an example, the conversion of the task t1 (Jama.Matrix

:time) which is has 68.6ms execution time will be as follow.

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 = 68.6 𝑚𝑠 ∗ 1000
𝑀𝐼

𝑠
= 68.6 𝑀𝐼

Thus, the execution of task t1 will requires 68.6 million instructions to process. All tasks are

independent and have the ability to process in any resource except task t14 and t15 (main and check

against). These two tasks are not offloadable and they are forced to be processed in the local

mobile processor. Based on the above conversion, we simplify the model as shown in Figure 6

below, for the offloading allocation [d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0] (all tasks are

allocated to the local mobile device).

2.2

0.003

12

12.003 t1

68.6

t2

33

t3

t4

516.6

t5

77.7

t7

516.5 t10

722.2

t13
1464

t15

1555.3

t14

137.8

t11

80.7

t12

35.9

t6

192

t8

75.2

t9

2.2

19.806

0.0

10.206

10.204

0.6752

0.0

10.206

1.0242

0.6

0.0002

0.00029

Figure 6: Simplified Work-Flow graph of Face Recognition Application for offloading allocation [d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0]

59

The Figure 6 above represents the simplified work-flow graph of the face recognition application.

The task which are not offloadable are represented in black specifically, task t14 and t15 in Figure

6 above.

4.2. Model Specification

In this section, the specification about mobile device, mobile user profile, cloud servers, GA

configurations and system configuration will be specified.

4.2.1. Mobile Device:

The mobile device d0 is modeled as a tuple of five < 𝑏0, 𝑛0, 𝑠0, 𝑝𝑐0, 𝑝𝑑0, 𝑝𝑖0 > where 𝑏0 is the

current battery percentage of the mobile device, 𝑛0 is the number of processors in the mobile

device, and for each processor 𝑠0 is the processing speed of that processor (in million instructions

per second), 𝑝𝑐0 is the computation power consumption, 𝑝𝑑0is the power consumption for

communication(send and receive data), and 𝑝𝑖0 is the power consumption while the device is idle.

< 𝑏0, 𝑛0, 𝑠0, 𝑝𝑐0, 𝑝𝑑0, 𝑝𝑖0 > = <10%, 1 core, 1000MIPS, 0.9W, 1.3W, 0.3W>

For the analysis it is assumed that the mobile device d0 is currently at 10% and there are total 4

available cores for the execution. The number of instruction that can be processed in each core is

1000 MIPS. The computation energy, communication energy and idle energy is 0.9W, 1.3W and

0.3W respectively.

60

4.2.2. Mobile User Profile:

The mobile user profile is the specification the user network package which is represented as tuple

of two 〈 𝜌, 𝛼 〉 where 𝜌 is the current remaining amount of data left from the fixed portion and 𝛼

is the monetary rate for the additional amount of data (in dollars per MB).

〈 𝜌, 𝛼 〉 = 〈 1024 𝑀𝐵, 0.3 𝑑𝑜𝑙𝑙𝑎𝑟𝑠/𝑀𝐵 〉

For the analysis of this project, we assume 𝜌 to be 1024 MB and 𝛼 to be 0.3 dollars per MB.

4.2.3. Cloud Server d1:

The specification of the cloud server d1 is represented as a tuple of three < 𝑛𝑐, 𝑠𝑐, 𝑟𝑐 > where 𝑛𝑐

is the number of available cores in the cloud server, 𝑠𝑐 is the processing speed of each core (in

million instructions per second), and 𝑟𝑐 is the monetary rate of renting the cloud server from the

cloud provider (in dollars per minute).

< 𝑛𝑐 , 𝑠𝑐, 𝑟𝑐 > = < 4 𝑐𝑜𝑟𝑒, 2000𝑀𝐼𝑃𝑆, 0.6 𝑑𝑜𝑙𝑙𝑎𝑟𝑠/𝑚𝑖𝑛 >

Thus, the cloud server d1 has 4 available cores and each core is twice as fast as the local mobile

processor which can process 2000 million instructions per minute with the total renting cost of

0.6 dollars / mins.

4.2.4. Cloud Server d2:

Similarly, the Cloud Server d2 is also represented as a tuple of three< 𝑛𝑐 , 𝑠𝑐, 𝑟𝑐 >. with the

following specifications:

< 𝑛𝑐 , 𝑠𝑐, 𝑟𝑐 > = < 4 𝑐𝑜𝑟𝑒, 4000𝑀𝐼𝑃𝑆, 0.6 𝑑𝑜𝑙𝑙𝑎𝑟𝑠/𝑚𝑖𝑛 >

61

The cloud server d2 has 4 available cores and each core is 4 times as fast as the mobile processor

which has the ability to process 4000 million instructions per minute with the total renting cost of

1.2 dollars / mins

4.2.5. Device to Device Bandwidth:

In the analysis of our framework, we consider the maximum resource availability of two cloud

servers and the network bandwidth between any two resources is as follow:

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝑑0, 𝑑1) = 1𝑀𝐵𝑃𝑆

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝑑0, 𝑑2) = 1𝑀𝐵𝑃𝑆

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝑑1, 𝑑2) = 1𝑀𝐵𝑃𝑆

Thus, the network bandwidth between local mobile device 𝑑0 and cloud server 𝑑1 as well as cloud

server 𝑑2 is 1MBPS. Similarly, the network bandwidth between two cloud resources 𝑑1 and 𝑑2

is also 1MBPS.

4.2.6. Genetic Algorithm Configurations:

The GA is designed based on NSGA-II optimization algorithm which introduces fast non-

dominated sorting and uses more computation efficient crowding distance metric during survival

selection as compare to NSGA. [15]. The NSGA-II has the ability of binary tournament selection

with Pareto dominance and crowding distance, subset crossover and uniform mutation operators.

We apply subset crossover to apply crossover on the GA solutions and uniform mutation to mutate

GA solution. The probability of applying the subset crossover operator to a decision variable is

0.9 and the probability of applying the uniform mutation operator to a decision variable is 1 /

62

(number of decision variables, i.e. number of tasks) = 1/15. The initial population size GA

solutions is 1000 solution. The GA performs 100,000 evaluations of solutions with the set

probability of crossover and mutation to find the near-optimal solution. The GA is set to optimize

three objective function, response time, energy consumption and processing cost.

4.2.7. System Configurations:

The evaluations of all configuration were performed on Windows 10 (Redstone 4) operating

system. The hardware consists of Intel Core i7-6800k CPU with total 6 cores and processor base

frequency of 3.4 GHz. The system has 16 GB of total Random-Access Memory (RAM).

4.3. Results and Discussion:

In this section, based on the above mobile face recognition application (section 4.1) and the model

specifications presented in section 4.2, each code offloading sub-set will be evaluated on the

following three cases to observe the effect of external parallel execution.

• No-offloading:

In this case, we assume that there is no cloud server available for computation

offloading. Thus, all the tasks must execute locally in the mobile device d0.

• Single-Site offloading:

In this case, we assume that there is one cloud server d1 available for computation

offloading so each task which is offloadable can be executed either in mobile device

d0 or the cloud server d1.

63

• Multi-Site offloading:

In this case, we assume that there are two cloud servers d1 and d2 available for

computation offloading. Thus, the execution of all offloadable tasks can take place in

any of the available resource, d0, d1 and d2.

Similarly, the effect of internal parallel execution will be represented through the following three

configurations:

• 1-Core in each computing resource:

It is assumed that all available resources can only perform the execution in only 1-core

of the processor.

• 2-core in each computing resource:

In this configuration, the processor can perform the internal parallel execution among

only two cores.

• 4-core in each computing resource

This configuration allows the processor to divide the work-load among 4-core to

reduce the throughput time of the applications tasks.

64

4.3.1. Including or excluding parallel execution to find the near-optimal offloading allocation

This section tries to answer the question: Does consideration of parallel execution of different

tasks of an application while solving the offloading allocation problem influences the near-optimal

solution? We assume every device has one processing core. We therefore consider only external

parallelism while comparing parallel versus non-parallel execution in this section. In general, for

each evaluation, GA optimizes the problem based on three objectives, reduced response time, and

energy consumption with no additional processing cost. For each solution, GA produces pareto-

optimal results for each of the application objectives. It is up to the user to pick the right pareto-

optimal solution based on the current mobile device configuration. In this research will be looking

at all three objectives individually.

4.3.1.1. Response Time:

 The response time relates to the performance of the application and optimization of response time

refer to reducing the time required to process all the task of the application. The pareto-optimal

solution for the total reduced response time on all three cases is shown in Table 19 below.

 Table 19: Near-optimal Solution and Minimum Corresponding Response Time

Table 19 above shows the application response time based pareto-optimal offloading solutions (i.e.

the offloading allocation of the fifteen tasks on the computing devices) for the three cases No-

offloading, Single-Site offloading, and Multi-Site offloading. Each case is evaluated while

considering versus not considering the parallel execution of tasks. The Table 19 above represents

Case Considering Parallel exec. of tasks

<minimum response time>

[near-optimal solution, i.e. the near-optimal

offloading allocation of 15 tasks on

available devices]

Without Considering Parallel exec. of tasks

< minimum response time>

[near-optimal solution, i.e. the near-optimal

offloading allocation of 15 tasks on available

devices]

No-offloading <5.5149 Sec>
[d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0]

<5.5149 Sec>
[d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0]

Single-site offloading <3.3130 Sec>
[d1,d1,d1,d1,d0,d1,d1,d0,d0,d1,d0,d0,d1,d0,d0]

<3.7001 Sec>
[d1,d1,d1,d1,d1,d1,d1,d0,d1,d1,d0,d0,d1,d0,d0]

Multi-Site offloading <2.4342 Sec>
[d2,d2,d2,d2,d1,d2,d2,d0,d1,d2,d0,d0,d2,d0,d0]

<2.7925 Sec>
[d2,d2,d2,d2,d2,d2,d2,d0,d2,d2,d0,d0,d2,d0,d0]

65

that the No-Offloading case for both scenarios of considering or not considering parallel execution,

the minimum response time is same 5.5149 Seconds. This is because in No-offloading case, all the

tasks must be allocated in the mobile device and that the device consists of only one core forcing

the tasks to execute sequentially. Thus, no parallel execution is performed in both scenarios.

In Single-Site offloading case, the external parallel execution provides the gain of 11.68%

compare to sequential implementation which reduces the application response time to 3.3130

Seconds from 3.7001 Seconds. The GA offloading solution for the single-site parallel execution

is [d1, d1, d1, d1, d0, d1, d1, d0, d0, d1, d0, d0, d1, d0, d0] and [d1, d1, d1, d1, d1, d1, d1, d0, d1, d1, d0,

d0, d1, d0, d0] is offloading solution for not considering any parallel execution among local mobile

device d0 and cloud server d1.

Similarly, for Multi-Site offloading case, the external parallel execution provides the gain of

12.83% by reducing the application response time to 2.4342 Seconds as compare to 2.7925

Seconds for the sequential execution. The offloading solution to achieve the minimum response

time with parallel execution among different available resources is [d2, d2, d2, d2, d1, d2, d2, d0, d1,

d2, d0, d0, d2, d0, d0]. Similarly, the offloading solution for not considering parallel execution and

performing all tasks in sequential manners is [d2, d2, d2, d2, d2, d2, d2, d0, d2, d2, d0, d0, d2, d0, d0].

In conclusion, the two cases Single-Site and Multi-Site offloading, provides a gain of 11.68% and

12.83% respectively for considering external parallel execution among different resources as

compare sequential execution. It is also observed that the task allocation for both cases is different

in both scenarios.

66

4.3.1.2. Energy Consumption:

The energy consumption is aligned with the power saving mode of the application. It is suitable

for the scenarios when the mobile device current battery percentage 𝑏0 is low and user wants the

application to consume as less battery as possible. As it is mentioned in the section 4.2.1 (mobile

device) the current battery level is assumed to be 10 % remaining so the user chooses this option

to make the battery lasts longer. The near-optimal solution for the optimized energy consumption

objective is shown in the Table 20 below.

Table 20: Near-optimal Solution for Energy Consumption

Case Considering Parallel exec. of tasks

<minimum energy consumption>

[near-optimal solution]

Without Considering Parallel exec. of tasks

< minimum energy consumption>

[near-optimal solution]

No-offloading <4.9634 J>
[d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0]

<4.9634 J>
[d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0]

Single-site offloading <2.1422 J>
[d1,d1,d1,d1,d1,d1,d1,d0,d1,d1,d0,d0,d1,d0,d0]

<3.8746 J>
[d1,d1,d1,d1,d1,d1,d1,d0,d1,d1,d0,d0,d1,d0,d0]

Multi-Site offloading <1.8614 J>
[d2,d2,d2,d2,d1,d2,d2,d0,d1,d2,d0,d0,d2,d0,d0]

<2.7856 J>
[d2,d2,d2,d2,d2,d2,d2,d0,d2,d2,d0,d0,d2,d0,d0]

The Table 20 above represents the application energy consumption based pareto-optimal

offloading allocations for the scenarios when the parallel execution is performed among

computation resources verses sequential execution. The energy consumption for the no-offloading

case, is same 4.9634 Joules for both scenarios since there is only one resource (local mobile

device d0) with only one available core. Thus, there is no external or internal parallel execution is

performed in the case of no-offloading.

In Single-site offloading case, the parallel execution consumes 44.71% less energy as compare to

no parallel execution among different resources. The energy consumption for the parallel

execution scenario is 2.1422 Joules as compare to 3.8746 Joules when the parallel execution is

ignored. The near-optimal offloading allocation for the application tasks in parallel execution and

67

sequential implementation scenario is same for the energy consumption which is [d1, d1, d1, d1,

d1, d1, d1, d0, d1, d1, d0, d0, d1, d0, d0].

Similarly, in Multi-Site offloading, the parallel execution scenario consumes 33% less energy as

compare to sequential implementation. It is also observed, the GA near-optimal solution for the

Multi-Site offloading case is different in both scenarios. The near-optimal offloading allocation

with parallel execution is [d2, d2, d2, d2, d1, d2, d2, d0, d1, d2, d0, d0, d2, d0, d0] which consumes

total energy of 1.8614 Joules as compare to sequential implementation of 2.7856 Joules of energy

consumption from allocation [d2, d2, d2, d2, d2, d2, d2, d0, d2, d2, d0, d0, d2, d0, d0].

Thus, the two scenario reveals that if the user current mobile device’s battery percentage is low,

the user should consider parallel execution to consume less power during execution. The Single-

Site offloading, and Multi-Site offloading consumes 44.71 % and 33.00 % less power as compare

to not considering parallel execution.

4.3.1.3. Monetary Cost:

Cost with Response Time:

The processing cost is incurred by the mobile user can also be chosen as the objective function.

However, the minimum monetary cost (zero dollars) intuitively refers to the No-offloading case.

Thus, the GA optimization for any scenario for this object always leads towards the No-offloading

case. In order to solve the near-optimal offloading allocation problem in terms of monetary cost as

the objective function makes sense only when other objectives (such as response time, energy

68

consumption) are also considered as well. Let’s consider the processing cost with respect to

response time and energy consumption individually.

The processing cost is any additional cost which is required to achieve the near-optimal response

time and energy consumption. The Table 21 below represents the cost objective with respect to

response time.

Table 21: Cost Objective with respect to Response Time

Based on the Table 21 above, it is safe to conclude that parallel execution of the tasks does not just

improve the response time of the application. It also reduces the processing cost of the near-optimal

solution. The cost for no offloading case is same 0.0¢ for both scenarios. However, the single site

offloading case requires 10.81% less cost for the parallel execution scenario as compare to

sequential execution. Similarly, the percentage difference of cost for Multi-Site offloading case is

12.5% so the parallel execution of task will incur 12.5% less operating cost as compare to not

considering parallel execution.

Cost with Energy Consumption:

In this section, the relationship between operating cost and the application energy consumption

will be discussed. The required operating cost with respect to mobile device energy consumption

is shown the Table 22 below.

Case

Considering Parallel exec. of tasks

<minimum response time>

[near-optimal solution, i.e. the near-optimal
offloading allocation of 15 tasks on

available devices]

Cost

(Cents)

Without Considering Parallel exec. of tasks

< minimum response time>

[near-optimal solution, i.e. the near-optimal
offloading allocation of 15 tasks on available

devices]

Cost

(Cents)

No-
offloading

<5.5149 Sec>
[d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0]

0.0¢
<5.5149 Sec>

[d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0]
0.0¢

Single-site
offloading

<3.3130 Sec>
[d1,d1,d1,d1,d0,d1,d1,d0,d0,d1,d0,d0,d1,d0,d0] 3.3¢

<3.7001 Sec>
[d1,d1,d1,d1,d1,d1,d1,d0,d1,d1,d0,d0,d1,d0,d0] 3.7¢

Multi-Site
offloading

<2.4342 Sec>
[d2,d2,d2,d2,d1,d2,d2,d0,d1,d2,d0,d0,d2,d0,d0]

4.9¢
<2.7925 Sec>

[d2,d2,d2,d2,d2,d2,d2,d0,d2,d2,d0,d0,d2,d0,d0]
5.6¢

69

Table 22: Near-optimal Energy Consumption with Cost

Cases Considering Parallel exec. of tasks

<minimum energy consumption>

[near-optimal solution]

Cost

(Cents)

Without Considering Parallel exec. of tasks

< minimum energy consumption>

[near-optimal solution]

Cost

(Cents)

No-
offloading

<4.9634 J>
[d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0]

0.0¢ <4.9634 J>
[d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0]

0.0¢

Single-Site
offloading

<2.1422 J>
[d1,d1,d1,d1,d1,d1,d1,d0,d1,d1,d0,d0,d1,d0,d0]

3.4¢ <3.8746 J>
[d1,d1,d1,d1,d1,d1,d1,d0,d1,d1,d0,d0,d1,d0,d0]

3.7¢

Multi-site
offloading

<1.8614 J>
[d2,d2,d2,d2,d1,d2,d2,d0,d1,d2,d0,d0,d2,d0,d0]

7. 3¢ <2.7856 J>
[d2,d2,d2,d2,d2,d2,d2,d0,d2,d2,d0,d0,d2,d0,d0]

5. 6¢

Based on Table 22, one can easily visualize the behavior of cost and energy consumption for

parallel execution and non-parallel execution. Similar to the response time, the no-offloading case

does not require any additional operating cost since all tasks are processed in the local processor.

Further, the gain of parallel execution in single-site offloading is 8.108 % as compare to no

parallel execution scenario. Finally, the parallel execution for the Multi-Site offloading case

requires 23.287% more operating cost as compare to no-offloading scenario.

Hence, it is safe to conclude that parallel execution of the application tasks optimizes all three

objectives (response time, energy consumption and cost) as compare to sequential execution.

4.3.2. Evaluating the effect of multi-core devices on near-optimal offloading allocation:

This section tries to answer the question: What is the effect of multi-core devices on the near-

optimal solution of the offloading allocation problem? We consider both internal and external

parallelism here. In order to visualize the effect of internal parallel execution, we extend the three

cases of (No-offloading, Singe-Site offloading, Multi-Site offloading) with three more

configurations 1-core, 2-core and 4-core of the processor. The renting rate of any cloud server di

(i = 1, 2) with m cores is m * ri where ri is the renting rate of di with one core. Similar to external

parallel execution (section 4.3.1) there is not a single best solution that minimizes all the three

objectives at the same time since a small improvement in one objective may deteriorate at least

70

one other objective [8]. Instead, we will have a Pareto-optimal set of solutions. Pareto optimality

considers a solution to be better or worse in comparison to another solution only if it is better with

respect to all objectives or worse with respect to all objectives. Any two solutions are non-

dominated if neither dominates the other, i.e. neither one is better than the other. The set of all non-

dominated solutions is captured by the Pareto-optimal set of solutions [15]. For each pair of case

(Case-1, Case-2 and Case-3) and core (1-core, 2-cores and 4-cores), each pareto-optimal set

contains a bold value representing the minimum value of an objective function among the

solutions. For example, corresponding to the Pareto-optimal set for the case-core pair (Case-1, 1-

core), the solution 11 yields the minimum energy consumption of 4.9634 Joules, the solution 12

yields the minimum response time of 4.8431seconds with no additional cost, we will be looking

at three cases (No-offloading, Singe-Site offloading, Multi-Site offloading) individually to observe

the gain of internal parallel execution.

4.3.2.1.Case1: No Offloading:

In this section, the gain of internal parallel execution on case 1 (No offloading) will be analyzed.

In case1, there is only local processor available for execution and all tasks are forced to process in

the local processor resulting no additional processing cost. The only one possible solution for this

case is solution [d0, d0, d0, d0, d0, d0, d0, d0, d0, d0, d0, d0, d0, d0, d0] all task are forced to process in

the local mobile device. However, varying the number of processor cores introduces internal

parallel execution which makes a significant improvement on the response time with the trade-off

of energy consumption. The GA pareto-optimal solutions for the case1- no offloading are shown

in the Table 23 below.

71

Figure 7: Internal Parallel Execution for No-Offloading

The Figure 7 above shows the pareto-optimal solution for the case 1-No offloading for 1-core, 2-

core and 4-core labelled as 11a, 12a, and 14a. For the 1-core processing, there is no internal parallel

execution and all tasks are executed sequentially which results in 5.5419 Seconds of response time

with the energy consumption of 4.9634 Joules without adding any additional processing cost.

Similarly, for the 2-core processing, the response time and energy consumption is 4.8431 Seconds

and 6.2148 Joules respectively which shows the gain of 12.18% in response time with the trade-

off of 25.12% more energy consumption as compare to 1 core processing scenario. It is observed

in the Figure 7 above that the response time for the 2-core processing reaches its near-optimal

Table 23:Offloading Allocation for No-Offloading

1-core in each device 2-cores in each device 4-cores in each device
11a[d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0] 12a[d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0] 14a[d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0]

72

value and does not improve any further by adding any additional core for the face recognition

example. Hence the 4-core processing yields the same response time as it is in 2 core processing

4.8431 Seconds. However, the energy consumption value increases for any 4-core processing

scenario. The energy loss is due to processor being in idle state when there is not enough

application task available. Thus, for the no offloading case the energy consumption is minimum

for the 1-core processing and the response time is near-optimal for the 2-core processing and there

is no additional processing cost.

4.3.2.2.Case 2: Single Site offloading:

In case2, Single Site offloading, there are two available resources, local mobile processor one and

cloud server. In this case, all tasks except t14 and t15 can be either offloaded to the cloud server or

to be process in the local mobile device. The pareto-optimal solutions for the case2- single site

offloading scenario are shown in the Table 24 below.

73

Figure 8: Internal Parallel Execution for Single-Site Offloading

The Figure 8 above shows the pareto-optimal solutions for single site offloading when executed

in 1-core, 2-core and 4-core configuration. Let’s analyze each configuration individually to

conclude the gain of internal parallel execution.

4.3.2.2.1. 1-Core each Resource :

The execution of 1 core in both resources yields 5 pareto-optimal solution labeled as 21a, 21b, 21c,

21d, 21e in the Table 24 above. There is no internal parallel execution in this configuration,

however, all solutions except 21a, utilizes the external parallel execution between the mobile device

and cloud server. There is no best solution, it is up to the user to pick the solution more suitable for

Table 24:Offloading Allocation for Single-Site Offloading

1-core in each device 2-core in each device 4-core in each device

21a.[d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0] 22a.[d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0] 24a.[d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0]

21b.[d1,d1,d1,d1,d1,d1,d1,d0,d1,d1,d0,d0,d1,d0,d0] 22b.[d1,d1,d0,d1,d1,d1,d1,d0,d1,d1,d0,d0,d1,d0,d0] 24b.[d1,d1,d0,d1,d1,d1,d1,d0,d1,d1,d0,d0,d1,d0,d0]

21c.[d1,d1,d1,d1,d0,d1,d1,d0,d0,d1,d0,d0,d1,d0,d0]

21d.[d1,d1,d1,d1,d0,d1,d1,d0,d1,d1,d0,d0,d1,d0,d0]

21e.[d1,d1,d1,d1,d1,d1,d1,d0,d0,d1,d0,d0,d1,d0,d0]

74

their current situation. As an example, if the mobile battery is at 100% and the user is willing to

pay 3.31¢ on the processing cost then the best option for the user to pick 21c. [d1, d1, d1, d1, d0, d1,

d1, d0, d0, d1, d0, d0, d1, d0, d0] which provides the minimum response time of 3.3130 Seconds with

the energy consumption of 2.1939 Joules and the additional processing cost of 3.31¢. However, if

the user main goal is to save the battery consumption as much as possible regardless of the

additional processing cost or the application response time, the best option for the user would be

21b [d1, d1, d1, d1, d1, d1, d1, d0, d1, d1, d0, d0, d1, d0, d0] which yields the minimum energy

consumption of 2.1422 Joules with the response time to be 3.3705 Seconds with the processing

cost of 3.35¢. Further, if the main goal is to minimize the response time as well as the energy

consumption then the user has to decide between 21d and 21e depending on the additional

processing cost which the user wants to pay.

4.3.2.2.2. 2-Core each Resource:

In this scenario, each computing resource has the ability to perform internal parallel execution

among both cores of the processors as well as the external parallel execution between both

resources. Each core of the processor can handle the computation or communication of application

tasks jobs depending on their arrival or the processor availability. The GA reveals there are two

pareto-optimal solutions in this scenario labelled as 22a and 22b in the Table 24 above. The solution

22a is pareto-optimal for the cost objective and provides the user an option to process all tasks of

the application without adding any additional processing cost. However, the solution 22b provides

the minimum response time and energy consumption of 3.1846 Seconds and 3.0462 Joules

respectively with an additional processing cost of 6.36¢. In this scenario, the response time is

further enhanced by 3.88% as compare to minimum response time of the pareto-optimal solution

75

in 1-core scenario (21b). However, energy consumption increases by 42.20% as compared to

minimum energy consumption of the pareto-optimal solution (21b) in 1-core scenario. The

additional processing cost of the application also increases to 6.36¢ as compare 1-core pareto-

optimal solution (21b) which requires the maximum processing cost.

4.3.2.2.3. 4-Core each Resource:

In this scenario, each computing resources has the ability to execute application tasks parallel

among the different processors (internal parallel execution). Each processor can perform

computation or communication based on their availability and the application tasks jobs arrival.

Similar to 2-core scenario, the GA also reveals to 2 pareto-optimal solution in this case labelled as

24a and 24b in the Table 24 above. This case further enhanced the application response time with

the trade-off of energy consumption and processing cost. The solution 24a provides the minimum

operating cost the application however, the solution 24b provides the response time of 3.1703

Seconds with the energy consumption of 4.9398 Joules and the additional processing cost of

12.68¢. In this case, the gain of the response time is just 0.45% however, the trade-off of energy

consumption and cost is 38.33 % and 49.84% respectively as compare to 2-core scenario. Since

the loss of energy consumption and cost is much higher than the gain in the response time so it is

safe to conclude that this case is only for those users whose main goal is to reduce the application

response time without prioritizing the energy consumption or the additional processing cost of the

application.

4.3.2.3.Case 3: Multi-Site Offloading:

In this case, there are three computation resources, local mobile device d0 and cloud server d1 and

d2. In order to observe the gain of the parallel execution, each resource is executed in 1-core, 2-

core, and 4-core configuration. We will be looking at each configuration individually. The table

76

25 below shows the results of the three objectives (response time, energy consumption and cost)

for all three configurations (1-core, 2-core, 4-core).

Figure 9: Internal Parallel Execution for Multi-Site Offloading

Table 25: Offloading Allocation for Multi-Site Offloading

1-core in each device 2-core in each device 4-core in each device

31a.[d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0] 32a.[d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0] 34a.[d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0,d0]

31b.[d2,d2,d2,d2,d1,d2,d2,d0,d1,d2,d0,d0,d2,d0,d0] 32b.[d2,d2,d1,d2,d2,d2,d2,d0,d1,d2,d0,d0,d2,d0,d0] 34b.[d2,d2,d1,d2,d1,d2,d2,d0,d2,d2,d0,d0,d2,d0,d0]

31c.[d1,d1,d1,d1,d0,d1,d1,d0,d0,d1,d0,d0,d1,d0,d0] 32c. [d1,d1,d0,d1,d1,d1,d1,d0,d1,d1,d0,d0,d1,d0,d0] 34c.[d1,d1,d0,d1,d1,d1,d1,d0,d1,d1,d0,d0,d1,d0,d0]

31d.[d1,d1,d0,d1,d1,d1,d1,d0,d1,d1,d0,d0,d1,d0,d0] 32d.[d2,d2,d2,d2,d2,d2,d2,d0,d2,d2,d0,d0,d2,d0,d0] 34d.[d2,d2,d0,d2,d2,d2,d2,d0,d2,d2,d0,d0,d2,d0,d0]

31e.[d2,d2,d2,d2,d2,d2,d2,d0,d2,d2,d0,d0,d2,d0,d0] 32e.[d2,d2,d0,d2,d2,d2,d2,d0,d2,d2,d0,d0,d2,d0,d0]

31f. [d2,d2,d2,d2,d0,d2,d2,d0,d0,d2,d0,d0,d2,d0,d0]

31g.[d1,d1,d1,d1,d0,d1,d1,d0,d1,d1,d0,d0,d1,d0,d0]

31h.[d1,d1,d1,d1,d1,d1,d1,d0,d0,d1,d0,d0,d1,d0,d0]

31i. [d2,d2,d2,d2,d2,d2,d2,d0,d0,d2,d0,d0,d2,d0,d0]

31j. [d2,d2,d2,d2,d0,d2,d2,d0,d2,d2,d0,d0,d2,d0,d0]

77

4.3.2.3.1. 1-Core each Resource:

In this scenario, since there is only 1 available processor for all three computing resources so there

is no internal parallel execution. However, the external parallel is all pareto-optimal solutions

except 31a. The GA explores 10 pareto-optimal solution for the (case3, 1-core) scenario. The

solution 31b and 31f produces the lowest possible application response time of 2.4342 Seconds.

However, 31f consume more battery of 1.9303 Joules as compare to 1.8614 Joules from 31b but

requires less operating cost of 4.86¢ as compare to 7.30¢ in 31b. The 31a does not offload any task

to the cloud server and does not require any additional processing cost. All other pareto-optimal

solution are intermediate solutions for the user to choose based on their current device

configuration.

4.3.2.3.2. 2-Core each Resource:

In this scenario, each computing resource contains two processors and has the ability to perform

internal parallel execution all the independent application tasks based on their availability. There

are 5 different pareto-optimal solutions in this configuration which are labelled as 32a, 32b, 32c,

32d, and 32e in the Table 25 above. The solution 32b and 32d both provides the same response

time of the application of 2.3715 Seconds but different in the energy consumption and the

processing cost. The solution 32b provides the minimum energy consumption of 2.5554 Joules

with the trade-off of the processing cost of 14.22¢. However, the solution 32e provides the low

operating cost with slightly higher energy consumption. The user can choose the any solution from

these pareto-optimal solutions to meet their desired goals based on their current situation of the

mobile device.

78

4.3.2.3.3. 4-Core each Resource:

In this scenario, each computing resource has 4 available processor for the internal parallel

execution of the tasks based on their availability. The GA reveals 4 different pareto-optimal

solution for the (case3, 4-core) situation which are labelled as 34a, 34b, 34c, 34d in table 25 above.

The solution 34b, provide the lowest response time and energy consumption 2364.4 and 3968.4

respectively among all pareto-optimal solution with the trade-off of high operating cost of 28.37¢.

The gain of the response time as compare to 2-core scenario, is 0.3% as compare to energy loss of

55.38%. Thus, this solution provides the lowest response time but consumes more mobile energy

and requires high operating cost as compare to all other cases.

4.3.3. Summary:

In this section, we summarize the gain of internal and external execution with respect to response

time, energy consumption and monetary cost of the application. The Table 26 below combines the

results for all three cases (No-Offloading, Single-Site Offloading and multi-Site offloading) for

the scenarios of 1-core, 2-core and 4-core in each computing resource. Based on the results form

Table 26, it is safe to conclude that the response time of an application reduces with both external

and internal parallel execution as compare to sequential execution. Similarly, the energy

consumption is reduced through external parallel execution. However, for the internal parallel

execution, there are several different cores to the resource thus the execution division requires

more energy consumption to complete the tasks as compare to sequential execution. Finally,

offloading monetary cost is consider with respect to response time and energy consumption

separately. The user can choose the offloading cost with respect to response time and energy

79

consumption by paying an additional monetary cost for using cloud resource and network service

on the mobile device.

Table 26: EFFECT OF THE NUMBER OF CORES IN EACH DEVICE ON NEAR-OPTIMAL OFFLOADING ALLOCATION

Case

1-core in each device 2-cores in each device 4-cores in each device

Near-optimal
Soln.

Resp.
Time
(Seconds)

Energy
(Joules)

Cost
(¢)

Near-optimal
Soln.

Resp.
Time
(Seconds)

Energy
(Joules)

Cost
(¢)

Near-optimal
Soln.

Resp.
Time
(Seconds)

Energy
(Joules)

Cost
(¢)

No-
offloading
(Case-1)

11.[d0, d0, d0, d0, d0,
d0, d0, d0, d0, d0, d0,
d0, d0, d0, d0]

5.5149 4.9634 0¢
12.[d0, d0, d0, d0, d0,
d0, d0, d0, d0, d0, d0,
d0, d0, d0, d0]

4.8431 6.2148 0¢
14.[d0, d0, d0, d0, d0,
d0, d0, d0, d0, d0, d0,
d0, d0, d0, d0]

4.8431 9.1207 0¢

Single-site
offloading
(Case-2)

21a.[d0, d0, d0, d0,
d0, d0, d0, d0, d0, d0,
d0, d0, d0, d0, d0]

5.5149 4.9634 0¢
22a.[d0, d0, d0, d0,
d0, d0, d0, d0, d0, d0,
d0, d0, d0, d0, d0]

4.8431 6.2148 0¢
24a.[d0, d0, d0, d0,
d0, d0, d0, d0, d0, d0,
d0, d0, d0, d0, d0]

4.8431 9.1207 0¢

21b.[d1, d1, d1, d1,
d1, d1, d1, d0, d1, d1,
d0, d0, d1, d0, d0]

3.3705 2.1422 3.37¢
22b.[d1, d1, d0, d1,
d1, d1, d1, d0, d1, d1,
d0, d0, d1, d0, d0]

3.1846 3.0462 6.36¢
24b.[d1, d1, d0, d1,
d1, d1, d1, d0, d1, d1,
d0, d0, d1, d0, d0]

3.1703 4.9398 12.68¢

21c.[d1, d1, d1, d1,
d0, d1, d1, d0, d0, d1,
d0, d0, d1, d0, d0]

3.3130 2.1939 3.31¢

21d.[d1, d1, d1, d1,
d0, d1, d1, d0, d1, d1,
d0, d0, d1, d0, d0]

3.3316 2.1772 3.33¢

21e.[d1, d1, d1, d1,
d1, d1, d1, d0, d0, d1,
d0, d0, d1, d0, d0]

3.3518 2.1590 3.35¢

Multi-Site
offloading
(Case-3)

31a.[d0, d0, d0, d0,
d0, d0, d0, d0, d0, d0,
d0, d0, d0, d0, d0]

5.5149 4.9634 0
32a.[d0, d0, d0, d0,
d0, d0, d0, d0, d0, d0,
d0, d0, d0, d0, d0]

4.8431 6.2148 0¢
34a.[d0, d0, d0, d0,
d0, d0, d0, d0, d0, d0,
d0, d0, d0, d0, d0]

4.8431 9.1207 0¢

31b.[d2, d2, d2, d2,
d1, d2, d2, d0, d1, d2,
d0, d0, d2, d0, d0]

2.4342 1.8614 7.30¢
32b.[d2, d2, d1, d2,
d2, d2, d2, d0, d1, d2,
d0, d0, d2, d0, d0]

2.3715 2.5540 14.22¢
34b.[d2, d2, d1, d2,
d1, d2, d2, d0, d2, d2,
d0, d0, d2, d0, d0]

2.3644 3.9684 28.37¢

31c.[d1, d1, d1, d1,
d0, d1, d1, d0, d0, d1,
d0, d0, d1, d0, d0]

3.3130 2.1939 3.31¢
32c.[d1, d1, d0, d1,
d1, d1, d1, d0, d1, d1,
d0, d0, d1, d0, d0]

3.1846 3.0462 6.36¢
34c.[d1, d1, d0, d1,
d1, d1, d1, d0, d1, d1,
d0, d0, d1, d0, d0]

3.1703 4.9398 12.68¢

31d.[d1, d1, d0, d1,
d1, d1, d1, d0, d1, d1,
d0, d0, d1, d0, d0]

3.3724 2.1471 3.37¢
32d.[d2, d2, d2, d2,
d2, d2, d2, d0, d2, d2,
d0, d0, d2, d0, d0]

2.3774 2.5576 9.50¢
34d.[d2, d2, d0, d2,
d2, d2, d2, d0, d2, d2,
d0, d0, d2, d0, d0]

2.3655 3.9740 18.92¢

31e.[d2, d2, d2, d2,
d2, d2, d2, d0, d2, d2,
d0, d0, d2, d0, d0]

2.4630 1.8700 4.92¢
32e.[d2, d2, d0, d2,
d2, d2, d2, d0, d2, d2,
d0, d0, d2, d0, d0]

2.3715 2.5584 9.48¢

31f.[d2, d2, d2, d2,
d0, d2, d2, d0, d0, d2,
d0, d0, d2, d0, d0]

2.4342 1.9303 4.86¢

31g.[d1, d1, d1, d1,
d0, d1, d1, d0, d1, d1,
d0, d0, d1, d0, d0]

3.3316 2.1772 3.33¢

31h.[d1, d1, d1, d1,
d1, d1, d1, d0, d0, d1,
d0, d0, d1, d0, d0]

3.3518 2.1590 3.35¢

31i.[d2, d2, d2, d2,
d2, d2, d2, d0, d0, d2,
d0, d0, d2, d0, d0]

2.4537 1.8895 4.90¢

31j.[d2, d2, d2, d2,
d0, d2, d2, d0, d2, d2,
d0, d0, d2, d0, d0]

2.4435 1.9108 4.88¢

80

Chapter 5: Conclusion

5.1. Conclusion:

The increasing demand of mobile devices in our daily lives requires the development of intensive

applications on that platform. However, the physical structure, limited computation capability and

dependence on battery consumption make the development of an intensive applications

challenging on the mobile devices. Mobile cloud computing offers code offloading framework as

a medium between mobile device and cloud server to mitigate these challenges. These challenges

can be further reduced through multi-site computation offloading. This thesis attempts to solve the

problem of multi-site computation offloading for mobile applications by introducing a multi-state

decision variable. The states of the decision variable are equal to the number of available

computation resources at the time of offloading. Our work goes beyond existing approaches by

considering parallel execution of tasks during offloading decision in contrast to others who

primarily focused on sequential executions. Unlike prior work in computation offloading, our work

considers the effect of Internal and External parallelism on the offloading allocation. The

assignment of tasks on multiple different resources for parallel execution refer to External

Parallelism. Similarly, the assignment of tasks on the different cores of a single resource refer to

Internal Parallelism. Further, we proposed a multi-objective code offloading algorithm to meet a

user's need for application computation. Our multi-objective algorithm computes the response

time, energy consumption and monetary cost by considering the effect of external and internal

parallelism on each offloading allocation. We used Genetic Algorithm to optimize the offloading

allocation and to find near-optimal solution(s) with respect to response time, energy consumption

and monetary cost. The Genetic Algorithm invokes our proposed algorithm to evaluate the fitness

of each offloading solution and produce pareto-optimal offloading allocations for each objective.

81

The user can choose any pareto-optimal solution based on their objective and offloading needs.

The gain of our multi-objective algorithm between external and sequential as well as internal and

sequential is verified through a real-world face recognition application from [27]. The results show

that accounting for the effect of parallel execution yields a better near-optimal solution for the

allocation problem as compared to excluding parallelism in the analysis.

5.2. Future Work

Our proposed code offloading framework performs the parallel implementation of the parallel path

and the parallel execution itself is an open problem. The framework can be further enhanced by

addressing some of these parallel execution limitations. The future research work to address these

limitations are as follow:

• In the internal parallel execution, the data is accessed from the memory and cache by all

processors of the single device. In the current framework, the data access time from the

memory and cache is not included in the response time of the application.

• In regards to VM (virtual machine), there is an initialization time of each VM which is

currently not considered in the calculation. It is assumed that each VM is already

initialized and it is ready to receive the offloading tasks of an application from the mobile

device.

82

• In the external parallel execution, the communication among different devices is

considered to be constant. However, the data exchange rate between the mobile device

and the cloud server continuously changes based on the user wireless network plan and

the geographic location. The dramatic change in the wireless connection needs to be

addressed in the current framework.

• In the current framework, it is assumed that the mobile device is always connected to the

internet and there is no sudden interrupt in the wireless connection. Further research is

required to handle unexpected disconnection of the mobile device or cloud servers from

the network.

• The current state of this framework is heavily dependent on the user input for the model

specification, mobile device and cloud server configurations. The user manually has to

enter all the details before performing the simulation. A user interface can be created to

gather the model specifications from the mobile device profiler and cloud server’s APIs.

83

References

[1] An energy-efficient cloud-based offloading decision algorithm for mobile devices.

(2012). SCIENTIA SINICA Informationis. doi:10.1360/112011-922

[2] Atayero, A. A., & Feyisetan, O. (n.d.). Security Issues in Cloud Computing: The Potentials

of Homomorphic Encryption. Journal of Emerging Trends in Computing and Information

Sciences, 2 (10). Pp. 546-552. ISSN 2079-8407.

[3] Berg, F., Durr, F., & Rothermel, K. (2015). Increasing the efficiency of code offloading

through remote-side caching. 2015 IEEE 11th International Conference on Wireless and

Mobile Computing, Networking and Communications (WiMob).

doi:10.1109/wimob.2015.7348013

[4] Chen, L., Ho, Y., Kuo, W., & Tsai, M. (2015). Intelligent file transfer for smart handheld

devices based on mobile cloud computing. International Journal of Communication

Systems,30(1). doi:10.1002/dac.2947

[5] Cheng, Z., Li, P., Wang, J., & Guo, S. (2015). Just-in-Time Code Offloading for Wearable

Computing. IEEE Transactions on Emerging Topics in Computing, 3(1), 74-83.

doi:10.1109/tetc.2014.2387688

84

[6] Chun, B., Ihm, S., Maniatis, P., Naik, M., & Patti, A. (2011). Clonecloud: Elastic Execution

between Mobile Device and Cloud. Proceedings of the Sixth Conference on Computer

Systems - EuroSys 11. doi:10.1145/1966445.1966473

[7] Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A., Saroiu, S., Chandra, R., & Bahl,

P. (2010). Maui: Making Smartphones Last Longer with Code Offload. Proc. ACM

MobiSys 2010,San Francisco, CA. doi:10.1145/1814433.1814441

[8] Deb, K., & Jain, H. (2014). An Evolutionary Many-Objective Optimization Algorithm

Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems

With Box Constraints. IEEE Transactions on Evolutionary Computation,18(4), 577-601.

doi:10.1109/tevc.2013.2281535

[9] Deng, S., Huang, L., Taheri, J., & Zomaya, A. Y. (2015). Computation Offloading for

Service Workflow in Mobile Cloud Computing. IEEE Transactions on Parallel and

Distributed Systems,26(12), 3317-3329. doi:10.1109/tpds.2014.2381640

[10] Eason, G., Noble, B., & Sneddon, I. N. (1955). On Certain Integrals of Lipschitz-Hankel

Type Involving Products of Bessel Functions. Philosophical Transactions of the Royal

Society A: Mathematical, Physical and Engineering Sciences,247(935), 529-551.

doi:10.1098/rsta.1955.0005

85

[11] Ellouze, A., Gagnaire, M., & Haddad, A. (2015). A Mobile Application Offloading

Algorithm for Mobile Cloud Computing. 2015 3rd IEEE International Conference on

Mobile Cloud Computing, Services, and Engineering. doi:10.1109/mobilecloud.2015.11

[12] Flores, H., Hui, P., Tarkoma, S., Li, Y., Srirama, S., & Buyya, R. (2015). Mobile code

offloading: From concept to practice and beyond. IEEE Communications Magazine,53(3),

80-88. doi:10.1109/mcom.2015.7060486

[13] Gordon, M. S., Jamshidi, D. A., Mahlke, S., Mao, M. Z., & Chen, X. (n.d.). COMET: Code

Offload by Migrating Execution Transparently. 10th USENIX Symposium on Operating

Systems Design and Implementation (OSDI ’12),93-106.

[14] Goudarzi, M., Zamani, M., & Toroghi Haghighat, A. (2016). A genetic-based decision

algorithm for multisite computation offloading in mobile cloud computing. International

Journal of Communication Systems,30(10). doi:10.1002/dac.3241

[15] Hadka, D. (n.d.). Beginner's Guide to the MOEA Framework. MOEA Framework User

Guide.

[16] Hudik, Martin, and Michal Hodon. “Performance Optimization of Parallel Algorithms.”

Journal of Communications and Networks, vol. 16, no. 4, 2014, pp. 436–446.,

doi:10.1109/jcn.2014.000074.

86

[17] Kosta, S., Aucinas, A., Hui, P., Mortier, R., & Zhang, X. (2012). ThinkAir: Dynamic

resource allocation and parallel execution in the cloud for mobile code offloading. 2012

Proceedings IEEE INFOCOM. doi:10.1109/infcom.2012.6195845

[18] Kumar, K., Liu, J., Lu, Y., & Bhargava, B. (2012). A Survey of Computation Offloading

for Mobile Systems. Mobile Networks and Applications, 18(1), 129-140.

doi:10.1007/s11036-012-0368-0

[19] L. Jiao, R. Friedman, X. Fu, S. Secci, Z. Smoreda and H. Tschofenig, "Cloud-based

computation offloading for mobile devices: State of the art, challenges and opportunities,"

2013 Future Network & Mobile Summit, Lisboa, 2013, pp. 1-11.

[20] Maxwell, J. C. (n.d.). Electricity And Magnetism. A Treatise on Electricity and

Magnetism,Xxxi-Xxxiv. doi:10.1017/cbo9780511709333.002

[21] Niu, R., Song, W., & Liu, Y. (2013). An Energy-Efficient Multisite Offloading Algorithm

for Mobile Devices. International Journal of Distributed Sensor Networks, 9(3), 518518.

doi:10.1155/2013/518518

[22] Park, J., Kim, H., Jeong, Y., & Lee, E. (2013). Two-phase grouping-based resource

management for big data processing in mobile cloud computing. International Journal of

Communication Systems,27(6), 839-851. doi:10.1002/dac.2627

87

[23] Shiraz, M., Gani, A., Ahmad, R. W., Shah, S. A., Karim, A., & Rahman, Z. A. (2014). A

Lightweight Distributed Framework for Computational Offloading in Mobile Cloud

Computing. PLoS ONE,9(8). doi:10.1371/journal.pone.0102270

[24] Sinha, K., & Kulkarni, M. (2011). Techniques for Fine-Grained, Multi-site Computation

Offloading. 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing. doi:10.1109/ccgrid.2011.69

[25] Sivanandam, S. N., & Deepa, S. N. (2010). Introduction to genetic algorithms. Berlin:

Springer.

[26] Terefe, M. B., Lee, H., Heo, N., Fox, G. C., & Oh, S. (2016). Energy-efficient multisite

offloading policy using Markov decision process for mobile cloud computing. Pervasive

and Mobile Computing,27, 75-89. doi:10.1016/j.pmcj.2015.10.008

[27] Wu, Huaming, et al. “An Optimal Offloading Partitioning Algorithm in Mobile Cloud

Computing.” Quantitative Evaluation of Systems Lecture Notes in Computer Science,

2016, pp. 311–328., doi:10.1007/978-3-319-43425-4_21.

[28] Yang, L., Cao, J., Yuan, Y., Li, T., Han, A., & Chan, A. (2013). A framework for

partitioning and execution of data stream applications in mobile cloud computing. ACM

SIGMETRICS Performance Evaluation Review, 40(4), 23. doi:10.1145/2479942.2479946

88

[29] Sheikh, I. & Das, O. (2018). Effect of Parallel Execution on Multi-site Computation

Offloading in Mobile Cloud Computing. Submitted to the 26th IEEE International

Symposium on the Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS 2018).

