
RECOMMENDER SYSTEM ON SOCIAL NETWORKING SITE

WITH DOMAIN SPECIFIC AND SPARSE DATA

by

Chuy Chang Nian

B.Sc. University of Toronto, Toronto (ON), Canada, 2012

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the program of

Computer Science

Toronto, Ontario, Canada, 2017

c© Chuy Chang Nian 2017

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for
the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by
other means, in total or in part, at the request of other institutions or individuals for
the purpose of scholarly research.

I understand that my thesis may be made electronically available to the public for the
purpose of scholarly research only.

ii

Abstract

Recommender System on Social Networking Site with Domain
Specific and Sparse Data

Chuy Chang Nian

Master of Science, Computer Science

Ryerson University, 2017

In many recent domain-specific social networking sites, posts are organized in chrono-

logical order, where later posts are shown first at the top, even though they might not

be of everyone’s interest. As a result, if users want to read posts that interest them,

they will have to scroll down and sift through all the posts. To overcome this infor-

mation overload problem and relieve users’ burden, a recommender system is needed in

social networking sites. In this thesis we propose a hybrid approach of Recommender

System (RS) that combines both Collaborative Filtering and Content-based approach.

Although each approach has their own weaknesses independently, by joining them to-

gether we can improve the accuracy of our recommendations. From our expriements, we

noticed that using learning to rank algorithms in combining each recommender algorithm

greatly enhances the system’s performance.

iii

Acknowledgements

Foremost, I would like to express my immeasurable appreciation and deepest grati-

tude to my supervisor Dr. Cherie Ding, for her continuous guidance and support through-

out my graduate studies. Throughout my research, she provided me with proper direc-

tion, feedback and helped me overcome all challenges and difficulties in my work. Her

invaluable suggestions, knowledge and research skills helped me throughout my research

work, and for the completion of this thesis.

I would like to thank the company for giving me this opportunity to work on this

project. Also, I would like to thank the team members from the company for providing

useful feedback and their time on explaining the data set.

I would like to thank Natural Sciences and Engineering Research Council of Canada

(NSERC), Yeates School of Graduate Studies, Department of Computer Science at Ry-

erson, and Dr. Cherie Ding for providing additional funding that helped me through my

research. I would also like to to thank all members of the Department of Computer Sci-

ence at Ryerson University for their cooperation, help and for providing me with access

to additional resources required for my research.

I would also like to thank Dr. Konstantinos Derpanis, Dr. Alireza Sadeghian and

Dr. Andriy Miranskyy for taking the time to review my thesis and providing valuable

feedback which enabled the improvement of the thesis.

Finally, I wish to express my deepest appreciation to my parents for their continuous

encouragement and support throughout my life. I wish to also thank my brother, sisters

and friends for their continuous encouragement throughout my studies.

iv

Table of Contents

Abstract iii

List of Appendices vi

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Background . 1

1.2 Objectives . 3

1.3 Proposed Methodology . 4

1.4 Thesis Outline . 5

2 Related Works 6

2.1 Background . 6

2.1.1 Content-Based Method . 6

2.1.2 Collaborative Method . 7

2.1.3 Hybrid Method . 8

2.1.4 Learning to Rank . 8

2.2 Related Work . 11

2.2.1 Social Recommender System . 11

v

2.2.2 Contextual Information . 12

2.2.3 Multi-Dimensional Recommendation 14

2.2.4 Personalized Recommendation . 16

2.3 Summary . 17

3 Methodology 18

3.1 System Architecture . 18

3.2 Hybrid Recommendation Model . 20

3.2.1 Content-Based Filtering . 22

3.2.2 Collaborative Filtering . 24

3.2.3 Context Information . 27

3.3 Generalized and Personalized Model . 31

4 Experiment 32

4.1 Experiment Design . 32

4.1.1 Dataset . 33

4.1.2 Implementation . 34

4.2 Results and Analysis . 37

4.2.1 Generalized Model . 42

4.2.2 Personalized Model . 44

4.3 Summary . 49

4.4 Threats to Validity . 49

5 Conclusion 50

5.1 Conclusions . 50

5.2 Future Work . 51

Bibliography 58

Glossary 64

vi

List of Appendices

A Personalized Model Result 53

vii

List of Tables

3.1 Table for grid size . 30

4.1 Categories of posts . 34
4.2 Generalized model inputs for learning to rank algorithms 37
4.3 Best generalized model output for each approach 43
4.4 Best personalized model output for each user 45

viii

List of Figures

3.1 Architecture of the recommender system 19

4.1 General model with NDCG scores . 43
4.2 NDCG average for 7 users . 44
4.3 NDCG score of 3 active users . 45
4.4 NDCG scores with one feature . 46
4.5 NDCG scores with various combination of features 47
4.6 NDCG scores with leaving out one feature 48
4.7 Comparing General Model with Personal model 48

Appendix 53

A.1 NDCG scores for user 1 . 54
A.2 NDCG scores for user 2 . 54
A.3 NDCG scores for user 3 . 55
A.4 NDCG scores for user 4 . 55
A.5 NDCG scores for user 5 . 56
A.6 NDCG scores for user 6 . 56
A.7 NDCG scores for user 7 . 57

ix

Chapter 1

Introduction

1.1 Background

Any form of social interactions between two human being can be classified as social

networking and with the development of World Wide Web, more and more users are

socially interacting with each other over the Internet. According to [50], they defined

social networking sites as “a web site that facilitates meeting people, finding like minds,

communicating and sharing content, and building community”. In recent years, online

social networking has been increasingly popular because modern technology had made

sharing contents, collaborating with others, and connecting with each other easier, faster,

and more accessible to a wider population than ever before. Initially, Social Networking

Sites (SNS) were focused on interactions between friends but recently many celebrities

and politicians have dived into social networking sites to share their views and reach out

to public. As a result, social networking sites information has expanded exponentially,

creating a massive load of online data.

With the explosion of Web 2.0 applications such as blogs, discussion forums, social

and professional networks, the users’ online activities have changed. Web users are no

longer the mere consumers of information, but the “producers of information”. Modern

SNS such as Twitter and Facebook makes sharing information, collaborating with others,

and connecting with each other as a community, faster and more accessible [14,50]. The

abundance and popularity of social networking sites has flood users with huge volumes

of information. The amount of digital data that users produce daily had long surpassed

our ability to process them, and finding useful information in this constant flow of data

has become a major hassle for every users in the 21st century. In general, we can noticed

two issues in preventing SNS from being sufficiently relevant and causing deterioration

1

CHAPTER 1. INTRODUCTION

of user satisfaction in engagement [14]. When users are faced with large amount of User

Generated Content (UGC) from their social peers that they could not process in an

effective and efficient way, this leads to the problem of information overload for users.

On the other hand, the information of a user is usually limited in scope to user’s social

connections, leading to the problem of information shortage. Therefore, to help users

overcome these challenges, SNS have implemented Recommender System that analyze

data about customers and products to predict and recommend items of interest based

on user past preferences, behaviors and social connections.

In short, the recommendation problem can be reduced to the problem of estimating

ratings of posts that have not been seen by users [2]. Recommender System is a family

of methods that enable filtering through large information data space in order to provide

recommendations in the information space that user has not observed or introduced. The

information space contains all available posts that user could choose, select or forward. In

another word, Recommender System works by suggesting items that are most appealing

to users based on their past preferences [6].

User profile is the backbone of any social networking sites, it can include anything

about the user’s birthday, religion, ethnicity, and personal interests. A user’s personal

profile is a unique page where people express their inner thoughts and feelings, and

post pictures of their daily adventures. With the massive quantities of UGC on SNS,

recommender system could use these data to expand user profiles [50]. The Recommender

System combines ideas from user profiling, information filtering and machine learning

to deliver user proactive information [50]. However, in many existing social networking

sites, new users and posts are continuously being added into the system, and existing

users’ preference and posts’ popularity vary over time [22]. Therefore to cope with such

changes, a dynamic recommender system is preferred to handle real-time updates and

real-time response on recommended items.

With the prevalence of 3G/4G technology, people are now able to access their social

accounts anywhere and anytime via mobile divices, and mobile internet service has be-

come an indispensable part of people’s daily life. Since mobile devices are usually Global

Positioning System (GPS) enabled, a large portion of UGC via smart-phones, are associ-

ated with time-stamps and geographical annotations. The locations may be in the form

of latitude and longitude coordinates, or venues with semantic meanings (e.g., Nathan

Philips Square, and Harbourfront). These rich spatial-temporal-semantic information

provide an exciting opportunity to develop many different context-aware applications,

such as location-based and event-based applications [47].

2

CHAPTER 1. INTRODUCTION

1.2 Objectives

Recommender systems are widely used in e-commerce to aid customers in decision mak-

ing process, convert browsers into buyers, and build customer loyalty. The success of

social networking site highly depends on the level of ease in searching and discovering

useful information. While interesting posts recommended to user will improve user’s

satisfaction, irrelevant posts will only hinder user’s experience with the site.

In the age of Big Data, a large amount of information from social networking sites,

digital libraries, news archives, and so on are available to us. Every one of us are

constantly inundated with choices and information. We have more options and choices

than we used to have and this will continue to increase in the future as well. The

extremely large size of the Web has made it infeasible for any single user to browse

through information without any filtering. If you just consider the available information

space on a single social networking site such as Twitter or Facebook let alone the entire

World Wide Web (WWW), you could find yourself in an immense decision domain,

which may cripple your decision making.

Traditionally, users in communities seek peer recommendations such as word of mouth

or expert advice such as reviews from domain experts as recommendations for new items.

These methods are good and fairly accurate but are limited to the knowledge and pref-

erence of the recommenders. In this era of overload information, it is not possible for

a single person or a group of people to know and understand every single detail of a

product in this era. Due to these shortcomings, computer-based recommender system

provides a much better alternative to users. Generally, recommender system helps people

in retrieving information that matches their interests or needs by recommending prod-

ucts and services from piles of candidates [3]. Computer based recommender system

could mine historical information and demographic information from users thanks to the

advancement of technologies. This method will result in a more accurate and thorough

recommendation than the traditional methods. Therefore, an efficient and effective Rec-

ommender System is essential for social networking sites to improve user’s satisfaction

and many e-commerce leaders have already made recommender system a salient part of

their existing websites [21].

In industry, Recommender System has been widely used by many companies such

as Amazon and Netflix, who analyze patterns of user interests and provide personal-

ized recommendations that suit user’s taste. For example, purchase history, browsing

history and demographic information are mined and analyzed to provide recommenda-

tions of a wide variety selection of goods and products to users. In addition, there have

3

CHAPTER 1. INTRODUCTION

been many recommender systems used in social networking sites in the past and they

are continuously being improved to provide more accurate recommendations. Recent

improvements on recommendation system are to utilize user’s location and social rela-

tions. Researchers have been working on methods in combining these information into

the traditional recommender system.

Recent Recommender Systems for social networking sites can be grouped into the

following three types. First and the most common strategy is to incorporate social re-

lations between users into the traditional Collaborative Filtering model. Secondly, a lot

of Social Networking Sites have started to incorporate temporal interests in their recom-

mender systems. Temporal interests includes breaking news, groundbreaking products

and seasonal holidays. All these factors affect user’s interests level during different pe-

riod and it has to be reflected in the recommender model as well. Lastly, due to the

advancement of hand-held devices, more and more recommender systems are including

user’s location as part of their input in the recommender system.

Unfortunately, there is no one-fit-for-all recommender systems that could satisfy every

social networking site. Since there is no best Recommender System for all domains, we

can only strive to improve recommender system for a specific domain with concentrated

interests. By including different factors or inputs from user’s information, it is possible

to provide an adequate recommendation even with sparse data.

Since we are working on a social networking site that is focused on traveling and

vehicles, our thesis has three main objectives. Firstly, we want to study user’s interests

based on their previous actions, friends, locations and type of vehicle owned. Instead of

relying on user’s explicit acquisition of rating posts; we focus on getting user’s implicit

acquisition where the system observes users’ behaviors and infers users’ interests from

these interactions. Secondly, we want to show that integrating domain specific informa-

tion, user location and social relations into the traditional hybrid model of Collaborative

Filtering and Content-Based System, could improve the recommendation accuracy for

this social networking site. Lastly, we want to illustrate that using learning to rank

algorithm to combine multiple signals (e.g., content, ratings, social relations, temporal,

location, etc.) yields better results than any single separate signal.

1.3 Proposed Methodology

There are many different social networking sites available nowadays. In order to better

capture users’ interests, Social Networking Sites are narrowing down on their contents

into specific fields, such as tourist attractions, workers connection, and vehicles to stay

4

CHAPTER 1. INTRODUCTION

ahead of their competitors. Even with the simmered down content, it is still impossible

for user to sift through every piece of posts available on the social sites. Therefore,

Recommender System is required to filter through all data and recommend those that

are most interesting to users. In our research we focus on Recommender System that

specializes in closed-domain with concentrated interests and sparse data.

In this thesis, we are not proposing to re-invent new methodologies to improve Rec-

ommender System. Instead, we are using proven known techniques and combining them

to provide more precise recommendations. First, we group similar users using Collab-

orative Filtering technique by aggregating similar users’ rating and predict items for

users. Secondly, we rate posts using Content-Based technique of comparing posts with

user based on keywords and locations. Thirdly, social relations between users are also

taken into consideration in this model. Social strength or relations are calculated based

on the frequency of interactions between users; intense interactions implies higher social

strength. Moreover, since our social networking site is mobile friendly and geographically

available, our model takes advantage of this information to provide a better prediction.

Our model considers the distance between post’s location and user’s location to evaluate

user’s interest level on that particular post. Last but not least, we combine all these

different features using learning to rank algorithm to personalize recommender system

for each individual user.

1.4 Thesis Outline

The remaining of this thesis is organized as follows:

Chapter 2 reviews previous works on similar field. It includes some brief explanation

on Recommender System and how Recommender Systems are used on social networking

sites followed with a brief summary of existing models and similar works. Then we

provide an explanations of learning to rank algorithms and its three approaches.

Chapter 3 explains algorithms and methods that are used in our model followed with

an explanation of our hybrid model structure.

Chapter 4 provides a summary of experiment environment and discuss how it affects

our experiment design. A description of evaluation metrics used is followed. It ends with

a discussion of experiment results.

Lastly, Chapter 5 concludes the thesis and lists out future research directions.

5

Chapter 2

Related Works

In this chapter, we discuss the core concepts and logic of recommendation algorithms for

social networking sites that are related to our thesis. In the first section, we provide a

brief explanation on some existing approaches that were used in traditional recommen-

dation system. Also, we included a short description of learning to rank algorithms that

were used in our system. In the next section, we review some recent work done by other

researchers under the same area of using recommender system for social networking sites.

2.1 Background

In this section, we discuss the basic concepts of recommender system and existing ap-

proaches that were used in our thesis. Recommender system combines ideas from user

profiling, information filtering and machine learning to provide a more intelligent and

proactive service by making service recommendations that match user preferences and

needs. In general, recommender system can be categorized into three types: content-

based model, collaborative model, and hybrid model.

2.1.1 Content-Based Method

Content-Based Filtering (CB) method recommends item that has high degree of sim-

ilarity to an item that user has rated highly in the past. Content-based systems [2]

are usually used to recommend text-based items and the content in these systems are

usually represented with keywords. One advantage of this method is that it does not

require creation of explicit user profiles, and any specific domain knowledge [9]. Some

limitations of content-based recommender system are as follows: [2]

1 Limited Content Analysis: limited to features that could be mined from items

6

CHAPTER 2. RELATED WORKS

2 Overspecialization: recommending items of high similarity, limits the exploration

of user’s other interests

3 New User Problem: sufficient number of ratings is needed before the system can

provide accurate recommendations

2.1.2 Collaborative Method

Collaborative Filtering (CF) uses the known preferences of a group of users to make rec-

ommendations or predictions of unknown preferences to other users [41]. Collaborative

recommendations can be grouped into two general classes: [2, 6, 15,24,48]

1 Memory-based : uses the entire or a sample of user-item rating data to generate

prediction

2 Model-based : uses the collection of ratings as training data to learn a prediction

model

According to [24], model-based technique handles the data sparsity problem better than

memory-based technique and scales well with large data sets.

Some advantages of CF recommender system are as follows: [6, 48,49]

1 Domain free and not confined by content features - content features are hard to

mine and profile, which could be avoided with this approach

2 User’s interest may change over time - focusing on user’s past interest may not

perfectly capture user’s current interests. Users’ current similar interests could

provide better up-to-date recommendations because similar users may shift their

interests in similar direction

3 Capture latent relations between items - even though two items features might

seem totally unrelated, if most similar interests users are interested in these two

items then others who share the same taste are likely to be interested as well

Some limitations to CF recommender systems are as follows: [2, 8, 41]

1 New User Problem: system must first learn user’s preferences from ratings before

it can provide accurate recommendation

2 New Item Problem: a new item must be rated by a substantial number of users

before it will be recommended to others

7

CHAPTER 2. RELATED WORKS

3 Sparsity : the number of ratings provided by users are usually very sparse

4 Scalability : does not scale well with large number of users and items

5 Privacy : not all users want their past history to be mined

6 Context Information: does not incorporate context information

Collaborative filtering has some advantages over content-based methods [9], when it is

difficult to analyze the content of items. Semantic relatedness of items that cannot be

detected by content-based methods can be easily inferred by using collaborative methods.

2.1.3 Hybrid Method

Hybrid methods combine both collaborative and content-based methods to overcome

data sparsity issue. Hybrid recommendation system can be classified as follows: [2]

1 Implement both collaborative and content-based methods independently and com-

bine their predictions

2 Incorporate some content-based characteristics into collaborative approach. This

approach overcome some sparsity-related issues

3 Incorporate some collaborative characteristics to content-based approach

4 Construct a unifying model that incorporates both content-based and collaborative

characteristics

Due to some limitations in Content-based and Collaborative method, the hybrid method

is a more viable approach in designing our recommender system. Today’s most sophis-

ticated recommender system combines multiple relevant features to provide the best

recommendation results, and a challenge had arise from it. How to tune or train these

features (labeled data) becomes a major research topic recently. [40]

2.1.4 Learning to Rank

According to [21], the term “learning to rank” meant using machine learning algorithm

to train ranking models. In recent years, learning to rank has become one of the most

active research area in information retrieval field [21]. We can simplify the properties of

learning-to-rank methods into the following [21] :

8

CHAPTER 2. RELATED WORKS

1. Feature based means that all documents or items under investigation are repre-

sented in feature vectors. Feature vector represents the relevance of the document

or item to the search query.

2. Discriminative training means the automatic learning process based on training

data. The learning process can be further described into four components namely:

input space, output space, hypothesis space, and loss function.

(a) Input space, which contains the objects under investigation and are usually

represented in feature vectors.

(b) Output space, which contains the learning target with respect to the input

objects.

(c) Hypothesis space, which contains class functions of mapping input space to

output space.

(d) Loss function, measures the degree of prediction generated by the hypothesis

space in accordance to the training set.

Ideally, any learning algorithm would train a ranking model such that it could directly

optimize the performance measures with respect to the training set [40]. The focus of

learning to rank research is using machine learning algorithms such as classification and

regression methods to assign scores to documents and then rank those documentss using

the scores [11,40]. Two major components of constructing a learning to rank models are:

1 Learning - a ranking model with optimum model parameters is constructed using

training data consisting of queries, corresponding documents and relevance levels

2 Ranking - a new given query and its’ corresponding documents are sorted in de-

scending order using the assigned scores from the trained ranking model

Learning to rank has become critical in serving users’ information needs: ranking product

based on previous purchases, ranking advertisements based on page content, and ranking

articles based on users’ interest [11].

In order to better understand different types of learning to rank algorithms, we can

group them into three approaches: the pointwise approach, the pairwise approach, and

the listwise approach [21].

The Pointwise Approach

The pointwise approach treats each object under investigation as a single document

and predicts the relevance degree of each document. It has strong correlation with the

9

CHAPTER 2. RELATED WORKS

relevance feedback algorithms. The basic idea of feedback algorithm is to use explicit,

implicit, or blind feedback to update original query. Then the new query is used to

retrieve a new set of documents in an iterative manner. Thus, the original query will be

updated into a closer version of the optimal query.

The Pairwise Approach

The pairwise approach does not focus on predicting the relevance degree of each docu-

ment; instead, it only considers the relative order between two documents. We can view

this approach as classifications between document pairs, such as which document in a

pair is preferred. According to [7], the pairwise approach is sensitive to noise due to the

shapes of the loss functions. They proposed to replace hinge loss function with sigmoid

loss which minimizes the impact of outliers. Although pairwise approach cannot deter-

mine the final ranked list, but one can make reasonable estimation on the ranking order

by checking all pairs containing the documents. Since only the top pairs are important

to users, one can compare all top pairs and estimate the ranking list.

The Listwise Approach

The listwise approach takes the entire set of objects associated with a query and rank

them using a ranking model returning a sorted list of objects. Intuitively speaking, the

listwise approach is a more natural way than the pointwise and pairwise approaches [21].

The listwise approach takes the entire set of documents associated with a query as input

and their ranked list as output. In turn, it has the potential of distinguishing documents

from different queries and considering the positional information in the output ranked

list. According to [38], the performances of listwise ranking algorithms are in general

better than the pointwise or pairwise ranking algorithms.

Analysis of the Approaches

As mentioned above, most of the three approaches’ loss functions can upper bound

measure-based ranking errors. Therefore, the minimization of these loss functions can

directly lead to the optimization of the evaluation measures in certain situations. As

explained above, the main differences between the approaches lies in their loss functions.

However, the evaluation of the learned ranking models are based on the evaluation

measures. Hence, an important issue to discuss is the relationship between the loss

functions and the evaluation measures.

10

CHAPTER 2. RELATED WORKS

2.2 Related Work

In the following are some recent papers on Recommender System in Social Network that

focused on multi-dimensional information recommendation and personalized recommen-

dation. Multi-dimensional approach focuses on adding contextual information to handle

data sparsity while personalized approach focuses on updating user’s private model to

handle user’s uniqueness.

2.2.1 Social Recommender System

In this section, we review some traditional approaches for social recommender systems.

User Profiling

Adding on user rating data, user profiling contains rich semantic information and pro-

vides huge potential to obtain deeper knowledge about user-item relations. From user

profile, it is possible to acquire users’ opinions, perspectives, and interests towards items

or other users. Many individual users are sharing their brand experiences and opinions,

positive or negative, regarding to products and services online. These users voice can

potentially influence the opinions of other consumers, and many companies are mining

such feedback.

Blogs Mining

The term web-log, or blog refer to a simple web-page consisting of brief paragraphs of

opinion, information, or links, called posts. Most blogs allow user to add comment below

blog entry. People express their opinions, ideas, experiences, thoughts, wishes through

these free-form writings. A blog can contain any format from text, links to image and

video.

Tagging System

A tag is a keyword attached to a digital object (e.g. a picture or video clip) to describe

it. Tags are freely chosen keywords by users who deem them to best describe the digital

object. In addition, each tag serves as link to additional resources tagged the same

way by others. The tag information is becoming an important information source of

describing user’s topic interests and classifying items.

One key advantage of tagging is that it is independent with content items, which

made mining items such as photographs, videos and music possible. Also, tags are light

11

CHAPTER 2. RELATED WORKS

weighted textural information which contain rich explicit topic information given by

user explicitly and proactively. [13] conducted a study of social tagging and shown that

navigable hierarchical taxonomy of tags could enhance user searches. The taxonomy of

tags is used to help users broadening/narrowing the set of tags that best describe their

interests.

Although, free-style tagging provides a lot of freedom for users to organize, search

and explore resources. It also contain a log of noise such as semantic ambiguity which

means same tag name has different meaning for different users, and tag synonym which

means different tags that actually have the same meaning. A search for solving above

challenges are still an ongoing topic in recommeder system for social networking site.

Trust Network

Trust is subjective, personal asymmetrical, and dynamic. People’s trust to others is

gradually built up and keeps changing over time. According to [12], trust has the property

of transitivity, and it may propagate through the relationship network.

[17] has found that people’s interest similarity is a strong predictor of interpersonal

trust. This relationships between people’s interest similarities and trust have been further

confirmed by [51]. Their empirical analysis showed that people who have similar interests

tend to be more trustful towards each other. In light of these studies, the trust model

can act as supplement to current social networking recommender system. [26] claimed

that this method can help alleviate the data sparseness problem and enhance the system

scalability. In year 2016, [31] proposed semantic based trust recommender system which

recommend trust companion based on high similarities in message sharing. It maintains

virtual group of trust people having similar interest.

2.2.2 Contextual Information

Context is any information that can be used to characterize the situation of an entity.

Contextual modeling [6] incorporates context information directly into the model used to

estimate rating predictions. [6] found that recommender systems that involve contextual

information such as location, time, activities, and user preferences provide more user

trust in their item recommendation, which in thus, affect purchasing behavior.

User behavior on social media are influenced by both intrinsic interests and tem-

poral context. Also, user’s interest changes from time to time and new interests may

arise. Moreover, user rating data is very sparse, so user’s short-term interest is easily

overestimated or underestimated. To overcome this challenge [42], social and temporal

12

CHAPTER 2. RELATED WORKS

information can be used to enhance prior knowledge about user interest distribution.

Temporal Information

Among contextual dimensions, time information is considered as one of the most useful

information. The usage of time information as contextual information can be categorized

into: [6]

1 continuous time-aware approaches: time is represented as continuous contextual

variables

2 categorical time-aware approaches: time is represented as categorical contextual

variables

3 time adaptive approaches: adjusting parameters or data dynamically according to

changes of some data characteristics through time

The freshness of posts is considered the most important aspect, thus most Social Net-

working Sites (SNS)’s posts are shown in chronological order to users. Indication of

whether a user is interested in a post is determined by many factors, such as quality of

the post and the authority of the publisher [9]. Personal interest is also an important

factor to decide whether a post is personally useful to user. Moreover, temporal affect

such as breaking news and events has an impact on user’s browsing behavior. According

to [39, 47], exploitation of strong temporal patterns in data significantly improves the

performance of recommender systems.

Spatial Information

Location-aware recommender system [43] recommends users events with the considera-

tion of both user interest and location preference. It enables users to share with their

friends the places they want to go and who they wish to go with [4]. Given a user query-

ing at a location, the system [43] will effectively compute ranking scores for all spatial

items within certain distance and return top-k attractions.

Photos uploaded by users via mobile devices are usually geo-tagged, providing a

wealth of geo-spatial data. These photos can be used for Point-of-Interest (POI) clus-

ters, identifying location of photos from visual, textual, and temporal features, can help

determine tourist attraction in that season and creating routes that are pleasing to users

[5]. It allows them to discover interesting places in populous cities that are not easy to

explore. From observation, users are more likely to visit locations close to their visited

locations, and thus the locations visited form several spatial clusters [47].

13

CHAPTER 2. RELATED WORKS

However, the popularity of each POI varies greatly over time. Different POIs become

popular at different time such as beach is popular during daylight but not so much after

nightfall. The probability of check-in at a POI should reflect both its popularity at

specific time and the distance to current user’s location [45].

Social Information

A quote from [50], “Trust is the outcome of observations leading to the belief that the

actions of another may be relied upon”. People’s trust to others is gradually built up

and keeps changing over time. Since, trust is a personal opinion, the personalization of

trust means that a member could have different trust values with respect to different

members [15,43,50].

Likewise, the essence of social recommendation approaches lies in the additional

explicit and implicit social information from each user. Explicit relations suffer from

sparseness, but are usually accurate. While implicit relations can overcome the sparse-

ness problem, but in doing so may introduce ’noise’ [10]. Therefore, a combination of

these social relations can then be utilized to model a user’s interest more accurately [25].

2.2.3 Multi-Dimensional Recommendation

In this sub-section, we will review some multi-dimensional recommender systems pro-

posed for social networking sites by researchers in the past. To obtain accurate rec-

ommendations, it is important to capture users’ contextual information (e.g., time and

location) to understand users’ intentions.

In [34], Sarwat et al. proposed an efficient and scalable location-aware recommender

system. Their system produces location-based recommendations using taxonomy of three

types of location-based ratings: spatial ratings for non-spatial items (user, user location,

rating, time), non-spatial ratings for spatial items (user, rating, item, item location), and

spatial ratings for spatial items (user, user location, rating, item, item location). The

idea behind this scheme is preference locality and travel locality. Preference locality sug-

gests users from different spatial region prefer items differently, whereas travel locality is

the willingness of users’ travel distance. This is a great observation and we have incor-

porated this idea in our system along with contextual and social relation information.

In [43], Sarwat et al. included content-awareness into their model. Their system

consist of two components: offline modeling and online recommendation. The offline

modeling portion is designed to learn user’s interests and preferences. The online recom-

mendation part automatically combines the learned interest and preference of individual

14

CHAPTER 2. RELATED WORKS

user to provide recommendations. The authors focused on Event-based Social Net-

working Services (EBSN) such as Meetup (www.meetup.com) that provide platforms for

users to establish social events held in physical places. Although their proposed location-

content-aware recommender system exploits both location and content information, they

still neglected temporal and social information from their system.

In [46], Yuan et al. proposed of using multi-dimensional contextual information to

discover users’ spatial-temporal topics. In their scheme, they use data from Location-

based Social Network (LBSN) such as Foursquare and Facebook Places that allow users

to share their current locations and activities. These information allow them to study

the behaviors of individuals with respect to geographic location, time and activity. They

focused on users’ mobility based on location and time, if it is a weekday and user is at

his or her work region, then his/her mobility is limited, as opposed to a weekend around

home region.

In [47], Yuan et al. built on [46] and proposed using multiple contextual informa-

tion with nonparametric Bayesian model to recommend context-aware recommendations.

They use contextual information and user mobility behavior together to determine target

users’ interests and intentions. The authors claim that user’s mobility centers at several

personal geographical regions (e.g., home and work region), user’s interest is influenced

by the region, and user’s vacation location is affected by region’s activities and distance.

Therefore, with the information of user’s location and time, along with activities infor-

mation on the region, they were able to improve recommendations’ accuracy. However,

they are neglecting one key feature social relations in their model.

In [5], Bhargava et al. proposed multi-dimensional collaborative recommendations

for user, activity, time and location, using tensor factorization on sparse user-generated

data. In their scheme, the first step is to infer various dimensions of information, such as

location, activity and time. Geo-tags are hashed into discrete rectangular grid bins, ac-

tivities are categorized into an activity hierarchy which consists of lifestyle, recreational

and tourist activities, time-stamp are hashed into three type of distributions: monthly,

weekly, and hourly. In order to address tensor sparsity, they formulated an objective

function that simultaneously factorizes coupled tensors and matrices from heterogeneous

data sources. The tensor setup is user× location× activity× time, along with four ma-

trices location× activity, location× venue, location× location and activity × activity.

Their main focus is using tensor factorization in improving model’s accuracy, but we be-

lieve that personalized model would be a better approach in maximizing recommendation

accuracy.

15

CHAPTER 2. RELATED WORKS

2.2.4 Personalized Recommendation

In this sub-section, we will review some personalized recommender systems proposed for

social networking sites by researchers in the past.

In [16], Imran et al. proposed a personalized learning recommender system that

supports learners by providing personalized recommendations based on learner’s profile

and other learners with similar profiles. Since most users have different interests and

characteristics, a “one size fits all” approach does not support most users. Personalized

model enables the system to uniquely address user’s needs and interests. Although their

model was used for e-learning sites, we have incorporated this idea of user profiling with

additional contextual information to provide personalized recommendations on social

networking site.

In [27], Majid et al. proposed a context-aware personalized travel recommendation

based on geotagged information. Similarly to their multimedia data which are tagged

with temporal context and spatial context, our data consists of additional contextual

information. The authors focused their contextual information onto weather conditions

and venue working hours which are less applicable to our social networking site. Ad-

ditionally, their proposed personalized system only exploits users’ traveling preferences

without taking considerations of users’ interests and behaviors.

In [30], Qian et al. proposed personalized recommendation combining user interest

and social circle. In this paper, they used three social factors: personal interest, interper-

sonal interest similarity, and interpersonal influence, to fuse into a unified personalized

recommendation model. Their focus was on social factors between user and his/her

friends latent feature vectors, and used these information to enforce user’s personalized

model. In addition to social influence, our personalized model also incorporates spatial

and temporal influences.

In [44], Yu et al. proposed to combine heterogeneous relationship information for

each user to provide high-quality personalized recommendation results. Similarly, we

agree with the researchers that the entity recommendation problem exists in a hetero-

geneous information network. They claimed that a personalized recommender system

which combines user feedback (explicit ratings and implicit user’s history) and additional

information of users and items such as user demographic attributes, and social network

information can achieve better recommendation results. Our model falls into the same

category of such hybrid recommender systems. The difference between our work and

theirs is that our model also includes temporal and spatial informations.

16

CHAPTER 2. RELATED WORKS

2.3 Summary

In this chapter, we have reviewed most of the concepts used in this thesis and also dis-

cussed related work done in the same area of recommender system for social networking

sites. As we can see that most proposed recommender systems [5, 6, 10, 15, 43, 45, 47, 50]

take in many different input signals as complementing information. Most proposed mod-

els target on a one-fit-for-all recommender system that is used for all users across the

social site. A strategy model may work well for some users but may not work for all

users, in order to accommodate such challenges, we propose personalizing recommender

system for each active user, a general good basic recommender system [2] consisting

of both collaborative filtering and content-based filtering approach. In recent studies

[6,43,50], they proposed incorporating various information such as temporal, spatial and

social information as part of the recommender system inputs. From temporal informa-

tion, the recommender system would be able to recommend posts that are recent and

popular providing diversity in our recommendation outputs. The spatial information

would increase relevancy of recommendation outputs whereas social information provide

recent posts from close friends or colleagues. With all these overloading information, the

recommender system needs to be tuned with ranking algorithms for proper filtering and

accurate recommendations.

17

Chapter 3

Methodology

We propose a recommender system for a social networking site that is dedicated to

vehicles enthusiasts. We extract related users’ information from user’s feedback and

interactions throughout the social site. Our objective is to implement multiple scoring

algorithms for recommending new posts and use learning to rank algorithm to com-

bine those scores. In the following sections, we will discuss the system architecture,

our proposed hybrid recommender model and the difference between generalized and

personalized recommender system.

3.1 System Architecture

In this section, we will explain the overall architecture of our hybrid recommender system.

The objective of our recommender system is to provide a list of recommended posts to

users. We will be using multiple scoring algorithms in capturing users’ interest, along

with machine learning algorithm to combine all these scoring algorithms effectively. Here,

we will discuss each component of our system in details along with reasoning on why

such methods are chosen for our model.

The architectural model of our proposed system is shown in Figure 3.1, it consists of

three parts: the profiling, score generator, and the storage.

Our model consists of two components, offline profiling and online recommendation.

From 3.1, the profiling section is done during offline stage, and score generator section

is used in real-time recommendation. User content profiling, user interaction profiling,

social strength profiling and vehicle profiling can be run simultaneously. These four

parts had to be run ahead of the score generator component to learn and capture user’s

interests and preferences. The score generator component will then use the learned result

18

CHAPTER 3. METHODOLOGY

Figure 3.1: Architecture of the recommender system

from these profiles to predict top-N recommended posts to users.

User content profile is generated using vector space that represents user’s interests

where each dimension represents a topic or keyword and the value represents interest

level. The profile is generated by aggregating all user’s posts into a corpus in which

a document includes all posts from a user. Then, we stripped all punctuation marks,

spaces and new lines leaving only words. Additionally, we convert all words into lower

case then stemming and stop-word removal are used to extract keywords from the corpus.

Later, a document corresponding to one user’s all posts is converted into a vector space

representation and saved into the local file storage. So these profiles can be used later to

compare with posts that might be of interest to user by using cosine similarity function.

The cosine similarity scores are then saved in the SQL storage for later usage in score

generator component. User interaction profile is generated using matrix factorization

(Alternating Least Square which will be discussed in later section) where dimensions

represent user and post, and value represents the rating of user to that post. In order

to handle sparse input data from users’ explicit feedback, we combine both implicit

feedback and explicit feedback from users to create a denser input data set. Users’

friend list, votes and comments on post are used as our implicit rating data. All these

information are then compiled into a list and are used to generate the interaction profile.

This profile model is then stored into local file storage system for later usage in score

19

CHAPTER 3. METHODOLOGY

generator. Social strength profile is a module that calculates the social strength between

each pair of users. It sums up the interactions such as private messages, up-votes and

comments between users. These scores are then stored into the SQL storage system for

later usage in score generator. Vehicle profile module has two parts, the first part is

to extract vehicle models and name from a domain-specific vehicle-related web site and

store those information into the SQL storage. Then, the second part is to filter posts

that had mentioned any vehicle models and names that exist in the SQL table. Based on

whether a vehicle name or model is mentioned in the post, we store a closeness score for

post and vehicle in the SQL storage. We used closeness score because a range of users

uses various naming convention representing the same model.

The score generator is the main component of our recommender system. It is here

that the personalized and generalized model are trained using profile data from above.

The best model structures are then saved into local file storage system for later usage.

Each feature in the score generator is responsible to generate a list of ordered candidate

posts independently with scores in descending order. The score represents the importance

level of the recommended post based on different feature’s recommendation strategies. A

detailed explanation on each feature based strategy will be discussed in the next section.

Although all features are treated equally at the beginning, we will use learning to rank

algorithms to reassign importance of each feature based on user’s preferences. The best

learning to rank algorithm is then selected and stored in local file storage as the ranking

model.

The final module of our system is the recommender model. It uses the score generator

model to generate a list of candidate posts as input, and uses the best ranking model to

rank those posts. The output would be a ranked list of candidate posts in descending

order. The personalized model is generated from user’s own historical activity data with

multiple features and a learning to rank algorithm that personalizes the weight of each

feature such that it is tailored to that single user. As for the generalized recommender

model, we aggregate all users’ historical activity along with all features and a learning

to rank algorithm to generate the best model that suits the community as a whole.

3.2 Hybrid Recommendation Model

The Social Networking Sites (SNS) that we are working on consists of sparse input data

with domain specific interests. In order to accommodate the sparse data challenge, we

include implicit information from user such as user’s online activities as part of our

inputs. In contrast to traditional supervised approaches which rely explicitly on users’

20

CHAPTER 3. METHODOLOGY

feedback, we focus on implicit learning with users’ interactions. Unlike users’ explicit

feedback which is sparse and may place an increased cognitive burden on users, users

interaction with the SNS is relatively easy to obtain and place little to no burden on

users. Since our SNS is domain focused, we incorporated domain specific information

into our model to create a specialized recommender system solely for this site. Another

major factor on our approach is user profiling, it includes user’s interests, interaction

and demographic information. The more information we had of a user, the better our

system understands the user and the better the result in our recommendations. Hence,

we encourage users to complete their online profiles on the site. In addition, the SNS is

also mobile friendly which induced posts with geographic information. Along with this

information we could evaluate the post’s interests level based on the distance with users.

For all users, we generate the following data as input features:

1. Collaborative Filtering where similar users are grouped and ranked. Users are

grouped based on the following criteria:

(a) List of users’ friends list

(b) List of users’ votes on posts

(c) List of users’ comments on posts

2. Content Based where similar posts are grouped and ranked. Each post is rated

based on similarities of keywords between users and posts.

3. List of followers where frequent interaction between users provides a higher rating.

4. List of locations where post closer to users provides a higher rating. A detailed

explanation would be provided at subsection 3.2.3.

5. List of popular topics where hot topic provides a higher rating. A detailed expla-

nation would be provided at subsection 3.2.3.

6. List of domain specific interests where similar interest provides a higher rating. A

detailed explanation would be provided at subsection 3.2.3.

For domain interest similarity, we focus on finding vehicle model and brand name that

users had owned or liked in the past. After all these features are generated, we com-

bine them with learning to rank algorithms. The following learning to rank algorithms

MART (gradient boosted regression tree), RankBoost, AdaRank, Coordinate Ascent,

LambdaMART, ListNet, and Linear Regression are used in our proposed methods. The

setup for each of the learning to rank algorithm is as follows:

21

CHAPTER 3. METHODOLOGY

1. RankNet: epoch = 100, layer = 1, node = 10 and rate = 0.00005

2. RankBoost: round = 300, and threshold = 10

3. AdaRank: round = 500, tolerance = 0.002, and times = 5

4. MART, LambdaMART: tree = 100, leaf = 10, shrinkage = 0.1, threshold = 256,

minimum leaf support = 1, and estop = 100

5. Coordinate Ascent, ListNet, Linear Regression: no parameters

We run them on some training data and choose the best algorithm as our final ranking

model.

3.2.1 Content-Based Filtering

In our approach we used vector-space model to extract keywords from posts. Since our

social sites’ domain is about vehicle and traveling, the most relevant and interesting

keyword we extracted would be vehicle oriented.

Content-Based filtering creates user content profiles for each user to characterize their

interests and recommend posts similar to what users had voted or commented in the past

[20]. As we all know, posts are widely unstructured and to extract useful information

from it is quite challenging.

Our system uses information retrieval techniques to perform text pre-processing. The

algorithm we used is term frequency - inverse document frequency (TF-IDF), which is

one of the most popular feature weighting methods used to describe text contents in

vector space model. A term which is a keyword or interest in a post. The term score is

given by dividing the term frequency in post by the sum of the frequency of the term

over the whole collection of posts. The relevance of each post with user’s interest is

determined by computing the average relevance of all the words in the user document.

One major challenge when processing texts is that most posts contain a large set of

words. If each of these words was to be converted into vector representation, the number

of dimensions would be too high. Hence, text pre-processing is crucial in reducing the

number of dimensions. Several pre-processing methods are performed on input posts

before content profile generation including stemming and removal of stop words [37].

Stemming consists of converting each word to its stem (its neutral form). In order

to get the stem of a word, the algorithm removes suffixes representing tag-of-speech and

verbal/plural inflections [28]. Stop words are words that occur frequently in posts. Due

22

CHAPTER 3. METHODOLOGY

to the fact that they appear in almost every post, they carry little information about

the contents of posts they appeared in.

The structure of posts are generally unstructured or semi-structured. The most

popular data representation in information retrieval is the bag-of-word model which

represents each user as a vector [18]. Bag-of-word model keeps track of keywords that

occurred in posts and treats each keyword from the post as an “attribute”. These

keywords or attributes would be assigned with a value that represents the frequency of

that word occurring in user’s posts. Each user is then represented in vectorial space

as “profile”. The main advantage of this representation is its conceptual simplicity and

computational efficiency.

A vectorial profile representation uses the idea of representing users and posts as

multi-dimensional vectors. The equation for post profiling is as follows

Vd = (w1d, w2d, ..., wnd), (3.1)

where wid corresponds to the frequency of each keyword ki in post d, and value i range

from 1 to n. Each vector coordinate represents the TF-IDF value of a specific keyword

that occurs in a post. A post vector normally has high dimension and most of those values

take in the value of 0. The similarity of posts can be measured by the angle between

the two vector representation. The smaller the angle, the more similar between those

two posts. In short, by using vectorial representation we can evaluate posts relevance by

measuring the value difference of each vector coordinate. [28]

In TF-IDF model, each keyword is assumed to have importance proportional to the

number of times it occurred in a post [23]. The term frequency of a keyword ki in post

d is denoted by TF (ki, d), where the value represents the number of times that keyword

ki has appeared in post d. The higher the TF (ki, d), the higher the chances of that

keyword ki representing that post d. However, some common keywords tend to appear

across many different posts, which have little discriminating power. In order to remedy

this issue, IDF measure is used to identify keywords with high frequency across all posts

which have little discriminating power.

While term frequency (TF) measures the occurrence of keyword ki in post d, inverse

document frequency (IDF) measures the occurrence of keyword ki across all posts [36].

The value |D| denotes the total number of posts and the document frequency of keyword

ki, is denoted by DF (ki), where the value represents the number of posts that the

keyword ki had occurred in. The inverse document frequency of keyword ki, is denoted

23

CHAPTER 3. METHODOLOGY

by IDF (ki) with the following formula

IDF (ki) = 1 + log(|D|/DF (ki)). (3.2)

The intuition of IDF is that keywords with rare occurrence across posts are more valuable.

The importance of each keyword is inversely proportional to the number of posts that

contain the keyword [36]. Therefore, if IDF (ki) for a keyword ki is low, then this keyword

must occurs in many posts, indicating this word has little discriminating power. On the

other hand, if IDF (ki) is high, then the keyword ki only appeared in a few posts,

indicating this word has great discriminating power.

So in short, we want keywords that have both high TF and IDF, and Salton et al.

[33] demonstrated that the product of these two values would be a good indication of

that keyword’s performance. We can express this desire with the following equation

wid = TF − IDF (ki, d) = TF (ki, d) ∗ IDF (ki), (3.3)

where wid represents the weight of the keyword ki in post d.

3.2.2 Collaborative Filtering

Collaborative filtering algorithm recommends posts to user based on preferences from a

collective group of users. Collaborative filtering approach is based on user’s similarity;

it analyzes relationship between users and inter-dependencies between posts to identify

user-post associations [20]. The basic concept is people who liked similar posts in the

past will probably like similar posts in the near future as well. In short, collaborative

filtering is a subset of algorithms that exploit other users’ ratings similarity and target

user’s own history to recommend posts that the target user has not rated.

Matrix Factorization

The standard approach of matrix factorization based collaborative filtering characterizes

both users and posts by vectors inferred from rating patterns. It represents the input

data in matrix form where one dimension represents users and the other dimension

represents posts of interest. The most convenient inputs are explicit feedback given by

users regarding their interest on posts. For example, user’s rating or liking and disliking

of posts, and high correspondence between post and user leads to recommendation.

However, this approach does not suit well for social networking sites because users do

not normally provide rating to posts they read. Moreover, even if users provide like or

24

CHAPTER 3. METHODOLOGY

rating to posts they read, it is very likely that they have only liked or rated a small

percentage of available posts resulting in small rating matrix.

Fortunately, one strength of matrix factorization is that it allows incorporation of

additional inputs. When explicit input is sparse, we can include implicit feedback, which

indirectly reflects opinion of user by observing user’s past behavior, for example, browse

history, search patterns or even user actions such as views, clicks, likes, shares and so

on. These actions are related to the level of confidence in observing user preferences.

Rather than relying solely on explicit ratings given by users. After the user-post matrix

is built, the matrix factorization model then tries to find latent factors that can be used

to predict the expected preference of user for each post.

Matrix factorization model maps both users and posts to a joint latent space of

dimensionality f , such that user-post interactions are modeled as inner products in that

space. The factor matrices are also known as latent feature models. The factor matrices

represent hidden features which algorithm tries to discover. Each post i is associated

with a latent vector of qi ∈ Rf , and each user u is associated with latent vector pu ∈ Rf .

So, the elements in vector qi measure the extent of features that post possesses, while

the elements in vector pu measure the extent of interest level that user has for those

features. The resulting dot product, qTi pu, captures the interaction between user u and

post i. The approximate rating rui for user u on post i can be denoted by the following

equation

rui = ~qi
T ~pu. (3.4)

In [29,35], it is suggested that regularizing the model can and will avoid over-fitting.

To learn the factor vectors (pu and qi), the system minimizes the regularized squared

error on the known training set ratings

min
pq̇

∑
(u,i)∈f

((sui − qTi pu)2 + λ(‖qi‖2 + ‖pu‖2), (3.5)

where f represents the dimension of joint latent space and sui represents the score given

by user u to post i. The system learns the model by fitting the previously observed

ratings. The goal is to generalize those previous ratings such that it predicts future

recommendation without over-fitting. Thus the system avoids over-fitting by regularizing

the learned parameters, whose magnitude is penalized. The constant λ controls the

extent of regularization, which is set to 1.3.

25

CHAPTER 3. METHODOLOGY

Alternating Least Squares

Although the above equation 3.5 is not convex because both qi and pu are unknowns, if

we fix one of the unknowns qi or pu, then the optimization problem becomes quadratic

and can be solved optimally [20]. Alternating Least Square (ALS) is a kind of matrix

factorization approach that has been implemented in many machine learning libraries

and widely studied in both academia and industry.

ALS is an iterative algorithm; in each iteration, it alternatively fixes one factor matrix

qi or pu and solves for the other pu or qi respectively. When pu is fixed, the system

recomputes the qi by solving a least-squares problem. This process continue until it

converges. Then the unknown ratings between users and posts can be subsequently

computed by multiplying these two matrices. With these decomposed matrices, the

recommender system can recommend posts based on the predicted ratings to increase

customer satisfaction.

One of the advantages of using ALS algorithm is parallelization. In ALS, the system

computes each qi independent of the other post factors and computes each pu indepen-

dent of the other user factors. This gives rise to potentially massive parallelization of

algorithms. Also, as stated in [20], matrix factorization models are superior to most

classic techniques for post recommendations.

Adding Bias As we all know, observed ratings are always affected by effects associated

with users or posts, known as bias, and are unrelated to any interactions. For example,

some users have a tendency of giving higher ratings than others; and some posts received

higher ratings than others due to author’s fame. Thus, it is unwise to interpret the full

rating values as the form of qTi pu. To address this issue, the system tries to identify the

portion of individual user and post biases with the following equation

bui = µ+ bi + bu. (3.6)

The bias rating for rui is denoted by bui, which accounts for both user and post effects.

The overall average rating is denoted with µ, user bias is denoted by bu, and post bias

is denoted by bi. By extending equation 3.6 we get the following equation

rui = µ+ bi + bu + qTi pu. (3.7)

Here, the observed rating is broken down into four components: global average, post bias,

user bias, and user-post interaction. The system can learn the model by minimizing the

26

CHAPTER 3. METHODOLOGY

following squared error function [19,29]

min
pq̇ḃ

∑
(u,i)∈f

(rui − µ bu − bi − pTu qi)2 + λ(‖pu‖2 + ‖qi‖2 + b2u + b2i). (3.8)

Since bias tends to capture much of the observed signal, their existence is vital for an

accurate model.

Confidence Level Since our model is built around implicit feedback, a user’s exact

preference level is hard to quantify. Therefore, it is valuable to attach confidence score for

estimated preference. Confidence level can stem from frequency of actions and duration

of actions. The matrix factorization model can readily accept varying confidence score

by giving it less weight to less meaningful observation. Let’s define cui as the confidence

level of observing rui, then the model cost function with confidence level is as follows

min
pq̇ḃ

∑
(u,i)∈f

cui(rui − µ− bu − bi − pTu qi)2 + λ(‖pu‖2 + ‖qi‖2 + b2u + b2i). (3.9)

In short, our focus is to use implicit feedback from users such as friends and follower-

followee relations to accommodate explicit sparse user feedback. We gather users’ infor-

mation by monitoring users’ actions and behaviors on the site such as up-votes, down-

votes and comments. In our system, we provide rating to all posts posted by user’s

friend list such that posts related to user’s friend list would receive rating 3. Next, we

include user’s vote on posts as part of user’s rating system such that up-vote would get

score 4 and down-vote would get score 2. Last but not least, we use sentiment analysis

to rate posts that users have commented on. From user’s comment, we clean the post

by filtering positive words and negative words from it. For each positive word we give it

a +1 and for each negative word we give it a −1, at the end we sum up all the scores. If

the score is positive then we consider it as positive comment and give it a score of 5, on

the other hand, if the score is negative then we assume it is a negative comment and give

it a score of 0. We include all these information as input and use matrix factorization

training model to learn user’s and post’s latent factors. Then we predict user’s interest

level on unread posts based on similar users’ ratings.

3.2.3 Context Information

In addition to the traditional hybrid model that uses only Content-based and Collabo-

rative approach as explained above, our hybrid model also incorporates some new con-

27

CHAPTER 3. METHODOLOGY

textual features. Social relation is one of the most useful features in social recommender

system as it is one of the fundamental information for social networking sites. Popu-

lar posts are used to increase diversity in recommended posts. Spatial information had

been widely used in recent recommender system thanks to the advancement of mobile

technologies. With the help of Global Positioning System (GPS), we can refine posts so

that they are closer and more relevant to user’s location. Domain interest is a unique

feature for our recommender system as it is tailored to satisfy a closed group of users

with specific field of interest.

Social relations

Since our SNS has follower-followee relations, we include social relation between users

as part of our input features in the recommender system. As we all know, users are

more interested in news and posts from close friends. Thus, it is an important factor for

our recommender system to include this feature as part of our input. We define social

strength between users based on their interaction frequency. The more frequent two

users interact the stronger the strength between that pair of users. For each user, we

calculated their interactions such as comments, votes and private messages with their

friends. Based on how frequently they interact with each other, we rank friends with

frequent interactions to have higher priority when recommending posts.

We calculated the relation score scuj of a user u with friend j by tallying up the

number of up-votes, comments and messages with every friend and follower. Then we

summed up the total number of up-votes, comments and messages that user u had done

on the social networking site as tsu. Also to prevent a single user from dominating this

aspect of recommendation, we normalized social strength between users. We use the

following equation to get the normalize result.

nsuj =
scuj
tsu

(3.10)

As mentioned above, scuj represents interaction score between user u and friend j, and

tsu represents the sum between user u and all his/her friends, and nsuj represents the

normalized social relation score between 0 to 1 for user u and friend j with 0 representing

the lowest interaction level between user u and friend j and 1 as being most active

interaction level between user u and friend j.

28

CHAPTER 3. METHODOLOGY

Popular Topic

In reality, post perception and popularity constantly change as new selection of posts are

being published. The system should account for temporal effect reflecting the dynamic,

time-drifting nature of user-post interactions. Also, temporal interest is a big factor for

many users in SNS. For instance, the publishing of a new post from user related to

holiday event such as Christmas or New Year may be a trending topic for only a short

period of time. Hence, it is essential to include this feature as part of our inputs in the

system for an accurate prediction. Also, it helps provide diversity in our recommendation

list and introduce users to some current trending posts. We evaluate posts from within

60 days and rank their popularity based on the number of votes and comments it received

because older popular posts do not represent the current trend.

The popularity score psi for each post i is the sum of the number of votes nvi and

number of comments nci it gets using the following equation

psi = nvi + nci. (3.11)

These scores are then normalized using the following equation

nsi =
psi −ms

xs
. (3.12)

First, we find the maximum popularity score xs and the minimum popularity score ms

among all posts. Then for each popularity score psi, we normalize the score into nsi

using equation 3.12 where the normalized score would be between 0 and 1. Posts with

higher vote counts and comments would receive a score closer to 1.

Spatial

With the additional information of geographic location from some users and posts, we

included this information as part of our input features for the recommender system.

Through vast usage of smart-phones, more and more posts are tagged with geo-locations

which indicate which region each post is being uploaded. Additionally, most users are

generally concerned or interested in posts that are fairly close to them. Also, this is an

important feature for our recommender system because most of our users are people who

enjoy traveling through places.

We compare user’s location and post’s location to calculate the relative distance. A

score is assigned to post based on the distance with user. We used geohash to determine

the distance between user and post. Geohash is a spatial data structure which divides

29

CHAPTER 3. METHODOLOGY

Table 3.1: Table for grid size
Length width height

1 ≤ 5000 km × 5000 km
2 ≤ 1250 km × 625 km
3 ≤ 156 km × 156 km
4 ≤ 39 km × 20 km
5 ≤ 5 km × 5 km
6 ≤ 1.22 km × 0.61 km
7 ≤ 153 m × 153 m
8 ≤ 38 km × 19 km
9 ≤ 5 m × 477 m

space into grids. Posts and users are assigned with a geohash of length 9, if their geo-

locations are provided to the system. Table 3.1 shows the grid size based on the length

of a geohash. We compare posts with users geohash and rank them based on matching

length. If a post’s geohash fully matches user’s geohash then we give that post a score

of 1. If a user or post does not have geohash then we give it a score 0 or else for each

mismatch of length would deduct 0.1 from the score. So an example of post with geohash

gbsuv7ztt and user wtih geohash gbsuv7zup would result in a score of 0.8. Thus, closer

posts would be given a higher rating in our system.

Domain Interests

Since our SNS is domain specific, we incorporate domain specific information into our

input. This is an unique feature that is specialized to our recommender system as we are

working on a closed domain of interests where all users are vehicle enthusiasts. So vehicle

brands and models are a huge indication of users’ interest level. If a post is associated

with some vehicle brands or models then a score is assigned to the post.

We pre-process each post with stemming and stop word removal. Then compare the

content with existing vehicle model and brand, if it is a perfect match with a vehicle

brand or model we give that post-vehicle a score of 1. We used a list of vehicle brands

and models provided by the company, and compared them with each post i to rank

post-vehicle strength. String comparison is used in post-vehicle strength ranking where

it compares vehicle model and post content, and returns number of different characters.

The similarity score ssi for post i is given based on the following equation

ssi = 1− dc

tc
, (3.13)

30

CHAPTER 3. METHODOLOGY

where ssi represents similarity score for post i, dc represents the number of mismatching

characters with the model and tc is the total string length of the model or brand. We

set a threshold to ignore any mismatching string with score lower than 0.7.

3.3 Generalized and Personalized Model

We are using multiple features such as content-based, collaborative, and context features.

A learning to rank algorithm is used to rank each feature accordingly. From previous

chapters, we would be using a range of learning to rank algorithms such as MART,

RankNet, AdaRank, and ListNet to determine the best algorithm for each user. We

categorize our models into two different categories, a personalized model for active users

with ample feedback and a generalized model for new users or users with less activity.

A generalized model is designed for new users or less active users who do not have

enough feedback or activity to create a personalized model. Due to the lack of informa-

tion on these users, we design our recommender system to view users as a community by

compiling all users’ input together. By learning all users inputs and activities, our model

would be able to determine the overall interest level of this community. Although some

features such as content-based and collaborative filtering might seem odd to be including

these features in the model, since we are using learning to rank algorithm to combine

these features, if these features are truly insignificant they would have lower importance

as opposed to features that rely less on user’s information. In the next chapter, we would

discuss a range of combination features we had tested to find the most optimal model.

With the advancement of technology, we are able to learn and store information

faster and at a cheaper rate thus promoting personalized recommender system for user.

A personalized model is designated to loyal customers who have been with the site for

some time and are actively interacting with others. A generalized model could work well

for most users but not all, thus we implemented the idea of creating a personalized model

for each active user. All users are unique and different, so a personalized recommender

model for each individual user would highly improve recommendations. Using learning

to rank algorithms to join the above features, we would be able to modify the importance

level of each feature differently depending on user’s interest level and activity patterns.

In the following chapter, we discuss a range of combination of features and learning to

rank algorithms to determine the best personalized model for each user.

31

Chapter 4

Experiment

In this chapter, we discuss experiments we performed on our proposed recommender

system to determine its effectiveness and accuracy. Firstly, we discuss our overall ex-

periment design on how data are collected and used for testing our system. Secondly,

we focus on what test data were used and how they were collected. Next, we further

discuss the implementation of our proposed recommender system and packages used for

enhancing our system. Lastly, we show the experiment results along with our analysis

and evaluation on the improvement of our system brings to the site.

4.1 Experiment Design

Experiments were designed to validate the improvement of accuracy on recommended

social posts to users with our proposed recommender system. We devised experiments

which involved a closed group of active and not-so-active users who provided explicit

feedback. We started with implementing the proposed recommender system to the social

networking site and actively collecting user feedback on posts. We developed content-

based module, collaborative filtering module and social relation module simultaneously.

The content-based module focuses on configuring user’s interested keywords based on

their posts and messages. The collaborative filtering module mines user’s interactions

and rank posts based on his/her previous interactions. The social relation module, for

each pair of users computes their relation strength based on their social interactions on

the site. The rest of the features such as popularity and spatial features are retrieved

during recommendation process. All these features are then inputted to a learning to

rank model which ranks posts and outputs them in descending orders.

The data set that we are working with is an online social networking site about travel-

32

CHAPTER 4. EXPERIMENT

ing experiences with vehicles. The data set consists of data that dates back to 2011 with

over thirty thousands registered users and over seven thousands active users who had

logged in within the last 60 days. We composed a list of closed group users based on their

online activities with the social site and their activeness and willingness to provide feed-

back. We selected a group of seven highly active users for personalized recommendation

and another group of twenty less active users for generalized recommendations.

Once we have sufficient number of users’ rated posts, we use those data and split them

into training and testing set for validating the accuracy of our proposed recommender

system. We used the collected data to calculate scores using various recommendation

strategies mentioned in Chapter 3. Lastly, we calculated our final recommendation score

by combining various features using different learning to rank algorithms and compared

our results.

4.1.1 Dataset

We used explicit and implicit feedback from users to generate recommendations in our

experiment. Since our designed recommender system is for a domain specific social

networking site, we focus more on input features that matter the most to users on this

site. The dataset is categorized into two categories:

1 Complete data set: where all data are used to generate recommendations for less

active or new users

2 Personalized data set: where individual user data are used to generate recommen-

dations posts for more active users

Table 4.1 shows a list of content types classified in the database, and the number of

posts in each category. The content types of posts can be categorized into four sections:

1. blog post such as Vehicle, News, Image, and Video where users share their traveling

experiences

2. informative post such as HowTo, and Review where users share their thoughts on

products

3. gathering post such as Event, and POI where users set up meeting location and

time

4. private post anything that user had marked private

33

CHAPTER 4. EXPERIMENT

Table 4.1: Categories of posts
Content Type Number of posts

Blog Post 134592
Gathering Post 4768

Informative Post 2393
Private 21756

Total 163500

We calculated the level of sparsity of our input data-set with the following equation

sp =
nf

nu × ni
, (4.1)

where sp represents the level of sparsity, nf represents the number of feedback from users,

nu represents the number of available users, and ni represents the number of available

items. Therefore the level of sparsity that we are working on is 6.425× 10−6.

Since we are working with a social networking site, our recommender system will not

include or use any information or post if a user had classified them as private. We used

the original copy of data set from the site. For accuracy improvement, we include all

users’ historical data in learning the recommender system but defined a threshold on

recommended outputs to recommend only recent posts. As the ever changing topic in

this era, human interest level change over time thus we are only recommending posts

that are within 60 days period.

Our recommender system uses historical data to compose final recommendation. Our

data set contains five full years of useful users’ information. Since we are using a copy

of an online social networking site’s database, we collect their data in batches and store

them in MySQL Database.

4.1.2 Implementation

Each of the module of our system is implemented using a combination of Java and Scala

Programming Language. We used IntellijIDEA IDE as compiler for the source code and

Windows 10 as our testing platform. We run our experiments with Intel Core i7 @ 2.70

Ghz, quad-cores and 16 GB RAM. We used both File Storage and SQL Database for

storage.

Social relation strength is an important aspect in social networking sites and an

important input feature for the Collaborative Filtering and Content-based module as

well. Social relation strength module is written in Java programming language because

34

CHAPTER 4. EXPERIMENT

we are using WEKA library to generate social relation graphs. For each user, we tallied

up the number of interactions such as comments, up-votes and private messages with

each of his or her friends and followers. Based on how frequently they communicate with

each other, we rank their friends who have frequent interactions to have higher priority

in recommending posts.

Next, Content-Based module was implemented along side with Collaborative mod-

ule as they were independent modules. The Content-based module is written in Scala

programming language which is known for its ease of partitioning and parallel program-

ming. In Content-based module, we used a three part process where the first part is

pre-processing posts, the second part is creating user’s content profile vector TF-IDF

scheme and the last part is comparing all posts with each user’s profile using cosine sim-

ilarities. For the first part, we did some pre-processing on collecting and standardizing

vehicle brands, style and models. Since our site’s domain is about vehicle, the most

relevant and interesting keywords should be vehicle oriented.

For the second and third part, we used Apache Lucene an open source information

retrieval software library, to implement the vector space model and cosine similarity

calculation. First, we aggregate all user’s posts into a single document then we did

stemming and stop words removal from the document to define user’s interest. We

used the package “WordnetStemmer” as our stemming algorithms to find the stem of

words. Stemming is a process of removing prefix and suffix from words, remove tenses

from verbs, and strip “s” from plural nouns. A list of stop words were provided by

the company and are removed from the corpus as well. After cleaning up the corpus,

we use Lucene to store users’ profile in form of vectors using local file storage system

as separate profile. Each user’s profile is named after their “user id” and within their

profile it contains a list of keywords. When every user’s profile is created, we then move

on to the final part of the process.

Before comparing the user profile with each post, we filtered out all posts that have

privacy flag on such as private messages, pictures and posts. Next, we stem and strip

stop words from each post using the same criteria from above. We create a vector for

each post and compare it to each user’s profile vector. Then we use Lucene’s scoring

method to compare these vectors, for each post we return top 100 interested users in

descending order along with similarity score between 0 and 1. These scores are then

used for ranking user’s interests level on each public post.

A third module Collaborative Filtering was also implemented using Scala program-

ming language with Alternating Least Square (ALS) to provide recommendation based

on similar user actions or interests. In this module we used both implicit and explicit

35

CHAPTER 4. EXPERIMENT

feedback as measurement for similar users. All these ratings are then inputted into a

learning model in list format such as the following:

<user id>, <post id>, <score>

1011, 102, 3

1012, 100, 4

1011, 111, 0

The above input is then used as input for the ALS model from Spark Machine Learning

library to generate matrix factorization model. The trained model is then saved in local

file storage and can be called to predict user’s interest level on posts.

The next module would be the recommender system which takes all input and pro-

vides ratings for each post based on user’s interest. In this module, we make use of social

relation strength from the first module, Content-based ratings from the second module

and Collaborative ratings from the third module. Each module’s ratings are normalized

into real value between 0 and 1, where 0 is the lowest value and 1 is the highest. In

addition to the above mentioned features, we also use popularity, geographic information

and vehicle interests.

In terms of popularity, we evaluate posts from within 60 days and rank their popu-

larity based on votes and comments. Posts with higher vote counts and comments would

receive a higher score.

Another signal that we include as input are the geo-tag from post. This is an im-

portant factor for our users because many of them are travelers who enjoy traveling to

different places. For this signal, we use geohash to determine the distance between user

and post. We rank them based on matching length of geohash.

As for the last signal, it is unique to our recommender system as we are working on

a closed domain of interests where all users are vehicle enthusiasts. Each post that is

associated with vehicle brand or model will be given a score.

At the end, we feed all the above mentioned features into the RankLib library [1].

RankLib is a library of learning to rank algorithms, it takes input data-set, and test data-

set as text file and outputs ranking model. We can also set different evaluation metric

for learning and testing the model. The input file to the learning to rank algorithms is

as follows:

<relevancy> qid:<datasetId> <featureId_1>:<score> <featureId_N>:<score>

1 qid:3 1:64.0 2:54.0 3:31.0 4:25.0 5:356.0 6:0.01954206542 7:0.020361286

5 qid:8 1:13.0 2:1.0 3:3.0 4:0.0 5:781.0 6:0.02467538727 7:0.0

36

CHAPTER 4. EXPERIMENT

In the above sample, the first line shows the column names; whereas the second and third

lines are examples of the input data for the learning to rank algorithms. The first column

represents the relevancy score, where score of 5 represents user is highly interested and

the score of 1 means user is least interested. The relevancy score used in both testing

and training are explicit feedback from users who had participated in evaluating our

recommender system on their social networking site. The column “qid” represents the

user identification number, for generalized model and as for the personalized model we

use post identification number as “qid”. Rest of the data for each line represents the

set of feature ids and their corresponding scores. Since we are using six features as our

recommendation strategies, we have 6 sets of feature ids and scores. All the features

scores are normalized to a value between 0 and 1.

Based on user feedback, we decided to choose 7 active users for personalized rec-

ommendation model and 20 less active users for generalized recommendation model.

For each active user, we generate an unique ranking model individually. For less active

users or new users we generate a one for all ranking model. We run through all avail-

able ranking algorithms such as MART, RankNet, AdaRank, Coor-Ascent, LambdaRank,

LambdaMART, ListNet, Linear-regression and choose the best model accordingly.

4.2 Results and Analysis

We generated recommendations for our experiment using two approaches, generalized

model and personalized model. We collected 60 explicit feedback from 7 active users for

evaluating our personalized models and about 15 explicit feedback from 20 less active

users for evaluating generalized model. For active users data set, we have 60 ratings

feedback from each user, and we used 50 out of 60 ratings as training set and the

remaining 10 as testing set.

Table 4.2, shows the composite of our training and testing cases for our less active

users group. The number of users in testing is greater than training because one of the

user only rated one post and we grouped this data into testing. The reason behind this

experiment is to show that the generalized model should work well for new user without

any prior information of that user.

Table 4.2: Generalized model inputs for learning to rank algorithms
Number of users Number of ratings Input type

19 270 training
20 61 testing

37

CHAPTER 4. EXPERIMENT

The secret to a successful and effective recommender system lies in the ranking of rec-

ommended posts. A good recommender system not only generates a list of recommended

posts but also ranks those recommendations. From both system and user perspective,

it is not wise for a recommender to generate a long list of recommended posts. A long

list of recommended posts would only confuse users and waste resources in generating

those posts. Thus, the recommender system should rank the recommended posts in de-

scending order of importance and shows only the most important recommendations. In

most cases, the recommender system sets a threshold and only identifies the top 10 to

15 most recommended posts and presents those selected posts to users.

Our recommender system generates a list of posts with associated scores from each

recommendation strategy. Each post is associated with six scores from six different

strategies. Also, for evaluation, each post is associated with a relevancy score given by

the users for expressing their level of interest. A higher level of relevancy score indicates

a higher level of user’s interest on that post. Therefore, each post in our experiment

is associated with a relevancy score and six attribute score which are predicted by six

different strategies. So, a good indication of accurate prediction is when relevancy score

and attribute scores are in sync. In the final phase of recommendation, we sort the list

of posts in descending order using those six attribute scores. The post with the highest

attribute scores is at the top and when the post has a relevancy score of 5, it proves that

our ranking order is accurate. If most posts with high relevancy score are among the

top posts, then it proves the accuracy of our recommmender system. If a low relevancy

score is among our recommended list then our ranking process might be ineffective.

However, the ranking of six attribute is not an easy task. In order to provide the

most accurate and efficient ranking list, we need to provide different weights to these six

attribute scores. A simple linear combination with equal weight might not be sufficient

for this experiment. Since users are unique and their preference to each individual post

is different, our proposed personalized recommender model is trying to capture this

uniqueness in user. A learning to rank algorithm is used to derive a ranking model for

generating a ranked list of recommendations.

In this experiment, we used Normalized Discounted Cumulative Gain (NDCG) as

our main evaluation metric. NDCG is often used in information retrieval to determine

the effectiveness of various ranked list. Precision and Recall metrics were not used as

our evaluation metric because binary relevance assessments are heavily influenced by

outliers [32]. The NDCG metric captures the following two key factors: highly relevant

posts are preferable at top ranking rather than mildly relevant ones, and relevant posts

that appear at the end of ranking is less valuable.

38

CHAPTER 4. EXPERIMENT

The NDCG metric captures the following two key factors:

1 highly relevant posts are preferable at top ranking rather than mildly relevant ones

2 relevant posts that appear at the end of ranking are less valuable

For example, given a set of test queries evaluated by specialist and are graded on a

scale 0-3, with 3 indicating strong relevance and 0 indicating post is non-relevant. Now

with each query, our Recommender System returns top 10 results in descending order.

Here we replace each post with their relevance score, which is known as gainvectorG.

For example, the following are queries for G1, G2:

G1 = (1, 0, 1, 0, 0, 3, 0, 0, 0, 2)

G2 = (0, 0, 2, 0, 0, 0, 0, 1, 0, 0)
(4.2)

By summing the above graded relevance scores up to any point of the ranking, we

obtain a measure of Cumulated Gain (CG). For instance, for query 1, the cumulated

gain at first position is 1, at second position is 1 + 0, at third position is 1 + 0 + 1, and

so on. So, the cumulated gain vector for q1 and q2 are as follows:

CG1 = (1, 1, 2, 2, 2, 5, 5, 5, 5, 7)

CG2 = (0, 0, 2, 2, 2, 2, 2, 3, 3, 3)
(4.3)

A formal definition for CG is as follow [32]:

CGj [i] =

Gj [1] if i=1

Gj [i] + CGj [i− 1] i > 1
(4.4)

where CGj [i] refers to the cumulated gain at the i− th position of the ranking for query

qj .

In order to enforce the second rules, that relevant posts at the end of the ranking have

lower value. We need to have a discount factor that reduces the impact of the gain as we

move upper in the ranking. A straight forward discount factor would be the logarithm of

the ranking position. Thus, the discount factor at position 2 would be log22, at position

3 would be log23, at position 4 would be log24 and so on. Therefore, the Discounted

Cumulated Gain (DCG) formula is as follow [32]:

DCGj [i] =

Gj [1] if i=1

gj [i]
log2i

+DCGj [i− 1] i > 1
(4.5)

39

CHAPTER 4. EXPERIMENT

where DCGj [i] refers to the discounted cumulated gain at the i − th position of the

ranking for query qj .

Following the examples from above, the DCG vectors for queries q1 and q2 is as

follow:

DCG1 = (1.0, 1.0, 1.6, 1.6, 1.6, 2.8, 2.8, 2.8, 2.8, 3.4, 3.4)

DCG2 = (0.0, 0.0, 1.3, .1.3, 1.3, 1.3, 1.6, 1.6, 1.6, 1.6, 1.6)
(4.6)

For the above instance, we notice that the discounted cumulated gains are less affected

by relevant posts at the end of the ranking which is precisely as intended.

To produce CG and DCG curves over a set of test queries, we need to average the

overall queries, as follow [32] :

CG[i] =
1

Nq

Nq∑
j=1

CGj [i]

DCG[i] =
1

Nq

Nq∑
j=1

DCGj [i]um

(4.7)

For instance, the example queries q1 and q2 their averages are as follow [32] :

CG = (0.5, 0.5, 2.0, 2.0, 2.0, 3.5, 3.5, 4.0, 4.0, 5.0)

DCG = (0.5, 0.5, 1.5, 1.5, 1.5, 2.1, 2.1, 2.2, 2.2, 2.5)
(4.8)

As many will notice the CG and DCG defined above are not computed relative to

any baseline; unlike precision and recall figures that are computed relatively to set of

relevant posts. Therefore, to normalize CG and DCG metrics, we need to define a new

baseline to be used for normalization. This new baseline would be the ideal CG and

DCG metrics, where ranking order matches the relevancy scores, such as :

IG = (3, ..., 3, 2, ..., 2, 1, ..., 1, 0, ..., 0) (4.9)

The ideal gain (IG) vector for queries q1 and q2 would be as follow:

IG1 = (3, 3, 2, 2, 2, 1, 1, 1, 1, 0)

IG2 = (2, 1, 0, 0, 0, 0, 0, 0, 0, 0)
(4.10)

40

CHAPTER 4. EXPERIMENT

As a result, the ideal CG would be as follow:

ICG1 = (3, 6, 8, 10, 12, 13, 14, 15, 16, 16)

ICG2 = (2, 3, 3, 3, 3, 3, 3, 3, 3, 3)
(4.11)

Also, the ideal DCG would be as follow:

IDCG1 = (3.0, 6.0, 7.3, 8.3, 9.1, 9.5, 9.9, 10.2, 10.5, 10.5)

IDCG2 = (2.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0)
(4.12)

Further, the average ICG and average IDCG scores can be computed as follows:

ICG[i] =
1

Nq

Nq∑
j=1

ICGj [i]

IDCG[i] =
1

Nq

Nq∑
j=1

IDCGj [i]

(4.13)

For instance, the example queries q1 and q2 are as follow:

ICG = (2.5, 4.5, 5.5, 6.5, 7.5, 8.0, 8.5, 9.0, 9.5, 9.5)

IDCG = (2.5, 4.5, 5.1, 5.6, 6.0, 6.2, 6.4, 6.6, 6.7, 6.7)
(4.14)

By comparing the average CG and DCG curves with the average ideal curves, we gain

insight on how much room for improvement, given that the ideal curve is the maximum

retrieval quality attainable.

Given the ideal DCG curve, it is still difficult to compare directly DCG curve for two

distinct ranking algorithms. However, this issue could be corrected by normalizing the

DCG metric as follow [32] :

NCG[i] =
CG[i]

ICG[i]

NDCG[i] =
DCG[i]

IDCG[i]

(4.15)

For instance, the example queries q1 and q2 are as follow :

NCG = (0.2, 0.1, 0.4, 0.3, 0.3, 0.4, 0.4, 0.4, 0.4, 0.5)

NDCG = (0.2, 0.1, 0.3, 0.3, 0.2, 0.3, 0.3, 0.3, 0.3, 0.4)
(4.16)

41

CHAPTER 4. EXPERIMENT

Thus, the area under the NCG and NDCG curve represent the quality of the ranking

algorithm. The higher the area, the better the result. NDCG is used in our experiment

due to the following benefits [32] :

1 allow systematic combination between post rank and relevance score

2 cumulated gain provides retrieval quality at any position in the ranking

3 cumulated gain stress top ranking so it is more immune to outliers

4 discounted cumulated gain allows down weighting of relevant posts at lower ranking

Thus, we implement NDCG as our main evaluation metric in comparing the accuracy

of our Recommender models. We divide our user models as generalized model and

personalized model. The generalized model is mainly targeting at new and less active

users who are new to the site and are still in the phase of discovering the site. We

proposed a generalized model for this group of users to help promote the site and actively

help users discover their interests with the site. On the other hand, the personalized

model is for more active users who had tons of interactions with the site and lots of

active feedback. Personalized model is suggested for this group of users because we

have more understanding about the user, thus in turn could create a better personalized

recommender system for them.

4.2.1 Generalized Model

Since not all users on the social sites are active with ample interactions and feedback

to the site, we devised an alternate model for this group of users. A generalized model

which incorporates all users’ implicit and explicit feedback as input, then uses learning

to rank algorithms to create the recommendation. Results shown in Figure 4.1 are the

average NDCG scores for those 20 less active users in testing set with different learning

to rank models and various combinations of input features.

In “all signal” model, we used all features such as Collaborative Filtering, Content-

based Filtering, Social Relation Strength, Temporal, Location and vehicle features, as

input in learning the model. The idea behind this proposed model is that any additional

data or input would increase the performance and accuracy of the learned model. In “no

CF signal” model, we used features such as Content-based Filtering, Follower, Temporal,

Location and vehicle features. We did not use Collaborative Filtering as part of the input

for this model because Collaborative Filtering normally does not work well for new or less

active users. Therefore, we believe excluding it from our model might help improve the

42

CHAPTER 4. EXPERIMENT

Figure 4.1: General model with NDCG scores

accuracy of our final model. In “PSV signal” model, we used only Temporal, Location

and Vehicle features because these features do not require any prior knowledge from

user. Content-based Filtering and Collaborative Filtering require substantial amount of

user’s feedback to be accurate. We also removed follower signal from the input because

we assume new users and less active users do not have interested users that they intently

follow. The purpose of this model is to verify the performance of using only features

that does not depend upon users’ feedback.

From Figure 4.1, we found out that “all signal” model has the best NDCG result

combined with RankBoost learning to rank algorithm. The “no CF signal” model has

the most consistent NDCG result, it has over 90% accuracy combined with any learning

to rank algorithms. The “PSV signal” model has the lowest performance out of these

three models because it uses the least input features.

Table 4.3: Best generalized model output for each approach
Strategy Best NDCG

All features 0.932
Without Collaborative Filtering 0.933

Temporal, Location, Vehicle 0.920

43

CHAPTER 4. EXPERIMENT

Figure 4.2: NDCG average for 7 users

Table 4.3, show the best averaged NDCG result on all 20 users and we noticed that

all proposed methods are fairly accurate with average NDCG scores over 90%. The best

averaged accuracy is the second model which does not include Collaborative Filtering

signal. This demonstrates that the removal of insignificant signal might actually improve

the overall accuracy of the output model, although the improvement between the first and

second approach is not significant. The last approach on using only non-user-dependent

features has the lowest accuracy. It is reasonable that the last model would have the

lowest accuracy as it has the fewest input or data to learn from. However, the close

proximity of result between models do indicate that generalized model still perform well

without any user dependent features. Therefore, in our generalized model we propose to

use all features for accuracy and non-user dependent features for efficiency.

4.2.2 Personalized Model

For active users with ample explicit feedback to the site, we implemented personalized

recommender model for each of them. Based on the number of feedback from users, we

set a threshold for learning personalized model. For those users with sufficient feedback,

we generate all features such as: Collaborative Filtering, Content-based Filtering, Social

Relations, Location, Temporal, and Vehicle feature as inputs. Then all these inputs are

passed on to a list of learning to rank algorithms and the best fit model is chosen as

their personalized model.

In Figure 4.2, we averaged the NDCG score from 7 users for each learning to rank

44

CHAPTER 4. EXPERIMENT

Figure 4.3: NDCG score of 3 active users

algorithm, and from this figure we learned that algorithm RankBoost and AdaRank have

the best average result and LambdaRank has the worst average result. In Figure 4.3,

we compared 3 different users with 8 different learning to rank algorithms to show how

different users react to each learning to rank algorithm. From it, we learned that there

does not exist one learning to rank algorithm that yields the best result for all active

users. In fact, ListNet algorithm works best for user 6 but is the worst algorithm for

user 5. Thus, we propose an independent learning to rank model for each active user, so

the best recommender model would be chosen for each user. Table 4.4 summarizes the

best learning model for each user along with their NDCG scores.

Table 4.4: Best personalized model output for each user
User Algorithm score

1 Ranknet 0.850
2 Rankboost 0.955
3 Adarank 0.978
4 Ranknet 0.932
5 Lambdarank 0.806
6 Rankboost 0.918
7 Adarank 0.964

From Table 4.4 we notice that each user may be suitable with different learning

algorithm and there is not a single learning algorithm that proves to be the best for all

45

CHAPTER 4. EXPERIMENT

Figure 4.4: NDCG scores with one feature

active users. Therefore, in our personalized model we choose the best learning model that

for each individual and store those models for future recommendations. An individualized

model might be proven to be space consuming but in order to reward a loyal and active

customer, we think it is a fair trade-off. Due to advancement in technologies, space

resources are more affordable in recent times whereas feedback from loyal customers are

priceless.

In the following results, we try to demonstrate the importance of different features

such as Content-based filtering, Collaborative filtering, Social relation strength, Spatial,

Temporal and Domain interest. We use various combination of features to find the

perfect combination to be used in our recommender system. We used the feedback from

those 7 active users to show the NDCG score. In the following graphs x-axis represents

the user and y-axis represent the score.

Based on Figure 4.2, we established that RankBoost has the best average for learning

to rank algorithm. In Figure 4.4, we compared RankBoost ranking algorithm with only

Content-based input feature against Collaborative input feature. These test cases is to

verify the importance of Content-based Filtering and Collaborative Filtering feature.

Although the accuracy with only one feature is fairly low for both individual feature, we

noticed that Collaborative Filtering feature model works slightly better than Content-

based Filtering feature model.

46

CHAPTER 4. EXPERIMENT

Figure 4.5: NDCG scores with various combination of features

In Figure 4.5, we used various combination of features and grouped them by user

to identify which combination of features works best for different users. In “CFFP”

model, we uses only Collaborative filtering and Social relation strength as our input

features. This combination is to test user’s interest level on friends and similar users’

posts. According to the result, we can verify that 3 out of 7 users find this model that

best describing their interest.

In Figure 4.5, we also tried out different feature along with a basic hybrid model of

Content-based and Collaborative feature. The “FBF” model contains the basic hybrid

model and Social relation feature, “FBL” model contains the basic hybrid model and

Spatial feature, “FBP” model contains the basic hybrid model and Popularity feature,

and “FBB” model contains the basic hybrid model and Vehicle feature. From these

results, we noticed that any of these combinations features perform better than the

previous single feature models. Also we noticed that each user correspond to each feature

differently.

In Figure 4.6, we try to pinpoint the effect of each feature has on different users.

From these results we could confirm that each user has different preferences, and each

feature has different impact on accuracy. From this test group, the most significant

feature would be Collaborative and the least important feature would be Content-based.

Even though the accuracy increased is small with every added feature, at the end when

we included all features the accuracy is satisfying.

47

CHAPTER 4. EXPERIMENT

Figure 4.6: NDCG scores with leaving out one feature

Figure 4.7: Comparing General Model with Personal model

48

CHAPTER 4. EXPERIMENT

In Figure 4.7, we compared generalized model against personalized model with 7

active users. From the figure, we determine that personalized model out performed

generalized model for all 7 active users. It comes at no surprise that personalized model

are more accurate because we are able to tweak this model such that it tailors to its’

user’s preference. Therefore, we recommend using personalized model for active users

and generalized model for new users.

4.3 Summary

In this chapter we explained the dataset used in our experiment and our experiment

design with detailed explanation of our recommender system’s implementation. After

analyzing and evaluating our results, we showed that our proposed recommender system

performs better than the conventional system. Based on the figures shown above, our

approach is better than the conventional approach. We can see that our Normalized

Discounted Cumulative Gain (NDCG) score obtained through learning to rank algorithm

is better than the NDCG score using individual feature alone. In short, a composite of

many strategies is better than using a single strategy, because every strategy has their

own strengths and weaknesses. By combining them, we could minimize the flaws of

one strategy by introducing other strategy’s strengths that make up for those losses.

Thus, in this paper we show that using historical data to learn separate recommender

models and then combining them with learning to rank algorithm would generate a

better recommender system. Also, active users would have personalized model that

tailors to his or her changing interests; whereas new users or less active users would have

a generalized model that sums up the community interest.

4.4 Threats to Validity

As mentioned in previous chapter, the level of sparcity that we are working on is 6.425×
10−6. Due to the limitation of explicit feedback from users, we are only able to test our

system against 7 active users for personalized models. However, based on the limited

resources available, we are able to produce promising results. For our training and testing

data split, we did 4 to 1 split. Using 80% of our data for training and the remaining

20% data for testing. Unfortunately, this test-train split is the best approach we could

provide because of the small data-set we are working on. The model we proposed is

tailored to the Social Networking Sites (SNS) that we are working with, so this approach

may not work well with other SNS.

49

Chapter 5

Conclusion

5.1 Conclusions

In this thesis, we proposed a generalized recommender system for novice users and a per-

sonalized recommender system for active users to recommend posts to read on an online

Social Networking Sites (SNS). Our system uses user’s historical data and feedback to

extract user’s interest and create user profile. The recommender system uses six input

features to compute scores that represent the importance of recommended post to user.

We use six input features including content-based, collaborative, social relation strength,

spatial information, popularity and vehicle information (model and name). Each input

feature provides candidate recommendation list with associated score for each post in

descending order. Since each feature calculates posts’ score based on their individual

algorithm, each of them produces different order of posts ranking. Thus, in order to

join all features together and re-order posts, we used learning to rank algorithms. From

the results, we choose the best learning algorithm for both generalized and personalized

model independently.

We proposed to have both generalized and personalized recommender model for the

site because not all users have enough information to create their own personalized

model. We use generalized model for novice users or users who have less activities on

the site. For this type of users, we recommend posts based on the collective information

of all users. When training for generalized model we use the traditional approach of

recommender system of viewing the community as a whole and develop a recommender

system that suits the majority of users. This model would recommend the community’s

collected interests to them.

A generalized model may work well for some users, but the same model may not

50

CHAPTER 5. CONCLUSION

work well for all users. Thus, we propose in introducing a personalized recommender

model for all active users. With enough user’s feedback and activity history, we could

generate an accurate user profile and in turn personalize a recommender system for

that particular user. For each personalized model, we first create user’s content profile,

interaction profile, social strength profile and vehicle profile. After all these profiles are

created, we combine them with other input features such as spatial and popularity and

use learning to rank algorithms to generate their personalized model.

The effectiveness of our proposed system is illustrated by the results in our experi-

ment. We have shown how various input features and learning to rank algorithms have

impacted the model. For both generalized and personalized model we have shown that

all six input features are essential for our recommender system. Also, we tried a list of

popular learning to rank algorithms to combine these six input feature and choose the

best ranking algorithm to generate the optimal recommender system.

The major contributions of our research are:

1. We proposed a hybrid recommender system that combines Collaborative Filtering

algorithm, Content-based algorithm, Social Relation Strength, Spatial, Popularity

and Vehicle information to create an efficient and accurate recommendation model.

None of the prior recommender system has combined all the above input features.

2. We proposed to use learning to rank algorithms to build a generalized model for

novice users and a personalized model for each active user. With the inclusion of

both model our system could help alleviate the cold-start problem.

5.2 Future Work

We would like to continue working on our recommender system to implement incremental

learning to increase efficiency in updating the model. We would like to also implement

incremental learning in content-based model while creating user’s content profile; also

incremental learning in collaborative model. With implementation of incremental learn-

ing, we could shorten the time needed to update user profile thus enhancing its response

time.

Another direction is to implement more input features into our model. Currently, we

are using six input features and our recommender model is flexible to add more input

features in the future. In addition of new features, we would also like to introduce new

ranking algorithms that could improve the ranking order of candidate posts. Therefore,

we would like to find other learning to rank algorithms that may increase accuracy and

51

CHAPTER 5. CONCLUSION

speed in ranking.

52

Appendix A

Personalized Model Result

In Figures A.1, A.2, A.3, A.4, A.5, A.6, A.7, we show how different learning to rank

algorithms fare with each user.

In Figure A.1, the best learning algorithm is Ranknet and the worst learning algo-

rithm is Listnet for user 1.

In Figure A.2, the best learning algorithm is Rankboost and the worst learning

algorithm is Listnet for user 2.

In Figure A.3, the best learning algorithm are Rankboost and Adarank. The worst

learning algorithm is CoorAscent for user 3. In case of similar Normalized Discounted

Cumulative Gain (NDCG) scores, we pick a model at random to provide diversity and

for this experiment we chose Adarank.

In Figure A.4, the best learning algorithm is Ranknet and the worst learning algo-

rithm is Listnet for user 4.

In Figure A.5, the best learning algorithm is Rankboost, Adarank, Lambdamart and

listnet. The worst learning algorithm is Mart for user 5.

In Figure A.6, the best learning algorithm is Rankboost, and Adarank. The worst

learning algorithm is Lambdarank for user 6.

In Figure A.7, the best learning algorithm is Rankboost, and Adarank. The worst

learning algorithm is lambdamart for user 7.

53

APPENDIX A. PERSONALIZED MODEL RESULT

Figure A.1: NDCG scores for user 1

Figure A.2: NDCG scores for user 2

54

APPENDIX A. PERSONALIZED MODEL RESULT

Figure A.3: NDCG scores for user 3

Figure A.4: NDCG scores for user 4

55

APPENDIX A. PERSONALIZED MODEL RESULT

Figure A.5: NDCG scores for user 5

Figure A.6: NDCG scores for user 6

56

APPENDIX A. PERSONALIZED MODEL RESULT

Figure A.7: NDCG scores for user 7

57

Bibliography

[1] The lemur Project wiki - ranklib. https://sourceforge.net/p/lemur/wiki/

RankLib/.

[2] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender

systems: a survey of the state-of-the-art and possible extensions. Knowledge and

Data Engineering, IEEE Transactions on, 17(6):734–749, June 2005.

[3] F. Amato, V. Moscato, A. Picariello, and G. Sperl. Recommendation in social

media networks. In Proceedings of 2017 IEEE Third International Conference on

Multimedia Big Data (BigMM), pages 213–216, April 2017.

[4] F. Ayala-Gómez, B. Daróczy, M. Mathioudakis, A. Benczúr, and A. Gionis. Where

could we go?: Recommendations for groups in location-based social networks. In

Proceedings of the 2017 ACM on Web Science Conference, WebSci ’17, pages 93–

102, New York, NY, USA, 2017. ACM.

[5] P. Bhargava, T. Phan, J. Zhou, and J. Lee. Who, what, when, and where: Multi-

dimensional collaborative recommendations using tensor factorization on sparse

user-generated data. In Proceedings of the 24th International Conference on World

Wide Web, WWW ’15, pages 130–140, Republic and Canton of Geneva, Switzer-

land, 2015. International World Wide Web Conferences Steering Committee.

[6] P. G. Campos, F. Dı́ez, and I. Cantador. Time-aware recommender systems: a

comprehensive survey and analysis of existing evaluation protocols. User Model.

User-Adapt. Interact., 24(1-2):67–119, 2014.

[7] V. R. Carvalho, J. L. Elsas, W. W. Cohen, and J. G. Carbonell. A meta-learning

approach for robust rank learning. In SIGIR 2008 workshop on learning to rank for

information retrieval, volume 1, 2008.

58

BIBLIOGRAPHY

[8] P. Chakraborty. A scalable collaborative filtering based recommender system using

incremental clustering. In Proceedings of Advance Computing Conference, 2009.

IACC 2009. IEEE International, pages 1526–1529, March 2009.

[9] K. Chen, T. Chen, G. Zheng, O. Jin, E. Yao, and Y. Yu. Collaborative personalized

tweet recommendation. In Proceedings of the 35th International ACM SIGIR Con-

ference on Research and Development in Information Retrieval, SIGIR ’12, pages

661–670, New York, NY, USA, 2012. ACM.

[10] W.-Y. Chen, J.-C. Chu, J. Luan, H. Bai, Y. Wang, and E. Y. Chang. Collaborative

filtering for orkut communities: Discovery of user latent behavior. In Proceedings of

the 18th International Conference on World Wide Web, WWW ’09, pages 681–690,

New York, NY, USA, 2009. ACM.

[11] X. Dong, X. Chen, Y. Guan, Z. Yu, and S. Li. An overview of learning to rank

for information retrieval. In 2009 WRI World Congress on Computer Science and

Information Engineering, volume 3, pages 600–606, March 2009.

[12] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and

distrust. In Proceedings of the 13th International Conference on World Wide Web,

WWW ’04, pages 403–412, New York, NY, USA, 2004. ACM.

[13] P. Heymann, G. Koutrika, and H. Garcia-Molina. Can social bookmarking improve

web search? In Proceedings of the 2008 International Conference on Web Search

and Data Mining, WSDM ’08, pages 195–206, New York, NY, USA, 2008. ACM.

[14] L. Hong, A. S. Doumith, and B. D. Davison. Co-factorization machines: Modeling

user interests and predicting individual decisions in twitter. In Proceedings of the

Sixth ACM International Conference on Web Search and Data Mining, WSDM ’13,

pages 557–566, New York, NY, USA, 2013. ACM.

[15] C. Hsiao, Z. Wang, and W. Teng. An incremental scheme for large-scale social-based

recommender systems. In Proceedings of International Conference on Data Science

and Advanced Analytics, DSAA 2014, Shanghai, China, October 30 - November 1,

2014, pages 128–134, 2014.

[16] H. Imran, M. Belghis-Zadeh, T.-W. Chang, Kinshuk, and S. Graf. Plors: a person-

alized learning object recommender system. Vietnam Journal of Computer Science,

3(1):3–13, Feb 2016.

59

BIBLIOGRAPHY

[17] C. Jensen, J. Davis, and S. Farnham. Finding others online: Reputation systems for

social online spaces. In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, CHI ’02, pages 447–454, New York, NY, USA, 2002. ACM.

[18] T. Joachims. A probabilistic analysis of the rocchio algorithm with tfidf for text

categorization. Technical report, DTIC Document, 1996.

[19] Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative fil-

tering model. In Proceedings of the 14th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 426–434. ACM, 2008.

[20] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender

systems. Computer, 42(8):30–37, Aug. 2009.

[21] T.-Y. Liu. Learning to rank for information retrieval. Springer Berlin Heidelberg,

2011.

[22] X. Liu and K. Aberer. Towards a dynamic top-n recommendation framework. In

Proceedings of the 8th ACM Conference on Recommender Systems, RecSys ’14,

pages 217–224, New York, NY, USA, 2014. ACM.

[23] H. P. Luhn. A statistical approach to mechanized encoding and searching of literary

information. IBM Journal of research and development, 1(4):309–317, 1957.

[24] X. Luo, Y. Xia, and Q. Zhu. Incremental collaborative filtering recommender based

on regularized matrix factorization. Knowledge-Based Systems, 27(0):271 – 280,

2012.

[25] H. Ma. An experimental study on implicit social recommendation. In Proceedings

of the 36th International ACM SIGIR Conference on Research and Development in

Information Retrieval, SIGIR ’13, pages 73–82, New York, NY, USA, 2013. ACM.

[26] H. Ma, I. King, and M. R. Lyu. Learning to recommend with social trust ensemble.

In Proceedings of the 32Nd International ACM SIGIR Conference on Research and

Development in Information Retrieval, SIGIR ’09, pages 203–210, New York, NY,

USA, 2009. ACM.

[27] A. Majid, L. Chen, G. Chen, H. T. Mirza, I. Hussain, and J. Woodward. A context-

aware personalized travel recommendation system based on geotagged social media

data mining. International Journal of Geographical Information Science, 27(4):662–

684, 2013.

60

BIBLIOGRAPHY

[28] J. L. Neto, A. D. Santos, C. A. Kaestner, N. Alexandre, D. Santos, C. A. A, K. Alex,

A. A. Freitas, and C. Parana. Document clustering and text summarization, 2000.

[29] A. Paterek. Improving regularized singular value decomposition for collaborative

filtering. In Proceedings of KDD cup and workshop, volume 2007, pages 5–8, 2007.

[30] X. Qian, H. Feng, G. Zhao, and T. Mei. Personalized recommendation combining

user interest and social circle. IEEE Transactions on Knowledge and Data Engi-

neering, 26(7):1763–1777, July 2014.

[31] M. Reshma and R. R. Pillai. Semantic based trust recommendation system for social

networks using virtual groups. In Proceedings of 2016 International Conference on

Next Generation Intelligent Systems (ICNGIS), pages 1–6, Sept 2016.

[32] B. R.-N. Ricardo Baeza-Yates. Modern Information Retrieva - the concepts and

technology behind search. Addison Wesley, 2011.

[33] G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.

Information processing & management, 24(5):513–523, 1988.

[34] M. Sarwat, J. J. Levandoski, A. Eldawy, and M. F. Mokbel. Lars: An efficient and

scalable location-aware recommender system. IEEE Transactions on Knowledge

and Data Engineering, 26(6):1384–1399, June 2014.

[35] G. Takács, I. Pilászy, B. Németh, and D. Tikk. Major components of the gravity

recommendation system. ACM SIGKDD Explorations Newsletter, 9(2):80–83, 2007.

[36] T. Tokunaga and I. Makoto. Text categorization based on weighted inverse doc-

ument frequency. In Special Interest Groups and Information Process Society of

Japan (SIG-IPSJ, pages 33–39, 1994.

[37] I. H. Witten, A. Moffat, and T. C. Bell. Managing gigabytes: compressing and

indexing documents and images. Morgan Kaufmann Publishers, 2nd edition, 1999.

[38] F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li. Listwise approach to learning to

rank: theory and algorithm. In Proceedings of the 25th international conference on

Machine learning, pages 1192–1199. ACM, 2008.

[39] L. Xiong, X. Chen, T. Huang, J. G. Schneider, and J. G. Carbonell. Temporal

collaborative filtering with bayesian probabilistic tensor factorization. In Proceedings

of the SIAM International Conference on Data Mining, SDM 2010, April 29 - May

1, 2010, Columbus, Ohio, USA, pages 211–222, 2010.

61

BIBLIOGRAPHY

[40] J. Xu and H. Li. Adarank: A boosting algorithm for information retrieval. In

Proceedings of the 30th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, SIGIR ’07, pages 391–398, New York,

NY, USA, 2007. ACM.

[41] X. Yang, Z. Zhang, and K. Wang. Scalable collaborative filtering using incremental

update and local link prediction. In Proceedings of 21st ACM International Con-

ference on Information and Knowledge Management, CIKM’12, Maui, HI, USA,

October 29 - November 02, 2012, pages 2371–2374, 2012.

[42] H. Yin, B. Cui, L. Chen, Z. Hu, and X. Zhou. Dynamic user modeling in social

media systems. ACM Trans. Inf. Syst., 33(3):10:1–10:44, Mar. 2015.

[43] H. Yin, B. Cui, Y. Sun, Z. Hu, and L. Chen. Lcars: A spatial item recommender

system. ACM Trans. Inf. Syst., 32(3):11:1–11:37, July 2014.

[44] X. Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt, U. Khandelwal, B. Norick, and J. Han. Per-

sonalized entity recommendation: A heterogeneous information network approach.

In Proceedings of the 7th ACM International Conference on Web Search and Data

Mining, WSDM ’14, pages 283–292, New York, NY, USA, 2014. ACM.

[45] Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. M. Thalmann. Time-aware point-of-

interest recommendation. In Proceedings of the 36th International ACM SIGIR Con-

ference on Research and Development in Information Retrieval, SIGIR ’13, pages

363–372, New York, NY, USA, 2013. ACM.

[46] Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. M. Thalmann. Who, where, when

and what: Discover spatio-temporal topics for twitter users. In Proceedings of the

19th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’13, pages 605–613, New York, NY, USA, 2013. ACM.

[47] Q. Yuan, G. Cong, K. Zhao, Z. Ma, and A. Sun. Who, where, when, and what: A

nonparametric bayesian approach to context-aware recommendation and search for

twitter users. ACM Trans. Inf. Syst., 33(1):2:1–2:33, Feb. 2015.

[48] W. Zhang, J. Wang, B. Chen, and X. Zhao. To personalize or not: A risk man-

agement perspective. In Proceedings of the 7th ACM Conference on Recommender

Systems, RecSys ’13, pages 229–236, New York, NY, USA, 2013. ACM.

[49] X. Zhou, J. He, G. Huang, and Y. Zhang. Svd-based incremental approaches for

recommender systems. J. Comput. Syst. Sci., 81(4):717–733, 2015.

62

BIBLIOGRAPHY

[50] X. Zhou, Y. Xu, Y. Li, A. Josang, and C. Cox. The state-of-the-art in person-

alized recommender systems for social networking. Artificial Intelligence Review,

37(2):119–132, 2012.

[51] C.-N. Zieglera and J. Golbeck. Investigating correlations of trust and interest

similarity-do birds of a feather really flock together? Decision Support Systems,

2006.

63

Glossary

ALS Alternating Least Square

CB Content-Based Filtering

CF Collaborative Filtering

CG Cumulated Gain

DCG Discounted Cumulated Gain

EBSN Event-based Social Networking Services

LBSN Location-based Social Network

NDCG Normalized Discounted Cumulative Gain

RS Recommender System.

SNS Social Networking Sites

UGC User Generated Content

WWW World Wide Web

64

