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Abstract

Blockchain technology is a distributed database and a public ledger.

It records every transaction that has been made from its inception. Once

entered, these records cannot be modified or erased. The technology uti-

lizes various algorithms of a cryptographic nature to reach a consensus.

These cryptograhic functions also ensure the integrity and authenticity

of data that has been interchanged across the network. Because of these

features, blockchain technology has been implemented into various finan-

cial and non-financial fields.

In this thesis, we introduce the mathematical foundations of Bitcoin,

and different cryptographic functions that are used in Blockchain, espe-

cially elliptic curve multiplication. We construct two MATLAB models

to study the fork events which is the one of typical consensus problems

in the system. Moreover, we use graph theory and MATLAB models to

represent and describe the Bitcoin protocols.
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CHAPTER 1

Introduction

1.1. Motivation

We live in an era where technology rapidly develops. E-commerce

is replacing traditional retailing. Tesla has developed a full self-driving

vehicle and surgical robots have been adopted in operations. It is not sur-

prising that technology innovations are changing traditional lifestyles. In

particular, financial technology, also known as Fintech, is revolutionizing

the financial sector.

In October 2008, Satoshi Nakamoto published the paper “Bitcoin: A

peer-to-peer electronic cash system” [47]. In this paper, he came up

with a new electronic payment system, which reduces a third party’s

involvements. This was the first time Bitcoin was introduced to the

world. In 2009, one US dollar Bitcoin exchange rate was 1, 309.03 bitcoins

[42]. No one knew that then this new currency would become so popular.

At the time of writing this thesis, one Bitcoin was worth more than

$12, 000 US dollars [7].

With the growing interest in Bitcoin, blockchain, the technology un-

derlying Bitcoin, has become increasingly popular. In 2015, IBM an-

nounced that it will join an Open Ledger Project to improve business
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transactions by using blockchain technology [39]. Microsoft employed

blockchain technology in its cloud computing service center Azure [34].

More recently, PricewaterhouseCoopers (also known as PwC) and De-

loitte offered blockchain audit services [19,20].

Blockchain is a transparent and distributed shared system. It allows

people to carry out transactions across the network while decreasing the

risk of fraud. Cryptographic technology underpins blockchain.

1.2. Bitcoin Network

1.2.1. What is Bitcoin? Bitcoin was proposed in 2008, and was

based on the idea of allowing individuals to perform transactions with one

another without having the interference of a third party [47]. In January

2009, Satoshi Nakamoto received a reward of fifty bitcoins for mining the

first blockchain block, block 0, also called the genesis block [42]. This

has set up the foundation of the Bitcoin network.

Bitcoin uses several different kinds of novel technology. First, Bitcoin

is a peer-to-peer (P2P) and a distributed ecosystem. In particular, every

user or node equally serves the network. Transactions are received and

propagated by users instead of by clearinghouses [47]. Also, Bitcoin is

not regulated by any central authority such as a government or bank,

which reinforces the P2P architecture. Second, Bitcoin is anonymous

and the system is based on cryptographic technology [3]. Cryptography

is utilized in creating accounts, protecting users and finding new blocks.
2



Third, Bitcoin can be sold, purchased, or even exchanged with other

currencies. The total units are fixed to 21 million bitcoins, with the

reward decreasing every four years at the rate of 50% [3]. This has

controlled the inflation efficiently. Bitcoin decentralization leads to a

situation that transactions could happen in different nodes at the same

time. The traditional paper-based ledgers are no longer fit for Bitcoin. It

needs to employ a database that is accurately and consistently recorded

across the entire network. Last but not least, Bitcoin uses blockchain

technology as its digital ledger.

1.2.2. Wallet and Key pairs. As we mentioned in the previous

section, Bitcoin is an electronic payment system. Payment processing

plays a key role over the internet. Bitcoin address, key pairs, and dig-

ital signatures are the three indispensable elements to establish a valid

transaction [3]. Each key pairs contains a Private key and a Public key.

A public key is generated from the private key, and it is used in Bitcoin

address generation through hash functions (defined below in Chapter 2).

The order of generation is irreversible, and therefore, each private key

has its unique public key and address. We can think of the public key

as similar to a bank card, and the address as similar to the digits on the

card. The private key can be considered as the signature on the back

of the card which shows the ownership of the account. The wallet is
3



the database to store the keys and addresses [3]. The last step to final-

ize the transaction is to validate it with digital signatures so that the

transactions can be listed in the blockchain.

1.3. Graph Theory

Before we delve deeper into Bitcoin and blockchain, we need founda-

tional concepts in graph theory. A graph G = (V (G), E(G)) consists of

a nonempty set of nodes V (G), also called the vertex set, and an edge

set E(G), where each edge is associated with a pair of vertices called its

endpoints. An edge uv is said to be incident on its endpoints if vertices

u and v form an edge. We can also say that u and v are adjacent. The

figure below represents a graph G.

Figure 1.1. An example of a graph G.

Given a graph G = (V (G), E(G)), the number of vertices |V (G)| is

the order of the graph, and the number of edges |E(G)| is the size of the
4



graph. The graph G is finite when the order and the size are finite. We

only consider finite graphs in this thesis. Further, we have that

|E(G)| ≤
(
|V (G)|

2

)
.

An edge with only one endpoint is called a loop, and a graph G without

loops or multiple edges is called a simple graph. A digraph consists of

a nonempty set of vertices, and a set of edges, where each edge has an

orientation associated with it.

Figure 1.2. Examples of loops and a digraph.

Given a graph G = (V (G), E(G)) and v ∈ V (G), the neighbor set of

v, written N(v), is the set of all the vertices adjacent to v. The degree of

a vertex v, denoted by deg(v), is the number of edges that incident on v.

For instance, the deg(v) in Figure 1.3 is 2. The total degree of a graph

G is the sum of the degrees of vertices in V (G).
5
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w

Figure 1.3. An example of a graph.

The degree of a vertex is one of the important parameters in graph

theory. The First Theorem of Graph Theory, also known as Handshaking

Theorem, states the mathematical relationship between the degrees and

the size of a graph. The proof of the theorem is a part of folklore, and is

included for completeness.

Theorem 1.3.1. (First Theorem of Graph Theory)

For a graph G = (V (G), E(G))

∑
v∈V (G)

deg(v) = 2|E(G)|.

Proof. Each edge is associated with a pair of vertices. When we sum

all the degrees, we would need to count each edge twice. �

The following corollary, also part of folklore, follows from Theorem

1.1.

Corollary 1.3.2. For any graph G, the number of vertices of odd

degree is even.
6



1.3.1. Special Graphs. The path denoted by Pn consists of a se-

quence of n vertices (v1, v2, ..., vn), such that vi is adjacent to vi+1 for

1 ≤ i ≤ n− 1. The order of Pn is n and its size is n− 1. The length of a

path is the number of its edges. The distance d(u, v) between u and v is

the length of the shortest path in a graph G.

Figure 1.4. An example of a path P6.

A graph G is called connected if there exists a path between any two

distinct vertices. A cycle is a closed path with order n ≥ 3, denoted by

Cn. In a cycle Cn, every vertex has degree 2.

Figure 1.5. Cycle C5.

A graph G is a clique if every two vertices are adjacent with each

other. A clique of order n is denoted by Kn. Cliques are sometimes

called the complete graphs. The size of Kn is
(
n
2

)
=
n(n− 1)

2
.
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Figure 1.6. The graphs Kn for n = 3, 4, 5.

A graph G is a tree if it is a connected, acyclic graph. A tree of order

n has n− 1 edges.

Figure 1.7. Trees with n = 3, 4, 6.

A graph can also be used to visualize the complex networks. The

web graph is an example of a complex network, where vertices represent

web pages, and edges represent the link between the pages. We may

also consider the Twitter network as an example of a complex network,

where nodes represent users, while edges represent followers. A complex

network satisfies the following four properties [11]:

1) Large-scale. If users represent nodes, and the connections between

users represent edges, then the order and the size of the graph are
8



extremely large. For example and according to [29], Facebook had

2.32 billion monthly active users in the fourth quarter of 2018.

2) Evolving over time. Unlike traditional graphs, where the vertex

set and the edge set are fixed, real-world graphs are often dy-

namic. The vertices and edges are changing over time in complex

networks.

3) Small world property. This was first introduced by Watts and

Strogatz in 1998 [54]. The small world property states that a

graph of order n demands a low diameter of O(log n) and a higher

clustering coefficient compared with a random binomial graph of

the same order and average degree.

4) The last property of a complex network are power-law degree dis-

tributions. Given a graph G = (V (G), E(G)), a non-negative

integer k, the number of vertices of degree k in G is denoted by

Nk. A power-law degree distribution means that Nk is propor-

tional to k−b for a fixed constant b > 2. Informally, a power law

degree distribution implies that most vertices in a complex net-

work have low degree, but some have very high degree. Therefore,

the distributions also exhibit heavy tails.

For more background on graph theory and complex networks, the reader

is directed to [11,57].
9



1.4. Probability Theory

We next introduce elementary concepts in probability theory. A prob-

ability space S = (Ω,F , P ) consists of three elements. The sample space

is a nonempty set of all possible outcomes of an experiment, denoted by

Ω. There is also the set of random events F , and the probability function

P. The probability function measures the likelihood that an event will

occur, and we define P : F −→ R, which satisfies the following properties.

(1) For all events E, 0 ≤ P(E) ≤ 1.

(2) P(Ω) = 1.

(3) If E1, E2, E3, ... are disjoint or mutually exclusive events, such that

Ei ∩ Ej = ∅, then P(
⋃∞

i=1Ei) =
∑∞

i=1 P(Ei).

For the proof of the following lemma, the reader is directed to [9].

Lemma 1.4.1. Let S(Ω,F , P ) be a probability space, E1,E2 ∈ F ,then

(1) If E1 ⊆ E2, then P(E1) ≤ P(E2).

(2) For an empty set ∅, P(∅) = 0.

(3) P(E1) = 1− P(Ω \ E1).

(4) If E1, E2 are disjoint, such that E1 ∩ E2 = ∅, then P(E1 ∪ E2) =

P(E1) + P(E2).

(5) P(E1 ∪ E2) = P(E1) + P(E2)− P(E1 ∩ E2).

Events E1, E2 are independent if P(E1 ∩ E2) = P(E1)P(E2) holds,

which means that the probability of one event happens does not affect
10



the probability that the other occurs. For a sequence of independent

events E1, E2, . . . Em . . ., we have that

(1) P(
⋂m

i=1Ei) =
∏m

n=1 P(Ei).

(2) P(
⋂∞

i=1Ei) =
∏∞

n=1 P(Ei).

A random variable X on a probability space (Ω,F , P ) is a function

X : Ω −→ R. There are two types of random variables, discrete and

continuous. A discrete random variable is a random variable whose set

of values could come from the entire N. For example, suppose we toss

a coin. Let X represents the number of experiments to see the first

head. We only consider discrete random variables in this thesis, unless

otherwise specified.

The expectation value of a random variable X on a finite probability

space (Ω,F , P ) is defined as

E(X) =
∑

x∈Ω x P(x).

For i = 1, 2, . . . n, let ai be real number, and let Xi be a random

variable. We then have that the following property holds

E(
n∑

i=1

aiXi) =
n∑

i=1

ai E(Xi).

For more background of probability theory, see [9,21].
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1.5. Summary of Thesis

This thesis is composed of five chapters. In Chapter 1, we presented an

introduction to Bitcoin and blockchain, as well as the basic terminologies

of graph theory and probability theory. In Chapter 2, we will consider

elliptic curve cryptography and how it generates key pairs. We will also

explain the transaction constructions in Bitcoin. Chapter 3 focuses on

blockchain, in particular, the block aggregation and the proof-of-work al-

gorithm. Also, we will introduce two new models to describe fork events.

Chapter 4 describes Bitcoin protocols and new simulations of the proto-

col graphs. There will also be examples of blockchain applications. In the

last chapter, we will summarize our results and present open problems

from the thesis.
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CHAPTER 2

Cryptography

2.1. Introduction

Cryptology is the study of secure communication, and the field uti-

lizes techniques from mathematics, computer science, and information

theory. Cryptology is comprised of cryptography and cryptanalysis [41].

Cryptography focuses on message encryption, where a message can only

be seen by the designated receiver. Cryptanalysis focuses on breaching

the cryptographic system and falsifying messages [41].

A cryptographic system consists of five elements [33]:

1) The plain text, which is the original message that the sender wants

to send.

2) The cipher text is the encrypted message.

3) The method to convert plain text into ciphertext is called encryp-

tion.

4) The method to convert ciphertext into plain text is called decryp-

tion.

5) The last is the cryptographic key.

Before the 1970s, senders and receivers were all using the same type

of cryptographic keys during the encryption and decryption, called the
13



symmetric key system [13]. Exchanging a key safely was the crucial

requirement in the symmetric key system. However, as the number of

users increased, it also increased the difficulty of key management. In

1976, Diffie and Hellman proposed an idea of an asymmetric key system

in their paper “New Directions in Cryptography” [24].

2.2. Public Key Cryptography

Before we go into details on the asymmetric key system, we need to

define the concepts used in the system. A one-way function is a function

that can be feasibly computed on every input, but computationally infea-

sible to find its inverse. Prime factorization is an example of a one-way

function. Let X and Y be non-empty sets, with X representing the set of

inputs and Y representing the set of outputs, a function f : X −→ Y is

called a trap-door one-way function, if it satisfies the following properties.

(1) For a given input x ∈ X, we can compute the corresponding f(x).

(2) For a given image y ∈ Y , it is computationally infeasible to find

the corresponding x such that y = f(x).

(3) Given the trap-door information δ and an image y = f(x), we can

find the corresponding x feasibly.

Prime factorization is also an example of a trap-door one-way function.

Finding the prime factors of a sufficiently large integer is difficult, but if

we know one or more of these factors, the other factors can be computed
14



easily. The trap-door information could be a number, or it could also be

the random bit string used to produce the key pairs [24].

An asymmetric key system requires two different pairs of keys during

the encryption and decryption procedures, which increases the security

capability and overcomes the weakness of the symmetric key system.

Each pair of keys contains a public key that can be shared to others and

a private key which is only known by the owner. An individual A who

wants to send a message to an individual B needs to use B’s public key

to encrypt the message. The latter can use the corresponding private

key to decrypt the message. In [24], Diffie and Hellman proposed to use

a trap-door one-way function to generate such key pairs, where private

key as input and the public key is the output of the trap-door one-way

function. Since it is computationally infeasible to solve the private key

given a known public key, the public keys are no longer kept in secret.

Therefore, this system is also referred to the public key cryptography.

This thesis will focus only on public key cryptography used in Bitcoin.

For more background on public key cryptography, the reader is directed

to [12,13,24,33,41].

2.2.1. Public Key Cryptography In Bitcoin. Elliptic curve cryp-

tography (ECC) over a finite field is one of the approaches to public key

cryptography. It based on the discrete logarithm problem and has been
15



applied widely [15, 35]. In order to understand the procedures of this

approach, we first need several definitions.

2.2.2. Terminology. A hash function is any function that takes an

arbitrary number of bits data as input, and outputs the data with a fixed

number of bits. An example of a hash function is the modulo function.

Consider a set of integers I = {13, 19, 255, 8650} with different digits,

and a function

f(a) = a (mod 200)

for every integer a ∈ I. Under the modulo operation, the function f will

output a new set of 2-digit integers {13, 19, 55, 50}.

A cryptographic hash function is a one-way hash function. Secure Hash

Algorithm (SHA) and RIPE Message Digest (RIPEMD) are two families

of cryptographic hash functions that are implemented in Bitcoin [3].

Let S be a non-empty set, a binary operation ∗ on the set S is a

mapping:

∗ : S × S → S.

The operation ∗ may satisfy the following properties for all a, b, c ∈ S:

1) (Commutativity). a ∗ b = b ∗ a.

2) (Associativity). (a ∗ b) ∗ c = a ∗ (b ∗ c).

For instance, addition and multiplication are two binary operations

on the sets R. For any elements a, b, c ∈ R, these operations are satisfy
16



commutative

a+ b = b+ a, a · b = b · a,

and associative

a+ (b+ c) = (a+ b) + c, a · (b · c) = (a · b) · c.

An abelian group is a non-empty set G with a binary operation ∗ on

G, such that

1) ∗ is commutative and associative.

2) (Identity) For each a ∈ G, there exists an identity element e ∈ G

such that, a ∗ e = e ∗ a = a holds.

3) (Inverse) For each a ∈ G, there exists an inverse element i ∈ G

such that, a ∗ i = i ∗ a = e holds, where e is the identity element.

For example, the integers under ordinary addition from an abelian group.

The negative integers are the inverse elements, and 0 is the identity

element. The non-zero real numbers under ordinary multiplication from a

group as well. For every non-zero real number, its inverse is this approach

inverse element, and 1 is the identity element.

A field is a non-empty set F with two binary operations addition (+)

and multiplication (·) satisfies the following properties.

(1) The operation + forms an abelian group.

(2) For all elements x, y ∈ F , x · y = y · x.

(3) For all elements x, y, z ∈ F , (x · y) · z = x · (y · z).
17



(4) There exists an identity element 1 ∈ F under multiplication, such

that 1 · x = x · 1 = x.

(5) For every x ∈ F and x 6= 0, there is an element x−1 ∈ F such

that x · x−1 = 1.

(6) (Distributivity) x · (y + z) = (x · y) + (x · z).

For example, the set Z5 = {0, 1, 2, 3, 4} of integers (mod 5) is a field.

Addition and multiplication of any two elements in the set Z5 = {0, 1, 2, 3, 4}

of integers (mod 5) are given by the following tables.

Table 2.1. Addition in Z5.

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1

Table 2.2. Multiplication in Z5.

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3

Furthermore, the sum and the product of all elements of a set are

1 + 2 + 3 + 4 + 5 = 0 (mod 5), and 1 × 2 × 3 × 4 = 4 (mod 5). The

corresponding additive and multiplicative inverse elements of {1, 2, 3, 4}

are {4, 3, 2, 1}, and {1, 3, 2, 4}. We note that for any prime number p,

the set Zp of integers (mod p) is always a field.

A finite field is a field F with a finite number of elements. The cardi-

nality of a field F is called the order of F . Furthermore, the order of a
18



finite field F is always a prime number p or a power of prime pn, where n

is a positive integer, and written as Fp. For more background of abstract

algebra, see [26,38,46].

2.2.3. Elliptic Curve Multiplication. An elliptic curve E is a

curve defined on the plane by an equation of the form

E : y2 = x3 + ax+ b.

where a and b are real numbers, such that 4a3 + 27b2 6= 0. The points at

infinity are denoted as ∞ or O. The figure below shows a graph of an

elliptic curve over real numbers R. It is generated by the online graphing

tool Desmos [22].

Figure 2.1. An example of an elliptic curve y2 = x3 − x+ 1.

19



Elliptic curve multiplication (ECM) is kind of multiplication derived

from an elliptic curve. It is accomplished by adding a point to itself along

an elliptic curve repeatedly. Let E be an elliptic curve defined over finite

field. Suppose we are given two points P and Q on an elliptic curve, and

a positive integer n. Adding a point P to itself repeatedly can be written

as

Q = np = P + P + P + · · ·+ P︸ ︷︷ ︸
adding P to itself n times

. Given P and Q on the curve, can we fine an integer n such that

Q = nP . This problem is also known as the discrete logarithm problem

(DLP) on an elliptic curve (ECDLP). There is no feasible algorithm to

compute ECDLP [32]. Elliptic curve multiplication over a finite field is

computationally expensive, Bitcoin uses it as a means of one-way function

to generate key pairs and addresses. To better interpret ECM in Bitcoin,

we first consider operations on an arbitrary elliptic curve over R.

We first define an abelian group over elliptic curve E with addition

operation such that

1) The points on an elliptic curve E are the elements of the group.

2) For any two points P1, P2, we have P3 = P1 +P2 also on an elliptic

curve E.

3) The point at infinity O is an identity element, such that for any

point P , P +O = P.
20



4) The inverse element of point P is the point reflected in the x-axis,

denoted as −P.

The following figures are geometric representations of addition opera-

tions on an elliptic curve, they are generated by an online elliptic curve

calculator tool from Desmos [28].

Figure 2.2. Points P and Q are two distinct points on E : y2 = x3 − x+ 1.

Given two points P and Q, we can find a line passing through P and

Q. This line will intersect a point on an elliptic curve, denoted as R.

Figure 2.3. Addition of two distinct points P and Q.

21



Since it can be shown that an elliptic curve multiplication is a group

(see [15]), by the associative property, we have that (P + Q) + R =

P + (R + Q) = O, for any points P,Q,R on an elliptic curve. We may

also write P +Q = −R.

Figure 2.4. Point −R is the resulting point.

We defined above the addition of two points, but we want to add a

point to itself repeatedly instead of using distinct points. If points P and

Q are the same points, then the line between the points will be considered

as the tangent line at point P . Figure 2.5 is an example of addition of

the same point on an elliptic curve.

22



Figure 2.5. Addition of same point on E : y2 = x3 − x+ 1.

Now, let us consider operations on an elliptic curve over finite field Fp

with prime order p instead of R. Since Fp is a non-empty set of elements,

the graph of an elliptic curve over Fp is a discrete plot. The following

figure is a Matlab [43] example of an elliptic curve E : y2 = x3 − x+ 10

over Fp.

23



(a) p = 9 (b) p = 19

(c) p = 23 (d) p = 67

Figure 2.6. An example of an elliptic curve over Fp with p = 9, 19, 23, 67.

The calculations on the finite field are analogous to those with real

numbers [3]. For more background on elliptic curve cryptography and

the discrete logarithm problem, the reader is directed to [3,15,35,50,53].

2.2.4. Bitcoin Keys Generation. As described in Chapter 1, Bit-

coin is a decentralized electronic cash system. In order to achieve the

consensus in Bitcoin for all participants, it uses a specific elliptic curve

E : y2 = x3 + 7, defined as secp256k1 over Fp [52] with

p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1.
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With the large size of p, the graph of an elliptic curve secp256k1 is too

complex and large to visualize.

As we mentioned in Chapter 1, the address is generated from the

public key, while the public key is generated from the private key. The

private key is a 256 bit random number generated by an underlying

number generator system in Bitcoin. The public key is computed from a

private key by using an elliptic curve multiplication. Let kpriv represent

the private key, and let Kpub be the public key. The process can be

expressed as

Kpub = G ∗ kpriv,

where G is a constant point on secp256k1, called the generator point.

The equation is identical to the one in ECDLP. It is irreversible, which

means by knowing the public key and the generator point, it is hard to

find the corresponding private key. The bitcoin address is a string of

alphanumeric characters, and it is converted from the public key Kpub

by hashing and encoding. Bitcoin uses two different cryptographic hash

functions SHA256 and RIPEMD160 to hash the public key. ECM and

double hashing algorithms can be operated efficiently with a known pri-

vate key. Figure 2.7 is adapted from [3], and it describes the generating

procedure from public key to an address.
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Figure 2.7. The generating procedure.

2.3. Digital Signature

A digital signature is another approach to public key cryptography. It

aims at binding the sender to the plain text together, like a handwritten

signature, and it is an acknowledgement that the plain texts are authentic

and integrated. A digital signature algorithm is designed to be signed by

the sender and to verify by the receiver simultaneously, a digital signature

is a number attached to the plain text.

The process consists of two parts. First, senders use their own private

key to sign the plain text. Second, the encrypted signature-related text
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can only be decrypted by senders’ public key. The private key is only

known by its owner, so it is nearly impossible to imitate a signature but

it is easy to verify it. For more information about digital signatures,

see [13].

2.4. Transaction Construction

We now have all the necessary elements to construct a Bitcoin trans-

action. Bitcoin uses the scripting language for transactions [51]. A script

is a list of conditions or constraints, and there are two types of scripts:

the locking script and the unlocking script. A locking script is a list of

conditions need to be met to spend the bitcoins, locking script locks the

output to the destination address, while the unlocking script is the script

satisfies the locking script conditions [3]. A Bitcoin transaction is a form

of data transference, so it needs inputs and produces outputs. To oper-

ate a new Bitcoin transaction, the wallet will start to find the previous

unspent transaction outputs (UTXO) and the corresponding unlocking

script as inputs. An unspent transaction output is a form of currency in

bitcoin; it is indivisible and is locked to its owner. The transaction will

produce a new UTXO with its locking script as output.

For example, suppose you have a ten bitcoins UTXO and wish to

spend five bitcoins. The only way to do it is to consume this ten bit-

coins UTXO as an input, and the transaction produces two UTXOs with

locking scripts as outputs: the first five bitcoins UTXO goes to payee’s
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wallet, the second five bitcoins as a new UTXO back to your addresses.

To aggregate the transactions into blockchain in a timely manner, most

transactions include transaction fees. Transaction fees are the differences

between the inputs and outputs. In this case, after consuming an entire

ten bitcoin UTXO, it will produce three outputs: the first one goes to

payee’s wallet, second one back to our wallet as a new UTXO, and the

last one with transaction fees goes to miner’s wallet.

We next consider an example based on the pay-to-public-key-hash

script to better explain the transaction constructions. The pay-to-public-

key-hash (P2PKH) script is one of the common transaction scripts in

Bitcoin [3]; the unlocking script of P2PKH is the owner’s digital signa-

ture and the public key. Suppose Bob and Alice are two participants

in Bitcoin. Alice wishes to send forty bitcoins to Bob in exchange for

goods, and she has an exact amount of UTXO she needs to pay, the forty

bitcoins UTXO in her wallet. To set up a transaction input, we need this

forty bitcoins UTXO, her digital signature and public key, as shown in

Figure 2.8.
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Figure 2.8. An example of a transaction input.

Alice pays forty bitcoins to Bob’s address, the transaction will output

a forty new bitcoins UTXO and a locking script, as shown in Figure 2.9.

Figure 2.9. An example of a transaction.

Since UTXOs are indivisible, sometimes we may need to use multiple

UTXOs as inputs, add them up to construct a transaction. Below is a

transaction consumed by multiple UTXOs as inputs to cover the cost.
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Figure 2.10. An example of a transaction with multiple inputs.

Alice will then broadcast this specific transaction into the Bitcoin

network. Every node in the network starts to verify the transaction, and

the verified transaction will be propagated to the next node. There is a

list of requirements, which need to be checked before it is verified; see

[3,48] for more details. The transaction will be propagated continuously

until it reaches every node in the network, as shown in Figure 2.11. The

verified transaction will be stored into a transaction pool, until now, this

transaction has been verified but still unconfirmed. For more details on

Bitcoin transactions, see [3].
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Figure 2.11. Propagation.
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CHAPTER 3

Blockchain

3.1. Introduction

With the growing impact of digitization on society, an increasing num-

ber of financial transactions are governed by mathematical algorithms.

Blockchain was purposed as a tool to support the Bitcoin network in

2008 [47]. Blockchain enables participants to record, to track, and to

verify transactions across the network independently. The blockchain

data structure is a list of blocks of transactions [3]. More explicitly, it

is a back-linked list data structure, so that every block is created on top

of the existing chain. Every block is made of a unique block header and

body, the block header summarizes the data in the block. The following

figure is a geometric representation of blockchain structure.

Figure 3.1. Blockchain structure.

The block header is composed of the following sets of metadata.
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1) The hash of the previous block.

2) The Merkle root, which is the summary of transactions.

3) Difficulty target and nonce are the data used in the proof-of-work

algorithm, which will be described in the next sections. A nonce

is a variable with initial value zero.

4) A timestamp, which is the approximated creation time of the

block.

The block header hash is the result of hashing the block header twice

through the SHA256 algorithm, and it is a unique identifier of the block.

Every block is linked to the previous one by including the hash of the

previous block in the block header. Therefore, the chain of blocks can

also be visualized as a sequence of hashes [3, 31]. The block height

is the second identity of the block, and it is the position of the block

within the chain [3]. Since every block header contains a piece of hash

information from the previous block, these blocks are connected con-

secutively through hash functions. It is nearly impossible to tamper

with one block without affecting others. For more details in blockchain,

see [3,16,31,47].

Blockchain is designed as a decentralized distributed ledger in Bitcoin.

That is, every confirmed transaction is traceable and verifiable by each

node within the network. However, the size of each block is limited.
33



In order to fulfill all requirements demanded by the system, blockchain

employed the Merkle tree as its core data structure [18].

3.1.1. Merkle Tree. A binary tree is a tree where each node con-

tains at most two children. The following figure is an example of a binary

tree.

a

b c

d e

f

Figure 3.2. An example of a binary tree.

The Merkle tree is a hash-based binary tree data structure used for

massive data storage and verification purposes. Every leaf node in a

Merkle tree contains the hash of the data, and every non-leaf node is

made by hashing its children nodes [18,44]. The Merkle root is the root

of the Merkle tree. For example, given a set of transactions {A,B,C,D},

we may place this set into a Merkle tree structure through the hash

function H, as follows.
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MerkleRoot

H(H(A), H(B))

H(A)

A

H(B)

B

H(H(C), H(D))

H(C)

C

H(D)

D

Figure 3.3. An example of a Merkle tree.

In Figure 3.3, the Merkle root represents a set of transactions with

a single hash value. If we consider an enormous number of transactions

followed by the same hashing algorithm, then the Merkle tree structure

serves not only to manage the large data set efficiently but also to prevent

data tampering. The other reason for employing this data structure is

that it underpins the transaction validation processes.

For example, to verify a transaction D without looking at the full

copy of transactions, participants first need to download the hash values

H(C) and H(H(A), H(B)), then compute the Merkle root to check if it

same as the one recorded in the block.

For a block with n elements, the time to verify an arbitrary transaction

is at most 2 log 2n [3], Figure 3.4 is adapted from [3], and it describes a

Merkle tree with 16 transactions. For more details on Merkle trees, the

reader is directed to [2,3,18,37,44,45].
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Figure 3.4. A Merkle tree with 16 transactions.

3.2. Block Aggregation

3.2.1. Transaction Aggregation. As we described in previous chap-

ters, an unconfirmed transaction will be stored into a node’s transaction

pool and be transmitted to others. Nodes equally serve the network based

on their functionality. A mining node is one of the nodes within the net-

work which is responsible for aggregating transactions into blockchain.

Mining nodes are rewarded for every new block is created, the process of

creation is called mining [3,47]. Mining is not only the process of earn-

ing rewards, but also an approach to prevent fraudulent transactions.

Figure 3.5 is a geometric representation of Bitcoin network, where edges

represent the connection between the nodes.
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Figure 3.5. Geometric representation of a Bitcoin network.

Mining nodes receive, validate, and store a transaction like others.

They will then start aggregating transactions and generating the candi-

date block, which is the block of the unconfirmed transactions from the

transaction pool. Transactions are selected from the pool based on their

priority as determined by the system. Once a corresponding Merkle root

is computed, mining nodes need to complete the block header, as listed

in the above section. Figure 3.6 is adapted from [14]. For more details

in transactions aggregation, see [3,47]. In order to preserve the block’s

authenticity, the final step is to validate the completed candidate block

by solving the proof-of-work algorithm.
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(a)

(b)

Figure 3.6. Transactions summary from March 2018 to March 2019.

3.2.2. Proof-of-Work Algorithm. A Proof-of-work, or PoW algo-

rithm was first introduced in [27]. The goal was to prevent junk emails

by employing computationally expensive but efficiently verifiable func-

tions or algorithms. More generally, the PoW algorithm increases the

senders’ costs, but it is relatively easier for recipients to verify [40].
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The Adam Back’s Hashcash [30, 47] is the foundation of the PoW

algorithm used in Bitcoin mining process. Hashcash is a hash-based al-

gorithm, and it was introduced by Adam Back in [4]. He suggested to

add a variable called nonce into the original metadata as input, and pro-

duces a hash with some numbers of leading 0’s [4,30]. Bitcoin mining

process implements a similar algorithm. That is, the algorithm will in-

crease the nonce continuously, until it yields a hash value with required

numbers of leading 0’s [3,47]. The algorithm hashes the candidate block

header repeatedly with the incremental nonce, until the result fits the

PoW criteria in which the hash value is less than the target one. PoW

is the first consensus mechanism in Bitcoin [3,30,47].

The mining process can be also viewed as a number of random guesses.

For example, let X be the random variable which represents a two-digit

integer. The probability of guessing a two-digit number is 1
90 . Now let

y be a two-digit integer where y ≥ 11 represents the difficulty. The

probability of P(X < y) equals to

P(X = 10) + P(X = 11) + P(X = 12) + · · ·+ P(X = y − 1) =
y − 10

90
.

We can see that the probability of P(X < y) depends on y. That is, the

time to solve the PoW depends on the Bitcoin difficulty. The difficulty

is the measure of how difficult it is to find the right hash value [3]. It

is determined by a 256-bit target value, and the equation of difficulty
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measure can be defined as [23]:

Difficulty =
difficulty 1 target

current target
.

where difficulty 1 target represents the pool difficult, and the current target

represents the current target value. Figure 3.7 shows the PoW algorithm.

Since the desired hash value needs to meet the PoW criteria, the mining

difficulty increases with a lower target value, and decreases with a higher

one. In Bitcoin, the target value or the mining difficulty level is set to

whatever a new block will be mined in ten minutes. Bitcoin has a global

difficulty target, currently set at 6,068,891,541,676.553 [8]. Figure 3.8 is

adapted from [14], it captures the changes of Bitcoin mining difficulty

over a year. The difficulty is adjusted based on how much effort has been

contributed by the mining nodes. As the network is growing, the number

of mining nodes increase, and it becomes harder to solve the PoW. For

more details in PoW algorithm, see [3,30,47].
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Figure 3.7. The process of PoW algorithm.

Figure 3.8. Changes in Bitcoin mining difficulty over a year.

3.2.3. Assembly of Blocks. To create a new block, mining nodes

compete against each other by solving the PoW algorithm. Once a block

is created, nodes will next broadcast this block across the network same
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as the transaction propagation. Nodes work collaboratively. They collect

and verify the block, then attempt to link the validated block to the

existing blockchain by finding its preceding block through the previous

block hash. A transaction is confirmed when its associated block has

connected to blockchain successfully. However, Bitcoin is a decentralized

structure. Nodes might receive the blocks at a different time, and the

ledger or the chain that they maintain might not always be consistent.

In Bitcoin, nodes maintain three sets of chains [3].

1) The main chain. The blockchain with the most cumulative diffi-

culty; normally this is also the chain with the greatest height.

2) The secondary chain. The branch of the main blockchain.

3) The orphan chain. It is the set of blocks that could not find its

preceding block in the known chains.

Nodes always select the main chain which is the chain possesses the

most cumulative difficulty to extend, and normally this chain contains

the most of the blocks. However, sometimes the preceding blocks might

not list in the main chain, under this circumstance, nodes will extend the

secondary chain and then compare its cumulative difficulty to the main’s.

If the secondary chain possesses the greatest difficulty, then the secondary

will be selected as the main chain. As long as the system follows this

selecting mechanism, Bitcoin eventually reaches the consensus. For more

details on block aggregation, see [3,30].
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3.3. Blockchain Forks

Solving the PoW requires significant computational effort in a timely

manner. Once a new block has been transmitted, the miners will start to

mine the next new block. When there are multiple mining nodes to mine

blocks for rewards, multiple blocks could be found at the same time, and

this is called the fork event.

Blockchain forks occur due to the versions of chains inconsistency,

it happens when there are multiple blocks competing to form the main

chain [3]. It will be resolved automatically as nodes will converge on

the main chain [3, 6], this is also classified as accidental forks. The

programming forks are classified as Intentional forks [1]. In this thesis,

we only focus on accidental forks.

3.4. Models for blockchain forking

In order to understand how peers choose the chains in the fork events,

we next use two novel models to simulate the progress, which are imple-

mented in Matlab [43]. For simplicity, we assume the following parame-

ters are given. First, the number of mining nodes during the mining pro-

cess is fixed to a positive integer K. Second, the height of the blockchain

is fixed to a positive integer N .
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We named the first model as the FORK1 model, since it captures the

fork events without calculating the cumulative difficulty of the chains.

We now describe the model.

1) At each level, every mining node is assigned a uniformly dis-

tributed random number from an interval [0, 1]. This represents

the effort a mining node has contributed to mining.

2) Peers are choosing to connect the block with the highest effort.

3) The model outputs the corresponding array with respect to the

miners’ positions.

For example, suppose there are three mining nodes Miner1, Miner2

and Miner3 working in the Bitcoin network. At each level, without loss

of generality three blocks could be found simultaneously. By running

FORK1 with K = 3 and N = 3, we obtain the following table. Each

entry represents how much computing power has been deployed by the

miner. At level 1, Miner3’s block has the highest computing power, peers

choose this block to extend. Similarly, peers will choose the blocks of

Miner1 and Miner3 at level 2 and 3, respectively.

Table 3.1. An example of the FORK1 model.

Miner1 Miner2 Miner3
N=1 0.9649 0.1576 0.9706
N=2 0.9572 0.4854 0.8003
N=3 0.1419 0.4218 0.9157
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The model will then output the miners’ position [3, 1, 3]. However,

this model is impractical, since the target values and the cumulative

difficulty still need to be considered.

The second model is called FORK2, and it takes the cumulative diffi-

culty into consideration. Let’s assume there are multiple candidate blocks

competing in the network, and nodes might select any of these blocks to

extend. After the first round selection, bloackchain split into two chains.

We label the main chain as of left, and the secondary as of right. The

model will output a sequence of chain selections. We now describe the

FORK2 model.

1) Each chain is assigned a uniformly distributed random number

from an interval [0, 1] represents its difficulty at each level.

2) Calculate the respective cumulative difficulty.

3) At each level, a new block will be connected to the chain with the

greatest cumulative difficulty.

4) The model output the corresponding sequence of chain selections.

Under the same assumptions, three miners work simultaneously. In-

stead of calculating miners’ effort at each level, we measure the chains’

cumulative difficulty. The results are shown below.
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N = 1 N = 2 N = 3
Main chain difficulty 0.7094 0.7547 0.1626

Secondary chain difficulty 0.6797 0.6551 0.3050
Main chain cumulative difficulty 0.7094 1.4641 1.6267

Secondary chain cumulative difficulty 0.6797 1.3348 1.6398

Output : [left, left, right]
Table 3.2. Results of the model.

At N = 1, peers choose the main chain which is labeled as of left to

extend, since it obtains the highest cumulative difficulty. At N = 2, the

difficulty of the main chain is 0.7547, and the cumulative difficulty of the

main chain is computed by adding level 2’s difficulty to level 1’s, which

equals to 1.4641. The main chain still carries the most cumulative diffi-

culty at N = 2, so this chain will be selected to extend. At N = 3, peers

will converge on the secondary chain which is labeled as of right, since

its cumulative difficulty exceeds the main chain. The model outputs the

sequence of selections [left, left, right]. In reality, the cumulative difficulty

can not be reprocessed, and the data will be much complicated than we

consumed. Moreover, the number of miners is a random number at each

level, the mining difficulty will be affected in order to maintain the ideal

average mining time. For more background on the forks, the readers are

directed to [1,3,6,47].
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CHAPTER 4

Bitcoin Protocols

4.1. Introduction

As we described in the previous chapters, the decentralization of Bit-

coin is the core design principle of the network [3]. The Bitcoin archi-

tecture is a peer-to-peer (P2P) structure. All the participants are called

peers. Peers cooperate with each other to accomplish the processes of

data storage, data transmission, data validation and data confirmation.

Transactions are propagated by peers, and confirmed by recording in

blockchain successfully through the mining process [25]. Moreover, all

the confirmed transactions are also verifiable under P2P architecture.

The Bitcoin network is a network with nodes running the P2P protocol

[3]. The key properties of the system are its scalability and dynamic

nature [36]. To better interpret the P2P system, we need to understand

the P2P network formation.

4.2. Bitcoin Network

We may consider the Bitcoin network as a graph G = (V (G), E(G)),

where the set of nodes V (G) represents a collection of nodes which are

running the P2P protocol, and the set of edges E(G) represents the
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connections between the nodes. For example, if there is a connection

between two nodes, then they form an edge. One of such graphical

representations is shown below. Figure 4.1 represents a toy network

with only five participants, but the actual network will be much more

complicated and dynamic in reality, as the connections may change over

time.

Figure 4.1. A Peer-to-Peer network.

When a new peer joins the network, a new node appears in the graph

G, denoted by node A in Figure 4.2. In order to participate into the net-

work, node A must establish connections with at least one existing node

in the network, which means the corresponding nodes become adjacent.

However, the network topology is not geographically defined; that is the

choices of connections can vary [3, 56]. Although existing nodes can

be selected uniformly, there exist some long-running nodes called seed

nodes [3]. Seed nodes provide a list of nodes of the network, and they

can be utilized by discovering other nodes in the network quickly [3,55].
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Seed nodes can be considered as a cluster in the network, but the con-

nections from the seed nodes to others are sustained as inactive; that is,

the connections from the seed nodes to others vanish in the network as

the nodes will create their own potential contact lists. Once connections

are established, node A will start to send a message which includes its

IP address to its peers. The peers will then forward this message to

their peers [3]. A distributed network is created and changed by peers,

it is necessary for a participating node to establish various connections

continuously.

A

Figure 4.2. A graph G with new node A.
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A

Figure 4.3. Node A established new connections.

Based on the formation of the P2P system, we observe that the Bitcoin

network is a complex network. The Bitcoin network exhibits two major

properties of complex networks: they are large scale and dynamic [11].

In [17,49], the Bitcoin users graph and the transactions graph were stud-

ied. These studies showed that both graphs also exhibit other complex

network properties. For more details in the P2P network, readers are

directed to [3,5,25,36,55,56].

P2P is the main protocol used in the Bitcoin network, but it is not

the only protocol. There are additional protocols for different peers.

The Bitcoin network with additional protocols refers to the extended

Bitcoin network. As we described before, peers play similar roles over the
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distributed network. The distinction between them is their functionality.

There are four main functionalities for a bitcoin node [3].

1) Routing service. Routing service is the required functionality for

a node to participate in the P2P network. It enables peers to

transmit and validate transactions.

2) The blockchain database service. A node with a completed data-

base in the sense that they can autonomously verify any transac-

tions without other resources needed.

3) Mining service. A node with mining service is responsible for

creating new blocks through the mining process.

4) Wallet service. Nodes with wallet service are the nodes running

on smartphones devices, or other devices with limited processing

capabilities.

Moreover, there are other services over the network that indicate various

protocols. A node with all four functionalities is called the full node.

A full node is the most capable node in the network. It not only helps

the network in the validation, but also in the mining processes. There

are some nodes without routing service running other protocols in the

extended bitcoin network, such as the Stratum protocol. These protocols

are always used for mining purposes and for accessing into the Bitcoin

network. The figures below are adapted from [3]. Figure 4.4 lists the

types of nodes in the extended Bitcoin network, and Figure 4.5 is the
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geometrical representation of the extended Bitcoin network. For more

details on the bitcoin protocol, see [3].

Figure 4.4. A list of types of nodes in the extended Bitcoin network.
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Figure 4.5. An extended Bitcoin network.

53



4.3. A model for Bitcoin protocols

The extended Bitcoin network consists of a collection of different types

of nodes and the connections between these nodes over time. There is

always a path from these additional protocols to the P2P main protocol.

If we consider Figure 4.5, with the extended Bitcoin network as a graph

G = (V (G), E(G)), then the nodes running with P2P protocol can be

viewed as the subgraph of G. We present a new mathematical model to

simulate these protocol graphs, and the model is implemented in Matlab

[43].

We consider the following four parameters to simulate the network.

First, the number of nodes in the network at the initial time T = 0 is

a positive integer N . Second, the processing time is fixed to a positive

integer t. Third, the number of types of nodes is a positive integer r

with r ≥ 4, since nodes differ from their services. The last parameter

is a predetermined fixed probability p which is used as the criteria to

determine whether to generate a new node or not. This model is named

as the Randomprotocol model. We next describe the model.

1) At T = 0 there are N nodes, denoted by V1, V2, · · · , VN . These

nodes form a path PN , so there are N− 1 edges. The model

generates a clique Km, where m ∈ {1, 2, 3, · · · , r} for each node

Vi. The order of the clique Km represents the type of that node.

2) Preform the following steps Nt times independently.
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i) For each node Vi generate a probability pij at time T = j,

where j = 1, · · · , t.

ii) If pij is greater than p, then the model will generate a new

node Vij, and a clique Km where m ∈ {1, 2, 3, · · · , r} for node

Vij. There is a new path from Vi to Vij.

iii) If pij is less than p, then no new nodes or edges are added.

3) Finally, the model outputs a (t + 1) ×N matrix. Each entry Vij

represents the connection changes of the node Vi at time t.

For example, consider the following choice of parameters: n = 6, t =

3, r = 6, and p = 0.34632 as inputs. A simulation gives the following

matrix. 
2 6 6 3 3 3
0 1 2 5 1 6
2 2 0 5 1 6
5 0 3 0 5 6


A matrix representation of the Randomprotocol model.

We now interpret the resulting matrix. The column represents the

connections of nodes in the extended Bitcoin network, and the row rep-

resents nodes at time T = j. The number of each entry describes the

clique that the node has at time T = j. If we have zero in the entry, then

there is no new node generation at that time. The matrix is visualized

in Figure 4.6.
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Figure 4.6. A visualization of the simulation.

From the description of the model, we note that as long as pij is

greater than p, the model will generate a new node. The parameter p is

the determinant of having a new node at time t. If we consider the order

and the size of the resulted graph G as random variables, then we can

calculate the corresponding expected values in general.

4.3.1. Expected order and size. Recall from Chapter 1, that the

expected value of a random variable X is defined as

E(X ) =
∑

x∈Ω x P(x),

where P(x) is the probability of event x occurring, and Ω is the sample

space of X . If we consider each entry of the simulation matrix as a node,

then there are N(t+1) nodes, and there is a clique Km inside each node.
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To calculate the expected order of G, we need to calculate the expected

order of the cliques.

We define random variables Mr to be the order of cliques, X to be the

order of the graph G and Y to be the size of the graph G. Since the order

of a clique Km inside each node is randomly selected from {1, 2, 3, . . . , r},

the expected order of cliques is given by

E(Mr) =
r∑

m=1

m
1

r

=
1

r

r∑
m=1

m

=
1

r

(1 + r) r

2

=
1 + r

2
.

The expected order of G is then given by:

E(X ) = (t+ 1)Np
1 + r

2
.

Similarly, the expected size of G is defined as follows.

E(Y) =
∑

Y ∈Ω′ y P(y).

Due to the linearity of the expectation, the expected size of G equals

to the sum of the expected size of cliques, the expected size of a path at

the initial time and the expected value of edges from nodes to the original

path. We define the random variables Ms, Ps and Es to be the size of
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cliques, size of a path at the initial time, and the number of edges from

nodes to the original path, respectively. We then have that the expected

size of G is given by

E(Y) = E(Ms) + E(Ps) + E(Es).

These three expectations are calculated as follows.

E(Ms) =

(1+r
2

2

)
,

E(Ps) = N − 1,

E(Es) = pNt.

Therefore, the expected size equals to

E(Y) =

(1+r
2

2

)
+N(pt+ 1)− 1.

In conclusion, we note some drawbacks of the model. First, note that

the Randomprotocol model simulates the scenario that there is a path be-

tween nodes even though they are running different protocols or services.

However, a path may be too simple for a structure; further, the network is

changing over time. Note that it is difficult to capture all of the network

dynamics with only a few parameters, as the protocol network contains
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several unpredictable factors such as network anonymity. In addition,

the model uses a fixed random value p as the only criteria to determine

the nodes changes over the network. In practice, we would need to fine

tune this value to create accurate simulations. Finally, there is no real

data on Bitcoin protocol graphs that we could find at the time of writing,

making it challenging to test the accuracy of the model.
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CHAPTER 5

Conclusion and Open Problems

5.1. Conclusion

In this thesis, we introduced and described the mechanics of Bitcoin

and blockchain. We described the terminology of graph theory and prob-

ability theory in Chapter 1. In Chapter 2, we focused on the crypto-

graphic foundations underpinning Bitcoin, and explained the mathemat-

ics behind it, such as hash and one-way functions. We also explained

how elliptic curve multiplication is used in Bitcoin. In Chapter 3, we

described how blockchain works when applied to Bitcoin, and presented

two MATLAB models simulating the fork events during the mining pro-

cess. We considered the probability as the accumulated difficulty, and

examined the models with different sample data.

In Chapter 4, we considered the Bitcoin protocol graph. We also pre-

sented a MATLAB model to simulate how peers linked with each other

on the protocol graphs. In addition, we calculated the expected values

for the resulting graphs, and the results are stated below. The parame-

ters N, t, r, p represent the number of nodes at initial time, the processing

time, the number of types of nodes, and the random probability respec-

tively.
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i) The expected order of the resulting graph E(X ) is given by

(t+ 1)Np
1 + r

2
.

ii) The expected size of the resulting graph is then given by

E(Y) =

(1+r
2

2

)
+N (pt+ 1)− 1.

5.2. Open Problems

The models we introduced served as tools to simulate events that

emerge in the Bitcoin system. However, due to the lack of data and the

complexity of the system, the models may be improved. In what follows,

we state some open problems.

1. In Chapter 3, we simulated the fork events by considering the

number of miners and their mining difficulty. As we stated when

describing the drawbacks of models, the accumulated difficulty

can not be reprocessed, and it is related to the ideal mining time.

What is the outcome if we consider the relationship between the

mining difficulties and ideal mining time in the model? Does there

exist an appropriate model to approach the mining difficulty?

2. As we described in Chapter 4, the protocol graph is large-scale

and has dynamic properties. Does it exhibit the other properties

of complex networks, such as the small world property and power

law degree distributions? What variables do we need to employ in
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the model to better approximate reality? Moreover, the expected

size of the cliques is calculated by
( 1+r

2
2

)
; how would the result

change if 1+r
2 is not an integer value?

3. The blockchain technology provides the public storage of data,

meaning that every user in the network can access the information

that is stored in the database. In this thesis, simulated these

systems using stochastic models. If actual data was used, then

we could fine tune the model, and we plan on doing this in future

work.

4. As we stated in Chapter 4, each node has its own potential con-

nection list. By considering the connection between each other

as an edge, and each peer as a node, we can obtain a graph with

millions of nodes and edges. Can we use the Iterated Local Tran-

sitivity (ILT) model [10] to simulate the system?
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Appendix

Elliptic Curve Multiplication Over Finite Field

We present the MATLAB code discussed in Chapter 2.

1 % An e l l i p t i c curve equat ion yˆ2=xˆ3− x+10 (mod p)

2 % over f i n i t e f i e l d with order p

3 p=23; %Prime number

4 x = [ ] ;

5 y = [ ] ;

6 q =[0:p−1] ;

7 f o r i =1:p

8 b=mod( q ( i ) ˆ2 ,p) ;

9 a=mod( q ( i )ˆ3−q ( i ) +10,p) ;

10 y=[y , b ] ;

11 x=[x , a ] ;

12 end

13

14 % Def ine the r e s u l t e d s e t as S , i t i s an empty s e t

at the beg inning .
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15

16 n = [ ] ;

17

18 %check i f xˆ3−x+10 i s square modulo o f p

19

20 f o r i =1:numel ( x )

21 r=f i n d ( x ( i )==y ) ; % Use f i n d ( ) func t i on to f i n d

the i n d i c e s

22 f o r j =1:numel ( r )

23 n=[n ; q ( i ) , q ( r ( j ) ) ] ;% Produce a s e t o f po in t s

24 end

25 end

26

27 % I s o l a t e the coo rd ina t e s

28

29 x1=n ( : , 1 ) ;

30 y1=n ( : , 2 ) ;

31 p lo t ( x1 , y1 , ’ bo ’ )

32 s e t ( gca , ’XTICK ’ , 0 : p ) ;

33 s e t ( gca , ’YTICK ’ , 0 : p ) ;

34 g r id on ;
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35 g r id minor ;

Models for Blockchain Forking

We now present the code discussed in Chapter 3.

Listing 5.1. Fork1 Model.

1

2 % N r e p r e s e n t s the he ight ( time ) o f the block , i t i s

f i x e d and p o s i t i v e i n t e g e r

3 % K r e p r e s e n t s the number o f miners during the

mining process , i t ’ s f i x e d and p o s i t i v e i n t e r g e r

4

5 f unc t i on Fork 1 (K,N)

6 % x i s the s e t o f chosen miner

7 % y i s the s e t o f p o s s i t i o n s

8 K=3

9 N=3

10 % Use f o r loop to cons t ruc t the matrix , and produce

x and y

11 f o r i =1:N

12 f o r j =1:K
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13 m( i , j )=rand ; % A s i n g l e uni formly d i s t r i b u t e d

random number in the i n t e r v a l ( 0 , 1 ) .

14 end

15 [ x ( i ) , y ( i ) ]=max(m( i , : ) ) ;

16 end

17 m

18 Y=y % The array o f miniers ’ pos i ton

Listing 5.2. Fork2 Model.

1

2 f unc t i on FORK 2(K,N)

3 K=3;

4 N=3;

5 d i f f l e f t=rand (1 ,N)

6 d i f f r i g h t=rand (1 ,N)

7

8 % using f o r loop to obta in the cumulat ive d i f f i c u l t y

f o r the l e f t and r i g h t chain

9 f o r i =1:N

10 l e f t ( i )=sum( d i f f l e f t ( 1 : i ) )
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11 r i g h t ( i )=sum( d i f f r i g h t ( 1 : i ) )

12 i f l e f t ( i )==r i g h t ( i )

13 d i f f l e f t ( i )=rand ;

14 d i f f r i g h t ( i )=rand ;

15 l e f t ( i )=sum( d i f f l e f t ( 1 : i ) ) ;

16 r i g h t ( i )=sum( d i f f r i g h t ( 1 : i ) ) ;

17 end

18 end

19

20 % using f o r loop to produce the s e t o f chosen miners

and t h e i r cor re spond ing p o s i t i o n

21 f o r i =1:N

22 f o r j =1:K

23 m( i , j )=rand ;

24 end

25 [ x ( i ) , y ( i ) ]=max(m( i , : ) ) ;

26 end

27

28

29 seq=s t r s p l i t ( num2str ( y ) ) ;

30 f o r i =1:N
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31 i f l e f t ( i )>r i g h t ( i )

32 seq ( i )={ ’ l e f t ’ } ;

33 e l s e

34 seq ( i )={ ’ r i g h t ’ } ;

35 end

36 end

37 seq % The sequence o f cha ins

38 l e f t % the l e f t ( main ) cumulat ive d i f f i c u l t y chain

39 r i g h t % the r i g h t ( secondary ) cumulat ive d i f f i c u l t y

chain

40 y % The ar ra ry o f miners ’ p o s i t i o n

Model for Bitcoin Protocols

Listing 5.3. Randomprotocol Model.

1

2 f unc t i on Random protocol (N, t , r )

3 N=6

4 t=3

5 r=6

6 p=rand % We used p= 0 .

7
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8 m=ones ( t +1,N) ;

9 f o r i =1:N

10 m(1 , i )=randsample ( r , 1 ) ;

11 end

12 f o r i =2: t+1

13 f o r j =1:N

14 q=rand ;

15 i f ( q < p)

16 m( i , j ) =0;

17 e l s e

18 m( i , j )=randsample ( r , 1 ) ;

19 end

20 end

21 end

22 m % Produce the r e s u l t .
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