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Abstract

Heterogeneous Networks (HetNets) have gained the attraction of the communication industry

recently, due to their promising ability to enhance the performance of future broadband Fifth

Generation (5G) networks and are integral parts of 5G systems. They can be viewed in multi-dimensional

space where, each slice represents a unique tier that has its own Base Station (BS)s and User

Equipment (UE)s. Different tiers cooperate with each other for their mutual benefit. Data can be

interactively exchanged among the tiers, and UEs have the flexibility to switch between the tiers.

The cells in such a heterogeneous cellular networks have variable sizes, shapes, and coverage regions.

However, in HetNets with ultra dense BSs, the distance between them gets very small and, they

suffer from very high levels of mutual interference. To improve the performance of HetNets, we have

done multiple contributions in this dissertation. First, we have developed analytical derivations

for optimizing pilot sequence length which is a very crucial factor in acquiring the Channel State

Information (CSI) and the channel estimation process in general. Poisson Point Process (PPP)

has been widely used to allocate BSs among various tiers so far. However, BS locations obtained

using PPP approach may not be optimum to reduce interference. Therefore, in this dissertation,

BSs locations are optimized to reduce the interference and improve the coverage and received signal

power. Also, we have derived expressions for static UEs coverage probability and network energy

efficiency in HetNets.

A proper UE association algorithm for HetNets is a great challenge. The classic max-Signal

to Interference and Noise Ratio (SINR) or max-received signal strength (RSS) user association

algorithms are inappropriate solutions for HetNets as UEs in this context will tend to connect to the

Macro BS, which is the one with the highest signal power. A severe load imbalance and significant
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inefficiency arises and impacts the performance.

The aforementioned algorithms tend to associate UEs to BSs with the best received signal power

or signal quality. In HetNets, usually Macro BSs are the ones transmitting the strongest signals;

hence most UEs tend to associate with the Macro BS leaving Micro BSs with less load. Also, the

conventional max-SINR and max-RSS algorithms do not provide adequate results in multi-tier

systems. We suggest two centralized algorithms, LSTD and RTLB, for an even UE association to

provide fair load distribution. However RTLB outperforms LSTD in real time scenarios as it easily

and quickly adapts to rapid network changes. Furthermore, we consider the mobility of nodes. We

derive coverage probability for moving UEs considering both handover and no handover scenarios.

Proposed algorithms are fast enough to associate the moving users to different Micro and Macro

BSs appropriately in real time. Our algorithms are proved to be feasible and provide a path towards

attainable future communication systems.
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CHAPTER 1

Introduction

Heterogeous networks (HetNets) are gaining the attraction of the communication society as they

work in multi-layers cooperating together to fulfill the future dream of connecting the globe as

one big network. Viewing the communication system as three dimensional (3D) with various tiers

cooperating among each other is a new trend to present 5G HetNets. Base station (BS) in each

tier operate with different power levels, access methods, and unique topologies. Instead of growing

the communication system horizontally in one dimension, the future networks with dense nodes

packed together will be grown in multiple dimensions and every dimension has its own unique

characteristics. HetNets present a revolution in the future of communication systems and studying

them with more depth will enable merging and cooperation between different networks throughout

the globe. Everything in HetNets is variable; transmission power, access methods, cell coverage area

and shape, antennas’ sizes, and more.

1.1 Homogeneous Single-tier Networks

This represents a wireless network of spatially distributed Macro BSs. A certain user is served by the

BS within its range of operation and undergoes handover to another BS with highest signal power

when it changes its location. In homogeneous cellular networks, the system has a single network,

with a number of BSs—either cooperating or non-cooperating to serve a number of simultaneous

homogeneous users. Typically, in those systems, the BSs were identical in terms of average transmit
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power per unit area, access techniques, number of antennas, modulation and estimation schemes.

Macro BSs are high power nodes that are scattered uniformly along the geographical area to

provide the following purposes:

• They are fundamental and core elements of any network to provide coverage and sufficient

capacity to various parts.

• Every Macro BS covers up to 20km. So a less number of BSs is required to cover a certain

area.

• In the past, the goal of any efficient system was to design high-performance, higher power,

and energy-efficient BSs to reach distant and rural areas.

• Support a larger number of subcarriers.

• Interface with subcarriers using various access methods Time Division Multiple Access

(TDMA)/Frequency Division Multiple Access (FDMA)/Code Division Multiple Access (CDMA).

• Used for coverage maximization.

• Used for interference reduction.

• As Macro BSs are very large, Massive number of antennas can be installed on it (Massive

Multiple Input Multiple Output (MIMO)) which provides many benefits as:

1. A broad range of states of freedom, and greater selectivity in transmitting and receiving

the data streams.

2. Improves capacity and reliability.

3. Channel estimation quality per antenna also improves with the number of BS antennas

especially in the presence of high correlation among the antennas which is very typical [2].

4. Concentrates the released energy into small user centric zones, which dramatically

increases throughput, energy efficiency [3], and latency.

5. Makes a proper use of beamforming techniques to reduce fading drops; this further

boosts Signal to Noise Ratio (SNR), bit rate and reduces latency [4].

2



6. The channel becomes more predestined (due to channel hardening), and random detectors

matrices are readily solved.

7. Interference cancellation is enhanced, where BSs can relatively easily avert transmission

into undesired directions to alleviate harmful interference which, leads to low latency as

well.

8. A higher number of BS antennas revokes the effects of uncorrelated noise and small-scale

fading, and lowers the required transmitted energy per bit [5].

9. The more the antennas used, the finer the spatial focusing can be.

10. Aggressive spatial multiplexing in massive MIMO systems leads to an impressive improvement

in the network capacity by minimizing Multiuser (MU) interference by steering the signal

accurately in the right direction.

11. Furthermore, increasing the number of BS antennas above the number of active users

leads to higher throughput [3].

12. The eigenvalue histogram of a single implementation converges to the average asymptotic

eigenvalue distribution [6]. This leads to the possibility of employing simple low complexity

detection techniques while preserving an excellent performance.

13. The more the BS antennas used, the more the data streams can be released to serve

more terminals, reducing the radiated power, while boosting the data rate.

• It is used to connect large areas together and is used in areas where cables cannot be installed.

1.1.1 Research Challenges in Homogeneous Networks

However, Homogeneous networks technology suffered from some shortcomings like:

• Macro base stations provide poor quality of service at the cell edges.

• A large percentage of the cell area is uncovered properly.

• They are larger in size and provide a very large vacant deployment area.

• They deliver very high power levels, which are dangerous to be installed near civilian inhabited

areas with large populations due to the risk of danger and diseases.
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• Not easily maintained.

• Their locations are fixed and once installed they are hard to be redeployed.

• Macro cells are affected by multipath signal loss.

• As communication is over the air and through large distances, it is subjected to scattering,

attenuation, signal loss, physical obstructions, and climate conditions.

• It requires higher installation cost and the use of analog and hybrid approaches to cut down

cost, which is primitive in the 21st century.

• Higher out-of-band radiation and high internal power consumption.

• The data must be accessible by every processing unit in order to compute inverse matrices.

For a centralized system this will not be a problem, but for distributed systems all processors

must have access to all of the data all of the time.

• It offers less data rate compare to wired networks such as fiber optics

1.2 Heterogeneous Multi-tier Networks

1.2.1 Small cell Base Stations

Small cells have been used recently and going small is thought of providing a better performance.

Small cells mostly are used for indoor networks. Small cells provide flexibility in movement from

one location to another and ease of installation. Also, they employ Less deployment, upgrading,

and maintenance costs. Furthermore, they are more environmentally friendly as it carries less risks

and pollution. They provide lower latency on the user end. For the performance advantage, we can

list them as shown below:

• They provide an increased in Quality of Service (QoS) capabilities.

• Expand the capacity of wireless networks.

• Support higher capacity than Macro cells.

• Support high data rate.
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• Meet the demands for data, video, and applications.

• They provide an output power level of up to several watts.

• They are mounted on a lower height, so are less affected by interference.

However, small cell BSs have few advantages, which increases the need for a system that integrates

both large and small cell BSs to benefit from advantages of both systems together and to limit the

shortcomings. Small cell BSs support less number of subcarriers and have limited capabilities. Also,

if they are close to each other, the interference level increases and managing the dense population

becomes even harder. Besides, for outdoor applications backhaul options are limited.

1.2.2 Heterogeneous Networks Benefits

Due to the emerging small cell networks that provides many benefits, it became very vital to interact

and integrate with the old Homogeneous Macro cell systems. The new born technology was termed

as Heterogeneous networks, which is a network of two or more tiers connected together and every

tier BSs has its own unique characteristics (delivers a certain power level, works with a certain

access method, and serves a certain coverage area). In that new being, UEs have the capability

to be associated to any tier BS and several interfaces are used to carry the information from one

tier to another. The new trend in wireless communications to meet the growing demand is the

introduction of low power nodes (Femto-cell, Pico-cells, Wi-Fi access points, distributed antennas,

etc.) with heterogeneous users. In these HetNets, where there are multiple tiers working together at

the same time, the capacity increases tremendously.

As our dissertation will be dealing with Heterogeneous networks, we will highlight some of the

advantages of applying Heterogeneous networks as shown below:

• Interference level is reduced.

• Distributed approach works better and data exchange between the devices is not necessary.

• Improves coverage for large areas especially small cells.

• Supports user mobility in a better way.

• Easier to upgrade and maintain small cells.
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• Signals can reach very small areas with high level and coverage is maximized.

• Less cost for installing small cells.

• Acts as a solution to the problem of poor quality of service at the cell edges.

• Better outdoor-to-indoor coverage.

Heterogeneous networks have the following features:

• Different parts of the network are connected with different ways (wired, wireless, optical fiber,

etc..).

• BSs operate with various transmission powers.

• Cells have different sizes and shapes, where the hexagonal cell shape presumption no longer

exists.

• Users have the flexibility to connect to connect to any BS in any tier.

Figure 1.1 shows a PPP-based two-tier cellular network with a working area of 20 km × 20 km

area, consisting of Femto-cells (crosses) and Macrocells (dots). With the aid of stochastic geometry,

the BS locations in each tier were modeled using a dependent or independent PPP to distribute

the BSs randomly in different locations. The users associated with those BSs were modeled using

a dependent PPP (using a parent–child relationship).

1.2.3 Comparison of Homogeneous and Heterogeneous Networks

HetNets can either be open access or closed access. In open access HetNets, the users can work

under any BS in any tier, whereas in closed access networks, the user has limited access to certain

tiers only, or has access to only the BSs in its own tier. The capacity and network lifwe time are

higher in HetNets. Also, in HetNets the network has more capabilities, flexibility, and degrees of

freedom. Table 1.1 highlights the differences between homogeneous and heterogeneous networks.

To emphasize the advantages of using HetNets over homogeneous networks, we plot and compare

the performance of a two-tier HetNet and a homogeneous system as shown in Fig. 1.2. Fig. 1.2a

shows a comparison of the NMSE versus SNR for the one-tier and two-tier system models. It is
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Figure 1.1: An illustration of a PPP-based two-tier cellular network deployment. A 20 km × 20 km

area, consisting of Femto-cells (crosses) and Macrocells (dots), is shown.
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Table 1.1: Comparison between Homogeneous and Heterogeneous Networks.

Heterogeneous Networks Homogeneous Networks

Models the actual systems, which are composed of

multiple networks operating together at the same

time, and area

Non-realistic

High sum-capacity in the order of thousands Capacity increase, but not as HetNets

Users can access any BS in any tier Users access only the closest BS

More interference is considered (inter-tier

interference)
Less affected by interference

Flexible user choice and scheduling User Selection is not flexible

More flexibility and degrees of freedom Less interference

Optimal solutions to beamforming
Downlink beamforming requires CSI knowledge at

the BS

Networks with different capabilities Limited

More error rate Less error rate

BSs have different transmit powers, and multi-access

methods
Everything is fixed

Less overhead load
Users are overloaded with the long range

transmission to BS

Network life-time is more Less network life-time
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clearly shown that the error is reduced in two-tier systems. Fig. 1.2b shows a comparison of the

sum rate capacity (Bits/Sec/Hertz) versus SNR for the one-tier and two-tier systems. The capacity

for the two-tier system is higher.

1.2.4 Research Challenges in Heterogeneous Networks

HetNets are arising on the surface due to the mandatory integration between the old single-tier

networks and the newly introduced small cells. However, there are many research challenges that

face the wide spread application of HetNets. Incase of applying Massive MIMO along with the

HetNet technology, the problem of excess unnecessary antennas in the network arises. Small cells

can take thefunction of the large number of MIMO antennas providing an adequate capacity and

system performance. When integrating both systems together, those additional antennas might be

of no use. Excess antennas increase intra and inter-tier interference in such ultra-dense networks.

Also, it increases the delay spread, processing time, and load overhead. In addition, transmitted

power to a user affects SINR level to the rest of the users; this effect should be compensated by

careful choice of beamforming weights. Also, another serious problem that needs more attention is

the requirement for proper synchronization between various parts and tiers. All access methods in

all tiers need to be integrated into one access method. As small cells are very close to each other

with the use of many antennas for transmission, combating high interference level in ultra dense

small cells is becoming mandatory.

1.3 Massive MIMO and Pilot Contamination

1.3.1 Massive MIMO

Massive MIMO technology has got much attraction lately as it Promises truly broadband wireless

networks [7]. Link reliability will also improve through spatial diversity and, it provides more degrees

of freedom in the spatial domain, and improves the performance irrespective of the noisiness of the

measurements. Besides, it provides a broad range of states of freedom, and greater selectivity in

transmitting and receiving the data streams. Since all of the users can take part in the multiplexing

gain, costly antenna array deployments are only necessary on the BS side, which saves on costs by

sharing. This also leaves the user equipment less complex, often with a single antenna.
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1.3.2 Pilot contamination

When a signal propagates from the transmitter to the receiver, it experiences the effect of shadowing,

scattering, fading, and path loss. Knowing the CSI in both forward and reverse links is crucial for

accomplishing successful transmission under various channel conditions. Training sequences are

often designed to optimize an equalizer at the receiver by providing CSI. In massive MIMO systems,

the pilot sequence is used to estimate the CSI in both directions. For downlink transmission, the

pilot sequences’ sample period should be longer than the number of transmitting BS antennas. For

uplink transmission, the pilot sequence sample period should be longer than the number of users, so

that the BS would learn the uplink channel matrix.

Pilot contaminations results due to sending identical pilot sequences from users in adjacent cells

and this would result in high channel estimation error. Also, covariance matrix estimation becomes

more difficult.

Pilot contamination is a crucial problem in massive MIMO, which is caused by non-orthogonality

of pilot sequences used in adjacent cells. Usually, reusing pilots in multiple cells is the main cause

of the problem. In this case, the estimated channel vector in any cell is the summation of all

the channel vectors of users from the neighboring cells (in addition to the original cell). As the

number of interfering cells increase, the problem exponentially grows and eventually causes system

malfunction.

Various solutions were introduced to solve this problem, which are:

• Channel Estimation Methods: These are based on some channel estimation algorithm to

detect the CSI by picking up the strongest channel impulse responses, often done with less

number of pilots than users.

• Time-Shifted Pilot Based Methods: These are based on insertion of shifted pilot locations

in slots (or a shifted frame structure).

• Optimum Pilot Reuse Factor Methods: These are based on choosing a reuse factor

greater than unity optimized in some sense. In addition, please note there are significant

performance gaps that exist among different reuse patterns.

• Pilot Sequence Hopping Methods: These schemes switch users randomly to a new pilot
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between time slots, which provides randomization in the pilot contamination.

• Cooperative Methods: Here, each BS tries to find unique optimum pilots that are also

suitable for other BSs.

• Cell Sectoring based Pilot Assignment: These schemes are based on sectioning the cells

into a center and edge regions. Users in neighboring border areas partly reuse sounding

sequences. This improves the quality of service by reducing the number of serviced users.

However, by significantly reducing serviceable users, it degrades the system capacity.

• Angle of Arrival (AOA) based methods: Use the fact that non-overlapping user terminals

reusing the pilots would have different AOA. However, this needs a way to detect AOA such

as directional antennas.

There are other interconnected design issues that need to be properly understood and solved

before widespread deployment of the massive MIMO technology. Several open research challenges

are still facing the progress and development of this emerging technology which are:

1. High deployment cost

2. When more users are available; more pilot symbols are required to differentiate between users

so training time goes up.

3. More advanced processing capabilities, precoding techniques, sophisticated channel estimation

and sounding techniques, and acquisition and synchronization are required at the terminals.

Also, the effect of hardware impairments becomes more clear and vigorous.

4. As detection becomes harder when the number of BS antennas increases, more advanced signal

processing methods are required for better detection and are associated with introducing low

complexity optimum and nonlinear detectors, and precoders to improve the performance and

reduce the computational complexity.

5. For best beamforming, information of channels that is continuously changing should be known,

so a lot of resources for downlink reference signal should be allocated which would cause waste

of resources.
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6. More research is needed to introduce new adaptive beamforming techniques to achieve higher

received symbol power and less interference.

7. Introducing efficient beamformers for Point to Point (PTP) networks to work under different

constraints and with different types of channels would be beneficial for enabling PTP widespread

application in massive MIMO systems.

8. Adding up multiple antenna output to a single beam will cause the width of the resulting beam

to get narrower. Hence, the area covered by a beam would be very narrow and beamforming

should be very quick, but this is challenging when the UE is fast moving.

9. Calibrating those huge number of antenna paths is challenging.

1.4 Optimizing Base Stations Locations

In this dissertation, we addressed BSs locations optimization and studied its effect on interference

level, signal power, and coverage. BSs can be fixed or redeployable. Choosing the proper BSs

locations has a direct impact on system performance. Changing BSs locations has an impact on the

following:

• Interference level.

• The effect of deviations in the site locations is closely related to the average distance between

BSs.

• Received pilot power is affected.

• Received data power.

• For a centralized approach, if locations of BSs are very far from the processing BS, performance

is degraded as SINR level is affected.

• In order to make it possible for the customer on the move to continuously make or receive a

call, the cells must necessarily overlap. The size of overlap area will have a direct effect on

handover results.

• Coverage overlapping area.

13



• Changing locations affects handover areas.

• The further BSs will be away from users, the poorer the signal quality and less battery life.

1.5 User Association

User association is about taking the proper decision on which user is more suitable for a certain

BS. Sometimes, users are selected based on the highest signal power, the best signal quality, BS

load, or overall network load. User association in HetNets is challenging due to their nature. Many

algorithms were invented recently to address this challenge, however, there is no standard algorithm

that researchers agreed upon that would be the best for HetNets. Sometimes, users were selected

so as to optimize a certain network parameter like: energy efficiency, spectrum efficiency, QoS,

fairness, and coverage probability [8]. User mobility has to be considered when choosing a certain

association algorithm. An association algorithm that does not consider users’ mobility will result

in more handover frequencies than the conventional homogeneous networks, which in turn lead to

more dropped calls and poor service quality.

User association is decided based on three approaches:

1. Centralized: The network contains a central unit that collects all information (data traffic,

BSs load, signal power,....etc). Based on the received information, the central BSs decides

which specific users will be associated to which BSs. This approach is the fastest, but it carries

complicated signaling overhead.

2. Distributed: It is suitable for ultra dense large networks. There is no centre BS that takes

over the processing overhead. Every BS and user in the network is responsible for its own

decision by interacting with its neighbors. This approach tends to be slower, with less signalling

overhead, but decisions do not consider the big picture of overall network performance and

might be incorrect.

3. Hybrid: A centralized approach is used for one or more parameters, while a distributed

approach is used for the rest of the parameters.
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1.6 Chapter Summary

Cellular systems can be Homogeneous or Heterogeneous. Homogeneous networks have been around

for years and they have many advantages. The introduction of small cells improved QoS, and

increased data rate. The integration between the old Homogeneous networks and the new small cells

was a must to meet the rapidly growing data traffic. HetNet systems are an innovative technology

that helps in the achievement of higher system throughput and reliable transmission for 5G and

beyond wireless networks. We discussed the advantages and some challenges of using Homogeneous

and Heterogeneous networks. Also, we studied BSs deployment and user association to BSs.
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CHAPTER 2

System Model and its Components

2.1 Chapter Overview

In this chapter, we describe the system model, and explain all its different components like the Poisson

point process, multi-tier systems, Orthogonal Frequency and Code Division Multiplexing (OFCDM)

systems, etc,.... Also, we explain in detail the reason for choosing every component and highlight

its superiority over other conventional commonly used system components. In our system model,

we considered a multi-tier HetNet system, where BSs in every tier are deployed according to a

Poisson point process. Also we considered uplink pilot transmission and obtained an expression for

optimum pilot sequence length, we considered uplink and downlink operations, we considered TDD

for channel estimation, and we used OFCDM for the link between BSs and UEs. In this chapter, we

explain in detail all the aforementioned terms and explain in detail the advantages of using them.

2.2 Uplink and Downlink Operations

Figure 2.1 shows the uplink and the downlink of single cell system, where the BS is composed of a

few hundred service antennas serving a few hundred users each, usually with only one antenna.
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Figure 2.1: Uplink and downlink operation.

2.2.1 Uplink Operation

The communication going from the user side to the BS, or from the Micro to the Macro BS is called

uplink. In chapter 3, we consider uplink operation, as the training phase is usually on the uplink

side. Also, we apply uplink in chapter 5 for the communication from the dummy edge Micro BS to

the Macro BS in the adjacent cell.

We will explain the uplink operation in more detail. Also, we highlight the different steps of this

operation as follows [9]:

1. Encoding: Is employed to prepare data for transmission. Encoding is all about converting

data into symbols appropriate for transmission over multiple transmit antennas. Space

multiplexing and space-time coding are the commonly used encoding techniques, as they do

not require knowledge of the CSI at the transmitter. Table 2.1 compares Spatial Multiplexing,

Space-Time Coding, and Spatial Modulation. Encoding using known CSI at the transmitter

is known as precoding [6].

2. Training: Pilot sequences and uplink data sequences are transmitted at the same time and
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Table 2.1: Comparison between spacial multiplexing, space-time coding, and spatial modulation.

Spacial Multiplexing Space–Time Coding Spatial Modulation

Achieves high rates.
Achieves increased reliability through

transmit diversity.

Allows fewer transmit Radio

frequency chains.

Information is carried on the

modulation symbols.

Information is carried on the

modulation symbols.

Information is carried on the

modulation symbols in addition to

the indices of the antennas on which

transmission takes place.

Simplest (only the receiver needs to

detect transmitted symbols).
Sophisticated.

Simple, but requires additional

memory to construct encoding table

at the transmitter.

Example: V-BLAST. Space–Time Trellis. Space Time Block Coding (STBC) .

over the same frequencies from each user to the BS.

3. Estimation: The BS receives the sum of data streams from all the users, and estimates the

channel. Receive combining is used in the uplink for differentiation between signals sent from

different terminals.

4. Decoding and detection: They produce individual data streams by utilizing the estimated

CSI. Received signals from different terminals are combined in the uplink using appropriate

decoding. Signal detection implies accurate estimation of the transmit vector knowing the

received vector and (sometimes) the channel. Detection of encoded signals is very demanding

and probably the most important task, since the received signal is subjected to noise, fading,

shadowing as well as spatial interference. Advanced signal processing methods are required

for accurate detection. Since the elements of the transmitted vector belong to a predefined

discrete alphabet, detection is harder when the alphabet is bigger. Some detection algorithms

produce soft values of the estimate of the transmitted symbols while the others produce hard

values [6].

The estimated soft values are fed into the channel decoders in coded systems. Hard outputs

like search-based algorithms test a set of discrete valued vectors and then choose the best

one among them as the output. In general, the soft fed values give a better performance

compared to hard inputs. The general trend has been to consider optimization algorithms

and artificial intelligence to achieve superior detection performance. Detection can be done
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Table 2.2: Different detection techniques.

Ref.
Detection

strategy
System Type

User

Antennas
Channel Type

Performance

Metric

[10], 2008 Factor Graph MU Multiple Dual-polarized Sum-Rate

[11], 2010 Factor Graph Single User Multiple Clustered Scattering Mean Squared Error

[12], 2011 Factor Graph Single User Multiple Ray-Tracing Throughput

[13], 2012 Factor Graph MU Single Ray-Tracing Spatial Correlation

[14], 2012 Factor Graph Single User Multiple
Frequency Selective

Fading Channel
Geometric Mean

[15], 2013 Factor Graph Single User Multiple Block-Fading
Average Probability of

Detection Error

[16], 2014 Factor Graph MU Multiple Gaussian Bit Error Rate (BER)

[17], 2003
Interference

Cancellation
MU Multiple Flat Fading BER

[18], 2007
Interference

Cancellation
MU Multiple Complex Gaussian BER

[19], 2008
Interference

Cancellation
MU Multiple Gaussian BER

[20], 2009
Interference

Cancellation
Single User Multiple NA

Block Error Rate and

Throughput

[21], 2009
Interference

Cancellation
Single User Multiple NA Bit Error Rate

[22], 2011
Interference

Cancellation
MU Multiple Fading Packet Error Rate

[23], 2011
Interference

Cancellation
MU Single Flat Fading BER

[24], 2012
Interference

Cancellation
Single-user Multiple Complex Gaussian

Achievable rate and

BER

[25], 2012
Interference

Cancellation MUs
Multiple

Complex

Gaussian
BER

[26], 2012
Interference

Cancellation

Single and

Multiple Users
Multiple

Multipath

Discrete-Time Block

Fading

BER

[27], 2012
Interference

Cancellation
Single User Multiple Block Fading BER

[28], 2014
Interference

Cancellation
Single User Multiple NA BER

[29], 2014
Interference

Cancellation
MU Multiple NA BER

[30], 2014
Interference

Cancellation
MU Multiple Complex Gaussian BER
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Table 2.3: Different detection techniques (Cont. 1)

Ref.
Detection

strategy
System Type

User

Antennas
Channel Type

Performance

Metric

[31], 2016
Interference

Cancellation
MU Single Flat Fading

BER, and Average

Number of

Computations

[31], 2017
Interference

Cancellation
MU Single Flat Fading BER

[32], 2007 Linear MU Multiple Rayleigh Block Fading BER

[33], 2009 Linear Single User Multiple
Rich-Scattering

Flat-Fading
BER

[34], 2011 Linear MU Multiple Frequency-Flat Fading
Empirical Cumulative

Distribution and BER

[35], 2011 Linear Single User Multiple Block Fading
Bit and Packet Error

Rate

[36], 2012 Linear Single User Single Two-Way Relay BER

[37], 2013 Linear Multiple Users Multiple NA Block Error Rate

[38], 2013 Linear Single User Multiple Flat Fading BER

[39], 2013 Linear Single User Multiple
Time-Varying Flat

Fading
BER

[40], 2013 Linear Single User Multiple NA BER

[41], 2016 Linear MU Single Block Flat Fading Sum Rate

[42], 2008 Local Search MU Single Rayleigh flat BER

[43], 2015 Local Search Single User Multiple NA BER

[44], 2016 Local Search MU Single Flat Fading

Bit Error Rate, and

Average Number of

Arithmetic Operations

[45], 2016 Local Search MU Single
Quasi-Static Flat

Fading

Bit Error Rate, and

Normalized Spectral

Efficiency

[46], 2007
Lattice Reduction

(LR)-Aided
MU Multiple NA

BER, Packet error

rate and Throughput

[47], 2008 LR-Aided MU Multiple
Flat-Fading

Quasi-Static
BER

[48], 2010 LR-Aided Multiple Users Multiple Rayleigh faded BER

[49], 2010 LR-Aided Single User Multiple Flat-Fading BER

[50], 2011 LR-Aided Single User Multiple Flat-Fading BER

[34], 2011 LR-Aided Single User Multiple Frequency-Flat Fading

Empirical Cumulative

Distribution Function

and BER
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Table 2.4: Different detection techniques (Cont. 2)

Ref.
Detection

Strategy
System Type

User

Antennas
Channel Type

Performance

Metric

[51], 2012 LR-Aided Single User Multiple
Quasi-Stationary

(Block Fading)

Average Orthogonality

Defect and BER

[52], 2012 LR-Aided Single User Multiple Rayleigh Flat-Fading BER

[53], 2012 LR-Aided Single User Multiple NA BER

[38], 2013 LR-Aided Single User Multiple Flat Fading BER

[54], 2014 LR-Aided Single User Multiple Flat Fading BER

[54], 2014 LR-Aided Three-User Multiple Frequency Flat Fading BER

[55], 2014 LR-Aided Single User Multiple Rayleigh Flat-Fading
Channel Correlation

Effect and BER

[56], 2016 LR-Aided Multiple Users Multiple Rayleigh Flat-Fading
BER, Sum Rate, and

Plog Cond

[57], 2016 LR-Aided Multiple Users Multiple
Quasi-Static Block

Fading
BER

[58], 2017 LR-Aided MU Single Rayleigh Flat-Fading
BER, and Average

Flops

[59], 2005

Monte Carlo

Markov

Chain (MCMC)

Single User Multiple Flat Fading BER

[60], 2007 MCMC Single User Multiple Flat Fading BER

[61], 2008 MCMC Single User Single Block Fading BER

[21], 2009 MCMC Single User Multiple NA BER

[62], 2011 MCMC Single User Multiple NA BER

[63], 2011 MCMC Single User Multiple NA BER

[64], 2012 MCMC Multiple Users Multiple
Frequency

Non-Selective Fading
BER

[65], 2015 MCMC Multiple Users Single NA BER

[66], 2016 MCMC Multiple Users Single NA BER

[67], 2016 MCMC Multiple Users Single NA BER

[68], 2006
Optimum

Detection
Single User Multiple

Uncorrelated Rayleigh

Fading
BER

[69], 2007
Optimum

Detection
Single User Multiple Quasi-Static Frame Error Rate

[70], 2007
Optimum

Detection
Single User Multiple Flat Rayleigh Fading BER
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Table 2.5: Different detection techniques (Cont. 3)

Ref.
Detection

Strategy
System Type

User

Antennas
Channel Type

Performance

Metric

[71], 2009
Optimum

Detection
MU Multiple NA BER

[72], 2009
Optimum

Detection
Single User Multiple Block fading Frame Error Rate

[73], 2015
Optimum

Detection
MU Single Rayleigh Fading BER, and Flops

[74], 2016
Optimum

Detection
MU Single Rayleigh Fading

BER, Frame Error

Rate, and Normalized

Info Rates

[75], 2006
Probabilistic Data

Association
MU Multiple

Quasi-Static Rayleigh

Fading
BER

[76], 2008
Probabilistic Data

Association
Single User Multiple NA BER

[77], 2009
Probabilistic Data

Association
Single User Multiple NA BER

[78], 2011
Probabilistic Data

Association
Single User Multiple NA

Bit and Symbol Error

Rate

[78], 2011
Probabilistic Data

Association
Single User Multiple NA BER

[79], 2013
Probabilistic Data

Association
MU Multiple Nakagami-m Fading BER

[80], 2013
Probabilistic Data

Association
MU Multiple Nakagami-m Fading BER

[81], 2013
Probabilistic Data

Association
Single User Multiple Nakagami-m Fading BER

[82], 2017
Probabilistic Data

Association
MU Single Flat Rayleigh Fading BER

[83], 2008
Soft-Input

Soft-Output
MU Single Flat Rayleigh Fading BER

[84], 2009
Soft-Input

Soft-Output
MU Single

Rayleigh Multi-Path

Fading

Average Complexity,

and Rate

[85], 2014
Soft-Input

Soft-Output
MU Single Rayleigh Fading Frame Error Rate
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using linear or nonlinear algorithms. Linear detection generally generates soft estimates of the

transmitted vectors [6]. Linear detection has less complexity but yields lower performance

and limited spectral efficiency. The performance of linear detectors deteriorates rapidly as the

number of transmitting antennas increases. LR based linear detection has better performance

than ordinary linear detection. However, instead of applying the linear transformation

to the received signal model, they apply it to an equivalent system model obtained using

LR-techniques. The new channel matrix is more orthogonal than the old one. Slicing is done

on the data vector instead of the transmitted vector. Interference cancelation detectors are

nonlinear, which perform estimation and removal of interference in multiple stages. There

are optimal detectors such as Maximum Likelihood Detectors. Local search detectors also

seek for optimal solution. However, these methods have an issue of huge problem size, as well

as the lack of knowledge of the problem structure. The good thing about local search is its

neighborhood function that guides the search to a right solution. Another popular technique

is the polynomial time approximation algorithm, but it gives an inferior solution. Tabu

search is a mathematical optimization method that is used to solve combinatorial optimization

problems. It is effective when the problem size gets very large. It has the ability of quickly

find near-optimal solutions [6]. Low-complexity MIMO uses detection based on probabilistic

data association. Remote sensing applications have been using this detection method for

target tracking for some time. Since signals coming from the targets are weak, the detection

threshold is lower. However, this leads to detection of additional unwanted signals and noise.

Data association means to specify which measurements are the most suitable to be used in

tracking filters. This technique’s principal aim is to track targets where there is uncertainty in

their data association [6]. Tables 2.2, 2.3, 2.4, and 2.5 show the different detection techniques.

2.2.2 Downlink Operation

The communication in the opposite direction, from the BS to the UE or from the Macro to the

Micro BS is called downlink. We consider downlink operation in chapters 4 and 5. So, we will

explain the different steps of the downlink process in more detail as follows:

1. Beamforming: Data streams are transmitted from the BSs to only the intended users by

means of beamforming, where the different data streams may occupy the same frequencies at
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the same time (space division multiplexing).

2. Precoding: The previous operation is carried out knowing the frequency response of the

propagation channels (or CSI) between each of its elements and each user and precoding the

signals accordingly. Unlike the conventional MIMO, massive MIMO uses linear precoders, such

as Maximum Ratio Combining (MRC), matched filtering, conjugate beamforming, Minimum

Mean Squared Error (MMSE) receive combining, and ZF [2]. Linear precoding techniques

at the downlink aim to focus each signal at its desired terminal and mitigate interference

towards other terminals [3]. Low-complexity precoding methods are mandatory and critical to

minimize the computational complexity of the precoder [86].

2.3 Channel Estimation Methods: (TDD or FDD?)

In our system model proposed in this dissertation, we considered Time Division Duplexing (TDD)

for channel estimation. A non-stationary wireless channel needs to be re-estimated after every

coherence time lap. Massive MIMO systems were originally envisioned for TDD operation, in which

the channel is periodically estimated in one direction and compensation can be applied in both

directions assuming reciprocity.

2.3.1 Why did we use TDD?

TDD systems have the following features:

1. The time required to acquire CSI does not depend on the number of BSs or users.

2. Only the BS needs to know the information about the channels to process antennas coherently.

In TDD systems, multi-user precoding in the downlink and detection in the uplink require CSI

knowledge at the BS. The resource, time or frequency needed for channel estimation is proportional

to the number of the transmit antennas.

2.3.2 Why did not we use FDD?

In Frequency Division Duplexing (FDD), uplink and downlink use different frequency bands (different

CSI in both links). The uplink channel estimation at the BS is done by letting all users send different
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pilot sequences. To get the CSI for the downlink channel, the BS transmits pilot symbols to all

users. The users respond by the estimated CSI for the downlink channels [2].

CSI can be estimated at the receiver side only, or at both at the transmitter and the receiver.

Estimation at both sides has some advantages. The CSI does not have to be transmitted, which

yields low latency and high capacity. In addition, more power can be allocated to the Orthogonal

Frequency Division Multiplexing (OFDM) subchannels with higher channel gain. Schemes with

estimation at the receiver side only experience higher outage probability with fast fading channels

but have lower complexity.

As the number of BS antennas goes up, the time required to transmit the downlink pilot symbols

increases. In addition, as the number of BS antennas grows, FDD channel estimation becomes

almost impossible and a TDD approach can resolve this issue. In TDD systems, due to channel

reciprocity, only CSI for the uplink needs to be estimated. In addition, linear MMSE based channel

estimation can provide near-optimal performance with low complexity [87].

Tables 2.6, 2.7, and 2.8 compare various channel estimation techniques.

2.4 OFCDM Systems

In our system model, we have used OFCDM for the link between base stations and users and used

OFDM for the link between large and small cell tier base stations due to the following reasons:

• The traditional systems previously used MIMO in combination with one dimensional access

techniques as, TDMA allocating all subcarriers to a user for a certain amount of time, FDMA

allocating each user a particular subcarrier for transmission (each user will use a different

frequency), CDMA assigning a unique code to each user, then they all share a spectrum

of various frequencies, and OFDM for higher data rates, which is a combination between

transmission of different signals over multiple BS antennas, and dividing the transmission

channel into a number of sub channels each using a certain frequency in frequency domain,

and into various transmission slots in time domain, so the channel will be composed of

frequency-time blocks. OFDM has many drawbacks. When the same subcarriers are used in

adjacent cell, this leads to intra cell interference. Also, it does not have coherence frequency

diversity.
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Table 2.6: Various channel estimation techniques.

Ref.
Channel

Estimation
System Type

User

Antennas
Channel Type

Performance

Metric

[88],

2013

Compressive

Sensing-Based
MU Single

TDD , Flat-Fading

Quasi-Static
Estimation Error

[89],

2013

Direction of

Arrival

Estimation

MU Single TDD, Ray Vectors

Mean Square

Errors and

Capacity Loss

[90],

2014

Semi-Orthogonal

Pilot-Assisted
MU Single TDD, Rayleigh

Overall Achievable

Rates

[91],

2014

Closed-Loop

Beam Alignment
Single User Single FDD , Gaussian Beamforming Gain

[92],

2014
Discriminatory Two-Users Multiple

TDD, Rayleigh

Flat Fading

Power and Mean

Squared

Error (MSE)

[93],

2014

Low-Complexity

Polynomial
Single User Multiple

TDD, Quasi-Static

Flat-Fading
MSE

[94],

2014

Distributed

Compressive

Channel State

Information at

the Transmitter

(CSIT)

MU Multiple FDD, Quasi-static CSI MSE

[95],

2014

Linear

Estimation
MU Single

TDD, Narrow band

Memoryless

Residue and Error

Norms

[96],

2014

Improved

Multi-cell MMSE
MU Single TDD, Rayleigh MSE
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Table 2.7: Various channel estimation techniques (Cont. 1)

Ref.
Channel

Estimation
System Type

User

Antennas
Channel Type

Performance

Metric

[96],

2014

Improved

Multicell MMSE
MU Single TDD, Rayleigh MSE

[97],

2014
CSIT MU Multiple FDD, Quasi-static

CSI Mean Squared

Error

[98],

2014

Spectrum-Efficiency

Parametric
MU Single

FDD, Rayleigh

Fading
MSE

[99],

2015
Blind MU Single TDD, NA MSE

[100],

2015

Gaussian-Mixture

Bayesian

Learning

MU Single TDD, NA
MSE and Average

User Rate

[101],

2015
Subspace-Based MU Single

TDD, Narrow band

Flat Fading

Bit Error Rate and

Eigen Value

Clusters

[102],

2015

Simple Discrete

Fourier

Transform

(DFT)-Aided

Spatial Basis

Expansion

MU Single TDD, Flat Fading

The Average

Achievable Sum

Rate and MSE

[103],

2015

Bayes-Optimal

Joint
MU Single

TDD, Flat Block

Fading

Symbol Error Rate

and MSE

[104],

2015

Adaptive

Semi-Blind
MU Single NA, TDD Capacity and MSE
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Table 2.8: Various channel estimation techniques (Cont. 2)

Ref.
Channel

Estimation
System Type

User

Antennas
Channel Type

Performance

Metric

[105],

2015
Imperfect Single User Single

TDD, Spatially

Correlated
BER

[106],

2015

Atomic Norm

Denoising-Based
MU Single

TDD, Flat-Fading

Quasi-Static
Estimation Error

[107],

2016

Structured

Compressive

Sensing-Based

Spatio-Temporal

Single User Single
FDD, Fast

time-varying

Mean Squared

Error, BER, and

Average

Throughput

[108],

2016
Bayes MU Single

TDD, Flat block

fading

MSE, and Symbol

Error Rate (SER).

[109],

2017

Eigenvalue

Decomposition
MU Single TDD, Fast fading

Rate Loss, and

SER

[110],

2017
Beam-Blocked MU Single

FDD, Spatio

Correlation

Channel

MSE, Achievable

Rate, and

Reconstruction

SNR

[111],

2017

Joint Angle-Delay

Subspace
MU Single

TDD, Flat Rich

Scattering

Projection Error

Power, Path

Number, and MSE

[112],

2017
Beam-Domain MU Multiple TDD, Block-fading

Mean Squared

Error, and BER

[113],

2017

Low Rank

Covariance

Matrix

MU Single
TDD, Flat

Rayleigh fading
NMSE

28



• OFCDM offers two dimensional spreading in time and frequency domains, this resulted in

a jump in mean data rate, flexible transmission rates, and increase in frequency diversity

gain. In OFCDM the data signal is spread using a time-domain code, this signal is duplicated

in frequency-domain, and finally, multiplied by the frequency-domain spreading code. A

maximum of eight codes are available per channel, hence various code channels are assigned

to a user, which provides variable degrees of freedom for data rate.

• OFCDM offers spreading in time and frequency domains to increase data rate, and frequency

diversity gain. Combining OFCDM with massive MIMO takes the advantages of both systems

together. Also, OFCDM enables the transmission of different types of traffic, or multi-class

traffic, as it provides up to eight code channels. Every class of users will have a unique code.

We used in our model three types of users (data, video, and audio users each one with a

different data rate).

• OFCDM supports multiple classes of UEs up to eight classes, where every class has its own

unique code. Multiple classes means that a UE will a user can transmit voice, data, video,....etc

all at the same time.

• OFCDM provides less BER as shown in Fig. 2.2.

Fig. 2.2 shows BER performance for u users communicating with their associated BS for 128

subcarriers with various configurations, where configuration 1 represents a spreading factor in time

domain N=32, number of users u=64, configuration 2 represents N=16, u=32, and configuration 3

represents N=8 and u=32. We can see that increasing the spreading factor decreased BER for the

same number of users.

Fig. 2.3 highlights the difference between OFDM-TDMA and OFCDM-TDMA concepts. This

system will enable transmission of large number of users in each user class. In [114] the authors

introduce the new OFCDM system with two-dimensional spreading for high speed communication for

future 5G networks. Also, the authors discuss the hybrid Multi Code Interference Cancellation (MCI),

and MMSE detection algorithm. Also, the availability of applying turbo-coding and MIMO for

OFCDM is discussed as well and compared to OFDM. MIMO-OFCDM with multi-code transmission

is employed in [115]. The authors investigate MIMO-OFCDM with multi-code transmission in

the presence of co-channel interfering signals, and also, multi code interference from other code
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Figure 2.2: BER for OFCDM System with Various Configurations.

channels on the same antenna. They proposed that the combination of iterative detection, the hybrid

MCI cancellation, and MMSE detection cancels out multi-antenna interference, and multi-code

interference increases frequency diversity, which improves system performance in general. Also,

in [116] the authors investigate MIMO-OFCDM, and propose the combination of two detection

algorithms in the space and frequency domains to improve diversity gain in space and frequency.

Iterative detection in the space domain and the hybrid multi-code interference cancellation, and

MMSE detection in the frequency domain. Also for channel estimation they used a two-dimensional

averaging algorithm. Moreover, they derived the optimal power allocation between the pilot and all

data channels, and it was shown the the optimal power ratio depends on the number of transmit

antennas, and the used channel estimation method. Besides, authors in [117] investigate the power

allocation in MIMO-OFCDM. Applying minimization of the MSE during signal detection, the

optimal power ratio between the pilot and data channels was derived. It was proved that the

optimal power ratio is sensitive to the number of transmit antennas and the number of pilot and

data symbols in a packet.

30



(a) OFDM-TDMA signal structure.

(b) OFCDM-TDMA signal structure.

Figure 2.3: OFDM-TDMA vs OFCDM-TDMA comparison.
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Figure 2.4: Poisson point process with λ=55, and thinning distance less than 200 m.

In [118], the authors introduce analytical derivations to determine the performance of OFCDM

systems with multi-code transmissions taking correlation of the error events on multiple code

channels into account. They assumed the utilization of the combined detection techniques of Zero

Forcing Successive Interference Cancellation (ZF-SIC) in the space domain, and MMSE detection in

the frequency domain. Authors in [119] discuss the performance of OFCDM with two dimensional

spreading and multi-code transmission, where time-multiplexed pilot signals are used for channel

estimation. Conditional bit error rate is evaluated. The proposed approach showed promising results

in various channel estimation qualities and channel correlation conditions. Finally, in [120] the

authors introduced optimization of two dimensional spreading in OFCDM for subcarrier allocation

in femto/macro hybrid networks. An expression of signal to noise ratio for femto and macro users is

derived. Varying the load conditions and the spreading factors bit error rate was obtained as well.
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2.5 Poisson Point Process

Along this dissertation, we will use a Poisson point process to deploy base stations and users in the

network. A Poisson point process is a random variable that consists of randomly (uniformly) located

on a mathematical space used to model certain random events happening in time like scattered

users in a wireless network. Each point is stochastically independent of all other points in the

process. Fig. 2.4 shows the uniformly distributed points according to a Poisson point process. Every

Poisson point process is parameterized by the intensity λ for which the number of generated points

has a Poisson distribution. If λ is a constant, then the process is homogeneous, otherwise it is

inhomogeneous or that the probability of generating a point varies in time with a rate function λ(t).

For the Poisson distribution, the probability of a Poisson random variable N is equal to n is:

P (N = n) =
λn

n!
e−λ (2.1)

A thinning to the process implies two steps, where a set of locations are generated as a simple

Poisson point process with intensity λ, those locations occur more frequently than the process itself,

then throw out some of them and accept the others.

2.6 Description of System Model in this Dissertation

In this Section, we explain the network model we use in this dissertation. The multi-tier dense

system located on the Two Dimensional (2D) Euclidean plane is presented clearly in Fig. 2.5, where

K tiers of BSs are indexed by the set k={1, 2, 3, ....K}. We consider three types of links in this

work; Macro-Micro backhaul links, Macro-UE direct links, and Micro-Micro access links. There are

two levels of communication considered in our system; one is between the Macro and the Micro BSs,

and the other is between the Macro or Micro BSs and their associated UEs. The system is assumed

to be open access and BSs in every tier are distributed according to a PPP φk with density λk. The

system is allocated with a total of M Macro BSs having Bn hundreds of antennas each(massive

MIMO). The square working space has an area of A. Also, in each cell there are C Micro BSs each

with An available MIMO antennas relaying data to and from the associated UEs to the Macro

BS. The minimum allowed distance between Micro BSs is dmin and the minimum allowed distance

between a Macro BS and its associated Micro BS in the same cell is dcp Every BS is associated
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with U UEs with density λu. Pu is the transmit power from UEs and is equal for all UEs. We

assume that there is a downlink flow from BSs to their associated UEs. Every UE transmits S data

streams at a time. Eb is the bit energy and Ec and Tc are the chip energy and the chip duration

respectively. The communication between various tier BSs (Macro to Micro BSs) is using an OFDM

system, where each BS schedules transmission over T time-frequency slots. The communication

links between BSs and UEs are through an OFCDM system, where the spectrum is divided into

groups and each with Z equally spaced subcarriers. Subcarriers are divided equally among groups

and every UE can use one group per time for transmission. Groups are denoted by Gd with group

index denoted as d = 1, 2, 3, ....D. TDMA is used in transmitting the signal and the transmitted

signal is spread with Pseudo Noise (PN) sequences in time domain with N spreading factor and the

signal is spread in frequency domain with F spreading factor. Also, We assume TDD operation

from the BS to its associated UEs, so that every BS can estimate the downlink channel coefficient

from the uplink pilot transmitted by the UE using channel reciprocity of the CSI. Nb is the number

-5000 0 5000 10000 15000 20000

X-Position (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y
-P

os
iti

on
 (

m
)

104 Two-tier System Model

Figure 2.5: An illustration of a PPP-based two-tier cellula network deployment of 20 km × 20 km

area, λ1 = 15, and λ2 = 10.
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Figure 2.6: An illustration of a two-tier HetNet model of coverage area (5000 m × 5000 m), λk = 20,

λu = 80, r=500 m, and dmin=200 m.

of transmitted bits, and Eb is the bit energy. the transmitted signal is spread with PN sequences in

time domain with chip energy Ec and chip duration Tc where Ec = Eb/(N · F ). Users in the uplink

are using nonorthogonal pilot sequences xj , where the main Micro BS is at cell j and the other

Micro BSs are at L interfering cells All Micro BSs use the same sub channels and transmit on the

same frequencies, and UEs in neighboring cells use the same non-orthogoal pilot sequences, so pilot

contamination affects this system.

If we zoom in into Fig. 2.5, we get the details of one Macro cell along with its associated Micro

BSs and UEs as shown in Fig. 2.6 The system is assumed to be open access, where there is no

restriction on the association of UEs to a certain tier BS. Interference is the major limiting parameter

that affects network performance. In our model, we consider block-fading channel model with large

and small-scale fading [121]. The large-scale fading is a function of distance, path loss attenuation,

and multi-path fading components. The small-scale fading coefficients are Rayleigh. The path

loss exponent for the Macro and Micro tiers is considered the same as α. BSs are assumed to be
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cooperating and exchanging their status between each other (whether they are accepting or giving

UEs). Traffic transfer between BSs is enabled from heavily loaded BSs to lightly loaded BSs and

vice versa.

The channel impulse response from the Macro BS to the different Micro BSs on subcarrier T

will be:

h
(T)
m,c = (|h(T)

m,c|)ejφm,c (2.2)

where hm,c is the small-scale fading gain vector between the Macro BS and the various Micro BSs

equals to hm,c = [hm,1,c, ...,hm,Bn,c]T and φm,c is its phase component.

2.7 Dissertation Motivation

Due to many challenges that face optimal design of multi-tier HetNets, our main goal was to enhance

the performance of such systems by trying to find new methods to mitigate high interference levels

in such ultra dense closely packed systems and to suggest new UE association algorithms to provide

fair load balance among different tiers, as the conventional max-Signal to Interference and Noise

Ratio (SINR) and max-Received Signal Strength (RSS) algorithms do not provide adequate results

in more than one tier systems.

Channel estimation using known pilot sequences is crucial for detecting Channel State Information

(CSI) at the beginning of every coherence time interval. Optimum pilot length depends on the

parameter to be optimized. We optimized pilot sequence length using mean squared error constraint,

which is the most important parameter to reduce channel estimation error. We also considered pilot

power constraint to keep it below a certain limit so as not to affect data transmission. Pilot length

should be at least equal to the number of users (with at least one pilot per user). Our optimum

pilot length depends on number of users so our results are considered feasible and acceptable. Our

algorithm is simple with no complexities in implementation. Interference level is very high in dense

HetNets. We reduce interference level by altering locations of Micro and Macro BSs and optimizing

them. It is very important to properly deploy BSs to improve coverage, and reduce interference

level. BSs in HetNets are normally deployed according to a Poisson point process, which may

not be the best locations to achieve the best performance. We optimize Micro BSs locations to

improve coverage and reduce interference. Also, we were able to isolate Macro cells from all sources
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of interference and consider them as independent units, which will enable any further study to

users and Micro BSs associated with every Macro cell without considering inter-cell interference.

Conventional user association algorithms do not provide adequate performance in HetNets due to the

nature of HetNets (variable BSs transmission power). We propose two user association algorithms

to balance load in HetNets. The first algorithm (Least Standard Deviation (LSTD)), works by

minimizing network load standard deviation, where UE attempts to connect to the BS with the least

load. Network standard deviation is rechecked after every change in any BS load until a balanced

load distribution is obtained. We initially start from acceptable values of SINR as load balance is

not separated from SINR calculation because it is a crucial factor in determining the validity of

associating a user to a certain BS and not choosing another one instead. This algorithm is new and

nobody has pointed to it before. Standard deviation is a strong statistical measure of how far a

certain distribution is deviated from the mean value that is why it was our chosen method. The

second algorithm (Real Time Load Balancing (RTLB)) is a dynamic fast UE association algorithm,

which is based on the assumptions that BSs are exchanging their load information among each other

(whether they are giving, accepting, or fully loaded) and that traffic transfer is possible from one

BS to another. The algorithm considers UEs mobility (as UEs change their position) and status

change (when new calls are established or when calls are dropped or naturally terminate). Our

algorithm is simple and based mainly on SINR value for every user. It is fast, because we only

process the change and associate newly added users or users that changed location only in every

iteration. Furthermore, we derive coverage probability of moving UEs considering handover and

no handover scenarios. Both suggested algorithms provide a fair load distribution, however RTLB

outperforms the performance of LSTD in real time scenarios as it easily and quickly adapts to rapid

network changes.

2.8 Dissertation Contributions

The main contributions of this work are to study the problem of interference mitigation in ultra

dense small cell HetNets by redeploying Micro and Macro BSs starting initially from the locations

obtained from PPP and moving into better locations to improve the performance. Also, we develop

two user association algorithms designed specially for HetNets to provide fair load distribution
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among various tiers with variable BSs transmission powers.

• We optimize the pilot sequence length by using the total power of the training period and

the MSE of the channel as a constraint. The optimum pilot sequence depends on the number

of users. Our approach is simple, yet useful in obtaining an expression of the optimum pilot

length.

• We introduce an efficient method for deploying Micro BSs in a two-tier HetNet system to

maximize SINR for the uplink channel between Micro and Macro BSs. We proved that signal

power was increased by about 2 dB.

• We provide analytical derivations for coverage probability and network energy efficiency

and compare the performance before and after optimization through extensive analysis and

simulation results.

• We manipulate the derived expression of coverage probability to formulate a constrained

deployment algorithm for Micro BSs locations by minimizing inter-cell interference and

maximizing the cell coverage. Also, We compare our results with other work done and show

that our performance shows better promising results.

• We develop a new algorithm to find the optimum locations of Macro BSs in HetNets where

every Macro BS along with its associated Micro BSs is treated as an independent unit after

almost eliminating interference from neighboring Macro and Micro BSs. Hence, this approach

provides increased coverage area and enhanced quality of service. Simulation results show the

validity of our approach and promises enhancement to system performance.

• We develop two user association algorithms. The first one is for associating UEs to BSs

based on minimizing the network load standard deviation which restores and maintains the

load balance at every BS in the network. Also, we develop a new real-time dynamic fast UE

association algorithm for multi-tier cooperating systems that considers users’ mobility and

traffic dynamics (when number of active UEs at a given instance is continuously changing).

Our new algorithms are studied and analyzed through simulation and they proved to provide

the best performance compared to other algorithms.

38



Figure 2.7: Summary of dissertation outline.

2.9 Dissertation Outline

The work reported in this dissertation is divided into eight chapters. Fig. 2.7 presents the summary

of the outline. The content of the dissertation chapters is briefly described as follows:

• Chapter 1 presents a general explanation of Homogeneous and Heterogeneous systems,

challenges, comparison, and advantages and disadvantages of applying each system. Also, we

added some brief discussions about pilot contamination, optimizing BSs locations, and user

association to BSs
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• Chapter 2 presents and explains the proposed system model and an explanation of its various

components.

• Chapter 3 suggests an analytical optimization problem for pilot sequence length to maximize

pilot power and reduce minimum mean squared error.

• In chapter 4, we solve some optimization functions for deploying Micro BSs to minimize

interference from adjacent BSs, maximize received signal power, and improve coverage. Also,

we develop analytical expressions for coverage probability and energy efficiency.

• In chapter 5, emanating from the idea of grouping Micro BSs into core and edge BSs, we

propose new algorithms for optimizing Macro BSs locations by minimizing interference from

Macro BSs in adjacent cells, and edge Micro BSs in adjacent cells. Also, we combine this

algorithm with optimizing core Micro BSs in every Macro cell to ensure that interference level

is less than a certain threshold.

• In chapter 6, we propose our first user association algorithms for HetNets. The algorithm’s

main idea is to minimize load standard deviation for all BSs in the network. We sort users

in ascending order based on possible BSs available for connection and sort available BSs

for every user in ascending order based on the BS load. For a certain user, we start by all

combinations and trying all available BSs for that user and for the rest of the users we take the

BS with least load. We calculate load standard deviation in every iteration until an acceptable

standard deviation is achieved. If system data set changes (new users are added or dropped

or users move their position), the algorithm has to run all over again from the beginning. Our

algorithm takes about 1 sec to run for every data set change.

• In chapter 7, we propose our second user association algorithms for HetNets. The algorithm’s

main idea is that BSs share and broadcast their load information between each other and that

traffic transfer is possible between BSs (from less loaded to heavily loaded and vice versa).

BSs are classified into giving, accepting, and fully loaded BSs according to comparison with

a certain threshold. We start from the first giving BS and move the UE having the highest

available SINR, then we specify the accepting BSs and move the user to the one with the

highest SINR. Some users might change their position, so we have to recalculate SINR for
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them. Also, new users might be added, so we update the number of active users and calculate

the new SINR matrix. Some users’ connections are terminated as their calls are ended, so

they should be dropped from their associated BSs. The algorithm takes 0.02 sec per every

data set change.

• Chapter 8, evaluates the achievement of the dissertation compared to the goals and discusses

various contributions. We also covered some of the future developments.

2.10 Chapter Summary

In this chapter, we studied the system model proposed in this dissertation. Also we defined and

explained its various components. We studied uplink and downlink operations that will be used

in various parts of this dissertation. We studied TDD systems, the advantages of their use, and

compared with FDD systems. Furthermore, we explained OFCDM systems and their advantages

over conventional OFDM systems. Also, we gave a brief idea about PPP. We studied HetNets, where

more traffic management, radio resource management, network planning, and inter-tier interference

management are required, as those networks are more complicated, have more dense cells, and

any user can access any BS in any tier. We observed that fast booming HetNets would be more

promising to improve data rates and provide flexibility in user-BS association. Finally, we explained

the system model used in this dissertation, listed our contributions, and presented the dissertation

outline.
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CHAPTER 3

Optimization of Pilot Sequence Length

3.1 Introduction

In a time-division duplex system, the BS estimates the channel from mutually orthogonal reverse-link

pilot sequences within a cell to formulate a receiver for the reverse link and a precoder for the

forward link. The channel coherence, as well as frequency, is typically constrained at the time, this

leads to an imbalance between the resources spent on pilots and those available for data symbols.

Reusing pilot sequences in nearby cells, reduces pilot overhead, however, this potentially increases

interference in the channel estimation phase, known as ’pilot contamination’ effect [122].

Though long pilot sequences would reduce pilot contamination, they replace data sequences

and reduce channel spectral efficiency and throughput [3]. Pilot contamination is combatted using

time-shifted pilots, and pilot hopping at each time slot [123], optimizing the precoding matrix [124],

by using the angle of arrival methods [5], and finding the optimum pilot reuse factor [125].

In this chapter, we optimize the pilot sequence length by using the total power of the training

period, and the estimation error as the constraint. The optimum pilot sequence depends on the

number of users. Our approach is simple, yet useful in obtaining an expression of the optimum

pilot length. We use Lagrange optimization, which is considered the most accurate analytical

method for optimization. For finding the optimum pilot length, we can maximize or minimize

the pilot length. Maximizing or minimizing the pilot sequence length is critical in systems design.

Minimizing its length improves spectral efficiency, channel capacity, mean squared error, data rate,
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and throughput. Maximizing the pilot sequence length improves channel estimation quality and

reduce pilot contamination. Our approach is simple and with low complexity and can be applied to

any application.

3.2 Related Work

In this section we will review some of the efforts done pilot length optimization field.

In [126] the authors minimized the training sequence length in correlated channels under the

estimation error constraint of the covariance matrix. The obtained pilot sequences are short and

non-orthogonal. However, the channel estimation error variance does not exceed a certain constant.

For this algorithm, the obtained optimum pilot lengths were not realistic and efficient as they were

less than half number of users. In [127] the authors optimized the training sequence length and

the pilot symbol power allocation. They derived a relationship between the pilot sequence length

and the effective SNR, then maximized the effective SNR under a sum energy constraint and a

total block length constraint. They derived the expression for the optimal training interval length

maximizing the effective SNR and proving its equality to the number of transmit antennas. However

the authors did not discuss the effect of this maximization on pilot contamination, and channel

estimation quality. In [128] the authors optimized the pilot sequence length for a given coherence

block length by maximizing the net ergodic achievable rate. They also showed the dependence of

the optimal training length on the backhaul capacity. In [129] the authors considered optimizing the

training sequence length for a particular case of frequency-selective fading channels, considering tap

gain correlation and spatial correlations at both ends. The optimal training sequence design should

minimize the MSE. MSE was derived for the correlated channel and decreased using Lagrange

operator. The MSE for the correlated channel is observed to be less than the uncorrelated case.

Table 3.1 compares optimum pilot length obtained using different approaches. Authors in several

papers used various optimization functions (mean squared error, signal to noise ratio, ergodic rate,

and pilot length) and various constraints (estimation error, pilot length, pilot power, and capacity).

Some of the problems were maximization and others were minimization problems. However, all

results depended on number of users (or number of antennas on the transmission side) besides one

or more additional parameters.
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Table 3.1: Comparison of related pilot length optimization work in literature.

Ref.
Optimization

Problem

Optimization

type
Constraints Optimum Length

[126] Pilot length Minimization

Covariance of

estimation

error

Less than number of

users.

[127] Effective SNR Maximization

Sum energy

and Block

length

Equals to number of

users.

[128]
Net ergodic

achievable rate
Maximization Pilot length

Depends on backhaul

capacity and SNR.

[130] Effective SNR Maximization Pilot length
Equals to number of

users.

[131]
Effective SNR and

channel capacity
Maximization

Pilot energy

and transmit

energy

Depends on channel

memory.

[132]
Mean squared

error
Maximization

Mean square

error and

ergodic

capacity

Depends on number of

transmit antennas and

channel length.

[133] Estimation error Minimization Capacity

Depends on number of

transmit antennas and

SNR.

[134]
Mean squared

error
Minimization

Maximum

transmission

power

Equals to number of

users

[135]
Mean squared

error
Minimization

Pilot power

and estimation

error

Depends on number of

transmit antennas

Our work Pilot length Minimization

Pilot power

and estimation

error

Depends on number of

users.
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3.3 Contributions and Organization

In this chapter, we derive an analytical expression for the optimum sequence length maximizing

the pilot power and minimizing error. The optimum length depends on number of users. We chose

MSE a constraint to reduce error in estimating the channel and keep it below a certain level. Also,

we chose pilot power to be less than a certain threshold so as not to over exceed the data power.

Optimal pilot length does not have an exact value and it depends according to the parameters

chosen and the optimization constraints. However, an acceptable length should be anywhere from

number of users to coherence block length. From that, our result is acceptable as it falls within

this range. We organize the remainder of this chapter as follows: Section 3.4 presents the problem

formulation. Section 3.5 presents the simulation discussion and Section 3.6 concludes this chapter.

3.4 Pilot Length Problem Formulation

The total uplink received signal at all the BS antennas for all U users is the sum of signals in cell j

and the sum of interfering signals in the L cells [136]:

yjn =
√
puτ

U∑
u=1

(

An∑
n=1

√
βjjhjjn)xjn +

An∑
n=1

L∑
l=1,l 6=j

√
βjlhjlnxjn + njn) (3.1)

where, βjj , and βjl are non negative constants known as the propagation coefficients of large-scale

fading in channel Hjjn ∈ CAn×U and Hjln ∈ CAn×U respectively where Hjjn is the channel matrix

between all U users in cell j and the Micro BS j. Hjjn is equal to βjj · hjjn and Hjln is the channel

matrix between all U users in the interfering cells l and Micro BS j. βjj and βjl are equal to d−αjj ,

and d−αjl respectively, where djj represents the distance from a user in cell j to the Micro BS in the

same cell, djl is the distance between the a user in the neighboring cell l and the Micro BS in cell

j. hjjn , and hjln are the An × U fast fading matrices from users at cell j and l to BS at jth cell

respectively. njn is the independent identically distributed complex additive white Gaussian noise

with normal probability density function N(0, σ2) of cell j. Furthermore, xjn is the pilot sequence

vector with length τ (number of symbols). The value of τ is determined by optimization. pu is the

average transmitted power of UEs in all cells. ‖.‖ is the L2 norm or Euclidean norm.
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Hjj is the An × U channel matrix from user U in cell j to BS in cell j.

Hjj =

hjj11 ....... hjj1An

hjjU1
....... hjjUAn


Hjl is the An × U neighboring channel matrix from user U in cell l to BS in cell j.

Hjl =

hjl11 ....... hjl1An

hjlU1
....... hjlUAn


The uplink SINR, in this case, will be:

SINRjn =

∑U
u=1

∑An
n=1(puτ(d−αjj )|Hjjn |)∑U

u=1

∑An
n=1

∑L
l=1,l 6=j((d

−α
jl )|Hjln |+ σ2

jn
)

(3.2)

From the uplink received signal discussed above, we get the MMSE estimate of the Hjl channel as

follows:

Ĥjln =
√
puτβjjx

H
jn(I + xjn(puτ

L∑
l=1

βjl))
−1xHjnyjn (3.3)

Let e be the estimation error of Ĥjln −Hjln , then its covariance matrix (Ce) will be
√
puτβjjx

H
jn

(I +

xjn(puτ
∑L

l=1 βjl))
−1.

Multiplying the numerator and denominator by I − xjn(puτ
∑L

l=1 βjl)x
H
jn

Ĥjln =
√
puτβjjx

H
jn(I −

xjn(puτ
∑L

l=1 βjl)x
H
jn
yjn

1 + puτ
∑L

l=1 βjl
) (3.4)

Ĥjln =
√
puτβjj(x

H
jn −

puτ
∑L

l=1 βjl

1 + puτ
∑L

l=1 βjl
xHjn)yjn (3.5)

Taking xHjn as a common factor:

Ĥjln =

√
puτβjj

1 + puτ
∑L

l=1 βjl
xHjnyjn (3.6)

As we proved in (3.6) that the overall MSE will be equal to

√
puτβjj

1+puτ
∑L
l=1 βjl

. For this equation to be

minimum, the denominator has to be greater than a threshold (γ).

1 + puτ
L∑
l=1

βjl ≥ γ (3.7)
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puτ

L∑
l=1

βjl ≥ γ − 1 (3.8)

puτ

L∑
l=1

βjl − γ ≥ −1 (3.9)

Finally, this condition will become as:

−puτ
L∑
l=1

βjl ≤ 1− γ (3.10)

For our optimization problem, we apply the Least-Squared (LS) technique to minimize the difference

between the normalized estimated pilot sequence, and the transmitted pilot sequence, considering

An antennas at the Micro base station.

LS = minimize{E[‖x̃jn − xjn‖2]} = minimize{E[‖yjn − xjn‖2]} (3.11)

The LS estimate Ĥjjn of channel Hjjn is found to be:

Ĥjjn =

√
puτβjj

1 + puτ
∑L

l=1 βjl
yjn .x

H
jn = Hjjn +

L∑
l=1,l 6=j

Hjln + n
′
jn (3.12)

where, n
′
jn

=
njnx

H
jn√

puτ
, n
′
jn
εCN(0, IC√

puτ
)

Hence,

Hjjn = Ĥjjn −
L∑

l=1,l 6=j
Hjln − n

′
jn (3.13)

Substituting (3.13) into (3.1), then yjn can be written as:

yjn =
√
puτ

U∑
u=1

(

An∑
n=1

(Ĥjjnxjn −
L∑

l=1,l 6=j
Hjlnxjn − n

′
jnxjn +

L∑
l=1,l 6=j

Hjlnxjn + njn)) (3.14)

yjn =
√
puτ

U∑
u=1

(

An∑
n=1

(Ĥjjnxjn − n
′
jnxjn + njn)) (3.15)

Substituting by the value of yjn in equation (3.11), the objective function (f) will be:

f = E[‖√puτ((Ĥjjn − n
′
jn)xjn + njn)− xjn‖2];∀u = 1 : U, n = 1 : An (3.16)

We will simplify the previous equation into the following:

f = E[‖√puτ(Ĥjjnxjn)− njnxjnxHjn +
√
puτnjn − xjn)‖2]∀u = 1 : U, n = 1 : An (3.17)
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As xjnx
H
jn

is a multiplication of a vector and its hermitian equals to τ , then:

f = E[‖√puτ(Ĥjjnxjn)− njnτ +
√
puτnjn − xjn)‖2]∀u = 1 : U, n = 1 : An (3.18)

f = E[‖xjn(
√
puτĤjjn − 1)− njn(τ −√puτ)‖2]∀u = 1 : U, n = 1 : An (3.19)

The expectation of the square of the norm gives the second moment or the variance, and additive

noise njn is independent on estimated channel, then the property that Var(u+v)=Var(u)+Var(v)

will apply to (3.19) as follows:

f = E[‖xjn(
√
puτĤjjn − 1)‖2]−E[‖njn(τ −√puτ)‖2]∀u = 1 : U, n = 1 : An (3.20)

f = Tr{E[‖xjn(
√
puτĤjjn − 1)‖2]−E[‖njn(τ −√puτ)‖2]}∀u = 1 : U, n = 1 : An (3.21)

As the value (τ − √puτ) is a scalar quantity, so we take it out of the expectation operation as

follows:

f = Tr{E[‖xjn(
√
puτĤjjn − 1)‖2]− (τ −√puτ)E[‖njn‖2]}∀u = 1 : U, n = 1 : An (3.22)

f = Tr{E[‖xjn(
√
puτĤjjn − 1)‖2]} − (τ −√puτ) · Tr{E[‖njn‖2]}∀u = 1 : U, n = 1 : An (3.23)

The term E[‖njn‖2] is equal to σ2Iu and its trace equals to σ2U

f = Tr{E[‖xjn(
√
puτĤjjn − 1)‖2]} − σ2U(τ −√puτ)∀u = 1 : U, n = 1 : An (3.24)

f = Tr{E[xjnx
H
jn(
√
puτĤjjn − Iu) · (√puτĤjjn − Iu)H ]} − σ2U(τ −√puτ)∀u = 1 : U, n = 1 : An

(3.25)

As xjn and Ĥjjn are independent, then:

f = Tr{E[xjnx
H
jn ] ·E[(

√
puτĤjjn − Iu) · (√puτĤjjn − Iu)H ]} − σ2U(τ −√puτ)∀u = 1 : U, n = 1 : An

(3.26)

f = Tr{τ ·E[(
√
puτĤjjn − Iu) · (√puτĤjjn − Iu)H ]} − σ2U(τ −√puτ)∀u = 1 : U, n = 1 : An

(3.27)

f = τ · Tr{(puτE[ĤjjnĤ
H
jjn ])− (

√
puτĤ

H
jjn)− (

√
puτĤjjn)} − σ2U(τ −√puτ)∀u = 1 : U, n = 1 : An

(3.28)
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3.4.1 Asymptotic Analysis

To perform optimization of the pilot sequence length, we add a power constraint and a MMSE

constraint and solve Lagrange equation; the optimization problem will become:

min(f)
τ

subject to C1 : −puτ
L∑
l=1

βjl ≤ 1− γ

C2 : τ ≥ U

C3 : An � U

(3.29)

where C1 depicts that MMSE is less than another threshold. C2 follows from the fact that pilot

sequence length should be at least equal to the number of UEs to provide one value for every UE. C3

ensures that number of Micro BS antennas should be so much greater than number of served UEs.

By applying Lagrange multiplier and adding Lagrange operator λ, the final optimization problem

after adding the constraints will be:

L(τ, λ) = L(τ) + λ[−puτ
L∑
l=1

βjl − (1− γ) + τ − U ] (3.30)

From (3.28), the trace of sum is equal to the trace of every individual element then we get:

L(τ, λ) = τ2puTr{(E[ĤjjnĤ
H
jjn ])} − τ√puτTr{ĤH

jjn} − τ
√
puτTr{Ĥjjn} − σ2U(τ −√puτ)+

λ[−puτ
L∑
l=1

βjl − (1− γ) + τ − U ]

(3.31)

Assume that Tr{(E[ĤjjnĤ
H
jjn

])} presents the covariance of Ĥjjn represented as R and substituting

by U =
√
puτR

1/2 and V = R−1/2τ1/2ĤH
jjn

, then (3.30) will become:

L(τ, λ) = ‖U − V ‖2 − Tr{τĤH
jjnR

−1} − σ2U(τ −√puτ)+

λ[−puτ
L∑
l=1

βjl − (1− γ) + τ − U ]
(3.32)

For 3.32 to be minimum, the first term ‖U − V ‖2 has to be zero, then we equate U and V to get:

U = V =
√
puτR

1/2 = R−1/2τ1/2ĤH
jjn

(3.33)

49



Then we get:

√
puτ = ĤH

jjn
(3.34)

From equation (3.12), Ĥjjn=Hjjn+
∑L

l=1,l 6=j Hjln+n
′
jn

. When Hjjn gets extremely large or when the

number of BS antennas An � U , this leads to optimal asymptotic orthogonality solution (channel

hardens) [5,137], and even the linear detectors of low complexity achieve a superior performance

(Random processes become deterministic for massive arrays). This property simplifies the derivations

and improves the performance. The following property will apply:

lim
An−→∞

HjjnH
H
jjn

An
= Iu (3.35)

The off-diagonal terms of the HjjnH
H
jjn

matrix become increasingly weaker compared to the diagonal

terms, as a result the following property will apply:

tr(HjjnH
H
jjn) = An · U (3.36)

Similarly, for the interfering cells (3.36) will also apply for Hjln as follows:

tr(HjlnH
H
jln) = An · U (3.37)

Also n
′
jn

will be just an addition of noise to Hjjn +
∑L

l=1,l 6=j Hjln . From the previous equations and

substituting in (3.12), then the value of Ĥjjn will be:

Ĥjjn = (L+ 1)AnU (3.38)

Substituting by (3.38) into (3.34) then:

τopt =
(L+ 1)AnU

pu
(3.39)

As An increases, more power is needed to estimate the channel when pilot symbols are transmitted

for different antennas. In that case, pu is proportional to An. The scaling goes as c ∗An, where c is

a decreasing function of the MSE (so larger c when the MSE is low), where c ∈ [0, 1].

τopt =
(L+ 1)U

c
(3.40)

where L is the number of interfering cells. For low MSE, then c=1 and τopt = (L+ 1)U
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3.5 Performance Analysis

We plotted the optimum pilot length for low MSE taking the scaling factor as c=1 in Fig. 3.1. We

varied the number of interfering cells, where the optimum length is equal to the number of users

when there are no interfering cells. In the case of pilot contamination when the same pilot sequence

is reused in the neighboring cells, the optimum pilot is proportional with the number of interfering

cells.

Also, Fig. 3.2 shows the optimum value in case of no pilot contamination varying the scaling

factor. For low MSE (c=1), the optimum pilot length is slightly greater than the number of users

and comparable to it. For high MSE (c=0.1), the optimum pilot length is large. Optimum pilot

length is related to the MSE and proportional to it.
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Figure 3.1: Optimum length varying number of interfering cells (L) for U = 10.
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Optimum Pilot Length for 10 Users and No interfering Cells
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Figure 3.2: Optimum pilot length with no pilot contamination for various scaling factors for U = 10.

3.6 Chapter Summary

In this chapter, we introduced an analytical algorithm to find the optimum pilot sequence length

using Lagrange optimization. We applied the least square optimization with MMSE as constraint.

Optimum pilot length depends on the number of users, MSE, and number of interfering cells with the

same reused pilot sequence. Our results are acceptable as they nearly give similar values with other

work in literature. The biggest challenge in using this optimization algorithm is to get an optimum

value that is feasible in real wireless networks with some other system dependent constraints. This

approach will be very useful if that condition is met.
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CHAPTER 4

Optimization of Micro BSs Positions in HetNets

4.1 Background

In real scenarios, the Macro BSs are usually of a very large number of antennas (massive MIMO),

while the Micro BSs have a less number of antennas. This design is enough to achieve very high

data rate and speed. Furthermore, the introduction of multi-tier architectures where, small cells

with low power nodes coexist with Macro cells will further enhance system performance. However,

this architecture requires networks that flexibly connect BSs that operate with different power levels,

access methods, and data rates among different tiers [138]. The new system modeling is moving

rapidly towards multi-dimensional concept with multiple layers working together [139] to improve the

overall sum-throughput gain and to reduce the NMSE. Instead of growing the network horizontally in

one dimension with complex designs, the network is growing vertically to reduce signaling overhead,

increase energy efficiency, and improve data rate [140]. The old-fashioned cellular network modeling

with fixed hexagonal shape cells doesn’t meet the modern wireless scenario. Upcoming radio cells

are no longer homogeneous and they are of varying sizes and structures depending on the type

of BS antennas used and their different capabilities. The main issue with such ultra dense small

cells HetNets is the high cumulative interference level which grows rapidly with the increase in

the number of nodes and the decrease in the distances between them [141]. Fig. 4.1 shows the

cumulative interference power level in ultra dense networks as the number of nodes increases. Also,

as the radius of the cell is smaller, the BSs are much closer to each other and this leads to more
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Figure 4.1: Interference power in ultra dense HetNets with ten Micro BSs

interference. Interference is calculated from adjacent Base stations based on large and small scale

fading then cumulative interference sum is calculated. Small cell BSs as Micro of Femto BSs can be

easily moved and redeployed, which is thought to improve the overall system performance. The

main issue in Micro/Femto tier networks is the high interference level especially when those nodes

are closely packed. Finding optimum locations for such BSs is a multi variable optimization problem.

We optimize the small cell BS locations as they can be easily deployed minimizing the interference

to neighboring nodes, which is a crucial problem especially in such dense structures.

4.2 Related Work

Authors focused on Micro BSs deployment in ultra dense HetNets. In [142–145], authors addressed

optimum small cell BSs deployment to optimize energy efficiency, energy consumption, and area

spectral efficiency by choosing the best sets from candidate locations. However, [142,143] did not
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consider the effect of interference as more Micro BSs are added. Also, in [142] Micro BSs tend to

be placed in the boundaries of the cell and no BSs are uniformly distributed inside the cell area,

which is not practical or realistic. In Table 4.1, we highlight the recent approaches on PPP cellular

Table 4.1: Previous work done on PPP-based cellular networks

Reference Tiers Downlink/Uplink SISO/MIMO User

Association

Criteria

Performance

Metric

Year

Published

[146] Single and

Multiple

NA NA Shortest

Distance

success probability

and energy

efficiency

2013

[147] Multiple Downlink MIMO NA Coverage

probability

2014

[148] Two-tier Downlink MIMO Shortest

Distance

Coverage

Probability,

Energy Efficiency,

Throughput

2015

[149] Multiple Downlink MIMO Shortest

Distance

Coverage

Probability, Area

Spectral Efficiency

2016

[144] Multiple Downlink NA Largest

Mean

Received

Signal

Power

Energy Efficiency 2016

My

Current

Paper

Multiple Downlink Massive MIMO Load

Distribution

Standard

Deviation/Load

Balancing

Energy Efficiency 2018

networks and we will start from where [150] has ended.

In [151], the authors studied the Femto BSs deployment problem and suggested a solution to

address the high interference challenge which impacts the performance. The authors matched the

users to their corresponding Femto access points, then consequently matched the Femto access

points to their corresponding service providers. The proposed algorithm maximized the uplink user

satisfaction with less complexity. The same problem was addressed by [151], where they studied the

small cell deployment challenge, but in disaster scenarios and in emergency situations to confirm
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the safety of everybody. The authors’ objective function was to minimize the density of Macro cell

BSs maintaining an acceptable level of coverage probability in all tiers. The optimization of low

power nodes was addressed in [152] as well. The authors increase the system utility by minimizing

the installation cost and maximizing throughput by defining different inter-cell interference cases for

the uplink and downlink of Long Term Evolution (LTE) HetNets. Also, the authors set a definition

for the interference probability of its set of Pico BSs and Pico users in the uplink and downlink

transmissions with respect to the neighboring Macro BSs. They verified through simulation that

the proposed algorithm reduces Pico-cell installation cost and improves utility. Authors in [143]

proposed a greedy energy efficient deployment method for the Micro BSs in HetNets by choosing

an optimum set of locations and then choosing the optimum number of BSs for this problem to

maximize energy efficiency. The analytical analysis and simulation results were compared. In

addition, authors in [144] studied the problem of Micro BSs deployment in ultra-dense HetNets and

its effect on energy efficiency. They derived formulas for the minimum achievable data rate in each

tier, for the minimum achievable throughput of the whole network, and energy efficiency with respect

to the BS deployment. A very good contribution was considered by [1], where the authors optimized

the positions and cluster sizes for fixed relays or can be considered as similar to cluster heads in our

approach. Three scenarios were compared to reduce interference and increase throughput. Also,

in [153] the authors discussed the optimum deployment in a Macro/Femto scenario. They focused

on the impact of interference on the performance of multi-tier systems and proposed to control

some deployment parameters and introduced some interference constraints to maximize overall

data rate. Authors in [154] modeled the HetNets in a fixed cell size (allocation of users to BSs

is based on fixed distances). Inter-cell and inter-tier interference were considered in this model

approximating the interference distribution using a Gamma function. Outage probability and per

user capacity (as a function of the distance to the cell center) were studied. Performances of single

and multi-tier cases were compared. One limitation of this paper is the assumption of a fixed cell

size. In turn, the users are associated with the BSs based on fixed distances, which may not be

realistic. In addition, the numerical integrals need to be computed. Authors of [155] studied multi

antenna HetNets with zero-forcing precoding. They compared the coverage probability and rate

per user for both open access (where users are allowed to access any BS in any tier) and closed

access networks (where users are granted access to certain BSs in restricted tiers). The authors
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used a cell association criterion based on the maximum SINR. In addition, the authors compared

the performance with various combinations of multiple antenna techniques. The performance when

the BS is serving a single user in each resource block (by Single Input Single Output (SISO) or

SISO or Single User Beamforming (SU-BF) is compared with MIMO configuration serving multiple

blocks (by Space Division Multiple Access (SDMA). However, the approximations need more

characterizations. In addition, the numerical integrals need extra computational tools to obtain

the results. In [147], the authors introduced the Fractional Frequency Reuse (FFR) technique to

manage the cross-tier interference (strict FFR and soft frequency reuse). In addition, the authors

derived the coverage probability for open-access and closed-access networks (different association

policies) and the average rate for the cell edge users. Finally, the authors compared the performance

of different FFR and access cases under the full SDMA and SU-BF. In [148], the energy efficiency

of different diversity schemes and antenna configurations using adaptive modulation of a two-tier

network is studied to ensure a minimum QoS. Energy is saved while obtaining the same throughput

by using Femto-cells with sleeping mode capabilities, where only a few of the available antennas

are used. This paper identifies that the diversity schemes that provide the highest throughput is

different than the ones that achieve the highest energy efficiency. Finally, in [149], the authors

derived general and asymptotic success probability expressions for multi-user HetNets with Zero

Forcing (ZF) precoding, using a novel Toeplitz matrix representation. In addition, they showed the

effect of the BS density on the success probability and derived an optimal BS density for obtaining

the maximum Area Spectral Efficiency (ASE) while guaranteeing a certain link reliability. This

paper is straightforward with a simple system model. More sophisticated system models should

be investigated. In addition, the advantages of introducing Millimeter Wave (mmWave) frequency

operation in HetNets is discussed in [156]. The authors discussed the potentials and challenges of the

5G HetNet wireless networks, which merge mmWave technologies into a massive MIMO approach.

First, they discussed the extended requirements for 5G wireless networks with an enormous number

of devices that demand more concealment, data rate, better energy and cost efficiency. Then,

they discussed the difficulties including traffic arrangement, radio resource management, mobility

management, and low-cost beamforming. In the end, they presented some design and case studies

to illustrate how to address some of the challenges in 5G HetNets. Finally, in [157], the authors

presented some analytical derivations for the conditional association and conditional coverage
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probabilities in HetNets. Also, they minimized the number and density of small cell BSs to achieve

an acceptable coverage probability in a disaster scenario.

Due to the flexibility in Wireless Sensor Networks (WSN), several research efforts were done to

optimize node location [158–161] (in single as well as multiple cluster scenarios with or without a

BS) in terms of network energy consumption, coverage [162], network lifetime, and capacity [163].

4.3 Contributions and Organization

In this chapter, we study two optimization problems to find optimum Micro BSs locations to reduce

interference, increase SINR, and increase coverage area.

We organize the remainder of this chapter as follows: In Section 4.4, we demonstrate the

interconnection of the intermediate distances between BSs. In Section 4.5, we derive the coverage

probability of a user in a multi tier network and total network energy efficiency. Section 4.6 presents

the statement and description for the non-linear optimization problem. Sections 4.7 discusses the

results and findings, while Section 4.8 concludes the chapter.

4.4 Intermediate Distances Between Micro BSs

Consider Fig. 4.2, which demonstrates the inter separation between Micro BSs and the distances

from the Macro BS at the center to various Micro BSs.

The number of Macro-to-Micro BS distances will be equal to the number of Micro BSs C in the

entire cell. Also, the number of Micro-to-Micro distances will be equal to
∑C

c=1(C − c).

Therefore, the total number of intermediate distances in each cell is equal to:

C +
C∑
c=1

(C − c). (4.1)
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Figure 4.2: Distances between Macro BS and Micro BSs

4.5 Coverage Probability and Energy Efficiency Analysis in Two-tier

Open Access HetNets

4.5.1 Coverage Probability Analysis

SINR for the downlink of a given BS k to its associated UE u on subcarrier z in an OFCDM channel

will be:

γ
(z)
k (dk) =

N2E2
cλkPTk‖dk‖−α

∑
z∈Gd

(hk
(z))

k∑
q=1,q 6=k

N2E2
cPTq‖dq‖−α

∑
z∈Gd

(hq
(z)) + σ2

n

(4.2)

where, N2E2
c is the power of the PN sequence used for spreading the signal, ‖dk‖ is the distance

from the BS to UE u, hk is the fading gain from BS k (BS k can either be a Macro or Micro BS) on

subcarrier z, σ2
n is the noise variance, and ‖dq‖ is the distance from the interfering BSs; 1 ≤ q ≤ K.

We can define the interference term
k∑

q=1,q 6=k
N2E2

cPq‖dq‖−α
∑
z∈Gd

(hq
(z)) as being equal to Idk

.
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Considering E(·) to be the expected value, then the expected data rate per UE for BS k is

calculated from the above SINR as:

<(z)
k = E[

Wk

Lk
log2(1 +

(An − U + 1)

U
γ

(z)
k )] (4.3)

where Wk is the total bandwidth assigned to each BS, and Lk is the BS load. As Lk and γk are

independent, then we can write (4.3) as:

<(z)
k =

Wk

E[Lk]
(log2(1 +

(An − U + 1)

U
γ

(z)
k )) (4.4)

where E[Lk] is the average number of UEs served by a certain tier k BS.

Considering the fact that the UE may or may not be associated to the BS, (4.4) is reduced to:

<(z)
u = xk

Wk

E[Lk]
log2(1 +

(An − U + 1)

U
γ

(z)
k ) (4.5)

where xk is a binary variable denoting whether the UE is associated to the BS or not.

If a typical randomly located UE is in coverage, then it connects to a certain BS whose SINR is

above its threshold ζk. Coverage probability in cartesian coordinates is shown as:

Pc(γk) = P(
⋃
k∈K

max
dk∈φk

γ
(z)
k (dk) > ζk) (4.6)

where P(·) is the probability of the term in brackets. Assuming that we restrict the UE to connect

to only one BS at an instance, then:

Pc(γk) = E[1(
⋃
k∈K

max
dk∈φk

γ
(z)
k (dk) > ζk)] (4.7)

Pc(γk) =
∑
k∈K

E
∑

dk∈φk

[1(γ
(z)
k (dk) > ζk)] (4.8)

which follows from the union bound.

Pc(γk) =
∑
k∈K

λkN
2E2

c

∫
R2

P(
PTkhk`(dk)

Idk
+ σ2

n

> ζk)d(dk) (4.9)

which follows from Campbell Mecke Theorem [164], where `(dk,u) = ‖dk,u‖−α, and d(·) is the

derivative operator.

Pc(γk) =
∑
k∈K

λkN
2E2

c

∫
R2

P((Idk
+ σ2

n) ≤ PTkhk`(dk)

ζk
)d(dk) (4.10)
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Pc(γk) =
∑
k∈K

λkN
2E2

c

∫
R2

LI(
ζk

PTk`(dk)
)e

−ζkσ
2
n

PTk
`(dk) d(dk) (4.11)

which arises from the fact that the channel gains are Rayleigh distributed with unity mean,

where LI(·) represents Laplace transform of interference of the term between the brackets. After

simplifications, we prove that the coverage probability is obtained as:

Pc(γk) = (

√
σ

2
N2E2

c )
∑
k∈K

λk ×
∫
R2

(e[S
2σ2

2
−(µ+σ2)S])d(dk)

(4.12)

The previous equation can be solved analytically.

Substituting by the value of S assumed at the beginning as ζk
PTk `(dk) , here comes α in (4.12). As

a special case for α = 1, (4.12) reduces to:

Pc(γk) = (

√
σ

2
N2E2

c )
∑
k∈K

λk ×
√
πe

(
δ22
4δ1

)
erf(2δ1·dk+δ2√

2δ1
)

2
√
δ1

(4.13)

where δ1 = σ2ζk
PTk

, and δ2 = (2µ+σ2)ζk
PTk

The proof is given as follows:

Proof 4.5.1 Let ζk
PTk `(dk)=S, so we want to calculate Laplace transform of interference LI(S).

LI(S) =

∫ ∞
0

e−SdkI(dk)d(dk) = E[e−S(dk)] (4.14)

Note that limits of integration are from 0 to ∞ as we are integrating over distance which should

have a positive value. Authors in [165], proved that interference in HetNets follows a Gaussian

distribution, then Laplace transform of interference will follow the same distribution and will be:

LI(S) =
1√
2πσ

∫ ∞
0

e−Sdke
−(dk−µ)

2

2σ2 d(dk) (4.15)

where µ and σ2 are the mean and variance of the Gaussian distribution respectively:

LI(S) =
1√
2πσ

∫ ∞
0

e
− 1

2 (dk−µ)
2

σ2
−Sdkd(dk) (4.16)
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Let v = dk−µ
σ , then, dk = µ+ vσ, and d(dk) = σdv

LI(S) =

√
σ√
2π

∫ ∞
0

e−
1
2
v2−S(µ+vσ)dv (4.17)

After completing the square we get:

LI(S) =

√
σ√
2π
e
S2σ2

2
−Sµ

∫ ∞
0

e−
1
2

(v+Sσ)2dv (4.18)

Let u = 1√
2
(v + Sσ), substituting by the value of v, and dv =

√
2du we get:

LI(S) =
√

2×
√
σ√
2π
e
S2σ2

2
−Sµ

∫ ∞
0

e−u
2
du (4.19)

The integration
∫∞

0 e−u
2
du is evaluated as

√
π

2 as shown [166]:∫ ∞
0

e−u
2
du =

1

2

√∫ ∞
0

∫ ∞
0

e−(x2+y2)dxdy =
1

2

√∫ 2

0
π

∫ ∞
0

re−(r2)drdθ =
1

2
(
√

2π)(

√
1

2
) =

√
π

2

(4.20)

So we substitute by its value in (4.19) we get:

LI(S) =

√
σ

2
e
S2σ2

2
−Sµ (4.21)

Assuming that σ2 = σ2
n, we then substitute by the value obtained from (4.21) into (4.11):

Pc(γk) = (

√
σ

2
N2E2

c )
∑
k∈K

λk ×
∫
R2

(e[S
2σ2

2
−(µ+σ2)S])d(dk)

(4.22)

The previous equation can be solved analytically.

Substituting by the value of S assumed at the beginning to be equal to ζk
PTk `(dk) , where `(dk) = d−αk .

Here comes α in (4.22).

Pc(γk) = (

√
σ

2
N2E2

c )
∑
k∈K

λk ×
∫
R2

e
[

(
ζ2k

P2
Tk

d−2α
k

)σ2

2
−(µ+σ2)(

ζk

PTk
d−α
k

)]

d(dk)

(4.23)

Pc(γk) = (

√
σ

2
N2E2

c )
∑
k∈K

λk ×
∫
R2

e
[(
ζ2kd

2α
k

2P2
Tk

)σ2−(µ+σ2)(
ζkd

α
k

PTk
)]

d(dk)

(4.24)
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Figure 4.3: Distance between Micro BS and UE

As a special case for α = 1, (4.24) reduces to:

Pc(γk) = (

√
σ

2
N2E2

c )
∑
k∈K

λk ×
√
πe( δ

2
2

4δ )erf(
2δ1dk,u+δ2√

2δ1
)

2
√
δ1

(4.25)

where δ1 = σ2ξk
PTk

, and δ2 = (2µ+σ2)ξk
PTk

From Fig. 4.3, for a rectangular cell with center at the origin, of dimensions 2 · a and 2 · b, where

the horizontal dimension spans from −a to a along the x-axis and the vertical dimension spans from

−b to b along the y-axis we can derive coverage probability in cartesian x and y coordinates as:

Pc(γk) = (

√
σ

2
N2E2

c )
∑
k∈K

λk ×
∫ a

−a

∫ b

−b
(e[S

2σ2

2
−(µ+σ2)S]) · 2xy(x2 + y2)−1/2fx(x)fy(y)dxdy

(4.26)
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where d(dk) = d(
√

x2 + y2) = 1
2(x2 + y2)−1/2(2x · 2y)dxdy, fx(x) = 1

2a and fy(y) = 1
2b .

4.5.2 Energy Efficiency Analysis

For this section, we derive a new expression for energy efficiency in multi-tier networks. We define

Lk as the number of UEs associated with a tagged BS in kth tier, or in other words, it is the traffic

load of a BS.

The probability that a tagged UE is connected to a kth tier BS is [167]:

Pk =
λkP

2
α
Tk∑K

k=1 λkP
2
α
Tk

(4.27)

Definition 1 If we define Rtotal as the minimum achievable throughput of the whole network that

depends on coverage probability, expected data rate, and BS density, then its equation is written as:

Rtotal =
K∑
k=1

Pc(γk)λuPk<k (4.28)

Then, energy efficiency is calculated as:

ηEE =
Rtotal∑K
k=1 λkPk

(4.29)

where Pk is the total power consumption of a BS in the kth tier and is calculated as:

Pk = Pstk +4ME[Lk]PTk (4.30)

where, Pstk is the static power of the BS in the kth tier, 4M is the load transmission power, and

PTk is the transmit power of the kth tier BS.

After doing assumptions and simplifications, we finally prove that energy efficiency of the network

is:

ηEE =



∑K
k=1

λ3kP
2
α
Tk∑K

k=1 λkP
2
α
Tk

log2(1 + (An−U+1)
U )γk,u)

( 1
2σN

2E2
c )Wk

√
πe

(
δ22
4δ1

)
erf(

2δ1·dk+δ2√
2δ1

)

2
√
δ1


∑K

k=1 λk(Pstk +4ME[Lk]PTk)
(4.31)

The details of the proof are presented as follows:
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Proof 4.5.2 We defined Lk as the number of users served by a certain tier BS. This number has a

distribution, where according to [168], the probability generating function of Lk is:

GLk(x) = E[eλu(x−1)] =
∞∑

Lk=0

λLku e−λuxxLk

Lk!
(4.32)

Here Probability Mass Function (PMF) of Lk is:

PMF = P(Lk = n) =
GLnk (0)

n!
=

∫ ∞
0

GLk(x)f(x)dx (4.33)

where f(x) is the generalized gamma function or its approximation with shape q and rate b, then

PMF is.

PMF = P(Lk = n) =

∫ ∞
0

(λux)ne−λux

n!
f(x)dx (4.34)

We consider the approximated gamma function:

f(x)approx = (Cλk)x
q−1e(−λkbxa) (4.35)

where a = 4πR2
c , where Rc is half the distance between the Micro BSs after the thinning process.

C = Rclλk, where Rcl is the circle radius of the working area surrounding the Micro BSs.

According to the results obtained from [169], a = 1.0787 ≈ 1, b = 3.0328 ≈ 3, q = 3.3095 ≈ 3.4

Assuming a=1, then PMF is:

PMF =
(Cλnuλk)

n!

∫ ∞
0

xn+q−1e−λuxe−λkbxdx (4.36)

PMF =
(Cλnuλk)

n!

∫ ∞
0

xn+q−1e−(λu+λkb)xdx (4.37)

Let u = (λu + λkb)x, then du = (λu + λkb)dx, dx = du
(λu+λkb)

, x = u
(λu+λkb)

, and xn+q−1 =

( u
(λu+λkb)

)n+q−1

We substitute by the value of u in (4.37):

PMF =
(Cλnuλk)

n!(λu + λkb)(λu + λkb)n+q−1

∫ ∞
0

un+q−1e−udu (4.38)

PMF =
(Cλnuλk)

n!(λu + λkb)n+q
Γ(n+ q) (4.39)
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The average number of users served by a tagged BS in kth tier is:

E[Lk] =

∞∑
n=0

n · PMF (4.40)

E[Lk] =
∞∑
n=0

CλnuλknΓ(n+ q)

n(n− 1)!(λu + λkb)n+q (4.41)

E[Lk] =
∞∑
n=0

CλnuλkΓ(n+ q)

Γ(n)(λu + λkb)n+q (4.42)

For any complex n, when n is large:

Γ(n) =

√
2π

n
(
n

e
)n (4.43)

Hence the fraction Γ(n+q)
Γ(n) will become:

Γ(n+ q)

Γ(n)
= (1 +

q

n
)n−

1
2 (
n+ q

e
)n (4.44)

Which is best approximated by 1, so:

E[Lk] = Cλk

∞∑
n=0

λnu
(λu + λkb)n+q (4.45)

By geometric series test, this function converges, and its value is:

|an+1

an
| = |

λn+1
u

(λu+λkb)n+q+1

λnu
(λu+λkb)n+q

| (4.46)

|an+1

an
| = λu

λu + λkb
(4.47)

Taking its limit to ∞:

lim
n−→∞

λu
λu + λkb

=
λu

λu + λkb
(4.48)

E[Lk] = Cλk
λu

λu + 3λk
(4.49)

As λu � λk, we can approximate E[Lk] as λu
λk

.

From (4.28), we substitute by E[Lk]=
λu
λk

. Also, we assume that noise variance is equal to

interference variance as σ, we calculate Rtotal as:
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Rtotal =
1

2σ
N2E2

c

K∑
k=1

λ3
kP

2
α
Tk∑K

k=1 λkP
2
α
Tk

Wk log2(1 +
(An − U + 1)

U
γk)

∫
e−[S2σ2+(2µ+σ2)S]d(dk)

(4.50)

Substituting by (4.50) into (4.31), energy efficiency of the network will be:

ηEE =



∑K
k=1

λ3kP
2
α
Tk∑K

k=1 λkP
2
α
Tk

log2(1 + (An−U+1)
U )γk)

( 1
2σN

2E2
c )Wk

∫
e−[S2σ2+(2µ+σ2)S]d(dk)


∑K

k=1 λkPk
(4.51)

As a special case for α = 1 and substituting by the value of E[Lk] in (4.30), we get:

ηEE =



∑K
k=1

λ3kP
2
α
Tk∑K

k=1 λkP
2
α
Tk

log2(1 + (An−U+1)
U )γk)

( 1
2σN

2E2
c )Wk

√
πe

(
δ22
4δ1

)
erf(

2δ1·dk+δ2√
2δ1

)

2
√
δ1


∑K

k=1(Pstk +4MλuPTk)
(4.52)

4.6 Optimum Locations of Micro BSs.

BSs in each tier of HetNets are usually randomly deployed according to a PPP. The locations

chosen by a PPP may not be the best locations to achieve the best SINR or the least interference.

In this chapter, we study the optimum allocation of Micro BSs. We suggest two optimization

problems and study performance using extensive simulations. Signal and interference powers are

the most important parameters that affect system performance. The goal of any design is to

reduce interference, that is why we focused on reducing their bad impact on network performance.

Placement of small cell BSs at very close locations zooms out and maximizes the interference.

Optimum deployment of BSs directly affects interference.

SINR is defined as the power of a certain signal of interest divided by the sum of the interference

power (from all the other interfering signals) and the power of some background noise. When SINR
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is high, BER is low, because for a given modulation a certain SINR at the decoder input must be

realized. As the difference between the wanted signal and the unwanted signals (interferers and/or

noise) get smaller it will be more difficult to detect the information that is in the wanted signal.

BER is proportional to 1
SINR

n
, where n is a subcarrier index or number of bits per symbol.

First, we suggest a new algorithm Optimum Positions for Least Interference (OPLI) to provide

the least interference and improve system performance. Next, we suggest an optimization problem

for Micro BSs locations to obtain better SINR for the uplink channel from the Micro BSs to the

Macro BS.

4.6.1 Optimum Deployment of Micro BSs (OPLI Algorithm)

In this subsection, we will study the optimum deployment of Micro BSs to minimize interference.

4.6.1.1 Problem Formulation

Without the loss of generality, we may assume, the Macro BS is at the origin. The Macro cell is

assumed to be circular with radius R. BSs are initially placed uniformly inside this circular cell.

The distances from the Macro BS to any Micro BS (dj), and that between two Micro BSs (dij) are

determined respectively as:

dj =
√

xj
2 + yj

2 = rj

dij =
√

(xi − xj)2 + (yi − yj)2

(4.53)

Remark 4.6.1 We can either consider our optimization problem in cartesian coordinates or in polar

coordinates. x and y or r and θ will be considered as the location variables that we are optimizing as shown

in Fig. 4.4.

Iij is the interference between two Micro BSs and is equal to Pkhijdij
−α, where hij is the Rayleigh fading

gain. Our algorithm is explained in detail in Algorithm 1 and the flow chart in Fig. 4.5 further clarifies and

demonstrates the algorithm.

4.6.1.2 Complexity Analysis

We consider x and y positions of every Micro BSs, which are distributed randomly according to the positions

obtained from the PPP as shown in Fig. 4.4(note that a Poisson random number is considered for the number
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Algorithm 1 OLPI Algorithm For Optimum Allocation of BSs

1: procedure OPLI(r, θ)

2: Initialization

3: Define Ith, ζk, PTk , λk

4: t(i): initial position values (polar) obtained from PPP.

5: c: number of Micro BSs, R: Circle Radius

6: for i=1:c do

7: Compute x and y positions of each node.

8: x(i) = t(i)cos(t(i+ c))π/180)

9: y(i) = t(i)sin(t(i+ c))π/180)

10: Compute channel gains.

11: if i == 1 then h(i) = raylrnd(200, 1, 1)

12: else h(i) = raylrnd(20, 1, 1)

13: end if

14: Calculate distances between nodes

15: for j=1:c do

16: if i == j then d(i, j) = t(i)

17: else temp = (x(i)− x(j))
2

+ (y(i)− y(j))
2

18: d(i, j) =
√
temp

19: d(j, i) = d(i, j)

20: end if

21: end for

22: end for

23: Interference sum calculation Tij = sum(Iij).

24: Compute coverage probability Pc(γk).

25: if Tij ≤ Ith, Pc(γk) ≥ ζk, then check violation of other position constraints

26: else optimizer generates new positions ∈ uniform PDFs

27: end if

28: end procedure
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Figure 4.4: Distribution of Micro BSs around the Macro BS.

of BSs and a Uniform distribution is considered for BSs locations). Then, we apply a thinning process based

on a certain distance criteria to exclude very near nodes. The x and y positions suggested by the optimizer

in every iteration are restricted to be taken from a Uniform Probability Density Function (PDF).

Our optimization problem works by minimizing the sum of total interference (Tij) from adjacent Micro
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Figure 4.5: Flow chart for our proposed distance optimization algorithm.
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BSs, which can be formulated as:

min
x,y

I∑
i=1

J∑
j=1,i6=j

PTkhij(
√

(xi − xj)2 + (yi − yj)2)−α

subject to C1 : R ≥ xj ≥ −R;∀xj ∈ u[−R,R]

C2 : R ≥ yj ≥ −R;∀yj ∈ u[−R,R]

C3 : 2R ≥ dij ≥ 0;∀dij ∈ u[0, 2R]

C4 : R ≥ dj ≥ 0

C5 : Tij ≤ Ith

C6 : Pc(γk) ≥ ζk

(4.54)

where constraint C1 and C2 depict that the x and y coordinates of the Micro BSs are restricted inside the

circular Macro cell area and the positions suggested by the optimizer in every iteration are restricted to be

taken from a uniform PDF. Constraint C3 restricts that the Micro BSs can lie at maximum at the far edges

of the circular working area. Constraint C4 defines the position of the Macro BS. Finally, constraint C5 and

C6 restrict that the interference power and coverage probability should be greater than a certain threshold.

The variables in this problem are x and y coordinates of every BS, which are optimized. We put restrictions

on those x and y coordinates to lie within the square that goes from R to R and take their values from a

uniform probability density function within [-R,R]. The distances between every two Micro BSs can take any

value from 0 to 2R (if every BS is at the very far end).

If we apply polar coordinates, then x and y coordinates of a given Micro BS would be:

xj = rj cos(θj)

yj = rj sin(θj)

(4.55)

where, j represents a certain Micro BS, rj represents the random variable of the radius of the position of a

Micro BS, and θj is the angle subtended between the radius and an eastbound line. In polar coordinates,

interference sum will remain as it is, but x and y coordinates will be converted to polar coordinates. Now the

distance constraints will be in polar coordinates as well and the angle will be from a uniform probability
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density function within [0, 2π]. The corresponding optimization problem in that case will be:

min
r,θ

I∑
i=1

J∑
j=1,i6=j

PTkhij(
√

(xi − xj)2 + (yi − yj)2)−α

subject to C1 : R ≥ rj ≥ 0

C2 : 2π ≥ θj ≥ 0,∀θj ∈ u[0, 2π]

C3 : 2R ≥ dij ≥ 0,∀dij ∈ u[0, 2R]

C4 : R ≥ dj ≥ 0

C5 : Tij ≤ Ith

C6 : Pc(γk) ≥ ζk

(4.56)

4.6.2 Optimum Positions of Micro BSs to Maximize SINR

For the second optimization problem, our objective is to maximize the SINR of the communication from

all Micro BSs to the Macro BS. we consider a maximization problem of SINR in polar coordinates and we

considered the previous distance constraints plus SINR constraints. For this, we calculate the SINR matrix

for all Micro BSs, assuming BS j as the main (desired) Micro BS communicating with the Macro BS and, L

are the interfering BSs.

SINRjn =

∑Nt
n=1(d−αj )|hjn |∑A

n=1

∑L
l=1,l 6=j((d

−α
l )|hln |+ σ2

ln
)
,

(4.57)

where j = 1 : J

max
x,y

SINRjn

subject to C1 : SINRjn ≥ γth,∀j = 1 : J

C2 : R ≥ rj ≥ 0,∀j = 1 : J

C3 : 2π ≥ θj ≥ 0,∀j = 1 : J

C4 : 2R ≥ dij ≥ 0,∀i = 1 : I, j = 1 : J, i 6= j

(4.58)

where constraint C1 ensures that SINR for all Micro BSs should be greater than a certain threshold γth. C2

ensures that rj the radius coordinate of the location of a Micro BS which is assumed to have a uniform

random positive value. C3 restricts that θj the angle coordinate of the location of a Micro BS inside the circle

which, is a uniform random variable that lies in [0, 2π]. Finally, C4 ensures that dij the distance between any

two BSs is assumed to be a uniform random variable lying anywhere in [0, 2R]. Note, the farthest location

between any two BSs is 2R.
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4.7 Performance Analysis

Table 4.2 lists the parameters we used in our simulation.

We study optimum Micro BSs deployment. We use interior-reflective Newton optimization method [170–

172], which is based on a subspace trust region method. This algorithm is used for minimization of general

indefinite quadratic functions. In every iteration, the algorithm takes a step towards a point with better

function value and approximates the objective function to a simpler one. All optimization problems were

solved using interior reflective optimization algorithm with the aid of Matlab optimization tool box using

(fmincon) minimization algorithm to solve this nonlinear problem. We considered Matlab optimization toolbox

to help us in solving this constrained minimization nonlinear optimization problem. We assume a circular

working area. Macro cell is of radius R = 1000m where a Macro BS is located at the center at (0, 0) location

and a number of Micro BSs are uniformly distributed around it. First, we applied a thinning process, where

the locations of the Micro BSs were randomly distributed according to a PPP. The BSs which do not satisfy
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Figure 4.6: Micro-Micro interference comparison (coming from seven adjacent Micro BSs) for the

first optimization problem.
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Table 4.2: Parameters used for the suggested

OPLI algorithm

Parameter Value

Intensity of Initial Micro BSs Positions 20

Mean Number of UEs of each BS (λu) 200

Macro Cell Radius 1000 m

Min. allowed distance between Micro

BSs

200 m

Macro BS transmitted power 50 Watts

Noise power 20 Watts

Fading gain from Macro to Micro BSs Rayleigh distribution

within [1, 200]

Fading gain from adjacent Micro BSs Rayleigh distribution

within [1, 20]

SINR threshold 20

a certain distance criteria were excluded. Then, the users which correspond to every BS were generated as

well according to a dependant PPP using a parent-child relationship and the thinning process was applied to

them. The locations of the generated Micro BSs were obtained, then optimized using our proposed algorithm.

The fading gain from the Macro BS to the Micro BSs is chosen from a Rayleigh fading distribution within

[1, 200], and the fading gain between adjacent Micro BS is chosen from a Rayleigh fading distribution within

[1, 20].

For results of Section 4.6.1, Fig. 4.6 shows the results of the optimization problem. The interference at

all adjacent Micro BSs was reduced by an average of 5 dB. Fig. 4.7 and Fig. 4.8 show a comparison between

the signal and interference powers at the locations obtained using the approach in [1] and our proposed

optimization techniques, where the yellow circles represent the main signal power and the dark blue and light

blue halos represent the interference power. Positions A, B, and C represent the relay station locations (the

same as the Micro BSs in our model). Authors of [1] have chosen those three optimum positions empirically.

The first position (750, 0) is at the cell edge, the second position (530, 530) is in the middle of the cells

circumference arc and, the third position (692, 286) is located at the other cell edge to nullify interference

(the distances to the interfering nodes are equal). Fig. 4.7 shows obvious interference represented by the light

blue halos while, Fig. 4.8 show no interference between the adjacent nodes.

Fig. 4.9, shows the average energy efficiency of three BSs before and after optimization using (4.31).
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Although energy efficiency is not directly optimized, it improves as an added benefit. Energy efficiency as

calculated from (4.32) depends on an error function, which is a function of distance. After optimization the

distance between BSs increases, hence error function gives a bigger value and energy efficiency is improved in

turn. So energy efficiency is a calculated value that is related to the optimized distance. The curve rises first

as γth increases (because of the data rate), then drops as the coverage probability affects the results. It is

clearly seen that energy efficiency improves by optimization. Also, it decreases with the values of ρ1 or ρ2

(The Macro BS density factor, where ρk = λk
λu

).

For the second SINR optimization problem, Fig. 4.10 shows a comparison between the signal and

interference powers at the locations obtained using the approach in [1] and our proposed optimization

algorithm, where the yellow circles represent the main signal power and the dark blue and light blue halos

represent the interference power. Positions A,B, and C represent the locations obtained from [1]; whereas,

Positions A’, B’, and C’ represent our optimized locations. We can see from Fig. 4.10 that at the first positions

A, B, and C there was so much interference represented by the dark blue and light blue halos around each

Micro BS. After optimization, the locations moved to A’, B’, and C’. We can see from Fig. 4.10 that each

Micro BS is less affected by interference from the neighboring ones and nearly interference is completely

eliminated. Fig 4.11, shows a comparison between the power for seven interfering Micro BSs. It is assumed

that a single Micro BS is communicating to the Macro BS, while the other Micro BSs are considered as

interferers. We found that the SINR for the uplink from the main Micro BS to the Macro BS increased by 2

dB after applying the optimization. SINR has been maximized for the transmitting BS and minimized for

the interfering ones.

4.8 Chapter Summary

A good solution to improve network energy efficiency and network capacity is to optimally deploy Micro BSs

to reduce interference, which is the main issue especially in dense closely packed nodes. We have seen that

although energy efficiency is not directly optimized, it improves as an added benefit due to its dependence on

error function. In this chapter, we suggested novel algorithms for optimizing Micro BSs locations to increase

received signal power, reduce interference, and improve coverage. Conventional interference mitigation

algorithms are spectrum partitioning based, which suffer from some drawbacks (They are costly, spectrum

inefficient, and do not meet the increasing data demand of the network in case of ultra dense small cells that

could degrade quality of service and throughput). We suggest novel algorithms that may be considered as

location-based interference mitigation algorithms. We minimized sum of interference level and maximized

SINR. The proper choice of the constraints contributed in obtaining such feasible results. The results after

optimization show a significant improvement. Also, we compared our results with other work and showed
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that our suggested algorithms are promising in boosting the performance and reducing interference.

77



-1000 -500 0 500 1000

-1000

-500

0

500

1000

10

20

30

40

50

60

Y-POSITION

SINR POWER
X-POSITION

A

B

C

Figure 4.7: Positions of three BSs from [1]

-1000 -500 0 500 1000

-1000

-500

0

500

1000

10

20

30

40

50

60

A'

B'

C'

SINR POWER
X-POSITION

Y-POSITION

Figure 4.8: Position of three BSs after applying our suggested first optimization algorithm

78



0 2 4 6 8 10 12 14

SINR Threshold (dB)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A
ve

ra
ge

 E
ne

rg
y 

E
ffi

ci
en

cy
 fo

r 
T

hr
ee

 C
lu

st
er

s(
bi

ts
/J

ou
le

) 104

After Optimization, Rho1=0.5, Rho2=0.1
Before Optimization, Rho1=0.5, Rho2=0.1
After Optimization, Rho1=0.125, Rho2=0.1
Before Optimization, Rho1=0.125, Rho2=0.1
After Optimization, Rho1=0.5, Rho2=0.5
Before Optimization, Rho1=0.5, Rho2=0.5
After Optimization, Rho1=0.125, Rho2=0.5
Before Optimization, Rho1=0.125, Rho2=0.5

Figure 4.9: Average energy efficiency comparison before and after optimization

79



Signal and Interference Power Comparison With Reference Paper
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Interference Power Before and After Optimization
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CHAPTER 5

Optimizing Macro BSs Locations in HetNets for

Eliminating Interference

5.1 Introduction

PPP is thought of as the best stochastic geometry process that would represent the randomness and

in-homogeneity of HetNets [154]; However, placing the BSs at the locations obtained from the PPP does

not provide the best placement to improve system performance and reduce interference. Furthermore, note

that once a BS is installed, it is not easy to move Macro BSs with their huge infrastructure from their first

assigned locations. However, effective deployment and design initially before the first installment of BSs can

be beneficial. The goal is not to move the base stations that are already installed (despite the possibility of

doing that), but the goal is to install new ones in a better way. Regarding moving the old ones, If the installer

finds more benefits for moving them, besides studying other parameters as well (like climate, inhabited areas,

difficulty etc.) then every case is studied individually.

In this chapter, we propose a novel way to find optimum locations for Macro BSs to achieve the

best-expected performance. The coverage area of any cell depends on the transmitted Radio Frequency (RF)

power from the BS, shadow and fading margin, minimum signal strength, propagation slope, and deployment

distance. The main issue in multi-tier networks is the high interference level especially when those nodes are

closely packed [139]. If the interference among users can be minimized, say by optimizing the BSs locations,

then the coverage area in turn can be increased and more UEs can be associated with BSs and the quality of

service can be boosted. Finding optimum locations for such BSs is a multi-variable optimization problem. In

this work, we provide a combined deployment algorithms for both Macro and Micro BSs in HetNets. We
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introduce an efficient algorithm for Macro BSs deployment to help installers choose the best locations that

would provide the least interference from neighboring Macro and edge Micro BSs in adjacent cells. After

nearly isolating Macro BSs from all sources of interference, we work on selecting the best positions for core

Micro BSs deployment to minimize interference from adjacent Micro BSs of the same cell.

5.2 Related Work

Several research efforts were directed towards the problem of optimum BSs deployment. In [173], the authors

introduced an evolutionary optimization technique for optimizing the location of BSs in large scale HetNets

maximizing the system satisfaction function which depends on the BS position coordinates and traffic demand.

The proposed method has overcome the performance deterioration with the growth of search space, especially

in such large scale systems by grouping the cells together according to their mutual interference. In [173], the

authors divided the problem of optimum BS deployment into sub problems to overcome the limitation of

evolutionary algorithms when HetNet size is very large. The authors group cells together depending on their

mutual interference. In addition, the authors introduced a new evolutionary optimization approach based

on the variable-length genetic algorithm. The objective function to maximize system throughput converged

rapidly which reflects the good performance that outperformed other methods. In [174], authors studied an

optimum BS deployment algorithm for the cooperating and non-cooperating BSs cases using game theory.

The SINR was the revenue taking into account the SINR-equilibrium. They determined the locations at

which mobile terminals prefer to connect to a given BS. Also, the authors provided analytic expressions for

the cell boundaries in the SINR-equilibrium. The authors in [143] propose a simple yet efficient method

for optimum deployment and optimum number of BSs in HetNets to improve energy efficiency and network

capacity. The introduced method selects the optimum locations from a set of candidate positions and provides

better performance working on the weighted sum of energy efficiency gain over all scenarios. Also, [142,144]

initially assume an area deployed with Macro BSs only, which is not a realistic and practical scenario. An

interesting paper [1] studies the best position to place the fixed Relay Stations (RS) from a set of empirical

good solutions in a LTE network by analyzing the RS deployment in three positions within the cell area.

The best RS position was set in the middle of the cells circumference arc. Further analysis showed that

the network performance is improved with the RS deployment at the cell edge for all considered positions,

since this area is characterized by a lower received power with higher interference levels. The optimum RS

locations increased the percentage of the area served by an RS and the mean data rate in the cell. The

optimum positions were concluded to be in the middle of the cells circumference arc closer to the cell edge.

Also, network performance was improved when the number of RSs is increased. The problem of BS location

and antenna configuration optimization for cellular networks was studied by [175]. The authors used network
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cost as an objective function to guarantee coverage for each demand point and they put constraints on SINR,

area coverage, capacity, and quality of service. The authors considered a discretized map with demand

points to illustrate the network mathematical model. The interference is minimized by defining a certain

protection distance between the UEs. In order to achieve a higher quality of service, a longer deployment

distance should be applied. Also, in [153] the authors discussed the optimum deployment in a Macro/Femto

scenario. They focused on the impact of interference on the performance of multi-tier systems and proposed

to control some deployment parameters and introduced some interference constraints to maximize overall

data rate. Finally, in [157], the authors presented some analytic derivations for the conditional association

and conditional coverage probabilities in HetNets. Also, they minimized the number and density of small cell

BSs to achieve an acceptable coverage probability in a disaster scenario.

5.3 Contributions and Organization

In this chapter, we introduce an efficient algorithm for Macro BSs deployment to help installers and designers

choose the best locations that would provide the least interference from neighboring Macro and edge Micro

BSs in adjacent cells. We were able to isolate every Macro BS along with its associated Micro BSs and users

from all sources of interference coming from neighboring Macro and Micro BSs in adjacent cells. We will

treat every Macro cell as an independent unit, canceling the effect of neighboring BSs in adjacent cells. After

nearly isolating Macro BSs from all sources of interference, we work on selecting the best positions for core

Micro BSs deployment to minimize interference from adjacent Micro BSs of the same cell.

We organize the remainder of this chapter as follows. In Section 5.4, we explain all sources of interference.

Section 5.5 presents the description of Dummy Intersecting Circle (DIC) algorithm and the combined Modified

Dummy Intersecting Circle (MDIC) algorithm for optimizing Macro and Micro BSs locations. Numerical

results are discussed in Section 5.6 and sensitivity analysis for various thresholds values is presented in

Section 5.7. Finally, Section 5.8 concludes the chapter.

5.4 Channel and Interference Models

We assume an imaginary circle around every Macro BS approximately representing the cell coverage area.

Considering the line of sight path between Macro BSs, we may join the line between the centers of the two

Macro BSs and take the intersection point of this line with the circle as the location of a dummy Micro BS at

the edge. Note that the straight line intersects every circle at two locations, so we take the minimum values

as, (Xu, Yu) for the first circle intersects and (Xv, Yv) as the second circle intersects. The Macro and Micro

BSs transmission powers are PM and Pm respectively. There are many sources of interference in our system.
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Figure 5.1: An explanation of various interference levels in our model.

Fig. 5.1 demonstrates various interference sources.

The interference between two Macro BSs i and j will be:

Iij = PM (hij)
2d−αij (5.1)

where hij is the fading gain between two Macro BSs, and considering (Xi, Yi) and (Xj , Yj) as the coordinates of

the positions of the two Macro BSs, then the distance between them is given as dij =
√

(Xi −Xj)2 + (Yi − Yj)2.

The interference from a Macro BS i to a Micro BS u at the edge of the adjacent cell is given by:

Iiu = PM (hiu)2d−αiu (5.2)

where hiu is the fading gain between the Macro BS and edge Micro BS, and the distance between them is

diu =
√

(Xi −Xu)2 + (Yi − Yu)2.

The interference between two Micro BSs u and v located at the outer edges of two adjacent cells will be:

Iuv = Pm(huv)
2d−αuv (5.3)

where, huv is the fading gain between the two edge Micro BSs, and the distance between them will be

duv =
√

(Xu −Xv)2 + (Yu − Yv)2.
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The interference between two Micro BSs p and q at the core of a given cell will be:

Ipq = Pm(hpq)
2d−αpq (5.4)

where hpq is the fading gain between two core Micro BSs, and considering (Xp, Yp) and (Xq, Yq) as the

coordinates of the positions of the two Macro BSs, then the distance between them is given as dpq =√
(Xp −Xq)2 + (Yp − Yq)2.

The interference between a Macro BS i at any given cell and a Micro BS p at the core of the same cell

will be:

Iip = PM (hip)
2d−αip (5.5)

where hip is the fading gain between a Macro BS in a given cell and a Micro BS at the core of the same cell,

and the distance between them is given as dip =
√

(Xi −Xp)2 + (Yi − Yp)2.

5.5 Optimization of Macro BSs Locations in HetNets

5.5.1 Dummy Intersecting Circle (DIC) Problem Formulation

A common practice was that BSs in each tier of HetNets were usually randomly deployed according to a

PPP. The locations chosen by a PPP may not be the best locations to achieve the highest signal power or

the least interference. In this section, we first deploy BSs using a PPP, considering line of sight between

BSs we optimize those locations to minimize (1) Macro-to-Macro BS interference, (2) Macro-to-Micro BS

interference, and (3) Micro-to-Micro BS interference considering the downlink channel from the Macro BS to

the Micro BSs. The key idea behind our suggested approach is that we assume an imaginary circular cell

surrounding each Macro BS along with all its associated Micro BSs and, minimize the interference coming

from all sources to the Micro BSs at the edge of the circle considering line of sight components. Then we can

treat every Macro BS along with its associated Micro BSs as an independent unit. In other words, we loosely

assume, a Micro BS at the core of the circle will not get interference from the neighboring Macro BSs or their

associated Micro BSs.

Fig. 5.2 represents a network arrangement with six Macro BSs, where the middle BS on the upper row is

the BS under consideration and it is surrounded by five interfering adjacent Macro cells. We have to eliminate

interference from all the five adjacent BSs by applying the proposed algorithm. Our optimization problem
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Figure 5.2: An illustration of considered scenario: BS1 gets interference from surrounding BSs

will be formulated as:

min

I∑
i=1

J∑
j=1,i6=j

Iij +

I∑
i=1

U∑
u=1,i6=u

Iiu +

U∑
u=1

V∑
v=1,u 6=v

Iuv

subject to C1 : Iij ≤ γ1

C2 : Iiu ≤ γ2

C3 : Iuv ≤ γ3

C4 : 2 ·R ≥ dij ,∀dij ∈ u[0, R]

C5 :
√
A ≥ Xj ≥ −

√
A,∀Xj ∈ u[−

√
A,
√
A]

C6 :
√
A ≥ Yj ≥ −

√
A,∀Yj ∈ u[−

√
A,
√
A]

(5.6)

where, constraints C1, C2, and C3 represent that the interference should be less than certain thresholds.

Constraint C4 represents the distance criteria between every two adjacent Macro BSs. Constraints C5 and

C5 restrict the presence of the Macro BSs within the chosen working area where suggested values from the

optimizer come from a uniform probability density function.

Our algorithm works as follows:

1. First, generate the locations of Macro and Micro BSs according to two dependent PPPs using a
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Algorithm 2 Optimum Macro BSs Deployment to Eliminate Interference

procedure DIC(X,Y )

Initialization

(Xi, Yi) and (Xj , Yj) are initial values from PPP.

Define thresholds: γ1, γ2, γ3

m: number of Macro BSs, R: Circle Radius

for i=1:m do

for j=i+1:m do

X1 = X(i);

Y1 = Y(i);

X2 = X(j);

Y2 = Y(j);

n = (Y2 − Y1)./(X2 −X1); . Slope of line joining two cells

b = Y1 − n ∗X1; . Y-axis intercept

[xu, yu] = linecirc(n, b,X1, Y1, R); . Intersection of line with second cell

[xv , yv ] = linecirc(n, b,X2, Y2, R); . Intersection of line with first cell

temp =
√

(Xu −X2)2 + (Yu − Y2)2;

Xu = Xu(find(min(temp))); . Consider closest intersection point

Yu = Yu(find(min(temp))); . Consider closest intersection point

temp2 =
√

(Xv −X1)2 + (Yv − Y1)2;

Xv = Xv(find(min(temp2))); . Consider closest intersection point

Yv = Yv(find(min(temp2))); . Consider closest intersection point

Calculate Iij , Iiu, Iuv .

if Iij ≤ γ1, Iiu ≤ γ2, Iuv ≤ γ3,
√
A ≥ X(i), Y (i) ≥ 0; ∀Xj , Yj ∈ u[−

√
A,
√
A], then

return Iij , Iiu, Iuv

Check for convergence

return Xi, Yi, Xj , Yj

else if Generate new Positions then

end if

end for

end for

end procedure
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parent-child relationship.

2. Next, apply a thinning process to verify that the distance between every two Macro BSs is greater

than a certain threshold. We do not want Macro BSs to overlap or be very close to each other. Also,

We repeat the same process for the Micro BSs.

3. After applying the thinning process, we take the locations obtained from thinning and feed them as

initial values to the optimization process.

4. Assume the presence of an imaginary circle surrounding every Macro BS and its associated Micro BSs.

The generated circle is assumed to pass through an edge Micro BS on the circumference. To get the

location of the dummy Micro BS at the edge, we draw a line from the center of the main Macro BS to

all the neighboring interfering ones. The line will intersect each circle at two points. The smallest value

will be considered and the other one will be discarded as we are not interested in the far edge Micro

BS. The distances from the Macro BS to the edge Micro BS of the adjacent cell will be considered and

used for interference calculation.

5. Interference coming from the core Micro BSs will not be considered and we consider interference at

the edge Micro BS only. The assumption is that, if interference is eliminated at the neighboring edge

Micro BS, then, there would be no interference coming from the neighboring core Micro BSs.

6. We minimize interference from all adjacent Macro BSs. Then, from neighboring Macro BSs to the edge

Micro BS at the first circle. Finally, we minimize the interference between the edge Micro BSs of two

adjacent circles. We repeat the same process until we cover all circles in the entire network.

The detailed DIC algorithm is explained in block Algorithm 2.

5.5.2 Modified Dummy Intersecting Circle (MDIC) Problem Formulation

We want to cover all sources of interference that a Macro cell may encounter to find a way to isolate it and

treat it as an independent unit. Here we divide the Micro BSs associated with any Macro cell into core and

edge Micro BSs. Edge Micro BSs will serve as a means of finding the location of the farthest point at the cell

edge and minimize interference at it. We study the transmission between two Macro BSs in adjacent cells,

the transmission from a Macro BS to any Micro BS in an adjacent cell (backhaul link), the transmission

between two outer edge Micro BSs in adjacent cells, and the transmission between all Micro BSs at the core

of a given Macro cell. Our algorithm is divided into two steps; first one is the Macro BSs optimum locations

and second one is the Micro BSs optimum locations to eliminate all sources of interference. Our proposed

algorithm is explained and split among blocks Algorithm 3 and Algorithm 4. Also, flow chart 5.3 further

gives more explanation.
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Figure 5.3: Flow chart of our proposed MDIC algorithm
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For the first step to find optimum Macro BSs locations, our optimization problem will be formulated as:

min
X,Y



f1 =
∑I
i=1

∑J
j=1,i6=j [Iij ]

f2 =
∑I
i=1

∑U
u=1,i6=u [Iiu]

f3 =
∑J
j=1

∑V
v=1,j 6=v [Ijv]

f4 =
∑U
u=1

∑V
v=1,u 6=v [Iuv]

Subject to



C1 : Iij ≤ γ1

C2 : Iiu ≤ γ2

C3 : Iuv ≤ γ3

C4 : Ijv ≤ γ4

C5 : 2 ·R ≥ dij ,∀dij ∈ u[0, R]

C6 :
√
A ≥ Xj ≥ −

√
A,∀Xj ∈ u[−

√
A,
√
A]

C7 :
√
A ≥ Yj ≥ −

√
A,∀Yj ∈ u[−

√
A,
√
A]

(5.7)

where, constraints C1, C2, C3, and C4 represent that the interference should be less than certain thresholds.

Constraint C5 represents the distance criteria between every two adjacent Macro BSs. Constraints C6 and

C7 restrict the presence of the Macro BSs within the chosen working area where suggested values from the

optimizer come from a uniform probability density function.

After avoiding all sources of interference from adjacent Macro cells, every Macro cell can be considered as

an independent unit.

Secondly, we optimize Micro BSs locations, which are associated with every Macro BS. For the second

part, our optimization problem will be:

min
X,Y

f5 =

P∑
p=1

Q∑
q=1,p6=q

[Ipq]

Subject to


C8 : Ipq ≤ γ5

C9 : dcp ≤ dcpmin

(5.8)

where constraint C8 restrict the interference between Micro BSs in the same cell not to go over a certain

threshold value. Also, constraint C9 restricts that the minimum distance between the parent Macro BS and

the associated Micro BSs should not exceed a certain value.
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Algorithm 3 Optimum BSs Deployment to Eliminate Interference

1: procedure MDIC(X,Y )

2: Initialization

3: Define(Xi, Yi) and (Xj , Yj) as locations of Macro BSs from PPP.

4: Define γ1, γ2, γ3, γ4, γ5, nMicro: number of core Micro BSs, nMacro: number of Macro BSs.

5: Define (Xp, Yp) and (Xq, Yq) as locations of Micro BSs.

6: m: number of Macro BSs, t: Matrix of optimum Macro locations

7: Pm = Micro power, PM = Macro power, α = Attenuation coefficient;

8: hij and hpq: Macro and Micro fading gains, R: Cell radius

9: dcp: Min. distance from Macro to Micro BSs.

10: For i=1:m do

11: For j=i+1:m do

12: X1 = X(i), Y1 = Y(i), X2 = X(j), Y2 = Y(j)

13: n = (Y2−Y1)
(X2−X1) ; . Slope of line joining two cells

14: b = Y1 − n ∗X1; . Y-axis intercept

15: [Xu, Yu] = linecirc(n, b,X1, Y1, R); . Intersection of line with second cell

16: [Xv, Yv] = linecirc(n, b,X2, Y2, R); . Intersection of line with first cell

17: temp =
√

(Xu −X2)2 + (Yu − Y2)2;

18: Calculate Iiu = PM (h2
iu)(min(temp)−α);

19: Xu = Xu(find(min(temp))); . Consider closest intersection point

20: Yu = Yu(find(min(temp)));

21: temp2 =
√

(Xv −X1)2 + (Yv − Y1)2;

22: Calculate Ijv = PM (h2
jv)(min(temp2)−α);

23: Xv = Xv(find(min(temp2))); . Consider closest intersection point

24: Yv = Yv(find(min(temp2)));

25: temp3 =
√

(Xv −Xu)2 + (Yv − Yu)2;

26: Calculate Iuv = Pm(h2
uv)(min(temp3)−α);

27: temp4 =
√

(X1 −X2)2 + (Y1 − Y2)2;

28: Calculate Iij = PM (h2
ij)(min(temp4)−α);

29: end procedure
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Algorithm 4 Optimum BSs Deployment to Eliminate Interference (Cont.)

30: if Constraints are satisfied then

31: return Iij , Ijv, Iiu, Iuv and check for convergence

32: return Xi, Yi, Xj , Yj , Xu, Yu, Xv, Yv

33: else if Generate new Positions then

34: end if

35: Microindex=1;

36: for p = 1:nMacro do

37: Macrolocx = t(p, 1); Macrolocy = t(p, 2);

38: MacroLoc{p}=[Macrolocx ,Macrolocy ], nMicro = 0;

39: while nMicro < 4 do

40: Microlocx = unifrnd(Macrolocx − 400,Macrolocx + 400, 1, 1);

41: Microlocy = unifrnd(Macrolocy − 400,Macrolocy + 400, 1, 1);

42: dcp =
√

(Macrolocx −Microlocx)2 + (Macrolocy −Microlocy )2;

43: if (dcp < dcpmin , nMicro > 0) then

44: count=0;

45: for q = 1:nMicro do

46: xloc = Microloc{p}(q, 1); yloc = Microloc{p}(q, 2);

47: temp5=
√

(xloc −Microlocx)2 + (yloc −Microlocy )
2
;

48: Calculate Ipq = PM (h2pq)(temp5
−η);

49: if (Ipq < γ5) then count = count + 1;

50: end if

51: end for

52: if (count == nMicro) then

53: Accept locations and increment the counter;

54: nMicro = nMicro+1;

55: end if

56: end if

57: if (nMicro == 0, dcp < dcpmin) then Accept Micro location and no interference is present;

58: nMicro = nMicro+1;

59: end if

60: end while

61: Microindex = Microindex+1;

62: end for

63: EndProcedure
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Our algorithm works as follows:

1. First, we generate uniform locations of Macro BSs from a PPP and assume a circular cell surrounding

every Macro BS along with its associated Micro BSs.

2. Restrict distances between every two Macro BSs to be greater than a certain threshold and exclude too

close locations. Those locations are initial values that we want to optimize for interference reduction.

3. Consider Micro BSs at the outer edge of the circular cell and we neglect core Micro BSs at this point.

If interference is eliminated at the edge of the cell, then no interference will pass to the core.

4. Consider that each Micro BS at the circumference of each circular cell is facing an adjacent Micro BS

at the circumference of the neighboring cell. To get the exact location of the edge Micro BS at each cell,

we join the centres of every cell to all other adjacent ones ( connect the line between each Macro BS to

its neighboring ones ). The line will intersect every circular cell at two locations, so we consider the

closest one and we discard the far edge Micro BS. We consider distances between every two Macro BSs,

every two Micro BSs, and between Macro and Micro BSs, which we apply for interference calculation.

5. We minimize interference between Macro BSs of two adjacent cells, between the edge Micro BSs of

two adjacent cells, and from adjacent Macro BSs to an entire edge Micro BS. We repeat the same

procedure for all the cells in the network and get optimum locations of Macro BSs.

6. After isolating every Macro cell from all sources of interference, we find the optimum Micro BSs

locations in every cell to minimize interference from adjacent Micro BSs in the same cell (Note that we

did not consider Micro BSs from adjacent cells as there is no inter cell interference now). We consider

matrix t containing all optimum Macro BSs locations, where Macrolocx represents all X Coordinates

for the Macro BSs and Macrolocy represents all Y Coordinates.

7. For the first optimum Macro BS location, we generate a random location (Microlocx ,Microlocy ) for the

first Micro BS from a uniform distribution. Restrict the first Micro BS to be within a certain distance

(dcpmin) from the Macro BS and not to exceed it. For only one Micro BS there is no interference, so we

accept the location of that Micro BS.

8. Generate a second Micro BS from a uniform distribution and restrict it to be within distance dcpmin

from the Macro BS. Calculate interference between the first and the second Micro BSs. If interference

is less than a certain threshold, then we accept the second Micro BS location. Otherwise, we reject it

and generate a new location and repeat the same process again and apply the constraints.

9. Repeat for all C Micro BSs and calculate all interference values and obtain their optimum locations.

10. Repeat from step 7 to cover all Macro cells.

94



5.6 Performance Analysis

Macro BSs, Micro BSs, and UEs are scattered uniformly in the working area according to three homogeneous

dependant PPP using parent-child relation-ship. MatlabTM software was used to execute the simulation for

our proposed mathematical model and Table 5.1 presents the parameter values that we used. First, we

applied a thinning process, where the locations of BSs were randomly distributed according to a PPP. The

BSs which do not satisfy a predefined distance criteria were excluded. Then, UEs which correspond to every

Micro BS were generated as well according to a dependant PPP using a parent-child relationship and the

thinning process was applied to them. The locations of the generated Macro BSs were assigned and fed into

the optimization code to optimize their values. We used MatlabTM optimization toolbox, which helped us to

suggest new distances in every iteration restricting them to be generated from a uniform distribution. We use

interior-reflective Newton optimization method, which is based on a subspace trust region method. We used

’fmincon’ optimization function to solve this constrained nonlinear minimization problem.

Fig. 5.4 presents a comparison between the total interference (Iij + Iui + Iuv) obtained before and after

applying the DIC algorithm. It is obviously seen that interference is reduced when BSs are placed at the

suggested optimum locations. Interference is less than half the initial value and we believe that interference

can be almost eliminated using the suggested approach if the proper interference thresholds are initially chosen.

Fig. 5.5, shows a comparison for the pictures of three Macro cells before and after applying MDIC algorithm.

Every Macro BS as it emits the signal is represented by the bright white spot and signal power deteriorates

with distance (represented by the grey shaded circular pattern around each cell). In 5.5a, interference is

Table 5.1: Parameters used for Simulation

Parameter Value

Bn (Number of Macro BS

Antennas)

64

An (Number of Micro BS

Antennas)

8

U (Simultaneous Users) 16

M (Number of Macro BSs) 8

Number of core Micro BS 4

Cell Radius (R) 1000 m

Attenuation Coefficient (α) 4

Macro BS Power PM 100 watts

Micro Bs Power (Pm) 1 watts

Working Space (A) 10000× 10000 m2
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Comparison Between Interference Power Before and After Optimization
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Figure 5.4: The total interference: Sum of (Macro-Macro), (Macro-Micro) and (Micro-Micro)

interference before and after optimization

affecting badly among adjacent cells, while in 5.5b after applying the suggested MDIC algorithm every

Macro cell is independent and interference free. Fig. 5.6, demonstrates the interference power from adjacent

Micro BSs at three Macro cells. Assuming that we have four Micro BSs in each Macro cell, we can see that

interference from all adjacent Micro BSs is kept below a certain threshold of 25 dBm. As long as interference

is kept low, we can accept locations of the Micro BSs and consider them as the best solution to minimize

interference.

5.7 Sensitivity Analysis for Threshold Values

In this Section, we consider changing the values of the thresholds (γ1, γ2, γ3, and γ4) and studying their

effect on the total sum of interference from all BSs in the network. Fig. 5.7 shows all threshold combinations

that we have used for MDIC algorithm. Usually we vary one threshold and fix the others to get a better idea

of how it behaves. In Fig 5.10, we are changing the threshold γ1 for Iij (Macro base station-to-Macro base
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station) at: [1.3, 0.9, 0.7, 0.5,0.3,0.1,0.01] watts and fixing other two thresholds at γ3=0.01 watt, γ2, γ4=0.2

watt. The first combination represents sum of interferences (Iij + Ijv + Iiu + Iuv) for all BSs coming from

all adjacent cells before optimization for seven BSs. For other combinations from 2 to 7, they represent the

threshold values shown in Fig 5.7 after optimization. Before optimization, interference level is very high

as some positions are so much deviated and contributing to this high interference level. In Fig. 5.11, we

excluded the values before optimization to show variations in values with different combinations in more

details. In general, we can consider sum of interference as decreasing with reducing the threshold value chosen.

Fig. 5.12, presents sum of interference levels when changing γ2, and γ4 at: [0.01, 0.05, 0.1, 0.2, 0.3] watts .

Threshold combinations are presented in Fig.5.8. Interference sum is generally decreasing with increasing the

thresholds, but when the chosen thresholds are very low, interference increases. Also, Fig. 5.13, presents sum

of interference levels when changing γ3 at: [0.001, 0.005, 0.01, 0.02, 0.1] watts . Threshold combinations are

presented in Fig.5.9. Interference sum is generally increasing with increasing the threshold. It is worth to

mention that as interference before optimization is very high, any threshold level reduce interference by a

sufficient amount. For the iterative approach or second stage of optimization for core Micro BSs locations.

Fig. 5.14 shows comparison of sum of interference (I12 + I13 + I23 + I14 + I24 + I34) for core Micro BSs for

seven BSs using two threshold levels (γ5 = 0.005, 0.008) levels. As expected, when the chosen threshold is

higher, the sum of interference is higher and vice versa as this is an iterative approach.

5.8 Chapter Summary

HetNets are gaining the attraction of the communication society as they work in multi-layers cooperating

together to fulfill the dream of connecting the globe as one big network in the future. From stochastic

geometry, HetNets are modeled with uniform distributions according to a PPP. However, the chosen positions

from the PPP are not the optimum locations to eliminate all sources of interference.

In this chapter, we introduce a novel algorithms for Macro BSs deployment in HetNets by minimizing

sum of interference from all adjacent Macro and Micro cells, considering imaginary circles surrounding all the

Macro BSs along with their associated Micro sets. We treated every circle as an independent unit that is not

affected by adjacent Macro and Micro BSs interference. Also, we considered an algorithm for optimum Micro

BSs locations within every Macro cell to minimize inter and intra cell interference. Our results are feasible in

the real wireless network systems that would help in the development of future 5G systems.
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Interference of Macro BSs Before Applying Suggested Algorithm
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(a) Interference between three Macro cells before optimization.

Interference of Macro BSs After Applying Suggested Algorithm
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(b) Interference Free Macro BSs After Applying our Algorithm.

Figure 5.5: An illustration of how Macro cells became independent units and interference free.
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Interference Power at Micro BSs Associated with Three Macro BSs
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Figure 5.6: Interference power between Micro BSs associated with every Macro BS

Figure 5.7: Threshold combinations changing γ1 related to Fig. 5.10 and Fig. 5.11.
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Figure 5.8: Threshold combinations changing γ2 and γ4 related to Fig. 5.12.

Figure 5.9: Threshold combinations changing γ3 related to Fig. 5.13.
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Interference Sum Comparison for Various Ibb Threshold Values
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Figure 5.10: Sum of interference in the whole network before and after optimization changing γ1.
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Interference Sum Comparison for Various Iij Threshold Values

1 2 3 4 5 6

Threshold Combinations

0

50

100

150

In
te

rf
er

en
ce

 S
um

 (
W

at
t)

Figure 5.11: Sum of interference in the whole network with various γ1 values.
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Interference Sum Comparison for Various Iiu and Ijv Threshold Values
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Figure 5.12: Sum of interference in the whole network changing γ2 and γ4.
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Interference Sum Comparison for Various Iuv Threshold Values
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Figure 5.13: Sum of interference in the whole network changing γ3.
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Interference Sum Comparison for Various Ipq Threshold Values
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Figure 5.14: Interference sum comparison for two threshold levels, ’1’ refers to γ5 = 0.005 watts and

’2’ refers to γ5 = 0.008 watts.
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CHAPTER 6

Load Distribution Standard Deviation (LSTD) User

Association Algorithm

6.1 Introduction

The introduction of multi-tier HetNets is a good solution to enhance network performance [176]. The

new system modeling is moving rapidly towards multi-dimensional concept with multiple layers working

together [139] to improve the overall sum-throughput gain and to reduce the NMSE. Instead of growing the

network horizontally in one dimension with complex designs, the network is growing vertically to reduce

signaling overhead, increase energy efficiency, and improve data rate [140].

A proper UE association algorithm for HetNets is a great challenge, as the conventional maximum SINR

UE association algorithm does not provide fair distribution of load when multiple tiers with varying BSs

transmission powers are applied. Modern BSs need to cater multiple types of users in the multi-tier networks.

However; when this is applied in HetNets, usually the Macro BS will win the game. Most of the UEs will be

allocated to the Macro BS as it delivers a higher power level than the rest of the small cell BSs. Leaving the

Micro BSs with minimal load, reducing the importance of multiple tiers in general.

6.2 Related Work

We noticed that several algorithms were developed based on maximizing SINR [174], weighted sum energy

efficiency [177], sum rate [178], per-user utility function [179], and UE satisfaction [151].

Other approaches for UE association work on the idea that UEs are selfish and try to capture the
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maximum allowable bandwidth without considering other UEs needs [141, 180, 181]. UEs select the BS

with the least connected UEs to it (least load) to get the rest of the available bandwidth for itself. The

aforementioned selfish approach causes bandwidth imbalance in the network and failure in some links. Also,

this algorithm does not consider overall network balance.

6.3 Contributions and Organization

In this chapter, we worked on rebalancing UE load distribution at all BSs in the network, starting initially

from an acceptable SINR UE-BS association matrix until a uniform distribution at all BSs is achieved to

ensure that all selected BSs possibilities for every UE provide an adequate SINR level. In conventional UE

association algorithms, either SINR level or load per BS are considered for decision making. Whereas, in our

proposed two algorithms both SINR level and network load are taken into consideration.

We investigate a new centralized UE association algorithm based on optimizing UE distribution at each

BS by minimizing the standard deviation of the network load distribution. Initial BS load is defined based on

a certain SINR threshold and all allocation possibilities are determined. UE attempts connecting to one of

the possible BSs that has the least load. Standard deviation is calculated in the first iteration for the BSs

with least loads for all UEs. If results are not satisfactory, then first UE checks the next available BS along

with BSs with least loads for the rest of the other UEs and so on for the rest of the iterations. Optimum load

distribution and fair balance are achieved in the network.

The rest of this chapter is organized as follows: Section 6.4 presents the description of LSTD user

association algorithm. In Section 6.5, we present our objective function and present a detailed explanation of

the algorithm. Section 6.6 shows the results of our proposed algorithm and Section 6.7 concludes this chapter.

6.4 Explanation of the Proposed LSTD Algorithm

In this section, we propose a new UE association technique in a HetNet open access system, where each

UE can access any BS in any tier. First, we distribute users based on an SINR threshold (an acceptable

level of SINR). In our proposed algorithm, we take network load into consideration and at the same time

initially associate UEs based on an acceptable SINR level to make sure that good signal quality is maintained

while load is redistributed. To implement this algorithm, initial SINR from all UEs to each BS is required,

which in turn requires the knowledge of channel gains, attenuations, and transmission powers for every BS.

In our suggested algorithm, we assign UEs to BSs minimizing the overall load standard deviation (Standard

Deviation (Std)) of the network to reduce fluctuation in every BS load from the mean value. Standard

deviation means how far measurements are deviated from the mean value. The mean value represents E[Lk]
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obtained from (4.49). If standard deviation is high, this means that distribution is not appropriate. We use

standard deviation as a measure to identify how many base stations are overloaded and under loaded and

redistribute them. If number of users and number of base stations are fixed then mean value will be fixed

in every iteration, but standard deviation depends on distribution, so when distribution changes standard

deviation will change as well.

For example, if we have 100 users and 10 base stations, then the ideal distribution is to give 10 users to

every base station. In that case standard deviation will be zero. but in actual case this is not possible. We

try to reach the standard deviation of zero if possible.

Our algorithm is explained in detail in blocks Algorithm 5 and Algorithm 6, and the flow chart in Fig. 6.4

gives a brief idea of the basic concept.

6.5 Problem Formulation and Complexity Analysis

Fig. 6.1 highlights our suggested UE-association algorithm, where the upper part shows all the available

BS allocation possibilities based on a chosen SINR threshold (γth). The middle part shows how the load

distribution was imbalanced before applying our algorithm. Finally, the last part, shows the optimum load

distribution after applying our algorithm. Fig. 6.2 describes the basic idea of the suggested user association

algorithm, where the sorted users are iteratively associated with the possible BSs all at once. The first column

having BS indices as (3, 7, 8) represents the possible BSs for association for the third UE and the successive

columns are the possibilities for the rest of the UEs considering the BSs with less loads. Fig. 6.3 shows an

explanation of the selection criteria of the best BS for a certain UE from all available combinations. We

choose the UE with least number of available BSs for connection, then try all BSs possibilities along with the

BS with the least load for the other UEs then calculate standard deviation and choose the best combination

that shows a standard deviation below a certain threshold.

Fig. 6.5 shows a sample of user distribution and corresponding standard deviation in each iteration.

Assuming network load or number of UEs per BS as (udist). It is worth to mention that udist is just a

summation of load in every BS and does not reflect which user is associated to which BS in every iteration so

standard deviation can be duplicated despite that distribution is different. We can see that there are 14 BSs

and 100 UEs, so mean value is 7.1428 and it is fixed in all iterations and approximated to 8. For the first

iteration distribution, standard deviation is calculated by adding squares of the distances from the mean,

dividing by the number of points, then taking the square root. Fig. 6.6 shows all transitional iterations as

user attempts the connection to all possibilities. Heavily loaded BSs are loosing part of their load and under

loaded BSs are gaining more load along iterations until the algorithm balances the load and converges to the

required standard deviation. Note that the algorithm tends to associate users to least loaded BSs.
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Algorithm 5 Optimum Load Distribution Standard Deviation (LSTD)

1: procedure LSTD(u,k)

2: Initialization

3: k: BSs number, u: UEs number, meanvalue=u/k;

4: udist= zeros(1, k), udistF = zeros(1, k);

5: FinalDist = zeros(u, k), TempDist = zeros(u, k);

6: uattempted-bs = zeros(u, k);

7: While Std(
∑

u udistku) > Lth do

8: calculate SINR;

9: if SINR ≥ γth then Generate (lf)

10: and assign 1 for greater than threshold;

11: else assign zero for less than threshold

12: end if

13: define nbsu and define nubs;

14: sort nbsu and nubs;

15: start with the UE with least BSs available;

16: specify number of BSs that UEs can connect with;

17: specify BSs index that UEs can connect with;

18: if UE has one BS available, then Allocate UE;

19: update: lf , FinalDist;

20: increment udistF by one;

21: reduce nubs by one and resort it;

22: else choose BS which has least load

23: find its index (nbindex);

24: end if

25: end procedure
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Algorithm 6 Optimum Load Distribution Standard Deviation (LSTD) (Cont.)

26: Check if all BSs were attempted

27: by comparing nbindex with uattempted-bs;

28: update: udist, TempDist, uattempted-bs;

29: reduce nubs by one and resort it;

30: if all BSs attempted then,

31: Connect to BSs with least UEs;

32: end if

33: if Load per BS less than mean value then, Associate UE;

34: else Reject UE

35: end if

36: update: udist, FinalDist, lf , nubs;

37: calculate Std for the load distribution udist;

38: repeat for next UE with least available BSs;

39: if Std(
∑

u udistku) < Lth then,

40: optimum distribution obtained;

41: else repeat from step (7)

42: end if

43: EndWhile

44: EndProcedure
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Figure 6.1: Proposed optimization for user distribution
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Figure 6.2: Explanation of the proposed user association algorithm selection criteria along iterations

As we described before that udist is a vector that presents network load or number of users in every BS,

then our optimization problem is formulated as:

min
udistku

Std(
∑
u

udistku)

subject to C1 : Std[
∑
u

udistku < Lth]

C2 : γku > γth

C3 :
∑
u∈U

xku = 1; k ∈ K

C4 : udistku ≤ E[Lk]

(6.1)
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Figure 6.3: Selection criteria from all available combinations

where constraint C1 accounts that standard deviation of load distribution should be less than a certain

threshold. Constraint C2 depicts that SINR should be greater than a certain threshold. Constraint C3

restricts that every UE can connect to only one BS at a time, and finally, C4 employs that the final UE

distribution per BS should not exceed the load mean value.

Our algorithm is explained as follows:

1. First, we calculate SINR matrix (lf) for every UE per BS and define all UE possibilities for connection

based on a certain SINR threshold as shown in the upper part of Fig. 6.1.

2. We define nbsu (number of BSs per UE) by summing columns of (lf)and we define nubs (number of
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Figure 6.4: Flow chart of the proposed user association algorithm.
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Figure 6.5: User distribution changing as standard deviation converges

UEs per BS) by summing rows of (lf) .

3. Then, we find the UE with least number of available BSs for connection and determine the BSs indices

as nbindex. If only one BS is available, the UE has to connect with it. Whenever a UE is allocated it

should be removed from the list. Next, allocate UE to one of the BSs which have less load (which has

not been previously allocated) to generate the allocation distribution matrix according to the middle

part of Fig. 6.1. After every BS is attempted for a certain UE, uattempted− bs has to be updated to

indicate that BS has been already attempted. If no BSs are available, then choose the one with the

least load.

4. Repeat for the next UE with least possible BSs available for connection and obtain UE distribution to

BSs.

5. Sum the number of UEs associated to every BS and determine Standard deviation (Std) of UE-BS

load distribution.

6. If Std is greater than a certain threshold (Lth), we start the second iteration. First, we try same UE

with one of the other available BSs and recalculate Std. If value if still high, then we choose any one of

the available BSs which has the highest SINR.

7. If load for the BS where UE is assigned is less than a mean value, then assign UE to it. Otherwise, we

reject this UE. We meant by checking the mean value after calculating standard deviation is that if

this base station reached the mean value (maximum load any BS can accept) or cannot go over this
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Figure 6.6: Transitional iterations as load in one BS changes

value then if user has other options for connection then it should go to them and leave this fully loaded

base station that reached mean value. If we do not have other options available then it will sadly

connect to that base station despite it is saturated and already reached mean value.(meaning that if

best option or best base station is already fully loaded then user should choose another base station

from the available base stations)

8. Repeat the same process for the rest of the UEs until Std value falls below the threshold.

9. Obtain the optimum load distribution matrix as shown in the lower part of Fig. 6.1.

10. Finally, the number of UEs associated per BS should be equal or nearly equal for all BSs.

6.6 Simulation Analysis

MatlabTM simulation was used to analyze the performance of the LSTD UE association algorithm. We

evaluate the efficacy of the proposed methods in comparison with the conventional max-SINR algorithm.
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Table 6.1 lists the values we used in estimating the performance of the proposed method.

In Fig. 6.7, we plot the load distribution for our suggested algorithm and compare it with the classic

max-SINR UE association algorithm for 100 UEs and 12 BSs. As we see, the conventional UE association

method has the shortcoming of an unbalanced load distribution. Whereas, optimizing the load distribution

yields a fair distribution of load among all nodes.

Fig. 6.8 shows a comparison of the amount of consumed bandwidth from the total bandwidth in the

conventional UE association method and our suggested method. It is clearly seen that in the classic UE

association algorithm, some BSs are suffering from bandwidth shortage as they are unable to provide adequate

service for all associated UEs. Link failure and poor service quality will result as a consequence of inability of

BSs to serve all their associated UEs.

Fig. 6.9 presents the load standard deviation for a number of UEs, which represents our objective function

as it converges with iterations. Here, as the number of UEs in the network increases, the load standard

deviation value starts at a higher level and requires more time and more iterations to converge. Fig. 6.10

shows a comparison of the objective function as it converges for the cases of high and low Macro BS powers.

Higher power is associated longer time and more iterations to reach optimum goal.

6.7 Chapter Summary

HetNets are gaining the attraction of the communication society as they work in multi-layers cooperating

together to fulfill the dream of connecting the globe as one big network in the future. In this chapter, we

introduced a novel algorithm for allocating UEs to the corresponding BSs based on optimizing the load

standard deviation in an OFCDM system with spreading in time and frequency domains. Our goal was to

Table 6.1: Parameters used for LSTD user association algorithm

Parameter Value

Intensity of Initial Micro BSs Positions 20

Mean Number of UEs of each BS (λu) 200

Micro Cell Radius 500 (m)

Min Allowed Distance Between Micro BSs 200 (m)

Macro BS Transmitted Power 50 (Watt)

Noise Power 20 (Watt)

SINR Threshold 0.5

Standard Deviation Threshold 1
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Figure 6.7: Comparison between network load of the proposed optimum standard deviation user

association versus Max-SINR

reach a nearly linear standard deviation curve so that UE load is nearly uniform. We started initially from

an acceptable SINR level to ensure that even when UEs are associated to another BS, they still are getting a

strong signal and the link does not fail. Our algorithm is considering both; load and SINR level. Our results

provide excellent improvement in system performance.
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CHAPTER 7

Real Time Load Balance (RTLB) UE Association

Algorithm

7.1 Introduction

The research on UE association in HetNBets is limited and is still in its first steps despite its significant effect

on the performance of HetNets.

The classic max-SINR or max-RSS user association algorithms (where the UE connects to the BS with

the highest received signal strength or the highest signal-to-interference-and noise ratio) are inappropriate

solutions for HetNets due to their nature of variable transmit BS antennas power levels. The aforementioned

methods tend to associate UEs to the BSs with the best signal quality or strength; however, they are not best

suited for HetNets as UEs in this context will tend to connect to the Macro BS, which is the one with the

highest signal power. A severe load imbalance and significant inefficiency arises and impacts the performance.

Reassociation/handover of UEs upon data set change, i.e.: when new UEs are added or dropped or when

UEs move from one location to another is very challenging and requires a fast efficient algorithm to cope

with the rapid changes.

7.2 Related Work

Most of the work that has been done so far to allocate UEs to BSs in multi-tier networks focused on allocating

UEs to BSs, which are either having the maximum received signal power, maximum SINR, sum rate [178],

weighted sum energy efficiency [177], or per-user utility function [179]. We believe that all the aforementioned
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algorithms are not better than maximizing SINR, where they either tend to allocate UEs to Macro BSs that

have the strongest transmitted signal power, or tend to associate UEs to small cell BSs leaving Macro BSs

with less load.

To overcome the drawbacks of max-SINR and max-RSS in HetNets, some efforts introduced SINR-biased

user association algorithm [182]. Signal strength of Micro tier BSs is artificially enhanced by multiplying it by

a certain bias to increase number of UEs associated to Micro BSs. A significant increase in system throughput

and capacity is noted; however biased Micro BSs performance was degraded by strong interference from the

Macro BS. Some research efforts [183–186] focused on optimizing the value of the bias to maximize network

utility, throughput, and reduce outage probability. Also, [187] introduced the rate-biased user association

algorithm as another solution to overcome the drawbacks of max-SINR user association. This algorithm

tended to reduce the load of Macro BSs and offer more load to Micro BSs.

In [188], the authors employed the Selective Small Cell BS Deployment (SBS) as a method of UE

association, where the area around the Macro cell is divided into center and edge regions. Micro BSs are

only active in the region where Macro coverage is poor). This approach is commendable, but may have some

practical limitations. In [189], the authors combined UE association algorithms using SBS along with traffic

offloading using Cell Range Expansion (CRE). SINR distribution analysis, coverage probability, rate coverage,

and deduced semiclosed-form expressions metrics. Similarly as in [188], the working region is divided into

center and edge regions. The drawback of CRE is that the Macro BS now acts as a strong interferer and

SINR level calculated at it is reduced.

Also, some research was directed to introduce new interference mitigation techniques designed specifically

for the biased HetNet Scenarios to overcome interference from Macro BSs like the Inter Cell Interference

Coordination (ICIC) and the enhanced version Enhanced Inter Cell Interference Coordination (eICIC)

techniques. In [190], the authors introduced the dynamic eICIC considering different mobility scenarios,

traffic mixes, and adaptation rate to achieve various network objectives. Also, authors in [183] introduced

a joint optimization of Almost Blank Subframes (ABS) and UE-association based on real network data to

determine the amount of radio resources assigned to Pico cells and to establish the association rules for

UE selection. In [191], the authors studied the joint problem of UE association and spectrum allocation in

multi-tier HetNets. The UE connects to a BS based on the maximum biased downlink received power. After

that, the authors optimized network utility, optimal spectrum partition, and optimum user association. The

joint problem of user association and ABS ratio issue with eICIC scheme in HetNets is studied in [192]. A

user association algorithm with polynomial complexity is proposed and system throughput and users service

fairness are analyzed through simulation results. Furthermore, in [193] the authors propose an optimization

algorithm with multiple coexisting network services (unicast, multicast and VO services) to maximize user

utility. The proposed eICIC configuration has three layers (service layer, BS layer, and network layer. The
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results suggested that the proposed algorithm outperforms other solutions. Also, in [194] the authors introduce

the joint optimization problem of load balancing of downlink and uplink to maximize the total utility for UE

rate in eICIC HetNets. In addition, the authors proposed a method based on configuring uplink transmission

in the Macrocell in ABSs (UMABS) to improve the efficiency of the ABS, balance the load, and improve

system capacity users rate.

7.3 Contributions and Organization

In this chapter, we introduce a new dynamic user association algorithm in cooperating open access HetNets.

Our algorithm works very fast and benefits from the ideas that BSs can share their load information and

status (accepting or not accepting UEs at this moment) with each other and that traffic transfer is possible

among BSs. We use real-time scenarios, where users motility and status change are considered. Users motion

leads to changing the network data set at every instance and users’ status change means that some users can

be added or dropped at a given time instant. We associate UEs initially based on maximum SINR, then

select the UE having highest SINR value to ensure that a strong enough SINR level is met.

The rest of this chapter is organized as follows: Section 7.4 presents the description and explanation

of RTLB user association algorithm. Section 7.5 presents the problem formulation. In Section 7.6, we

present mathematical analysis for UEs’ mobility and status change. Section 7.7 presents overage probability

mathematical analysis fore mobile UEs. Section 7.8 shows the results of both algorithms and Section 7.9

concludes this chapter.

7.4 Explanation of RTLB User Association Algorithm

We propose a dynamic distributed UE association algorithms for cooperating BSs in HetNets. We assume

BSs share their load information among each other and that traffic transfer occurs from lightly loaded BSs

and vice versa when BSs broadcast their status to other BSs in every iteration or data set change. Our

algorithm is fast and effective in redeployment problem in rapidly changing network scenarios when UEs

positions change or when new UEs are added or dropped from the network. We only process the change that

happens in evey iteration and we do not start the algorithm all over from the beginning. To implement this

algorithm, initial SINR from all UEs to each BS is required, in order to decide UEs that will be associated to

every BS based on maximum SINR value it is getting from which BS. Also, load for every BS has to be well

known in every iteration to specify every BS status. Fig. 7.1 represents an explanation of how our proposed

algorithm selects the UE to be removed off the over loaded BS. All UEs in the network (whether they are

active or inactive) are assigned a unique Identification Number (ID). After specifying the giving BSs and
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Figure 7.1: Selection criteria for UEs at every giving BS and for the accepting BS

starting from the first giving BS, we specify the IDs of UEs associated with the first giving BS and move

the one with highest SINR value to the accepting BS with highest SINR value. We repeat for all extra UEs

associated with this BS then for the rest of the giving BSs.
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7.5 Problem Formulation and Complexity Analysis

We formulated our optimization problem as follows:

max
udistku

SINRku

subject to C1 : max(SINR(bsuid(k))) = umax;∀StatusBaseStation(k) = −1

C2 : SINR(bsids(umax)) = max;∀StatusBaseStation(k) = 1

C3 :
∑
u∈U

xku = 1; k ∈ K

C4 : udistku ≤ E[Lk] +margin

(7.1)

where constraint C1 accounts that the user which has the max SINR (umax) for the giving BS should be

selected first. Constraint C2 depicts that the selected user previously should move to the accepting BS having

the maximum SINR value as long as it is one of the possibilities for this user. Constraint C3 restricts that

every UE can connect to only one BS at a time, and finally, C4 implies that the final UE distribution per BS

should not exceed the load mean value plus a margin to allow some capacity for exceeding the mean value as

the user might not have any other option.

The flow chart for the first iteration (without motion or user status change) of our proposed algorithm is

shown in Fig. 7.2.

Our algorithm is explained in blocks Algorithm 7 and Algorithm 8. The details are as follows:

1. Generate initial locations of Micro BSs PPP.

2. Generate Nt total number of UEs in the working area, and distribute them uniformly.

3. From the total Nt UEs, generate a number Na of active UEs. Note that in the first iteration, UEs

have not been added or dropped or changed position.

4. We divide the working area into G regions and specify locations of active UEs.

5. As some UEs are mobile, fading gain matrix h for every active UE will be attributed to location. Every

location inside a region in the network area has a specific h value. Note that every location is viewed

differently at each BS, so every location is a vector equal to the number of Micro BSs.

6. Calculate distances from all active UEs to all BSs and calculate signal power matrix from all BSs to

every active UE. Also, calculate interference matrix from adjacent BSs to each UE.

7. Consider SINR, and values above a certain SINR threshold will get a value of 1, otherwise 0.

8. Consider a certain load threshold (LoadThreshold) for every BS. Generate a flag for every BS status,

and BSs will broadcast their status information among other BSs (StatusBaseStation) according to

the following:
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Algorithm 7 Real Time Load Balance (RTLB)

1: procedure RTLB(u,k)

2: Initialization

3: k: BSs number, Nt: Total UEs, Na=Active UEs;

4: LoadThreshold=Na/k +margin;

5: CoverageC: Coverage area length,

6: udist: user distribution per BS= zeros(1, k);

7: bsuid: UE IDs associated with BSs;

8: StatusBaseStation: Broadcasted BS status;

9: Specify active UEs locations and divide working area into regions;

10: Calculate fading gain per region per BS;

11: Calculate distances from active UEs to BSs, and signal powers;

12: Calculate SINR;

13: if SINR ≥ γth then Generate (lf)

14: and assign 1 for greater than threshold;

15: else assign zero for less than threshold;

16: end if

17: calculate udist;

18: for i = 1:k do

19: index = 1;

20: for j = 1:Na do

21: if (k(Na(j))==i) then udist (i) = udist(i) + 1;

22: bsuid{i} (index)= Na(j);

23: index = index + 1;

24: end if

25: end for

26: end for

27: StatusBaseStation = ones(1,k);

28: end procedure
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Algorithm 8 Real Time Load Balance (RTLB) (Cont.)

29: for i = 1:k do

30: if (udist(i) == LoadThreshold) then StatusBaseStation(i) = 0;

31: else if (udist(i) > LoadThreshold) then

32: StatusBaseStation(i) = -1;

33: else StatusBaseStation(i) = 1;

34: end if

35: end for

36: for i = 1:k do

37: if (StatusBaseStation (i) == -1) then

38: tempx = [bsuid{i′} SINR(bsuid{i},i)];

39: Sort UE IDs (bsuid{i}) in descending order;

40: end if

41: Specify accepting BSs, UE with highest SINR can connect to;

42: UE is assigned to accepting BS with highest SINR;

43: Repeat for the next UEs of the first giving BS;

44: repeat

45: for rest of giving BSs

46: until udist of all BSs is close to LoadThreshold;

47: Calculate udist;

48: Apply random walk for UEs and randomly generate step sizes;

49: Drop a random number of UEs from active list and get their indices;

50: For every dropped UE check it belongs to which BS;

51: Remove UE from that BS;

52: Remove dropped UEs from active UEs list.

53: Add some UEs from inactive UEs list randomly and add them to active UEs list.

54: Update udist, StatusBaseStation, and LoadThreshold;

55: Recalculate SINR matrix for active UEs (added and moved UEs);

56: Repeat from step 13;

57: end for

58: end procedure
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Figure 7.2: Flow chart for the first iteration of our proposed RTLB user association algorithm.
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−1, Giving BSs with more UEs than load threshold.

1, Taking BSs with less UEs than load threshold.

0, Fully loaded BSs with the exact value of the load threshold.

9. Specify which BSs are in giving state. Start from first giving BS and specify indices of UEs associated

with it as bsuid.

10. Sort UEs in descending order of their SINR values. The UE with highest SINR value should go first to

prevent the drastic drop in SINR when moving to another BS and denote this UE as (umax).

11. Identify BSs that can accept the given UE, sort their indices in descending order as (bsids), and move

UE to the one having the highest SINR value. If UE cannot go to any other BS, it will stay with its

current BS. Repeat for the rest of extra UEs with the first giving BS.

12. Remove UE from the giving BS list to the accepting BS list and update BSs statuses.

13. Repeat for the other giving BSs and continue until most BSs will reach the load threshold value.

14. Second iteration will start when UEs status has changed (UE has been added or dropped) or UE has

moved to a new location.

15. We have a new set of active UEs in every iteration when UEs are randomly added ( new UEs are added

from total Nt UEs or dropped (removed from the active UEs list).

16. Dropped UEs are removed from active UEs list to inactive UEs list, and update udist, BS status, and

check load threshold.

17. Newly added UEs are removed from the inactive list to the active list.

18. Calculate interference, power, and SINR matrices for added UEs only and allocate them to accepting

BSs one by one and update BS status and load threshold.

19. In case no BS can take a specific UE, we allocate it to the BS with highest SINR.

20. We assume that some UEs will move according to a random walk within the working area and we

generate new locations of UEs.

21. Update the active UEs list, calculate SINR matrix for active UEs only, and repeat the same process of

finding the giving BSs.
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7.6 UEs Mobility and Status Change Analysis

We consider that the total number of UEs in the system is Nt, where only Na are active at a given instant.

Some UEs are moving in a random walk, where Nm represents the number of active mobile UEs. ND UEs

may be dropped at any instant due to call service failure, and Nd UEs may replace them. Also, λNa is the

Poisson arrival rate of active UEs, λNm is the Poisson arrival rate of active mobile UEs.

From the Poisson point process, the number of active users follows a Poisson distribution, hence, the

probability density function of a random variable Na, where Na are active UEs (whether they are mobile or

not) is:

fNa(Na) = exp−λNa
λNaNa
Na!

(7.2)

The conditional probability (follows from the conditional probability of a Poisson distribution)that UEs from

the active set turn out to be mobile or in other words the Probability of having an active UE served by a BS

whether it is mobile or not (conditional distribution of Nm given Na) is:

fNm|Na(Nm|Na) = exp−λNm
λNaNm
Na!

(7.3)

The probability that there are Nm active mobile UEs is:

fNm(Nm) =

Nt∑
Na=1

fNa(Na) · fNm/Na(Nm/Na) (7.4)

Substituting by (7.2) and (7.3) into (7.4), we get:

fNm(Nm) =

Nt∑
Na=1

exp−λNa
λNaNm
Na!

exp−λNm
λNaNm
Na!

(7.5)

From the convergence of the series:

fNm(Nm) = exp−(λNa+λNm ) | λNaλNm
(Na + 1)2

| (7.6)

Probability that there are ND UEs dropped from the active UEs set is ND
Na

, and probability that there are

Nd UEs added is Nd
(Nt−Na)

Probability that all active mobile UEs will be dropped at least once in the interval t = T is:

PD =
ND
Na

ND(λdt) exp−λdt fNm(Nm) (7.7)

where λd = ND
Nd

is the call drop rate.
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Figure 7.3: An illustration of handover from one cell to another.

7.7 Coverage Probability Considering Moving Users

SINR for the downlink of a given BS k to its associated UE u on subcarrier z in an OFCDM channel will be:

γ
(z)
k (rk) =

N2E2
cλkPTk‖rk‖

−α ∑
z∈Gd

(hk
(z)

)

k∑
q=1,q 6=k

N2E2
cPTq‖rq‖

−α ∑
z∈Gd

(hq
(z)

) + σ2
n

(7.8)

where, N2E2
c is the power of the PN sequence used for spreading the signal, ‖rk‖ is the distance from the

BS to UE u, hk is the fading gain from BS k (BS k can either be a Macro or Micro BS) on subcarrier z,

σ2 is the noise variance, and ‖rq‖ is the distance from the interfering BSs; 1 ≤ q ≤ K. We can define the

interference term
k∑

q=1,q 6=k
N2E2

cPq‖rq‖
−α ∑

z∈Gd
(hq

(z)
)2 as being equal to Irk .

In our system, part of the UEs do not undergo handover, either because they are static or because they

are not within handover region. Also, part of UEs will undergo handover as they are closer to the target BSs.

From geometry as shown in Fig. 7.3, assuming every cell has a radius R and each UE is at a random distance

r from the BS, then the intersection area between the two circular cells, which represents the handover region

is equal to:

Aoverlap = R2(2θ − sin(2θ)) (7.9)

Assuming that UEs moves in a random walk motion from point A at coordinates (XA, YA) to point A′ at
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coordinates (XA′ , YA′), then the angle of direction of motion θ is calculated as:

θ = tan−1
(YA′ − YA)

(XA′ −XA)
(7.10)

The angle of direction of motion at every tier is a uniformly distributed random variable with probability

density function (PDF) equal:

fθk(θk) =


1
2π , if π > θk > −π.

0, otherwise.

(7.11)

Following from the fact that the null probability (probability that UE lies outside the cell) of a 2D Poisson

process in an area Ac is exp− λkAc, where Ac is the cell area, then the probability that the UE lies inside the

cell of radius R is:

P(rk < R) = 1− exp(−λkπR2) (7.12)

Differentiating the previous equation, which is the cumulative distribution function will give the PDF of the

distance between the UE and the k tier BS as in [195]:

frk(rk) =


2πλkrke

−λkπr2
k , if 0 < rk < R.

0, otherwise.

(7.13)

Assuming that area of first cell is A1 and area of second cell is A2, then probability of handover is:

P(Hk/rk, θk) = 1− exp(−λk[A1 ∩A2]) (7.14)

P(Hk/rk, θk) = 1− exp(−λkR2(2θk − sin(2θk))) (7.15)

Similarly we can calculate the probability that no handover takes place as:

P(Hk/rk, θk) = 1− exp(−λkR2(2π − (2θk − sin(2θk)))) (7.16)

In that situation, coverage probability for a UE if no handoff occurs is PcH̄ , and if handover occurs it will be

PcH .

PcH̄ = P(γk ≥ ζk, H̄k/rk, θk) (7.17)

PcH = P(γk ≥ ζk, Hk/rk, θk) (7.18)

P(γk ≥ ζk, H̄k/rk, θk) = E[P(γk ≥ ζk/rk, θk)] · P(H̄k/rk, θk) (7.19)
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P(γk ≥ ζk, Hk/rk, θk) = E[P(γk ≥ ζk/rk, θk)] · P(Hk/rk, θk) (7.20)

E[P(γk ≥ ζk/rk, θk)] =

∫
rk>0

∫
π>θk>−π

P(γk ≥ ζk/rk, θk) frk(rk)drkfθk(θk)dθk (7.21)

Integration limits should go to infinity, as cell radius can take any value up to infinity [185,195]. The factor

that determines this is the transmission power of the base station. As the transmission power increases, the

cell radius increases. Also, direction of movement can take any angle from −π to π.

=

∫
rk>0

∫
π>θk>−π

P(γk ≥ ζk/rk, θk) · λkrke−λkπr
2
kdrkdθk (7.22)

Assume that N2E2
c

∑
k∈K λkPTk = a then:

= a

∫
rk>0

∫
π>θk>−π

P(hk ≥ rαk ζk(σ2
n + Irk)/rk, θk)rke

−λkπr2
kdrkdθk (7.23)

= a

∫
rk>0

∫
π>θk>−π

EIrk
[P(hk ≥ rαk ζk(σ2

n + Irk)/rk, θk)rke
−λkπr2

kdrkdθk] (7.24)

For Rayleigh fading hk ∼ e1, then:

= a

∫
rk>0

∫
π>θk>−π

e−ζkr
α
k σ

2
nLIrk (rαk ζk)rke

−λkπr2
kdrkdθk] (7.25)

where LIrk is the Laplace transform of interference.

After several assumptions, we proved that Laplace transform of interference is:

LIrk (S) =
1

2

√
(2−π2 )λkr

1−α
k

1−2α

erkζkλk[
(1−π

4
)ζk

1−2α −
√
π/2

(1−α)
]

(7.26)

The proof is as shown below:

Proof 7.7.1 Let rαk ζk=S, so we want to calculate Laplace transform of interference LIrk (S).

LIrk (S) =

∫ ∞
0

e−SrkI(rk)drk = E[e−S(Irk )] (7.27)

Authors in [165], proved that interference in HetNets follows a Gaussian distribution, then Laplace

transform of interference will be:

LIrk (S) =
1√
2πσ

∫ ∞
0

e−Srke
−(rk−µ)2

2σ2 drk (7.28)

where µ and σ2 are the mean and variance of the Gaussian distribution respectively:

LIrk (S) =
1√
2πσ

∫ ∞
0

e
− 1

2
(rk−µ)2

σ2 −Srkdrk (7.29)
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Let v = rk−µ
σ . Then, rk = µ+ vσ. d(rk) = σd(v).

LIrk (S) =

√
σ√
2π

∫ ∞
0

e−
1
2v

2−S(µ+vσ)dv (7.30)

After completing the square we get:

LIrk (S) =

√
σ√
2π
e

(Sσ)2

2 −Sµ
∫ ∞
0

e−
1
2 (v+Sσ)

2

dv (7.31)

Let u = 1√
2
(v + Sσ), substituting by the value of v, and dv =

√
2du we get:

LIrk (S) =

√
σ√
π
e

(Sσ)2

2 −Sµ
∫ ∞
0

e−u
2

du (7.32)

The integration
∫∞
0
e−u

2

d(u) is evaluated as
√
π
2 , so we substitute by its value in (7.32) we get:

LIrk (S) =

√
σ

2
e

(Sσ)2

2 −Sµ (7.33)

For Rayleigh distribution, µ and σ2 are equal to:

µ =
∑
k∈K

λkE[hk]

∫
R2

r−αk d(rk) =

√
π

2

∑
k∈K

λk
r
(1−α)
k

1− α (7.34)

σ2 =
∑
k∈K

λkE[h2k]

∫
R2

(r−αk )2d(rk) = (2− π

2
)
∑
k∈K

λk
r
(1−2α)
k

1− 2α
(7.35)

It follows that Laplace transform of interference is equal to:

LIrk (S) =
(
(2−π2 )λkr

1−α
k

1−2α )1/4

2
erkζkλk[

(1−π
4

)ζk
1−2α −

√
π/2

(1−α)
] (7.36)

Then, we substitute by (7.26) into (7.25) so:

E[P(γk ≥ ζk/rk, θk)] = 2πa

∫
rk>0

e−ζkr
α
k σ

2
nLIrk (rαk ζk)rke

−λkπr2
kdrk (7.37)

Then, we substitute by (7.37), (7.15), and (7.16) into (7.19), and (7.20) to get P(γk ≥ ζk, H̄k/rk, θk) and

P(γk ≥ ζk, Hk/rk, θk).

P(γk ≥ ζk, H̄k/rk, θk) = 2πa(1− exp(−λkR2(2π − (2θk − sin(2θk)))))

∫
rk>0

e−ζkr
α
k σ

2
nLIrk (rαk ζk)rke

−λkπr2
kdrk

(7.38)

P(γk ≥ ζk, Hk/rk, θk) = 2πa(1− exp(−λkR2(2θk − sin(2θk))))

∫
rk>0

e−ζkr
α
k σ

2
nLIrk (rαk ζk)rke

−λkπr2
kdrk

(7.39)
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7.8 Simulation Analysis

MatlabTM simulation was used to analyze the performance of RTLB UE association techniques. We evaluate

the efficacy of the proposed methods in comparison with the conventional max-SINR algorithm, SINR biased,

and rate biased algorithms. Macro BSs, Micro BSs, and UEs are scattered uniformly in the working area

according to three homogeneous dependant PPP using parent-child relation-ship. Table 7.1 lists the values

we used in estimating the performance of the proposed method.

Next, we analyze the performance of the suggested real time UE association algorithm. We initially

deploy 500 UEs uniformly according to the model shown in Fig. 7.4. Fig. 7.7, compares the performance of

the elapsed time that both algorithms will take. We show that in real-time scenarios and when the system

configuration is changing rapidly, RTLB algorithm performs very fast. LSTD performs very well for a certain

configuration in a reasonable time, but the problem is that when the data set configuration changes at a

certain moment (some users are dropped and some are added) we have to run the algorithm all over again

from the beginning. Repeating LSTD algorithm is not a problem for small changes and for short time, but

accumulatively through a long time and many iterations there will be a time delay that can affect system

performance. RTLB can be a good option in real-time scenarios where the network configuration changes

rapidly and continuously.

Fig. 7.8 presents the simulation for BER for OFCDM link for 32 UEs and 16 Micro BSs. BSs are using

the same number of subcarriers and the spreading factor in time domain is 4. First UEs send data streams to

Micro BSs. User association is decided by the Macro BS in a centralized manner where Macro BS receives

the original SINR from Micro BSs and generates the SINR matrix. UEs are associated to Micro BSs based

Table 7.1: Parameters used for RTLB user association algorithm

Parameter Value

λm 20

λu 40

Micro Cell Radius 500 (m)

Coverage Area 4000× 4000(m2)

Min Distance Between Micro BSs 400 (m)

Total Number of Users 500

Initial Number of Active Users 50

Macro BS Transmit Power 50 (Watt)

Noise Power 20 (Watt)
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Figure 7.4: Initial data set for RTLB model for a scaled grid area of 4000×4000 m and 500 total

UEs

on max-SINR and then using our suggested algorithm. BER is significantly reduced with our algorithm.

Fig. 7.10 and Fig. 7.11 present the load distribution along BSs for our proposed RTLB algorithm compared

with various algorithms. Both RTLB and LSTD algorithms provide fairly balanced load distribution. However,

in real-time scenarios RTLB outperforms LSTD as it is faster, easily adapts to rapid network changes, and

provides adequate balanced UE distribution among BSs. Max-SINR user association tends to allocate more

UEs to the Macro BS and less load to the Micro BSs. Load imbalance among tier BSs is clearly seen with

this algorithm. SINR-biased user association algorithm improves the performance of max-SINR, but does

not provide optimal fair distribution. The value of the optimum bias value has to be investigated. Finally,

rate-biased algorithm works the opposite way of max-SINR as it tends to associate UEs to small cell BSs.

The optimum bias value has to be calculated considering required performance metrics.

From Fig. 7.12, for max-SINR most UEs select the Macro BS so less low-rate UEs are available. CRE

and rate-biased provide a significant improvement over max-SINR, where more UEs are offloaded from Macro

to Micro BSs due to the biasing factor. As a result, more resources are available for Macro BS UEs and more
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Figure 7.5: An illustration of algorithm performance along iterations as user calls are added or

dropped
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Figure 7.6: An illustration of how our proposed algorithm supports variation in active users
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Figure 7.7: An illustration of the elapsed time for RTLB versus LSTD

low-rate UEs are available. In our proposed algorithm, an optimum solution is achieved where nearly equal

resources are available for Macro and Micro UEs and there are nearly equal low-rate and high-rate UEs.

7.9 Chapter Summary

In this chapter, we developed a dynamic fast UE association algorithm for cooperating BSs in HetNets

considering UEs mobility, and UEs and BSs status changes. As UEs mobility is considered, we derive an

expression for coverage probability if UEs undergo handover when they are in handover range and when

they do not undergo handover when they are outside this range. Our results are feasible in the real wireless

network systems that would help in the development of future 5G systems.
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Load Comparison With Other Algorithms
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Figure 7.10: Comparison between network load of the proposed algorithm versus other algorithms

for bias=1.5
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Average Load Per Tier BS for Various Algorithms
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CHAPTER 8

Discussion and Future Work

8.1 Objectives and Contributions

The main objective of this dissertation was to enhance the performance, combat high interference levels in

ultra dense HetNet systems, and to design user association algorithms to provide fair load distribution despite

the inhomogeneity of the system. Our goal was achieved using the following contributions:

• Optimizing pilot sequence length to improve data rate and reduce MSE. Optimum pilot sequence

length depends on number of users.

• Suggesting an algorithm to optimize Micro BSs locations to minimize interference from adjacent BSs

and increase coverage.

• Suggesting an algorithm to optimize Macro and core Micro BSs to eliminate interference. We were

able to completely isolate every Macro cell along with all its associated Micro BSs and treat it as an

independent unit.

• Suggesting a UE association algorithm to fair load distribution by minimizing network load standard

deviation. User association resulted in nearly constant load distribution in all the network. Our

algorithm has acceptable performance for real time scenarios and rapid network changes. The execution

time per data set change was nearly 1 sec.

• Suggesting a real time dynamic UE association algorithm assuming that traffic transfer is possible

from heavy loaded to lightly loaded BSs and vice versa. Also, we assume that BSs are cooperating and

broadcasting their load information continuously. In our algorithm, we considered UEs mobility, UEs

status change, and BSs status change. We compared the performance of our algorithms to other work
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in literature and proved the superiority of our algorithms in providing balanced load among all BSs in

a timely manner. The execution time per every data set change was about 0.02-0.07 sec.

• We derived coverage probability for static users, network energy efficiency, drop rate, coverage probability

for mobile users considering handover and no handover cases.

All aforementioned contributions were preceded by a deep analysis of the existing work in literature.

This allowed the identification of the advantages, weaknesses, trends and challenges related to the HetNet

development.

8.2 Future Developments

HetNet technology is an emerging solution with huge potential for 5G systems. HetNets would provide

connectivity between various network layers with each layer considered as an individual system with its own

access methods, transmission powers, and topology. HetNets have their own unique characteristics that

differ them from conventional homogeneous systems. BSs are closely packed which increases interference

levels dramatically and due to the variation in signal power of various tier BSs, conventional UE association

algorithms does not work properly with it. For the future work, we can expand our system according to the

following:

• Benefit form the characteristics of OFCDM (UEs can transmit different data types with a different

code for each one) and consider multi-classes of UEs, where UEs can ve divided into UEs sending data,

video, and audio at the same time and study whether the proposed UE association algorithms can

provide adequate performance with the new assumptions.

• As we generate SINR matrix for the possibilities of UEs connection and assign 1 for greater than a

threshold and 0 for less than a threshold, we can apply error correcting output coding which can be

used for multiple class classification to classify UEs and assign them to BSs based on some features

based on the assumption that UEs carry different data types.

• Apply power allocation and subcarrier allocation for the OFCDM HetNet using Q-learning machine

learning algorithm.

• Optimize number of BSs in every tier and study its effect on battery life and energy efficiency.

• Introduce more traffic management, radio resource management, and network planning in HetNets.

• Study new optimum beam forming, precoding, estimation, and blind detection methods for HetNets.

New algorithms to mitigate pilot contamination.

• Study various performance metrics in HetNets in the massive MIMO context.
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8.3 Conclusions

In this dissertation, we introduced a novel analytical method to obtain the optimum pilot length under pilot

power and NMSE constraints. Optimum pilot length depends on number of users. Longer pilot length gives

more channel capacity and NMSE. A moderate value of pilot sequence length is recommended to achieve

both good data rate and NMSE. However, overly long pilot will impair the system. Hence, a suitable training

length should be chosen according to the system requirements.

Also, we derived analytical expressions for coverage probability and energy efficiency for HetNets and

we introduced an algorithm to optimize Micro BSs locations to improve coverage, energy efficiency, and

reduce interference. We put constraints on location of Micro BSs within the cell area used interior-reflective

Newton optimization method to solve our non-linear optimization problem. Our results showed significant

improvement in system performance by eliminating interference.

Furthermore, we suggested an algorithm to optimize Macro BSs locations by eliminating all sources of

interference coming from adjacent Macro BSs, Micro BSs in adjacent cells, and edge Micro BSs in the same

cell. We succeeded to obtain Macro cells as interference free and completely independent units from the rest

of the network. After achieving the previous goal, we worked on core Micro BSs in the same cell and obtained

their best positions to reduce interference as well. We supported our findings by Matlab images and figures

to show how we were able to achieve a completely interference free HetNet system.

Finally, we introduced two UE association algorithms for load balancing in HetNets. The first algorithm

works by minimizing overall network standard deviation. First we specify all UEs possibilities of connection

based on a certain SINR threshold, then we sort UEs in ascending order by the ones with the least possibilities.

We try to assign first UE to the least loaded BS then the more loaded one and so on and calculate standard

deviation in every iteration until a balanced load is achieved.

The second algorithm works by balancing load as well by borrowing users and giving users to other BSs

and by the idea that traffic transfer is possible between BSs. We first start by specifying which BSs are in

giving state and specify which UEs are associated with them. UEs with the highest SINR value should be

given first. Specify BSs which are in accepting state and at the same time it is one of the available BSs of

that UE for connection. Move the UE to the one with the highest SINR value.

When comparing both algorithms we concluded that they both provide balanced load distribution. LSTD

runs in nearly 1 sec per data set change, and RTLB runs in nearly 0.02 sec per data set change. Both

algorithms run fast enough so that no significant delay is detected by the serviced UEs. Both algorithms

consider an acceptable SINR level for the BS that UE should be moved to, as well as, network load. In real

time rapid changing systems, RTLB might be more favourable.
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sphere-MCMC detection. In Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE,

pages 1–6. IEEE, 2011.

153



[64] Tanumay Datta, N Ashok Kumar, Ananthanarayanan Chockalingam, and B Sundar Rajan. A novel

MCMC based receiver for large-scale uplink multiuser MIMO Systems. arXiv preprint arXiv:1201.6034,

2012.

[65] Jienan Chen, Jianhao Hu, and Gerald E Sobelman. Stochastic iterative mimo detection system:

Algorithm and hardware design. IEEE Transactions on Circuits and Systems I: Regular Papers,

62(4):1205–1214, 2015.

[66] Jinho Choi. An mcmc–mimo detector as a stochastic linear system solver using successive overrelexation.

IEEE Transactions on Wireless Communications, 15(2):1445–1455, 2016.

[67] Lin Bai, Tian Li, Jianwei Liu, Quan Yu, and Jinho Choi. Large-scale mimo detection using mcmc

approach with blockwise sampling. IEEE Transactions on Communications, 64(9):3697–3707, 2016.

[68] Catherine ZW Hassell Sweatman and John S Thompson. Orthotope sphere decoding and parallelotope

decodingreduced complexity optimum detection algorithms for MIMO channels. Signal processing,

86(7):1518–1537, 2006.

[69] Giorgio Taricco and Giulio Coluccia. Optimum receiver design for correlated rician fading

MIMO channels with pilot-aided detection. Selected Areas in Communications, IEEE Journal on,

25(7):1311–1321, 2007.

[70] Mohamed Chouayakh, Andreas Knopp, and Berthold Lankl. Low-effort near maximum likelihood

MIMO detection with optimum hardware resource exploitation. Electronics letters, 43(20):1104–1106,

2007.

[71] Lie-Liang Yang. Using multi-stage mmse detection to approach optimum error performance in

multiantenna MIMO Systems. In Vehicular Technology Conference Fall (VTC 2009-Fall), 2009

IEEE 70th, pages 1–5. IEEE, 2009.

[72] Giulio Coluccia, Erwin Riegler, Christoph Mecklenbräuker, and Giorgio Taricco. Optimum
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