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ABSTRACT

A series of novel sulfonamide based quaternary ammonium (QUAT’s) antimicrobials
containing a variety of chemical anchors R-SO2-NH-(CHz2)3-N(CHz)2-(CH2)s-Y (where R = alkyl
or aryl and Y = organosilane (Si(OMe)s), organophosphorus (P(O)(OR?)) and benzophenone (-O-
CeH4-C(0)-CeHs)) were used to immobilize them on different substrates. Sulfonamide
organosilane QUAT’s were immobilized on to textiles substrates, whereas benzophenone QUAT’s
were used to exclusively coat plastic surfaces (polyethylene (PE), and polyvinylchloride (PVC)),
and organophosphorus QUAT’s were prepared for testing on metal surfaces (stainless steel). The
covalently attached antimicrobial coatings were found to kill gram +ve and -ve bacteria on contact,
hindering their attachment and colonization without any leachate. The partially water soluble

sulfonamide QUAT’s presented are readily prepared, easy to apply and are relatively inexpensive.

Textile samples were prepared by immersion in a MeOH:H2O (30:70) solution of
organosilane QUAT’s followed by curing/drying at room temperature for 2 — 24 hours. Plastic
samples were prepared by electrospraying an EtOH:H.O (10:90) solution containing
benzophenone QUAT’s followed by UV curing using for 2 — 5 minutes. All samples showed a
100% reduction (107 — 10° cells) of viable Arthrobacter, S. aureus, and E.coli after 3 hours of

contact time and maintained their activity over 24 hours versus the control (untreated) samples.
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1.0 INTRODUCTION

1.1 Rationale for Antimicrobials

Common surfaces that are frequently handled are called “touch surfaces”. Touch surfaces are
inhabited by various microorganisms such as bacteria, viruses and fungi which can persist in the
right environment for a prolonged period (Table 1.1).12 Both pathogenic and non-pathogenic
microorganisms can persist on touch surfaces such as door knobs, elevator buttons, staircase

railings, stethoscopes, uniforms, food preparation and packaging surfaces (Table 1.2).2°°

For centuries antibiotics and biocides have been used in variety of applications.® Antibiotics
have been administered to patients due to their selective toxicity whereas, biocides have been
regarded as antiseptics, disinfectants and preservatives and are used more generally. The concept
of biocides dates back to early empirical approaches of using copper or silver based utensils for
water storage; salting as a process of preservation of meat products and the use of vinegar and
honey as wound cleansing agents.® A library of common biocides and antibiotics for prevention

against a wide variety of infections and diseases is shown in Tables 1.3 and 1.4 respectively.

Even with advances in the science of antibiotics and biocides, the healthcare and food
industries continue to face an ever-growing microbial contamination problem. Contamination of
food packaging, storage containers, medical devices, garments and hygiene products pose a real
threat to public safety and are costly.” To date, standard hygiene procedures (hand washing,
personal hygiene products, and masks) and the use of disinfectants on medical devices and hospital
environments have been widely used as stopgap solutions to prevent infectious outbreaks.

However, these efforts have not been fully successful due to the evolution and development of



resistance by microorganisms and the lack of compliance to safety protocols by health care

professionals.®

Table 1.1: Persistence of different nosocomial pathogens on surfaces (adapted from Ref.23).

Type of Duration of Type of Duration of Type of  Duration of
Bacterium persistence Virus persistence Fungi persistence
Acinetobacter 3d.—5mon. | Adenovirus 7 d.—3 mon. Car_1d|da 1-20d.
spp. albicans
_C_Iostrldlum 5 mon. Astrovirus 7-90d. Cand_lda_ 14 d.
difficle (spores) parapsilosis
Corynebacterium 4 4 g yon [ saRs 7296 hrs | TOMUIOPSIS 405 4504,
diphtheride glabrata
E. Coli 15hrs. —16 HAV 2 hrs. — 60 d.
mon.
Listeria spp. 1d.—mon. HIV 7 d.
P. aeruginosa 6 hrs. — 16 Rotavirus 6 — 30 d.
mon.
Salmonella 10d.—4.2 L 3 wks. —20
. . Vacciniavirus
typhimurium YIS. wks.

Table 1.2: Typical bacterial loads on surfaces related to healthcare and food industry (cfu/cm?)

(adapted from Ref.3®).

Field of study

Site

Bacterial load (cfu/cm?)

Healthcare
Healthcare

Healthcare

Healthcare
Healthcare
Food

Food

Food
Food

Hospital ward surfaces
Hospital kitchen surfaces

Stethoscope membrane

Nurse workstation
Under ward bed
Meat preparation surfaces

Vegetable preparation
surfaces

Refrigerator surfaces
Food contact surfaces

2.5t0 40
210294

In > 54% of cases > 5; in
18% of cases > 29

<9
<25
10°

> 10°

813 to 6 x 108
630 to 1.8 x 10°




Table 1.3: Discovery and introduction of biocides (adapted from ref.°).

Biocide (Antiseptic or

disinfectant) Discovery Introduction
Alcohols BC Early AD
Chlorine 1774 1847
Sodium hypochlorite 1789 1827
Chlorine dioxide 1925 1946
lodine 1812 1816
Phenols
Phenol 1834 1867
Cresol 1842 1890
Triclosan 1906 1908
QUAT’s 1916 1933
Amphoterics 1952 1954
Acridines 1870 1913




Table 1.4: Introduction of antibiotics for clinical use (adapted from ref.°).

Decade Introduction
1930s/1940s Sulphonamides
Benzylpenicillin
1940s yiP )
Streptomycin
Erythromycin
1950s Chloramphenicol
Vancomycin
Cephalosporin’s
1960s Gentamicin
Broad-spectrum penicillin’s
Clindamycin
1970s . .
Trimethoprim-sulphamethoxazole
Fluorogquninolones
1980s

B-lactams
Pristinamycin derivatives
1990s, 2000s New macrolides
New B-lactams
Oxazolidinones
Everninomycins,
Glycylcyclines
Ketolides
Moxifloxacin

2000 onwards

Based on several studies conducted by World Health Organization (WHO) and the Auditor
Generals of Ontario and British Columbia, hospital-acquired infections (HAIs) or nosocomial
infections have become an economic burden due to prolonged hospitalization and in some cases,
have led to death due to severe infection related complications.®*! Specifically in North America,
approximately 220,000 Canadians and 2 million people in the United States contract pathogen

related HAIs. This has resulted in 8000 deaths in Canada and over 100,000 deaths in the U.S. each



year.81 HAI related infections result on average 10 — 20 days of additional hospitalization for the
patient, costing the health system billions of dollars.8° Alongside HAIs, Implant Associated
Infections (IAls) have also strained healthcare systems. For example, approximately 500,000
patients in the U.S. contract urinary tract infections related to catheter implants, which incur an
additional $25,000 — $30,000 treatment cost per infection resulting in approximately $3 billion
healthcare associated costs.” The increased severity and rate of infections (HAIs and 1Als) can be
associated with decreased antibiotic efficacy and drug-resistance by pathogens that are found in

surface biofilms.3"12
1.2 Biofilms

Biofilms are complex communities of bacteria which involve three phases for its formation.
The first phase is a rapid nonspecific, reversible adhesion to the surfaces via adhesin proteins
secreted by the bacterial membrane structures fimbriae or pilli (Stage I, Figure 1.1), followed by a
second phase which occurs over several hours allowing the bacteria to irreversibly bind to a surface
via adhesive ligand-receptor complexes (Stage IlI, Figure 1.1).2® Once permanently bound, the
bacteria begins to synthesize a protective (slime like) peptidoglycan matrix consisting of DNA,
proteins and polysaccharides such as exopolysaccharide (EPS).* With increased accumulation of
constituents in the matrix, bacterial colonies proliferate into mature biofilms which are resistant to
strong antibiotic doses and are difficult to eradicate.!® Therefore, to prevent infectious outbreak
caused by biofilms, strategies have been explored to prevent the bacterial adhesion to surfaces or

destroy the microorganisms upon adsorption. 316



flagella

cell wall
cytoskeletal filaments

plasmid (DNA)

3D community
| peptidoglycan envelope
proliferating colony
adhesive ligand-receptor
complexes

Figure 1.1: Schematic of bacterial adhesion and biofilm formation (adapted from ref.>*3
and used with permission from ref.!3)

Persistent biofilms pose a great threat for the medical, food, oil refining and water treatment
industries which directly impact a mass populous. Antimicrobial textiles have been integrated
widely in to different work sectors as preventive measures. Treated textiles work well with daily
consumer use, but cannot prevent biofilm formation on nonporous surfaces (eg. instrumentation,
equipment and structural features in industries). Therefore, medical device makers along with
medical and food industries are keen to introduce antimicrobial coatings as part of an infection
control strategy along with proper hygiene and disinfection protocols.® Introducing the
antimicrobial coatings on surfaces would help prevent biofilm formation and thus reduce the
spread of pathogenic infections between surfaces, patients and healthcare workers (nosocomial

infection loop, Figure 1.2).235



Contaminated Surfaces

Antimicrobial Coating

Hygiene/Disinfection Protocols
- >

Patient Healthcare worker

Figure 1.2: Prevention of the nosocomial infection loop with the application of anantimicrobial
coating (adapted from ref. 3).2°

1.3 Antimicrobial Surfaces

Porous and non-porous surfaces are common sites of microbial infestation, proliferation
and biofilm formation. One common strategy being employed to prevent microbial infection is the
use of disinfectants; however, they are often a source of environmental pollution and have been a
major contributor for the resistance development in microbial strains.'” An alternative strategy to
the use of chemical poisons was the development of surface attached antimicrobials. Since the late
1960’s, polymer based thin films or self-assembling monolayers have been widely investigated
and used to render surfaces antimicrobial. Different approaches have been used to prepare these
antimicrobial surfaces, but they can be mainly categorized as being either antibiofouling or
bacteriostatic.!”'® Antibiofouling coatings include thin film coatings that are hydrophobic in
nature, have low surface tension, and/or pack tightly together. This prevents bacterial adhesion,

but does not kill them. Bacteriostatic coatings are classified in two main categories; one that kills



microbes on contact by releasing a biocide that is adsorbed by the organism and poison it, and the
second being a contact active biocide which contains a biocidal component within the coating that

kills microbes upon contact (Figure 1.3).1718

Antibiofouling Surfaces (repelling) Bacteriostatic Surfaces (killing)

W

Q%j%

CFE

N\t

|

(a) (b) (© (d) (e)

Exclusion Steric Electrostatic Low Surface Biocide Contact Active
Repulsion Repulsion Energy Releasing Immobilized Biocide

Figure 1.3: Literature example of various types of antimicrobial surfaces. (adapted from ref. 3 and
used with permission from ref.1":18),

Older approaches for preventing biofilm formation on the surfaces relied heavily on
biocide (active) releasing antimicrobial coatings. These coatings consist of a polymer matrix in
which the biocide is impregnated. The biocide is gradually released from the matrix and kills the
microorganisms through its mode of action (biocide specific).> Examples of a leachable biocide
includes copper® or silver ions, the latter being the most preferable.’®?° Eventually the biocide
depletes from the coatings and these surfaces are once again prone to biofilm formation due to the
loss of antimicrobial activity. Currently, there is no known method/procedure to regenerate the
biocide on the applied coatings. An alternative to the leaching of biocides is the use of quaternary
ammonium compounds (QUAT’s). These active materials are immobilized onto the surfaces and

provide contact based killing with no leachable agent/biocide. The non-leaching immobilized



QUAT s provide a prolonged antimicrobial efficacy, have a minimized risk of bacteria developing

resistance, and are significantly more environmentally friendly.31214
1.4 Quaternary Ammonium Compound

Cationic surface-active agents and polymers containing a zwitterionic head have been
extensively studied due to their biocompatibility and biocidal properties.*>?! Studies by Cheng et
al.® and Rose et al.?? found that the polar zwitterionic head plays a key role in prevention of

biofilm formation and/or adhesion (Figure 1.4).

9
i—0-P-0 »

Figure 1.4: Phosphorylcholine zwitterionic compound inhibiting biofilm adhesion (adapted from
ref.16).2

Solutions containing cationic compounds includes Quaternary Ammonium Cations are widely
used due to their biocidal properties in both clinical and industrial settings.*® In general
antimicrobial QUAT’s consist of a positively charged nitrogen atom attached to one or more

hydrophobic alkyl chains and are synthesized using the Menshutkin reaction.
1.4.1 Menshutkin Quaternization Reaction

The quaternization formation reaction was first discovered in 1865 by Russian chemist
Nikolai Menshutkin.?* The quaternization reaction involves the reaction between two neutral
molecules, a tertiary amine with an alkylhalide. The reaction proceeds in an Sn2 manner, wherein
the alkylhalide is substituted by the amine producing a positively charged quaternary amine with

four bonds and a negatively charged counter ion (Figure 1.5).3



©
R R; X R
N L X-R, 2-24 Hrs R

| _ o
R, RT - 150 °C ﬁ3

Figure 1.5: The Menshutkin quaternization reaction.?*
For Sn2 reactions, the reaction rate is greatly affected by the nucleophilicity of the amines,

the leaving group, increased pressure and elevated temperature. Polar solvents were found to
accelerate the reaction by stabilizing the charged transition state along with the leaving group
(Table 1.5) and halides further down Group 17 (i.e. Br, 1) serve as excellent leaving groups. When
working with alkyltosyl or mesylates, polar protic solvents and lower reaction temperatures are

preferred to avoid a competitive elimination reaction.?®

Table 1.5: Rate of reaction for Menschutkin quaternization in various solvents (adapted from
ref.%)26

Solvent Relative Rate (s1)
CH3(CH2)4CHs 1
Et.O 4
CsHs 38
n-BuOH 70
CHCI3 100
EtOH 200
MeOH 285
ACN 375
DMF 900

For the purpose of this thesis, all quaternary ammonium compounds described in this work
will be synthesized using the Menschutkin reaction. A typical reaction would be carried out at

refluxing temperature in polar anhydrous solvents and in a closed environment (vials). Often the
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resulting product can be recovered by precipitation from Et.O. Select literature examples

portraying the reaction conditions for the formation of QUAT’s have been tabulated in Table 1.6.

Table 1.6: Literature examples of Menschutkin quaternization reaction (adapted from ref.3).

Solvent & . .
Starting Materials Product Temp. (':'_:rrr;e) Y';Lcll &
°C) ' '
S
| Br O
HO\/H\/N\ Br—C,{H,g @, |Pr.I;3/IOeOH 0-12 na ¢’
n HOWN\CIIHZS ( )
n
S
9 \ Cl
—0-Si._~_Cl  N-CygHy, —0 @, neat (110) 48 nad 28
@
9 @ Q Br b 29
EtO-P___~ | EtO-P ® H20 (82) 48 na
EtO Br = EtO \/\1\©
=

(a) Diluted directly to 50% w/v in MeOH, and (b) used directly following hydrolysis with HCI.

Various surfaces can be treated by immobilizing small size quaternary ammonium
compounds containing linker groups such as thiol*°, phosphonate3!3?, organosilane®, catechol®*

or as polymers (Figure 1.6).33%°
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}) ? Rf P R O\ Self Assembled Monolayers (SAMs)

o, ?%???%?%?%??i

Thiol Phosphonate Organosilane Catechol Polydopamine

Figure 1.6: Various anchor/linker functionalities used to form self-assembled monolayers on
various substrates (adapted from ref.334).

Surfaces treated with a polymeric coating are prepared using either a “grafting to” or
“grafting from” strategy. A grafting to strategy attaches biocides by adsorption of the polymer to
the surface (Figure 1.7A)%37 or through covalent bond formation between a linker group and
complementary functional group on the substrate (Figure 1.7B)%°; whereas the grafting from
strategy employs growth of polymeric brushes directly from the substrate. This can be
accomplished using Atom Transfer Radical Polymerization (ATRP) (Figure 1.7C),*4! which

requires an initiator directly bound to surfaces or to an immobilized anchor (Table 1.7).¢

12



(B) "Graft To"

T
@%2 ﬂ sol-gel -
R o

(A) Adsorption

Biocide added as
additive of part of polymer

‘-_/W-

(€) "Graft From" (D) Polymer Blends

or RAFT agent

polymerize §

v le ) "‘.
? ) )v ot

‘-
‘\

AN
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Bulk polymer

Figure 1.7: Various biocide immobilization strategies: (A) Polymeric thin film coatings are
adsorbed on to the surfaces; (B) Self assembled polymers or monolayers of small molecule; (C)
Surface grown biocidal polymer via (ATRP) initiator, and (D) Polymer based surfaces where
biocide is either attached to monomer prior to or added during the polymerization process (adapted
from ref.334),
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Table 1.7: Initiators used in “grafting from” technique for growing antimicrobial polymers.®

o
Anchor%)Y Polymer

(0]
Anchoring Group + B )J><Br Initiator
r

Substrate Anchoring Group Surface Grafted Initiator Reference
O
PET (Film) H,N N2 HZN\/\N)%Br 42
H
Gold coated Ti SN T
HS OH 43
(wafer) ? HS/\H;\O&BI‘
. o) 9 (0]
Magne'gltle Ho-pCH HO-P _~ . _Br 16
(nanoparticles) HO HO
“0si, ,OH hy B g
apg= _ _ i . _\ . r
Silicone (wafer) 0 s _%&MEQJ><

) (0]
PP (wafer) 0] 45
Br
on 0’ <

PET = Polyethylene and PP = Polypropylene

1.5 Sulfonamides (Sulfa Drugs)

Sulfonamide based drugs were the first widely prescribed antibiotics that helped
revolutionize the medical industry.® Sulfonamides are synthetic agents containing a S(0)2=N
linkage (see Figure 1.8) which acts as antimicrobial agent.*® The first known sulfonamide was
sulfanilamide synthesized in 1908 by German chemist Paul Gelmo*’ and was later patented as the
prodrug Prontosil by Bayer AG in 1909. Applications of Prontosil were not widely researched

until the 1930’s.%8

Around the same time Bayer AG was also investigating the use of coal-tar dyes that were
able to bind and harm parasites and bacteria. In 1935, under the direction of German chemist

Gerhard Domagk the group found that Prontosil was able to treat a range of streptococcal
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infections.*®“° Studies by Trefouels et al.>® found that Prontosil (1) was metabolized in the body
to give sulfanilamide (2) and 1,2,4-triaminobenzene (3). Further examination of individual
components revealed that the activity of 1 was entirely dependent on its in vivo reduction to 2 (see

Section 1.6.2).49°0

0)
HZN—Q—N o) . 'g-NH2 NH,
A\ 11 in vivo \ +
NH N@"_NHZ /©/ © H,N NH
2 H,N 2 2

Prontosil Sulfanilamide 1,2,4-triaminobenzene

1 (2) 3)

Figure 1.8: The in vivo conversion of Prontosil to its substituent form (adapted from ref.*%).%

1.5.1 Sulfonamide QUAT’s

For more than 100 years sulfonamide based antibiotics and QUAT based antimicrobials
have been shown individually to play important roles in the control of illness and the spread of
diseases. Researchers have long desired to design a compound that was bactericidal and possessed
the functional properties of antibiotics. The work by Barry and Puetzer resulted in the preparation
of a salt that comprised a QUAT cation and a sulfonamide radical anion, yielding a dual natured

compound (Figure 1.10).%*

R 1 s
H2n+1Cn_N_R HzN‘@f§_N‘R'
R 0]
R = CH; R' = thiazole, diazine,

R;N = pyridinium  pyridine, or methyl pyridine

Figure 1.9: lonic sulfonamide quaternary ammonium compound for chemotherapeutics
applications.>!
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Barry and Puetzer’s ionic sulfonamide QUAT’s were found to be highly bactericidal
against E. Coli and S. Auereus. Lawrence et al.>® furthered this research by synthesizing
compounds 4-9 (Figure 1.10) where the QUAT and the sulfonamide moiety are within the same
molecule with a halogen acting as the counter-ion. These compounds featured the
benzylsulfonamide group within the backbone and standard phenolic coefficient testing of these
compounds were conducted. The test indicated that compounds 4 and 5 were highly biocidal,
compound 7 was moderately biocidal, and the remainder of compounds provided only

bacteriostatic effect.>

Substrate Compound Reference
Br Br
o o o
1l @ / \ @ 1l H
HZN—S@N—C14H29 N@—ﬁ—N C;,H,s
(0) — (0}
“4) (3)
gr gr
0 ® R Oy
Liquid HzN‘ﬁ‘Q/\/N\ /N\/\®*§‘N‘C12st 52
Broth o o
(6) (7)
& o Br
/N S-NH HQ ®
— o ? Clezs‘N‘“‘Q/\/NiClezs
(0]
) 9)
= Br
S(S') H 8 (10a) m = 10
- 54
PE i \/\/N\AM; (10b) m = 14
(10)
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(11a)n =13, R, = Et, R, = Me, X = I

(11b)n =13, R, = Et, R, = Et, X = I

X (11c)n=13, R, = Me, R, = Me, X = I

0 0 ® o (11d)n=13,R;=Me,R,=Et, X =1

SRBASSYY (S N R! (119 n=15R, = Et, R, = Me, X = 1
n Ry hn=15R,=Et, R,=Et, X =1

a1 (11g) n =15, R, = Me, R, = Me, X = I
(11hyn =15, R, = Me, R, = Et, X = I

55

0 Br 0
S 6 ()”S‘N
Sabouraud H | &N’R 56
Agar | ®CBr
12) (13)

(12a, 13a) R = decyl
(12b, 13b) R = dodecyl (12e, 13¢) R =-CH,COO-decyl
(12¢, 13¢) R = tetradecyl (121, 13f) R =-CH,COO-dodecyl

(12d, 13d) R = hexadecyl (12g, 13g) R = -CH,COO-tetradecyl

Figure 1.10: Literature examples of known sulfonamide quaternary ammonium compounds. PE
= polyethylene.

Aliphatic sulfonamide QUAT’s consisting of 13 — 15 hydrocarbon chain tails (11) were
widely investigated by Song et al. for their use as anticancer chemotherapeutic agents.>® On the
other hand, Miklas et al. developed bicyclic camphor based sulfonamide QUAT’s to enhance
bioactivity.>® All of these specialty QUAT’s were designed to work in liquid mediums and were
not surface bound. U.S. Patent No. 5,104,649 illustrates a multistep process to develop biocide-
treated polymers and surfaces such as polyvinylchloride (PVC) and polyvinylbenzylchloride
(PVBC) using compound 10, where the biocide is directly linked to the surface.>* The surfaces
were functionalized with sulfonyl group by heat and UV irradiation followed by a sequential

synthetic process using an alkyl amine and alkyl bromide to obtain 10.
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1.6 Mode of Action
1.6.1 Quaternary Ammonium Compound Mode of Action

The mode of Action of QUAT’s has been extensively investigated but no firm mechanism
could be elucidated, hence only proposed pathways have been widely reported.>” One of the
proposed mechanisms that has been more broadly accepted is that the treated surfaces adsorb the
negative net charge on microbes, causing cells to be pulled towards the cationic surface which
eventually leads to the destruction of cell envelope and loss of essential cytoplasmic fluids, and

finally cell death (Figure 1.11).%

R
s
Wy

cytoplasma cell membrane cell wall

coating
, surface
gram(+) bacterial cell . negatively charged
B positively charged

Figure 1.11: Mechanism of immobilized contact active QUAT (adapted from ref.>*7)
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1.6.2 Sulfonamides (Sulfa Drugs)

All cells, prokaryotic and eukaryotic, require folic acid for development of individual
cellular components.® Human beings obtain folic acid through diet and supplements whereas
microorganisms acquire folic acid through a specific metabolic pathway. Microorganisms use a
pteridine based precursor along with p-benzoic acid in presence of dihydropteroate synthatase

enzyme to generate the required folic acid for its nourishment (Figure 1.12).%°

0
OH

Dihydropteroate
Pteridine p-Aminobenzoic acid synthatase . .
+ Folic A
Precursor (PABA) olic Acid
H,N_ N_ N
T
N yz N
COOH
O COOH
Pteridine Moiety PABA Glutamic Acid

Figure 1.12: Biosynthetic pathway for folic acid in microorganisms.

R. _H
NH, N
0=S=0
HO o N
H R,

Pp-Aminobenzoic acid  Sulfonamide

Figure 1.13: Structural analogs: p-aminobenzoic acid and sulfonamide.
Sulfonamides and/or sulfa drugs are analogs of p-aminobenzoic acid (PABA) (Figure 1.13) having

two tertiary amine sites where R and Rz can be either a hydrogen atom or a methyl group. When

introduced in to the microorganism’s folic acid pathway, the sulfonamide competitively inhibits
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the binding of PABA molecule to form folic acid, which results in inhibiting the microorganisms

growth and reproduction cycles (Figure 1.14),586061

Pteridine

Folic Acid
Precursor

Sulfonamide

Pteridine Moiety Sulfa Drug Glutamic Acid

Figure 1.14: Competitive inhibition of sulfonamide for the pteridine precursor.

The absence of a similar biosynthetic pathway in mammals and its exclusiveness in pathogenic
microorganisms suggests that the folate biosynthetic pathway is a natural target for antimicrobial

drug development.5®

1.7 Literature Examples of Contact Active Quaternary Ammonium Antimicrobial Surfaces
1.7.1 Organosilanes (Textiles, Silica, and Glass)

Surface attached antimicrobial technology was first widely investigated in the late 1960°s
using alkoxysilanes and catecholamines as anchoring groups. The first surface bound contact
active molecule that presented antimicrobial activity on contat was reported by Isquith et al. in
1972 at DOW Corning. Isquith et al. successfully functionalized cotton and glass samples with
octadecyldimethyl(3-trimethoxysilylpropyl) ammonium chloride (Si-QUAT’s) (22).2¢ This work

was a continuation of Abbot’s work, who was the first to investigate alkoxysilane based
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compounds for antimicrobial activity in solution. In solution, silane based QUAT’s were observed

to have very low values (cfu = 0) for minimum inhibitory concentration (MIC). As a result, it was

postulated that the active Si-QUAT was being adsorbed on to the equipment walls.%? Further

investigation demonstrated that a series of (3-(trimethoxysilyl)propyldimethyl-alkyl ammonium

chlorides with chain lengths of 6 to 22 showed antimicrobial activity against gram +ve/-ve bacteria

and were patented by DOW Corning (Figure Compound 14-24) 6263

Compounds Reference
| | |
(0] | (0] | (0]
R ~ L, - R T
AN O-Si _~NJ OB ~X
(0) (0) (0)
| S | S | S
Cl OH Cl
14 15 16
| |
0 (/\ 0 \ / 9 \ /
O8I~ N 0-8i_~_N-Bu O8I~ N-ceHy,
(0] (0] (0]
| o | o | o
I Cl Cl
17 18 19
| | 62,63
O  Bu p, 0 @ 0 \
O-Si_~_Pp, [0S ~N O-8i A~ B-cyHy,
(0] (0] (0]
| o | ) | o
I Cl Cl
20 21 22
b A0
U UN S NH2
|>O‘S|l\/\/(1:) |>O—Sll/\/
(o) o) NH,
| I ®
o )
Cl Cl

24
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Figure 1.15: Literature examples of organosilane based antimicrobials (adapted from ref.®).

After extensive experimentation and analysis, Si-QUAT 22 was approved by the EPA in
1977 and was commercially sold as an antimicrobial finish for textiles.* Si-QUAT 9 is
commercially available as 40 — 72% methanolic solution or 0.75 — 5% water solution from DOW
Corning® (9-6346), Microban (Liquid solution and treated textiles), Innovative Chemical

Technologies (Flexipel MMP-25), Piedmont Chemical Industries (Ztrex 72, Pomofresh 42,
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Pomofresh 4850, Pomofresh X 105), and SiShield (SiS 7200, SiISAM500, SiS AM150, SiS

AMT75).

Isquith et.al. were the first to apply Si-QUAT (72%) as 0.1% (w/v) solution in water on
pretreated glass or cotton surfaces, followed by 30 min. annealing process at 70 °C to allow
siloxane linkages to form on the pretreated substrate. However, the industrial application was
limited by the rapid polymerization of the neighboring silanes in water, causing it to precipitate
over time in storage or form a gel like layer on the substrate upon drying. In agueous environments
the alkoxy silanes undergo rapid hydrolyzation, followed by condensation of the neighbouring
silanols, forming a polymeric linkage with the substrate (Figure 1.16). Compound 22 is
commercially available as a methanol based solution which is undesirable for large scale

production due to toxicity and flammability.

. Hydrolysis .
(RO)3Si(CH,);R+H,0 ——————® (HO);Si(CH,);R + ROH

wi—OH 7] ~+
= Condensati = o
@ |—OH + (HO);Si(CH,);R ondensation @ & 0-Si—(CH,);R
| I =
(1] D
5t

Figure 1.16: Anchoring process of alkoxysilane onto polyhydroxylated surfaces.

Organosilanes have been widely studied in literature as a treatment to polyhydroxylated
substrates. Isquith et al. reported that immobilized Si-QUAT on natural fibers, metals and siliceous
surfaces have great antimicrobial activity.5® Other published work include surfaces such as cotton
gauze, cotton textile, polyester fabrics, titanium and silica nanoparticels. These materials were

treated mostly using trialkoxysilane 1, which possessed great antimicrobial activity.
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1.7.2 Organophosphorous (metals)

Robust surface modifications on metal oxide surfaces can be achieved by covalent
attachment of phosphonate monolayers. Such monolayers form tenacious M-O-P bonds and allow
for various surface tuning properties. Phosphonates may either be naturally occurring and isolated
from plants where they are part of membranes, i.e. 2-aminoethylphosphonic acid, or synthesized
for applications as corrosion inhibition/scale inhibititors, or contact killing mircobiostatic
coatings.®® Commonly used organic phosphoric acids in corrosion inhibition tests include:
aminotris(methylenephosphonic acid) (ATMP), ethylenediamine tetra(methylene phosphoric

acid) (EDTMP) and diethylenetriamine penta(methylene phosphoric acid) (DTPMP).”

Antimicrobial attachment via phosphonate linkers was performed by Porosa et al. in the
Foucher group, who utilized a three step microwave procedure (Arbuzov, Menshutkin and bis-
dealkylation reactions) for the synthesis of ,-phosphonic acid quaternary ammonium

antimicrobials possessing great antimicrobial efficacy.’*

/
> v s
(o) S} (0] o (o) \

O
N\ @ | o \P @ | N\ %| H 1
OT‘P\/\/T_CWHN - \/\/T_ OZ»P\/\/TM\/N_ﬁ
o (o) (o) o
30 31 32

Figure 1.17: Literature examples of organophosphorus QUAT’s made in the Foucher lab.>"*
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1.7.3 Benzophenone (plastics)

Plastic-based products have been well integrated in to various industries; specifically, the
medical and food industries where plastic serves as an essential packaging material. However,
plastic surfaces are prone to biofilm colonization.”? Unlike the organosilane and
organophosphorous coatings that require hydroxylated surfaces, plastics lack the
initiation/anchoring site for coating purposes. Recent studies have shown that when exposed to
UV light benzophenone forms a di-radical which acts as a cross-linker for coating plastic surfaces.
The di-radical benzophenone group abstracts a hydrogen atom from the polymeric surface (C — H)

forming a strong (C — C) bond (Figure 1.18).”

(o)

OH
(345 -365 nm) polypropylene

Figure 1.18: Benzophenone “grafted from” the surface of polypropylene upon UV irradiation.”

Dhende et al. were the first to report covalent attachment of quaternized polyethyleneimine
(PEI) polymer on various surfaces ( Figure 1.19).”* The Foucher group recently reported successful
synthesis of a benzophenone functionalized QUAT comprising a C1g carbon chain and/or Dansyl
fluorescent tag (Figure 1.19, Compounds 34 and 35) which were coated on different surfaces (PP,

PVC, and silicone tubing) exhibiting a complete reduction of E.coli amd S. aureus.
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Figure 1.19: Literature examples of benzophenones used to prepare antimicrobial plastic
surfaces. (33)"4, (34)" and (35)%’

1.8 QUAT Detection on Surfaces

With the widespread application of QUAT’s as disinfectants and sanitizers in various
environments (households, hospital, food production, water processing, and public institutions), it
is essential to quantify/assay the presence of residual QUAT’s for safety and environmental risks
that may arise. Over the years, various titration, colorimetric and LC — GC spectrum methods using
dyes have been employed to quantify the amount of QUAT present in consumer products and
waste water.”® The most commonly used qualitative method involves a water soluble bromophenol
blue dye that binds to the QUAT through ionic interactions (Figure 1.20) allowing for visual
conformation of a QUAT molecule bound to porous (fabrics) and non-porous surfaces (plastics,

and glass).”’
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Figure 1.20: Bromophenol blue ion pair formation with silyl based QUAT (adapted from ref.3).

The bromophenol blue dye complexes with the surface bound QUAT resulting in a blue
stain. Once complexed, the material is permanently stained, damaged and unusable. An alternative
to the bromophenol blue detection method is fluorescent incorporation; once treated, the surfaces
containing a small amount of an attachable fluorophore would fluoresce (glow) upon exposure to
a low intensity/power UV lamp. The fluorescent detection method allows for easy visibility of
poorly coated areas as well as missed areas during the application process. Fluorescent detection
could be implied as unique identifier and as security feature for treated surfaces when added in
trace amounts to an antimicrobial solution. Previously, the Foucher group demonstrated the use of
fluorescent detection by incorporating dansyl moiety/tags into the structures of organosilanes'®,

phosphonates®®, benzophenones’, and vinyl”® functionalities (Figure 1.21).%
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Figure 1.21: Linkers with the fluorescent dansyl tag previously synthesized in the Foucher lab
(adapted from ref.3) 16.67.75.78

1.9 Research Goals

The aim of this thesis project was to develop new generation of QUAT’s that are more
water soluble and relatively safe in comparison to commercially available products which are sold
as methanolic solutions. Another aspect of this project was to combine the already known
sulfonamide chemistry with the modern chemistry of QUAT’s to provide enhanced antimicrobial
activity. This project involves synthesis and characterization of sulfonamide based QUAT’s that

are water soluble and can attach to any designed surface.
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2.0 RESULTS AND DISCUSSION

2.1 Synthesis and Characterization

2.1.1 Sulfonamide Synthesis

A series of sulfonamide derivatives 1 — 9 (aromatic 1D — 5D, aliphatic 6D — 9D) were

prepared using Method 5.2.1a and Method 5.2.1b respectively (Scheme 2.1 and 2.2) as precursors

for Menshutkin Quaternization reactions with various linking functionalities. These compounds

are commercially available (although rather expensive), with the synthetic summary, commercial

source and pricing tabulated below (Table 2.1 and 2.2).

R R
o:$:0 n HZN/\/\NQ + BN DCM, RT, 3-4 Hrs_ o-t-0
|
Cl1
HN\/\/N\
A B C D
Scheme 2.1: General reaction for aromatic sulfonamides.
Combound Sulfonyl Reagents Time | Yield Pricin Commercial
P Chloride (R) (A:B:C) (hrs.) | (%) g Source
1 11515 4 98 $25.50/1 LabNetwork
mg Compounds
TimTec
Building
2 1:1.5:15 4 96 | $105/5 mg Blocks and
Screening
v Compounds
3 ChemBridge
3 1:1.5:1.5 99 | $40/1mg Screening
Library
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Zelinsky
e Institute Inc.
4 1:15:1.5 3 97 $45/5 mg HTS Stock
Compounds
5 OO 1:15:15 3 g5 | Screening | Otava Stock
amounts Chemicals

Table 2.1: Summary and commercial pricing of aromatic sulfonamide precursors.

Sulfonamides have been widely studied since the late 20" century. Compound 2D was
previously synthesized by Rosatelli et al. in a single step process using a flow mesoreactor
equipped with two-loop injection system, solvent pumps, a reactor, a back pressure regulator, UV
detector and a fraction collector. The synthesis was carried out using acetone and water as solvents
and PEG 400 as co-solvent in 1:2:1 ratio (v/v/v). The reagents were injected into the loop, and
collected as crude mixtures followed by quenching with 3N HCI and Et,O extraction workup to
obtain a pure product in 91% yield.”*8 While the Rosatelli et al. synthetic process is rather
intricate, by comparison, the current research provides a simpler approach for thesynthesis and
recovery of the sulfonamide derivatives. Compounds 1D — 5D were initially synthesized as shown
in Scheme 2.1, followed by a KoCOz (1N) wash to yield viscous oils as products. Several later
synthetic attempts have shown that washing the reaction mixture with only distilled water results
in a similar yields and recovered as viscous oil that readily solidify over time (2 — 3 days) or under
high vacuum (4 — 12 hrs.). These sulfonamides were later isolated as a waxy solid product upon
addition of hexanes 10% (v/v) to the extracted organic phase and drying over high vacuum (5 —15

min.).

The synthesis of 1D was initially described in patent DE 2744137 Al, but lacked any

characterization detail 8 Similarly, compounds 3D — 5D are commercially available but there is
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no known published processes or characterization data available. In this work, compounds 1D —

5D were obtained in high yields (>90%) and high purity based on NMR (*H and 13C) spectroscopy

and mass spectrometry.

R / DCM R
0=8=0 + HZN/\/\N\ o = 0=8=0
, 3-4 Hrs
Cl HN A~ N
A B D
Scheme 2.2: General reaction for aliphatic sulfonamides.
Compound Sulfonyl Reagents Time Yield Pricin Commercial
b Chloride (R) (A:B) (hrs.) (%) g Source
TimTec
Building
6 —§ 1:15 4 65 $105/5mg | Blocks and
Screening
Compounds
UORSY
EUR 459/ Building
S .
7 s 1:1.5 4 61 1g Blocks
Library
AKaos Out of
8 NN 1:15 4 81 - Stock
Catalog
9 N 1:15 4 80 - .

Table 2. 2: Summary and commercial pricing of aliphatic sulfonamide precursors.

Compounds (6D — 9D) where synthesized according to Scheme 2.1 and Method 5.2.14a,
and formed a salt upon addition of EtsN or diamine B to the reaction, and following washes with
K2COz (1N) resulted in only very low yield (<5%). In later attempts, EtsN was eliminated from
reaction, and the addition of reagents A and B was reversed and the workup was conducted with
K2CO3 (0.05M) resulting yielding the desired product as clear to pale yellow coloured viscous oil.
For compounds 6D — 9D there is no published processes or characterization data currently
available, however 6D and 7D are commercially available.
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2.1.1.1 Characterization of Aromatic Sulfonamide Precursors

The 'H and *C NMR spectra of the aromatic sulfonamides 1D — 5D were collected and
peak assignments made using 2D HSQC and COSY NMR experiments. Analysis for 1D will serve
as a template for compounds 2D - 5D.

23 0 ¢ 8
1 8N~
\__{/ 5 n 7 |
3 5 9
182 9

745 740 735 730 725
f1 (ppm)

80 75 7.0 6.5 6.0 5.5 5.0 45 40 35 3.0 25 20 15
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Figure 2.1: 'H NMR (CDClIs) of 1D.
In the *H NMR of 1D (Figure 2.1), the doublet at 7.68 ppm integrates for two hydrogens

(H3) and corresponds to the hydrogen on the ortho-carbons from the sulfonyl group, followed by
an overlap of peaks for hydrogens (H1 & H2) corresponding to the meta and para positions
respectively. The singlet at 1.98 ppm (H9) integrating for six hydrogens corresponds to the methyl
groups attached to nitrogen. The downfield triplet at 2.86 ppm integrates for two hydrogens has
coupling ((Jue-+7 = 5.8 Hz) to the upfield multiplet is the methylene group bound to the amide of
sulfonyl group. The second triplet signal at 2.11 ppm (H8) also couples to the upfield multiplet
indicating that it is the methylene group bound to the nitrogen atom with dimethyl substitution and

hence the multiplet (H7) corresponds to intermediary methylene group.
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Figure 2.2: 3C NMR (CDCls) of 1D.

The BC NMR assignments were made in conjunction with 2D HSQC NMR (Appendix

Figure A4), where the peaks from 140.20 — 132.33 ppm (C1-C4) were attributed to the aromatic

ring. The furthest downfield resonance at 140.20 (C4) ppm was identified as the ipso carbon bound

to the sulfonyl group due to the absence of coupling in 2D HSQC NMR spectrum. The peak at

45.28 ppm (C9) was attributed to the methyl groups of the tertiary amine whereas the peaks at 6 =

59.13, 44.05, 25.12 ppm (C6-C8) were attributed to the propylene carbons between the two

nitrogen centers. For compounds 2D — 5D, the *H and *3C NMR are differentiated from 1D based

on the substitution on the aromatic ring (2D — 4D) and the different substituent on the sulfonyl

group (5D).
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2.1.1.2 Characterization of Aliphatic Sulfonamide Precursors

The H and ¥C NMR spectra of aliphatic sulfonamide 6D — 9D were collected and peak
assignments were made using 2D HSQC and COSY NMR experiments. The *H and 3C NMR
spectrums of 6D — 9D have a similar trend to aromatic sulfonamides (1D-5D) for the N,N-
dimethylpropylamine end bound to the sulfonyl group (Figure 2.3). The *H NMR of 9D was
similar to that of 6D with the absence of a methyl peak at 2.91 ppm (H1, 6D) and the presence of
additional singlet peak at 2.75 ppm (H1, 9D). Similar patterns were observed for the 3C NMR

spectra of 6D-9D.

N V]

1 7D

] " ! (|

Figure 2.3: *H NMR (CDCls) comparison of 6D — 8D.
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2.1.2 Organosilane Functionalized Quaternary Ammonium Sulfonamide Antimicrobial

.O / MeCN
(0] —_—
0 Reflux
2 -5 Hrs

l ® 9 /
1T\/\/S\'_O
O
/

Scheme 2.3: General Reaction for Organosilane Functionalized QUAT’s

Compound (D) | Reagents (D:E) Time (hrs.) Yield (%) 29Si NMR
o (ppm)
1 1:15 4 82 -44.49
2 1:15 35 o7 - 44.43
3 115 45 93 - 4470
4 1:15 3_5 - -
> LLs 5 80 -44.50
6 1:1.5 2-5 - -
! 115 5 86 ~44.45
8 1:15 5 60 -44.50
9 1:15 3-45 - -

Table 2.3: Synthesis summary of organosilane functionalized sulfonamide QUAT’s.

Organosilane functionalized QUAT’s have been widely investigated for their antimicrobial
properties (14 — 29, Figure 1.15). Porosa et al. were the first to prepare a sulfonamide based
organosilane QUAT (29), wherein the substituent of the sulfonyl group served as a fluorescent
detector/indicator.®” Other than 29, there is no published literature on sulfonamide based QUAT’s
possessing a terminal binding group. Compounds 1F — 9F were synthesized according to Scheme
2.3 to yield the desired products as clear pale brown to pale yellow coloured gummy/viscous oils
in moderate to high yields (60 — 97%) (Table 2.3). The purity of these compounds was confirmed
based on the mass spectrometry, *H, 3C, and 2°Si NMR experiments. 2°Si NMR signal of E (-

46.56 ppm) was used as a reference to confirm formation of 1F — 9F; a downfield shift of ~ 2 ppm

was seen for the synthesized products (Figure 2.4 and Table 2.3).
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Several attempts to synthesize compounds 4F, 6F, and 9F were made; 4F could not be
isolated employing Method 5.2.2, whereas as the synthesis of 5F and 9F was unsuccessful based
on the absence of a distinguishable 2°Si NMR resonance or the presence of the expected resonances
in the respective *H and 3C NMR spectra. Initially the synthesis of 1F — 9F was conducted using
published methods by Porosa et al. uses conventional thermal methods which took up to 48 hours
and resulted either a moderate yield (< 60%) or in no product formation. Attempts to prepare these
products by microwave processing failed. In this research it was established that the use of a
minimum amount of solvent (anhydrous ACN) allowed the reactions to proceed towards

completion in less time than conventional Menshutkin reactions.
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Figure 2.4: 2°Si NMR (CDCI3) comparison of 2F, 8F, and the starting material.
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2.1.2.1 Characterization of Organosilane Functionalized Sulfonamide QUAT’s

The tH, 13C and 2°Si NMR spectra of the organosilane functionalized sulfonamide QUAT’s
1F — 9F were collected and peak assignments were made using 2D HSQC and COSY NMR

experiments. Analysis for 1F will serve as a template for compounds 2F — 9F.
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100 95 9.0 85 8.0 7.5 70 6.5 6.0 5.5 50 45 40 35 3.0 2.5 2.0 1.5 1.0 05 0«(
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Figure 2.5: 'H NMR (CDCls) of 1F.
In the *H NMR of 1F (Figure 2.5), the peak at 7.96 ppm (H3) and multiplet from 7.54 -7.34 ppm

(H1 and H2) were attributed to that of the phenyl moeity bound to the sulfonamide group as was
observed in *H NMR of 1D. The upfield triplet at 0.59 ppm (H12) integrating for two hydrogens
corresponds to the methylene group directly bound to the silane functional group. The broad singlet
at 1.75 ppm (H11) integrating for two hydrogens corresponds to the hydrogens of 3-methylene
group from the silane group and the multiplet at 3.66 ppm (H8) corresponds to hydrogens bound

to methylene group bound to QUAT as established by 2D COSY NMR. The upfield broad singlet
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at 8.39 ppm (H5) integrating for one hydrogen corresponds to the hydrogen of the amide bound to
the sulfonyl group. The singlet at 3.51 ppm (H13) integrating for nine hydrogens corresponds to
the hydrogens of the methoxy group directly bound to silane group, whereas the singlet at 3.21
ppm (H9) integrating for six hydrogens belongs to the two methyl groups bound to the quaternized
amine. The broad singlet at 3.01 ppm (H6) couples with the amide proton (H5) and integrates for
two hydrogens and corresponds to the methylene group bound to sulfonamide whereas
assignments for H7, H8, and H10 were assigned based on observed coupling in 2D COSY NMR.
The peaks at 3.45 ppm, 1.98 ppm and 1.18 corresponds to trace solvents ACN and Et.O (*), and

one other unassigned unknown impurities.
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Figure 2.6: 13C NMR (CDClIs) of 1F.
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The 3C NMR assignments were made in conjunction with 2D HSQC NMR (Appendix
Figure A49), where the aromatic resonance for the phenyl moiety bound to the sulfonamide are
similar to 1D. The peaks at 65.94 ppm (C10) and 62.45 ppm (C8) belong to the methylene carbons
bound to the central QUAT amine, whereas the downfield peak at 5.57 ppm (C12) corresponds to
the carbon bound directly to the silane functionality. The peaks at 51.04 ppm (C9) and 50.72 ppm
(C13) corresponds to the methyl groups on QUAT and the methoxy carbons bound to silane
respectively. The methylene carbon bound to amide group was observed at 39.93 ppm (C6), similar
to chemical shifts for similar compounds found in the literature.®” Peak assignments for C7 and
C11 were made based on the 2D HSQC NMR experiment. For compounds 2F, 3F, 5F, 7F and 8F,
the 'H and 3C NMR are differentiated from 1F based on the substitution of the aromatic ring (2F,

3F, and 5F) and the different substituent on the sulfonyl group (7F and 8F).

2.1.3 Organophosphorous Functionalized Quaternary Ammonium Antimicrobials

x x
0=S=0 / MeCN 0=S=0
| / \/\/P\—O | /] /4
HN\/\/N\ + o) Reflux HN\/\/N\/\/P\—
‘< 3 -6 Hrs. ‘ \(O
D G H

Scheme 2.4: General Reaction for Organophosphorus Functionalized QUAT’s.

Compound (D) | Reagents (D:G) |  Time (hrs.) Yield (%) *P NMR
o (ppm)
1 11 2 68 27.08
2 11 3 89.5 27.15
3 11 4 705 27.13
4 11 4-6 i :
5 11 55 775 2719
6 11 3-5 . :
7 11 5 86 27.05
8 11 3 82 27.22
9 11 3 917 27.27

Table 2.4: Synthesis summary of organophosphorus functionalized sulfonamide QUAT’s.
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Compounds 1H — 9H were synthesized according to Scheme 2.6 employing Method 5.2.2.
Initial attempts using conventional method (reflux for 48 hrs.) and reagents D:G in ratio 1:1.5
resulted in mixed product formation based on multiple 3P NMR peaks. Later attempts using
reagents D:G in 1:1 ratio and minimum solvent resulted in white/pale yellow coloured gummy
powder in moderate to high yields of product. The products were recovered in high purity based
on mass spectrometry, as well as 3P, *H and 3C NMR spectrometry (Table 2.4). Product 4H could
not be isolated employing Method 5.2.2, whereas synthesis of 6H was unsuccessful based on

analysis by 3P NMR spectroscopy.
2.1.3.1 Characterization of Organophosphorous Functionalized Sulfonamide QUAT’s

The H, C and 3!P NMR spectra of the organophosphorous functionalized sulfonamide
QUAT’s 1H — 9H were collected and peak assignments were made using 2D HSQC and COSY

NMR experiments. Analysis for 1H will serve as a template for compounds 2H — 9H.
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Figure 2.7: 'H NMR (CDClIs) of 1H.
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In the *H NMR of 1H (Figure 2.7), the shifts in aromatic region were similar to that of precursor
1D and organosilane 1F. The triplet at 7.65 ppm (H5) integrates for one hydrogen and corresponds
to the amide hydrogen, which couples with the methylene hydrogens (H6) of the carbon bound to
the amide group with a coupling constant of 3Js.6 = 5.9 Hz. The signal at 1.79 ppm (H12) displays
a splitting of doublets of triplets integrating for two hydrogens are of methylene group directly
bound to the phosphorous group with coupling constant of Ji2.» = 17.7 Hz. The downfield peak
at 1.28 ppm (H14) integrating for twelve hydrogens corresponds to the terminal methyl hydrogens
of the isopropyl group, which gives rise to a doublet of doublets with a splitting due to far range
coupling of 3J14.p = 6.2 Hz with phosphorous through the oxygen bond. The multiplet at 4.63 ppm
(H13) integrating for two hydrogens displays coupling with the resonance for H14, corresponding
to the hydrogen on the central carbons of the terminal isopropyl groups bound to oxygen. The
singlet at 3.27 ppm corresponds to the methyl groups bound to the QUAT amine, whereas the
multiplet from 2.16 — 1.94 ppm (H7, H11, and ACN) is the overlap of peaks corresponding to the
hydrogens bound to [3-carbons on both sides of the central QUAT. The multiplets at 3.70 ppm (H8)
and 3.60 ppm (H10) were assigned to the methylene hydrogens on the a-carbons alongside the

central QUAT based on coupling observed in 2D COSY NMR.
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Figure 2.8: 3C NMR (CDCls) of 1H.
The *C NMR assignments were made in conjunction with 2D HSQC NMR (Appendix Figure 85),

where the aromatic region bears essentially the same shifts as the precursor 1D. The doublet at
70.82 ppm (C13) corresponds to the central carbon of the isopropyl moiety bound to phosphorus
through oxygen linkage with coupling of 2J13.p = 6.7 Hz. The peak at 62.41 ppm (C8) corresponds
to the carbon bound to QUAT on the sulfonamide side, whereas the carbon bound to the QUAT
towards the terminal organophosphorus moiety yields a doublet at 63.74 ppm (C10) which couples
with phosphorus through ethyl linkage with coupling constant of 3Jio-p = 15.1 Hz. The terminal
methyl carbons of the isopropyl gives rise to a sets of doublets at 24.12 and 23.99 ppm (C14) with
coupling constants of 3J14.p = 4.5 and 4.0 Hz respectively. This scenario was attributed to a slight

offset in spatial arrangement of the terminal isopropyl moiety. The peaks at 23.10 ppm (C12)
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corresponds to carbon bound directly to phosphorus group with a coupling constant of *Ji2p =
144.3 Hz based on the 2D HSQC NMR spectra. For compounds 2H, 3H, 5H, and 7H — 9H, the
!H and *C NMR are differentiated by 1H based on the substitution of the aromatic ring (2H, 3H,

and 5H) and the different substituent on the sulfonyl group (7F - 9F).

2.1.4 Benzophenone Functionalized Quaternary Ammonium Antimicrobials

(0] (0}
R MeCN R
0=5=0 > 0=S=0 ‘
[ / n Reflux [ ®
HNW N\ \/\/O 48 Hrs. HNW TV\/O
D I J

Scheme 2.5: General Reaction for Benzophenone Functionalized QUAT’s.

Compound (D) | Reagents (D:l1) | Time (hrs.) Yield (%)

1 1:1 48 82
2 1:1 48 80
3 1:1 48 67
4 1:1 48 92
5 1:1 48 82
6 1:1 48 -

7 1:1 48 77
8 1:1 48 73
9 1:1 48 60

Table 2.5: Synthesis summary of benzophenone functionalized sulfonamide QUAT’s.

Compounds 1J — 9J were synthesized according to Scheme 2.6 employing Method 5.2.2.
Initial experiments followed methodology similar to those used to prepare organosilane and
organophosphorus QUAT’s (Section 2.2 and 2.3). This methodology resulted in very low yields
or no product formation based on *H and 3C NMR experiments. Hence 1J — 9J were synthesized
using method described by Porosa et al.%” to yield fluffy pale white to pale yellow coloured

powders. The identity and purity of these compounds was confirmed using mass spectrometry and
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IH and 3C NMR spectroscopy. Synthesis of 6J was unsuccessful, similar to its counterpart in

organosilane and organophosphorus QUAT’s.
2.1.4.1 Characterization of Benzophenone Functionalized Sulfonamide QUAT’s

The 'H and 3C NMR spectra of the benzophenone functionalized sulfonamide QUAT’s
1H — 9H were collected and peak assignments were made using 2D HSQC and COSY NMR

experiments. Analysis for 1H will serve as a template for compounds 2H — 9H.
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Figure 2.9: 'H NMR (CDCls) of 1J.

In the *H NMR of 1J (Figure 2.9), the singlet at 3.27 ppm (H9) integrating for six hydrogen
corresponds to the two methyl groups on the QUAT nitrogen, whereas the multiplet from 7.86 —
7.77 ppm (H5) integrating for one hydrogen of the amide of the sulfonyl group as seen in the 'H
NMR of 1D. The upfield triplet at 4.11 ppm (H12) integrating for two hydrogen corresponds to

the methylene hydrogens bound to oxygen of the benzophenone moiety, which also couples to the
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multiplet from 2.36 — 2.19 ppm (H11) also integrating for two hydrogens corresponding to the
hydrogens of the adjoining carbon. Based on 2D COSY NMR multiplet from 3.06 — 2.92 ppm
(H6) integrating for two corresponds to the methylene hydrogens coupling to the amide group
proton (H5). The downfield multiplet at 2.19 — 1.97 ppm (H7) integrating for two hydrogens with
coupling to the multiple of (H6). The multiplet at 3.79 — 3.56 ppm (H8 & H10) integrating for four
hydrogens was assigned to hydrogens on methylene carbons bound to the central QUAT nitrogen
with coupling to (H7) and (H11). For the aromatic region the peaks for H1 — H3 follow a similar
trend to its precursor 1D. The triplet at 6.89 ppm (H14) integrating for two hydrogen and
corresponds to the hydrogen on the ortho carbons of the benzophenone group closer to the oxygen

linkage. The peak assignments for H15, H19 and H20 were made using 2D COSY NMR

experiment.
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Figure 2.10: **C NMR (CDCls) of 1.
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The 3C NMR assignments were made in conjunction with 2D HSQC NMR (Appendix
Figure A126), where the peak at 195.58 ppm (C17) corresponds to the carbonyl carbon of the
benzophenone moiety and the peak at 161.87 ppm (C13) corresponds to the para carbon bound to
the oxygen atom. The peaks at 139.64 (C1), 137.99 (C4), 129.75 (C2), and 127.22 (C3) ppm were
attributed to the aromatic carbons of the phenyl moiety bound to sulfonamide group based on the
13C NMR of 1D. The aromatic peak assignments for the benzophenone moiety was assigned based
on 2D HSQC NMR experiment. The peak at 64.68 ppm (C12) corresponds to the propoxy carbon,
whereas the peaks at 62.44 (C8) and 62.06 (C10) corresponds to the carbon directly bound to the
QUAT. The peak at 39.98 ppm (C6) corresponds to the carbon directly bound to the sulfonamide
group. For compounds 2J —5J and 7J — 9J, the 'H and 3C NMR are differentiated from 1J based
on the substitution of the aromatic ring (2D — 5D) and the different substituent on the sulfonyl

group (73 —9J).
2.2 Antimicrobial Activity
2.2.1 Contact Killing at Solid-Air Interface

Organosilicon functionalized sulfonamide QUAT’s 1F — 3F and 5F were prepared using
Method 5.2.3.1a and tested together for comparison purposes. After 3 hrs. of inoculation, the test
samples showed complete reduction in viable bacteria versus the control (Figure 2.11). Similarly,
the benzophenone QUAT’s 1J and 5J were evaluated and resulted in completed reduction in viable
bacteria (Figure 2.12). Regardless of the aromatic ring size and substitution it was evident from
the test that sulfonamide based QUAT’s resulted in complete reduction of bacteria after 3 hrs. in

comparison to controls.
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Efficacay of organosilane functionizaed sulfonamide QUAT's (1F - 5F)on
cotton samples against Arthrobacter spp.
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Figure 2.11: Antimicrobial efficacy of organosilane functionalized sulfonamide QUAT’s 1F- 3F
and 5F against Arthobacter spp.

Efficacy of benzophenone functionalized sulfonamide QUAT on
polyethylene samples against Arthrobacter spp.
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Figure 2.12: Antimicrobial efficacy of benzophenone functionalized sulfonamide QUAT’s 5J and
1J against Arthrobacter spp.
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Antimicrobial activity of sulfonamide based benzophenone QUAT 3J and the silane
QUAT 2F for comparison purposes were prepared on polystyrene and cotton using Method
5.2.3.1b and 5.2.3.1a respectively. The antimicrobial activity was tested by the enumeration
method developed in the Wolfaardt lab against lab grown gram positive Arthrobacter spp. strain.
The inoculated samples were sampled after 3 hrs. of drying and showed 100% reduction in viable

bacteria versus the control (Figure 2.13).

Efficacy of 3J and 2F against Arthrobactor spp. on different
surfaces
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Figure 2.13: Antimicrobial efficacy of benzophenone functionalized 3J on polystyrene and
organosilane functionalized 2F on cotton against Arthrobacter spp.
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Efficacy of 3J on polyethylene samples against E. coli and S. aureus
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Figure 2.14: Antimicrobial efficacy of 3J on polyethylene against gram negative E. coli and gram
positive S. aureus.

To test the range of antimicrobial activity benzophenone functionalized QUAT 3J was
tested against gram positive S. aureus and gram negative E. coli using Method 5.2.3.2a. A test
sample taken after 3 hrs. of drying showed complete reduction of both gram positive and

negative bacteria (Figure 2.14).
2.2.1 Solution Killing at Solid-Liquid Interface

Benzophenone QUAT 3J was treated on the inside of polyethylene tubes using method
5.3.2.1a and tested according to Method 5.2.3.2b against planktonic cell and Arthrobacter spp.
bacterial culture. After 48 hrs. enumeration of both bacterial strains showed complete reduction at
the solid-liquid interface; hence a rechallenge was performed without reapplying the antimicrobial

coating to ensure the efficacy (Figures 2.15 and 2.16).
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Figure 2.16: Efficacy of 3J against Arthrobacter spp. at solid-liquid interface.
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3.0 CONCLUSIONS

Sulfonamide QUAT’s with specific anchoring functionalities such as organosilanes
(textiles), phosphonates (metals), and benzophenone (plastics) were synthesized using the
Menshutkin reaction and were used to prepare antimicrobial coatings for surfaces. The majority of
the sulfonamides synthesized are commercially available but rather expensive, and there is no
available synthetic and characterization data. Sulfonamides 1D — 9D were synthesized using a
simplified approach and obtained in high yields and purity. All compounds were successfully
characterized by NMR spectroscopy (*H, 3C, COSY, HSQC, #Si, and 3!P), and HRMS

spectrometry.

The synthesized QUAT’s were found to be more water soluble with only a minimum
amount of EtOH/MeOH reuired for complete solvation in comparison to available organosilanes.
Organosilane functionalized QUAT’s (1D — 3D and 5D) were physically attached to cotton textiles
by immersion in EtOH/H20O solutions containing the active QUAT, whereas the solutions of
benzophenone functionalized QUAT’s (1J — 3J, and 5J) were UV cured on to plastic substrates

(PE, PS, PEEK, and PVC) and visualized using bromophenol blue test.

Antimicrobial activity was evaluated at solid-air interfaces (cotton and plastics) by growth
enumeration in the dry state and at solid-liquid interface by determining MIC. Both the
organosilane functionalized QUAT’s (1D — 3D and 5D) and benzophenone functionalized
QUAT’s (1J - 3J, and 5J) showed excellent antimicrobial efficacy and were able to reduce initial
concentration of Arthrobacter spp, E. coli, and S. aureus by a factor of 10107 after 3 hrs.
Compound 3J subjected to solid-liquid interface antimicrobial testing showed reduction of 10°
(100%) over 48 hrs. against planktonic cells and Arthrobacter spp. The same substrates were

rechallenged without reapplication of coatings showed complete reduction over 48 hrs.
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4.0 FUTURE WORK

Sulfonyl chlorides are commercially available but rather expensive due to extensive
synthesis and purification process. Alternatively, sulfonates and sulfonic acid analogs cost less and
are readily available in large quantities. Sulfonamide precursors of these sulfonates and sulfonic

acids can be synthesized using microwave irradiation as described in Scheme 4.1.

/
R’ R TCT, NEt R HN" SN R
0=S=0 | 18-crown-6 | N !
(') or 0:§:O » 0=S=0 > o:§:0 y
o OH Acetone él NaOH,q, THF HN__~_N
® pW, 80 °C, 20 min. uW, 50 °C, 10 min. N

Scheme 4. 1: Microwave assisted sulfonamide synthesis using sulfonates or sulfonic acids.

Luca et al. reported successful synthesis of various analogs of sulfonic acids/sulfonates using this
process.®? In this work it was found that it was not necessary to isolate the sulfonyl chloride
intermediate, since they were readily converted into the corresponding sulfonamides in presence
of an amine. For future, this process could be used to synthesize sulfonamide precursors required
for quaternization reactions. Some of the possible starting sulfonates and sulfonic acids are

illustrated in Figure 4.1, which are believed to provide great antimicrobial activity.

NH
0 : 0
H,N—S—OH o O\\S/OH
—S— A\
! OO O HNTMT

OSO OSO

R:
0 0 o0 T oo
|
1l
(0] (0] (0] (0

Figure 4.1: Possible sulfonates/sulfonic acids as starting material.
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5.0 EXPERIMENTAL PROCEDURES
5.1 Materials and Instrumental Methods

The reagents used consist of p-Toluenesulfonyl chloride, Benzenesulfonyl chloride, 2-
Mesitylenesulfonyl chloride, 2,4,6-Triisopropylbenzenesulfonyl chloride, Methanesulfonyl
chloride, Ethanesulfonyl chloride, 1-Butanesulfonyl chloride, N,N-Dimethylsulfamoyl chloride, 1-
Napthalenesulfonyl  chloride,  Triethylamine,  3-(Dimethylamino)-1-propylamine,  4-
hydroxybenzophenone, and 1,3-dibromopropane were used as received from Sigma-Aldrich,
Triisopropyl phosphite received from Alfa Aesar was distilled prior to use. Dichloromethane
(CH2CI2) and Diethyl ether (Et20) used was pre-dried using an M Braun solvent system under
nitrogen environment. Acetonitrile (99.8%, p=0.782 g/mL) from Sigma-Aldrich was distilled and

stored under nitrogen environment prior to use.

Nuclear magnetic resonance (NMR) experiments were recorded on a 400 MHz Bruker
Avance Il Spectrometer (Ryerson University) using deuterated chloroform (CDCls3) as the solvent.
'H and BC{*H} NMR spectra were referenced to an internal TMS standard or the residual CDCl3
(8n = 7.26 ppm and 8¢ = 77.0 ppm) solvent signal. The 3P{*H} spectra were referenced externally
to 85% phosphoric acid (5p = 0.00 ppm).®” In all cases H and 3C assignments were interpreted
with the aid of the corresponding COSY and HSQC spectra respectively (see appendix). High
resolution mass spectra (MS) were recorded by electron spray ionization in real time by ESI-TOF

at the University of Toronto.

53



5.2 General Procedures

Precursors 4-(3-bromopropyoxy)benzophenone®’ and diisopropyl(3-
bromopropyl)phosphonate’ were synthesized according to published work and NMR spectra (*H

and C) corresponded well with previously published NMR data.
Method 5.2.1 Sulfonamide Synthesis
Method 5.2.1a Aromatic Sulfonamides General Synthesis

To a flame dried, round bottom flask in an ice bath equipped with a stir bar containing an
appropriate amount of anhydrous DCM an adequate amount of respective sulfonyl chloride was
added followed by an equimolar amount of EtsN, and dropwise addition of a stoichiometric
quantity of 3-(dimethylamino)propylamine. After 30 min. the reaction mixture was removed from
the ice bath and allowed to stir at room temperature for the indicated time. The reaction was then
transferred to a separatory funnel and extracted with an appropriate amount of distilled water.
Volatiles and/or solvent were removed from the organic phase using a rotary evaporator followed

by drying under high vacuum.
Method 5.2.1b Aliphatic Sulfonamides

To a flame dried, round bottom flask in an ice bath equipped with a stir bar containing
appropriate amount of anhydrous DCM a stoichiometric amount of 3-
(dimethylamino)propylamine was added followed by the dropwise addition of the respective
sulfonyl chlorides. The reaction mixture was removed from the ice bath and allowed to stir for the
indicated time at room temperature. Upon completion, the reaction solvent was evaporated using
a rotary evaporator. The resultant residue was then dissolved in an appropriate amount of

potassium carbonate solution (0.05 M) and extracted using appropriate amount of DCM. Volatiles
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and/or solvent were removed from the organic phase using a rotary evaporator followed by drying

under high vacuum.
Method 5.2.2 General Synthesis for Sealed Tube Reactions

In a 20 mL scintillation / microwave vial the appropriate reagents were added along with a
magnetic stir bar and sealed with a screw cap. The reaction mixture was heated using an oil bath
at 110 °C for the indicated time. The crude material was purified by addition of Et2O directly into

the reaction mixture followed by decanting (EtO wash x 3) and dried under high vacuum.
Method 5.2.3 Antimicrobial Testing and Detection

Antimicrobial activity tests of the synthesized QUAT’s was carried out by Alexander
Caschera in the Wolfaardt lab at Ryerson University. The testing was conducted at solid — air
interface as well as solid — liquid interface to determine sulfonamide based QUAT’s efficacy in
both environments. The presence of the sulfonamide QUAT’s was visualized with the aid of

bromophenol blue dye (Section 1.8).
Method 5.2.3.1 Surface treatment

Method 5.3.2.1a Textiles

&~

(1) Dip Coat (1-10 min.)
- 3

(2) Curing/Drying (2-24 hrs.)

Antimicrobial Surface
(3) Rinsing

1% in MeOH:H,0
Figure 5.1: Coating procedure of QUAT’s onto textiles (cotton) sample.®’
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Cotton textile samples were dipcoated with 1% (w/v) of sulfonamide organosilane QUAT’s
in luke warm methanol:water mixture (30:70 ratio) with mild agitation. After application, the
treated samples were allowed to dry for 2 — 24 hrs.; followed by water rinsing. The quality/presence

of QUAT’s coating was visualized/confirmed with bromophenol blue dye.
Method 5.3.2.1b Plastics

1% (w/v) solution of sulfonamide QUAT’s with benzophenone functionality were prepared
in EtOH:Water solution (10:90 — 40:60 ratio). Test samples consisted of 25 mm (£ 5 mm) x 25
mm (£ 5 mm) x 1 mm coupons of polystyrene (PS), polyvinyl chloride (PVC), and polyether ether
ketone (PEEK). The coupons were coated using an ESS AD — LG electrospray apparatus set to
150 kPa. After application, coupons were air dried followed by UV curing using EFOS N2001-A1
Novacure Ultraviolet spot curing light source set at 5000mW intensity for 1 min. (repeated 2

times).
Method 5.2.3.2 Antimicrobial Testing Interfaces
Method 5.2.3.2a Solid-Air Interface

Antimicrobial testing at solid — air interface was conducted using modified 1SO 22196
large-droplet (50 pL) inoculation method developed by Evan Ronan in Dr. Wolfaardt’s lab at
Ryerson University. The method allows for the droplet of inoculum to dry directly on to the
coated surface. Once dried, the surface is washed with saline to remove unbound cells followed

by serial dilutions and enumeration (Figure 5.2).38
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Figure 5.2: Antimicrobial testing method for Solid-Air interface developed by Evan Roan in the
Wolfaardt Lab. (i) 1 x 108 CFU/mL (inoculum), (ii) 1 mL inoculum added to 1 cm x 1 cm solid
sample and left to dry for appropriate time 2-24 hrs, (iii) sample is added to 0.9% saline solution,
(iv) vortex saline solution to remove attached cells, (v) serial dilutions and agar plating, (vi)
compare to controls and calculate percent of log 10 reduction. (adapted from ref. %)%

Method 5.2.3.2b Solid-Liquid Interface

The pretreated tubes were filled with growth media (3g/L TSB) containing 300uL
inoculation of Arthobacter spp. bacterial culture and were compared against planktonic cell
culture. After 48 hrs. of incubation the tubes were emptied and gently washed with saline
solution to remove unbound planktonic or Arthobacter spp. Cells. 1 mL of saline was added to
tubes and vortexed for 1 min. (Figure 5.2, iv) and transferred to the collection liquid (Figure 5.2,

iii) followed by serial dilutions and enumeration.®
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5.3 Synthesis of Aromatic Sulfonamides
1§_N/\/\N/9
1 H 7 |
2 3 O 5 9

N-(3-(dimethylamino)propyl)benzenesulfonamide (1D): 8

This compound was synthesized according to Method 5.1.1a with benzenesulfonyl chloride (1.4
mL, 11.32 mmol), triethylamine (24 mL, 16.99 mmol, 15 -eqv.), and 3-
(dimethylamino)propylamine (2.1 mL, 16.99 mmol, 1.5 eqv.) in DCM (30 mL) for 4 hours
yielding a clear solution. The solution was then washed using distilled water (40 mL), and the
organic layer was evaporated using a rotary evaporater to yield a green yellow coloured oil. The
product was further dried under reduced pressure using a schlenk line yielding a pale yellow
coloured waxy solid. Yield 98 % (2.69 g). 'H NMR (CDCls, 400 MHz, §): 7.68 (d, 2H, 3Juz-n2 =
8.3 Hz, H3), 7.35 (m, 3H, H1 and H2), 2.86 (t, 2H, 3Jue-H7 = 5.8 Hz, H6), 2.11 (t, 2H, 3Jus-H7 = 5.9
Hz, H8), 1.98 (s, 6H, HO), 1.41 (tt, 2H, 33716 = 9.0 Hz, 3Jn7-1s = 3.1 Hz, H7) ppm; 13C {*H} NMR
(CDCls, 100 MHz, 8): 140.20 (C4), 132.33 (C1), 128.99 (C2), 126.96 (C3), 59.13 (C8), 45.28
(C9), 44.05 (C6), 25.12 (C7) ppm. HRMS-ESI-TOF (m/z): [M* + H™] calculated for C11H19N205S;,

243.1162, found, 243.1170.

L0 7 9 4
Il H 8 |
24 O 10

N-(3-(dimethylamino)propyl)-4-methylbenzenesulfonamide (2D): "8

This compound was synthesized according to Method 5.1.1a with p-toluenesulfonyl chloride
(10.505 g, 55.10 mmol), triethylamine (11.5 mL, 82.65 mmol, 1.5 eqv.), and 3-

(dimethylamino)propylamine (10.4 mL, 82.65 mmol, 1.5 eqv.) in DCM (100 mL) for 4 hours
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yielding a milky white solution. The solution was then washed using distilled water (100 mL), and
the volatile organic layer removed using a rotary evaporater to yield a pale yellow coloured oil.
The product was further dried under reduced pressure using schlenk line yielding a pale white
coloured waxy solid. Yield 98 % (13.85 g). 'H NMR (CDCls, 400 MHz, §): 7.73 (d, 2H, 3Jna-rz =
8.3 Hz, H4), 7.29 (d, 2H, 3Jp2-na = 7.9 Hz, H2), 3.03 (t, 2H, 2Ju7-ns = 5.8 Hz, H7), 2.42 (s, 3H, H1),
2.29 (t, 2H, 3Jno-ns = 5.8 Hz, H9), 2.16 (s, 6H, H10), 1.58 (tt, 2H, 3Jus-n7 = 9.2 Hz, 3Jng-ro = 2.5
Hz, H8) ppm; 13C {tH} NMR (CDCls, 100 MHz, §): 142.83 (C5), 137.11 (C3), 129.44 (C2),
126.88 (C4), 58.76 (C9), 45.15 (C10), 43.65 (C7), 25.23 (C8), 21.32 (C1) ppm. HRMS-ESI-TOF

(m/z): [M™ + H*] calculated for C12H21N20,S1, 257.1318, found, 257.1322.

4
3 o g 10
1 6 S NN
oH ° |
3 7 11
4

N-(3-(dimethylamino)propyl)-2,4,6-trimethylbenzenesulfonamide (3D):

This compound was synthesized according to Method 5.1.1a with 2,4,6-trimethylbenzene-1-
sulfonyl chloride (2 g, 9.14 mmol), triethylamine (1.9 mL, 13.72 mmol, 1.5 eqv.), and 3-
(dimethylamino)propylamine (1.7 mL, 13.72 mmol, 1.5 eqv.) in DCM (50 mL) for 3 hours
yielding a clear solution. The solution was then washed using distilled water (75 mL), and the
volatile organic layer evaporated using a rotary evaporater to yield a clear oil. The product was
dried under reduced pressure using a schlenk line yielding a pale white coloured waxy solid. Yield
98.5 % (2.56 g). *H NMR (CDCls, 400 MHz, §): 7.04 (br s, 1H, H7), 6.93 (s, 2H, H3), 2.94 (t, 2H,
3Jns-Ho = 5.7 Hz, H8), 2.61 (s, 6H, H4), 2.32 (t, 2H, 3Jn10-ne = 5.6 Hz, H10), 2.27 (s, 3H, H1), 2.18
(s, 6H, H11), 1.62 (tt, 2H, 3Jng-ts = 9.5 HZ, 3Jno-H10 = 2.2 Hz, H9) ppm; 3C {*H} NMR (CDClIs,

100 MHz, &): 141.74 (C6), 139.07 (C2), 133.80 (C5), 131.87 (C3), 59.66 (C10), 45.48 (C11),
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43.72 (C8), 24.99 (C9), 22.88 (C4), 20.95 (C1) ppm. HRMS-ESI-TOF (m/z): [M* + H*] calculated

for C14H25N202S1, 285.1631, found, 285.1643.

N-(3-(dimethylamino)propyl)-2,4,6-triisopropylbenzenesulfonamide (4D):

This compound was synthesized according to Method 5.1.1a with 2,4,6-triisopropylbenzene-1-
sulfonyl chloride (2 g, 6.60 mmol), triethylamine (1.4 mL, 9.91 mmol, 1.5 eqv.), and 3-
(dimethylamino)propylamine (1.2 mL, 9.91 mmol, 1.5 eqv.) in DCM (50 mL) for 3 hours yielding
a clear solution. The solution was then washed using distilled water (75 mL), and the volatile
organic layer removed using a rotary evaporater to yield a faint green coloured oil. The product
was further dried under reduced pressure using schlenk line yielding a pale white coloured waxy
solid. Yield 97 % (2.36 g). tH NMR (CDCls, 400 MHz, 8): 7.15 (s, 2H, H4), 4.17 (sep., 2H, 3Jre-
H1a = 6.8 Hz, H6), 3.08 (t, 2H, Jrg-+10 = 5.9 Hz, H9), 2.89 (sep., 1H, Jnz-n1 = 7.0 Hz, H2), 2.50(br
s, 2H, H11), 2.30 (br s, 6H, H12), 1.75 (br s, 2H, H10), 1.26 (br m, 18H, H1 and H1a) ppm; 13C
{*H} NMR (CDCls, 100 MHz, 8): 152.48 (C7), 150.45 (C5), 132.57 (C3), 123.79 (C4), 59.03
(C11), 45.28 (C12), 42.93 (C9), 34.25 (C2), 29.74 (C6), 25.61 (C10), 25.10 (Cla), 23.73 (C1)

ppm. HRMS-ESI-TOF (m/z): [M* + H™] calculated for C20H37N20,S1, 369.2570, found, 369.2570.
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N-(3-(dimethylamino)propyl)naphthalene-1-sulfonamide (5D):

This compound was synthesized according to Method 5.1.1a with naphthalene-1-sulfonyl chloride
(4 g, 18.04 mmol), triethylamine (3.8 mL, 27.06 mmol, 15 eqv.), and 3-
(dimethylamino)propylamine (3.4 mL, 27.06 mmol, 1.5 eqv.) in DCM (50 mL) for 3 hours
yielding a clear solution. The solution was then washed using distilled water (50 mL), and the
organic layer was evaporated using a rotary evaporater to yield a greenish yellow coloured oil. The
product was further dried under reduced pressure using a schlenk line yielding a pale white
coloured waxy solid product. Yield 99.7 % (5.27 g). *H NMR (CDCls, 400 MHz, 3): 8.67 (d, 1H,
3Jp1.H2 = 8.5 Hz, H1), 8.25 (d, 1H, 3Jnsn7 = 6.2 Hz, H8), 8.05 (d, 1H, 3Jns.+7 = 8.2 Hz, H6), 7.95
(d, 1H, 3Jnanz = 7.8 Hz, H4), 7.65 (m, 1H, H2), 7.59 (m, 1H, H3), 7.52 (m, 1H, H7), 2.95 (t, 2H,
3Jn12-+13 = 5.6 Hz, H12), 2.21 (t, 2H, 3Jn1a-13 = 5.6 Hz, H14), 2.12 (s, 6H, H15), 1.55 (m, 2H,
H13) ppm; 33C {*H} NMR (CDCls, 100 MHz, §): 134.85 (C9), 134.45 (C5), 133.96 (C4), 129.79
(C6), 129.16 (C2), 128.42 (C10), 128.21 (C3), 126.82 (C8), 124.76 (C7), 124.28 (C1), 59.80
(C14), 45.56 (C15), 44.77 (C12), 24.68 (C13) ppm. HRMS-ESI-TOF (m/z): [M* + H*] calculated

for C15sH21N202S1, 293.1318, found, 293.13109.
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5.4 Synthesis of Aliphatic Sulfonamides

O 3 5

1—S-N
I H 4
2

N-(3-(dimethylamino)propyl)methanesulfonamide (6D):%

This compound was synthesized according to Method 5.1.1b with methanesulfonyl chloride (1.4
mL, 17.46 mmol) and 3-(dimethylamino)propylamine (2.2 mL, 17.46 mmol, 1.5 eqg.) in DCM (50
mL) for 4 hours. The solution was washed with K2CO3z (0.05 M, 40 mL), and the volatile organic
layer was removed using a rotary evaporator yielding in clear oil. Yield: 65 % (2.05 g). *H NMR
(CDCls, 400 MHz, §): 3.23 (t, 2H, 3Jns-na = 5.8 Hz, H3), 2.91 (s, 3H, H1), 2.43 (t, 2H, 3Jns-1a = 5.8
Hz, H5), 2.22 (s, 6H, H6), 1.71 (m, 2H, H4) ppm; 3C {H} NMR (CDCls, 100 MHz, §): 59.26
(C5), 45.37 (C6), 44.08 (C3), 39.70 (C1), 25.72 (C4) ppm. HRMS-ESI-TOF (m/z): [M* + H]

calculated for CsH17N20,S1, 181.1005, found, 181.1005.

20 4 6 7
1/\S—N/\/\N/
1 H 5 |
03 7

N-(3-(dimethylamino)propyl)ethanesulfonamide (7D):%

This compound was synthesized according to Method 5.1.1b with ethanesulfonyl chloride (0.7
mL, 7.78 mmol) and 3-(dimethylamino)propylamine (1.5 mL, 11.67 mmol, 1.5 eq.) in DCM (50
mL) for 4 hours. The solution was washed with K2COs (0.05 M, 50 mL), and the volatile organic
layer was removed using a rotary evaporator yielding in clear oil. Yield: 61 % (0.92 g). 'H NMR
(CDCls, 400 MHz, 8): 3.19 (t, 2H, 3Jna-+s = 5.8 Hz, H4), 3.0 (q, 2H, Jrz-+1 = 7.4 Hz, H2), 2.42 (t,
2H, Jhens = 5.8 Hz, H6), 2.22 (s, 6H, H7), 1.70 (m, 2H, H5), 1.34 (t, 3H, 3Ju1.+2 = 7.4 Hz, H1)
ppm; 13C {*H} NMR (CDCls, 100 MHz, §): 59.33 (C6), 46.05 (C2), 45.41 (C7), 44.11 (C4), 25.91
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(C5), 8.35 (C1) ppm. HRMS-ESI-TOF (m/z): [M* + H] calculated for CoH23N20,S1, 223.1475,
found, 223.1480.

(o)
(o)

N-(3-(dimethylamino)propyl)butane-1-sulfonamide (8D):8" 8

This compound was synthesized according to Method 5.1.1b with butanesulfonyl chloride (1.7
mL, 12.77 mmol) and 3-(dimethylamino)propylamine (2.4 mL, 19.15 mmol, 1.5 eg.) in DCM (50
mL) for 4 hours. The solution was washed with K2CO3 (0.05 M, 50 mL), and the volatile organic
layer was removed using a rotary evaporater yielding in a clear oil. Yield: 81 % (2.31 g). *H NMR
(CDCls, 400 MHz, §): 3.15 (t, 2H, 3J6.7 = 5.9 Hz, H6), 2.94 (t, 2H, 3Js.3 = 7.9 Hz, H4), 2.38 (t, 2H,
3Jg7=5.9 Hz, H8), 2.18 (s, 6H, HY), 1.78-1.61 (m, 4H, H3 and H7), 1.48-1.34 (m, 2H, H2), 0.91
(t, 3H, 3J1.2 = 7.3 Hz, H1) ppm; 13C {*H} NMR (CDCls, 100 MHz, &): 59.08 (C8), 51.56 (C4),
45.38 (C9), 43.83 (C6), 26.05 (C3), 25.70 (C7), 21.54 (C2), 13.63 (C1) ppm. HRMS-ESI-TOF

(m/z): [M* + H'] calculated for C7H10N302S1, 210.1271, found, 210.1276.

1T o 3 5

\N_"_N/\/\N/B
/ 1 H 4 |
1 0 2 6

N-(2-(dimethylamino)propyl)-N,N-Dimethyl-sulfamide (9D):

This compound was synthesized according to Method 5.1.1b using N,N-Dimethylsulfamoyl
chloride (1.5 mL, 13.93 mmol) and 3-(dimethylamino)propylamine (2.6 mL, 20.89 mmol, 1.5 eq.)
in DCM (50 mL) for 4 hours and extracted using K2COz (0.05 M, 50 mL) yielding in clear oil.

Yield: 79.8 % (2.33 g). *H NMR (CDCls, 400 MHz, §): 3.11 (t, 2H, %J34 = 6.0 Hz, H3), 2.75 (s,
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6H, H1), 2.38 (t, 2H, Js.4 = 6.0 Hz, H5), 2.19 (s, 6H, H6), 1.66 (m, 2H, H4) ppm. 13C {{H} NMR

(CDCls, 100 MHz, 3): 59.24 (C5), 45.39 (C6), 44.31 (C3), 38.00 (C1), 25.62 (C4) ppm.
5.5 General Procedure for the Menschutkin Quaternization

An appropriate amount of sulfonamide containing a tertiary amine and a trimethoxy silane, diallyl
phosphonate or benzophenone (silane, phosphprus or benzophenone) along with alkyl halide were
mixed with ACN using Method 5.2 and heated for the indicated time. The reaction vial was

allowed to cool to RT and the crude product purified as indicated in Method 5.2.

5.5.1 Synthesis of Organosilane based QUAT’s

N,N-dimethyl-3-(phenylsulfonamido)-N-(3-(trimethoxysilyl)propyl)propan-1-aminium

chloride (1F):

This compound was synthesized using N-(3-(dimethylamino)propyl)benzenesulfonamide (1.0 g,
4.13 mmol) and (3-chloropropyl)trimethoxysilane (1.1 mL, 6.19 mmol, 1.5 eq.) in ACN (3 mL)
for 4 hours resulting in viscous golden yellow brown solution. The product was purified using
Et2O (10 mL x 3) and obtained as clear golden brown coloured gummy oil. Yield: 97.5 % (1.77
g). 1H NMR (CDCls, 400 MHz, 8): 8.39 (br s, 1H, H5), 7.96 (d, 2H, H3), 7.54 — 7.341 (m, 3H, H1
& H2), 3.66 (m, 2H, H8), 3.51 (s, 9H, H13), 3.34 (m, 2H, H10), 3.21 (s, 6H, H9), 3.00 (m, 2H,
H6), 2.06 (m, 2H, H7), 1.75 (m, 2H, H11), 0.59 (t, 2H, 3J12.11 = 7.8 Hz, H12) ppm. 13C {*H} NMR
(CDCls, 100 MHz, 8): 139.86 (C4), 132.41 (C1), 129.14 (C2), 127.20 (C3), 65.94 (C10), 62.45

(C8), 51.10 (C9), 50.72 (C13), 39.93 (C6), 22.61 (C7), 16.45 (C11), 5.57 (C12) ppm. 2Si {H}
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NMR (79.4 MHz, CDCls, §): - 44.41 ppm. HRMS-ESI-TOF (m/z): [M* - CI] calculated for

C17H33N205S1Si1, 405.1874, found, 405.8166.

N,N-dimethyl-3-(4-methylphenylsulfonamido)-N-(3-(trimethoxysilyl)propyl)propan-1-

aminium chloride (2F):

This compound was synthesized using N-(3-(dimethylamino)propyl)-4-
methylbenzenesulfonamide (1.0 g, 3.9 mmol) and (3-chloropropyl)trimethoxysilane (1.1 mL, 5.85
mmol, 1.5 eq.) in ACN (3 mL) for 3.5 hours resulting in viscous golden yellow brown coloured
solution. The product was purified using Et.O (10 mL x 3) and obtained as clear golden brown
gummy oil. Yield: 97 % (1.67 g). *H NMR (CDCls, 400 MHz, &): 8.18 (br s, 1H, H6), 7.85 (d,
2H, 3342 = 7.9 Hz, H4), 7.29 (d, 2H, 3J2.4 = 7.7 Hz, H2), 3.69 (m, 2H, H9), 3.55 (s, 9H, H14), 3.37
(m, 2H, H11), 3.25 (s, 6H, H10), 3.01 (m, 2H, H7), 2.40 (s, 3H, H1), 2.10 (m, 2H, H8), 1.79 (m,
2H, H12), 0.63 (t, 2H, 3J13.12 = 7.7 Hz, H13) ppm. 13C {*H} NMR (CDCls, 100 MHz, §): 143.08
(C5), 136.85 (C3), 129.70 (C2), 127.85 (C4), 65.82 (C11), 62.45 (C9), 51.10 (C14), 50.70 (C10),
39.91 (C7), 22.66 (C1), 21.46 (C8), 16.44 (C12), 5.57 (C13) ppm. 2Si {H} NMR (79.4 MHz,
CDCls, 6): - 44.37 ppm. HRMS-ESI-TOF (m/z): [M* - CI] calculated for C1gH3sN20sS1Sis,

419.2030, found, 419.2026.
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N,N-dimethyl-3-(trimethoxysilyl)-N-(3-(2,4,6-trimethylphenylsulfonamido)propyl)propan-

1-aminium chloride (3F):

This compound was synthesized using N-(3-(dimethylamino)propyl)-2,4,6-
trimethylbenzenesulfonamide (2.0 g, 7.03 mmol) and (3-chloropropyl)trimethoxysilane (1.9 mL,
10.55 mmol, 1.5 eqg.) in ACN (3 mL) for 4.5 hours resulting in viscous golden yellow brown
solution. The product was purified using Et.O (10 mL x 3) and obtained as clear golden brown
colouredgummy oil. Yield: 92.6 % (3.27 g). *H NMR (CDCls, 400 MHz, §): 7.74 (t, 1H, 3J7.5 =
6.0 Hz, H7), 6.90 (s. 2H, H3), 3.70 (m, 2H, H8), 3.53 (s, 9H, H15), 3.37 (m, 2H, H12), 3.25 (s,
6H, H11), 2.98 (m, 2H, H10), 2.62 (br s, 6H, H4), 2.25 (s, 3H, H1), 2.09 (m, 2H, H9), 1.78 (m,
2H, H13), 0.62 (t, 2H, 3J1443 = 7.9 Hz, H14) ppm. 13C {H} NMR (CDCls, 100 MHz, 8): 142.01
(C6), 139.22 (C5), 133.83 (C2), 132.01 (C3), 66.06 (C12), 62.51 (C10), 51.22 (C11), 50.81 (C15),
39.33 (C8), 23.28 (C4), 22.88 (C1), 20.95 (C9), 16.57 (C13), 5.70 (C14) ppm. °Si {*H} NMR
(79.4 MHz, CDCls, §): - 44.43 ppm. HRMS-ESI-TOF (m/z): [M* - CI] calculated for

C20H39N205S1Si1, 447.2343, found, 447.2357.
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N,N-dimethyl-3-(naphthalene-1-sulfonamido)-N-(3-(trimethoxysilyl)propyl)propan-1-

aminium chloride (5F):

This compound was synthesized using N-(3-(dimethylamino)propyl)naphthalene-1-sulfonamide
(0.5 g, 2.22mmol) and (3-chloropropyl)trimethoxysilane (0.6 mL, 3.31 mmol, 1.5 eqg.) in ACN (3
mL) for 5 hours resulting in viscous golden yellow brown solution. The product was purified using
Et,O (10 mL x 3) and obtained as clear golden brown coloured gummy oil. Yield: 78.8 % (0.85
9). 'H NMR (CDCls, 400 MHz, §): 8.83 (d, 1H, 3Js.7 = 8.6 Hz, H8), 8.47 (t, 1H, 3J11.12 = 5.7 Hz,
H11), 8.20 (d, 1H, 3Js.7 = 7.3 Hz, Hs6), 7.99 (d, 1H, 3J1» = 8.1 Hz, H1), 7.87 (d, 1H, J43 = 8.1
Hz, H4), 7.69 (m, 1H, H7), 7.55 — 7.46 (m, 2H, H3 & H2), 3.49 (br s, 11H, H14 & H19), 3.20 (m,
2H, H16), 3.06 (br s, 8H, H12 & H15), 1.98 — 1.86 (m, 2H, H13), 1.68 — 1.54 (m, 2H, H17), 0.51
(t, 2H, 331817 = 7.8 Hz, H18) ppm. 3C {H} NMR (CDCls, 100 MHz, 8): 135.12 (C9), 134.16
(C5), 133.91 (C1), 129.07 (C6), 128.8 (C4), 128.56 (C7), 128.12 (C10), 127.02 (C3), 125.30 (C8),
124.31 (C2), 65.84 (C16), 62.32 (C14), 50.92 (C15), 50.69 (C19), 39.79 (C12), 22.81 (C13), 16.33
(C17), 5.48 (C18) ppm. 2Si {*H} NMR (79.4 MHz, CDCls, 5): - 44.49 ppm. HRMS-ESI-TOF

(m/z): [M* - CI] calculated for C21HasN202S:Si1, 455.2030, found, 455.2018.
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3-(ethylsulfonamido)-N,N-dimethyl-N-(3-(trimethoxysilyl)propyl)propan-1-aminium

chloride (7F):

This compound was synthesized using N-(3-(dimethylamino)propyl)ethanesulfonamide (1.0 g,
5.15 mmol) and (3-chloropropyl)trimethoxysilane (1.4 mL, 7.72 mmol, 1.5 eq.) in ACN (3 mL)
for 5 hours resulting in viscous golden yellow brown solution. The product was purified using
Et,O (10 mL x 3) and obtained as clear golden brown coloured gummy oil. Yield: 86.0 % (1.73
g). 'H NMR (CDCls, 400 MHz, §): 7.63 (s, 1H, H3), 3.66 (m, 2H, H6), 3.53 (m, 9H, H11), 3.36
(m, 2H, H8), 3.25 — 3.15 (M, 8H, H7 & H4), 3.03 (m, 2H, H2), 2.12 (m, 2H, H5), 1.78 (m, 2H,
H9), 1.31 (m, 3H, H1), 0.62 (t, 2H, 3J10.9 = 7.8 Hz, H10) ppm. 13C {H} NMR (CDCl3, 100 MHz,
8): 65.89 (C8), 62.40 (C6), 51.18 (C7), 50.81 (C11), 46.37 (C2), 40.09 (C4), 23.58 (C5), 16.54
(C9), 8.28 (C1), 5.73 (C10) ppm. 2°Si {*H} NMR (79.4 MHz, CDCls, ): - 44.51 ppm.
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3-(butylsulfonamido)-N,N-dimethyl-N-(3-(trimethoxysilyl)propyl)propan-1-aminium

chloride (8F):

This compound was synthesized using N-(3-(dimethylamino)propyl)butanesulfonamide (1.0 g,
4.50 mmol) and (3-chloropropyl)trimethoxysilane (1.2 mL, 6.75 mmol, 1.5 eq.) in ACN (3 mL)

for 5 hours resulting in viscous golden yellow brown solution. The product was purified using

68



Et2O (10 mL x 5) and obtained as clear golden brown coloured gummy oil. Yield: 60.0 % (1.13
g). 1H NMR (CDCls, 400 MHz, §): 7.62 (br s, 1H, H5), 3.64 (m, 2H, H8), 3.51 (s, 9H, H13), 3.34
(m, 2H, H4), 3.24 — 3.12 (m, 8H, H9 and H6), 2.98 (m, 2H, H4), 2.09 (m, 2H, H7), 1.83 — 1.66
(m, 4H, H11 & H3), 1.38 (m, 2H, H2), 0.86 (m, H1), 0.60 (t, 2H, *J1211 = 7.3 Hz, H12) ppm. B3C
{*H} NMR (CDCls, 100 MHz, §): 65.82 (C10), 51.81 (C4), 51.12 (C9), 50.74 (C13), 40.04 (C6),
25.38 (C3), 23.50 (C7), 21.58 (C2), 16.50 (C11), 13.62 (C1), 5.68 (C12) ppm. 2Si {*H} NMR
(79.4 MHz, CDCls, §8): - 44.50 ppm. HRMS-ESI-TOF (m/z): [M* - CI] calculated for

C15H37N205S:Si1, 385.2187, found, 385.2185.

5.5.2 Synthesis of Organophosphosophorus based QUAT

14
3-(diisopropoxyphosphoryl)-N,N-dimethyl-N-(3-(phenylsulfonamido)propyl)propan-1-

aminium bromide (1H):

This compound was synthesized using N-(3-(dimethylamino)propyl)benzenesulfonamide (1.0 g,
4.13 mmol) and diisopropyl (3-bromopropyl)phosphonate (1.10 mL, 4.13 mmol, 1 eq.) in ACN (3
mL) for 4 hours resulting in viscous golden yellow brown solution. The product was purified using
Et2O (10 mL X 3) and obtained as pale yellow coloured fluffy/gummy powder. Yield: 86.0 %
(1.87 g). tH NMR (CDCls, 400 MHz, &8): 7.94 (d, 2H, 3J3.2 = 6.5 Hz, H3), 7.65 (t, 1H, 3Js6 = 5.9
Hz, H5), 7.54 — 7.46 (m, 3H, H1 & H2), 4.63 (m, 2H, H13), 3.70 (m, 2H, H8), 3.60 (M, 2H, H10),
3.27 (s, 6H, H9), 3.01 (m, 2H, H6), 2.16 — 1.94 (m, 4H, (H7, H11, & ACN), 1.79 (dt, 2H, 2J12p =
17.7 Hz, H8, 3J12.11 = 7.2 Hz, H12), 1.28 (dd, 12H, *J14-p = 6.2 Hz, H8, 3J14.13 = 1.7 Hz, H14) ppm.
13C {H} NMR (CDCls, 100 MHz, 8): 139.57 (C4), 132.59 (C2), 129.23 (C1), 127.19 (C3), 70.82
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(d, 2J13.p = 6.7 Hz, C13), 63.74 (d, 3J10-p = 15.1 Hz, C10), 62.41 (C8), 51.28 (C9), 39.89 (C6),
24.12 (d, 3J14-p = 4.5 Hz , C14), 23.99 (d, 3J14-p = 4.0 Hz, C14), 23.10 (d, 1J12-p = 144.3 Hz, C12),
22.68 (C7), 16.67 (C11) ppm. 3P{*H} NMR (CDCls, 121.45 MHz, §): 27.36 ppm. HRMS-ESI-

TOF (m/z): [M* - Br] calculated for C20H3gN20OsP1S1, 449.2234, found, 449.2232.

3-(diisopropoxyphosphoryl)-N,N-dimethyl-N-(3-(4-

methylphenylsulfonamido)propyl)propan-1-aminium bromide (2H):

This compound was synthesized using N-(3-(dimethylamino)propyl)-4-
methylbenzenesulfonamide (0.50 g, 1.95 mmol) and diisopropyl (3-bromopropyl)phosphonate
(0.50 mL, 1.95 mmol, 1 eq.) in ACN (3 mL) for 3 hours resulting in pale yellow solution with
some precipitate formation. The product was purified using EtoO (10 mL x 3) and obtained as
white puffy powder. Yield: 89.5 % (0.95 g)."H NMR (CDCls, 400 MHz, 5): 7.78 (d, 2H, 3Js-, =
8.2 Hz, H4), 7.55 (t, 1H, 3Js.7 = 5.8 Hz, H6), 7.28 — 7.23 (m, 2H, H2 and CDCls), 4.61 (m, 2H,
H14), 3.67 (m, 2H, H9), 3.59 (m, 2H, H11), 3.25 (s, 6H, H10), 2.95 (M, 2H, H7), 2.36 (s, 3H, H1),
2.16 — 1.90 (m, 4H, H8 & H12), 1.75 (dt, 2H, 2J13.p = 17.8 Hz, 3J13-12 = 7.1 Hz, H13), 1.25 (dd,
12H, “J1sp = 56.15 Hz, 3J15.14 = 2.1 Hz, H15) ppm. 33C {*H} NMR (CDCls, 100 MHz, 8): 143.25
(C5), 136.46 (C3), 129.74 (C2), 127.22 (C4), 70.71 (d, 2J14-p = 6.7 Hz, C14), 63.67 (d, 3J11.p = 15.8
Hz, C11), 62.42 (C9), 51.17 (C10), 39.86 (C7), 24.10 (d, 3J15.p = 4.5 Hz , C15), 23.97 (d, Jis.p =
4.0 Hz, C15), 23.07 (d, Y13 = 144.1 Hz, C13), 22.52 (C8), 21.47 (C1), 16.69 (d, 2J12.p = 4.1 Hz,
C12) ppm. 3P{*H} NMR (CDCls, 121.45 MHz, §): 27.15 ppm. HRMS-ESI-TOF (m/z): [M* - Br

] calculated for C21H40N20sP1S1, 463.2390, found, 463.2394.
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3-(diisopropoxyphosphoryl)-N,N-dimethyl-N-(3-(2,4,6-

trimethylphenylsulfonamido)propyl)propan-1-aminium bromide (3H):

This compound was synthesized using N-(3-(dimethylamino)propyl)-2,4,6-
trimethylbenzenesulfonamide (0.50 g, 1.76 mmol) and diisopropyl (3-bromopropyl)phosphonate
(0.40 mL, 1.76 mmol, 1 eq.) in ACN (3 mL) for 4 hours resulting in viscous golden yellow brown
solution. The product was purified using EtO (10 mL x 3) and obtained as pale yellow coloured
fluffy/gummy powder. Yield: 71.0 % (0.71 g). *H NMR (CDCls, 400 MHz, §): 7.14 (t, 1H, 3J7s
= 6.0 Hz, H7), 6.92 (s, 2H, H3), 4.65 (m, 2H, H15), 3.80 (m, 2H, H10), 3.67 (m, 2H, H12), 3.32
(s, 6H, H11), 3.01 (dd, 2H, 3Js.7 = 11.2 Hz, 3J.9 = 5.6 Hz, H8), 2.63 (s, 6H, H4), 2.27 (s, 3H, H1),
2.22-2.00 (M, 4H, H9 & H13), 1.81 (dt, 2H, 2J14p = 17.8 Hz, 3J14.13 = 7.0 Hz, H14), 1.30 (d, 12H,
331615 = 6.2 Hz, H16) ppm. 3C {H} NMR (CDCls, 100 MHz, &): 142.11 (C8), 139.07 (C2),
133.33 (C5), 132.00 (C3), 70.80 (d, 2J1s.p = 6.7 Hz, C15), 63.68 (d, 3J12p = 15.0 Hz, C12), 62.35
(C10), 51.32 (C11), 39.20 (C8), 24.13 (d, 3J16-» = 4.5 Hz , C16), 24.00 (d, 3J1s-» = 4.0 Hz, C16),
23.09 (d, Y1ap = 144.3 Hz, C14), 23.22 (C4), 22.68 (C9), 20.89 (C1), 16.76 (C13) ppm. LP{LH}
NMR (CDCls, 121.45 MHz, d): 27.16 ppm. HRMS-ESI-TOF (m/z): [M* - Br] calculated for

C23H44N20sP1S1, 491.2703, found, 491.2693.
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3-(diisopropoxyphosphoryl)-N,N-dimethyl-N-(3-(naphthalene-1-

sulfonamido)propyl)propan-1-aminium bromide (5H):

This compound was synthesized using N-(3-(dimethylamino)propyl)naphthalene-1-sulfonamide
(0.50 g, 4.13 mmol) and diisopropyl (3-bromopropyl)phosphonate (0.50 mL, 3.42 mmol, 1 eq.) in
ACN (3 mL) for 5.5 hours resulting in viscous golden yellow brown solution. The product was
purified using Et2O (10 mL x 3) and obtained as pale yellow coloured fluffy/gummy powder.
Yield: 77.4 % (0.77 g). *H NMR (CDCls, 400 MHz, §): 8.82 (d, 1H, 3Js.7 = 8.7 Hz, H8), 8.20 (d,
1H, 3Js.7 = 7.3 Hz, H6), 8.02 (d, 1H, 3J1.2 = 8.3 Hz, H1), 7.92 — 7.84 (m, 2H, H4 & H11), 7.69 (m,
1H, H7), 7.57 — 7.48 (m, 2H, H3 & H2), 4.60 (m, 2H, H19), 3.62 — 3.47 (m, 4H, H14 & H16),
3.12 (s, 6H, H15), 3.03 (dd, 2H, 3J1211 = 11.2 Hz, 3J12.13 = 5.6 Hz, H12), 2.08 — 1.82 (m, 7H, (ACN,
H13 & H17)), 1.71 (dt, 2H, 2J1s.p = 17.5 Hz, 3J1g.17 = 7.2 Hz, H18), 1.12 (m, 12H, H20) ppm. 13C
{*H} NMR (CDCls, 100 MHz, §): 134.63 (C9), 134.18 (C5), 13.14 (C1), 129.37 (C6), 128.92
(C4), 128.63 (C7), 128.03 (C10), 127.08 (C3), 125.17 (C8), 124.36 (C2), 70.80 (d, 2J10.p = 6.7 Hz,
C19), 63.60 (d, 3J1s-p = 15.1 Hz, C16), 62.36 (C14), 51.14 (C15), 39.74 (C12), 24.12 (d, 3Jz0.p =
4.5 Hz, C20), 23.99 (d, 3Ja0-p = 4.0 Hz, C20), 23.02 (d, WJ1a.p = 144.5 Hz, C18), 22.68 (C13), 16.65
(d, 217-p = 144.3 Hz, C17) ppm. 3P{*H} NMR (CDCls, 121.45 MHz, §): 27.19 ppm. HRMS-ESI-

TOF (m/z): [M* - Br] calculated for C24H44N20sP1S1, 499.2390, found, 499.2385.
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3-(diisopropoxyphosphoryl)-N-(3-(ethylsulfonamido)propyl)-N,N-dimethylpropan-1-

aminium bromide (7H):

This compound was synthesized using N-(3-(dimethylamino)propyl)ethanesulfonamide (0.25 g,
1.29 mmol) and diisopropyl (3-bromopropyl)phosphonate (0.30 mL, 1.29 mmol, 1 eq.) in ACN (3
mL) for 5 hours resulting in viscous golden yellow brown solution. The product was purified using
Et,O (10 mL x 3) and obtained as white coloured gummy powder. Yield: 86.0 % (0.53 g). *H
NMR (CDCls, 400 MHz, §): 7.08 (t, 1H, Js4 = 5.8 Hz, H3), 4.66 (m, 2H, H11), 3.74 (m, 2H, H6),
3.63 (M, 2H, H8), 3.35 — 3.16 (M, 8H, H7 & H4), 3.07 (g, 2H, 3J,.1 = 7.4 Hz, H2), 2.19 (m, 2H,
H5), 2.04 (m, 2H, H9), 1.82 (dt, 2H, 2J10p = 17.4 Hz, 3J10.9 = 7.2 Hz, H10), 1.44 — 1.24 (m, 15H,
H1 & H12) ppm. 33C {#H} NMR (CDCls, 100 MHz, §): 70.74 (d, 2J11.p = 6.7 Hz, C11), 63.75 (d,
8Jsp = 15.7 Hz, C8), 62.36 (C6), 51.20 (C7), 46.22 (C2), 39.97 (C4), 24.12 (d, 3J12p = 4.5 Hz ,
C12), 23.98 (d, 3J12p = 4.0 Hz, C12), 23.14 (d, “J10p = 144.3 Hz, C10), 23.36 (C5), 16.74 (C9),
8.24 (C1) ppm. 31P{*H} NMR (CDCls, 121.45 MHz, 5): 27.05 ppm. HRMS-ESI-TOF (m/z): [M*

- Br] calculated for C16H3sN20sP1S1, 401.2234, found, 401.2235.
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3-(butylsulfonamido)-N-(3-(diisopropoxyphosphoryl)propyl)-N,N-dimethylpropan-1-

aminium bromide (8H):

This compound was synthesized using N-(3-(dimethylamino)propyl)butane-1-sulfonamide (0.50
g, 2.25 mmol) and diisopropy! (3-bromopropyl)phosphonate (0.60 mL, 2.25 mmol, 1 eq.) in ACN
(3 mL) for 3 hours resulting in viscous golden yellow brown solution. The product was purified
using Et.O (10 mL x 3) and obtained as pale yellow coloured gummy powder. Yield: 82.0 % (0.94
g). tH NMR (CDCls, 400 MHz, §): 7.07 (t, 1H, 3J3.4 = 6.1 Hz, H5), 4.69 (m, 2H, H13), 3.78 (m,
2H, H8), 3.66 (m, 2H, H10), 3.33 (s, 6H, H9), 3.28 (M, 2H, H6), 3.29 (t, 2H, 3J4.3 = 8.4 Hz, H4),
2.21 (m, 2H, H7), 2.08 (m, 2H, H11), 1.89 — 1.75 (m, 4H, H3 & H12), 1.45 (m, 2H, H2), 1.34 (m,
12H, H14), 0.96 (t, 3H, 3J1.2 = 7.4 Hz, H1) ppm. 13C {*H} NMR (CDCls, 100 MHz, §): 70.77 (d,
23130 = 6.7 Hz, C13), 63.73 (d, 3J10» = 15.5 Hz, C10), 62.36 (C8), 51.72 (C4), 51.25 (C9), 39.98
(C6), 25.35 (C3), 24.14 (d, 3J14.p = 4.5 Hz, C14), 24.00 (d, 3J1a.p = 4.0 Hz, C14), 23.87 & 22.43
(d, Y12 = 144.4 Hz, C12), 23.37 (C7), 21.51 (C2), 16.73 (d, 2J11.p = 4.2 Hz, C11), 13.62 (C1)
ppm. 3'P{'H} NMR (CDCls, 121.45 MHz, §): 27.22 ppm. HRMS-ESI-TOF (m/z): [M* - Br]

calculated for C1sH42N20sP1S1, 429.2547, found, 429.2543.
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3-(diisopropoxyphosphoryl)-N-(3-((N,N-dimethylsulfamoyl)amino)propyl)-N,N-

dimethylpropan-1-aminium bromide (9H):

This compound was synthesized using N-(2-(dimethylamino)propyl)-N,N-Dimethyl-sulfamide
(0.50 g, 2.39 mmol) and diisopropyl (3-bromopropyl)phosphonate (0.6 mL, 2.39 mmol, 1 eq.) in
ACN (3 mL) for 3 hours resulting in viscous pale yellow solution. The product was purified using
EtoO (10 mL X 3) and obtained as pale yellow coloured fluffy/gummy powder. Yield: 91.7 %
(1.09 g). *H NMR (CDCls, 400 MHz, 8): 7.02 (t, 1H, Jo.3 = 5.9 Hz, H2), 4.62 (m, 2H, H10), 3.66
(m, 2H, H5), 3.59 (M, 2H, H7), 3.26 (s, 6H, H6), 3.14 (m, 2H, H3), 2.75 (s, 6H, H1), 2.12 (m, 2H,
H4), 2.05 — 1.97 (m, 2H, H8), 1.78 (dt, 2H, 2Jep = 17.4 Hz, 3Jo:s = 7.2 Hz, H9), 1.25 (m, 12H,
H11) ppm. $3C {tH} NMR (CDCls, 100 MHz, 8): 70.78 (d, 210 = 6.6 Hz, C10), 63.74 (d, 3J7.p =
15.4 Hz, C7), 62.44 (C5), 51.24 (C6), 40.19 (C6), 38.15 (C1), 24.13 (d, 3J11.p = 4.5 Hz, C11), 24.06
(d, 3J11p = 4.0 Hz, C11), 23.15 (d, LJo.p = 144.0 Hz, C9), 22.84 (C4), 16.74 (C8) ppm. 3LP{*H}
NMR (CDCls, 121.45 MHz, 8): 27.27 ppm. HRMS-ESI-TOF (m/z): [M* - Br] calculated for

C16H39N205P1S1, 416.2343, found, 416.2341.
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5.5.3 Synthesis of Benzophenone based QUAT
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3-(4-benzoylphenoxy)-N,N-dimethyl-N-(3-(phenylsulfonamido)propyl)propan-1-aminium

bromide (1J):

This compound was synthesized using N-(3-(dimethylamino)propyl)phenylsulfonamide (0.921 g,
3.8 mmol) and 4-(3-bromopropoxy)benzophenone (1.29 g, 4.0 mmol) in ACN (10 mL) for 48
hours; yielding in viscous pale yellow solution. The product was obtained as fluffy pale yellow
coloured powder after purification. Yield: 82% (1.74 g). *H NMR (CDCls, 400 MHz, 8): 7.93 (m,
2H, H3), 7.82 (m, 1H, H5), 7.74 — 7.62 (m, 4H, H15 & H19), 7.53 (m, 1H, H21), 7.49 — 7.37 (m,
5H, (H1, H2, & H20)), 6.89 (d, 2H, 3J1415 = 8.9 Hz, H14), 4.11 (t, 3J12-11 = 5.3 Hz, H12), 3.79 —
3.56 (M, 4H, H8 & H10), 3.27 (s, 6H, H9), 3.01 (m, 2H, H6), 2.29 (m, 2H, H11), 2.10 (M, 2H, H7)
ppm. 33C {*H} NMR (CDCls, 100 MHz, §): 195.58 (C17), 161.80 (C13), 139.64 (C1), 137.99
(C4), 132.71 (C18), 132.51 (C15), 132.19 (C21), 130.60 (C16), 139.75 (C2), 129.32 (C19), 128.35
(C20), 127.22 (C3), 114.31 (C14), 64.68 (C12), 62.44 (C8), 62.06 (C10), 39.98 (C6), 23.08 (C11),
22.75 (C7) ppm. HRMS-ESI-TOF (m/z): [M* - Br] calculated for C27H33N204S, 481.2156; found

481.2155.
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3-(4-benzoylphenoxy)-N,N-dimethyl-N-(3-(4-methylphenylsulfonamido)propyl)propan-1-

aminium bromide (2J):

This compound was synthesized using N-(3-(dimethylamino)propyl)-4-
methylphenyl)sulfonamide (1.05 g, 4.1 mmol) and 4-(3-bromopropoxy)benzophenone (1.417 g,
4.44 mmol) in ACN (10 mL) for 48 hours; yielding in viscous pale yellow solution. The product
was obtained as fluffy white coloured powder after purification. Yield: 80 % (1.88 g). 'H NMR
(CDCls, 400 MHz, §): 7.80 (d, 2H, Js2 = 8.2 Hz, H4), 7.73 — 7.65 (m, 4H, H16 & H20), 7.56 —
7.59 (m, 1H, H22), 7.42 (t, Jaz = 7.2 Hz 2H, H22), 7.21 (d, 2H, J24 = 8.2 Hz, H2), 6.89 (d, 2H,
Jis-16 = 8.8 Hz, H15), 4.12 (t, 2H, Ji3.12 = 5.4 Hz, H13), 3.79 — 3.59 (m, 4H, H9 & H11), 3.29 (s,
6H, H10), 3.07 — 2.90 (M, 2H, H7), 2.35 — 2.23 (m, 5H, H1 & H12), 2.19 — 2.03 (m, 2H, H8) ppm.
13C {{H} NMR (CDCls, 100 MHz, 8): 195.57 (C18), 161.82 (C14), 143.50 (C3), 138.05 (C5),
136.53 (C19), 132.54 (C16), 132.19 (C22), 130.69 (C17), 129.90 (C20), 129.80 (C2), 128.36
(C21), 127.34 (C4), 114.32 (C15), 64.71 (C13), 62.53 (C9), 62.11 (C11), 51.62 (C10), 40.01 (C7),
23.15 (C12), 22.75 (C8), 21.57 (C1) ppm. HRMS-ESI-TOF (m/z): [M* - Br7] calculated for

C2sH3sN204S, 495.2312; found 495.23109.
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3-(4-benzoylphenoxy)-N,N-dimethyl-N-(3-(2,4,6-

trimethylphenylsulfonamido)propyl)propan-1-aminium bromide (3J):

This compound was synthesized using N-(3-(dimethylamino)propyl)-2,4,6-
trimethylphenyl)sulfonamide (0.853 g, 3.0 mmol) and 4-(3-bromopropoxy)benzophenone (1.0 g,
3.13 mmol) in ACN (10 mL) for 48 hours; yielding in viscous pale yellow solution. The product
was obtained as fluffy white coloured powder after purification. Yield: 67 % (1.20 g). 'H NMR
(CDCls, 400 MHz, 8): 7.76 (d, 2H, J17-16 = 8.7 Hz, H17), 7.72 (d, 2H, J21.22 = 7.2 Hz, H21), 7.56
(t, 2H, 3J23.22 = 7.4 Hz, H23), 7.56 (M, 2H, H22), 7.22 (t, 1H, 3J7.s = 6.2 Hz, H7), 6.94 (t, 2H, 3J1s-
17 = 6.0 Hz, H16), 6.90 (s, 2H, H3), 4.21 (t, 2H, 3J14.13 = 5.4 Hz, H14), 3.85 (m, 2H, H10), 3.75
(m, 2H, H12), 3.37 (s, 6H, H11), 3.04 (m, 2H, H8), 2.63 (s, 6H, H4), 2.38 (m, 2H, H13), 2.25 (s,
3H, H1), 2.20 (m, 2H, H9) ppm. 13C {*H} NMR (CDCls, 100 MHz, 5): 195.63 (C19), 161.81
(C15), 142.40 (C5), 139.24 (C2), 138.15 (20), 133.41 (C6), 132.66 (C17), 132.22 (C23), 132.18
(C3), 130.91 (C18), 129.90 (C21), 128.39 (C22), 64.72 (C14), 62.68 (C10), 62.29 (C12), 51.77
(C11), 39.36 (C8), 23.42 (C4), 23.27 (C13), 23.05 (C9), 21.03 (C1) ppm. HRMS-ESI-TOF (m/z):

[M* - Br] calculated for CsoH39N204S, 523.2625; found 523.2636.
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3-(4-benzoylphenoxy)-N,N-dimethyl-N-(3-(2,4,6-

triisopropylphenylsulfonamido)propyl)propan-1-aminium bromide (4J):

This compound was synthesized using N-(3-(dimethylamino)propyl)-2,4,6-
triisopropylbenzenesulfonamide (0.379 g, 1.03 mmol) and 4-(3-bromopropoxy)benzophenone
(0.329 g, 1.03 mmol) in ACN (10 mL) for 48 hours; yielding in viscous pale yellow solution. The
product was obtained as fluffy pale white coloured powder after purification. Yield: 92% (0.65 g).
IH NMR (CDCls, 400 MHz, 8): 7.78 — 765 (m, 4H, H18 & H22), 7.57 — 7.49 (m, 1H, H24), 7.43
(t, 2H, 332322 = 7.5 Hz, H23), 7.12 (s, 2H, H4), 7.06 (t, 1H, 3Js.0 = 6.1 Hz, H8), 6.93 (d, 2H, 3J17.18
= 8.9 Hz, H17), 4.20 (t, 2H, 3J15.14 = 5.5 Hz, H15), 4.12 (m, 2H, H6), 3.86 (m, 2H, H11), 3.75 (m,
2H, H13), 3.39 (s, 6H, H12), 3.10 (m, 1H, H9), 2.85 (m, 1H, H2), 2.37 (m, 2H, H14), 2.20 (m, 2H,
H10), 1.21 (m, 18H, H1 & H1a) ppm. 13C {{H} NMR (CDCls, 100 MHz, §): 195.55 (C20), 161.75
(C16), 152.76 (C3), 150.33 (C7), 138.01 (C21), 132.50 (C18), 132.06 (C24), 131.96 (C5), 130.66
(C19), 129.74 (C22), 128.24 (C23), 123.88 (C4), 114.22 (C17), 64.67 (C15), 62.49 (C11), 62.03
(C13), 51.66 (C12), 39.47 (C9), 34.10 (C2), 29.54 (C6), 25.12 (C1), 23.14 (C14), 23.07 (C10)

ppm. HRMS-ESI-TOF (m/z): [M* - Br] calculated for C3sHs1N204S, 607.3564; found 607.3555.
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3-(4-benzoylphenoxy)-N,N-dimethyl-N-(3-(naphthalene-1-sulfonamido)propyl)propan-1-

aminium bromide (5J):

This compound was synthesized using N-(3-(dimethylamino)propyl)naphthalene-1-sulfonamide
(0.584 g, 2.0 mmol) and 4-(3-bromopropoxy)benzophenone (0.702 g, 2.2 mmol) in ACN (10 mL)
for 48 hours; yielding in viscous pale yellow solution. The product was obtained as fluffy white
coloured powder after purification. Yield: 82 % (1.0 g). *H NMR (CDCls, 400 MHz, &): 8.80 (d,
1H, 331, = 8.7 Hz, H1), 8.15 (d, 1H, 3Js.7 = 7.3 Hz, H8), 7.96 (s, 1H, H11), 7.91 (d, 1H, %Js.7 = 8.3
Hz, H6), 7.78 (d, 1H, 3Ja3 = 8.2 Hz, H4), 7.70 — 7.55 (m, 4H, (H2, H25, & H21)), 7.51 (t, 2H, 3J27-
26 = 7.4 Hz, H27), 7.46 — 7.34 (m, 4H, (H3, H26, & H7), 6.77 (d, 2H, 3J20-21 = 8.7 Hz, H20), 3.92
(m, 2H, H18), 3.59 — 3.37 (M, 4H, H14 & H16), 3.19 — 2.91 (m, 8H, H15 & H12), 2.04 (m, 2H,
H17), 1.91 (m, 2H, H13) ppm. 13C {*H} NMR (CDCls, 100 MHz, 8): 195.59 (C23), 161.77 (C19),
138.04 (C24), 134.85 (C9), 134.21 (C6), 132.50 (C25), 132.20 (C27), 130.56 (C10), 129.80 (C2),
129.36 (C8), 129.05 (C4), 128.76 (C21), 128.37 (C7), 128.00 (C22), 127.18 (C3), 125.20 (C1),
124.52 (C26), 114.25 (C20), 64.59 (C18), 62.42 (C14), 62.10 (C16), 51.42 (15), 39.83 (C12),
22.92 (C17 & C13) ppm. HRMS-ESI-TOF (m/z): [M* - Br7] calculated for CsziH3sN204S,

531.2312; found 531.2328.
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3-(4-benzoylphenoxy)-N-(3-(ethylsulfonamido)propyl)-N,N-dimethylpropan-1-aminium

bromide (7J):

This compound was synthesized using N-(3-(dimethylamino)propyl)ethanesulfonamide (0.250 g,
1.29 mmol) and 4-(3-bromopropoxy)benzophenone (0.411 g, 1.29 mmol) in ACN (10 mL) for 48
hours; yielding in viscous pale yellow solution. The product was obtained as fluffy pale yellow
coloured powder after purification. Yield: 77% (0.52 g). 'H NMR (CDCls, 400 MHz, §): 7.78 (d,
2H, 31312 = 8.7 Hz, H13), 7.72 (d, 2H, 3J17.18 = 7.4 Hz, H17), 7.56 (t, 2H, 3J19-18 = 7.4 Hz, H19),
7.50 — 7.40 (m, 2H, H18), 7.12 (t, 1H, 3J3.4 = 6.0 Hz, H3), 6.98 (d, 2H, 3J1213 = 8.8 Hz, H12), 4.21
(t, 2H, 3J10.9 = 5.3 Hz, H10), 3.80 (m, 2H, H6), 3.71 (m, 2H, H8), 3.35 (s, 6H, H7), 3.31 — 3.22 (m,
2H, H4), 3.07 (q, 2H, J2.3 = 7.3 Hz, H2), 2.37 (m, 2H, H9), 2.20 (m, 2H, H5), 1.34 (t, 3H, 3J23 =
7.4 Hz, H1) ppm. 3C {*H} NMR (CDCls, 100 MHz, &): 195.55 (C15), 161.66 (C11), 137.94
(C16), 132.55 (C13), 132.16 (C19), 130.83 (C14), 129.78 (C17), 128.29 (C18), 114.22 (C12),
64.57 (C10), 62.46 (C6), 62.17 (C8), 51.61 (C7), 46.44 (C2), 39.95 (C4), 23.64 (C5), 23.11 (C9),
8.27 (C1) ppm. HRMS-ESI-TOF (m/z): [M* - Br7] calculated for C23H33N204S, 433.2156; found

433.2153.
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3-(4-benzoylphenoxy)-N-(3-(butylsulfonamido)propyl)-N,N-dimethylpropan-1-aminium

bromide (8J):

This compound was synthesized using N-(3-(dimethylamino)propyl)butane-1-sulfonamide (0.324
g, 1.46 mmol) and 4-(3-bromopropoxy)benzophenone (0.466 g, 1.46 mmol) in ACN (10 mL) for
48 hours; yielding in viscous pale yellow solution. The product was obtained as fluffy pale yellow
coloured powder after purification. Yield: 73% (0.58 g)*H NMR (CDClIs, 400 MHz, 3): 7.74 (d,
2H, 3J15.14 = 8.7 Hz, H15), 7.69 (d, 2H, 3J19:20 = 7.1 Hz, H19), 7.54 (t, 1H, 3J21:20 = 7.4 Hz, H21),
7.44 (m, 2H, H20), 7.10 (t, 1H, 3Js.6 = 5.6 Hz, H5), 6.96 (d, 2H, 3J14.15 = 8.8 Hz, H14), 4.18 (t, 1H,
3J1211 = 5.2 Hz, H12), 3.79 — 3.61 (m, 2H, H8 & H10), 3.33 (s, 6H, H9), 3.24 (m, 2H, H6), 3.02
(m, 2H, H4), 2.33 (m, 2H, H11), 2.18 (m, 2H, H7), 1.73 (M, 2H, H3), 1.38 (M, 2H, H2), 0.87 (¢,
3H, 3312 = 7.3 Hz, H1) ppm. 13C {*H} NMR (CDCls, 100 MHz, §): 195.56 (C17), 161.17 (C13),
137.89 (C18), 132.50 (C15), 132.16 (C21), 130.62 (C16), 129.71 (C19), 128.29 (C20), 114.27
(C14), 64.67 (C12), 62.30 (C8), 61.96 (C10), 51.79 (C4), 51.56 (C9), 25.37 (C3), 23.55 (C7),
23.05 (C11), 21.51 (C2), 13.64 (C1) ppm. HRMS-ESI-TOF (m/z): [M* - Br7] calculated for

CasH37N204S, 461.2469; found 461.2458.
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3-(4-benzoylphenoxy)-N-(3-((N,N-dimethylsulfamoyl)amino)propyl)-N,N-dimethylpropan-

1-aminium bromide (9J):

This compound was synthesized using N-(2-(dimethylamino)propyl)-N,N-Dimethyl-sulfamide
(0.232 g, 1.11 mmol) and 4-(3-bromopropoxy)benzophenone (0.354 g, 1.11 mmol) in ACN (10
mL) for 48 hours; yielding in viscous pale yellow solution. The product was obtained as fluffy
pale yellow coloured powder after purification. Yield: 60 % (0.36 g).!H NMR (CDCls, 400 MHz,
8): 7.70 (d, 2H, 331211 = 8.7 Hz, H12), 7.65 (d, 2H, 3J16.17 = 7.2 Hz, H16), 7.51 (t, 1H, 3J15.47 = 7.4
Hz, H18), 7.40 (m, 2H, H17), 7.03 - 6.87 (m, 3H, H11 & H2), 4.15 (t, 2H, Jo.s = 4.7 Hz, H9), 3.71
—3.53 (M, 4H, H5 & H7), 3.28 (s, 6H, H6), 3.15 (m, 2H, H3), 2.72 (s, 6H, H1), 2.29 (m, 2H, H8),
2.11 (m, 2H, H4) ppm. 3C {*H} NMR (CDCls, 100 MHz, §): 195.62 (C14), 161.88(C9), 137.87
(C15), 132.50 (C12), 132.17 (C18), 130.49 (C13), 129.73 (C16), 128.30 (C17), 114.35 (C11),
64.82 (C9), 62.24 (C5), 61.76 (C7), 51.62 (C6), 40.18 (C3), 38.15 (C1), 23.06 (C4), 22.97 (C8)

ppm. HRMS-ESI-TOF (m/z): [M* - Br] calculated for C23H3aN204S, 448.2265; found 448.2262.
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Figure A36: **C NMR spectrum of compound 8D in CDCls.
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Figure A38: 2D HSQC spectrum of compound 8D in CDCls.
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Figure A41: *C NMR spectrum of compound 9D in CDCls.
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Figure A42: 2D COSY spectrum of compound 9D in CDCls.
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Figure A43: 2D HSQC spectrum of compound 9D in CDCls.
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Figure A44: HRMS-ESI-TOF of compound 9D.
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Figure A45: 'H NMR spectrum of compound 1F in CDCls.
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Figure A46: 1*C NMR spectrum of compound 1F in CDCls.
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Figure A48: 2D COSY spectrum of compound 1F in CDCla.
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Figure A49: 2D HSQC spectrum of compound 1F in CDCla.

137



=104 |+EEl Scan {(0.39-0.46 min. § Scans) Frag=175.0V 150909_1988.d Subtract
5.8
5.6
5.4 -
5.2
ml
5 A
55
5.4
5.2
[
4.5
4.6
4.4
4.2
4 -
3.8
3.6
3.4
3.2
wl
2 8
26
=4
> 2
”I
1.8
1.6
1.4+
1.2
._ -
0.5
0.6
0.4
0.2

4051366
1

2434158
1
RN

536,435
5371815
1

—

| | I I _7_ n _f__.ry | L _.. __ I —__

|| _

141.0008
184.0427
198,057
288.3464
3383403
58.2404

L |

418 6637
4371746
4627084

—170.0276
~21408M
F229.0933
F17.1903

-E0.8020

Lo
1l L

138

a0 220 240 260 A0 740 320 340 380 380 400 420 440 450 480 540 520 K40 B5ED 5AS 50D
Counts vs. Mass-to-Charge {m/z)

&

160 120 140 160 18

Figure A50: HRMS-ESI-TOF of compound 1F.



(wdd) 14
¢ 0y Sy 0S §S 09 SS9 0L SL 08 S8 06 S6 001

0'€

S'T 0'¢ S'¢

0T

o
&

o
-

0.95]

2.061

2.491

2.10y
8.66=

2114
6.00%

2711

288

1.941

2.27\I

2.0

—
N )
£ -
O:lllD:O
o LTZ
Zm \ - ~
o—2—23
—
N
—
w
@
05O
| i |
NS
E"’ w —
)
N —
a—
® —
N —
_—

Figure A51: 'H NMR spectrum of compound 2F in CDCls.
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Figure A58:

13C NMR spectrum of compound 3F in CDCls.
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Figure A59: 2°Si NMR spectrum of compound 3F in CDCls.
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Figure A60: 2D COSY spectrum of compound 3F in CDCla.
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Figure A65: 2°Si NMR spectrum of compound 5F in CDCls.
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Figure A66: 2D COSY spectrum of compound 5F in CDCla.
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Figure A67: 2D HSQC spectrum of compound 5F in CDCls.
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Figure A68: HRMS-ESI-TOF of compound 5F.
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Figure A70: **C NMR spectrum of compound 7F in CDCls.
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Figure A72: 2D COSY spectrum of compound 7F in CDCla.
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Figure A76: 1*C NMR spectrum of compound 8F in CDCls.
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Figure A77: 2°Si NMR spectrum of compound 8F in CDCls.
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Figure A78: 2D COSY spectrum of compound 8F in CDCls.
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Figure A82: 1*C NMR spectrum of compound 1H in CDCla.
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Figure A84: 2D COSY spectrum of compound 1H in CDCls.
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Figure A98: HRMS-ESI-TOF of compound 3H.
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Figure A100: *C NMR spectrum of compound 5H in CDCls.
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Figure A112: *C NMR spectrum of compound 8H in CDCls.
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Figure A118: *C NMR spectrum of compound 9H in CDCls.
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Figure A130: 2D COSY spectrum of compound 2J in CDCls.
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221




(wdd) 14
06 00T OTT 0T

ObT OST 09T 04T 08T 06T 00C 0T¢

0€T

0c 0¢ oOr 0S5 09 0L 08

0T

0T-

"
.
D —

= -N —142.40
:ﬁ, w w
T
= S 3 L
o 383 - —1392¢ % 7 —195.63
=] =—-N 1381 i
G5y —wes O
w4 F
A «©
o
2l e —13341
Efw
e 38 —161.81
] B —132.66
o /142.40
N B _ 139.24
i 2y N 132.22 /138.15
. 3 | w  —132.18 132.66
_ 3 %132.22
=il . 132.18
. 130.91
- 13091 129.90
" R -3
—..8 N —129.90
%\ .
3 - —128.39
= N :
0]
E |
3 o))
3 N B e /64.72
— S e 62.68 AP
T o o VG .
=L i ~62.29 6229
—r— ~ N -
. 51.77
. N —39.36
W
S - B ~23.42
e - ~23.27 23.42
S 3yl bo —-23.05 {23-27
— & 23.05
- 21.03
15.40

Figure A134: C NMR spectrum of compound 3J in CDCls.
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Figure A141: 2D HSQC spectrum of compound 4J in CDCls.
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Figure A144: *C NMR spectrum of compound 5J in CDCls.
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235



13

T T T T T T T T T

785 7.80 7.75 7.70 ;m;m ;o Em 7.50 7.45 7.40 7.35

3.15 3.10 3.05 3.00

f1 (ppm) f1 (ppm) f1 (ppm)
12
10
u g
Sh M b N b SoLhb ‘% & th
NNoxan N Qamnmn- Q= >
I - - O i AN =Ll AN AN ~— (N — 3
100 95 9.0 85 8.0 7.5 70 6.5 6.0 5.5 50 45 40 3.5 3.0 25 2.0 1.5 1.0 0.5 0.
f1 (ppm)

Figure A148: 'H NMR spectrum of compound 7J in CDCls.
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Figure A149: C NMR spectrum of compound 7J in CDCls.
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Figure A150: 2D COSY spectrum of compound 7J in CDCls.
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Figure A151: 2D HSQC spectrum of compound 7J in CDCls.
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Figure A154: C NMR spectrum of compound 8J in CDCls.
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Figure A155: 2D COSY spectrum of compound 8J in CDCls.
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