
ROBUST WAKE ROLLUP MODELLING USING DVES

by

Tejas Janardhan

Bachelor of Engineering, German University of Technology (2017)

A report

presented to Ryerson University

in partial fulfillment of the requirements

for the degree of

Master of Engineering

in the program of Aerospace Engineering

Toronto, Ontario, Canada, 2019

© Tejas Janardhan, 2019

ii

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A PROJECT

I hereby declare that I am the sole author of this project. This is a true copy of the project,

including any required final revisions.

I authorize Ryerson University to lend this project to other institutions or individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this project by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

I understand that my project may be made electronically available to the public.

iii

ROBUST WAKE ROLLUP MODELLING USING DVEs

Tejas Janardhan

Master of Engineering, Aerospace Engineering, Ryerson University, Toronto (2019)

ABSTRACT

This project report gives details on a modification of VAPTOR, a program that can predict the

aerodynamic performance of aircrafts using a potential flow method with a relaxed wake model.

In VAPTOR the wake is modelled using distributed vorticity elements (DVEs). DVEs can induce

velocities at certain points used to relax the wake. A DVE has inbuilt singularity protections i.e.

prevents the calculated velocity to approach infinity, but when two adjacent DVEs have a very

low relative angle, these protections lead to an error in the calculation of the velocity at its shared

midpoint during the relaxation process. In most cases these errors are negligible until a rotor is

analysed during hover or vortex ring state. In these special cases the wake rollup is more intense

leading to relatively small angles. The subsequent errors caused by the singularity protections

cannot be ignored since they cause the solutions to be erratic and not smooth. It also causes the

wake DVEs to deform disproportionally which is a visual indication of the errors.

The modification uses a method that involves splitting the DVE in order to eliminate the errors

when calculating the velocity at the junction of two adjacent DVEs. The splitting is temporary and

only applied during the calculation of the velocity at the junction. The algorithm for the splitting

of the DVE and its implementation into MATLAB is provided in this report. The implementation

is tested by ensuring that all conditions are kept the same except when splitting is enabled or

disabled. A number of test runs were conducted, and an index called the Smoothness Index was

created in order to quantify the improvements of the DVE splitting method. The results shown

are promising as the solution with splitting enabled is twice as smooth as when the splitting is

disabled. There is also a noticeable improvement during visual comparison of the wake diagrams

when splitting is enabled and disabled. The results combined with the fact that the extra

computation required to execute the DVE splitting method is negligible, the author recommends

it be enabled in all cases. Having said that, the end user has full control whether he or she would

like to use it or not. They can also change the parameters of splitting to suit their needs.

iv

ACKNOWLEDGEMENTS

I am grateful to my supervisor, Dr. Bramesfeld for his guidance and support in this project.

Through his detailed feedback and supervision, I can honestly say I have greatly improved various

engineering and research-oriented skills. I would like to thank Devin Barcelos, a PhD student at

RAALF, for introducing me and also giving me valuable insight into the inner workings of VAPTOR.

I would also like to thank all RAALF members who maintain the lab server as that enabled me to

complete my project and the members who gave me feedback on my presentation. And finally, I

must thank my family without whose support none of this would have been possible.

v

TABLE OF CONTENTS

Abstract ... iii

Acknowledgements ... iv

List of Tables .. vii

List of Figures .. viii

Nomenclature ... ix

CHAPTER 1: Introduction... 1

1.1 VAPTOR Overview .. 1

1.2 DVE Overview ... 1

1.2.1 Side edge singularities. ... 2

1.3 Relaxation process Overview ... 3

1.4 Problem Definition ... 4

CHAPTER 2: Methodology ... 7

2.1 Algorithm Used... 7

2.1.1 Coefficients. .. 11

2.2 MATLAB Integration ... 12

2.3 Testing .. 13

2.3.1 DVE Visualization .. 13

2.3.2 iDVE Orientation Deviation ... 14

2.3.3 Test Case ... 14

2.3.4 Model Solution .. 15

2.3.5 Parameter Optimisation ... 15

2.3.6 Computation Time testing .. 16

vi

CHAPTER 3: Results ... 17

3.1 Splitting Effects ... 17

3.2 Splitting Parameter Study .. 20

3.3 Computation Time.. 21

CHAPTER 4: Discussion .. 22

4.1 Splitting Improvements .. 22

4.2 Parameter Impact Uncertainty .. 23

CHAPTER 5: Conclusion ... 24

Appendix I – Source Code ... 25

Appendix II – 12 Coefficient equations ... 31

Appendix III – Extra Results... 33

Appendix IV – Derivations ... 34

References .. 35

vii

LIST OF TABLES

Table 3-1 Top ten optimization runs... 20

Table 3-2 No Splitting Run .. 20

Table 3-3 Function profile with Splitting Disabled.. 21

Table 3-4 Function profile with Splitting Enabled. ... 21

Table 4-1 Best Run .. 22

viii

LIST OF FIGURES

Figure 1-1 A distributed vorticity element. [2] .. 1

Figure 1-2 A spanwise distribution of the normal velocity that is induced in the plane of two semi-

infinite vortex sheets. The dashed line denotes the spanwise vorticity distributions and the solid

line denotes the total induced velocity. [1] .. 2

Figure 1-3 Relaxation process. Arrows show the direction of the induced velocity calculated at

each midpoint. [4] ... 3

Figure 1-4. False Velocity Spike when DVE's are not coplanar [5] ... 4

Figure 1-5 Rotor in hover .. 5

Figure 1-6 Splitting DVE's [5]... 6

Figure 2-1. Flowchart .. 7

Figure 2-2 Wake DVEs created by a rotor during each timestep. First row wake DVEs are also

shown. ... 8

Figure 2-3 Lateral Vector. Side edges refers to the unlabeled edges. .. 9

Figure 2-4 intermediate DVE’s (iDVEs). The red and yellow DVEs are the outer iDVEs and the green

are the inner iDVEs. .. 9

Figure 2-5 Side view of a pair of DVEs. Also shows the side edge vectors of the three DVEs 10

Figure 2-6 Shows how the old and new DVEs are related, this relation is used to calculate the new

coefficients. ... 11

Figure 2-7 Calculation of Resultant Velocity from the 4 iDVEs .. 12

Figure 2-8. Before and After the Splitting Process. .. 13

Figure 2-9. TMotor split into 34 elements [6]... 14

Figure 3-1 ΔCp, with splitting on and off .. 17

Figure 3-2 ΔCt, with splitting on and off ... 17

Figure 3-3 Cp, with splitting on and off .. 18

Figure 3-4 Ct, with splitting on and off ... 18

Figure 3-5 Wake DVEs with splitting off. .. 19

Figure 3-6 Wake DVEs with splitting on. ... 19

ix

NOMENCLATURE

DVE Distributed Vorticity Elements

Γ Circulation

𝛾 Vorticity

𝑙𝑣⃗⃗ ⃗ Lateral vector

iDVE Intermediate Distributed Vorticity Element

PF Projection Factor

MF Max Span Factor

θ Relative angle between two adjacent DVEs

Λ𝐿𝐸 Leading Edge angle

Cp Coefficient of power

Ct Coefficient of thrust

ΔCp Change in coefficient of power

ΔCt Change in coefficient of thrust

SIndex Smoothness Index

∆𝑛𝑠𝑚𝑝 Number of shared midpoints created per timestep

∆𝑛𝑤𝑑𝑣𝑒 Number of wake DVEs created per timestep

∆𝑛𝑚𝑝 Number of midpoints created per timestep

𝑛𝑠𝑡𝑒𝑝 Number of timesteps

1

CHAPTER 1: INTRODUCTION

1.1 VAPTOR OVERVIEW

VAPTOR is a potential flow method with relaxed wake model that uses Distributed Vorticity

Elements (DVEs), written in MATLAB. The use of DVEs has fewer issues with singularities in the

flow field than conventional vortex-lattice or panel methods [1]. VAPTOR is used to predict the

aerodynamic forces acting on lifting surfaces, such as wings and rotors.

1.2 DVE OVERVIEW

Figure 1-1 A distributed vorticity element. [2]

A distributed vorticity element (DVE) as shown in Fig. 1-1 is a trapezoidal element that is made

of two opposite-strength coplanar vortex filaments and a vortex sheet that connects with the

two filaments and is aligned with the ξ-axis.

2

A DVE’s geometric characteristics include its chord length, span length i.e. distance between the

two parallel side edges and finally the angle between the two vortex filaments make with the η

axis.

The DVE filaments have quadratic spanwise circulation distributions of equal magnitude and

opposite orientation as well as a vortex sheet with a linear vorticity distribution shown:

Γ𝐿𝐸 = 𝐴 + 𝐵𝜂 + 𝐶𝜂2

Γ𝑇𝐸 = −Γ𝐿𝐸 = −𝐴 − 𝐵𝜂 − 𝐶𝜂2

𝛾𝐿𝐸 =
𝑑Γ𝐿𝐸

𝑑𝜂
= 𝐵 + 2𝐶𝜂

The coefficients A, B and C are calculated based on three main conditions. Firstly, velocity (of

fluid/air) must be tangent at a collocation point of a DVE i.e. the normal velocity at the point must

be zero. Secondly, the circulation and vorticity must be continuous with neighbouring DVEs.

Thirdly, the circulation at the tips of a wing/rotor must be zero since a pressure differential

cannot be maintained at the tip.

1.2.1 Side edge singularities.

Figure 1-2 A spanwise distribution of the normal velocity that is induced in the plane of two

semi-infinite vortex sheets. The dashed line denotes the spanwise vorticity distributions and the

solid line denotes the total induced velocity. [1]

(1-1)

(1-2)

(1-3)

3

An important aspect of DVEs is how it deals with singularities at the side edges of the sheet.

Singularity refers to how the induced velocity of a DVE becomes infinity as the side edge is

approached [2].

In order to deal with the singularities when using DVEs in a numerical scheme, an additional

singularity is added at the edge of the sheet to modify the original singularity so that an element’s

self-induced side edge velocity remains finite. Since the induced velocity remains finite, the

velocities of the neighbouring element which share an edge have their velocities cancel out, thus

removing the influence of the additional singularity as seen in Fig. 1-2 [2].

In VAPTOR [3] there are two main types of DVEs used in the code. Surface DVEs are used to model

the surfaces of any object/vehicle. The subsequently used DVEs have two vortex filaments with

a vortex sheet in between.

Wake DVES are only used to model the wake created by a lifting surface. The wake elements

consist only of the finite vortex sheet without the vortex filaments at the leading and trailing edge

of the element. The removal of the filaments is justified in a steady wake, where the vortex

filaments of two DVEs that are next to each other in the streamwise direction, cancel each other.

Wake DVEs are attached spanwise at their midchord and streamwise at their midspan.

1.3 RELAXATION PROCESS OVERVIEW

Figure 1-3 Relaxation process. Arrows show the direction of the induced velocity calculated at

each midpoint. [4]

4

The relaxation process during each time step starts off with computing the induced velocities at

the side edge midpoints of each wake element. These velocities are then used to calculate the

displacement for each of the wake points based on the size of the time step. The wake elements

are either compressed or stretched in the spanwise or streamwise direction as shown in Fig. 1-3.

Each element must remain planar, and its side edges must remain parallel after the relaxation

process.

The re-configuration of the elements requires the recalculation of the coefficients A, B and C. The

recalculation is done based on two main conditions. The effective circulation must remain

constant for a DVE before and after the relaxation process. Furthermore, the spanwise vorticity

and circulation distributions of the wake elements have to remain continuous [4].

1.4 PROBLEM DEFINITION

Figure 1-4. False Velocity Spike when DVE's are not coplanar [5]

The side edge singularity correction method explained in section 1.3 only works if the two

adjacent DVEs are coplanar. Fig. 1-4 shows what happens when two adjacent DVEs are non-

coplanar. Instead of the two velocities cancelling out (shown on the left) the velocities can add

up causing a false velocity spike (shown on the right). The effect is inversely dependent on the

relative angle between the two DVEs i.e. the smaller the relative angle the larger the velocity

spike.

5

Figure 1-5 Rotor in hover.

A rotor simulated in hover, for example shown in Fig. 1-5, leads to a dense wake, which means

an increase in the number of DVEs with small relative angles to adjacent DVEs. This leads to an

increase in the magnitude of the false velocity spikes, thus introducing an error in the final force

calculation that is dependent on the induced velocity. It also leads to the elongation of a few

DVEs due to the disproportionally large velocities calculated during the wake relaxation process.

The increase in the number of DVEs with small relative angles to adjacent DVEs is also observed

when a rotor is simulated in vortex ring state. Vortex ring state is a rotor flight condition where

the relative velocity between the rotor and the wake is zero i.e. the rotor descends at the same

rate as the wake. This will lead to a dense wake and thus forces errors in the final force

calculation. Since it is convenient to use points along the side edges of elements in the wake

relaxation procedure, it is important to address this issue especially when a rotor is in hover or

vortex ring state. The objective of this project is to try and address this issue by applying the DVE

splitting method in VAPTOR. [5]

6

Figure 1-6 Splitting DVE's [5]

By splitting the two non-coplanar DVE’s, shown on the left in Fig. 1-6 and forcing the two-inner

split DVE’s to be co-planar, shown on the right, it removes the false velocity spike. It is important

to note that the splitting is temporary and its only done to calculate the velocity at the junction

of every DVE pair during the wake-relaxation process. This paper discusses the implementation

of the splitting in VAPTOR while ensuring it’s not computationally intensive.

7

CHAPTER 2: METHODOLOGY

2.1 ALGORITHM USED

Figure 2-1. Flowchart

8

Fig. 2-1 shows the flowchart of the algorithm that was developed in order to implement the DVE

splitting method. In Step 1, Wake Data refers to all the data that is related to the wake DVEs, for

example as shown in Fig. 2-2 with the blue and yellow elements. In Step 2, the first-row wake

elements, labelled in Fig. 2-2 must be filtered before all the pairs undergo the splitting process,

this is because the pairs of adjacent DVE’s do not connect at the midpoint. The method only

works on DVE pairs connected at the midpoint.

Figure 2-2 Wake DVEs created by a rotor during each timestep. First row wake DVEs are also

shown.

Lateral Vector (𝑙𝑣⃗⃗ ⃗) referred in Step 3 is the vector joining the mid-chord points on the side edges

of a DVE. Figure 2-3 shows the vector, it is important that the lateral vector of a DVE always points

away from the shared midpoint.

First row.

9

Figure 2-3 Lateral Vector. Side edges refers to the unlabeled edges.

Figure 2-4 intermediate DVE’s (iDVEs). The red and yellow DVEs are the outer iDVEs and the

green are the inner iDVEs.

An important point to note is the lengths of the lateral vectors of the two-inner intermediate

DVE’s (iDVEs Fig. 2-4) are equal to a fraction of the orthogonal projection of the span of the

original DVE’s, called the Projection Factor (PF):

|𝑙𝑣⃗⃗ ⃗𝑖𝐷𝑉𝐸| = 𝑃𝐹(𝑠𝑝𝑎𝑛𝐷𝑉𝐸 sin 𝜃) (2-1)

10

The upper limit on the value of the length of a lateral vector is equal to the fraction of the span

of the original DVEs. This upper limit is called the Max Span Factor (MF):

|𝑙𝑣⃗⃗ ⃗𝑖𝐷𝑉𝐸| = {
𝑃𝐹(𝑠𝑝𝑎𝑛𝐷𝑉𝐸 sin 𝜃), 𝑖𝑓 |𝑙𝑣⃗⃗ ⃗𝑖𝐷𝑉𝐸| < 𝑀𝐹(𝑠𝑝𝑎𝑛𝐷𝑉𝐸)

 𝑀𝐹(𝑠𝑝𝑎𝑛𝐷𝑉𝐸), 𝑖𝑓 |𝑙𝑣⃗⃗ ⃗𝑖𝐷𝑉𝐸| > 𝑀𝐹(𝑠𝑝𝑎𝑛𝐷𝑉𝐸)

θ in equations 2-1 and 2-2 is the relative angle between two adjacent DVES. The lengths of the

side edges of the inner iDVEs are the same as the lengths of the inner side edges of the original

DVEs, where ‘inner’ refers to the side closest to the shared midpoint i.e. the chord lengths of the

both the inner and outer iDVEs are the same as its original DVE. The span of the inner iDVEs are

calculated based on the leading-edge angles of the inner iDVEs:

𝑠𝑝𝑎𝑛𝑖𝐷𝑉𝐸 = |𝑙𝑣⃗⃗ ⃗𝑖𝐷𝑉𝐸| cos Λ𝐿𝐸

This means the factors have a direct effect on the spans of the inner iDVEs. The midpoint locations

have to be preserved when creating the inner iDVEs.

Figure 2-5 Side view of a pair of DVEs. Also shows the side edge vectors of the three DVEs

In Step 7, the inner iDVEs are created using the average of the two original DVE side edge vectors

shown in Fig. 2-5. The iDVE mentioned in Fig. 2-5 are the inner iDVEs. Both inner iDVEs in a split

DVE pair share the same side edge vector while the outer iDVEs have the same side edge vector

as its original DVE.

(2-3)

(2-2)

11

2.1.1 Coefficients.

Figure 2-6 Shows how the old and new DVEs are related, this relation is used to calculate the

new coefficients.

Just like the relaxation process, explained in section 1.3, the coefficients A, B and C must be

calculated for the four iDVEs since, not only are the iDVEs different in their geometry but there

are two new DVEs created which renders the coefficients of the two original DVEs unusable to

calculate the induced velocities.

In Step 10 in the algorithm shown in Fig. 2-1, the coefficients of the four iDVEs are calculated by

using 12 equations to solve 12 unknows, three coefficients for each of the four iDVEs. 10

independent equations are provided by continuity equations, Fig. 2-6 shows the points 1 and 5

which maintain continuity to the other DVEs. Points 2,3 and 4 are used to maintain continuity

between all the four iDVEs. The continuity equations refer to ensuring the circulation and

vorticity distributions are continuous along all four iDVEs. The remaining two equations preserve

the effective circulation of the two original DVEs. This is done by maintaining the effective

circulation of the each DVE with its corresponding pair of inner and outer iDVEs. A complete set

of the equations are included in Appendix II.

12

Figure 2-7 Calculation of Resultant Velocity from the 4 iDVEs

And finally, in Steps 11 and 12, the velocity is calculated at the junction of the two inner iDVEs.

Once this calculation is completed the four iDVEs are discarded and the velocity will be used to

relax the original two wake DVEs. Fig. 2-7 shows how the resultant velocity is calculated. On the

left it shows the velocity induced by all four iDVEs and on the right it shows the resultant velocity

used to move the midpoint during the wake-relaxation process. It is important to note that this

is not the only velocity component that is used in the relaxation process, but rather it will be is

only part of the total velocity that is the compound of all velocities induced by the rest of the

DVEs, which in turn is used to displace the midpoint.

2.2 MATLAB INTEGRATION

The implementation of the algorithm, that is outlined in Fig. 2-1, in MATLAB takes advantage of

the vectorized programming capability of MATLAB. Vectorizing in MATLAB is a method of parallel

processing large datasets, thus improving computational performance. It is a capability that is

built into MATLAB and is highly optimized.

The method of writing parallel code is vastly different from writing a serial one. For example,

when doing an operation on a wake DVE, all DVEs must be considered for the operation as it is

done in parallel. It is important to note that vectorizing is only possible if the data sets have no

inner dependencies.

13

The splitting is an optional functionality and can be turned on or off. This is done by creating a

separate function called fcnINDVEL_RELAX and placing it in fcnRELAXWAKE. The _RELAX suffix is

used as the splitting is only done to calculate the velocity used to relax a wake. Inside

fcnINDVEL_RELAX is one of the two main functions used to implement the splitting technique

which is fcnWDEVEL_RELAX used to calculate the velocities of the wake DVEs.

The velocities of the wake DVEs are first calculated like it is done normally. The subsequent

velocities are sent to the function fcnWDVEJVEL_SPLIT that calculates all the induced velocities

of the adjacent DVE pairs at their junctions while implementing the splitting routine and replace

the older velocities that were in the previous step without splitting. All the split DVEs stay within

fcnWDVEJVEL_SPLIT and are deleted once the function is no longer needed. This method of

replacing velocities was done to minimize the modifications done to the existing VAPTOR

functions

2.3 TESTING

2.3.1 DVE Visualization

Figure 2-8. Before and After the Splitting Process.

In order to verify the code, DVE pairs were visualised in order to do a visual examination of the

splitting process. Figure 2-8 shows a pair of DVEs before and after the splitting process. This

method of visualizing was used to verify the splitting geometry. It was a valuable diagnostic tool

14

when debugging the code. A short script written in MATLAB was used to implement the graphical

output. This was especially helpful in the early stages of the implementation process as it was

used as a validation check in order to ensure the code was doing what it was supposed to do.

2.3.2 iDVE Orientation Deviation

When splitting DVEs, it is ideal to ensure that the orientation of the outer two iDVEs stay as close

as possible to the original DVEs. For that purpose, another test was scripted in MATLAB which

saved the data of the original and intermediate DVEs at a certain time step and checked how

much the outer iDVEs had deviated from the original adjacent DVE pair. This was done by taking

the mean of the absolute value of the deviation in pitch, roll, yaw and leading-edge angles. The

pairs with the largest deviation in any of the angles was identified and isolated, visualised and

inspected in order to understand the reason for such a large deviation and debug the algorithm.

2.3.3 Test Case

Figure 2-9. TMotor split into 34 elements [6]

15

A test case was used as a base reference for evaluating the effects of splitting DVEs. All

parameters were kept the same as the test case except for the fact that splitting was enabled.

The test case was a propeller in hover conditions.

The propeller used was the T-Motor rotor as seen in Fig. 2-9. The rotational velocity was 3000

RPM. All test runs were for runs are 200 timesteps. Each time step was 0.0004 sec long, which

equates to 5 full rotations of the propeller. These parameters were chosen as a good balance

between computational time and amount of data needed to properly analyse the effects. Each

test run took approximately 4 hours to complete using an Intel Xeon processor, model number

E5-2620 v4. Thus, 200-time steps were the upper limit of what was feasible due to the large

number of runs needed. All test runs were inviscid simulations in order to limit the computational

effort and since the modification does not affect the viscous portion of VAPTOR.

The final result which was used to determine the impact of the DVE splitting method on the

solution will be the change in the coefficient of power (ΔCp) and change in coefficient of thrust

(ΔCt).

2.3.4 Model Solution

The solution, mentioned in the previous section, refers to coefficient of power (Cp) and

coefficient of thrust (Ct) calculated at each timestep. The ideal solution of Cp and Ct would be

one with no abrupt changes i.e. the solution curve is smooth and with no bumps. To evaluate if

a solution is ideal, we use change of Cp and Ct to check for the ‘smoothness’ of a solution. An

ideal solution usually has the values ΔCp and ΔCt at each time step as small as possible with no

disproportionally large values. In order to quantify the ‘smoothness’ of a solution we use the

method explained in the next section.

2.3.5 Parameter Optimisation

The DVE splitting method requires the determination of the Projection Factor and Maximum

Span Factor, as explained in the Section 2.1. In order to find the best values for these parameters,

a Smoothness Index is devised in order to rank each test run. Smoothness Index quantifies the

quality of both solutions, that is Cp and Ct. The aim is to find a run with the lowest Smoothness

Index.

16

𝑆𝐼𝑛𝑑𝑒𝑥 = [
𝑀𝑒𝑎𝑛𝛥𝐶𝑝 (1 +

𝑆𝑡𝑑𝛥𝐶𝑝
𝑀𝑒𝑎𝑛𝐶𝑝)

𝑀𝑒𝑎𝑛𝛥𝐶𝑝𝑁𝑆 (1 +
𝑆𝑡𝑑𝛥𝐶𝑝𝑁𝑆

𝑀𝑒𝑎𝑛𝛥𝐶𝑝𝑁𝑆
)
+

𝑀𝑒𝑎𝑛𝛥𝐶𝑡 (1 +
𝑆𝑡𝑑𝛥𝐶𝑡
𝑀𝑒𝑎𝑛𝐶𝑡)

𝑀𝑒𝑎𝑛𝛥𝐶𝑡𝑁𝑆 (1 +
𝑆𝑡𝑑𝛥𝐶𝑡𝑁𝑆

𝑀𝑒𝑎𝑛𝛥𝐶𝑡𝑁𝑆
)
] 2⁄

Equation 2-4 is used to calculate smoothness index, Sindex. The mean and standard deviation of

the absolute values of ΔCp and ΔCt of a particular test run is used to calculate the smoothness

index. Since the SIndex will be used to compare each run with reference to the no split case, the

values are normalized by dividing them by the values from the test run with no splitting of DVEs,

hence the suffix NS (no splitting). The average of the SIndex of Cp and Ct is taken to calculate the

final SIndex of the run.

2.3.6 Computation Time testing

In order to ascertain the computational impact splitting has on VAPTOR, a simple comparison

test is devised using MATLAB’s built-in function profiler. MATLAB’s function profiler finds the

execution time of each individual function and gives a good view into the computational impact

of all the functions of VAPTOR.

The test conditions are MATLAB 2017b, core i7-4720HQ processor, no other applications running

at the same time and the internet is disabled. The runs are completed using the test case, one

run with splitting enabled and the other run with splitting disabled.

(2-4)

17

CHAPTER 3: RESULTS

3.1 SPLITTING EFFECTS

Figure 3-1 ΔCp, with splitting on and off

Figure 3-2 ΔCt, with splitting on and off

18

Figure 3-3 Cp, with splitting on and off

Figure 3-4 Ct, with splitting on and off

Figure 3-1 and Fig. 3-2 show the variation of ΔCp and ΔCt with the time step when splitting is on

and off, while Fig. 3-3 and Fig. 3-4 show the variation of Cp and Ct with the time step when

splitting is on and off, with Projection Factor or PF = 0.8 and Maximum Span Factor or MF = 0.275.

19

Figure 3-5 Wake DVEs with splitting off.

Figure 3-6 Wake DVEs with splitting on.

20

Figure 3-5 and Fig. 3-6 shows the wake elements of the test runs with splitting on and off. The

yellow wake DVEs are created by one rotor blade while the blue wake DVEs are created by the

other rotor blade.

3.2 SPLITTING PARAMETER STUDY

Table 3-1 Top ten optimization runs

PF MF mean ΔCp std ΔCp mean ΔCt std ΔCt Smoothness Index

0.8 0.275 3.38E-04 4.92E-04 8.11E-04 9.39E-04 5.11E-01

0.8 0.3 3.34E-04 4.74E-04 9.31E-04 0.001146 5.46E-01

0.8 0.4 3.60E-04 5.37E-04 9.09E-04 0.001112 5.69E-01

0.35 0.15 3.81E-04 5.55E-04 9.07E-04 0.001104 5.81E-01

0.838 0.4 3.96E-04 5.65E-04 8.84E-04 0.001083 5.84E-01

0.775 0.4 3.61E-04 5.39E-04 9.46E-04 0.001316 6.02E-01

0.9 0.4 4.12E-04 5.20E-04 0.001024477 0.001179 6.05E-01

0.7 0.4 3.99E-04 5.11E-04 0.001056945 0.001214 6.06E-01

0.75 0.4 4.44E-04 5.72E-04 0.001015067 0.001045 6.15E-01

0.825 0.41 3.87E-04 5.48E-04 0.001014707 0.001294 6.20E-01

Table 3-1 lists the top 10 runs when ordered by its Smoothness Index in ascending order. The

Smoothness Index was calculated using equation 2-4. PF is the Projection Factor and MF is the

Maximum Span Factor. The entire table is available in Appendix III – Extra Results. Table 3-1

allows one to be able to quickly ascertain which combination of parameters work best as the

entries at the top have lower Smoothness indices which indicate better smoothness of solution.

Table 3-2 No Splitting Run

mean delCP std delCP mean delCt std delCt

6.47E-04 8.27E-04 0.001895665 0.001918

The values shown in Table 3-2 are the ones used to normalize all the test runs using equation

2-4.

21

3.3 COMPUTATION TIME

Table 3-3 Function profile with Splitting Disabled.

Function Name Number of Calls Total Time (s) Self Time (s)

fcnVSIND 3858 5945.034 5945.034

fcnDVEIND_CHUNKS 1197 9006.787 2213.164

fcnDVEVEL 1196 10050.094 1043.348

fcnSTARGLOB 5990 495.855 495.855

fcnGLOBSTAR 5660 339.066 339.066

fcnWDVEVEL 598 9976.588 175.054

Total time of run - 10288.346 s

Table 3-4 Function profile with Splitting Enabled.

Function Name Number of Calls Total Time (s) Self Time (s)

fcnVSIND 4254 5859.729 5859.729

fcnDVEIND_CHUNKS 1395 8807.554 2106.494

fcnDVEVEL 1394 9666.341 858.817

fcnSTARGLOB 6584 485.959 485.959

fcnGLOBSTAR 6452 341.811 341.811

fcnWDVEVEL_RELAX+fcnWDVEVEL 598 9671.301 184.196

fcnWDVEJVEL_SPLIT 198 47.39 42.373

Total time of run - 10228.241 s

Table 3-3 and Table 3-4 only lists the functions with the most impact i.e. these functions make

up more than 96% of the total time. In addition to that Table 3-4 lists the fcnWDVEJVEL_SPLIT

even though its low impact. Number of calls refers to the number of times the function was

executed. Self Time refers to the total time minus the time taken by nested functions to be

executed.

22

CHAPTER 4: DISCUSSION

4.1 SPLITTING IMPROVEMENTS

Table 4-1 Best Run

PF MaxF mean delCP std delCP mean delCt std delCt Smoothness Index

0.8 0.275 3.38E-04 4.92E-04 8.11E-04 9.39E-04 5.11E-01

From Table 3-1 we see the best run has a Smoothness Index of 0.511, which is also included in

Table 4-1. This means there is on average a two times improvement over not splitting since lower

smoothness indices are desired. It is interesting to note all runs with index >1 means it is worse

than the no split case. From Fig. 3-1 and Fig. 3-2, which represents the best run, it is easy to

visually notice the difference when splitting is enabled. There is a noticeable decrease in the

variations of ΔCp and ΔCt.

From Fig. 3-3 and Fig. 3-4 the improved smoothness can be visually seen from the solution i.e. Cp

and Ct which is what the implementation of DVE splitting is trying to achieve. Figure 3-5 and Fig

3-6. shows the wake diagrams and a clear difference can be visually noticed between them.

Figure 3-5 shows the wake with splitting disabled and its wake elements are deformed with no

real pattern with some elements disproportionally larger and this is to be expected. Figure 3-6

on the other hand has splitting enabled and the wake elements are a lot smoother, with much

less disproportional deformation albeit some elements still exhibit this unwanted behaviour.

When examining the results of the computation test, there is a difference of 0.6% between the

two scenarios with splitting actually lower in computation time. This implies that the difference

is negligible and variations between the two are more due to availability of computational

resources rather than the fact that splitting was enabled.

The impact is negligible because of two main reasons. Firstly, fcnWDVEJVEL_SPLIT, which splits

the DVEs takes 47 seconds to execute for a run of 200 timesteps which is a negligible fraction or

0.46% of the total time. Secondly, when the impact of the increased induced wake DVE velocity

computation is studied using the following equation:

23

%𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 ~
1200∆𝑛𝑠𝑚𝑝

∆𝑛𝑑𝑣𝑒∆𝑛𝑤𝑚𝑝(2𝑛𝑠𝑡𝑒𝑝 + 1)
%

In equation 4-1, ∆𝑛𝑠𝑚𝑝 is the number of shared midpoints per time step, ∆𝑛𝑤𝑚𝑝 is the number

of midpoints per time step, ∆𝑛𝑑𝑣𝑒 is the number of wake DVEs per time step, 𝑛𝑠𝑡𝑒𝑝 is the number

of time steps.

Thus, for a run of 200-time steps and 32 shared midpoints ,34 wake DVEs and 36 midpoints per

time step implies a 0.08% increase in induced wake DVE velocity calculation, which again is

negligible. So large datasets see a negligible impact and small datasets see a significant impact,

but since the amount of time taken is low for small datasets, the increase in time in either

scenario is acceptable. Derivation for equation 4-1 is available in Appendix IV.

4.2 PARAMETER IMPACT UNCERTAINTY

When splitting is enabled, the user has to provide the two parameters which are the projection

factor and max splitting factor explained in section 2.1. While its ideal to keep them as low as

possible, it’s hard to predict its exact impact on the smoothness of the solution. There is no

apparent pattern amongst all the runs as seen in Table 3-1 and Table III-1 (Appendix III) between

the Sindex and the two parameters. A reason for this could be that since Sindex considers the average

values of all the time steps and each time step is influenced by splitting at its time step and the

ones in the previous time steps, that is, it is a complex system and knowing the exact effects is

very hard and beyond the scope of this project.

But the user can overcome this uncertainty as they can tune the parameter to his/her liking based

on the type of problem to get the best Sindex possible. In general, the goal is to make sure there is

minimal deviation from the original DVEs to the outer iDVEs but the inner iDVEs should also have

a certain amount of span to actually have a benefit. This sweet spot is hard to calculate and is

unique to each solution. But having said that, there is still an improvement over a vast range of

parameters, it is just hard to predict which parameter values and combination gives the best

improvement possible.

(4-1)

24

CHAPTER 5: CONCLUSION

In conclusion, this project includes one function and makes minor modifications to the other

functions in VAPTOR. The modifications implement DVE splitting method to create a robust wake

DVEs that do not give errors during wake rollup. This method is especially important for analysing

rotors during hover and vortex ring state.

The test cases indicated twice the increase in smoothness. Although it might vary with different

test cases, it should still, on average, be twice the smoothness in the desired solutions. The

parameters can always be adjusted/tuned based on the user’s preference and the type of

problem being dealt with.

Since the computation required to implement the DVE splitting method is negligible it is

recommended to enable it for all cases. The DVE splitting method can be enabled or disabled

based on the user’s preference.

25

APPENDIX I – SOURCE CODE

function [w_ind] = fcnWDVEJVEL_SPLIT(w_ind,dvetype,len,valTIMESTEP,

WAKE, SURF, FLAG)

%Splits DVE's and finds the velocity at the junction of two DVE's and

%places it in the original w_ind matrix.

re_adj=WAKE.matWADJE(WAKE.matWADJE(:,2)==2 &

WAKE.matWADJE(:,1)>WAKE.valWSIZE,[1 2 3]);

dve_id = reshape(re_adj(:,[1 3])',[],1);

vert_id = reshape(WAKE.matWDVE(dve_id,:)',[],1);

adve = WAKE.matWVLST(vert_id,:);

n_pair = length(re_adj(:,1));

coeff = WAKE.matWCOEFF(dve_id,:);

a_hspn_o = WAKE.vecWDVEHVSPN(dve_id,:);

midp_id = uint32(WAKE.matWDVEMPIDX(re_adj(:,1),2));

i_midp = WAKE.matWDVEMP(midp_id,:);

% clear re_adj

ledge_hlen = sum((adve(2:8:end-6,:)-adve(3:8:end-5,:)).^2,2).^0.5/2;

redge_hlen = sum((adve(5:8:end-3,:)-adve(8:8:end,:)).^2,2).^0.5/2;

aledge_dir = (adve(2:8:end-6,:)-adve(3:8:end-5,:))./(2*ledge_hlen) ;

aredge_dir = (adve(5:8:end-3,:)-adve(8:8:end,:))./(2*redge_hlen) ;

iedge_dir = (aledge_dir+aredge_dir);iedge_dir =

iedge_dir./sum(iedge_dir.^2,2).^0.5;

laspn_dir = (adve(1:8:end-7,:)+adve(4:8:end-4,:))/2-(adve(2:8:end-

6,:)+adve(3:8:end-5,:))/2; laspn_dir =

laspn_dir./sum(laspn_dir.^2,2).^0.5;

raspn_dir = (adve(6:8:end-2,:)+adve(7:8:end-1,:))/2-(adve(5:8:end-

3,:)+adve(8:8:end,:))/2; raspn_dir =

raspn_dir./sum(raspn_dir.^2,2).^0.5;

ispn_dir = cross(cross(laspn_dir,raspn_dir),(laspn_dir+raspn_dir));

ispn_dir = ispn_dir./sum(ispn_dir.^2,2).^0.5;

ang =

reshape(repmat(acosd(dot(laspn_dir,raspn_dir,2))/2,1,2)',[],1);

i_hspn = WAKE.valISPNF(1).*(a_hspn_o).*sind(ang);

i_hspn(i_hspn<WAKE.valISPNF(2)*a_hspn_o) =

WAKE.valISPNF(2)*a_hspn_o(i_hspn<WAKE.valISPNF(2)*a_hspn_o);

i_hspn(i_hspn>WAKE.valISPNF(3)*a_hspn_o) =

WAKE.valISPNF(3)*a_hspn_o(i_hspn>WAKE.valISPNF(3)*a_hspn_o);

% a_hspn_min = min([a_hspn_o(1:2:end-1) a_hspn_o(2:2:end)],[],2);

26

% i_hspn = WAKE.valISPNF(1).*a_hspn_min.*sind(ang);

% i_hspn(i_hspn<WAKE.valISPNF(2)*a_hspn_min) =

WAKE.valISPNF(2)*a_hspn_min(i_hspn<WAKE.valISPNF(2)*a_hspn_min);

% i_hspn(i_hspn>WAKE.valISPNF(3)*a_hspn_min) =

WAKE.valISPNF(3)*a_hspn_min(i_hspn>WAKE.valISPNF(3)*a_hspn_min);

% i_hspn = reshape(repmat(i_hspn,1,2)',[],1);

clear laspn_dir raspn_dir a_hspn_min

idve = zeros(n_pair*8,3);

idve(1:8:end-7,:) = i_midp - ispn_dir.*2.*i_hspn(1:2:end-1) +

iedge_dir.*ledge_hlen;

idve(4:8:end-4,:) = i_midp - ispn_dir.*2.*i_hspn(1:2:end-1) -

iedge_dir.*ledge_hlen;

idve(2:8:end-6,:) = i_midp + iedge_dir.*ledge_hlen;

idve(3:8:end-5,:) = i_midp - iedge_dir.*ledge_hlen;

idve(5:8:end-3,:) = i_midp + iedge_dir.*redge_hlen;

idve(8:8:end,:) = i_midp - iedge_dir.*redge_hlen;

idve(6:8:end-2,:) = i_midp + ispn_dir.*2.*i_hspn(2:2:end) +

iedge_dir.*redge_hlen;

idve(7:8:end-1,:) = i_midp + ispn_dir.*2.*i_hspn(2:2:end) -

iedge_dir.*redge_hlen;

adve_o=adve;

adve(2:8:end-6,:) = i_midp - ispn_dir.*2.*i_hspn(1:2:end-1) +

aledge_dir.*ledge_hlen;

adve(3:8:end-5,:) = i_midp - ispn_dir.*2.*i_hspn(1:2:end-1) -

aledge_dir.*ledge_hlen;

adve(5:8:end-3,:) = i_midp + ispn_dir.*2.*i_hspn(2:2:end) +

aredge_dir.*redge_hlen;

adve(8:8:end,:) = i_midp + ispn_dir.*2.*i_hspn(2:2:end) -

aredge_dir.*redge_hlen;

ale_dir = adve(2:4:end-2,:) - adve(1:4:end-3,:);

ale_dir = ale_dir./sum(ale_dir.^2,2).^0.5;

aedge_dir = reshape([aledge_dir aredge_dir]',3,[])';

clear aledge_dir aredge_dir ledge_hlen

a_leswp = acos(dot(aedge_dir,ale_dir,2))-pi/2;

a_hspn = sum((adve(1:4:end-3,:)-adve(2:4:end-

2,:)).^2,2).^0.5.*cos(a_leswp)/2;

i_hspn = i_hspn.*reshape(repmat(cos(acos(dot(ispn_dir,iedge_dir,2))-

pi/2),1,2)',[],1);

% coeff_o=coeff;

i=[1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,6,6,6,6,7,7,7,7,7,7,8,8,8

,8,9,9,9,10,10,11,11,11,11,12,12,12,12]'+(0:12:(n_pair-1)*12);i=i(:);

j=[1,2,3,2,3,1,2,3,4,5,6,2,3,5,6,4,5,6,7,8,9,5,6,8,9,7,8,9,10,11,12,8,

9,11,12,10,11,12,11,12,1,3,4,6,7,9,10,12]'+(0:12:(n_pair-

1)*12);j=j(:);

27

A=[ones(n_pair,1), -a_hspn(1:2:end-1), a_hspn(1:2:end-1).^2,

ones(n_pair,1), -2*a_hspn(1:2:end-1), ones(n_pair,1),

a_hspn(1:2:end-1),...

 a_hspn(1:2:end-1).^2, -ones(n_pair,1), i_hspn(1:2:end-1), -

i_hspn(1:2:end-1).^2, ones(n_pair,1), 2*a_hspn(1:2:end-1),...

 -ones(n_pair,1), 2*i_hspn(1:2:end-1), ones(n_pair,1),

i_hspn(1:2:end-1), i_hspn(1:2:end-1).^2, -ones(n_pair,1),

i_hspn(2:2:end), -a_hspn(2:2:end).^2, ...

 ones(n_pair,1), 2*i_hspn(1:2:end-1), -ones(n_pair,1),

2*i_hspn(2:2:end), ones(n_pair,1), i_hspn(2:2:end),

i_hspn(2:2:end).^2, ...

 -ones(n_pair,1), a_hspn(2:2:end), -a_hspn(2:2:end).^2,

ones(n_pair,1), 2*i_hspn(2:2:end), -ones(n_pair,1), 2*a_hspn(2:2:end),

ones(n_pair,1), a_hspn(2:2:end), a_hspn(2:2:end).^2, ...

 ones(n_pair,1), 2*a_hspn(2:2:end), a_hspn(1:2:end-

1)./(a_hspn(1:2:end-1)+i_hspn(1:2:end-1)), a_hspn(1:2:end-

1).^3./(3*(a_hspn(1:2:end-1)+i_hspn(1:2:end-1))), i_hspn(1:2:end-

1)./(a_hspn(1:2:end-1)+i_hspn(1:2:end-1)), i_hspn(1:2:end-

1).^3./(3*(a_hspn(1:2:end-1)+i_hspn(1:2:end-1))), ...

 i_hspn(2:2:end)./(a_hspn(2:2:end)+i_hspn(2:2:end)),

i_hspn(2:2:end).^3./(3*(a_hspn(2:2:end)+i_hspn(2:2:end))),a_hspn(2:2:e

nd)./(a_hspn(2:2:end)+i_hspn(2:2:end)),

a_hspn(2:2:end).^3./(3*(a_hspn(2:2:end)+i_hspn(2:2:end)))]';A=A(:);

A=sparse(i,j,A);

coeff=[coeff(1:2:end-1,1)-coeff(1:2:end-1,2).*a_hspn_o(1:2:end-

1)+coeff(1:2:end-1,3).*a_hspn_o(1:2:end-1).^2,...

 coeff(1:2:end-1,2)-2*coeff(1:2:end-1,3).*a_hspn_o(1:2:end-

1),zeros(n_pair,6),...

coeff(2:2:end,1)+coeff(2:2:end,2).*a_hspn_o(2:2:end)+coeff(2:2:end,3).

*a_hspn_o(2:2:end).^2,...

 coeff(2:2:end,2)+2*coeff(2:2:end,3).*a_hspn_o(2:2:end),...

 coeff(1:2:end-1,1)+coeff(1:2:end-1,3).*a_hspn_o(1:2:end-

1).^2/3,...

 coeff(2:2:end,1)+coeff(2:2:end,3).*a_hspn_o(2:2:end).^2/3

]';coeff=coeff(:);

clear a_hspn_o

coeff=A\coeff;

coeff = reshape(coeff,3,[])';

i=uint32([1;4]+(0:4:n_pair*4-4));i=i(:);

j=uint32([2;3]+(0:4:n_pair*4-4));j=j(:);

coeff=[coeff(i,:);coeff(j,:)];

i_hchrd = sum(((idve(1:4:end-3,:)+idve(2:4:end-2,:))./2-(idve(3:4:end-

1,:)+idve(4:4:end,:))./2).^2,2).^0.5/2;

a_hchrd = sum(((adve(1:4:end-3,:)+adve(2:4:end-2,:))./2-(adve(3:4:end-

1,:)+adve(4:4:end,:))./2).^2,2).^0.5/2;

n_adve = cross(ale_dir,aedge_dir);

n_adve=n_adve./sum(n_adve.^2,2).^0.5;

28

n_idve =

reshape(repmat(cross(ispn_dir,iedge_dir),1,2)',3,[])';n_idve=n_idve./s

um(n_idve.^2,2).^0.5;

a_roll = -atan2(n_adve(:,2),n_adve(:,3));

a_pitch = asin(n_adve(:,1));

aloc_dir = fcnGLOBSTAR((adve(1:4:end-3,:)+adve(2:4:end-2,:))./2-

(idve(3:4:end-

1,:)+adve(4:4:end,:))./2,a_roll,a_pitch,zeros(n_pair*2,1));

a_yaw = atan2(-aloc_dir(:,2),-aloc_dir(:,1));

i_roll = -atan2(n_idve(:,2),n_idve(:,3));

i_pitch = asin(n_idve(:,1));

iloc_dir = fcnGLOBSTAR((idve(1:4:end-3,:)+idve(2:4:end-2,:))./2-

(idve(3:4:end-

1,:)+idve(4:4:end,:))./2,i_roll,i_pitch,zeros(n_pair*2,1));

i_yaw = atan2(-iloc_dir(:,2),-iloc_dir(:,1));

i_leswp = idve(2:4:end-2,:)-idve(1:4:end-3,:);

i_leswp = i_leswp./sum(i_leswp.^2,2).^0.5;

i_leswp(:,1) =

acos(dot(reshape(repmat(iedge_dir,1,2)',3,[])',i_leswp,2))-

pi/2;i_leswp=i_leswp(:,1);

singf = repmat(WAKE.vecWK(dve_id),2,1);

dvenum = reshape([1;n_pair*2+1;2;n_pair*2+2]+(0:2:n_pair*2-2),[],1);

fpg = reshape(repmat(i_midp,1,4)',3,[])';

dvetype = dvetype((dve_id(1:2:end-1)-1)*len+1);dvetype =

reshape(repmat(dvetype,1,4)',[],1);

t_dve_id = reshape(uint32((1:1:n_pair*4*4)'),4,[])';

w_ind_j = fcnDVEVEL(dvenum, fpg, dvetype, t_dve_id , [adve;idve] ,

coeff , singf , [a_hspn;i_hspn], [a_hchrd;i_hchrd] , [a_roll;i_roll] ,

[a_pitch;i_pitch] , [a_yaw,i_yaw] , [a_leswp;i_leswp] ,

[a_leswp;i_leswp] , SURF.vecDVESYM, FLAG.GPU);

w_ind_j = reshape((w_ind_j(1:2:end-1,:)+w_ind_j(2:2:end,:))',[],1);

dve_id = reshape(repmat(dve_id,1,3)',[],1);

midp_id = reshape((uint32([1;2;3;1;2;3])+(midp_id-1)'*3),[],1);

w_id = sub2ind(size(w_ind),dve_id,midp_id);

w_ind(w_id) = w_ind_j;

end

dvetest.m script

%Create Quad

f1 = figure('Name','Before Split');

hold on

% d_id = [re_adj(:,1),re_adj(:,3)]';d_id=d_id(:);

% pitch_o = WAKE.vecWDVEPITCH(d_id);

% roll_o = WAKE.vecWDVEROLL(d_id);

% yaw_o = WAKE.vecWDVEYAW(d_id);

29

n=6100; %Enter which pair of DVEs you wanna observe.

o=(1:4)+8*(n-1);

a=(1:4)+8*(n-1);

b=1:2+2*(n-1);

fill3(adve_o(a,1),adve_o(a,2),adve_o(a,3),'r');

fill3(adve_o(a+4,1),adve_o(a+4,2),adve_o(a+4,3),'y');

%

quiver3(center(b,1),center(b,2),center(b,3),normal(b,1),normal(b,2),no

rmal(b,3));

%

quiver3(midp(a(1),1),midp(a(1),2),midp(a(1),3),rollaxis(b(1),1),rollax

is(b(1),2),rollaxis(b(1),3),0.2);

hold off

% aaang = acosd(dot(laspn_dir,raspn_dir,2));

%Roll angle rot axis parallel to x passing through center,

%Pitch angle rot axis dve span, Yaw angle rot axis normal.

%Create Quad

f2 = figure('Name','After Split');

hold on

fill3(adve(a,1),adve(a,2),adve(a,3),'r');

fill3(adve(a+4,1),adve(a+4,2),adve(a+4,3),'y');

fill3(idve(o,1),idve(o,2),idve(o,3),'g');

fill3(idve(o+4,1),idve(o+4,2),idve(o+4,3),'g');

% %

quiver3(center_n(b,1),center_n(b,2),center_n(b,3),normal_n(b,1),normal

_n(b,2),normal_n(b,3));

% %

quiver3(midp(a(1),1),midp(a(1),2),midp(a(1),3),rollaxis(b(1),1),rollax

is(b(1),2),rollaxis(b(1),3),0.2);

hold off

dev.m script

clc

clear

load('tm_200_0.8_0.01-0.27n0.28.mat');

id=1;

Cp = OUTP(id).vecCP;

Ct = OUTP(id).vecCT;

delCp = Cp(2:end)-Cp(1:end-1);

delCt = Ct(2:end)-Ct(1:end-1);

mean_delp = mean(abs(delCp));

std_delp = std(abs(delCp));

mean_delt = mean(abs(delCt));

std_delt = std(abs(delCt));

30

% deldelCp = delCp(2:end)-delCp(1:end-1);

% deldelCt = delCt(2:end)-delCt(1:end-1);

%

% mean_deldelp = mean(abs(deldelCp));

% std_deldelp = std(abs(deldelCp));

%

% mean_deldelt = mean(abs(deldelCt));

% std_deldelt = std(abs(deldelCt));

% delCp = Cp(191:end)-Cp(190:end-1);

% delCt = Ct(191:end)-Ct(190:end-1);

%

% mean_cdelp = mean(abs(delCp));

% std_cdelp = min(std(abs(delCp)));

%

% mean_cdelt = min(mean(abs(delCt)));

% std_cdelt = min(std(abs(delCt)));

FCp = Cp(end);

FCt = Ct(end);

31

APPENDIX II – 12 COEFFICIENT EQUATIONS

Figure II-1 Shows how the old and new DVEs are related, this relation is used to calculate the

new coefficients.

Knowns – 𝐴𝑙
̅̅̅, 𝐵�̅�, 𝐶�̅�, 𝐴𝑟

̅̅ ̅, 𝐵𝑟
̅̅ ̅, 𝐶𝑟

̅̅ ̅, ℎ𝑠𝑝𝑎𝑛𝑙
̅̅ ̅̅ ̅̅ ̅̅ ̅, ℎ𝑠𝑝𝑎𝑛𝑟

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , ℎ𝑠𝑝𝑎𝑛𝑙 , ℎ𝑠𝑝𝑎𝑛𝑟 , ℎ𝑠𝑝𝑎𝑛𝑚𝑙 , ℎ𝑠𝑝𝑎𝑛𝑚𝑟

Unknowns - 𝐴𝑙 , 𝐵𝑙, 𝐶𝑙 , 𝐴𝑚𝑙 , 𝐵𝑚𝑙, 𝐶𝑚𝑙 , 𝐴𝑚𝑟 , 𝐵𝑚𝑟 , 𝐶𝑚𝑟 , 𝐴𝑟 , 𝐵𝑟 , 𝐶𝑟

Point 1

𝐴𝑙 − 𝐵𝑙ℎ𝑠𝑝𝑎𝑛𝑙 + 𝐶𝑙ℎ𝑠𝑝𝑎𝑛𝑙
2 = 𝐴𝑙 − 𝐵𝑙ℎ𝑠𝑝𝑎𝑛𝑙 + 𝐶𝑙ℎ𝑠𝑝𝑎𝑛𝑙

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐵𝑙 − 2𝐶𝑙ℎ𝑠𝑝𝑎𝑛𝑙 = 𝐵𝑙 − 2𝐶𝑙ℎ𝑠𝑝𝑎𝑛𝑙
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

Point 2

𝐴𝑙 + 𝐵𝑙ℎ𝑠𝑝𝑎𝑛𝑙 + 𝐶𝑙ℎ𝑠𝑝𝑎𝑛𝑙
2 − 𝐴𝑚𝑙 + 𝐵𝑚𝑙ℎ𝑠𝑝𝑎𝑛𝑚𝑙 − 𝐶𝑚𝑙ℎ𝑠𝑝𝑎𝑛𝑚𝑙

2 = 0

𝐵𝑙 + 2𝐶𝑙ℎ𝑠𝑝𝑎𝑛𝑙 − 𝐵𝑚𝑙 + 2𝐶𝑚𝑙ℎ𝑠𝑝𝑎𝑛𝑚𝑙 = 0

(II-1)

 (II-2)

(II-4)

(II-3)

32

Point 3

𝐴𝑚𝑙 + 𝐵𝑚𝑙ℎ𝑠𝑝𝑎𝑛𝑚𝑙 + 𝐶𝑚𝑙ℎ𝑠𝑝𝑎𝑛𝑚𝑙
2 − 𝐴𝑚𝑟 + 𝐵𝑚𝑟ℎ𝑠𝑝𝑎𝑛𝑚𝑟 − 𝐶𝑚𝑟ℎ𝑠𝑝𝑎𝑛𝑚𝑟

2 = 0

𝐵𝑚𝑙 + 2𝐶𝑚𝑙ℎ𝑠𝑝𝑎𝑛𝑚𝑙 − 𝐵𝑚𝑟 + 2𝐶𝑚𝑟ℎ𝑠𝑝𝑎𝑛𝑚𝑟 = 0

Point 4

𝐴𝑚𝑟 + 𝐵𝑚𝑟ℎ𝑠𝑝𝑎𝑛𝑚𝑟 + 𝐶𝑚𝑟ℎ𝑠𝑝𝑎𝑛𝑚𝑟
2 − 𝐴𝑟 + 𝐵𝑟ℎ𝑠𝑝𝑎𝑛𝑟 − 𝐶𝑟ℎ𝑠𝑝𝑎𝑛𝑟

2 = 0

𝐵𝑚𝑟 + 2𝐶𝑚𝑟ℎ𝑠𝑝𝑎𝑛𝑚𝑟 − 𝐵𝑟 + 2𝐶𝑟ℎ𝑠𝑝𝑎𝑛𝑟 = 0

Point 5

𝐴𝑟 + 𝐵𝑟ℎ𝑠𝑝𝑎𝑛𝑟 + 𝐶𝑟ℎ𝑠𝑝𝑎𝑛𝑟
2 = 𝐴𝑟 + 𝐵𝑟ℎ𝑠𝑝𝑎𝑛𝑟 + 𝐶𝑟ℎ𝑠𝑝𝑎𝑛𝑟

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐵𝑟 + 2𝐶𝑟ℎ𝑠𝑝𝑎𝑛𝑟 = 𝐵𝑟 + 2𝐶𝑟ℎ𝑠𝑝𝑎𝑛𝑟
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

Effective Circulation is preserved.

𝐴𝑙

ℎ𝑠𝑝𝑎𝑛𝑙

ℎ𝑠𝑝𝑎𝑛𝑙 + ℎ𝑠𝑝𝑎𝑛𝑚𝑙
+ 𝐶𝑙

ℎ𝑠𝑝𝑎𝑛𝑙
3

3(ℎ𝑠𝑝𝑎𝑛𝑙 + ℎ𝑠𝑝𝑎𝑛𝑚𝑙)
+ 𝐴𝑚𝑙

ℎ𝑠𝑝𝑎𝑛𝑚𝑙

ℎ𝑠𝑝𝑎𝑛𝑙 + ℎ𝑠𝑝𝑎𝑛𝑚𝑙

+ 𝐶𝑚𝑙

ℎ𝑠𝑝𝑎𝑛𝑚𝑙
3

3(ℎ𝑠𝑝𝑎𝑛𝑙 + ℎ𝑠𝑝𝑎𝑛𝑚𝑙)
= 𝐴𝑙 + 𝐶𝑙

ℎ𝑠𝑝𝑎𝑛𝑙
2

3

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐴𝑚𝑟

ℎ𝑠𝑝𝑎𝑛𝑚𝑟

ℎ𝑠𝑝𝑎𝑛𝑟 + ℎ𝑠𝑝𝑎𝑛𝑚𝑟
+ 𝐶𝑚𝑟

ℎ𝑠𝑝𝑎𝑛𝑚𝑟
3

3(ℎ𝑠𝑝𝑎𝑛𝑙 + ℎ𝑠𝑝𝑎𝑛𝑚𝑟)
+ 𝐴𝑟

ℎ𝑠𝑝𝑎𝑛𝑟

ℎ𝑠𝑝𝑎𝑛𝑟 + ℎ𝑠𝑝𝑎𝑛𝑚𝑟

+ 𝐶𝑟

ℎ𝑠𝑝𝑎𝑛𝑟
3

3(ℎ𝑠𝑝𝑎𝑛𝑟 + ℎ𝑠𝑝𝑎𝑛𝑚𝑟)
= 𝐴𝑟 + 𝐶𝑟

ℎ𝑠𝑝𝑎𝑛𝑟
2

3

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

(II-5)

 (II-6)

(II-7)

 (II-8)

(II-9)

 (II-10)

(II-11)

(II-12)

33

APPENDIX III – EXTRA RESULTS

Table III-1 Optimization runs

PF MF mean ΔCP std ΔCP mean ΔCt std ΔCt Smoothness Index

0.8 0.275 3.38E-04 4.92E-04 8.11E-04 9.39E-04 5.11E-01

0.8 0.3 3.34E-04 4.74E-04 9.31E-04 0.001146 5.46E-01

0.8 0.4 3.60E-04 5.37E-04 9.09E-04 0.001112 5.69E-01

0.35 0.15 3.81E-04 5.55E-04 9.07E-04 0.001104 5.81E-01

0.838 0.4 3.96E-04 5.65E-04 8.84E-04 0.001083 5.84E-01

0.775 0.4 3.61E-04 5.39E-04 9.46E-04 0.001316 6.02E-01

0.9 0.4 4.12E-04 5.20E-04 0.001024477 0.001179 6.05E-01

0.7 0.4 3.99E-04 5.11E-04 0.001056945 0.001214 6.06E-01

0.75 0.4 4.44E-04 5.72E-04 0.001015067 0.001045 6.15E-01

0.825 0.41 3.87E-04 5.48E-04 0.001014707 0.001294 6.20E-01

1 0.35 4.14E-04 5.56E-04 0.001014094 0.001247 6.26E-01

0.83 0.4 4.23E-04 5.18E-04 0.001123188 0.001217 6.26E-01

0.4 0.35 4.17E-04 5.66E-04 0.001019081 0.001226 6.28E-01

0.85 0.4 4.33E-04 5.32E-04 0.001068601 0.00125 6.31E-01

0.826 0.4 4.33E-04 5.55E-04 1.09E-03 0.001315 6.51E-01

0.812 0.4 4.03E-04 5.73E-04 0.001086061 0.001365 6.53E-01

0.824 0.4 3.94E-04 6.57E-04 9.74E-04 0.001418 6.70E-01

0.825 0.4 4.30E-04 6.20E-04 0.001060992 0.00141 6.80E-01

0.4 0.2 4.36E-04 6.96E-04 9.78E-04 0.001383 6.94E-01

0.8 0.35 4.37E-04 6.22E-04 0.001151571 0.001429 6.98E-01

1 0.4 4.94E-04 6.64E-04 0.001128998 0.001327 7.15E-01

0.82 0.4 5.02E-04 6.11E-04 0.001251373 0.001377 7.22E-01

0.8 0.45 5.18E-04 6.55E-04 0.001296776 0.001516 7.67E-01

0.825 0.39 4.55E-04 7.33E-04 0.001086442 0.001709 7.70E-01

0.6 0.35 5.11E-04 6.64E-04 0.001263612 0.001725 7.91E-01

0.8 0.325 6.55E-04 8.09E-04 0.001630962 0.002157 9.93E-01

0.6 0.4 7.12E-04 9.64E-04 0.001561025 0.00173 1.00E+00

34

APPENDIX IV – DERIVATIONS

To calculate the approximate increase in the Wake DVE velocity computation, first look at the

approximate increase per time step shown:

%𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑝𝑒𝑟 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 ~
400𝑛𝑠𝑚𝑝𝑡𝑖𝑣𝑠𝑡𝑒𝑝

𝑛𝑑𝑣𝑒𝑛𝑚𝑝𝑡𝑖𝑣𝑠𝑡𝑒𝑝
=

400𝑛𝑠𝑚𝑝

𝑛𝑑𝑣𝑒𝑛𝑚𝑝

In equation IV-1, 𝑛𝑠𝑚𝑝 is the number of shared midpoints, 𝑡𝑖𝑣𝑠𝑡𝑒𝑝 is the time taken to calculate

the induced velocity on a point by a DVE, 𝑛𝑑𝑣𝑒 is the number of wake DVEs and 𝑛𝑚𝑝 is the

number of midpoints. Equation IV-1 is the ratio between the number of times a velocity has to

be calculated for split DVEs and the number of times the velocity has to be calculated when

splitting is disabled. To calculate the cumulative/total increase in the computation time, the

effects of all-time steps are summed up, shown here:

%𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒~
400∆𝑛𝑠𝑚𝑝𝑡𝑖𝑣𝑠𝑡𝑒𝑝 ∑ 𝑥

𝑥=𝑛𝑠𝑡𝑒𝑝

𝑥=1

∆𝑛𝑑𝑣𝑒∆𝑛𝑚𝑝𝑡𝑖𝑣𝑠𝑡𝑒𝑝 ∑ 𝑥2𝑥=𝑛𝑠𝑡𝑒𝑝

𝑥=1

=
400∆𝑛𝑠𝑚𝑝𝑡𝑖𝑣𝑠𝑡𝑒𝑝

𝑛𝑠𝑡𝑒𝑝(𝑛𝑠𝑡𝑒𝑝 + 1)
2

∆𝑛𝑑𝑣𝑒∆𝑛𝑚𝑝𝑡𝑖𝑣𝑠𝑡𝑒𝑝
𝑛𝑠𝑡𝑒𝑝(𝑛𝑠𝑡𝑒𝑝 + 1)(2𝑛𝑠𝑡𝑒𝑝 + 1)

6

Simplification of equation IV-2 gives the final equation:

%𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒~ =
1200∆𝑛𝑠𝑚𝑝

∆𝑛𝑑𝑣𝑒∆𝑛𝑚𝑝(2𝑛𝑠𝑡𝑒𝑝 + 1)

(IV-1)

(IV-2)

(IV-3)

35

REFERENCES

[1] G. Bramesfeld and M. D. Maughmer, "Relaxed-Wake Vortex-Lattice Method Using

Distributed Vorticity Elements," Journal Of Aircraft, vol. 45, pp. 560-568, 2008.

[2] G. Bramesfeld, A Higher Order Vortex-Lattice Method with a Force-Free Wake, Phd Thesis,

University Park: The Pennsylvania State University, 2006.

[3] RAALF, "VAP 3.1 Source Code," Toronto, 2018.

[4] T. Choephel, "AERODYNAMIC ANALYSIS OF HELICOPTER ROTORS USING A HIGHER-ORDER,

FREE-WAKE METHOD," Phd ThrsisThe Pennsylvania State University, 2016.

[5] B. J. Basom, Inviscid Wind-Turbine Analysis Using Distributed Vorticity Elements, MSc Thesis

The Pennsylvania State University, 2010.

[6] A. Kolaei, D. Barcelos and G. Bramesfeld, "Experimental Analysis of a Small-Scale Rotor at

Various Inflow Angles," International Journal of Aerospace Engineering, vol. 2018, Article ID

2560370, p. 14, 2018.

