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ABSTRACT 
 

Thesis Title: Recovery of Valuable Incompletely-Recorded CN Tower Lightning Return-Stroke 

Current Derivative Signals  

Degree: Master of Applied Science, 2018 

Student Name: Lakmini Perera 

Graduate program: Electrical and Computer Engineering, Ryerson University 

Lightning is a captivating natural phenomenon but indisputably terrifying. Therefore, 

lightning studies have played an essential role in establishing safety regulations to protect lives 

and infrastructures. Among the many simulating functions that were utilized in the past for 

modelling the lightning return-stroke current, Heidler and Pulse functions overcame certain 

limitations, including the time derivative discontinuities.  

Incompletely-recorded current derivative signals represent another challenge in lightning 

research. This thesis proposes a double-term Pulse function that could be investigated with the 

double-term Heidler function for modelling the lightning return-stroke current. The time derivative 

of both Pulse and Heidler functions have been used to simulate the current derivative signals 

recorded on June 10, 1996. Some of these return-stroke signals exceded the maximum set level. 

Consequently, the double-term simulating functions were used to recover a large incompletely-

recorded return-stroke current derivative signal. The R2 fitting factor was used to evaluate the 

quality of each fitting to determine which simulating function is better suited to model and recover 

valuable return-stroke current signals.   



iv 
 

ACKNOWLEDGEMENTS 
 

I would like to express my deepest gratitude and appreciation to my supervisor Prof. Ali 

M. Hussein for his guidance, support, advice, and encouragement throughout the research work. 

His knowledge, expertise, and persistent help on my research are highly valuable. It was a great 

pleasure working with him and I am honored to have had the privilege of working under his 

supervision. I am really grateful for the opportunity to participate in two international lightning-

related conferences, which helped me to present my research and be exposed to the work of other 

researchers, in the same research area, around the world. 

This work was funded in part by the Natural Sciences and Engineering Research Council 

of Canada, NSERC Discovery Grant (2012-2017), which is gratefully acknowledged.  

I would like to acknowledge the Department of Electrical, Computer and Biomedical 

Engineering and the School of Graduate Studies at Ryerson University for their support through 

funding and facilities provided during this research. Furthermore, I would like to extend my thanks 

to all my Professors who taught me during my graduate studies at Ryerson University.  

A special thank you to my parents, sister, and my loving husband for their moral support, 

patience, encouragement, and wise advice during my years of study. Without your continuous 

support, I would not have gotten where I am today. Words cannot express my sincerest gratitude 

and appreciation and thank you for believing in me.   



v 
 

TABLE OF CONTENTS 

 
AUTHOR'S DECLARATION ....................................................................................................... ii  

ABSTRACT ................................................................................................................................... iii  

ACKNOWLEDGEMENTS ........................................................................................................... iv  

LIST OF TABLES ....................................................................................................................... viii 

LIST OF FIGURES ....................................................................................................................... ix  

Chapter 1  

1. General Introduction ............................................................................................................ 1  

 Introduction .................................................................................................................... 1  

 Organization of the Study .............................................................................................. 6 

 

Chapter 2  

2. Literature Survey ................................................................................................................. 8  

 Introduction .................................................................................................................... 8  

 Simulating Functions ..................................................................................................... 8  

 Data Recovery Methodologies ..................................................................................... 11 

 Summary ...................................................................................................................... 12  

 

 

 

 

 



vi 
 

Chapter 3  

3. Lightning ............................................................................................................................ 13  

 Introduction .................................................................................................................. 13  

 Physics of Lightning .................................................................................................... 14 

3.2.1. Precipitation Model ............................................................................................... 14 

3.2.2. Convection Model ................................................................................................. 16 

3.2.3. Tripolar model ...................................................................................................... 17 

 Process of Lightning Formation ................................................................................... 20 

 Categorization of Lightning ......................................................................................... 24 

3.4.1. Tall-Structure Lightning ....................................................................................... 26 

 Measurement Systems .................................................................................................. 27  

 Summary ...................................................................................................................... 33  

 

Chapter 4  

4. Simulating Functions ......................................................................................................... 34 

 Introduction .................................................................................................................. 34  

 Current Waveform Parameters ..................................................................................... 35  

 Single-Term Heidler and Pulse Functions ................................................................... 38 

 Double-Term Heidler and Proposed Double-Term Pulse Functions ........................... 42 

 Summary ...................................................................................................................... 47  

 

 

 

 

 

 



vii 
 

Chapter 5  

5. Modelling Process .............................................................................................................. 48 

 Introduction .................................................................................................................. 48  

 Matching Waveforms ................................................................................................... 48 

 Estimating the Decay Constants using Single-Term Simulating Functions ................ 55 

 Estimating the Decay Constants using Double-Term Simulating Functions ............... 58 

 Single-Term Simulating Functions .............................................................................. 60 

 Double-Term Simulating Functions ............................................................................. 67 

 Summary ...................................................................................................................... 76  

 

Chapter 6  

6. Recovery of Incomplete Signals ........................................................................................ 77  

 Introduction .................................................................................................................. 77  

 Recovery of Artificially-Cut Signal ............................................................................. 77 

 Recovery of Incompletely-Recorded Signal ................................................................ 81 

 Summary ...................................................................................................................... 84  

 

Chapter 7  

7. Conclusions & Future Work .............................................................................................. 85 

 

REFERENCES ............................................................................................................................. 88  

NOMENCLATURE ..................................................................................................................... 93  

 

  



viii 
 

LIST OF TABLES 
 
 
Table 5.1 Fitting Results and R2 Factor for the 3rd Return-stroke Current Derivative 

Signal ........................................................................................................................... 61 
Table 5.2 Fitting Results and R2 Factor for the 6th Return-stroke Current Derivative 

Signal ........................................................................................................................... 65 
Table 5.3 Fitting Results and R2 Factor for the 3rd Return-stroke Current Derivative 

Signal ........................................................................................................................... 69 
Table 5.4 Fitting Results and R2 Factor for the 6th Return-stroke Current Derivative 

Signal ........................................................................................................................... 73 
Table 6.1 Fitting Results and R2 Factor ........................................................................................ 80 
Table 6.2 Fitting Results and R2 Factor ........................................................................................ 83 
 

  



ix 
 

LIST OF FIGURES 
 
 
Figure 1.1: Thunderstorms and the global circuit ........................................................................... 5 
Figure 3.2: Precipitation model of thundercloud structure ........................................................... 15 
Figure 3.3: Convection model of thundercloud structure ............................................................. 16 
Figure 3.4: Tripolar model of thundercloud structure .................................................................. 18  
Figure 3.5: Charge reversal temperature level and the electric charge acquired by the 

collisioins of light particles with large graupel particles ............................................. 19 
Figure 3.6: Various stages in the formation of negative cloud-to-ground lightning .................... 23 
Figure 3.7: Types of cloud-to-ground lightning ........................................................................... 25 
Figure 3.8: Canadian National Tower (as observed from the Toronto Island) ............................. 27 
Figure 3.9: CN Tower and lightning measurement systems ......................................................... 29 
Figure 3.10: Old Rogowski coil encircles one-fifth of CN Tower steel structure ........................ 31 
Figure 3.11: New Rogowski coil encircles the whole CN Tower steel structure ......................... 31 
Figure 3.12: CN Tower measurement system setup, 1990-2003 .................................................. 32 
Figure 4.1: Current derivative waveform...................................................................................... 36 
Figure 4.2: Current waveform; as well as the current peak, 90%, 50% and 10% current 

levels ............................................................................................................................ 37 
Figure 5.1: The 3rd return-stroke current derivative waveform. A zoomed-in view 

illustrates the starting point at which di/dt ≈ 0 ............................................................ 49 
Figure 5.2: The 6th return-stroke current derivative waveform. A zoomed-in view 

illustrates the starting point at which di/dt ≈ 0 ............................................................ 49 
Figure 5.3: The first time window, (1), second time window, (2), third time window, 

(3), shown 6th return-stroke current derivative measured signal and its 
current waveform. ....................................................................................................... 51  

Figure 5.4: The first time window of the 6th return-stroke current derivative measured 
signal ........................................................................................................................... 52  

Figure 5.5: The first time window of the 3rd return-stroke current derivative measured 
signal ........................................................................................................................... 52  

Figure 5.6: The third time window of the 3rd return-stroke current waveform............................. 53 
Figure 5.7: The third time window of the 6th return-stroke current waveform ............................. 54 
Figure 5.8: The 6th return-stroke current signal and the fitting of the decay function 

described by (32) into third time window 14 – 62 μs.................................................. 56 
Figure 5.9: The 3rd return-stroke current waveform and the fitting of the decay 

function described by (33) and (34) into third time window 30 – 60 μs ..................... 57 
Figure 5.10: The 6th return-stroke current waveform and the fitting of the decay 

function described by (35) into the third time window 14 – 62 μs ............................. 59 



x 
 

Figure 5.11: The 3rd return-stroke current waveform and the fitting of the decay 
function described by (35) and (36) into the third time window 30 – 60 μs ............... 59 

Figure 5.12: Fitting of time derivative of Heidler and Pulse functions for the 3rd return-
stroke current derivative measured signal. The zoomed-in view shows the 
fitting of the simulating functions near the maximum amplitude. .............................. 62 

Figure 5.13: Heidler and Pulse functions’ fittings for the 3rd return-stroke current 
signal. The zoomed-in view shows the fitting of the simulating functions 
near the current peak. .................................................................................................. 63  

Figure 5.14: Time derivative of Heidler and Pulse functions for the fitting of the 6th 
return-stroke current derivative measured signal. The zoomed-in view 
shows the fitting of the simulating functions near the maximum amplitude. ............. 66 

Figure 5.15: Heidler and Pulse functions’ fittings of the 6th return-stroke current 
waveform. The zoomed-in view shows the fitting of the simulating 
functions near the current peak. .................................................................................. 67 

Figure 5.16: Fitting the time derivative of Heidler and Pulse functions to the 3rd return-
stroke current derivative measured signal. The zoomed-in view shows the 
fitting of the simulating functions near the maximum amplitude. .............................. 70 

Figure 5.17: Fitting Heidler and Pulse functions to the 3rd return-stroke current 
waveform. The zoomed-in view shows the fitting of the simulating 
functions near the current peak. .................................................................................. 71 

Figure 5.18: Fitting time derivative of Heidler and Pulse functions to 6th return-stroke 
current derivative measured signal. The zoomed-in view shows the fitting 
of the simulating functions near the maximum amplitude. ......................................... 74 

Figure 5.19: The fitting of Heidler and Pulse functions of the 6th return-stroke current 
waveform. The zoomed-in view shows the fitting of the simulating 
functions near the current peak. .................................................................................. 75 

Figure 6.1: Artificially-cut waveform obtained by cutting the recorded return-stroke 
current derivative waveform at 50% level from the peak ........................................... 78 

Figure 6.2: Time derivative of the proposed double-term Pulse function of the 
artificially-cut return-stroke current derivative waveform fitting ............................... 79 

Figure 6.3: The fitting of the proposed double-term Pulse function of the artificially-
cut current waveform. .................................................................................................. 79  

Figure 6.4: The fitting of the time derivative of Heidler function of the 7th return-
stroke current derivative waveform (incompletely recorded waveform) .................... 82 

Figure 6.5: Current waveform of the recovered 7th return-stroke current derivative 
signal (obtained by numerical integration) .................................................................. 83 

 



1 
 

Chapter 1 
 

1. General Introduction  

 Introduction 

Lightning is one of the most intriguing phenomenon known to man. According to scientific 

research on origin of life, lightning had a great impact on creating the organic molecules, which is 

the building block of all life forms [1].   

Ancient civilizations were so captivated by this natural phenomenon, which seems so 

ordinary to us, to the extent that lightning and thunder crest into their ancient religious beliefs. In 

Greek mythology, Zeus (the god of sky and thunder) uses lightning as his weapon [1]–[3]. Thor 

(the god of thunder), in Norse mythology, carries a hammer associated with lightning as a weapon 

[1], [3]. In Hinduism, Indra (the god of weather and war) has a thunderbolt in one hand [1], [3], 

[4]. In Chinese mythology, Tien Mu (Mother of lightning) uses flashing mirrors to create lightning 

[1], [5]. Lei Gong is a Taoism deity who produce thunder using a drum and a mallet, and punish 

evil mortals/spirits [5]. In some of these ancient beliefs, the gods associated with lightning and 

thunder were considered the kings of all gods. Thus, lightning was a symbol of power and a 

weapon for protection.  

Following Benjamin Franklin’s discovery that lightning was electrical through his 

experiments, many scientists carried out numerous experiments to better understand the lightning 

phenomenon [6]. Despite its fascinating beauty, lightning is undoubtedly frightening. Apart from 
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tornadoes and hurricanes, for many decades lightning has been considered a major natural problem 

with devastating results including, property damages, forest fires, human injuries and fatalities, 

disruptions and damages to telecommunication systems, damages to transmission lines, and 

disruptions to aviation and aerospace industry. In Canada, the cost of annual lightning-related 

distructions range from $600 million to $1 billion. The majority of these distructions are to forestry 

and electrical powerlines [7], [8]. Thus, it is important to advance our understanding of the 

lightning discharge by analyzing its characteristics in order to develop systems, establish 

regulations and standards to protect humans and properties. The lightning strike fatalities and 

injuries have decreased significantly due to the development of lightning safety regulations that 

have been put in place during the past decade [8], [9].  

Some of the main objectives of this study are listed below: 

 Improve the modelling of the lightning return-stroke current derivative waveform using the 

double-term simulation functions to acquire more accurate fit. The study proposes a 

double-term Pulse function that could be investigated and compared with the double-term 

Heidler function for modelling the lightning return-stroke current to determine which 

simulating function is better suited to model the CN Tower lightning return-stroke current.  

 Incompletely-recorded large current derivative return-stroke signals presents a big 

challenge and represent valuable waveforms for the lightning modelling process. It is 

important to successfully recover large valuable incompletely-recorded signals, which are 

valuable for the evaluation of tall-structure lightning return-stroke models by comparing 

the simulated electric and magnetic fields with those measured [10]. 
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Lightning studies and collected data have many advantages in our day-to-day lives. The 

main advantages are highlighted below [7]–[9], [11]–[14]:  

1. Weather: Tracking, recording, and forecasting severe weather to warn the public.     

2. Aviation industry: Help in issuing warnings to protect aircrafts and ground crew, as well 

as avoiding flying routes with heavy lightning strikes.  

3. Forestry: Early detection of areas that are more likely to start fires due to lightning-strikes. 

Help to allocate necessary resources and take actions to save time and valuable property.  

4. Protection of electrical infrastructures: Establish systems to improve the protection of 

transmission and distribution systems. Also, restoration due to lightning damages will costs 

billions of dollars.    

5. Insurance industry: Investigation of lighting damage claims. In 2013 in USA, one-hundred 

thousand homeowners claimed insurance for damages caused by lightning.  

6. Outdoor activities: Improved forecasting helps people to better plan their outdoor activities 

(for example, playing in open fields, fishing, and working outdoors in open fields during 

thunderstorms).  

It is worth mentioning that lightning plays a major role in maintaining the earth’s electrical 

field, at about 100 V/m. As illustrated in Figure 1.1, lighting creates the global circuit. During a 

thunderstorm, atmospheric electrical current flows upwards whereas during fine weather it flows 

downward. Thunderstorms supply the earth with sufficient charges, which acts as a battery, by 

means of corona discharge, lightning current, and rain. This keeps the earth negatively charged. 
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On the otherhand the atmosphere is positively charged. Electrosphere range, located at 50 km 

above earth’s surface, is a great conduction medium for slow propagating waves such as radio 

signals [3], [15]. 

Furthermore, lightning influences the chemistry of the atmosphere. Lightning channels 

discharge fixed nitrogen into the atmosphere. Nitrogen is called fixed when it is in a less stable 

form in comparison with the dinitrogen molecule, N2. Therefore, fixed nitrogen produced by 

lightning can be easily absorbed by plants during photosynthesis. In addition, this unstable 

molecule can react more easily with other types of gases found in the atmosphere, besides N2, to 

form chemicals like nitric acid. Nitric acid is used to produce ammonium nitrate, which helps in 

ground fertilization [1], [3]. 
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Figure 1.1: Thunderstorms and the global circuit  
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 Organization of the Study 

This thesis is divided into seven chapters, which are summarized below: 

Chapter 1 introduces the history behind the study of lightning. It highlights the importance 

of conducting lightning studies and how it benefits our everyday life. This chapter emphasized the 

importance of lightning and the role it plays in the global circuit and the chemistry of the 

atmosphere. In addition, it describes the objective and the motivation behind this research.  

Chapter 2 presents the existing research conducted on the methods and techniques used to 

simulate lightning current signals. It also discusses various algorithms used to recover valuable 

missing data. In addition, it highlights the advantages and drawbacks found in each study.  

Chapter 3 provides a basic introduction to the physics behind lightning. It describes 

thunderstorm cloud structures, types of lightning, lightning formation highlighting important 

terminologies, and tall-structure lightning. Moreover, the chapter discusses how the lightning 

return-stroke current is measured at the Canadian National (CN) Tower.  

Chapter 4 defines important waveform parameters and the requirements requirements of 

suitable simulating functions for the modelling process. Firstly, it introduces the single-term 

Heidler function, as well as Pulse function. In the second part, it introduces the double-term Heidler 

function and proposes a double-term Pulse function.  

In Chapter 5, the simulating functions described in the previous chapter are used to model 

the recorded signals. It describes the steps of preparing the raw data prior to starting the simulation 

process. It also focuses on utilizing the important characteristics of the simulation functions to 
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better estimate the analytical parameters. In this chapter, both the single-term and the double-term 

models are used to investigate and select suitable models for return-stroke lightning current 

signals.  

Chapter 6 proposes a solution to address the issue of incompletely-recorded large signals. 

An artificially-cut signal is to be recovered for testing the proposed algorithm before applying it 

on an actual incompletely-recorded CN Tower lightning current derivative signals.  

Chapter 7 presents final conclusions and highlight on the key findings in this research 

work. Furthermore, this chapter provides recommendations and suggestions for future work.  
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Chapter 2 
 

2. Literature Survey 

 Introduction 

In the past, researchers investigated a number of simulating functions for modelling 

lightning return-stroke currents. The incompletely recorded current derivative signals, which 

exceeded the maximum measured signal set level, represented another challenge [10]. In fact these 

incompletely recorded current derivative signals, whose peaks are well above the noise level, 

proved to be quite valuable for modelling purpose. In this chapter, various lightning return-stroke 

current simulating functions and data recovery methods are reviewed and presented.  

 Simulating Functions  

References [16]–[19] discuss lightning returning stroke models that are based on the 

attachment process of connecting leaders, the effect of corona on the propagating current pulse, 

current attenuation along the propagating channel, current reflections at both ends of the channel, 

and the preliminary breakdown process leading to the return stroke.  

Reference [16] specifically discusses a mathematical model developed to simulate the first 

return-stroke by considering the attachment process of the upward-connecting leader. The 

proposed model assumes that the upward-connecting leader is developed completely inside 

streamer zone of a downward propogating leader, which means the connecting leader speed is 
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assumed to be much higher compared with the upward-connecting leaders initiated by tall-

structures. Furthermore, the proposed model considers the slow wavefront of the channel-base 

current signal including the upward connecting-leader. By incorporating the slow wavefront, this 

model overcomes some of the limitations faced by the current generation (CG), travelling current 

source (TCS) and Diendorfer-Uman (DU) models.  

The return-stroke models described in [17], [18] are channel based current models. Paper 

[17] combines CG model and current dissipation (CD) model to create a return-stroke model that 

considers the reflections at ground level without incorporating current discontinuities of the return-

stroke. Furthermore, the proposed return-stroke model can be utilized to analyze the effect of 

ground conductivity on return stroke current and variations of return-stroke velocity along the 

channel. The losses and scattering during the current pulse propagation along the channel and 

current reflections at both ends of the channel are considered in the generalized traveling current 

source return-stroke model (GTCS), discussed in [18]. As described in [18], extended GTCS 

model is a generalized return-stroke model and “engineering” return stroke models are a special 

case of this extended GTCS model.  

The initial breakdown stage, intermediate stage, and stepped leader (BIL) model, described 

in [19], considers various stages of the preliminary breakdown in the lightning flash before the 

return-stroke is observed. Even though this model is useful in the general understanding of the 

lightning flash breakdown process, these stages may differ in thunderstorms. Thus, this model is 

too generic and not standardized yet.   

Heidler and Pulse functions, described in [20]–[24], are widely popular in tall-structure 

lightning return-stroke modeling. Many simulating functions, including the double-exponential 
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and Jones modified double-exponential functions, [21], [22], [24], [25], are found to create 

problems in modelling the lightning return-stroke current due to discontinuities in their first and 

second current derivatives. On the other hand, Heidler and Pulse functions do not have the 

discontinuity problems [21], [22], [24]. As discussed in [21], [22], 3-section transmission line 

model and Heidler function can be utilized to model a measured current derivative signal. Return-

stroke models proposed in [26]–[29] are derived considering Heidler and Pulse functions. New 

channel-base current (NCBC) model is used to approximate long stroke currents [26], [27]. The 

proposed model can be used in the frequency-domain calculations due to its simple, analytically 

differentiable, and integrable properties. In [28], [29], Heidler function is estimated using a linear 

combination of exponential functions in time domain and analytically transformed into frequency 

domain using Fourier transform to obtain a more accurate expression.     

As explained in [30], the double-exponential and Heidler functions are more suitable for 

modelling single-peaked lightning return-stroke current signals. Therefore, the paper proposes two 

complex exponential functions that render pole-residue models of the measured return-stroke 

currents. One important application of this proposed pole-residue model is the improved 

simulation and evaluation of lightning current in surge arresters, and improved modelling of 

single-peaked and double-peaked lightning return-stroke current signals.  

Analytically Extended Function (AEF) has discontinuities in its second derivative. In order 

to address this issue, lightning current first derivative (AEFD) is introduced which is discussed in 

[31]. The proposed model is able to approximate the lightning return-stroke current waveforms 

with extreme values (steep waveforms). In addition, the proposed function is combined with 

special mathematical functions, such as Gamma and Lambda functions, to calculate the charge 

transfer and the specific energy of the measured lightning signal.  
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Many of the popular simulating functions, such as Heidler and Pulse functions, contain 

single peaks. A multi-peak modelling function is proposed in [32], [33] to capture some of the 

details of the measured lightning return-stroke that may be missed. Other analytical models are 

discussed and compared in [34]. These models include the gas dynamic model, derived using radial 

evolution of the lightning channel and its associated shockwaves, the electromagnetic model, 

derived using Maxwell equations, the distributed-circuit model, and the engineering model, based 

on observed lightning return-stroke characteristics.   

 Data Recovery Methodologies 

References [35]–[37] are suitable for the recovery of complex signals where data are 

missing at random. They incorporate multiple techniques to accurately recover the missing data 

points. Paper [35] utilizes regression models such as linear, Poisson, logistic, or a mixture of these 

(depends on the complexity of the problem). This allows flexibility and estimation of the missing 

data on a case by case situation. Algorithms discussed in [35]–[37] are based on an autoregressive 

parameter estimation technique, combined with interpolation or extrapolation.        

Algorithms like Resonator Based Spectral Observer (RBO), as discussed in [38], is able to 

handle data loss but too complicated. As explained in [39], [40], complex data recovery algorithms 

require more computational resources and thus more expensive. Paper [39], based on Fast Fourier 

Transform, and paper [40], based on several linear prediction coefficients (LPC), address the 

drawbacks mentioned above making it simpler and cost effective. Other simple techniques include 

Maximum Likelihood Estimator (MLE), multiples sine function decomposition (MSFD), and 

Laplacian solvers, as discussed in [41]–[43]. 
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Algorithms explained in [44]–[47] are used for the recovery of more sensitive signals such 

as audio or signals with severe degradations. The quality of the signal is considered during the 

recovery process and do not modify the given data samples as explained in [44]–[46]. The data 

recovery algorithm discussed in [47] is able to restore missing data without relying on any 

information about previous or the next set of data.  

 Summary 

Many researchers have studied tall-structure lightning models, including CG, CD, TCS, 

engineering models, etc. One of the main drawbacks of some simulating functions is the 

discontinuities in its second current derivative. However, simulating functions such as Heidler and 

Pulse functions are used in many lightning return-stroke models to overcome such limitations. As 

was explained earlier, analyzing these problems in the frequency domain can further improve the 

modelling of lightning return-stroke current signals.  

The incompletely recorded current derivative signals is another challenge faced by many 

researchers dealing with valuable data. The incompletely recorded current derivative signals that 

have high peak amplitude levels are very valuable in modelling tall-structure lightning. There are 

several studies discussing various data recovery algorithms (using simple and complex algorithms) 

trying to restore the missing data as accurately as possible. But none of the aforementioned studies 

discuss the function of tall-structure lightning data recovery utilizing simulating functions such as 

Heidler and Pulse functions.  
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Chapter 3 
 

3. Lightning  

 Introduction 

Benjamin Franklin started to investigate electricity in 1746. In 1752, during a 

thunderstorm, Franklin conducted his famous experiment when he flew a kite with a conducting 

string and a key tied to the bottom of the string. During a thunderstorm, he observed sparks flying 

from the key to his knuckles. This experiment proved that thunderclouds are electrically charged 

and lightning is electrical [6]. 

This chapter introduces two main models used to understand the dipole structure of the 

thundercloud. Modifications were made to these presumed structures to propose a more accurate 

representation of a thundercloud. In addition, this chapter discusses important lighting 

terminologies and different types of lightning. Lastly, it introduces the Canadian National (CN) 

Tower, which played a vital role in this research on tall-structure lightning.  
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 Physics of Lightning 

In addition to Franklin’s observation on thunderclouds, he discovered that most thunder 

clouds are negative but could be also positive. Since his discovery, lightning is defined as transfer 

of charges, either positive or negative, between two regions in a cloud (intracloud discharge), 

between two different clouds (intercloud discharge), between cloud and air (cloud-to-air 

discharge), or between cloud and ground (cloud-to-ground discharge) [6], [15], [48]. Even though 

lightning is commonly associated with thunderstorms, there are other circumstances for lightning 

to occur during snowstorms, sandstorms, or above a volcanic eruption. Hence lightning occurs 

because a certain region of the atmosphere accumulates enough charges and results in an electrical 

breakdown of the air (electric field of the region surpasses the local dielectric strength of air) [3], 

[6], [15], [48]. 

In order for lightning to take place, positive and negative charges must be separated from 

each other (cloud electrification) [15]. After Franklin’s observation of thunderclouds, it was 

assumed that thunderclouds had a simple dipole structure. This hypothetical structure is further 

investigated using precipitation and convection models.   

3.2.1. Precipitation Model 

The precipitation model, illustrated in Figure 3.2, describes a charge transfer between 

heavy and light particles in a thundercloud. A thundercloud contains heavy particles such as 

raindrops, hailstones and graupel particles, and light particles such as small water droplets and ice 

crystals. The heavy particles get pulled down by gravity and as they get pulled down, heavy 

particles pass light particles and collide with them. This collision results in transfer of charges, 



15 
 

where heavy particles become negatively charged whereas light particles become positively 

charged. Thus, negatively charged particles accumulate at the bottom of the cloud, whereas 

positively charged particles accumulate at the top of the cloud [15]. 

  

   

 

  

Figure 3.1: Precipitation model of thundercloud structure 
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3.2.2. Convection Model 

The second type of hypothetical dipole model is the convection model illustrated in Figure 

3.3. This particular model assumes that two external sources, cosmic rays and corona discharges 

(positive charges) from earth’s surface, supply the thundercloud with necessary electric charges. 

First, positive and negative charges in air molecules above the thundercloud are separated due to 

the ionization process of the cosmic rays. Second, warm air carries the corona positive charges, 

produced at the earth’s surface in the upwards direction or by “convection.” When positive charges 

reach the top of the cloud, they attract the negative charges above the thundercloud, formed due to 

ionization process of the cosmic rays, to the cloud’s boundary and enter the cloud. Next, negative 

charges quickly attach to the particles found inside the cloud such as small water droplets and ice 

crystals, which forms a “negative screening layer.” It is believed that downdrafts then carry 

negative charges of the screening layer downwards to the base of the cloud. Thus, it creates a 

dipole structure. Although the two models discussed above may look similar, the convection model 

doesn’t evoke precipitation and the precipitation model doesn’t evoke convection [1], [15].  

 

 

 

 

 

Figure 3.2: Convection model of thundercloud structure 
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3.2.3. Tripolar model 

However, there was a big controversy about the structure of a thundercloud. Wilson, 

inventor of cloud chamber, concluded that a thundercloud is a positive dipole, whereas Simpson, 

a researcher who measured the charge on rain droplets from thunderclouds, concluded that a 

thundercloud is a negative dipole [15].  

Since this controversial conclusions and many decades of close observations, it was 

concluded that thunderclouds are tripolar as illustrated in Figure 3.4; a positive region at the top 

of the cloud, a small positive region at the bottom, and a main negative region in the middle. 

Looking at the two suggested models, many believed that the corona discharges, the positive 

charges that are produced at the earth’s surface (based on the convection model), were responsible 

for the small positive region at the bottom of the tripolar structure. However, after the measurement 

of the electric flux, it was concluded that it was too small to form the positive layer at the bottom 

of the tripolar structure and the convection model was proved to be inadequate to explain the 

tripolar structure. Therefore, several modifications were made to the precipitation model to explain 

the simple tripolar structure of a thundercloud, especially the positively charged region at the 

bottom [15].  

The explanation for the positive layer at the bottom in a tripolar structure lies in the 

microphysics of charge transfer. The heavy graupel particles in a thundercloud get pulled down by 

gravity and as they get pulled down, they collide with light particles. The charge transferred to 

each particle is dependent on a critical temperature as shown in Figure 3.5. The critical temperature 

is called the “charge-reversal temperature,” which is about -15o C (at a height of 6 km). At a 

temperature below the critical temperature, the falling heavy graupel particles acquire negative 
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charge, whereas lighter particles acquire positive charge. At a temperature above the critical 

temperature, the falling heavy graupel particles acquire positive charge, whereas lighter particles 

acquire negative charge (Figure 3.5). Thus, the positively charged heavy graupel particles form 

the lower positive region of the tripolar structure [15] (Figure 3.4). 

 

 

Figure 3.3: Tripolar model of thundercloud structure 
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Figure 3.4: Charge reversal temperature level and the electric charge acquired by 

the collisioins of light particles with large graupel particles 
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 Process of Lightning Formation 

As discussed in the previous chapter, any cloud-to-ground lightning discharges start in the 

cloud. This section highlights the key stages in a typical negative cloud-to-ground lightning 

discharge, which is illustrated in Figure 3.6. Also, specific terminologies used to describe lightning 

is explained in details.  

The Flash is a complete discharge of lightning that lasts about one-tenth of a second. Each 

flash contains at least one high-current pulse termed stroke. For a flash that contains one stroke, it 

is called a single-stroke flash, whereas if there are more than one stroke, it is called a multi-stroke 

flash. Each stroke is typically 20-25 ms apart [3]. Visually speaking, the existence of multiple 

strokes causes the flickering-effect, which is clearly observed. When the time between each stroke 

is very small, the human eye doesn’t detect the flickering, whereas when the time between each 

stroke is longer, the human eye observe the flickering. (The same concept is used to produce 

movies and TV, which make them appear continuous to the human eye) [6]. 

The cloud-to-ground discharge first begins locally between small positively charged layer 

at the bottom and negatively charged layer above it. This preliminary breakdown inside the cloud 

frees the electrons in the negatively charged region, which were once attached to light particles 

(such as small water droplets and ice particles). Recall, an electron is a fundamental particle that 

has a small mass and carry negative electric charge. Due to their extremely small mass compared 

to other particles, such as small water droplets and ice particles in the negatively charged region, 

electrons are free to move around very easily. These free electrons eventually move to the small 

positive region at the bottom of the cloud and neutralize it. And they continue moving towards the 

ground and creates a channel to move negative charges from the cloud to ground. This is called a 
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stepped leader [1], [3], [6], [48]. The name ‘stepped’ is given because it appears to move 

downwards in a zig-zag path creating a step-like pattern. Many scientists define the stepped leader 

as a weakly luminous pre-discharge and categorized into two main groups: α-type and β-type. The 

two main types are distinguished based on downward speed, length in the steps, and luminosity 

[1]. As explained in [1], according to Schonland, 55% to 70% stepped leader types are α-type.  

When this large negatively charged stepped leader is closer to the ground level, it induces 

a large amount of positive charges on the ground, especially on objects above ground level (houses, 

trees, buildings, tall towers, etc.). This large amount of positive charges are attracted to the large 

amount of negative charges from the stepped leader and attempt to join due to its opposite 

polarities. This attempt of union between large amount of positive and negative charges, launch 

upward-moving-discharges from the ground level. An upward-moving discharge come in contact 

with the stepped leader moving downward and attach themselves [3], [6]. This attachment process 

determine what is known as the striking-point and its distance from usually the top of the ground 

object is called the striking distance. The striking distance is a very important parameter in 

lightning protection design, especially overhead ground-wire protection as explained in [3]. The 

process of attachment is quite similar to a switch closing in order to complete a circuit [1].  

The negative charges situated at tip of the downward-moving leader move at a very high 

velocity and violently towards the ground, causing high currents to flow, and it becomes highly 

luminous near the ground level. After, the channel luminosity becomes brighter at higher and 

higher altitudes, where it propagates upwards and finally reaches the cloud [6]. The bright 

luminous features of a lightning flash is produced by the upward-moving return-stroke. The human 

eye is not fast enough to register the movement of the upward propagating return stroke. It is 

believed that most of the lightning damages are caused by the return-stroke current [1], [6].     
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After a small period of time, the return-stroke current will die down and stop flowing. If 

there are no subsequent return-strokes the lightning flash has ended. When additional charges are 

available, it results in subsequent return strokes. K-streamer (klein or N) and J-streamer (junction) 

processes increase the availability of negative charges at the top of the channel due to electrical 

discharge from upward propagating return-strokes and high negative region of the cloud. The 

additional charges creates a smooth and continuous downward leader called dart leader. The dart 

leader propagates easily down the channel, created by the previous return-stroke, depositing 

negative charges along the channel, which set the opportunity for a subsequent return stroke. 

However, subsequent return-stroke currents maybe smaller in comparison with the first return-

stroke current [1], [6].  
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Figure 3.5: Various stages in the formation of negative cloud-to-ground lightning  
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 Categorization of Lightning  

Lightning can be categorized into several groups, including cloud-to-ground, intra-cloud 

(lightning flashes occuring within a thunder cloud), inter-cloud (cloud-to-cloud), and cloud-to-air. 

Cloud-to-ground lightning is the most common type and can be categorized further based on the 

direction of the motion and type of the charge of the leader [15], [49].  

Cloud-to-ground lightning can be categorized into four groups [1], [3] (illustrated in            

Figure 3.7): 

1) Downward negative lightning 

2) Upward negative lightning  

3) Downward positive lightning  

4) Upward positive lightning  

Downward negative lightning is the most common cloud-to-ground lightning. It accounts 

for 90% of the world cloud-to-ground lightning [15]. It is initiated by a downward negatively- 

charged leader, which descends negative charge to ground. Downward positive lightning, accounts 

for less than 10% of world cloud-to-ground lightning discharge, is initiated by a downward 

positively-charged leader, which descends positive charges ground. Upward lightning, both 

negative and positive, are initiated by mountain tops or tall man-made structures, such as Canadian 

National (CN) Tower [15].  
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Figure 3.6: Types of cloud-to-ground lightning 
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3.4.1. Tall-Structure Lightning  

Tall-structures are struck by both upward-initiated and downward-initiated lightning, 

which is similar to cloud-to-ground lightning. The starting point of tall-structure lightning studies 

is attributed to McEachron (1939) who photographed the Empire State Building in New York and 

conducted current measurements in 1935 when upward-initiated lightning was discovered. Most 

of lightning discharges observed at the Empire State building were upward-initiated, which 

originated at the tip of the structure.  

Since this discovery, many researchers followed McEachron’s footsteps to better 

understand tall-structure lightning. It was found out that the majority of tall-structure lightning is 

upward-initiated and the frequency of occurrence increases with the height of the structure. For 

example, Berger discovered that out of all tall-tower lightning at Lugano, Switzerland, 75% of the 

discharges are upward-initiated as explained in [48]. According to the research conducted by 

Berger and Vogelsanger [48], 85% of upward-initiated lighting flashes have positively charged 

leaders [3].   

Upward-initiated lightning originated by man-made tall-structures are similar to naturally 

occurring upward-initiated lightning. First, the upward-propogating leader carry positive charges 

towards the cloud. However, when this upward-moving leader reaches the cloud, there are no 

return strokes. The leader current, measured at ground, combines smoothly into a ‘continuous 

current’ that flows between cloud and the structure. Next, the downward moving dart-leader 

initiates subsequent return-stroke current peaks, which interrupts the continuous-current flow 

between cloud and the structure [3], [48].   
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 Measurement Systems  

The construction of the Canadian National (CN) Tower, located in Toronto, began in 1973 

and after 40 months of construction, it was finally opened to the public on June 26th, 1976 [50]. 

For over 30 years, it was the world’s tallest free standing structure, 553 m in height, until the rise 

of Burj Khalifa in Dubai, 828 m in height, United Arab Emirates in 2007 [51]. However, until now 

the CN tower is the tallest free standing structure in the Western Hemisphere (Figure 3.8). Since 

1978, tall structure lightning studies have been carried out based on observations at the CN Tower 

and in its vicinity. Although, the flash density in the Toronto area is approximately 2.5 flashes per 

square kilometer per year, the tower receives dozens of direct strikes yearly [49]. The CN Tower 

received 65, 70, and 48 direct flashes in 1990, 1991, and 1992, respectively [52]. On August 24th, 

2011, the CN Tower was struck with 52 flashes within 84 minutes, possibly, the severest CN 

Tower storm on record [53].  

 

Figure 3.7: Canadian National Tower (as observed from the Toronto Island)
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In May 1991, simultaneous measurement of important CN Tower lightning return-stroke 

parameters commenced. The lightning measurement systems consisted of five independent 

components [52]: 

1) The current derivative measurement system, which is located at the CN Tower      

(Figure 3.9) 

2) One video system (VHS), Ontario Hydro Technology Building (Figure 3.9) 

3) Second video system (VHS), Rosebrugh Building, University of Toronto (Figure 3.9) 

4) Electric and magnetic field measurement system, Rosebrugh Building, University of 

Toronto (Figure 3.9) 

5) Return-stroke velocity measurement system, Rosebrugh Building, University of 

Toronto (Figure 3.9) 

The current derivative measurement system, placed at the CN Tower, contains two 

Rogowski coils, placed at different elevations. The induced voltage at the output of each coil is 

proportional to the rate of change of the current. The current is determined by numerically 

integrating the measured signal. In 1990, the first Rogowski coil, Figure 3.9, is 3 meter long with 

40 MHz bandwidth, is placed at 474 m above ground level (AGL). A second Rogowski,           

Figure 3.9, is 6 meter long with 20 MHz bandwidth, is installed at 509 m AGL in 1997 [53], [54].   
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Adapted from [55] (with permission from the author)  

Figure 3.8: CN Tower and lightning measurement systems 
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The old Rogowski coil encircles only one-fifth of the steel structure at 474 m AGL (Figure 

3.10). Based on the five-sided steel structure configuration, the measured signal is expected to be 

20% of the total current derivative signal [53], [54], [56]. The old coil is connected, via 146 m,   

50 Ω, tri-axial (double shielded coaxial) cable, to the recording station, placed at 410 m AGL,       

Figure 3.9. The new Rogowski coil encircles the whole steel structure at 509 m AGL, thus the total 

current derivative signal (Figure 3.11). The new coil is connected to the recording station at          

410 m AGL via the optical fiber link. The new noise-protected current derivative recording system, 

consisting of the new coil and the optical fiber link, supressed a lot of noise, related issues faced 

by the old recording system [55].  

The recording station, located at 410 m above ground, has one or more real-time digitizers, 

computer controller, and an optical transmission system. In 1990, recording station contained two 

10 ns, 10 bit, double-channel with segmented memories Tektronix RTD 710A digitizers. This 

digitizer allows the capturing of eight return strokes per flash. For lightning flashes with more than 

eight return strokes, all return stroke were not captured due to limitations of the digitizer. This 

recording system is illustrated in Figure 3.12, which was used to capture the data used in this 

research study.  
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Figure 3.9: Old Rogowski coil encircles one-fifth of CN Tower steel structure 

Figure 3.10: New Rogowski coil encircles the whole CN Tower steel structure 
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In 2003, the RTD 710A digitizers were replaced by two 2 ns, 8 bit, double-channel,                 

1 MB/channel memory LeCroy LT342L Waverunner digitizers. The LeCroy allowed to capture 

up to twenty 200 μs current derivative signals (maximum sampling rate of 500 MS/s). In 2007, a 

new 8 bit, double-channel, 64 MB/channel memory NI PCI-5114 high-speed digitizer was 

acquired (maximum sampling rate of 250 MS/s). For the first time, the recording station allowed 

to continuously record the lightning flashes for two seconds, set at 220 ns resolution. In 2015,         

4 ns, 10 bit, 2 GB/channel memory, double-channel NI PXIe 5160 system was acquired. It was set 

to continuously record two full seconds of the lightning current derivative signal (maximum 

sampling rate of 50 GS/s) [53], [55].  

The video recording system originally consisted of two low speed VHS cameras (Hitachi 

VM-3100A) and a set of video recorders (RCA VR 250, Hitachi VT-3050 A), located 2 km North 

and 11.8 km West of the CN Tower, respectively. Each VHS camera operated at 30 frames/second 

(33.3 ms resolution). In 1996, Phantom v2.0 high-speed digital system was added to the video 

Figure 3.11: CN Tower measurement system setup, 1990-2003 
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recording system, operating at 1000 frames/second and triggered by sudden changes in brightness. 

In 2006, Phantom v2.0 was upgraded with a more advanced system (Phantom v5.0) [55], [57].  

The electric and magnetic field measurement system, which was located at Rosebrugh 

Building at the University of Toronto, recorded the vertical component of the electric field (Ez), 

the radial component of the magnetic field (Hr), and the azimuthal component of the magnetic field 

(HΦ). The sensors were connected to a recoding station, identical to the recording station placed at 

the tower then. A return-stroke velocity measuring system was also located at Rosebrugh Building, 

containing 35-mm single-lens reflex camera and eight photo-diodes for the measurement of the 

return stroke velocity [52].   

 Summary 

Benjamin Franklin discovered that lightning is electrical and proved that thunderclouds are 

electrically charged through his famous kite-experiment in 1752. The chapter introduced two main 

models, precipitation and convection, used to understand the electrical dipole structure of the 

thundercloud. Since then, modifications have been made to these presumed structure to propose a 

more accurate representation of a thundercloud called tripolar model. This chapter also discussed 

important lighting formation highlighting important lightning terminologies, types of lightning and 

tall-structure lighting.  

Obviously, CN Tower lightning strokes played the major role in this research. That is why 

this chapter discussed how the lightning data was recorded and including the major improvements 

done on the measurement systems for acquiring accurate data.   
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Chapter 4 

4. Simulating Functions   

 Introduction 

Many researchers did investigate a number of simulating functions for modelling the 

lightning return-stroke current and its time derivative, such as the double exponential function 

[22]–[24]. However, such functions were found to create problems in modelling the lightning 

return-stroke current due to discontinuities in their first and second time derivatives [24], [25]. On 

the other hand, Heidler function and Pulse function do not have such discontinuity problems [22], 

[58]. Therefore, a simulation function must satisfy the minimum four requirements, shown below, 

to successfully simulate the lightning return-stroke current 𝑖(𝑡) and its time derivative [24], [59].  

1) The simulation function must be differentiable (should not have any discontinuities) 

and must be zero at the instant of time 𝑡 = 0. 

2) The first time derivative  of simulating function must be zero at time 𝑡 = 0 and 

must not have any discontinuities at time 𝑡 = 0. 

3) The second time derivative of a simulating function must not have any discontinuities. 

4) The simulating function must properly fit the measured current derivative signal.  
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 Current Waveform Parameters   

In modelling lightning return-stroke current waveforms, there are important parameters to 

consider [22], [24], [59]. They are highlighted below and illustrated in Figure 4.1 and Figure 4.2:  

1) Current rise time 

2) Maximum current steepness and time at which it occurs 

3) Current peak  

4) Time to 50% of current peak  

5) Charge transfer 

Current rise time is the difference in time starting at 10% level to 90% level of current 

peak. It shows how fast the wavefront is. One issue with lightning current is the high-frequency 

interference and it is important that the simulating function is able to model the fine details of the 

measured data during the current rise [24].  

Maximum current steepness is the location where the first current derivative reaches its 

maximum. This is an important parameter for both modelling of the lightning return-stroke current 

and for important calculations. From a Power Engineer’s point-of-view, maximum current 

steepness and current peak values are important parameters for the lightning electromagnetic pulse 

(LEMP) calculations [24].  



36 
 

The current peak is considered to be the first peak reached by the current waveform before 

the arrival of reflections. The higher peak is called the absolute peak (Figure 4.2), which is a result 

of reflections from CN Tower’s structural discontinuities, as explained in [10], [53], [60].  

The other important parameters, time to 50% of the current peak and the charge transfer in 

the lightning channel, are used in engineering calculations on lightning protection.  

 

 

 

 
 

  

Figure 4.1: Current derivative waveform 
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Figure 4.2: Current waveform; as well as the current peak, 90%, 50% and 10% current levels 
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 Single-Term Heidler and Pulse Functions  

The simulating functions, Heidler and Pulse functions, each consists of a rise function 𝑥(𝑡) 

and a decay function 𝑦(𝑡). Rise and decay functions have a decoupling relationship with the 

condition that during the rise 𝑦(𝑡) ≈ 1 and during the decay 𝑥(𝑡) ≈ 1 [24]. This decoupling 

relationship enables one to investigate the influence of each parameter on the current function [24], 

[59]. The general single-term current waveform of each simulation function is defined as: 

 𝑖(𝑡) = 𝐼 ∙ 𝑥(𝑡) ∙ 𝑦(𝑡) (1) 
 

Mathematically, the Heidler current function and its derivative are defined as in [24], [58]: 

 𝑖(𝑡) = 𝐼
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Where,  

 𝐼 is a control parameter of the amplitude of the single-term current function 𝑖(𝑡) 

 𝜏  is the rise time constant  

 𝜏  is the decay time constant 

 𝑛 is an exponent value that is greater than or equal to 1.1 
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Similarly, Pulse current function and its derivative are defined as [58]:  
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 (7) 

Where,  

 𝐼 is a control parameter of the amplitude of single-term current function 𝑖(𝑡) 

 𝜏  is the rise time constant  

 𝜏  is the decay time constant 

 𝑛 is an exponent value that is greater than or equal to 1.1 

 

To obtain the best fit for the measured current derivative waveform, the time derivatives 

of Heidler and Pulse functions are used for the simulation. The current functions are then obtained 

by integrating the simulated current derivatives. 

Some constraints are introduced to improve the fitting of each current derivative simulation 

as in [10], [21], [22]. Constraints force the analytical parameters such as 𝑛, 𝜏 , and 𝜏  to reach 

their optimal values, which yields a better fit of the simulated current. These constraints include:  
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𝑑𝑖(𝑡)

𝑑𝑡
= 0 (8) 

 
 𝑖(𝑡)| = 𝐼  (9) 
 

 
𝑑𝑖(𝑡)

𝑑𝑡
= 𝐼  (10) 

 

  
𝑑 𝑖(𝑡)

𝑑𝑡
= 0 (11) 

 

Where,  

 𝐼  is the maximum amplitude of the current function 𝑖(𝑡)  

 𝑡  is the time at which the current reaches its initial peak 

 𝐼  is the maximum steepness of the current function 𝑖(𝑡) or the maximum amplitude 

of the current derivative function 
( )

  

 𝑡  is the time at which the maximum steepness of the current function 𝑖(𝑡) or the time 

at which the maximum amplitude of the current derivative function 
( )

  occurs 

 

Forcing the maximum steepness constraint (11),   
( )

= 0, provides the best fit as 

explained in [10], [22], [58]. Applying the maximum steepness constraint on the second time 

derivative of Heidler function (4) and simplifying the mathematical equation gives the following 

expression: 
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 𝜏 = 𝑡  
𝑛 + 1

𝑛 − 1
 (12) 

 

Equation (12) is substituted into (2) and (3) where 𝑛 is the only unknown. 
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Applying the same forcing constraint described in (11) on the second time derivative of 

Pulse function (7) and simplifying gives the following expression: 

 𝑛 = 𝑒  (15) 
 

 

Equation (15) is substituted into (5) and (6) where 𝜏  is the only unknown. 
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 Double-Term Heidler and Proposed 

Double-Term Pulse Functions  

Mathematically, double-term Heidler current function and its derivative are defined as [10], 

[21], [58].  
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Where,  

 𝐼  and 𝐼  are control amplitude parameters of the double-term current function 𝑖(𝑡) 

 𝜏  and 𝜏  are the rise times of the double-term current function 𝑖(𝑡) 

 𝜏  and 𝜏  are decay time constants of the double-term current function 𝑖(𝑡) 

 𝑛  and 𝑛  are exponent that are greater than or equal to 1.1 

 

The proposed double-term Pulse function is defined in (21) and its first and second time- 

derivatives are given in (22) and (23), respectively.  

 𝑖(𝑡) = 𝐼  1 −  𝑒
  

𝑒
  

 +  𝐼  1 −  𝑒
  

𝑒
  

  =  𝑖 (𝑡) +  𝑖 (𝑡) 

 
(21) 

 
 

𝑑𝑖(𝑡)

𝑑𝑡
= 𝑖 (𝑡)  ∙   

𝑛

𝜏
 

𝑒
  

1 − 𝑒
  

 

 −   
1

𝜏
 + 𝑖 (𝑡) ∙   

𝑛

𝜏
 

𝑒
  

1 − 𝑒
  

 

 −   
1

𝜏
  (22) 
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𝑑 𝑖(𝑡)

𝑑𝑡
= 𝐼 1 − 𝑒

  
 𝑒

  
 

⎣
⎢
⎢
⎢
⎡ 𝑛 𝑒

  

𝜏 1 − 𝑒
  

−   
2𝑛 𝑒

  

𝜏  𝜏 1 − 𝑒
  

  +  
1

𝜏
 

 

      −  
𝑛 𝑒

  

𝜏 1 − 𝑒
  

⎦
⎥
⎥
⎥
⎤

 +   𝐼 1 − 𝑒
   

𝑒
  

 

⎣
⎢
⎢
⎢
⎡ 𝑛 𝑒

   

𝜏 1 − 𝑒
  

  

 

      +  
2𝑛 𝑒

   

 𝜏  𝜏 1 − 𝑒
  

  −  
1

𝜏
 +  

𝑛

𝜏
 ∙  

𝑒
   

1 − 𝑒
   

⎦
⎥
⎥
⎥
⎤

 (23) 

 

Where,  

 𝐼  and 𝐼  are control parameters of the amplitude of the double-term current function 

𝑖(𝑡) 

 𝜏  and 𝜏  are rise time constants of the double-term current function 𝑖(𝑡) 

 𝜏  and 𝜏  are decay time constants of the double-term current function 𝑖(𝑡) 

 𝑛  and 𝑛  are exponent values that are greater than or equal to 1.1 

 

To obtain the best fit for the measured current derivative waveform, the time derivative of 

Heidler and Pulse functions are used here for the simulation. Then, the simulated current 

derivatives are integrated to obtain the current function. 
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Similar to single-term simulating functions, constraints force the analytical parameters 𝑛 , 

𝜏 , 𝜏 , 𝑛 , 𝜏 , and 𝜏  to reach their optimal values, which yields a better fit of the simulated 

current. Forcing the maximum steepness constraint (11),   
( )

= 0, provides the best fit. 

However, it was not possible to directly apply the maximum steepness constraint on the 

double-term Heidler function and obtain a closed expression for 𝜏  and 𝜏 . Therefore, the 

maximum steepness constraint (11) is applied onto equation (18) to derive the following 

expressions.  

𝑓 (𝑡 ) = 𝑖 (𝑡 ) ∙
𝑛

𝑡
 

𝑛 − 1

𝑡
  −  

2

𝜏
 +   

𝑛 (𝑡 )

𝜏 + 𝑡
 

2𝑛  ∙  𝑡

𝜏 +  𝑡
 −   

3𝑛 − 1

𝑡
 

           −  
2

𝜏
 + 

2

𝜏
 (24) 

 
 

𝑔 (𝑡 ) =  −  

𝑡
𝜏

1 +
𝑡

𝜏

 𝑒
   

 
𝑛

𝑡
 

𝑛 − 1

𝑡
 − 

2

𝜏
+  

𝑛  (𝑡 )

𝜏 +  𝑡
 

2𝑛 (𝑡 )

𝜏 +  𝑡
  

           −  
3𝑛 − 1

𝑡
  −   

2

𝜏
+ 

2

𝜏
 (25) 

 
 

𝐼 =  
𝑓 (𝑡 )

𝑔 (𝑡 )
 

(26) 

 

Then, the expression for 𝐼  is substituted into (19) to acquire the final expression (27), 

which is be used in the fitting process.  
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𝑑𝑖(𝑡)

𝑑𝑡
= 𝑖 (𝑡)  ∙   

𝑛

𝑡
 − 

1

𝜏
 −  

𝑛  ( 𝑡 )

𝜏 +  𝑡
 +  

𝑓 (𝑡 )

𝑔 (𝑡 )
 ∙    

𝑛

𝑡
  −  

1

𝜏
  −   

𝑛  (𝑡 )

𝜏 +  𝑡
     

 
(27) 

 

For the proposed double-term Pulse function, same procedure is applied onto equation (21) 

to derive the following expressions. 

𝑓 (𝑡 ) =  𝑖 (𝑡) ∙  

⎣
⎢
⎢
⎡

 
𝑛

𝜏
 

𝑒
   

1 − 𝑒
   

 

 −   
2𝑛

𝜏 𝜏
 

𝑒
   

1 − 𝑒
   

 

 +  
1

𝜏

 

 

 

        −  
𝑛

𝜏
 ∙  

⎝

⎜
⎛ 𝑒

   

1 − 𝑒
   

 
⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎤

 

 

(28) 

 
 

 𝑔 (𝑡 ) = 1 −  𝑒
  

𝑒
  

  

⎣
⎢
⎢
⎡

 
𝑛

𝜏
 

𝑒
   

1 − 𝑒
   

 

−  
2𝑛

𝜏 𝜏
 

𝑒
   

1 − 𝑒
   

 

 

 

       +  
1

𝜏
 −   

𝑛

𝜏
 ∙  

⎝

⎜
⎛ 𝑒

   

1 − 𝑒
   

 
⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎤

 (29) 

 

𝐼 =  
𝑓 (𝑡 )

𝑔 (𝑡 )
 

 

(30) 

 

Equation (30) is substituted into (22) to derive the final expression (31), which is to be used 

in the fitting process.  
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𝑑𝑖(𝑡)

𝑑𝑡
= 𝑖 (𝑡) ∙   

𝑛

𝜏
 

𝑒
  

1 − 𝑒
  

 

 −   
1

𝜏
  +   

𝑓 (𝑡 )

𝑔 (𝑡 )
 ∙   

𝑛

𝜏
  

𝑒
  

1 − 𝑒
  

 

 −   
1

𝜏
  

(31) 

 

 Summary  

Investigating simulating functions for modelling the lightning return-stroke current, it was 

found out that Heidler and Pulse functions are more appropriate, assuming they do not face 

problems arising from discontinuities in their first and second time derivatives.  When modelling 

the lightning return-stroke current, there are key parameters to consider: current rise time, and the 

maximum current steepness and the time at which it occurs, current peak, time to 50% of the 

current peak value, and charge transfer. Knowledge of these parameters are important in lightning 

protection in order to increase the safety regulations to better protect main infrastructures (for 

example, power-lines, buildings and houses) and most importantly people.  

This chapter also introduced the single-term Heidler and Pulse functions, as well as the double-

term Heidler and the proposed double-term Pulse functions. The time derivatives of Heidler and 

Pulse functions are used to obtain the best fit for the measured current derivative waveform. The 

simulated current derivative functions are integrated to obtain the current functions.  

Constraints are used to improve the fitting of the measured return-stroke lightning current 

waveform. The maximum steepness constraint is found to give the best fitting and applied on 

single-term and double-term simulating functions as explained in [10], [22], [58]. The derived 

expressions of single-term and double-term simulating functions, (14), (17), (27) and (31), are to 

be used in the modelling process in the subsequent chapters.    
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Chapter 5 
 

5. Modelling Process  

 Introduction 

The lightning modelling process, described in this chapter, utilize the 3rd and the 6th return-

stroke current derivatives from a multi-stroke flash recorded at the CN Tower on June 10th 1996 

at 23:44:03. Before starting the modelling process, the raw data needs to be analyzed to choose an 

appropriate starting point on the measured waveform and identify the measured data unaffected 

by reflections. This chapter will also model the measured lightning current derivative data utilizing 

single-term and double-term simulating functions, as described in Chapter 4.   

 

 Matching Waveforms 

For the fitting process, the starting point of the current derivative waveform is chosen from 

the measured lightning return-stroke current derivative [21]. The starting point of the 3rd return-

stroke current derivative waveform at which   
( )

≈ 0  has been determined to be at                         

𝑡 = − 0.50 𝜇𝑠. Figure 5.1 illustrates that the 3rd return-stroke current derivative signal is shifted 

to the right by  𝑡 = − 0.50 𝜇𝑠. The 6th return-stroke current derivative signal is to be used in the 

same manner and it is illustrated in Figure 5.2.  
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Figure 5.1: The 3rd return-stroke current derivative waveform. A zoomed-in view 

illustrates the starting point at which di/dt ≈ 0 

Figure 5.2: The 6th return-stroke current derivative waveform. A zoomed-in view 

illustrates the starting point at which di/dt ≈ 0 
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The measured waveforms are then divided into three time windows. The decoupling 

relationship of Heidler and Pulse functions (both single-term and double-term) allow the signal to 

be easily divided into sections [22]. The three time windows are described in Figure 5.3 using the 

6th return-stroke current derivative waveform:  

1) First time window: contains the initial impulse before the arrival of reflections 

2) Second time window: contains the early decay part of the waveform and reflections 

3) Third time window: contains the decay portion of the waveform, in which the decay factor 

is less affected by reflections  

Figure 5.4 illustrates the first time window of the 3rd return-stroke current derivative 

measured signal. The duration of the first time window is 0 ≤ 𝑡 ≤ 1.06 𝜇𝑠 because reflections 

from the space deck is visible after 𝑡 = 1.06 𝜇𝑠 [10]. Likewise, Figure 5.5 depicts the first time 

window of the 6th return-stroke current derivative measured signal. The duration of this first time 

window is  0 ≤ 𝑡 ≤ 1.06 𝜇𝑠. These first time windows will be used in the modelling of single-

term and double-term simulating functions in Chapter 5.5 and 5.6.  
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Figure 5.3: The first time window, (1), second time window, (2), third time 

window, (3), shown 6th return-stroke current derivative measured signal and its current 

waveform. 
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Figure 5.4: The first time window of the 6th return-stroke current 

derivative measured signal 
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Figure 5.5: The first time window of the 3rd return-stroke current 

derivative measured signal 
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Figures 5.6 and Figure 5.7 illustrate the third time windows of the 3rd and 6th return-stroke 

current waveforms obtained by numerically integrating their current derivative measured 

waveforms, respectively. These time windows are used to estimate the single-term simulating 

functions’ decay time constants, 𝜏 , as explained in Chapter 5.3. Similarly, the third time windows 

are used to determine the double-term simulating functions’ decay time constants, 𝜏  and 𝜏 , as 

explained in Chapter 5.4.  

 

 

 

 

Figure 5.6: The third time window of the 3rd return-stroke current waveform  
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Figure 5.7: The third time window of the 6th return-stroke current waveform  
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 Estimating the Decay Constants using 

Single-Term Simulating Functions 

First step in approximating the analytical parameters is to estimate the decay time 

constant, 𝜏 . In order to estimate 𝜏 , it is necessary to observe the behaviour of Hiedler and Pulse 

current functions when 𝑡 ≫  𝜏 . During the decay portion, both simulating functions described in 

(2) and (5) are simplified to: 

 𝑖(𝑡) = 𝐼 ∙  𝑒
  

 (32) 
 

𝜏  can be estimated by fitting the decay function described by (32) in the third time window 

using MATLAB Curve Fitting Toolbox. For matching the 6th return-stroke current waveform, 

using the third time window described in Figure 5.7, it was found that 𝜏 = 113.9 𝜇𝑠 and I = 

9.747kA with R2 fitting of 0.9248. This fitting is illustrated in Figure 5.8. R2 fitting factor defines 

the goodness-of-fit in statistics. It describes the square of the correlation between the observed 

data and the fitted data. R2 fitting factor varies between 0 and 1; close to 1 indicates a good fit [22].  

Another method is to calculate the decay time constant analytically. Suppose 𝑡  and 𝑡  are 

two arbitrary points and 𝑖  and 𝑖  are the corresponding current values for each respectively. The 

two equations using (32) are defined as follows: 

 𝑖 (𝑡) = 𝐼 ∙  𝑒
  

 (33) 
 𝑖 (𝑡) = 𝐼 ∙  𝑒
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Using (33), the decay time constant is expressed as follows: 

 𝜏 =  
𝑡 − 𝑡

ln
𝑖
𝑖

 (34) 

 

For the 3rd return-stroke current measured waveform, it was difficult to estimate the decay 

time constant using MATLAB Fitting Toolbox and fitting was extremely poor. Thus, the analytical 

method was used to estimate 𝜏  and MATLAB Fitting Toolbox was used to find I. It was found 

out that  𝜏 = 405.13 𝜇𝑠 and I = 16.71 kA with R2 fitting of 0.64 (closer to 1 which indicates a 

good fit). This fitting is illustrated in Figure 5.9. 

 

 

 

 

 

 

  

Figure 5.8: The 6th return-stroke current signal and the fitting of the decay 

function described by (32) into third time window 14 – 62 μs 
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Figure 5.9: The 3rd return-stroke current waveform and the fitting of the decay 

function described by (33) and (34) into third time window 30 – 60 μs 
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 Estimating the Decay Constants using 

Double-Term Simulating Functions 

Similar to estimating the analytical parameters for single-term simulating functions, the 

first step in approximating the analytical parameters in double-term simulating functions is to 

estimate the decay time constants 𝜏  and 𝜏 . During the decay portion, both simulating functions 

are simplified to: 

 𝑖(𝑡) = 𝐼 ∙  𝑒
  

+ 𝐼 ∙  𝑒
  

 (35) 

 

 𝜏  and 𝜏  can be estimated by fitting the decay function described by (35) into a chosen 

third time window, using MATLAB. For the 6th return-stroke current measured waveform, using 

the third time window described in Figure 5.7, it was found out that 𝜏 = 0.09754 𝜇𝑠, 𝜏 =

110 𝜇𝑠, 𝐼 = 0.2785 𝑘𝐴, and 𝐼 = 9.834 𝑘𝐴 with R2 fitting of 0.9325, indicating a good fit. The 

fitting process is illustrated in Figure 5.10. 

For the 3rd return-stroke current measured waveform, it was difficult to estimate the decay 

time constants using MATLAB Fitting Toolbox and fitting was extremely poor. Thus, analytical 

method (36) was used to estimate 𝜏  and MATLAB Fitting Toolbox was used to find 𝜏 , 𝐼 , and 

𝐼  with 𝜏  fixed. It was found that 𝜏 = 405.13 𝜇𝑠, 𝜏 = 0.2785 𝜇𝑠, 𝐼 = 16.6 𝑘𝐴, and          

𝐼 = 0.09754 𝑘𝐴 with R2 fitting of 0.6317, indicating a reasonable fit. This fitting is illustrated in 

Figure 5.11.  

 𝜏 =  
𝑡 − 𝑡

ln
𝑖
𝑖

 (36) 
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Figure 5.10: The 6th return-stroke current waveform and the fitting of the decay 

function described by (35) into the third time window 14 – 62 μs 

Figure 5.11: The 3rd return-stroke current waveform and the fitting of the decay function 

described by (35) and (36) into the third time window 30 – 60 μs 
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 Single-Term Simulating Functions 

The time derivative of single-term Heidler and Pulse functions described by (14) and (17), 

respectively, are used in the fittings of 3rd and 6th current derivative measured waveforms. The 

fitting is conducted using MATLAB Curve Fitting Toolbox to estimate the unknowns 𝑛 and  𝜏 .  

The single-term Heidler and Pulse functions’ fittings obtained for the 3rd current derivative 

measured waveform and its current waveform are illustrated in Figure 5.12 and   Figure 5.13, 

respectively. The analytical parameters obtained for this waveform is summarized in Table 5.1 

along with R2 fitting factor. 

Observing Figure 5.12, first characteristic to emphasize is 𝑡 , time at which maximum 

amplitude of current derivative occurs. The time derivative of single-term Heidler and Pulse 

current waveforms match  𝑡   of the 3rd current derivative measured waveform, which was 

attained using the forcing constraint. Thus, the maximum steepness of the current occurs at the 

same instant of time. Table 5.1 indicates that the time derivative of the single-term Pulse function 

simulation was able to fit 95.65% of the current derivative measured waveform peak, whereas that 

using time derivative of single-term Heidler function was able to fit only 90.84% of the peak. 

Hence, the time derivative of the single-term Pulse function is a more suitable simulation function 

to fit the 3rd current derivative measured waveform. However, Pulse simulation function did not 

achieve the maximum amplitude of the current derivative measured waveform at 𝑡   (Figure 5.12 

zoomed-in view). The maximum amplitude of 3rd current derivative measured waveform is 53.42 

kA/μs and the time derivative of the single-term Pulse function estimated it to be 49.27 kA/μs. 

More work must be done to match the current derivative measured waveform peak. 
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Figure 5.13 indicates that the peak of 3rd return-stroke current waveform was reached by 

Heidler function simulation. Figure 5.13 (zoomed-in view) illustrates that Pulse function 

simulation reached the current peak slower compared with Heidler’s. However, both simulating 

functions reasonably simulated the 3rd return-stroke current signal (obtained by numerically 

integrating the measured return-stroke current derivative signal). 

 

 

Table 5.1 Fitting Results and R2 Factor for the 3rd Return-stroke Current Derivative Signal 

 

 

  

Single-term 
Simulating Function 

I [kA] 𝜏  [μs] 𝜏  [μs] 𝑛 R2 

Heidler 11.4 0.9051 405.13 18.9 0.9084 

Pulse 11.4 0.08487 405.13 4.0314 × 10  0.9565 
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Figure 5.12: Fitting of time derivative of Heidler and Pulse functions for the 3rd return-stroke current 

derivative measured signal. The zoomed-in view shows the fitting of the simulating functions near 

the maximum amplitude.  
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Figure 5.13: Heidler and Pulse functions’ fittings for the 3rd return-stroke current signal. The 

zoomed-in view shows the fitting of the simulating functions near the current peak.  
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The same methodology described using the 3rd return-stroke current derivative measured 

waveform was followed to fit the simulation functions for the 6th return-stoke current derivative 

measured waveform.  Heidler and Pulse functions’ fittings obtained for the 6th return-stroke current 

derivative measured waveform and its current waveform are illustrated in Figure 5.14 and Figure 

5.15, respectively. The analytical parameters obtained for this waveform are summarized in Table 

5.2 along with R2 fitting factor. 

In Figure 5.14, 𝑡  of the time derivative of single-term Heidler and Pulse current 

waveforms match 𝑡   of the 6th return-stroke current derivative measured waveform, which was 

attained using the maximum steepness constraint. Similar to the simulation of the 3rd return-stroke 

current derivative measured waveform, the maximum steepness of the current occurs at the same 

instant of time. Table 5.2 indicates that the time derivative of the single-term Pulse function did fit 

94.56% of the current derivative measured waveform peak, whereas using the time derivative of 

the single-term Heidler function allowed only to fit 87.77% of the peak. So, the time derivative of 

the single-term Pulse function proves to be more suitable for simulating the 6th return-stroke 

current derivative signal. However, the time derivative of the single-term Pulse function exceeded 

the time derivative peak as shown in the zoomed-in view (Figure 5.14). The maximum amplitude 

of the 6th return-stroke current derivative measured waveform is 36.97 kA/μs, the time derivative 

of the single-term Heidler function estimated it to be 36.38 kA/μs, and the time derivative of the 

single-term Pulse function estimated it to be 38 kA/μs. Therefore, the time derivative of single-

term Heidler function estimated the maximum amplitude of the 6th return-stroke current derivative 

measured waveform at 𝑡   much better, in comparison with the time derivative of the single-term 

Pulse function estimation, even though it has a lower R2 fitting factor.  
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Figure 5.15 indicates that the peak of the 6th return-stroke current waveform was reached 

by Heidler function simulation. Observing Figure 5.15 (zoomed-in view), shows that Pulse 

function simulation reached the current peak slower compared with Heidler’s. However, both 

simulating functions fairly simulated the 6th return-stroke current signal (obtained by numerically 

integrating the measured return-stroke current derivative signal). 

 

 

Table 5.2 Fitting Results and R2 Factor for the 6th Return-stroke Current Derivative Signal 

 

  Single-term 
Simulating Function 

I [kA] 𝜏  [μs] 𝜏  [μs] 𝑛 R2 

Heidler 7.9 0.4242 113.9 7.678 0.8777 

Pulse 7.9 0.07672 113.9 209.37 0.9456 
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Figure 5.14: Time derivative of Heidler and Pulse functions for the fitting of the 6th return-stroke 

current derivative measured signal. The zoomed-in view shows the fitting of the simulating 

functions near the maximum amplitude. 
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Figure 5.15: Heidler and Pulse functions’ fittings of the 6th return-stroke current waveform. The 

zoomed-in view shows the fitting of the simulating functions near the current peak. 
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 Double-Term Simulating Functions 

The time derivative of double-term Heidler and the proposed double-term Pulse functions 

described by (27) and (31) are, respectively, used in fitting the 3rd and 6th return-stroke current 

derivative signals. The fitting is conducted using MATLAB Fitting Toolbox to estimate the 

unknowns: 𝐼 , 𝑛 , 𝜏 , 𝜏 , 𝑛 , 𝜏  and 𝜏 .  

The double-term Heidler function and the proposed double-term Pulse function simulation 

fittings, obtained for the 3rd return-stroke current derivative signal and its current waveform are 

illustrated in Figure 5.16 and Figure 5.17, respectively. The analytical parameters obtained for this 

waveform is summarized in Table 5.3 along with the R2 fitting factor.  

Observing Figure 5.16, the first characteristic to emphasize is 𝑡 ; the time at which the 

maximum amplitude of current derivative occurs. The time derivative of the proposed double-term 

Pulse current waveform matches the  𝑡   of the 3rd return-stroke current derivative measured 

waveform, whereas the time derivative of double-term Heidler waveform is shifted to the right by 

0.02μs. The location of the simulated peak based on the proposed double-term Pulse function is 

close to the measured peak.  

Table 5.3 indicates that the simulation based on the time derivative of the proposed double-

term Pulse and double-term Heidler functions produced excellent fittings of R2 = 0.9745 and R2 = 

0.966, respectively. The simulation based on the proposed double-term Pulse function produced a 

slightly better fit than that based on double-term Heidler function. Furthermore, the location of the 

maximum current derivative peak based on the proposed double-term Pulse function simulation is 

much closer than that using double-term Heidler function (Figure 5.16, zoomed-in view). 
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However, the maximum amplitude of the 3rd return-stroke current derivative measured waveform 

is 53.42 kA/μs, the time derivative of the proposed double-term Pulse function estimated it to be 

48.6 kA/μs and the time derivative of double-term Heidler function estimated it to be 49.11 kA/μs.  

Figure 5.17 indicates that the current peak of 3rd return-stroke current waveform was not 

reached by double-term Heidler and the proposed double-term Pulse functions. Figure 5.17 

(zoomed-in view) illustrates the proposed double-term Pulse function rises and try to reach the 

current peak slightly slower than that of Heidler’s. Both double-term Heidler and the proposed 

double-term Pulse functions reasonably simulated the measurement (obtained by numerically 

integrating the measured return-stroke current derivative signal).  

 

 

Table 5.3 Fitting Results and R2 Factor for the 3rd Return-stroke Current Derivative Signal 

 

 

  

Double-
term 

Simulating 
Function 

I1 
[kA] 

I2 [kA] 𝜏  [μs] 𝜏  
[μs] 

𝜏  
[μs] 

𝜏  
[μs] 𝑛  𝑛  R2 

Heidler 16.6 0.09754 0.9272 0.1519 405.13 0.2785 17.72 1.829 0.966 

Pulse 16.6 0.09754 0.07855 0.1969 405.13 0.2785 
1.072
× 10  

1.944 0.9745 
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Figure 5.16: Fitting the time derivative of Heidler and Pulse functions to the 3rd return-stroke current 

derivative measured signal. The zoomed-in view shows the fitting of the simulating functions near 

the maximum amplitude.  
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Figure 5.17: Fitting Heidler and Pulse functions to the 3rd return-stroke current waveform. The 

zoomed-in view shows the fitting of the simulating functions near the current peak.  
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The same methodology described using the 3rd return-stroke current derivative signal was 

used for fitting the simulation functions to the 6th return-stroke current derivative signal.  The 

double-term Heidler function and the proposed double-term Pulse function fittings obtained for 

the 6th return-stroke current derivative signal and its current waveform are illustrated in Figure 

5.18 and Figure 5.19, respectively. The analytical parameters obtained for this waveform is 

summarized in Table 5.4 along with the R2 factor. 

In Figure 5.18, 𝑡  of the time derivative of the double-term Heidler function matches 

the  𝑡   of the 6th return-stroke current derivative signal. This result was attained using the 

maximum steepness constraint, whereas the time derivative of the proposed double-term Pulse 

function waveform is shifted to the right by 0.01μs. The proper location of the peak is better 

obtained using the time derivative of the double-term Heidler function.  

Table 5.4 indicates that the simulation based on the time derivative of the proposed double-

term Pulse and double-term Heidler functions produced, respectively, excellent fittings:                   

R2 = 0.9975 and R2 = 0.998. The simulation based on double-term Heidler function produced a 

slightly better fit than that based on the proposed double-term Pulse function. However, the 

location of the maximum current derivative peak based on the proposed double-term Pulse 

function simulation is much closer than that using the double-term Heidler function (Figure 5.18, 

zoomed-in view). The maximum amplitude of the 6th return-stroke current derivative measured 

signal is 36.97 kA/μs, the time derivative of the double-term Heidler function estimated it to be 

37.93 kA/μs and the time derivative of the proposed double-term Pulse function estimated it to be 

37.45 kA/μs. Thus, the maximum current derivative peak based on the proposed double-term Pulse 

function simulation is much closer than that using the double-term Heidler function (Figure 5.18, 

zoomed-in view). 
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Figure 5.19 indicates that the peak of the 6th return-stroke current waveform was not 

reached using the double-term Heidler function and the proposed double-term Pulse function. But 

the proposed double-term Pulse current function has a minor overshoot in comparison with the 

double-term Heidler current function. Observing Figure 5.19 (zoomed-in view) shows that double-

term Heidler current function reaches the current peak slower in comparison with the proposed 

double-term Pulse current function. Generally, the double-term Heidler and the proposed double-

term Pulse current functions reasonably simulated the measurement (obtained by numerically 

integrating the measured return-stroke current derivative signal).  

 

 

Table 5.4 Fitting Results and R2 Factor for the 6th Return-stroke Current Derivative Signal 

 

 

  

Double-
term 

Simulating 
Function 

I1 
[kA] 

I2 [kA] 𝜏  
[μs] 

𝜏  [μs] 𝜏  
[μs] 

𝜏  [μs] 𝑛  𝑛  R2 

Heidler 9.989 1.923
× 10  0.4164 0.4484 110 0.09754 12.25 13.98 0.998 

Pulse 8.136 95.953 0.0723 0.04226 110 0.09754 361.2 
6.191
× 10  0.9975 
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Figure 5.18: Fitting time derivative of Heidler and Pulse functions to 6th return-stroke current 

derivative measured signal. The zoomed-in view shows the fitting of the simulating functions near 

the maximum amplitude. 
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Figure 5.19: The fitting of Heidler and Pulse functions of the 6th return-stroke current waveform. 

The zoomed-in view shows the fitting of the simulating functions near the current peak. 
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 Summary 

This chapter utilized the 3rd and the 6th return-stroke current derivative signals from one of 

the multi-stroke flashes recorded at the CN Tower on June 10th 1996 storm at 23:44:03 to model. 

Single-term and double-term simulating functions were used in order to model the measured 

lightning current signals. Prior to starting the modelling process, an appropriate starting point was 

chosen and the measured signal was divided into three time windows. The decay time constants, 

for single-term and double-term simulating functions, were estimated using the third time window 

of the current signals. The other analytical parameters were estimated using the first time window 

of the recorded signals.  

Using single-term simulation functions, it was observed that the single-term Pulse function 

matched the recorded 3rd and 6th return-stroke current derivative signals better than using Heidler 

function. On the other hand, single-term Heidler function estimated the 3rd and 6th return-stroke 

current waveforms better than the single-term Pulse function. However, observing the R2 fitting 

factor for each simulation single-term Heidler and Pulse functions were able to fairly simulate the 

measured lightning return-stroke currents. 

Furthermore, using the double-term Heidler function and the proposed double-term Pulse 

function significantly improved the fittings of the current derivative signals, especially the rise 

time and decay time constants. In conclusion, double-term Heidler function and the proposed 

double-term Pulse function markedly improved tall-structure lightning return-stroke current 

derivative and current models. 
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Chapter 6 
 

6. Recovery of Incomplete Signals 

 Introduction 

One of the biggest challenges faced by many researchers is the incompletely-recorded 

return-stroke current derivative signals, which exceeded the maximum signal set levels [10]. These 

incompletely-recorded return-stroke current derivative signals, such as the 7th return-stroke current 

derivative signal from a multi-stroke flash recorded at the CN Tower on June 10th 1996 at 23:44:03, 

whose peaks markedly exceeded the noise level, are quite valuable for modelling purpose.  Prior 

to starting the recovery of the incompletely-recorded 7th return-stroke current derivative signal, a 

completely recorded signal with negligible amount of noise, the 6th return-stroke current derivative 

signal is artificially cut and the recovery process is applied on it. 

 

 Recovery of Artificially-Cut Signal 

The measured data of the 6th return-stroke current derivative within the interval                      

0.35μs < t < 0.55μs is removed to obtain a waveform that is artificially cut at the 50% level from 

the peak, as illustrated in Figure 6.1. 

The methodology described in Chapter 5 using the 6th return-stroke current derivative 

measured waveform is followed to fit the simulating functions for the artificially-cut 6th return-
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stroke current derivative waveform. The fitting results obtained for the artificially-cut 6th return-

stroke current derivative waveform and its current waveform are illustrated in Figure. 6.2 and 

Figure 6.3, respectively. The analytical parameters obtained for this waveform is summarized in 

Table 6.1 along with the R2 fitting factor. 

 

 

 

 

  

Figure 6.1: Artificially-cut waveform obtained by cutting the recorded return-

stroke current derivative waveform at 50% level from the peak 
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Figure 6.3: The fitting of the proposed double-term Pulse function of the 

artificially-cut current waveform. 

Figure 6.2: Time derivative of the proposed double-term Pulse function of the 

artificially-cut return-stroke current derivative waveform fitting 
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Table 6.1 Fitting Results and R2 Factor 

 

The recovery of the artificially-cut return-stroke current derivative waveform is obtained 

using the time derivative of the proposed double-term Pulse function. It was found to be more 

successful in the recovery of the artificially-cut return-stroke current derivative waveform in 

comparison with the time derivative of double-term Heidler function.  

In Figure 6.2, 𝑡  of the time derivative of Pulse function waveform, which was attained 

using the maximum steepness constraint, is shifted to the right by 0.02 μs. Table 6.1 indicates that 

the simulation based on the time derivative of the proposed double-term Pulse function produced 

an excellent fitting of R2 = 0.9955. Furthermore, the time location of the current derivative peak, 

based on the proposed double-term Pulse function (Figure 6.2), is close to the location of the 

measured current derivative peak. Additionally, the maximum amplitude of the 6th return-stroke 

current derivative measured waveform is 36.97 kA/μs and the recovery using the time derivative 

of the proposed double-term Pulse function estimated peak is 36.52 kA/μs. Thus, the maximum 

current derivative peak based on the proposed double-term Pulse function simulation is proved to 

be closer to the measured data.  

 I1 [kA] 𝜏  
[μs] 

𝜏  [μs] 𝜏  
[μs] 

𝜏  [μs] 𝑛  𝑛  R2 

Artificially-
cut Return-

Stroke 
Current 

Derivative 
Waveform 

7.051 × 10  1.859 0.07991 110 0.09754 4.577 227.6 0.9955 
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Figure 6.3 indicates that the peak of the 6th return-stroke current waveform was not reached 

by Pulse function. It has a minor overshoot. However, the proposed double-term Pulse function 

reasonably recovered the artificially-cut 6th return-stroke current derivative waveform.  

 Recovery of Incompletely-Recorded Signal 

The same methodology described in section 6.2 using the artificially-cut 6th return-stroke 

current derivative waveform is followed to fit the simulating functions for 7th return-stroke current 

derivative waveform, the incompletely-recorded signal. The recovery of the incompletely-

recorded signal is obtained using the time derivative of the double-term Heidler function. It is 

found to be more successful in the recovery process in comparison with the time- derivative of the 

proposed double-term Pulse function. The fitting results obtained for the 7th return-stroke current 

derivative waveform is illustrated in Figure 6.4. The analytical parameters obtained for this 

waveform is summarized in Table 6.2 along with the R2 fitting factor. 

In Figure 6.4, 𝑡  of the time derivative of double-term Heidler function waveform match 

the 𝑡  of the incompletely-recorded 7th return-stroke current derivative waveform, which was 

attained using the maximum steepness constraint. Table 6.2 indicates that the simulation based on 

the time derivative of double-term Heidler function produced an excellent fitting of R2 = 0.9843. 

The maximum amplitude of the 7th return-stroke current derivative waveform estimated by the 

time- derivative of Heidler function is 140.1kA/μs. Thus, the double-term Heidler function 

simulation is very close to the measured data and reasonably recovered missing data.  
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The recovered 7th return-stroke current derivative waveform can be further analyzed by 

obtaining its current waveform through numerical integration. The current waveform of the 

recovered 7th return-stroke current derivative waveform is illustrated in Figure 6.5. The current 

peak level is 23 kA.  

 

  

Figure 6.4: The fitting of the time derivative of Heidler function of the 7th return-

stroke current derivative waveform (incompletely recorded waveform) 
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Table 6.2 Fitting Results and R2 Factor 

 

 

 

 I1 [kA] 𝜏  
[μs] 

𝜏  [μs] 𝜏  
[μs] 

𝜏  [μs] 𝑛  𝑛  R2 

7th Return-stroke 
Current 

Derivative 
Waveform 

8.136 0.4695 14.61 4.623 0.003905 11 95.33 0.9843 

Figure 6.5: Current waveform of the recovered 7th return-stroke current derivative 

signal (obtained by numerical integration) 
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 Summary 

This chapter highlights one of the biggest challenges faced by many researches in the field 

of lightning studies, which is the many incompletely-recorded signals that exceeded the maximum 

signal set levels. In fact these incompletely recorded current derivative signals, whose peaks are 

well above the noise level, proved to be quite valuable for modelling purpose [10]. 

First, a complete large return-stroke current derivative signal with negligible amount of 

noise recorded on June 10th 1996, is artificially cut. Then, the time derivatives of the double-term 

simulating functions are used to try to recover the original artificially-cut signal for evaluating the 

proposed algorithm before applying it on the signal that was incompletely-recorded.  

The proposed method reasonably recovered the incompletely-recorded waveform. 

Furthermore, using the recovered signal it is possible to conduct further analysis and determine 

important waveform parameters such as current peak level, maximum current steepness and time 

at which it occurs, as well as the charge transfer. Such large signals would be utilized for the 

evaluation of tall-structure lightning modelling [10].  
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Chapter 7 
 

7. Conclusions & Future Work 

Following Benjamin Franklin’s discovery that lightning was electrical through his 

experiments, many scientists carried out numerous experiments to better understand the lightning 

phenomenon. Although lightning is very captivating, it has devastating results on every-day life. 

Therefore, it is important to further study lightning to develop regulations and standards to protect 

both humans and properties.  

The first objective of this study is to improve and expand the lightning return-stroke models 

using double-term simulation functions. A new double-term Pulse function was proposed and was 

compared with the double-term Heidler function to determine which simulating function is better 

suited to model the tall-structure lightning return-stroke current.  

One of the biggest challenges faced by many researches in this field is incompletely-

recorded signals, which exceeded the maximum signal set levels. Incompletely recorded current 

derivative signals, whose peaks are well above the noise level, proved to be quite valuable for 

modelling purpose. The second objective is to successfully recover valuable incompletely-

recorded signals.  

The lightning modelling process described in this study used two recorded return-stroke 

current derivative signals from one of the multi-stroke flashes recorded at the CN Tower on June 
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10th 1996. The time derivative of the double-term Heidler and the proposed double-term Pulse 

functions were used in the fitting process.  

Before starting the fitting process, an appropriate starting point was chosen from each set 

of raw data. Due to decoupling characteristic of the simulating functions, each of the recorded 

waveforms were divided into three time windows in order to estimate the analytical parameters. 

The first time window was used in the modelling process and the third timewindow was used to 

estimate the decay time constants in the single-term and double-term simulating functions.  

Although the single-term Heidler and Pulse functions fairly simulated the 3rd and 6th return-

stroke current waveforms, it was found out that double-term Heidler and the proposed double-term 

Pulse functions resulted in a significant improvement. Thus, double-term simulation functions are 

better suited to model tall-structure lightning return-stroke currents.  

The next step was to investigate the recovery of valuable incompletely-recorded signals, 

such as the 7th return-stroke current derivative signal, recorded on June 10th 1996.  Prior to starting 

the recovery of the incompletely-recorded 7th return-stroke current derivative signal, a completely 

recorded signal of the same flash, with negligible amount of noise, the 6th return-stroke current 

derivative signal, was artificially cut and the recovery process was applied to it.  

It was concluded that the proposed method reasonably recovered the incompletely-

recorded 7th return-stroke current derivative signal. It was possible to determine important 

waveform parameters such as the current peak level, maximum current steepness and time at which 

it occurs, as well as charge transfer. Such large signals would be used for the evaluation of tall-

structure lightning modelling.   
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The modelling process can be further improved by investing in the double-term Heidler 

and the proposed double-term Pulse functions more in-depth. More analytical parameters can be 

introduced to improve the fitting process. Also, exploring the effects of dividing the measured 

signal into more than three time windows and the choice of the starting point have on the accuracy 

of the analytical estimation of differeent parameters.  

It is worth emphasizing that this study only focused on the return-stroke lightning current 

data measured at the CN Tower. However, the same process of modelling and recovery of the 

incompletely-recorded signals can be applied on many other situations such as on current data 

measured at other tall-structures, important signals recorded in the medical field, and the recovery 

of other valuable signals.  
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NOMENCLATURE 
 

 

CG current generation 

TCS travelling current source 

DU Diendorfer-Uman 

CD current dissipation 

GTCS generalized traveling current source 

NCBC new channel-base current 

AEF Analytically Extended Function 

AEFD Analytically Extended Function derivative 

LPC Prediction coefficients 

MLE Maximum Likelihood Estimator 

MSFD multiples sine function decomposition 

LEMP lightning electromagnetic pulse 

𝐼 control parameter of the amplitude of the single-term current function 

𝜏  rise time constant (μs) of single-term current function 

𝜏  decay time constant (μs) of single-term current function 

𝑛 an exponent value that is greater than or equal to 1.1 of single-term current 
function 

𝐼  maximum amplitude of the current function (kA) 

𝑡  time at which the current reaches its initial peak (μs) 

𝐼  maximum steepness of the current function or the maximum amplitude of 
the current derivative function (kA) 

𝑡  time at which the maximum steepness of the current function (μs) 

𝐼 , 𝐼  
 

control amplitude parameter of the double-term current function 

𝜏 , 𝜏  the rise time (μs) of the double-term current function 

𝜏 , 𝜏  the decay time (μs) of the double-term current function 

𝑛 , 𝑛  an exponent that is greater than or equal to 1.1 of double-term current 
function 




