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ABSTRACT

This thesis examines worker learning and forgetting in dual resource constrained
systems according to the dual-phase learning-forgetting model (DPLFM). The
contributions are as follows: (1) equations were developed that output
controllable shop factors such as training and transfer policies given existing
factors such as the degree of job similarity, processing times, and the learning
and forgetting rate of the worker, (2) results suggest that the task-type factor
with respect to the worker learning rate and proportion of cognitive and motor
elements is a factor to include in DRC research, and (3) the results have
suggested that the DPLFM emphasized a greater benefit for upfront training and
more a frequent transfer policy than the learn forget curve model (LFCM) when
tasks are similar, and supported the conclusions of Jaber et al. (2003) by an even
greater extent that it is possible to use more flexibility in DRC shops with

similar tasks.
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Chapter 1: introduction and literature
review

1.1 Thesis overview

This thesis investigation used deterministic simulation models to examine the effect of worker
learning and forgetting on dual resource constrained (DRC) shops, facilities with fewer workers
than machines. New factors such as job similarity and a variable worker learning rate as a
function of the task type were introduced and examined to determine their effect on the shop
performance measure of average processing time. It was assumed that the DRC shop under
investigation is a static pure-flow shop with deterministic job arrival and processing times with
no job queue formation, zero transfer times, and no machine flexibility. The shop consists of a
single worker trained for either two or three tasks. It was also assumed that the worker

undergoes both learning and forgetting of task experience.

In the first model, model A, the learning-forgetting effects of a worker on the performance of
DRC systems was examined. Worker learning and forgetting was modeled according to the dual-
phase learning-forgetting model (DPLFM). The DPLFM is a model that assumes that a task has
separate cognitive and motor requirements. A variable worker learning rate was introduced and

was measured as a function of the type of task processed.

In the second model, model B, the assumption of totally different tasks was released to include
the processing of tasks with varying degrees of task similarity. The effect of this assumption

change on the performance of DRC shops was also examined.

In the third and final model, model C, binary logistic equations were developed that could serve
as a management decision making tool for suggesting optimal worker transfer and training
policies given less controllable factors such as the worker learning rate, the worker forgetting

rate, the level of task similarity, and the ratio of initial processing time to the standard time of



the job. The method by which these equations could be used as a tool for modifying policies in a

pre-existing DRC system was illustrated by a numerical example.

Dual resource constrained (DRC) systems, or multi-skilled flexible workforces, are shops where
both machines and labour are limiting resources, namely, A-machines and w-labourers, with
w < h (Wisner and Pearson, 1993). Research on DRC systems is motivated by: (1) increasing
labour costs (Naitove, 2003), (2) more widespread Just-in-Time (JIT) implementation
(Alternburg et al., 1999), and (3) increased global competition spurred by demands for more

customized, make-to-order products (Tompkins, 2002, Karnes and Karnes, 2000).

DRC systems respond to (1) by reducing the size of the labour force by training workers for
more than one task, to (2) by reducing bottlenecks at work centers by more frequent worker
transfers and by reducing manufacturing lead times, and finally, DRC systems respond to (3) by

improving customer service and adapting to frequent changes in product demand (Kher, 2000).

However, the frequent worker transfers common in DRC systems necessitate the relearning of an
operation that otherwise might not have been forgotten if the worker was only trained for, and
dédicated to, one task. As a result, worker learning and forgetting in DRC shops is an important

investigation because it determines, to what degree, how the benefits of a DRC system are

overestimated by the detrimental effects of worker learning and forgetting.

This thesis extends upon Jaber et al. (2003) that investigated worker learning and forgetting
phenomenon in DRC settings. This thesis also introduces the concept of worker learning and
forgetting in a two and three stage DRC system according to the dual-phase learning-forgetting
model (DPLFM) developed by Jaber and Kher (2002). This learning and forgetting model is
based on the theory that a task has separate cognitive and motor requirements. The effect of
including task similarity is also examined. The experiments consist of deterministic simulation
models; the results are compared to those of Jaber et al. (2003) and the five possible issues that

affect DRC shop performance given by Hottenstein and Bowman (1998).

This thesis is organized as follows. The remainder of chapter 1 provides a survey of research
done in the areas of DRC systems, worker learning theory, learning and forgetting models, and
the learning and forgetting phenomenon in DRC systems. Chapter 2 summarizes the

development of the dual-phase learning-forgetting model (DPLFM), the learning and forgetting



model used in model A and model B of this thesis, and illustrates the behaviour of the DPLFM

with a numerical example.

Chapter 3 discusses the modeling or experimental designs used in model A, model B, and model
C of this thesis. Chapter 4 provides the results, analysis and conclusions to these models and
discusses how they compare to those of Jaber et al. (2003) and the five possible issues that
affect DRC shop performance given by Hottenstein and Bowman (1998). Chapter 5 provides

thesis conclusions and suggestions for further work in this area.

1.2 Dual resource constrained (DRC) systems

Research on scheduling in DRC systems may be easily examined by first outlining the
characteristics of the scheduling problem. In this thesis, the production problem falls under the
category of short-range production scheduling (Silver et al., 1998). Namely, scheduling that
does not require detailed and advanced production planning, but rather, involves individual
workstation decision-making initiated by workers or supervisors. Silver et al. (1998) clarified
an important distinction when studying short-range production scheduling problems: whether or
not the sequence of processing one or more jobs allows for new job arrivals. If the schedule is
fixed and no new jobs are expected until each job is processed, then the method is called ‘static
scheduling’. If the schedule allows for the possibility of new job arrivals the method is called
‘dynamic scheduling’ (Silver et al., 1998). The work environment in this thesis does not allow
for new job arrivals while each job is being processed; and as a result, this thesis only deals with
static scheduling. The shop structure also dictates which scheduling approach to use. The
simplest shop layout is a pure flow shop. This is where all the jobs must follow the same
predetermined sequence through the shop and visit every station. A general flow shop is where
the jobs are allowed to skip stations (Silver et al., 1998). In a job shop, the order of jobs on each
station may be different for each job and they may be processed in any order. In this thesis, the
job routing is known for certain; and as a result, the assumption of deterministic pure flow shop
job routing is used. An additional scheduling complication involves parallel machines. In
parallel machines, the flow shop or job shop may have more than one machine for processing at
any stage. This adds flexibility to the shop structure. In job shop research, the individual work
center is referred to as a machine or station, whereas the group of machines with the same
operation and processing time is referred to as a stage. In this thesis only individual stations are

included in the model. To summarize, the DRC system modeled in this thesis is a static-pure



- flow shop with deterministic job routings, job arrival times, initial job processing times, and, has

only one station per stage.

The performance of a shop system is evaluated as various experimental factors are adjusted to
determine their effect on one or more performance measure. Sequencing rules are one such
experimental factor. Silver et al. (1998) organized sequencing rules into 4 classes: local rules,
global rules, static rules, and dynamic rules. Local rules only require information about the
queue in question; whereas global rules also require information about work elsewhere in the
shop. Static rules are rules based on information that does not change over time such as earliest
due date (EDD) rule or shortest processing time (SPT) rule. Dynamic rules rely on information
that changes with time such as the minimum slack time rule (Silver et al., 1998). As discussed
later, DRC systems can include all of the above types of global and local dispatching rules in
addition to ‘when’ and ‘where’ each worker should be transferred (Treleven, 1989). Since this
thesis examines a static DRC shop model, rules pertaining to station queues are not applicable
because no queues are formed. Namely, there is never a job waiting to be processed, or workers

waiting to process a task.

Common job shop performance measures are usually classified by their effect on shop
congestion or work in process (WIP), and those that are used for meeting due dates (Silver et al.,
1998). As previously mentioned, no queues form in this thesis model, and as a result, shop
congestion performance measures are not applicable. This thesis uses the shop performance
measure of average processing (service) time ( APT') calculated over approximately 3000 jobs,

the same performance measure used by Jaber et al. (2003).

1.2.1 Characteristics of a DRC system

As previously mentioned, the DRC system is a shop where both machines and labour are

limiting_resources, namely, A-machines and w-labourers, with w<h (Wisner and Pearson,
1993). The benefits of a DRC shop, commonly referred to as a shop with a multi-skilled flexible
workforce, are the rgg_l_pction of manufacturing lead times (reduction in WIP), improved
customer service, and the ability to_adapt to frequent changes in product demand (Kher, 2000).

The improved customer service is characterized by on:time delivery performance measured by

mean tardiness and percent tardy jobs (Park and Bobrowski, 1989). Also, adaptation to frequent

demand changes is necessary in a highly competitive work force (Treleven, 1989). Job shops,



common production settings for DRC systems (Hottenstein and Bowman, 1998), are
predominantly make-to-order shops with large WIP and little inventory of finished goods;
typical job shop products include printed circuit boards, metal parts, and commercial printers,
with each item usually tailored to the wishes of customers (Silver et al., 1998). Rosser (1967)
first proposed the concept of dual resource constrained (DRC) work systems. Until that time,
only shop problems involving machine-limited resources were examined. The introduction of an
additional labour constraint increased the complexity of the shop problem while enhancing upon
the flexibility already known in queue discipline rules. Rosser (1967) suggested that the
introduction of the labour constraint opened up new levels of design parameters such as the level
and quality of the labour force. Most notable was that the quality and level of the workforce
were interrelated in DRC systems. This interrelation is described as follows: as the workforge,
level decreased, the degrees of possible worker flexibility increased, and therefore the quality of
the workers increased. Conversely, as the workforce level increased, the amount of ggs_g_i_b_l_e

flexibility decreased, and therefore the quality of the workforce decreased (Rosser, 1967).

1.2.2 Parameters of a DRC system

Rosser (1967) clearly outlines the scope (and some possible extensions) of a DRC shop system
in his paper “Labour and Machine Limited Production Systems”. The DRC system examined in
his paper was a stochastic flexible job shop with stochastic job routings. The scope of a DRC

system and its design parameters is shown in Figure 1.1.

The notations shown in Figure 1.1 represent workload, design, and control parameters. The

workload parameters are as follows: job arrival density function, g, mean job arrival rate, A,

the service rate density function for each machine in stage i, ¥,, the mean service rate of each
machine in stage i, ¥, , and the job routing transition probability matrix from stage i to stage j,
p; (Rosser, 1967). The models in this thesis are deterministic, and as a result only the A and

¥; workload parameters are required to describe the DRC system. The design parameters are as

follows: the number of stages in the system, m , the number of identical machines at each
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stage i, C,, the number of workers in the system, W, and the relative efficiency of worker j on
stage i, € ;. The efficiency parameter is used to determine the service time of the individual at

stage i. This is done by dividing the service rate for job k on stage i by e i Yhi / e; ;where e

ranges from 0 to 1, and e ; = | represents maximum worker efficiency. The central control
assigns workers to each stage according to the queue discipline of each stage. In this thesis, it is

assumed that each machine at a particular stage has the same processing time distribution ¥,

Also, since the models in this thesis are deterministic, only m, ¢, ,and w are applicable. In this
thesis, m =2 or3, ¢ =1 for every i, and w = 1. The control parameters are as follows: the

stage selection procedure in the central control, /, the queue discipline used in stage /, ¢q,, and
the level of centralized control of jobs at stage i, 77, (Rosser, 1967). Again, since the models in

this thesis are static, and therefore no queues are formed, only / and 7, are applicable. The
level of centralized control represents the extent by which the central control determines when

the worker is assigned to the next task. Full control, or when 77, = 1, means that central control

determines where the worker should go next after the present unit is completed. When 7z, =0
means that central control does not allocate the worker to a new station until the worker has
completed the work remaining in queue at that station (Hottenstein and Bowman, 1998). In the
models of this thesis, the 77; parameter is neither 0 nor 1 but varies between these two values.
Namely, the level of centralized control is determined by the number of units processed as in
Jaber et al. (2003). The worker moves from the station after a fixed number of jobs are
completed, e.g.: batch sizes of 10, 25, or 250 units. Also, in the thesis, { is assumed to be the

next stage in the sequence, i.e. stagel-stage2-stage3.

The common managerial decisions in DRC systems can be grouped into two categories:
operating issues and design issues. Operating issues are as follows: when to transfer workers,
where to transfer them, queue discipline policies (local, global and dynamic sequencing rules),
and job release policies. The ‘when’ rule is often called the ‘centralization of control rule’ and

the ‘where’ decision is called ‘worker assignment rule’ (the aforementioned stage selection

procedure in central control, /). When the control is said to be ‘centralized’ means that the
worker is eligible for a transfer after the present unit is completed (7; =1); ‘decentralized’
control is when a worker is not eligible for a transfer until the queue at the station is empty

(7, = 0) (Hottenstein and Bowman, 1998). The queue discipline policy determines the order in



_ which the jobs waiting in station queues are processed. The job release policy decides when
previously arrived jobs are dispatched to the job floor. Job release policies are classified by
either finite loading or infinite loading policies. Finite loading policies consider machine
capacities and load jobs to machines according to priorities in order to fill machine capacities,
with lower priority jobs postponed until capacity is available. Infinite loading policies, on the
other hand, release jobs without considering station capacities, current station loads, or job
arrival times. Instead, criteria such as critical ratios (time remaining until due date/total
processing time) are used to determine when jobs are released to the shop floor (Wisner and
Pearson, 1993). The models in this thesis include the assignment rule, the centralization of
control policy (this thesis also refers to this as the worker transfer policy), and job release policy
operating issues. In this thesis, the assignment rule is governed simply by transferring the worker
to the next station in a simple two or three-stage sequence. The centralization of control policy in
this thesis is governed by the worker completing a fixed batch number of units (0 < z; <1). The
job release policy in this thesis is a finite loading policy where a job is released into the system
only after the worker has completed releasing the previous job since the capacity at every
machine is only one unit. Therefore no queues are formed, and hence, a queue discipline policy

is not applicable.

Design issues are as follows: the degree by which workers are trained and cross-trained, the
degree of worker flexibility, labour utilization levels, the routing pattern of jobs, and the manner
by which information is collected and used. An important caveat must be considered when

discussing flexibility. In DRC literature, labour flexibility may have different meanings such as:

the machine staffing level, the level of worker-station efficiency (as previously discussed, e i)

the level of centralized control (7;), and number of possible stages that a worker can be

transferred (Treleven, 1989). In this thesis worker flexibility is defined as the number of stages

for which the worker is trained ( N ), a synonym for the degree of worker cross-training,



1.2.3 DRC research: an overview

Two good surveys of DRC research are Treleven (1989) and Hottenstein and Bowman (1998)‘.
Several notable conclusions that Treleven (1989) made regarding past DRC research were as
follows: the dispatching rules that work well with machine limited systems also tend to work
well with DRC systems; DRC systems work most efficiently with a staffing level between 50%
and 75%; the effectiveness of the ‘where’ assignment rule is dependent on the level of labour
flexibility; the mean and variance of flow time decrease as the control becomes more
centralized; the importance of having greater flexibility is heightened as the labour efficiency in
the subsequent station is decreased; the relative rankings of decision rules remain the same as the
size of the DRC system increases thereby allowing conclusions for larger systems with the
simulation of smaller systems; and, performance criteria, such as the ranking of decision rules,

are found to be sensitive to high labour utilization levels.

Hottenstein and Bowman (1998) provided a comprehensive survey of DRC research. The
research was categorized into five areas of study: worker flexibility, centralization of control,
worker assignment rules, queue discipline, and the cost of transferring workers (Hottenstein and
Bowman, 1998).

Some of the notable conclusions of their survey concerning worker flexibility were as follows:

cross-training beyond two or three skills per worker (N =2 o0r3) does not significantly

enhance DRC performance; the high cost of cross-training further impacts on the cost

effectiveness of DRC systems; and, workers need not be perfectly interchangeable as far as their

value of € ji is concerned.

Conclusions of their survey concerning centralization of control were as follows: an efficiency
control rule that moves a worker as soon as the worker can be moved to a stage that he is most

efficient is shown to be a superior rule under most conditions; the degree of centralized control
is not independent of the assignment rule; centralized control ( 7z, = 1) only marginally reduces
mean and variance of flow-time compared to decentralized control (7, = 0); and if the

efficiency levels of the workers between tasks vary, then the level of centralized control decision

¥ Note that in this section the term ‘flexibility’ refers to the level of worker cross-training, just as it
does throughout this thesis.



is far less dependent on the status of the queue but is determined by the time of the availability

of a station where the worker is more efficient.

Conclusions of their survey concerning worker assignment rules were as follows: the question of
where to assign workers has a greater impact on shop performance than when to assign workers;
the assignment of workers to stages with queues having the greatest number of jobs (LNQ) had

the greatest improvement on the mean and variance of flow-time; the performance of the worker
assignment rule is not independent of the queue discipline used at that stage; and, when the e ;

of workers vary, they should be assigned to the stages where they are most efficient.

Conclusions of their survey concerning queue discipline rules were as follows: there is an
interaction between the effectiveness of the queue discipline rule and the worker assignment rule
because the state of the next assigned queue is dependent on the queue discipline used at that
queue; the shortest operation time (SOT) in the queue rule results in the smallest mean flow-time
and the largest flow-time variance; the first in system-first served (FISFS) rule resuits in the
smallest flow-time variance but the largest mean flow-time; the combination of the SOT queue
discipline rule and the LNQ assignment rule results in the lowest mean flow-time; and, the
combination of LNQ assignment rule and the FISFS queue discipline results in the lowest queue
time variance. It is interesting to note that specific assignment rules can be combined with
specific queue discipline rules depending on whether improvements of either mean flow-time or

mean variance of flow-time is desired.

Finally, Hottenstein and Bowman (1998) provided conclusions for research on the cost of
transferring workers. They are given as follows: overall, increasing the transfer delay hinders

shop performance; and, the greater the transfer delay the higher the effectiveness of

decentralized control (7, = (). Also, Hottenstein and Bowman (1998) concluded that the effect

of learning in setups encountered when transferring a worker to a new station is a relevant

transfer cost.

Hottenstein and Bowman (1998) also discussed future research of the implications of variety,
teams, and forgetting on DRC systems. The effect of variety assumes the introduction of mean-
demand changes or new products. The concept of teams involves using a group of individual
workers as a base unit instead of one cross-trained worker. Hottenstein and Bowman (1993)

suggested that the effect of worker forgetting may cause centralized control to be much more

10



effective than decentralized control. He proposed that centralized control would aliow the
worker to more frequently hone certain skills and thereby reduce the effect of long-term
forgetting. The assignment rule would therefore be based on the unique forgetting function of
each worker across skill levels; and, the assignment rule would be less dependent on where the
worker is more efficient, but rather, where the worker would best relearn in order to prevent
further forgetting. In other words, the short-term costs of not adhering to the ‘best worker to the
best job rule’ are offset by the long-term benefits of a more homogenous cross-trained flexible
workforce (Hottenstein and Bowman, 1998). Further research on the implications of learning

and forgetting in DRC systems are discussed in subsequent sections.

As previously shown, the common performance measures of a DRC system are similar to those
of a regular job shop such as mean job flow-time, variance of flow-time and mean number of
jobs in the system. The inclusion of a labour constraint has proved beneficial in both increasing
the possible areas of job shop research and improving the effectiveness of actual shop
performance. For example, it was found that because DRC systems allow for the introduction of
cross-trained workers, utilization of labour resources improved during periods of product mix
changes and material shortages (Treleven, 1989). Also, DRC research has shown that it is

always preferable to acquire flexibility in any degree ( N > 2) over a strictly machine limited

system (where N = 1) (Hottenstein and Bowman, 1998). However, few papers have reported on
empirical studies of DRC systems or studies of models of existing systems. As a result, the bulk
of the research on DRC systems uses simulation models. This leads to difficulty in analysis
because simulation studies often have difficulty interpreting statistically significant differences
between mean values of results (Treleven, 1989). However, this thesis uses deterministic
simulation modeling as an experimental tool. As a result, the models use deterministic input
parameters and therefore statistical analysis of the output parameters is not required. For readers
interested in DRC system research, the following papers are also suggested by Hottenstein and
Bowman (1998): Bobrowski and Park (1993), Fryer (1973), Fryer (1976), Gunther (1979),
Nelson (1967), and Treleven (1987, 1988).
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1.3 Learning and forgetting models

1.3.1 The learning phenomenon — an introduction

The learning phenomenon has been recognized in industry for many years as a factor that should
be considered when determining labour costs. Worker learning must be taken into account when
tasks are preformed repetitively so that appropriate labour costs and processing times can be
determined. Wright (1936) first proposed that worker learning follows a power function such
that the processing time of the worker decreases at a constant rate whenever the amount of units

produced is doubled. Wright’s learning function is of the form:
y(my=y(Hn™, (1.1)

where y(n) is the processing time of the n™ unit, (1) is the processing time of the first unit, 7

is the number of units produced so far, and b is the learning slope. The slope is determined as

follows:

p = - 08LR) 12

log(2) ’
where LR is the learning rate, and 0% < LR < 100%. Larger learning rates usually indicate
less difficult tasks since there is less opportunity for further learning when tasks are relatively
simple. Typical learning rates have been reported to range from as low as 68% for a difficult
task such as ‘truck body assembly’ to 98.5% for more tedious tasks such as ‘manual
grinding’(Konz, 1990). Therefore, the nature of the task performed is a crucial factor when

determining appropriate future processing times.

Human learning occurs whenever a task is done repetitively, and may be defined as an increase
in performance for successive operations of a task. Often, the improvement between adjacent
repetitions is relatively large in the early cycles but becomes small or negligible in later cycles.

As aresult, in the latter cycles, the improvement can only be measured by improvements in large
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groups of repetitions. Human learning is a phenomenon that we know occurs but are still
uncertain about exactly why it occurs (Dar-El, 2000). As for how learning occurs, several
authors have proposed their views on this matter. Some of the hypotheses for how learning
occurs are as follows: discontinuous movements become smoother, fumbling disappears, greater
simultaneity in movements is obtained, and wasted or unsuccessful movements are gradually
‘weeded’ out (Dar-El, 2000). A previous methods time measurement (MTM) supported this idea
by finding that the standard velocity of motions of the worker are achieved early in the learning
process, and as a result, supported the idea that learning is not caused by an increased speed of
motion but rather a more discriminating choice of movements (Dar-El, 2000). Dar-El (2000)
classified human learning research into four broad categories: individual learning, product
learning, product development learning, and organisational learning. The learning-forgetting
models used in this thesis just pertain to individual learning; this is learning that occurs among

individuals, not in groups of people as in the latter three types of learning,.

The learning curve models are usually expressed as univariate functions with the dependent
variable being the unit processing time or unit cost and the independent variable as the
cumulative production or cycle count. Some of the common learning curve models are: the log-

linear model, the Stanford-B model, DeJong’s learning formula, and the S-curve (Dar-El, 2000).

The power curve in equation (1.1) is the most common and widely applied univariate learning
curve function. It is also called the log-linear model. The power curve model can also be given

in a cost form as follows (Dar-El, 2000):

K(n)=K)n™®, (1.3)

where K(n) is the cost of producing the n* unit and K (1) is the cost of producing the first

unit. The log-linear form of the power model is as follows:

log[y(n)] = log[y(1)] - bxlog(n), (1.4)
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and the learning rate LR (as a percentage) is a function of :
LR =100x2"" (%). (1.5)

The relationship in (1.5) is because, by definition, the power curve learning model states that, as

production doubles, the time to produce the #™ unit decreases at a set rate. For illustration:

Let production(l) =n,,and production(2) = n, = 2n, , then substituting into (1.1) gives
y(m) = yMn™ and y(m)=yOm," = yOQ2n)",

O

1.6)
y()(m)™ (

then

The graphical form of the power curve and the log-log linear form of the power curve is given in

Figure 1.2 and Figure 1.3 respectively. The power curve can be used to find the total time to
complete m units [ ()] by assuming that (1.1) is a continuous function; note that the

following integration in (1.7) is just an approximation as shown (Dar-El, 2000):

- m _ m -5 1 _
5m) =90 = Tyt ain= 2 )

then the average time to complete each unit if 72 units are produced is given as

F(m) = -

(1.8)

The Stanford B model accounts for the amount of experience at the commencement of the first

production cycle by including an ‘experience factor’ B (Dar-El, 2000). The amount of time to
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y(n)

ym) = y(Dn’®

Figure 1.2: Wright’s (1936) power learning cutve (Dat-EL 2000)

logly(m)]

log[y(m)] = log[y(D)] - b x log(»)

log(n)

Figuze 1.3: Log-log linear form of the power curve (Dar-El, 2000)
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“process the " unit by the Stanford B model is given by:

y(my=yO)n+B)" . (1.9)

The Stanford B curve eventually asymptotes to the regular log-linear power model. This effect

and the effect of increasing B -values are shown in Figure 1.4.

Delong’s learning model was developed to account for sub-components of tasks that do not
follow the learning effect such as a machine-dominated portion of a task. A ‘non-compressible’
factor M is used to account for the machine portion of the task (Dar-El, 2000). DeJong’s

learning model is given as follows:

y(n) = y)(M +(1-M)n™), (1.10)

where M = 0 is the case of no machine content (model reverts to the original power curve),

and M =1 is the case where the task is fully automated and no learning is possible. The
Stanford B model tends to be more accurate in the early stages, and the DeJong learning mode}
tends to be more accurate in the latter cycles. As a result, the S-curve learning model was
developed to take advantage of the characteristics of both the Stanford B model and the DeJong

learning model (Jaber, 1996). The S-curve learning model is given as follows:
y(n) = y)(M + (1= M)(n+ B) ). (L11)

The behaviour of the above learning models is shown together when the units of output increases
by the base of 10 in Figure 1.5. There are many other learning models that have been developed.
However, they are not commonly used and they are beyond the scope of this thesis. For
interested readers the following papers are suggested: Baloff (1971), Belkaoui (1986), Bohlen
and Barany (1976), Buck et al. (1976), Knecht (1974), Lippert (1976), Smith (1989), Steedman
(1970), and Teplitz (1991). This thesis uses the DPLFM which is partially based on the learning
theory of the dual-phase learning model (DPLM) of (Dar-El et al., 1995). The DPLFM and the
DPLM are described in section 2.2 and section 2.1.1 respectively.
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Figure 1.4: The Stanford B model (Dar-El 2000)
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Figure 1.5: The behaviour of common learning models (Jaber, 1996)
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- =~ Human learning is influenced by many internal and external factors. Internal factors include the
nature of the task being performed or the skill and experience of the worker. External factors
include the effectiveness of the ability of the organisation to make workplace improvements such
as continuous improvement teams. This thesis only examines internal factors, or those factors
that directly relate to pre-established worker and task characteristics. Dar-El (2000) listed 11
factors that effect human learning, they are as follows: methods improvement, worker selection
(differences between workers and vériations within each operator), previous experience,
training, motivation, job complexity, number of repetitions (or cycles), length of the task, errors,
continuous improvement, and forgetting. This thesis assumes that the workplace and methods for
performing the task are well established beforehand, and as a result, methods improvement is not
an experimental factor. Differences between workers are not a factor because the models in this
thesis only assume one worker. Also, this thesis assumes that the variation of performance within
the worker is negligible. Previous experience is a factor in this thesis because the amount of
worker proficiency on the present station is dependent on the experience acquired at predecessor
stages. Training is an obvious experimental factor in the models of this thesis because it pertains
to the effect of the upfront training policy (FAP). Motivation and worker errors are not
addressed in this thesis as experimental factors. Job complexity is not an experimental factor in

this thesis as each job is assumed to be equally complex as perceived by the worker. The number
of repetitions (7, ) or the time to reach standard time is discussed in experimental design section

of chapter 3. Dar-El (2000) explained that the task can in fact be a product of several sub-tasks,
some of which may be repeated. In these repeated sub-tasks, the learning rate can be greater than
that of the entire task. This is due to the fact that the repeated sub-tasks are being performed
more times than the task itself. This phenomenon was categorized as the ‘task length’ factor.
This factor is not addressed in this thesis. The continuous improvement factor is not addressed in
this thesis because these models only examine internal learning factors. Finally, forgetting is an
experimental design as it is defined and modeled in this thesis by the DPLFM. The importance
of the forgetting factor cannot be overlooked if there are interruptions. For example, if there are
interruptions in the leaming process, the aforementioned learning models do not always provide
an appropriate estimation of future processing times. Modern production environments often
encounter foreseen or unforeseen work stoppages. For example, the setup of a machine is a task
that has foreseen breaks between subsequent setup operations. These foreseen breaks or
interruptions are due to the machine processing time between successive setup operations. Also,
unforeseen work stoppages such as machine failures, employee related interruptions, or product
changes cause interruptions that have a significant effect on the effectiveness of traditional
learning curve models. Interruptions cause the deterioration of worker knowledge thorough the

phenomena of forgetting. As a result, this lost knowledge has to be eventually relearned in order
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to resume the same level of worker efficiency that was achieved prior to the interruption. For
example, Globerson et al. (1998) noted that Anderlohre (1969) found that a plant may lose
around 50% of its productivity due to a production break of three to six months and may lose
75% of its productivity after a break of one year. Globerson et al. (1998) also noted that
McKenna et al. (1985) corroborated Anderholer’s findings of performance decay, where they
found that there was a decay of 60% in performance after a break of six months with a total loss
of learning after three years. Also, Dar-El (2000) noted that an interruption of a one year can
cause a productivity drop of 60% to 75%. It is important to note that this thesis deals only with
forgetting that relates directly to the knowledge lost in individual employees and not other
organizational forgetting factors such as employees leaving, changes in products/processes, or
lost records or routines. For example, total organisational forgetting caused the cost of
producing the Lockheed L-1011 Tri-Star plane to continually rise as cumulative output
increased from 1975 to 1982 (Argote and Epple, 1990). As a result, forgetting in this thesis only
pertains to individual forgetting and hence is not modeled as potentially severe as total
organizational forgetting. Learning and forgetting curves can be applied for needs such as:
determining staffing levels, labour costing, production planning, setting time standards,
establishing wage incentives, and determining optimal cycle times for assembly (Dar-El, 2000).
In this thesis, learning and forgetting models are applied in a multi-function role: (1) in model A,
to determine the effect of the task-type factor (variable learning rate) on DRC shop performance
using the dual-phase learning-forgetting model (DPLFM) developed by Jaber and Kher (2002)
instead of the VRVF or the LFCM to model worker learning and forgetting, and, to determine
how this compares with the results of Jaber et al. (2003) where all tasks where assumed equal
(fixed learning rate), (2) in model B, to determine how the inclusion of the task similarity factor
affects the results of model A and how this compares with the results of Jaber et al. (2003),

where the LFCM was used, and, (3) in model C, to construct a multivariate function that
provides the optimal upfront training policy (FAP') and the optimal centralization of control

policy (C ') (batch transfer frequency) as output variables given four prescribed DRC system
factors: task similarity factor (8 ), initial processing time to standard time ratio of the task ( 0),
worker learning rate (LR ), and worker forgetting rate ( #R ). All of the policy decisions in
models A, B and C are examined as they minimize the labour costing performance measure of

average processing (service) time ( APT ).

The following summary of learning-forgetting papers illustrate that worker relearning is costly
and is not accounted for in traditional learning curve models such as Wright’s power curve

model.
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1.3.2 Learning and forgetting research: an overview

The costs of forgetting become an important factor to consider when analyzing work
environments. As a result, worker-forgetting research was appended and integrated into
traditional learning theories. Research on industrial learning and/or learning and forgetting can
be grouped into two categories: (1) those papers that perform an experiment and then validate
the results statistically with partial or no theoretical validation; and (2) those that develop a
theoretical (mathematical) model that describes the learning-forgetting phenomena with partial
or no empirical or experimental validation. The following summarizes predominantly

experimental papers in learning-forgetting research, or type (1) papers.

Globerson et al. (1989) experimentally derived a forgetting function that allows for the
calculation of processing time lost due to an interruption. A specific power model consisting of
two parameters and the break time between sets was fitted to the experimental results. This
model was then combined with the Stanford B model to obtain a function that determined the
relative magnitude of forgetting as a function of the break length and the performance time prior
to the break. Bailey (1989) experimentally tested five hypotheses on the nature of learning and
forgetting and subsequent relearning. The three most notable hypotheses were: (1) forgetting of
a ‘continuous’ task is negligible; (2) the learning rate is not correlated with the forgetting rate;
and, (3) the relearning rate for an assembly task is a function of the original learning rate. The
experiment consisted of testing 31 subjects with a ‘procedural’ and ‘continuous’ task. A
procedural task was defined as one that consists of discrete motor responses such as a car repair
job, and a continuous task was defined as consisting of repetitive movements with no clear
beginning or end such as riding a bicycle. His experiment used the assembly and disassembly of
an Erector set toy, which corresponded to a procedural and continuous task respectively. It was

found that hypotheses (1) and (2) were true and hypothesis (3) was false.

The aforementioned experimental research effectively draws conclusions about the behaviour of
industrial learning and forgetting. However, they fail to distinguish between the learning and

forgetting of simple tasks versus those of complex tasks.

The notion of simple versus complex tasks was highlighted by Bailey (1989) when he
distinguished between ‘procedural” and ‘complex’ tasks respectively. However, task distinction
may be more explicitly described when tasks are classified as either ‘cognitive’ or ‘manual’
(motor) tasks, suggesting that task difficulty is a function of the elements of cognitive and
manual components of the task. This distinction was suggested in the experimental paper by
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Sparks and Yearout (1990). In their paper, an experiment was conducted in order to determine if
there is a difference between the forgetting functions of manual versus cognitive tasks. The
experiment used 16 subjects, eight of whom were tested on a manual peg-board task and eight of
whom were tested on a cognitive computer game task on a computer display monitor. The
subjects were tested again after a 28-day break period. The time to reach steady state and the
learning curve results were obtained for before and after the break period for the manual task
subjects, the cognitive task subjects, and a control group who maintained a certain level of
practice during the break period. The results concluded that the learning curve rates before the
break were 91% and 95% for the cognitive and manual task respectively. The learning curve
rates after the break were 94.5% and 99.15% for the cognitive and manual task respectively.
Steady state was reached almost immediately following the break for the manual task, whereas it
took an additional 33 iterations for the cognitive task. These results implied that forgetting for a
manual task was negligible as compared to that of a cognitive task. It was suggested that this was
an important conclusion because of the increasing amount of cognitive tasks found in modern
manufacturing environments. Hewitt el al. (1992) conducted an experiment to determine if
worker-relearning rates were different than learning rates after an interruption that ranged
between two and 83 days. The experiment used a low-cognitive pegboard task and a moderately
high cognitive computer graph/spreadsheet task. This experiment was modeled after the dual
motor and cognitive study of Sparks and Yearout (1990). The time-lost-to-forgetting results
obtained in the experiment were compared to results of Globerson et al. (1989), where the
learning and relearning rates were assumed equal. The results of their experiment concluded that
assuming that the learning and relearning rates are equal may cause overly conservative task
times after an interruption and thereby may result in excessive worker idle time and worker

utilization.

The cognitive and motor elements described in the above papers were either just implicitly
described or just included as a synonym for difficult and simple tasks. Also, what was lacking
was an explicit mathematical model of how these cognitive and motor elements interact with the
learning phenomena. Dar-El et al. (1995) developed such a model and referred to it as the dual-
phase learning model (DPLM). This model was the first to account for cognitive and motor
elements in a learning model that was validated experimentally. Their paper could be classified
as both a theoretical and an experimental paper, or as a type (1) and type (2) paper. The ‘dual’
term implied the dual cognitive and motor nature of human learning. Their study suggested that
the learning slope is a variable, and that it gradually reduces as experience is gained. It is

hypothesized that this reduction is due to the dual cognitive and motor aspects of learning

inherent in the learning slope; namely, the learning slope b, actually consists of both a cognitive
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- element b, and a motor element b,, . In this way, Dar-El et al. (1995) suggested that Wright’s

fearning model (Wright, 1936) implicitly included both cognitive and motor elements. During
the early task repetitions it is reasoned that the individual retrieves information from the long-
term memory. As a result, the early stages are dominated by cognitive elements of learning. As
experienced is gained, and as less long-term knowledge is required, the motor element
dominates the task. This hypothesis is tested experimentally using one task that is highly
cognitive and one task that requires mainly motor skills. The following summarizes

predominantly theoretical papers in learning-forgetting research, or type (2) papers.

Carlson and Rowe (1976) addressed the cost of worker forgetting. This paper proposed the use
of a log-linear and cubic learning curve as a means of determining the relative effect of an
interruption in the learning process. The use of the cubic curve was validated both
experimentally in this paper and empirically using historical data. It was assumed that the
forgetting portion of the learning curve could be modeled as a negative decay function
comparable to electrical losses in condensers. However, they provided no empirical evidence for
this assumption. It was suggested that the cubic model is a more accurate representation of the
learning process because it is derived from a natural ‘S-shape’ learning process. A learn-forget
model was developed based on this shape. This model was later referred to as the ‘variable

regression to variable forgetting model’ or the VRVF model (Jaber and Bonney, 1997).

Jaber and Bonney (1996) developed another learn-forget model by mathematically determining
the forgetting slope if the amount of units of production (up to the point of interruption), the
learning rate, and the time to total forgetting is known. This model is called the leamn-forget
curve model (LFCM). The accuracy of this model is empirically verified using the experimental
results of the forgetting phenomena in Globerson et al. (1989), where the Stanford B model was
used (Jaber and Bonney, 1997).

In a theoretical comparative study by Jaber and Bonney (1997), three learn-forget curve models
(VRIF, VRVF, and LFCM) were tested against two hypotheses deemed important to learning
and forgetting phenomena, namely: (1) in the case of total forgetting, the curve asymptotes to a
unique value equivalent to the time to produce the first unit with no prior experience; and, 3}
the intersection point of interruption is equal on both the learning and forgetting curve (Jaber
and Bonney, 1997). Their study showed that the VRIF satisfied the first hypothesis but violated
the second, the VRVF violated the first hypothesis but satisfied the second, and the LFCM
satisfied both hypotheses. The unique characteristic of the LFCM was that in addition to

calculating a unique intersection
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point every interruption-cycle like in the VRVF, the LFCM also recalculated a unique forgetting
curve slope f. The LFCM model accuracy was validated empirically using historical

experimental data (Jaber and Bonney, 1997).

Jaber and Kher (2002) took this dual nature of learning one step further and accounted for the
forgetting effect by combining the dual-phase learning model (DPLM) of Dar-El et al. (1995)
with the LFCM developed by Jaber and Bonney (1996). This resulted in the dual-phase learning-
forgetting model or the DPLFM. The DPLFM combined the dual cognitive-motor aspects of
learning of the DPLM with the variable forgetting slope function of the LFCM. The DPLFM
was then able to determine the level of forgetting that occurs when the forgetting rate, the length
of interruption, and the level of experience gained prior to the point of interruption is known
Jaber and Kher (2002). The inclusion of the dual nature of learning allowed for the variation in
learning and forgetting when the specific cognitive and motor contents of the task are taken into

account.

Shafer et al. (2001) examined the effect of learning and forgetting on assembly line
performance. In their paper, a simulation experiment was conducted in order to find if there was
a statistically significant difference in shop performance when workers are modeled as having
homogeneous learning and forgetting distributions as compared to having heterogeneous
distributions. Contrary to intuition, the results of the experiment suggested that the productively
of the workforce increases as the variability of the learning and forgetting parameters of the
workers increase. In other words, the productivity of the system is greater if workers are
modeled as having unique learning-forgetting distributions as compared to assuming a fixed

distribution across workers.
This thesis examines the effect of learning and forgetting on DRC systems, more specifically,

worker learning and forgetting that resembles that of the DPLFM of Jaber and Kher (2002). The
next section highlights research on learning and forgetting in DRC research.
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1.4 Learning and forgetting in DRC systems: an

overview

Worker transfers result in interruptions in the learning process of the worker. These interruptions
cause forgetting losses that affect the benefits of using DRC systems. For example, when a
worker is transferred to a new workstation without adequate training on the present station,
he/she experiences significant forgetting losses after returning to the original workstation. These
forgetting losses can be mitigated by providing a worker with upfront training and/or
determining the optimal level of centralized control or assignment policies. As a result, the issue
of determining the optimal trade-off between acquiring flexibility and reducing forgetting losses

in a DRC system is relevant and complex.

The effect of worker learning and forgetting may change the assumptions and conclusions made
in traditional DRC systems research as summarized by Hottenstein and Bowman (1998) and
Treleven (1989). Again, as in the previous learning and forgetting research summary, this
section is divided into: (1) those papers that perform an experiment and then validate the results
statistically with partial or no theoretical validation; and, (2) those that develop a theoretical
(mathematical) model that describes the learning-forgetting phenomena in DRC systems with
partial or no experimental validation. A review of learning and forgetting research in DRC

systems begins with the former type (1) research paper.

Wisner and Pearson (1993) were the first to address the notion that relearning losses in DRC
systems may affect previously studied DRC performance measures. Their paper is classified as
an empirical simulation study because many of the input parameters are empirically validated by
an actual DRC shop environment such as: mean processing time, job flow time, tardy costs,
labour costs, and labour utilizations rates. Wisner and Pearson (1993) assumed that when a
worker is transferred a relearning loss is incurred. However, even though it was implied that
relearning involved task-forgetting, the relearning was not time dependent and therefore the
concept of worker forgetting was not explicitly addressed in their paper. Their full factorial
simulation experiment concluded that relearning losses significantly affect traditional DRC
performance measures and that the notion of worker forgetting should be considered whenever
DRC systems are studied or managed. The remaining papers are all of the
theoretical/mathematical type. The following summarizes predominantly theoretical papers in

learning-forgetting research in DRC systems, or type (2) papers.
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Malhotra et al. (1993) were the first to examine the detrimental effects of learning in a DRC job
shop. Their paper used a mathematical simulation model where the results were statistically
validated, and the inputs and results were partially validated empirically. Previous work that just
incorporated the factor of worker flexibility was extended upon in their paper to include the
effects of worker learning and attrition rates. The degree by which performance measures such
as mean flow time, mean tardiness, and percentage of jobs tardy differed from those of the base
case (of just job flexibility) was examined. However, their paper did not assume any costs of
relearning due to worker forgetting. An interesting finding of their study was that, in the
presence of high learning losses, cross-training workers in more than three departments worsens
system performance. Kher et al. (1999) were the first to address both learning and forgetting
effects in a DRC system. Their paper utilized mathematical modeling with partial empirical
validation of inputs and results. Statistical validation of results was not necessary because of
deterministic input parameters. Their paper integrated the worker forgetting effects of the learn-
forget-learn (LFL) (referred to by Elmaghraby (1990) as the VRVF) model developed by
Carlson and Rowe (1976) into a DRC system context. The experimental factors considered by
Kher et al. (1999) were as follows: (1) the degree of the upfront training policy ( FAP —0),
(FAP-1), (FAP-2), (2) the level of worker flexibility, (N =2, 3)3, (3) the forgetting

rate (85% or 95%), (4) the attrition rate/training period ratio (2,4,8,12,16,20,40), with the
attrition rate being a random variable, and, (5) three batch size transfer intervals of (10, 25, 250).
The FAP -0, FAP -1, and FAP —2 upfront training policies meant that the training
period of the worker was complete after the first batch, after the ‘standard time’ was reached, or
after two times the ‘standard time’ was reached. The centralization of control rule (C ) was
governed by the completion of batches and was tested for the above three batch sizes. The two
performance measures tested were the attrition adjusted average processing time, and the final
level of efficiency defined by standard time divided by the last unit processed. The results of
their paper concluded that in the presence of high forgetting and attritions rates, workers do not
even achieve their standard processing time efficiency (Kher et al., 1999). Also, only in
situations of extensive initial training and large batch sizes is a worker flexibility of three a
feasible option with respect to average processing time values (Kher et al., 1999). This limits the
benefits of flexibility beyond two in DRC systems of significant learning and relearning losses

(Kher et al., 1999).

McCreery and Krajewski (1999) were the first to test the effects of task variety and task

complexity on the performance of a DRC system with learning and forgetting effects. Their

¥ Note that a maximum of three workstations is used because of the Malhotra et al. (1993) finding that
cross-training workers in more than three departments worsens system performance.
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paper utilized a mathematical simulation model where the results were statistically validated and
the input parameters were partially validated experimentally from field data and empirical
studies. There was no empirical validation of results. Their simulation experiment answered the
following two hypotheses: (1) there is no difference between different levels of cross training
given to workers, and; (2) there is no performance difference between different worker
deployment policies. The model consisted of a U-shaped assembly configuration with 12 stages,
and 12 workers with two stations per stage. The type of work described in McCreery and
Krajewski (1999) consisted of assembly operations where workers were allowed to transfer
between stations according to whether they were ‘fixed’ or ‘floating’. Fixed workers were
designated a ‘home’ station, and only left this station when the queue was empty. Workers could
visit another station that they were additionally trained for but must immediately return to their
home station as soon as there was work available. However, a floating worker would move to
another station they are additionally trained for with the longest queue after the completion of
every unit. Their paper assumed a worker learning curve according to the DeJong (1957) model.
However, their paper did not use a power forgetting curve rate but rather assumed a linear
progress back up the original learning curve during an interruption, and, that total forgetting
occurred according to the difficulty of the task, with a complex task requiring 30 days for total
forgetting and a simple task requiring 60 days. As a result, the forgetting function was linear
with respect to the interruption interval. The experiment consisted of four experimental factors
and eight fixed factors. The experimental factors were: product variety, task complexity, degree
of cross-training, and proportion of fixed workers. The product variety factor consisted of four
sub-factors: number of products in product line, task-time variability within product types,
variability in product routings, and rate of product turnover. The task complexity factor also
consisted of four sub-factors: learning rate, proportion of learning possible, predominant type of
learning, and speed of forgetting. The proportion of learning possible measured the fraction of
standard processing time to initial processing time. This fraction varied between the ‘home’ and
‘away’ tasks of the workers. The predominant type of learning sub-factor included two levels:
‘process’ learning and ‘product’ learning. Process learning pertained to generic skills that were
transferable to any product that required those tasks. As a result, the interruption interval just
included the elapsed time since this generic task was last performed. Product learning, on the
other hand, specified that the task is different across products. Therefore, the interruption
interval included the elapsed time since this unique product-process task was performed. The
effect of these factors on the performance measures of product throughput, work in process, and
worker utilization was examined by analyzing the results of four work environment settings: low
task complexity-low product variety, low task complexity-high product variety, high task
complexity-low product variety, and high task complexity-high variety. The results of their

simulation experiment concluded that performance in the first environment is best with just a
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little cross-training; however, high levels of cross-training do little good. In the second
environment, high levels of cross-training and flexible worker deployment are the best policy. In
fact, the second level environment benefited most from worker cross-training. In the third
environment, a little cross-training and restricted deployment is best. In the fourth environment,

high cross-training and restrictive deployment was the best policy.

In Kher (2000), a stochastic version of the study done by Kher et al. (1999) was conducted. His
study utilized a mathematical simulation model where the results were statistically validated, and
there was partial empirical validation of inputs and results. Also, the same learning-forgetting
model (LFL), upfront training policies, attrition rate/training period ratios, and forgetting rates
(85%, 90%, 95%) as Kher et al. (1999) were assumed, with the last two factors varying in
quantity only. However, in Kher (2000), the DRC system was modeled as stochastic with
exponentially distributed job arrivals and processing times. The number of operations per job
was also random and uniformly distributed. The DRC system consists of six departments, each
containing four machines and two workers, resulting in a staffing level of 50%. The
centralization of control rule was decentralized and the worker assignment rule was first come,
first served (FCFS). The shop performance measures used were mean flow time and mean
tardiness. A warm-up period of three years was used prior to the collection of the simulation
results over a subsequent period of 15 simulated years. A base-case of no flexibility was used for
comparison. The results of the simulation were as follows: DRC systems with forgetting rates of
90% and 95% are always preferable to the base case with respect to both performance measures;
worker flexibility when forgetting rates are 85% is only preferable to the base case when the
attrition rate is lowest; incremental flexibility can overcome the detrimental effects of worker
attrition in the 90% - 95% forgetting range; and, FAP —1 and FAP —2 reduce relearning
losses but do not help to improve the two performance measures in the 90% - 95% forgetting

range.

Jaber et al. (2003) used mathematical modeling in a deterministic simulation where there was
partial empirical validation of inputs and results. Statistical validation of results was not
necessary because of deterministic input parameters. They extended upon the findings of Kher
(2000) by incorporating the LFCM of learning and forgetting of Jaber and Bonney (1996)
instead of the VRVF model of Carlson and Rowe (1976). Their choice of the LFCM over other
models was justified by its ability to satisfy what was stated as the seven characteristics of
learning and forgetting. These characteristics were obtained through past studies of learning and
forgetting and were listed as follows (Jaber et al., 2003): (1) the amount of experience gained
before interruption occurs in the learning process influences the level of forgetting; (2) the

length of the interruption
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interval influences the level of forgetting; (3) the relearning rate is the same as the original
learning rate; (4) the power-based model is appropriate for capturing forgetting effects; (5)
learning and forgetting are mirror images of each other; (6) the level of forgetting depends on
the rate at which a worker learns; and, (7) the nature of the task being performed influences the
amount of forgetting. The VRVF model used by Kher (2000) was shown to underestimate the
amount of forgetting in Jaber and Bonney (1996). As a result, Jaber et al. (2003) used the LFCM
in a similar but deterministic experimental design as Kher (2000). The results of Jaber et al.
(2003) were as expected: the VRVF underestimated the amount of total forgetting over
subsequent cycles because the VRVF does not recalculate a unique forgetting curve slope every
cycle as does the LFCM. The conclusions of Kher (2000) stated that no upfront training
(FAP —0) is the best way to improve shop performance under severe forgetting (85%). The
results of Jaber et al. (2003) suggest that this conclusion had to be further justified since the
VRVF may mislead managers by providing shorter estimates of time standards. The results for
FAP —1 and FAP —2 concur with the findings of Kher (2000) when the worker learns two
tasks. However, when the worker learns three tasks, the VRVF overestimates forgetting losses
due to the absence of the adjustment of the forgetting rates of subsequent cycles. In addition,
Kher (2000) stated that upfront training did not improve worker performance. The results of
Jaber et al. (2003) suggest that this also may be unsubstantiated because the VRVF model does
not carry over the positive affects of training through subsequent cycles, as does the variable

forgetting slope of the LFCM.

Jaber et al. (2003) also organized their analysis by posing three specific questions: (1) Will
providing upfront training reduce forgetting? (2) Does the frequency of worker transfers relate to
forgetting? (3) Do the answers to (1) and (2) change if the amount of training or forgetting rates
is changed? The notable results of the three questions were as follows: increasing training to
FAP -1 or FAP —2 always reduces forgetting losses, varying the forgetting rate and the
number of tasks learned affects the impact of the worker transfer frequency (C ) and upfront
training (FAP) on forgetting losses, and increasing the rate of worker transfers reduces the
forgetting losses. Interestingly, most notable was the unexpected degree of interaction between
the transfer and training polices. For example, either increasing the transfer policy or introducing
initial training reduces forgetting losses when forgetting rates are low and there is a transfer
policy of 10 units (C =10). It is not necessary to increase both the training and transfer policy.
This phenomenon is observed until the case of when three tasks are learned (N =3) and

forgetting rates are high. It is not until this point that both increasing the transfer policy and the

amount of training is needed to reduce forgetting effects.
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Jaber et al. (2003) also included the effect of the degree of job similarity in the LFCM model.
Their extension to the LFCM model allowed for a degree of similarity between two or three jobs
over the original LFCM assumption of no job similarities. The effect of job similarity caused the
relative importance of initial training and transfers to decline with increasing levels of job
similarity (Jaber et al., 2003). This thesis has the same experimental design structure of Jaber et
al. (2003) with respect to DRC system formulation and task similarity factors. However, this
thesis extends upon the work of Jaber et al. (2003) by examining the effect of a variable worker
learning rate on the performance of DRC shops by introducing different task-types with respect
to the degree of cognitive and motor elements of the task. This dual nature of learning in DRC
systems is modeled using the dual-phase learning-forgetting model (DPLFM) developed by
Jaber and Kher (2002). This model is hereafter referred to as model A. Then a second model
incorporates the new job similarity factor into model A and examines how this compares with
the results of Jaber et al. (2003), where the learn forget curve model (LFCM) was used. This

model is hereafter referred to as model B. Then a third model develops a multivariate function

that provides the optimal upfront training policy (/AP) and the optimal centralization of

control policy (C ‘) (batch transfer frequency) as output variables given four prescribed DRC
system factors: task similarity factor (§), initial processing time to standard time ratio of the

task ( o ), worker learning rate ( LR ), and worker forgetting rate ( £'R ). This model is hereafter

referred to as model C. All of the policy decisions in models A, B and C are examined as they
minimize the labour costing performance measure of average processing (service) time ( APT )
calculated over approximately 3000 jobs, the same performance measure used by Jaber et al.
(2003). A numerical example is included to illustrate the practicality of the function developed
in model C. In addition, all of the results of the aforementioned models are compared to the
results of Jaber et al. (2003) and the five possible issues that affect DRC shop performance
given by Hottenstein and Bowman (1998).

1.5 Chapter 1 summary

The previous chapter 1 has provided a survey of DRC systems research, briefly outlined worker
learning theory, described some pertinent worker learning and forgetting models, and has
reviewed research on the learning and forgetting phenomenon in DRC systems. The following
chapter 2 summarizes the development of the dual-phase learning-forgetting model (DPLFM),
the learning and forgeiting model used in model A and model B of this thesis. Chapter 2
concludes by illustrating the behaviour of the DPLFM with a numerical example.
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| 2 Chapter 2: the dual-phase learning-
forgetting model (DPLFM)

2.1 Prologue

In modern industrial settings, workers perform tasks that have various levels of mental and
manual requirements. Also, frequent interruptions and shorter production runs cause workers to
forget previously gained task experience. Traditional learning curves such as Wright’s (Wright,
1936) power model do not capture these two characteristics of worker learning in industrial
settings. The dual-phase learning-forgetting model or the DPLFM (Jaber and Kher, 2002) is the
first to model both the cognitive and motor elements of learning, and learning and forgetting
losses due to interruptions. Jaber and Kher (2002) did this by integrating the dual-phase
learning model (DPLM) of Dar-El et al. (1995) with the learn-forget curve model (LFCM) of
Jaber and Bonney (1996) to develop the DPLFM.

As previously discussed, the DPLM was the first model to account for cognitive and motor
elements in a learning model that was validated experimentally. Also, the LFCM is the only
empirically validated mathematical model of learning and forgetting that contains two important
features of learning and forgetting curves: it contains a forgetting curve that asymptotes to a
unique value equivalent to the time to produce the first unit with no prior experience and, it has
an intersection point of interruption equal on both the learning and forgetting curves (Jaber and
Bonney, 1996). The LFCM does this by re-calculating a unique forgetting curve slope after each

interruption.

The unique features of both models were combined to formulate the DPLFM. New
mathematical qualities inherent to the DPLFM resulted. These qualities are used to model the
seven characteristics of learning and forgetting that have been summarized in industrial learning
and forgetting research (Jaber et al., 2003). These characteristics are given by Jaber et al. (2003)
and are listed as follows: (1) the amount of experience gained before an interruption occurs in
the learning process influences the level of forgetting; (2) the length of the interruption interval
influences the level of forgetting; (3) the relearning rate is the same as the original learning rate;
(4) the power-based model is appropriate for capturing forgetting effects; (5) learning and

forgetting are mirror images of each other; (6) the level of forgetting depends upon the rate at
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which a worker learns; (7) the nature of a task being performed influences the amount of
forgetting,

The DPLFM learning and forgetting model most closely embodies the above characteristics, and
accounts for cognitive and motor elements in a learning model that was validated experimentally
(Jaber et al., 2003); and as a result, the DPFLM was chosen to simulate the worker learning and

forgetting effect in the DRC systems modeled in this thesis.

2.1.1 The dual-phase learning model (DPLM)

The dual-phase learning model (DPLM) (Dar-El et al., 1995) was developed in order to model
two main learning phenomena found in experimental settings, namely: that cognitive and motor
learning occurs at different rates, and, these rates vary with time. It was also developed to
account for prediction errors in carefully researched empirical data (Dar-El, 2000). When the
empirical data were taken in the early stages of the learning curve, traditional learning curve
models underestimated future processing times, see Figure 2.1 (Dar-El et al., 1995). Also, when
the estimation of initial processing times were predicted from later empirical data, the early
cycle estimates underestimated actual processing times, see Figure 2.2 (Dar-El et al., 1995). It
was found that tasks that involve both cognitive and motor learning have a faster learning rate
than tasks with mainly motor learning; and that cognitive-motor tasks have a larger learning
constant in the initial learning stages than the later stages (Dar-El et al., 1995). These two
finding imply that cognitive tasks have a larger learning rate than motor tasks and that the
cognitive portion of the task is most prevalent in the early stages, whereas the motor element
dominates the latter stages, see Figure 2.3. This dual-learning phenomenon explained the
aforementioned empirical prediction errors of traditional learning models. These findings led to
the development of the DPLM which included a variable learning slope as a function of both the
cognitive and motor learning rates. The behaviour of this variable learning rate is shown in

Figure 2.3.
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Figure 2.3: The combined effect on learning performance (Dar-El et al., 1995)
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The cognitive portion of the task is designated a learning constant under pure cognitive

conditions, b, ; and the motor portion of the task is designated a learning constant under pure

motor conditions, b, (Dar-El et al., 1995). These slopes, and their respective initial processing

times, are combined to form the actual dual-learning of the DPLM, it is given by (Dar-El et al.,
1995):

y(my={. () +y, O}xnt, @.1)

where y(n) is the time to process the 7" unit, y_(1) is the time to process the first unit under
purely cognitive conditions, y,,(1) is the time to process the first unit under purely motor

conditions, and b, is the combined learning slope (Dar-El et al., 1995).

2.1.2 The learn-forget curve model (LFCM)®

Jaber and Bonney (1996) developed the learn-forget curve model (LFCM) in order to reflect
three characteristics of learning highlighted in learning-forgetting literature (Jaber et al., 2003):
(1) forgetting is a function of the amount of experience gained prior to an interruption; (2)
forgetting is a function of the break length and the learning rate; and, (3) the model should
satisfy the two hypotheses that when total forgetting occurs, the processing time reverts to the
time to produce the first unit with no prior experience, and the processing time on the learning
curve equals the forgetting curve at the point of interruption (Jaber and Bonney, 1996). The

LFCM achieved these three criteria respectively by expressing the forgetting slope as a function
of the amount of experience prior to the point of interruption, denoted by u; + n,, where u; is
the amount of experience retained at the beginning of cycle #, and #; is the number of units

processed in the current cycle i before the interruption; and, the number of units that could have

been processed in cycle i if there was no interruption (Jaber and Bonney, 1996):

1

¢ = I:lj};ll)) (t(ui +n,)+d, ):lg ) (22)

where t(u, +n,) =[y1)/1-5)]x(u; +n, )" is the time required to process #; + 7, units

$equations taken from Jaber and Bonney (1996)
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‘and d, is the length of the interruption interval and b is the learning constant, and the intercept

of the forgetting equation in cycle / is given by:

j’ i (l) =) (l)(ui +n, )—(b+f,) . (2.3)

therefore, the forgetting slope is calculated by:

_ b(1-b)log(u; +n,)

‘ 2.4)
i log(a; +1)
where @; is found by the following:
-5 77
o= D[y(l)(zlejbni) } , 5

and D is the time to total forgetting. The time to process the first unit in cycle i is given by:
~ -b
i) =y +1)~, (2.6)

where %, , the amount of experience retained from the previous cycle, is found by:

bef)b g \-Silb
u, =W, + ni—l)( ) (8) " 2.7

Using the expressions above, interested readers can confirm that the processing time reverts
back to the time to produce the first unit when the interruption interval reaches DD, and the

processing time on the learning curve equals the forgetting curve at the point of interruption

(Dar-El et al., 1995).
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2.2 The dual-phase learning-forgetting model
(DPLFM)

The unique strengths of both the above models, namely, the dual cognitive-motor learning of the
DPLM, and the mathematical modeling of the forgetting phenomena of the LFCM were
combined by Jaber and Kher (2002) to form the dual-phase learning-forgetting model (DPLFM).
Therefore, the DPLFM model has similar relationships to the LFCM with the exception that
there is unique learning and forgetting slopes, intersects, levels of transferred experience, and,
time to total forgetting parameters for both the cognitive and motor elements of a task (Jaber and
Kher, 2002). These dual parameters were then combined to form a processing time for the entire
task (both motor and cognitive portions), effective number of units remembered, and, combined
learning slopes for every subsequent cycle (Jaber and Kher, 2002). The following is a numerical
example that illustrates the calculations involved in the DPLFM. In addition, a table of results is

given to examine the behaviour of the DPLFM parameters over several production cycles.

2.2.1 Numerical example of the DPLFM

Jaber and Kher (2002) provided a numerical example to illustrate the use of the DPLFM.
Reasonable initial estimates of the parameters are given using historical estimates of appropriate
cognitive and motor learning rates and R values, where R is the ratio of time for the first unit
under purely cognitive conditions to the time for the first unit under purely motor conditions

(Jaber and Kher, 2002). In Jaber and Kher (2002), a sensitivity analysis was conducted by

varying the length of the interruption interval (d;), R values, D, and D, values; where D,,

is the time to totally forget motor elements, and D, is the time to totally forget cognitive

elements. In this thesis, however, it was sufficient to just examine the behaviour of the
parameters across several cycles by keeping the parameters constant throughout the analysis. For

a detailed sensitivity analysis, it is recommended that readers see Jaber and Kher (2002).

Initially, the estimated parameters used for the numerical example are shown in Table 2.1; the
settings of these parameters differ only slightly from the numerical example in Jaber and Kher
(2002). This numerical example only illustrates the calculations involved to reach the desired
parameters for the start of the second cycle. After the sample calculations are shown, a table of

parameter values is given in Table 2.2 to display results for five full cycles.
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_Table 2.1: Parameter estimations for the DPLFM numerical example

Parameter Definition Setting
D, Time to totally forget 45 days
cognitive element of task
D, Time to totally forget motor 250 days
element of task
b, Cognitive learning slope 0.4150 (75% learning rate)
b, Motor learning slope 0.0740 (95% learning rate)
R Initial unit processing time: 1 [y(Dlyu(D]
cognitive-to-motor ratio
y(1) Initial unit processing time 0.25 days
n Number of units processed in | 30
each cycle i (equal for every
cycle)
d Interruption interval length 15 days

between cycle i (equal for

every cycle)
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Initially, the parameters aic and a,."' are calculated for the first cycle, namely, alc and al"' .
These parameters represent the ratio of total forgetting to the time needed to acquire (% ,.c +n,)

units of cognitive and (u,.m +7,) units of motor experience in the first cycle respectively. This

is given by:

¢ -6 ] 1-0.4150
o= Dc[yc(l)(ul +n,) } _ 45[0.125(0+30)

=28.80, 2.8
1-b, 1-0.4150 ] @8)

and

m b, 77 1-0.0740
or = Dm[ym(l)(ul +n,) } =250[0.125(0+30)

=79.40. (29
1-b, 1-0.0740

The DPLFM assigns learning slopes for the cognitive and motor portions of a task, given as b,

and b,, respectively. The combined slope b, for the first cycle is given by:

log|(R + (u, +m)* ™) (R +1)]

b.(n)=b, — 2.10
1 (n) ¢ log(u] + n) ( )
substituting the values gives:
0.4150-0.0740
b..(30) = 0.4150 loglt +(0+30) )/ (l+1)]=0.198. @.11)

log(0+30)

The forgetting slopes for the first cycle under pure cognitive and motor

conditions are given respectively by:

_b.(l —b.)log(x," +n) _ 0.4150(1-0.4150)log(0 + 30) =0.243,2.12)

A log(1 + alc) log(1+28.80)
and
fl,,, _ b,(1-b,)log(u, " +n) _ 0.0740(1 - 0.0740) log(0 + 30) =0.053. (2.13)

log(1+ ;™) log(l + 79.40)
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i i ¢ i iti i d (u,” +n,) units of
The time needed to acquire (#,” + n,) units of cognitive experience and (¥; ;
motor experience in the first cycle is given by:

Y. O +n)'™ 012500 +30)7"%

N ~1.563, (2.14)
Y +m) 1-5, 1-0.4150
and
m 1-b,, 1-0.0740
pu 4y < 2T ED 01O 30 g

1-b, 1-0.0740

Therefore, the time to acquire (%, + #,) units of combined experience in the first cycle is given
by:

y(l)(ul +n)l—b|. N 0.25(O+3O)1—0.198

=4.769 . (2.16)
1-b, 1-0.198

Y(u, +n)=

The combined forgetting slope [ * for the first cycle is given by:

« _ bu(1=b.)log(u, +m) _ 0.198(1—0.198)log(0 +30)

f =0.136
log(l +250/4.769
log[l + —HMJ el / ] .(2.17)
y(u, +n)
The forget curve intercept for the first cycle is given by:
P10 = y)(u, +r) A = 0.25(0 + 30)"C1%0136 = 0 080 (2.18)

If there was not an interruption in the production process, and if learning continued throughout

this process, a theoretical number of units could have been produced. The number of both

cognitive units (¢]C ) and motor units (¢,m ) that could have been processed in the first cycle if

there was not an interruption is given as follows:

. T1-» . o
A =’:yc(6 [J’(u1 +n1)+d1]:,

_[1—0.4150

1-0.
i35 (1.563+15)] =1698, 2.19)
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and

_ b,
¢1m =|:lym(b1”; [y(ulm +n)+d, ]jl

(3.149 +15)
0.125

1-0.0740 K000
=|— ] =199. (2.20)

Since the DPLFM models a partial transmission of learning after each interruption, this retained
experience must be accounted for in successive cycles. The DPLFM does this by calculating the
equivalent number of units of experience retained (or transferred) to the subsequent cycle.
Therefore, the number of cognitive and motor units of experience retained at the start of the

second cycle is given by:

u, =@ +n )(bc+flc)/bc < (d' )—f,‘/bc (2:21)

— (0 + 30)(0.4150+0.243)/0.4|50 % (1 698)—0.243/0.4150 — 3

and

uzm - (ulm +nl)(bm+fl'")/bm X(¢lm)-f,”'/b,,,

=0+ 30)(0'0740*‘0-053)/ 0.0740 (199) ~0053/0.0740 _ o : (2:22)

The processing time for the first unit in the second cycle is now found as follows:
¥, =y, M)+ 3," Q) =y, D@, +1)* +y, w," +1) (2.23)
=0.125@ +1)**'* +0.125@8 + 1) *7®

=0.177 days.

The value of 0.177 follows the logic of the assumption that experience is still transferred to the
next cycle causing y,(1) < y,(1) as long as d; < D. The number of units of experience

remembered at the start of the second cycle is given by:

“1/bu(30) ~1/0.198
u =| 22 -1 =[9ﬂ] -1 =5. (2.24)
() 0.250
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Therefore, since the processing time and the number of transferred units of experience for the
first unit of the second cycle is now known for both cognitive and motor elements, all of the
previous calculations can be performed for the
second cycle and all other successive production cycles. For interest, the combined learning

slope for the second cycle is given by

logl(R + (u, + n)* ) (R +1)]
log(u, +n) ’

. bz‘(n) = bc -

substituting the values give:

log|(1+ (5 +30)'-09) /1 + 1)

=0.196. (2.25)
log(5 +30)

b,.(30) = 0.4150 —

Likewise, the parameters for the first five production cycles are calculated and summarized in
Table 2.2. As shown in Table 2.2, the behaviour of the initial unit processing time of each cycle
decreases at a non-uniform rate through successive cycles. This implies that some experience is

transferred after the interruption period between cycles. The equivalent units of experience
transferred between cycles, or u,, represents the degree by which forgetting has caused the
experience of the worker to rise back up the learning curve. The increasing level of u, suggests

that this corresponds to more transferred experience between cycles as the number of cycles

increase. However, it appears that 2, slowly asymptotes to some fixed value after successive

cycles. Also, the combined cognitive/motor learning slope b, appears to behave in the same

manner, suggesting that, in this particular example, the rate at which the worker learns gradually

decreases with successive cycles.

In summary, the DPLFM is the only learning and forgetting model that closely models seven
characteristics of learning as summarized by Jaber et al. (2003), and it theoretically models

cognitive and motor learning elements that were validated experimentally.
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Table 2.2: Initial five production cycle parameters of the DPLFM numerical

example '

Cycle i n v, () b.

1 30 0.250 0.198
2 30 0.177 0.196
3 30 0.175 0.195
4 30 0.174 0.195
5 30 0.174 0.195

2.3 Chapter 2 summary

The previous chapter 2 has summarized the development of the dual-phase learning-forgetting

model (DPLFM) and has illustrated its behaviour with a numerical example. The following

chapter 3 summarizes the modeling or experimental designs used in the three models of this

thesis.
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“Chapter 3: experimental design and
modeling

3.1 Experimental design of model A

There are two main components to any experimental problem: the design of the experiment and
the statistical analysis of the results. This chapter outlines the experimental design for the models
in this thesis. The statistical analysis of the results is not necessary or possible since the
experiment is deterministic. That is, all of the models in this thesis use a series of functions and
logical statements, and each observation for each cell of the experiment is identical to the next.
Consequently, no statistical methods are necessary since the results are definite and not

probabilistic.

Montgomery (1997) stated three basic principles of experimental design: (1) replication, (2)
randomization, and, (3) blocking. The experiments in model A, model B, and model C do not
have any errors due to variability because of their deterministic input parameters, and therefore
no replications or randomizations of replications are necessary. Also, blocking is not necessary
because nuisance sources of variability do not exist in a deterministic model. However, this
thesis does conduct a mathematical test in which changes are made to the input variables that
result in changes to output responses, and hence, this thesis does use experiments in all of its
models. As a result, this thesis employs an experimental design for all of its models. An
effective experiment includes the following seven steps (Montgomery, 1997): (1) recognition
and statement of the problem, (2) choice of factors, levels, and ranges, (3) selection of the
response variable, (4) choice of experimental design, (5) performing the experiment, (6)
statistical analysis of the data, and, (7) conclusions and recommendations. However, since the
models in this thesis are. deterministic, the statistical analysis of the data is excluded. Instead, all

the main factor effects and factor interactions are examined in a logical and qualitative fashion.
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3.1.1 Recognition and statement of the problem

The purpose of Jaber et al. (2003) was to see the relative effect of modeling a DRC shop system
with worker learning and forgetting following the LFCM of Jaber and Bonney (1996) versus the
VRVF learning model of Carlson and Rowe (1976). Four other experimental factors were varied

in addition to the type of learning model.

The problem or purpose of model A is to determine the effect of the task-type factor on DRC
shop performance using the DPLFM instead of the VRVF or the LFCM (used in Jaber et al.
(2003)) to model worker learning and forgetting. Namely, the learning rate of the worker is the
new variable in the DRC system and it varies in relation to the type of task being processed. The
degree and pattern of the difference in results obtained by including the task-type factor
(variable learning rate) in model A versus the results of a fixed task-type (learning rate) in Jaber
et al. (2003) is commented upon and conclusions are drawn for the reasons for the change in

output as it relates to a DRC system context.

3.1.2 Choice of factors, levels, and ranges

Jaber et al. (2003) used a five factor experiment with different levels within each factor. The
experimental factors and their corresponding levels are summarized in Table 3.1. Montgomery
(1997) stated that relevant process knowledge in the form of practical experience or theoretical
understanding is necessary in order to set appropriate factor levels and ranges of those levels.
The levels chosen in Jaber et al. (2003) have been justified empirically by referencing studies in
DRC research. For example, as shown in Table 3.1, the levels of worker flexibility chosen were
justified empirically by a study by Malhotra et al. (1993). The levels chosen for worker
forgetting rates were also justified by Malhotra et al. (1993) as representing a relatively
challenging machine-paced environment. The range of the centralization of control levels is
appropriate given the transfer time penalties associated with the levels of forgetting used (Kher
et al., 1999). The range of the upfront training levels were chosen to reflect the trade off between
the choice to take advantage of flexibility as soon as possible ( F4P —0) and the desire for
greater worker efficiency in the long run (Kher et al., 1999). However, even though training
periods of zero (FAP —0), one (FAP —1), and two (FAP —2) times the standard times
seem appropriate, no empirical evidence was given for choosing these levels (Kher et al., 1999).
Finally, the two levels for learning and forgetting were justified in the original development of

these models by
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. Table 3.1: Experimental factors used in the study of Jaber et al. (2003)

Experimental factor

Levels per factor

Notes

Level of worker flexibility
(N)

2

The worker is either trained for two
or three tasks/stages. Note that a
maximum of three workstations is
used because of the Malhotra et al.
(1993) finding that cross-training
workers in more than three
departments worsens system
performance.

Centralization of control

()

The worker moves from the station
after a fixed number of jobs are
completed, i.e.: after batch sizes of
10, 25, and 250. Kher et al. (1999)
suggested that a batch size transfer
less than 10 or greater than 250
causes too many transfer time
penalties to be effective.

Worker forgetting rate
(FR)

Three different worker forgetting rate
levels of 85%, 80%, and 95%. The
range of these levels is the same as in
Jaber et al. (2003). Kher et al. (1999)
used the same range and commented
that it represented reasonably
challenging yet sufficiently broad
forgetting conditions.

Extent of upfront worker
training ( FAP)

FAP -0, FAP—1, and

FAP — 2 which corresponds to: no
initial training, the worker must
process until standard time is reached
(370 units"") in the first cycle, and,
the worker must process twice this
amount (740) in the first cycle
respectively before any transfers
occur.

Worker learning-forgetting
model

Worker learning-forgetting is
modeled according to the VRVF and
the LFCM.

=%

. Based on equation (1) in Kher et al. (1999) for an 85% learning environment
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Carlson and Rowe (1976) (VRVF) and Jaber and Bonney (1996) (LFCM). The comprehensive
summary of assumptions and results of Jaber et al. (2003), and the assumptions and results of the
models of this thesis as they relate to DRC system research are given in the DRC summary
matrix in the appendix, see section 7.1. The experimental factors of Jaber et al. (2003) and all
the models in this thesis are also included in this DRC summary matrix'. In model A, the first
four experimental factors of Jaber et al. (2003) are used, as described in Table 3.1 (excluding the
learning-forgetting model factor). The additional experimental factors used in this thesis are the
initial unit processing time cognitive-to-motor ratio ( R ), and the introduction of four different
task-types with respect to both cognitive and motor learning elements of the task. The additional
experimental factors used in model A are summarized in Table 3.2. As a result, from Tables 3.1
and 3.2, this experiment is a 2(level of worker flexibility)x3(centralization of control (‘'when'
rule))x3(worker forgetting rate)x3(extent of upfront worker training)x4(task-type)x3( R ) model
yielding 648 individual data points, where each data point represents the performance measure
of the average processing (service) time ( APT ) calculated over approximately 3000 jobs per
station, the same performance measure used by Jaber et al. (2003). in Jaber et al. (2003), a fixed
learning rate was assumed to apply to the task as a whole. However, in model A, the

composition of the learning rate of each task is specified using unique cognitive and motor

learning rates. Four different task-types, a predominantly cognitive task (7,.), a motor task

(T,,), a median task (7}, ), and a uniform task (7, ) are defined by their own respective

cognitive and motor learning rates. In model A, as in Jaber et al. (2003), there is no difference in
factors between stations. The levels and ranges for the learning rates of the four task-types are
supported by an initial parameter learning estimation section by Dar-El et al. (1995). The
classification of learning rates as a function of task-type is given in Figure 3.1. Dar-El et al.
(1995) classified high cognitive tasks (C1) LR =70% to 75%, more cognitive than motor tasks
(C2) LR = 75% to 80%, more motor than cognitive tasks (M2) LR = 80% to 85%, and high
motor tasks (M1) LR = 80% to 85%. In model A, the cognitive task 7,. has a cognitive

learning rate equal to the mean of the ‘high cognitive task’ range, or 72.5%, and a motor

learning rate equal to the mean of the ‘more motor than cognitive’ task range, or 82.5%.

Al Please note that the matrix clearly distinguishes the similarities and differences between models and highlights the
assumptions of each model in bold.
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" Table 3.2: Additional experimental factors used.in model A

Experimental factor

Levels per factor

Notes

Task-type 4

A predominantly cognitive task 7 -, and

motor task T}, , are distinguished from

each other with their own composite
learning rates. The respective cognitive
and motor learning rates of cognitive task

TC are as follows:

LR, =725%, LR, =82.5%; and for
motor task TM : LRC =77.5%, LRM
= 87.5%. The median task 7}, and
uniform task 7, have cognitive and

motor learning rates of LR . =75%,

LR,, =85%,and LR, = LR,, =
80% respectively.

Initial unit processing time: cognitive-to-
motor ratio [y, (1) / y,, (1) 1. The three
levels are set at 1/3, 1, and 3. These ratios
correspond to those empirically observed

by DarEletal. (1995) and used ina
numerical example by Jaber and Kher

(2002).

More
Cognitive
than Motor

Highly
Cognitive

More
motor than
Cognitive

Highly
Motor

70% 5% 75% 71.5%

Pure
Cognitive

80%

82.5%

85% 87.5% 90%

Pure
Motor

Figure 3.1: Classification of learning slopes (Dar-El et al, 1995)
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The motor task 7, has a cognitive learning rate equal to the mean of the ‘more cognitive than
motor’ task range, or 77.5%, and a motor learning rate equal to the mean of the ‘high motor
task’ range, or 87.5%. The median task 7}, , represents a task that is neither predominantly

cognitive nor motor, and hence, has a cognitive and motor learning range spread equally across

the median of the learning range in Figure 4.5 with a cognitive learning rate equal to 75%, and a

motor learning rate equal to 85%. The uniform task 7, represents a task that has an average

learning rate equal to that of the median task T},,, (80%); however, this task has no distinctive

cognitive and motor elements and therefore has both cognitive and motor learning rates equal to
80%. The values and ranges of the four task-types are shown in Figure 3.2. Model A also uses

two additional parameters. These parameters, their values, and the justification for their levels
are listed in Table 3.3. The parameter D, in each station is given by substituting equation (2.8)

into (2.12) to get:

b, (1-b,)log(u, +n)

¢ = t) (3'1)

/ ( D,(1-b,) )

log| 1+ - -
Y. +m)

and solving for D, gives:

b, (1-b,)log(s"+n) c 1-,
D, =[10 £ -1 x(yc(l)(llll_'b"nl) ) 6.2)

D, is found similarly and is given by:

D =[10 "

m

-1
1-5,

Y (1)(u1"'+m)"”"j’ 63

where £,°, f;", n,, are the specified initial cognitive and motor forgetting slopes and the



Motor Task (Tm)

LRo | LRm
’MﬂfmTﬂ(de) |
% 5% 5% TI5% 0% 825% 5% 815% 90%

I A N B
—

.. o
o Um}mﬂ

LRm

LRs |

Cognive Tesk (T

Figure 3.2: The ranges of learning rates for the four task-types in model A

Table 3.3: Additional parameters related to time-for-total-forgetting used in

model A.

forget motor
elements of a task

a function of the forgetting rate,
learning slope, number of units
produced and the time to produce
these units. However, in the
DPLFM, there is a unique time to
forgetting parameter for both
cognitive and motor elements.

Parameter Definition Level Justification
D Time to totally The time to total forgetting ( [D ) is | Faster learned tasks are also
‘ forget cognitive a function of the forgetting rate, forgotten faster, given that
elements of atask | learning slope, number of units cognitive tasks are learned a
produced and the time to produce | 2 faster rate (Jaber et al,
these units. However, in the 2003). These levels of time
DPLFM, there is a unique time to | 10 total forgetting were also
forgetting parameter for both used in Jaber and Kher
cognitive and motor elements. (2002).
D Time to totally The time to total forgetting (DD ) is | Same as above.
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number of units processed in the first cycle respectively. Also, in model A, the determination of

the number of units needed to reach the standard time of the worker (71,) necessitated solving

for n_ in the following expression using a simple bisection numerical technique:
'_bc _bm
y.On < +y,On "=y, (3.4)

3.1.3 Selection of the response variables

The response variable in model A is the performance measure of the DRC system in question,

namely: average processing (service) time ( APT) calculated over approximately 3000 jobs per

station (4PT). This response variable is consistent with the one used in Jaber et al. (2003).

The results of model A are compared to those of Jaber et al. (2003). Also, the results are
interpreted as they pertain to the five possible issues that affect DRC shop performance
measures: worker flexibility, centralization of control, worker assignment, queue disciplines, and
cost of transferring workers (Hottenstein and Bowman, 1998). This comparison is conducted for
every model in this thesis. These issues are summarized in the results/conclusions section of the
summary matrix in the appendix (see section 7.1.2) and are included for the results of every

model examined in this thesis.

3.1.4 Choice of experimental design

As previously discussed, model A uses deterministic input parameters, and hence the results do
not require the statistical tools of replication, randomization, or blocking. However, a judgement
had to be made to determine whether the difference in outputs obtained by using the DPLFM
instead of the VRVF and the LFCM learning models is of any practical significance. The
implications of the results of model A are also discussed as they pertain to five possible DRC

shop performance issues discussed by Hottenstein and Bowman (1998).

3.1.5 Modeling methodology

The calculations for model A were performed using an Excel spreadsheet. Any necessary

programming was performed in Excel-Visual Basic.
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3.2 Experimental design of model B

Task similarity can be defined as the ratio of shared task attributes (between tasks) and the total
task attributes of all tasks, where each task attribute is inherent to the task (i.e. irrespective to
who works on the task), is identical in each task, and does not depend on other attributes. This
simplification of the definition of task similarity and task attributes is given for ease of

quantification.

Intuitively, performing a similar task during a work interruption yields less forgetting losses than
performing a task that is totally dissimilar. Jaber et al. (2003) used this reasoning to remodel the
forgetting losses associated with the LFCM by assuming that tasks have various levels of
similarity. This was done by assigning a similarity coefficient that measures the degree of
commonality between task attributes for two and three tasks. For example, a similarity
coefficient of s =0 and s =1 represent tasks that are totally dissimilar and totally similar
respectively. They then remodelled the LFCM and determined how the task similarity factor
affected the previous assumption of no task similarities. The similarity coefficient for two tasks

is calculated as follows (Jaber et al., 2003):

o= AN{T) T (2)}], (3.5)
N{T(}+ N{T(2)}

where N{X} in the denominator is the number of attributes in task X . The numerator

represents the number of common attributes between tasks multiplied by two. The similarity

coefficients for three tasks consist of one three-way coefficient and three two-way coefficients.
They are calculated as follows (Jaber et al., 2003):

the three-way coefficient is given by,

5 o ANTONTQNTR)]
W20 NT}+ N T2+ NT3))

(3.6)
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the two-way coefficient is given by,

o _ANTO AT}
NIy + NTQ)Y

3.7

where T'(j)" =T'(i)— {T(]) NT(2) mT(3)} for i =1,2. The other two-way coefficients
(3,3 and S 5, are calculated similarly. For a detailed numerical example of the determination

of similarity coefficients see Jaber et al., (2003). The determination of the forget curve intercept
equation (2.18) of the DPLFM is then modified for two similar tasks as follows:

A=)y +u) " Loy n+u) ™, if n+u, <n,

= , (3.8)

-9y (n+ u,.)_f'. +sy,, Otherwise

where Y, is the standard time and #, is the required effective quantity to reach standard time.

Also, the determination of the forget curve intercept equation (2.18) of the DPLFM is then
modified for three similar tasks as follows:

5.0= =5, —s)¥DA+y, Yo (s 8D+, i n+uy, <n, (3.9)
L - N IACH
(A~s, =)/ DA+, Y +(s 5y, Otherwise

where s, is the similarity coefficient of the task of the current station j and the task at the

successor station £, and § w is the three-way similarity coefficient.

3.2.1 Recognition and statement of the problem

Jaber et al. (2003) examined how the inclusion of the task similarity factor affected the results of
the original assumption of no task similarity. The purpose of model B of this thesis is to
determine how the inclusion of the task similarity factor affects the results of model A and how
this compares with Jaber et al. (2003), where the LFCM was used.
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3.2.2 Choice of factors, levels, and ranges

In model B, the same experimental factors of model A are used. The additional experimental
factor in model B is the degree of similarity between tasks, this is denoted by §. For
consistency, the levels in model B are identical to those chosen by Jaber et al. (2003). They are
listed for two and three tasks in Table 3.4. As shown in Table 3.4, there are five similarity levels
for two tasks and four similarity levels for three tasks. The ranges for the levels for two tasks

seem appropriate because the degree of similarity increases in a constant manner in a wide range
from two totally dissimilar tasks, s =0, to two very similar tasks s =0.8. Also, for three

tasks, the levels chosen represent an ever-increasing degree of similarity, with the highest level

(S;) having all three tasks sharing many common task attributes. As a result, from Tables 3.1,

3.2 and 3.4, the experiment in model B is a [3(centralization of control (‘when' rule))x3(worker
forgetting rate)x3(extent of upfront worker training)=4(task-type)x3( R )x5(levels of similarity
when N = 2)] + [3(centralization of control (‘when' rule))x3(worker forgetting rate)x3(extent
of upfront worker training)x4(task-type)x3( R )x4(levels of similarity when N = 3)] model
yielding 2916 individual data points, where each data point represents the performance measure
of the average processing (service) time calculated over approximately 3000 jobs per station, the

same performance measure used in model A and in Jaber et al. (2003).

3.2.3 Selection of the response variables

The response variable in model B is the same as in model A.



Table 3.4: The levels of the factors in model B

N Factor levels
2 5 =0.0 s =02 s =04 §$=06]5=08
3 Level S, Level S| Level S, Level S,

Si1.29) = 0.0 Sy = 02 N7 0.25 S.2) = 0.0

S(z,_;) =0.0 §2.3 =0.2 $023 = 0.25 S(gl_;) =0.0

8013 = 0.0 §a.3) 7= 0.2 S$(1.3) = 0.25 $01.3) = 0.0

$(1,2,3) =0.0 $1,23) = 0.0 §(1,2,3) =0.2 S01,2,3) =0.8

Table 3.5: Input and output factors used in the formulation of the multivariate

Sfunction in model C

Factor

Levels/ranges

Justification

Input factors

Degree of task
similarity (§)

5:4{0.0,02, 0.4, 0.6, 0.8}

Same levels and ranges
used in Jaber et al.
(2003).

Initial processing time
to standard time ratio
(p)

D:1{2,3,4,5,6}

Maihotra et al. (1993)
used a p value of 2

and 4 to represent a low
and high initial cost of
learning respectively.
Model C also includes
the effect of a more
severe initial learning
loss(p =5,6)

Worker learning rate

LR

As in model A, the

(LR), where {70%, 75%, 80%, 85%, 90%} range of the worker

LR =100x27"? learning rate
encompasses the entire
estimated range as
noted by Dar-El et al.
(1995a), see Figure 3.1.

Worker forgetting rate | FR - Same as in model A, see

(FR), where {95%,92.5%,90%,87.5%,85%) | Table 3.1.

FR=100x2/

Optimal output
factors (translated)

Optimal upfront
training policy
(FAP")

The optimal policy was
searched within the range:
{FAP—-0—-FAP-5 }in
increments of 0.5 times the
standard-time number of units

(0.5xn,).

An upfront training
policy of
FAP-0/1/2was
used in Jaber et al.
(2003). Model C
includes the effect of
further upfront training.

Optimal centralization
of control policy (batch

transfer policy) (C")

The optimal policy was
searched within the range:
{10 — 250 units} in
increments of one unit.

Same as in model A, see
Table 3.1.
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Choice of experimental design

Model B differs from model A because the assumption of no task similarity has been released to
include tasks that are similar by varying degrees. The magnitude of the effect of the similarity
factor on the forgetting losses of the DPLFM is compared to the results of Jaber et al. (2003),
where the LFCM was used. The implications of the results of model B are also discussed as they
pertain to five possible DRC shop performance issues discussed by Hottenstein and Bowman

(1998). As in model A, the analysis in model B is predominantly qualitative.

3.2.4 Modeling methodology

The modelling methodology is the same as in model A except that the assumption of no task

similarity was released to include tasks that are similar by varying degrees.

3.3 Experimental design of model C

In model C, two multivariate functions were found that provide the optimal upfront training
policy (FAP") and the optimal centralization of control policy (C) (batch transfer frequency)

as output variables to the LFCM model (N = 2) given four prescribed DRC system factors:

task similarity factor (5 ), initial processing time to standard time ratio of the task ( 0 ), worker

learning rate ( LR ), and worker forgetting rate ( FR).

3.3.1 Recognition and statement of the problem

The problem statement of model C is as follows: Given a degree of job similarity (s ), initial

processing time to standard time ratio of the task ( 0 ), and the learning and forgetting rate of the

worker (LR, FR), what should the upfront training policy (FAP ") and centralization of

control policy (C ‘) (batch transfer frequency) be in order to minimize the performance

measures of average processing (service) time over approximately 3000 jobs per station?
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The results of the experiment in model C may prove important from a managerial perspective
because it suggests preferred settings for controllable industrial DRC factors (training and
transfer policies) given existing factors that cannot be as easily changed (job similarity, task-
times, and worker leaming-forgetting rate). A numerical example is included to illustrate the

practicality of the function developed in model C.

3.3.2 Choice of factors, levels, and ranges

The aforementioned problem of model C uses the following input and translated” output factors
as given in Table 3.5. The experiment in model C searches for an optimal level of input factors
given a fixed set of output factor ranges. The result yields two multivariate functions of the

following form (the asterisks on F'AP and C denote optimized values of these parameters):

g(s,p,LR,FR)=C". (3.10)
and

g(s, p,LR,FR) = FAP", @3.11)

where the input variables (s, 0, LR, FR), optimal output variables (FAP ,C"), their

levels/ranges, and justifications for these levels, are described in Table 3.5.

3.3.3 Selection of the response variables

The response variable in model C is the same as in model A and model B.

3.3.4 Choice of experimental design

Model C is an optimization experiment that searches for the optimal set of output experimental
factors (see Table 3.5) based on prescribed input parameters that minimize the response variable
of average processing (service) time ( APT") calculated over approximately 3000 jobs per

station, the same performance measure used in model A of this thesis and Jaber et al. (2003).

“each minimized APT value corresponded (and was translated ) to a specific value for C* and FAP"
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" 3.3.5 Modeling methodology

The modelling methodology is the same as in model A and model B. The multivariate function is

fitted from the table of optimized C * and FAP" values. Model C is a 5(levels of task

similarity)x5(initial processing time to standard time ratio)x5(worker learning rate)xS(worker

forgetting rate) model yielding 625 pairs of output: C * and FAP® values. Due to the
distribution of the output variables described in Chapter 4, the functions in (3.10) and (3.11)

were fitted to the values using binary logistic multiple-regression; these functions were then used

to translate the input factors directly into optimal settings for C and FAP based on
minimized APT values. Since these functions were fitted between data points, every optimal
setting of C and FAP can be found for input factors throughout the continuous range of the

input factors listed in Table 3.5.

3.4 Chapter 3 summary

The models in this thesis do not contain randomness in their design. However, they all conduct a
mathematical test in which changes are made to the input variables that result in changes to
output responses, and hence, this thesis does use a type of deterministic experiment in all of its
models. Due to the complexity of the output response of all the models, following an outline of
an experimental design aids interpretation despite the fact that the models are deterministic. The
previous chapter 3 has outlined the first four steps of experimental design mentioned by
Montgomery (1997) for each model in this thesis: (1) recognition of, and statement of the
problem, (2) choice of factors, levels, and ranges, (3) selection of the response variable, and, (4)
choice of experimental design for all of the models with the addition of the description of the
modelling methodology; The next two steps, (5) performing the experiments, and, (6) analysis

(deterministic) of the data are summarized for each model in the following chapter 4.
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Chapter 4: results and analysis

4.1 Model A results

Appendix section 7.2.1 contains the tables of results for both levels of worker flexibility for the
DPLFM. The LFCM and the VRVF model results are given for comparison in appendix section
7.2.2. The following analysis is based on these results. As previously mentioned, these results
for the DPLFM were obtained from calculations performed using an Excel spreadsheet. Any

necessary programming was performed using Excel-Visual Basic.

The analyses of the results of model A have been subdivided into two sections: the main effect
analysis and the interaction effect analysis. These two terms have been taken from the discipline
of experimental design and their methods have been used in this thesis to enrich the analysis of
model A. The main effect can be defined as the total change in response or output of one factor
by changing the level of the factor from its highest level to its lowest level (Montgomery, 1997).
In model A, the main effect of the factors was calculated for each learning-forgetting model. By
finding this, the total relative direct influence of each factor is given quantitatively, and hence, is
easily compared to the main effect of the other factors. The interaction effect is when the change
in response (output) between the levels of one factor is not the same at all the levels of the other
factors (Montgomery, 1997). In model A, the degree of interaction of each factor is measured
quantitatively. In model A, the interaction effect of the factors was calculated to determine the
degree by which each factor interacts with each other factor. Based on the degree of these
interactions, conclusions were drawn regarding the influence of these factors as they compare
with the conclusions given in Jaber et al. (2003) and the five possible issues that affect DRC
shop performance measures: worker flexibility, centralization of control, worker assignment,

queue disciplines, and cost of transferring workers (Hottenstein and Bowman, 1998).
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4.1.1 The main effect analysis of model A

4.1.1.1 Description of the main effect

As previously mentioned, the main effect of a factor is the change in output response caused by a

change in a level of the factor. In model A, this quantity is given as follows:

ME, = AER, .. — AER, ., @.1)

where ME,; is the main effect of factor i , AER, . is the average experimental response at

the maximum level of factor i, and AER, . is the average experimental response at the

minimum level of factor i. Note that the experimental response in model A is the performance
measure of average processing (service) time ( APT ) calculated over approximately 3000 jobs
per station. The main effect results for the VRVF, the LFCM, and the DPLFM are discussed in

the subsequent sections.

As shown in Figure 4.1, the relative main effect graphs have percentage quantity measures; they
are used to compare the magnitude of the main effect of each factor as a percentage of the
maximum range of output values for the model. These percentage values are calculated as

follows:

ME,

RME, = x100, @2)

J

where RME, is the relative main effect of factor I, ME, is the main effect of factor I, and
MAX ; is the maximum range of output values for model J. For example, Figure 4.1(c)

illustrates that the relative main effect of the upfront training policy ( FAP) factor is more than
three times as influential as the number of tasks learned ( NV ) factor (13.0% versus 4.3%). The
changes in the relative main effect between models are shown in Figure 4.2. These values are
used to compare the change in the influence of one factor between models. These values are

calculated as follows:

ARME,

i,ab

= RME,, - RME, , , @3)

where ARME, ,, is the change in the relative main effect of factor i from learning-forgetting

model g to leamning-forgetting model b , RME, , is the relative main effect of
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factor i inmodel @,and RME, , is the relative main effect of factor i in model b .

For example, Figure 4.2(c) illustrates that the effect of the F/AP (upfront training policy) factor
is approximately 17.5% less influential (-17.5%) in the DPLFM than in the LFCM.

4.1.1.2 Discussion of the main effect (the VRVF, the LFCM, and
the DPLFM)

4.1.1.2.1 Main effect - VRVF

As shown in Figure 4.1(a), the relative main factor effects of the VRVF are ranked in decreasing
effect as follows: (1) forgetting rate, (2) worker transfer policy, (3) number of tasks learned, and
(4) upfront training policy ( #AP). The relative change in performance between factor levels in
the VRVF is shown in Table 4.1. For example, changing from three to two tasks learned in the

VRVF causes a 19.8% increase (performance increases are denoted by a negative sign ‘-

because of a percent decrease in forgetting losses) in performance (second row, fourth column),

The most notable main effect in the VRVF is that the forgetting rate ranks first in importance
(see Figure 4.1(a)) whereas in the LFCM it only ranks second last (third) (see Figure 4.1(b)), and
only third in the DPLFM (see Figure 4.1(c)). The significance of this finding is beneficial since

the worker forgetting rate factor is less controllable than the other factors.

4.1.1.2.2 Main effect - LFCM

As shown in Figure 4.1(b), the relative main factor effects of the LFCM are ranked in decreasing
significance as follows: (1) upfront training policy (FAP), (2) worker transfer policy, (3)
forgetting rate, and (4) number of tasks learned. The relative change in performance between
factor levels in the LFCM is shown in Table 4.2. The most notable main effect in the LFCM is
the large increase in relative influence of the main effect of the upfront training policy factor
(FAP) over that of the VRVF. This is consistent with the findings of Jaber et al. (2003). In
fact, the ranking increases from last to first, as shown in the change between Figure 4.1(a) to
Figure 4.1(b). The relative change is over 23.5%, as shown in Figure 4.2(a). The relative
influence of the worker transfer policy also increases slightly by 1.2% over the VRVF,
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.. Table 4.1: The main effect of the factors in the VRVF

Number of APT Level change | Relative %

tasks learned change in the

(N) main effect
between levels

2 1.0670 3 tasks learned

3 1.3302 to 2 tasks -19.8%

Main effect 0.2632 learned

Forgetting rate | APT Level change | Relative %

(FR) change in the
main effect
between levels

95% (low) 1.0403 90% to 95% -11.6%

90% (med) 1.1775 85% to 90% -14.6%

85%(high) 1.3781

Main effect 0.3378 85% to 95% -24.5%

Worker APT Level change | Relative %

transfer policy change in the

() main effect
between levels

10 1.3253 10 to 25 -8.1%

25 1.2185 25 t0 250 -13.7%

250 1.0521

Main effect 0.2731 10 to 250 -20.6%

Upfront APT Level change | Relative %

training policy change in the

(FAP) main effect
between levels

0 1.2564 FAP-010 FAP-1 | -6.8%

1 1.1714 FAP-1t0 FAP-2 | -0.3%

2 1.1681

Main effect 0.0883 FAP-0to FAP-2 | -7.0%
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Table 4.2: The main effect of the factors in the LFCM

Number of APT Level change | Relative %

tasks learned change in the

(N) main effect
between levels

2 1.1660 3 tasks learned

3 1.2919 to 2 tasks -9.7%

Main effect 0.1259 learned

Forgetting rate | APT Level change | Relative %

(FR) change in the
main effect
between levels

95% (low) 1.1026 90% to 95% -10.6%

90% (med) 1.2331 85% to 90% -8.7%

85%(high) 1.3513

Main effect 0.2487 85% to 95% -18.4%

Worker APT Level change | Relative %

transfer policy change in the

(C) main effect
between levels

10 1.3898 10 to 25 -10.6%

25 1.2427 25 to 250 -15.2%

250 1.0545

Main effect 0.3353 10 to 250 -24.1%

Upfront APT Level change | Relative %

training policy change in the

(FAP) main effect
between levels

0 1.5290 FAP-0 to FAP-1 | -29.4%

1 1.0791 FAP-] to FAP-2 | -0.02%

2 1.0789

Main effect 0.4501 FAP-0 to FAP-2 | -29.4%
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whereas the relative influence of the forgetting rate and the number of tasks learned decreased
by 9.8% and 12.2% respectively (see Figure 4.2(a)). Again, the significance of this finding is
beneficial because if learning and forgetting is assumed to more closely follow the LFCM than
the VRVF, there is added consolation to DRC job shop practitioners that more controllable
factors such as the upfront training policy ( FAP ) and the worker transfer policy (C') are more

significant than less controllable factors such as the worker forgetting rate ( FR) and the number

of tasks learned ( NV ).

4.1.1.2.3 Main effect - DPLFM

As shown in Figure 4.1(c), the relative main factor effects of the DPLFM are ranked in
decreasing effect as follows: (1) upfront training policy ( FAP ), (2) worker transfer policy (C),
(3) forgetting rate, (4) task-type, (5) the R -value, and, (6) the number of tasks learned.

The relative change in performance between factor levels in the DPLFM is shown in Table 4.3.

Note the two additional DPLFM experimental factors of R -value and task-type in the first
column of Table 4.3. There are several notable main effect observations in the DPLFM. Firstly,
the overall detriment of learning three tasks is less pronounced in the DPLFM than in the other
models (see the second row, fourth column of Table 4.3 compared with the same cell of Table
4,1 and Table 4.2). Secondly, the benefit of providing the additional upfront training of
FAP -2 over just FAP —1 upfront training is slightly more evident in the DPLFM than in
the LFCM, but slightly less evident than in the VRVF (see row 17, column four of Table 4.3
compared with the same cell of Table 4.1 and Table 4.2). Thirdly, overall, upfront training
(either FAP —1 or FAP —2) in the DPLFM reduces forgetting losses more than it did in the
VRVF but less than in the LFCM (see row 19, column four of Table 4.3 compared with the same
cell of Table 4.1 and Table 4.2). This relative change in the influence of upfront training from
the VRVF and the LFCM to the DPLFM is also illustrated in Figure 4.2(b) and Figure 4.2(c)
respectively. Jaber et al. (2003) deduced that since: (1) the LFCM attributed more benefit to
upfront training than the VRVF, and, (2) a greater benefit is assumed by providing upfront
training to workers perfdrming dissimilar tasks, that the LFCM more closely models a job shop
that performs dissimilar tasks. By this reasoning, it is deduced that the aforementioned main
effect results of the DPLFM suggest that the DPLFM accrues less importance on the
dissimilarity of the tasks being performed than the LFCM. Model B of this thesis addresses this

issue. In addition, as shown in Figure 4.2(c), the inclusion of additional factors in the DPLFM

(R -value and task-type) caused the reduction of the relative influence of all the factors
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Table 4.3: The main effect of the factors in the DPLFM

Number of tasks APT Level change Relative % change

learned (N ) in the main effect
between levels

2 1.0722 3 tasks learned to 2

3 1.1435 tasks learned -6.2%

Main effect 0.0712

Forgetting rate APT Level change Relative % change

(FR) in the main effect
between levels

95% (low) 1.0261 90% to 95% -6.8%

90% (med) 1.1006 85% to 90% -8.0%

85%(high) 1.1968

Main effect 0.1707 85% to 95% -14.3%

Worker transfer APT Level change Relative % change

policy (C) in the main effect
between levels

10 1.2022 10 to 25 -9.0%

25 1.0937 2510250 -6.0%

250 1.0276

Main effect 0.1746 10 to 250 -14.5%

Upfront training APT Level change Relative % change

policy (FAP) in the main effect
between levels

0 1.2507 FAP-0to FAP-1 -17.1%

1 1.0369 FAP-1to FAP-2 -0.1%

2 1.0358

Main effect 0.2149 FAP-0to FAP-2 -17.2%

Task-type APT Level change Relative % change
in the main effect
between levels

Tc 1.0643 Ty to T, -9.2%

Ty 1.1718 Ty 10 Ty -5.5%

Lypea 1.1070 Ty o Ty -7.1%

Ty 1.0884 Tyiea t0 Tt -3.9%

T, toT, -2.2%

Main effect 0.1075 Ty to 1, -9.2%

R APT Level change Relative % change
in the main effect
between levels

173 1.1553 1/3to1 -4.2%

1 1.1067 1to3 -4.1%

3 1.0615

Main effect 0.0938 1/3 to 3 -8.1%
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common to all three models (number of tasks learned, forgetting rate, worker transfer policy, and
FAP) over that of the LFCM, with the main effect of FAP being reduced the most. As
expected, the performance change between the levels of performing a motor task (7},) to
performing a cognitive task (7. ) is a main effect change in the DPLFM because both tasks are

found on opposite extremes of the range of learning slopes used in this thesis (see row 26,
column four of Table 4.3). Also, it is interesting to note that, overall, the performance of task

T, yields less forgetting losses ( APT = 1.0884, see row 24, column two of Table 4.3) than
T,., (APT =1.1070, see row 23, column two of Table 4.3), a task with an average learning

rate equal to that of T, , and nearly as little forgetting losses as task Ti. (APT =1.0643, see

row 21, column two of Table 4.3). Consequently, it could be inferred that forgetting losses may

be underestimated when the dual phase cognitive and motor task elements are not considered.
Finally, it is of importance to note that the main effect of the R -vaiue ranks second last in the

DPLFM. However, the interaction effect of the R -value is significant, as shown in the

following interaction effect section.

4.1.1.3 Main effect conclusions

From a managerial perspective, the following three findings of the main effect analysis should be
noted: (1) the effectiveness of reducing forgetting losses in a DRC job shop may be more
achievable by adjusting the controllable factors such as upfront training policy and worker
transfer policy than by focusing on uncontrollable factors such as the worker forgetting rate (the
LFCM versus the VRVF); this finding is used to develop the reasoning for model C of this
thesis, (2) the results of the main effect of the DPLFM suggest that increasing the number of
tasks learned beyond two may be more achievable in a DRC context than suggested by the
LFCM; (3) the type of worker-task interaction with regards to the learning rates of the worker on
the task (7" ) and the ratio of time for the first unit under purely cognitive conditions to time for
the first unit under purely motor conditions ( R ) may be more of an issue than the number of
tasks for which the worker is trained (the DPLFM versus the LFCM, see Figure 4.1(c) and
Figure 4.1(b)), and (4) the findings of model A suggest that forgetting losses may be
underestimated when the dual phase cognitive and motor task elements are not considered, and
as a result, the task-type factor inherent to the DPLFM is a factor that may be important to

include when examining further DRC forgetting loss reductions.

+ It is of interest to note that finding (2) suggests that research pursuing a quantitative trade-off
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between forgetting loss reduction and job flexibility may be of significance. However, a
quantitative measure of shop flexibility would be required in order for a measurable trade-off

analysis.

4.1.2 The interaction effect analysis of model A

4.1.2.1 Description of the interaction effect

As previously mentioned, the interaction effect of a factor is when the change in response
(output) between the levels of one factor is not the same at all the levels of the other factors. In
model A, the magnitude of the interaction effect between factor levels was calculated by sub-
dividing the results table into sub-tables forming all the possible 2-way interactions between
factors. For simplification, the factors were given acronyms. These acronyms and the 2-way

factor interactions are listed in Table 4.4. The 15 non-duplicated interactions are underlined.

For example, Table 4.4(a) illustrates a sub-table consisting of averaged results for each worker
transfer policy level — forgetting rate level pair. The values are averaged irrespective of the
levels of any other factor. As a result, this is referred to as a 2-way interaction table C - FR,
with C referring to the centralization of control policy (worker transfer policy) and FR
referring to the worker forgetting rate. Since there were a total of 15 2-way factor interactions
there were 15 2-way interaction tables constructed. All of the 2-way interaction tables are given
in the appendix section 7.3. A baseline measure was required to determine the magnitude of the
interaction at each factor level. This was done by measuring the relative percentage difference of
each interaction pair with the lowest interaction pair in the table (professor Gharghouri, Dr.
Kolasa, and Dr. Todorow, personal communication, 2003). Table 4.4(b) illustrates how the table
looks after this is done. For example, the bolded value in Table 4.4(b) represents the baseline

pair C,., FR,.,, (referring to a batch transfer size of 250 with a worker forgetting rate of 95%)

since this pair has the lowest averaged result in Table 4.4(a) (see 1.014 and 0.0% in row five,
column three of Table 4.4(a) and Table 4.4(b)). All the other 2-way factor level interactions are

shown by their relative difference above the baseline measure. For example, in Table 4.4(b), the
2-way point interaction of C s F R, is 6.5% above the baseline measure. Also, only a relative

change of 6% or greater between any 2-way point interaction is considered a significant change.
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Table 4.4: Factors, their acronyms, and their interactions for model 4

Factor Acronym | 2-Way interactions
Worker transfer c C-FRC-T,C-FAPC-N,C—R
olicy

Forgetting rate FR FR-T,FR—FAP,FR—-N,FR—-R, FR-C
Task-type T T-C,T—-FR,T-FAP,T-N,T-R
Upfront training FAP—-C,FAP — FR,FAP-T, FAP—-N,FAP—~R
policy FAP
Number of tasks N-C,N-FRN-T,N—FAP,N-R
Learned N
R -value R R-C,R—FR,R-T,R—-FAP,R-N
Table 4.4(a): 2-way interaction

Forgetting rate (FR)

95% 90% 85%
Worker 10 1.044 1.198 1.365
transfer policy 25 1.020 1.080 1.181
) 250 1.014 1.024 1.045

Table 4.4(b): 2-way interaction with relative difference from baseline

Forgetting rate ( FR)
95% 90% 85%
Worker 10 2.9% 18.1% 34.6%
transfer policy 25 0.6% 6.5% 16.4%
(C)H 250 0.0% 1.0% 3.0%
Table 4.5(a): 3-way interaction for C,,FR;s,
CIOFRSS%
T % FAP % | N % R %
T 1251 | 233%| ° 1884 | 857% | 2 | 1254 | 236% | V3| 1442 2.1%
T, 1493 | 47.2% ! 1135 | 119% | 3 | 1476 | a55% | ! 1376 35.7%
Thia | 1368 | 340% | 2 1076 | 61% 31 130, 28.3%
Ty 1346 | 32.7%
Table 4.5(b): 3-way interaction for C,s FR,,
C250FR95%
T % FAP % N % R %
T, 1000 | -05%| © 1.019 | 05% | 2 | 1013 | 01% | | 1070 | s5%
T, 1025 | 1.0% | ! 1003 | -11% | 3 | 1015 | o1% | ! | 1013 | 01%
Toea | 1o3| 01| 2 1021 | 0.7% 31 1009 | -05%
Ty | yos| oa%
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For example, moving from a 2-way point interaction of C,;)FRyy, to C,,FR,,,, does not

constitute a significant change in output response since the difference in measure from the
baseline for these two values is only 1.9% (2.9% - 1.0%). This base measure of 6% is consistent
with the suppression measure used in Jaber et al. (2003). In addition, 3-way factor level
interactions were also examined. This was done by extracting the largest two interactions
(highest and lowest (baseline) performance result) within each 2-way interaction table and

pairing them up against all other factors in order to search for any significant 3-way factor
interactions. For example, C\FRg,, and C,5 FR,s, in Table 4.4(b) exhibited the largest
and smallest (baseline) performance interaction (34.6% and 0.0%) results respectively within all
the levels of the C — FR interactions table. As a result, C}, FRgs,, and C,5 FR,s,, were then
paired up against all the other factors to form additional 3-way interaction sub-tables. It was

assumed that only significant 2-way interactions would foster any significant 3-way interactions

(Dr. Gharghouri and Dr. Todorow, personal communication, 2003). Examples of 3-way
interaction tables for C,, FRgs,, and C,s, FR,,, are given in Table 4.5(a) and Table 4.5(b).

The method for determining whether there were any significant 3-way interactions is given by

listing maximum and minimum interaction criterion measures. These are given as follows:

Upper interaction criterion:
< (second highest 2-way interaction) - 6.0%
4.4
Lower interaction criterion:
> (second lowest 2-way interaction) + 6.0 %.

For example, for the 3-way interaction table in Table 4.5(a), the upper interaction criterion is

calculated as follows:

Upper interaction criterion < (18.1%) — 6.0% = 12.1%, 4.5)

where the second highest 2-way interaction (18.1%) refers to the value in the third row, fourth
column of Table 4.4(b). The 6% is used as a buffer value; this is consistent with the suppression

measure used in Jaber et al. (2003). As shown in the shaded cells of Table 4.5(a), the 3-way
interactions C,y FRys,, FAP—1 and C,, FRys, FAP — 2 are significant 3-way interactions

because they are less than the upper interaction criterion: (11.9%, 6.1%) < 12.1%. The

implications of significant 3-way interactions are that they provide exceptions to the general
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* conclusions made concerning the 2-way interactions. ‘ Lo T

Also, for the 3-way interaction table in Table 4.5(b), the lower interaction criterion is calculated

as follows:

Lower interaction criterion > (0.6%) + 6.0% = 6.6%, 4.6)

where the second lowest 2-way interaction (0.6%) refers to the value in the fourth row, third
column of Table 4.4(b). However, in this particular case, as shown in Table 4.5(b), there are no
shaded cells depicting significant 3-way interactions because all the 3-way interactions are less

than the lower interaction criterion of 6.6%.

All the 3-way interaction tables are given in the appendix section 7.4. The conclusions drawn
from these 2-way and 3-way factor interactions are compared to the conclusions of Jaber et al.
(2003) and to the five possible issues that affect DRC shop performance measures: worker
flexibility, centralization of control, worker assignment, queue disciplines, and cost of

transferring workers given by Hottenstein and Bowman (1998).

4.1.2.2 Discussion of the interaction effect (LFCM and DPLFM)

4.1.2.2.1 The interactions between C and FR

4.12.2.1.1 LFCM

Given a worker transfer policy of 250, varying the forgetting rate has no significant effect on
performance. However, given a worker transfer policy of 10 or 25, decreasing the amount of
forgetting at any level significantly improves performance. Given a worker with a low (95%)
forgetting rate, increasing the worker transfer policy from 10 to 25 benefits performance,
whereas a further increase to 250 provides no significant additional benefit. Given a forgetting
rate of 90% or 85%, increasing the worker transfer policy at any level improves performance.
Performance is best when the worker transfer policy is 250 in a low forgetting rate (95%).

Performance is poorest when the worker transfer policy is 10 in a high forgetting rate (85%);
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however, an exception is when the upfront training is FAP —2 or FAP —1, in these special
cases forgetting losses are significantly reduced. There is no benefit in reducing the worker
transfer policy regardless of the level of worker forgetting. These results contradict those of
Hottenstein and Bowman (1998) who suggested that the effect of worker forgetting may cause
centralized control (smaller batch transfer policy) to be much more effective than decentralized
control (larger batch transfer policy).

4.1.22.12 DPLFM

With regards to this particular 2-way interaction of the DPLFM, the results differ from the above
LFCM results by the following: (1) given a worker transfer policy of 25, decreasing the rate of
worker forgetting from 85% to 90% significantly improves performance, however, an additional
reduction to 95% provides no further significant benefit, (2) given a forgetting rate of 95%,
increasing the worker transfer policy at any level has no significant effect on performance, (3)
given a forgetting rate of 90%, increasing the worker transfer policy from 10 to 25 significantly
improves performance, however, an additional increase to C =250 provides no further
significant benefit, and, (4) as in the LFCM, there is no benefit in reducing the worker transfer
policy regardless of the level of worker forgetting; and hence, the results contradict those of

Hottenstein and Bowman (1998). Also, the best and worst 2-way interactions and the 3-way
interaction exceptions to the worst case 2-way interaction (C,,F Ry, ) are identical for the

DPLFM.

4.1.2.2.1.3 Discussion

The results suggest that, at this interaction, the combined effect of reducing the forgetting rate
and/or increasing the worker transfer policy is slightly less beneficial in reducing forgetting
losses in the DPLFM than in the LFCM. This concurs with the relative main effect of the factors,

see Figure 4.1(b) and Figure 4.1(c).

4.1.2.2.2 The interactions between C and FAP

412221 LFCM

Given a worker transfer policy of 250, varying the /AP level has no significant effect on
performance. However, given a worker transfer policy of 10 or 25, increasing the FAP level
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from 0 to 1 improves performance, but a further increase to FAP -2 provide no significant

additional benefits. Given a FAP level of 2, varying the worker transfer policy has no
significant effect on performance. Given a FAP level of 1, increasing the worker transfer

policy from 10 to 25 yields no improvement; however, an increase from 25 to 250 provides

significant benefits. Given a FAP level of 0, increasing the worker transfer policy at any level

provides a significant performance improvement. Performance is best when the worker transfer
policy is 250 and the upfront training policy is FAP —1. Performance is poorest when the
worker transfer policy is 10 and there is no upfront training ( FAP —0). At this interaction,

there are no 3-way inferaction exceptions to these extreme cases.

4.1.2.2.2.2 DPLFM

The interactions of the DPLFM are similar to the LFCM except for the following: given FAP
levels of 1 or 2, increasing the worker transfer policy at any level has no significant effect on

performance, whereas in the LFCM, only FAP —2 rendered the level of the worker transfer
policy level immaterial. The best and poorest 2-way interactions for performance are identical to
the LFCM for this particular interaction. However, in the DPLFM, a low forgetting rate (95%)
yielded a 3-way exception that significantly reduced the harshest forgetting situation

(C, —FAP-0—-FR,,).

4,1.2.2.2.3 Discussion

At this interaction, the results suggest that, since upfront training and worker transfer policies are
more influential in the LFCM than the DPLFM (see Figure 4.2(c)), there is no remedy for the

harshest forgetting conditions (C,; — FAP —0) in the LFCM, whereas a reduction in worker

forgetting (95%) does significantly mitigate forgetting losses in the DPLFM.

4.1.2.2.3 The interactions between C and N

4.122.3.1 LFCM

Given a worker transfer policy of 250, varying the number of tasks learned has no significant
effect on performance. However, given a worker transfer policy of 10 or 25, decreasing the

number of tasks learned from three to two provides significant benefits. Irrespective of the
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number of tasks learned, increasing the worker transfer policy at any level provides significant
benefits. Performance is best when the worker transfer policy is 250 and the number of tasks

learned is two. Performance is poorest when the worker transfer policy is 10 and the number of
tasks learned is three; however, an exception is when the upfront training is FAP —2 or

FAP —1 and/or the forgetting rate is low (95%), in these special cases forgetting losses are

significantly reduced.

4.1.2.2.3.2 DPLFM

With regards to this particular 2-way interaction of the DPLFM, the results are identical to the
above LFCM results except for the following: when two tasks are learned in the DPLFM,

increasing the worker transfer policy beyond 25 provides no further benefits whereas in the

LFCM increasing C was effective at any level of V. Also, in the DPLFM, only FAP —2
upfront training and/or a low forgetting rate (95%) provide 3-way exceptions to the harshest

forgetting losses.

4.1.2.2.3.3 Discussion

Again, the interaction effect of the factors that are more influential in the LFCM is evident.
Namely, the upfront training factor ( #AP) is far more influential in the LFCM than in the
DPLFM (see Figure 4.2(c)); and as a result, only a lengthy upfront training policy of FAP ~2
is significant in reducing the harshest case of forgetting losses in the DPLFM, whereas in the

LFCM just FAP —1 is sufficient.

4.1.2.2.4 The interactions between FR and FAP

4.1.2.24.1 LFCM

Irrespective of the forgetting rate, increasing the upfront training policy from FAP -0 to
FAP —1 provides significant benefits; however, an additional increase to FAP —2 provides

no significant additional benefit. Given an upfront training policy of FAP —1 or FAP -2,
decreasing the forgetting rate from high (85%) to medium (90%) provides significant benefits;

however a further decrease to a low (95%) forgetting rate provides no significant additional
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- benefit. Given no upfront training FAP —0, decreasing the level of forgetting at any level
provides improved performance. Performance is best when the forgetting rate is low (95%) and
the upfront training is F4P —1. Performance is poorest when the forgetting rate is high (85%)
and there is no upfront training ( FAP — 0); however, an exception is when the worker transfer

policy is 250, in this special case forgetting losses are significantly reduced.

4.1.2.2.42 DPLFM

The interactions of the DPLFM differ from the previous LFCM interactions by the following:
given an upfront training level of FAP —2, varying the level of worker forgetting does not
significantly affect performance, whereas in the LFCM, a reduction in worker forgetting from
85% to 90% provides benefits at FAP —2. Interestingly, the highest and lowest 2-way
interactions and the 3-way interaction exception for the DPLFM were identical to the above

LFCM interactions.

4.1.2.2.4.3 Discussion

The relative effect of decreasing the forgetting rate in this interaction is shown to be slightly less
in the DPLFM than in the LFCM. This is probably due to the fact that the forgetting rate factor
is less influential in the DPLFM than in the LFCM (see Figure 4.2(c)). However, overall, the
difference in interaction results between both learning-forgetting models is minimal at this
particular interaction. Also, in both learning models, increasing the worker transfer policy to 250

can alleviate the poorest case of forgetting losses.

4.1.2.2.5 The interactions between FR and N

4.1.2.2.5.1 LFCM

Given a forgetting rate of 95%, varying the number of tasks learned does not significantly affect
performance. However, given a forgetting rate of 90% or 85%, decreasing the number of tasks
learned from three to two significantly benefits performance. Irrespective of the number of tasks
learned, decreasing the amount of forgetting at any level significantly benefits performance.
Performance is best when the forgetting rate is low (95%) and the number of tasks learned is
two. Performance is poorest when the forgetting rate is high (85%) and the number of tasks
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learned is three; however, an exception is when the worker transfer policy is 250 and/or the

upfront training policy is AP —2, in these special cases forgetting losses are significantly

reduced.

4.1.2.2.5.2 DPLFM

The interactions of the DPLFM differ from the previous LFCM interactions by the following:
when two tasks are learned (/N = 2), only a reduction in worker forgetting from 85% to 90%
provides significant benefits, whereas a further reduction to a low forgetting rate provides no
significant additional benefit. This differs from the LFCM because, in the LFCM, irrespective of
N, reducing worker forgetting at any level is beneficial. Also, in the DPLFM, only the worker
transfer policy of 250 (not also FAP —2 as in the LFCM) is a special case 3-way interaction

that significantly reduces the severest case of forgetting losses.

4.1.2.2.5.3 Discussion

Again, the relative influence of upfront training and the worker forgetting rate is less evident in
the DPLFM than in the LFCM. This is because, in this case, the large initial training of two

times the standard time was effective in reducing the severest cases of forgetting losses (3-way
interaction) in the LFCM, whereas in the DPLFM, FAP —2 was ineffective. Also, in the
DPLFM at N =2, the reduction of forgetting losses was slightly more insensitive to the level

of worker forgetting than it was in the LFCM.

4.1.2.2.6 The interactions between FAP and N

4.1.2.2.6.1 LFCM

Given an upfront training policy of FAP —2, varying N has no significant effect on
performance. However, given a FAP level of 0 or 1, decreasing N from three to two causes a
significant increase in performance. Irrespective of the number of tasks learned, increasing the

FAP level from 0 to 1 provides significant benefits; however, a further increase to FAP —2
provides no significant additional benefit. Performance is best when the upfront training policy
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is FAP —1 and the number of tasks learned is two. Performance is poorest when there is no
upfront training ( FAP — 0) and the number of tasks learned is three; however, an exception is
when the worker transfer policy is 250 and/or the forgetting rate is low (95%), in these special

cases forgetting losses are significantly reduced.

4.1.2.2.6.2 DPLFM

The interactions of the DPLFM differ from the previous LFCM interactions by the following: at
an upfront training policy of FAP —1, varying the level of N has no significant effect on
performance, whereas in the LFCM at FAP —1, decreasing N from three to two provided
significant benefits. Also, the special 3-way interactions are identical for the upfront training

policy and the number of tasks learned in both models.

4.1.2.2.6.3 Discussion

Again, it is evident, that the relative influences of some factors in the LFCM cause interaction
differences between models. Namely, in this interaction, the performance is slightly less affected
by the level of the number of tasks learned factor (N ) in the DPLFM than in the LFCM. This is
probably because N is also less influential in the DPLFM than in the LFCM (see Figure
4.2(c)).

4.1.2.2.7 Summary of the interaction effect (LFCM and DPLFM)

It is apparent from the previous comparison of the 2-way and 3-way interaction analysis between
the DPLFM and the LFCM that the factors C', FAP, FR,and N are less of an influence in
the DPLFM than in the LFCM (this concurs with the main effect conclusions see Figure 4.2(c)).
This was evident because of the following: (1) the insensitivity of the level of the worker

forgetting rate and worker transfer policy was greater in the DPLFM than in the LFCM in the
C/ FR interaction, (2) the insensitivity of the level of the worker forgetting rate was also
greater in the DPLFM than in the LFCM in the FR/ N interaction, (3) the insensitivity of the
level of the number of tasks learned factor N was greater in the DPLFM than in the LFCM in
the FAP /N interaction, (4) the detrimental affect on forgetting losses of no upfront training
(FAP -0) and a small transfer policy (C =10) was unresolved by a reduction in worker

forgetting to 95% in the LFCM in the C/ FAP interaction, whereas, in the DPLFM, the
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forgetting reduction was sufficient in mitigating forgetting losses; this highlights the greater
influence of both factors in the LFCM model, and, (5) in the C/ N interaction, only an upfront
training policy of FAP —2 is significant in reducing the harshest case of forgetting losses in

the DPLFM, whereas in the LFCM, just FAP —1 is sufficient. This suggests the overwhelming
influence of the upfront training policy in the LFCM as compared with the DPLFM.

The inclusion of the task related factors inherent in the DPLFM model such as task-type (')

and the ratio of time for the first unit under purely cognitive conditions to time for the first unit

under purely motor conditions ( R ) were probably responsible for the change in the relative
main effect of the factors illustrated in the main effect conclusions (see Figure 4.2(c)) and the

above comparison of the interaction effect of the LFCM and the DPLFM.

4.1.2.3 Discussion of the interaction effects unique to the

DPLFM

4.1.2.3.1 The interactions between C and 7

The performance increases as the worker transfer policy and the degree of cognitive elements in
the task increase. However, given a worker transfer fevel of 250, varying the task-type has no

significant effect on performance. Given a worker transfer policy of 25, changing from a task-

type T, to T, from T, to T, or from T,,, to T,. has no significant affect on
performance. Given a worker transfer policy of 10, changing from a task-type T, to T},, or

from 7}, to 7. does not significantly affect performance, whereas any other task-type change
causes a significant change. Also, given a worker transfer policy of 10 or 25, changing the task-
type from 7, to any other task significantly benefits performance. Given task-type 7,, and
1, increasing the worker transfer policy at any level significantly improves performance.
Also, given task-type T, or 7, increasing the worker transfer policy from 10 to 25
Signiﬁcantly improves performance, however, an additional increase to 250 provides no further
benefits. Performance is best when the worker transfer policy is 250 and the task-type is T .
Performance is poorest when the worker transfer policy is 10 and the task-type is T,, ; however,

an exception is when the upfront training is FAP—2 or FAP~1, and/or the worker
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-~ forgetting rate is low (95%), in these special cases forgetting losses are significantly reduced.

4.1.2.3.1.1 Discussion

At this interaction, it appears that the beneficial effect of a worker transfer policy of 250
overrides any affect of task-type on performance. It is interesting to note that, except during an
infrequent worker transfer policy (C = 250), changing the task-type from T,, to any other
task significantly benefits performance. This finding suggests that it may be almost always
beneficial to change the task-type if it is predominantly a motor task. Also, it is interesting to

note that, performing the uniform task T';, reduces forgetting losses more than T, even

though the learning rate of 7', is equal to the average of task T, .4 - These results concur with
the main effect findings that forgetting losses may be underestimated if the dual cognitive and
motor learning elements are not taken into account. It also appears that providing any upfront
training ( FAP —1 or FAP —2) or reducing worker forgetting can significantly counteract a

harsh situation of performing a task 7,, with a frequent worker transfer of 10.

4.1.2.3.2 The interactions between C and R

Given a worker transfer policy of 250, changing the R -value of the task has no significant
effect on shop performance. Given a worker transfer policy of 10, increasing the R -value of the
task at any level yields significant performance benefits. However, given a worker transfer
policy of 25, changing the R -value of the task from one to three, or from one-third to one, does
not yield a significant change in performance, whereas a change from one-third to three does
provide a significant improvement. Given that the R -value of the task is one-third or one,
increasing the worker transfer policy at any level significantly improves performance. Also,
given that the R -value of the task is three, increasing the worker transfer policy from 10 to 25
significantly improves performance; however, a further increase to 250 provides no further
significant benefits. Performance is best when the worker transfer policy is 250 and the R -value
of the task is three. Performance is poorest when the worker transfer policy is 10 and the R -
value of the task is one-third; however, an exception is when the forgetting rate is low (95%),

and/or upfront training is given (FAP —1 or FAP —2), in these special cases forgetting
losses are significantly reduced.
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4.1.2.3.2.1 Discussion

Again, it is evident that an increased worker transfer polfcy is sufficient in reducing forgetting
losses irrespective of the qualities of the task, in this case the R -value of the task. In fact, when
C =250, varying the task-type does not affect shop performance at this interaction. Also,

irrespective of worker transfer policy level, the relative influence of varying the R -value of the

task was small within the range chosen. This concurs with the main effect results, see Figure

4.1(c) comparing C versus R in the DPLFM. Also, since three special 3-way cases could

alleviate the harsh conditions of C|, R, 5, this 2-way condition may not be a crucial issue.

4.1.2.3.3 The interactions between FR and T

Given a situation of high forgetting (85%), changing the task-type to any setting, except for a
task-type change from T, , to T, or from T, to T, has a significant effect on shop
performance. Given a medium or low worker forgetting rate (90% or 95%), only changing the
task-type from 7,, to any other task significantly improves performance; any other task-type
change does not significantly affect performance. At every task-type except 7., any decrease in

worker forgetting at any level improves shop performance. Given the worker performs a
cognitive task, reducing the worker forgetting from 85% to 90% significantly improves
performance; however, an additional decrease to a worker forgetting rate of 95% provides no

further significant benefits. Interestingly, irrespective of worker forgetting rate, performing a

uniform task (7, ) does not significantly improve performance over a cognitive task (T¢).
Again, it is interesting to note that performing task 7,,, a task with no specified motor or

cognitive elements, is more beneficial in reducing forgetting losses than performing task 7,4, 8
task that has both learning elements but has an averaged combined learning rate equal to that of

T\, . Performance is best when the forgetting rate is low (95%) and the task-type is TC .

Performance is poorest when the forgetting rate is high (85%) and the task-type is T}, ;
however, an exception is when the worker transfer policy is 250 and/or upfront training is given

(FAP —1 or FAP —2), in these special cases forgetting losses are significantly reduced.

4.1.2.3.3.1 Discussion 7

The results of the above interaction suggest that significant benefits can be achieved by changing
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the task-type to counteract the forgetting losses associated when a worker with a high forgetting
rate performs a more motor dominated task, especially when the positive effects of a worker
transfer policy of 250 and/or upfront training are not available (3-way interaction exceptions).

Also, in this interaction, the underestimation of forgetting losses when the dual learning elements

are not recognized is evident when T, is performed versus T(eq - As in the main effect

conclusions (see Table 4.3), the benefits provided from changing from a T, tasktoa T, task
are minimal, especially in medium and low forgetting rates. Again, the detrimental effect of
performing motor dominated tasks is evident because changing from a 7T, task to any other
task is beneficial for two out of three worker forgetting rate levels. Also, at this particular

interaction, with the exception of performing a cognitive task, decreasing the forgetting rate at

any level provides significant performance improvements.

4.1.2.3.4 The interactions between FR and R

Given a low forgetting rate (95%), varying the R -value at any level has no significant effect on
performance. Given a medium forgetting rate (90%), significant benefits may result if the R -
value is increased from one-third to three; however an R -value change from one-third to one,
or from one to three is not sufficient in yielding significant benefits. Given a high worker
forgetting rate (85%), increasing the R -value of the task at any level provides significant
performance improvements. Given that the R -value of the task is one-third or one, decreasing
the forgetting rate at any level provides significant benefits. However, given that the R -value of
the task is three, decreasing the worker forgetting from 85% to 90% provides significant
benefits, whereas an additional decrease to 95% provides no further significant benefits.
Performance is best when the forgetting rate is low (95%) and the R -value of the task is three.
Performance is poorest when the forgetting rate is high (85%) and the R -value of the task is
one-third; however, an exception is when there is upfront training (FAP —1 or FAP —2),
and/or the worker transfer policy is 250; in these special cases forgetting losses are significantly

reduced.

4.1.2.3.4.1 Discussion

The result of the above interaction suggest that the R -value of the task has a less overall affect

on performance as compared with the forgetting rate. This is evident because, given that the R -

value is one-third or one (two out of three levels), reducing the forgetting rate greatly enhances
performance, whereas, for example, the influence of the R -value is only of interest at a high

forgetting rate (one out of three levels). Nonetheless, an R -value of three provides enough
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additional benefit that a further decrease in worker forgetting from 90% to 85% provides no
significant benefits (-4.09%). Also, the special case 3-way interactions of upfront training
(FAP —1 or FAP —2), and/or a worker transfer policy of 250 provide a significant reduction

of forgetting losses in the harshest 2-way interaction FRgsy, R, ;.

4.1.2.3.5 The interactions between 7 and FAP

Given any task-type, increasing the upfront training policy beyond FAP —1 provides no
significant additional benefit. Given an upfront training policy of FAP—1 or FAP—-2,a

task-type change at any level does not significantly affect performance. However, given no

upfront training (F4P —0), any change in task-type, except from a 7}, to a T, task,
significantly affects performance. Performance is best when the task-type is T . and the upfront

training policy is FAP —2 . Performance is poorest when the task-type is 7,, and there is no

upfront training ( FAP —0); however, an exception is when the worker transfer policy is 250
and/or the worker forgetting rate is low (95%) in these special cases forgetting losses are

significantly reduced.

4.1.2.3.5.1 Discussion

In this interaction, the results suggest that the upfront training policy factor ( FAP) is much

more influential on performance than the task-type factor, this finding concurs with the main
effect results, see Figure 4.1(c). For example, given upfront training levels of FAP —1 or
FAP — 2 , performance is insensitive to the change in task-type, whereas, conversely, given any
task-type, providing just the standard time number of units (AP —1) of upfront training is
effective in significantly reducing forgetting losses. In this interaction, the special case 3-way
interaction of a worker transfer policy of 250 and/or a low worker forgetting rate (95%) reduces

the harshest of forgetting losses.

4.1.2.3.6 The interactions between 7’ and N

The results suggest that, given that a worker performs a task T ., the number of tasks learned

has no significant effect on performance. However, given any other task (T, Typusor Tyyp),

decreasing the number of tasks learned from three to two causes a significant increase in
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" performance. Given that the number of tasks learned is two, changing from a task TM to T c»

or from T,, to T, causes a significant increase in performance; however, any other task-type
change has no significant effect on performance. Given that the number of tasks learned is three,
changing from a motor task (7, ) to any other task causes a significant increase in performance;
however, any other task-type change has no significant effect on performance. Performance is

best when the task-type is 7. and the number of tasks learned is two. Performance is poorest

when the task-type is 7,, and the number of tasks learned is three; however, an exception is
when the worker transfer policy is 250 and/or the worker forgetting rate is low (95%) and/or the

upfront traming policy is F/AP — 2, in these special cases forgetting losses are significantly

reduced.

4.1.2.3.6.1 Discussion

In this interaction, the results suggest that the performance of a cognitive task provides enough
forgetting losses to deem the number of tasks learned factor immaterial. Also, similarly, the
results suggest that if the number of tasks learned is three, only a task-type change from a motor

task to any other task causes a significant increase in performance. Therefore, since the factor of

task-type has one level (7 ) that nullifies the significance of the effect of varying the levels of

the other factor V', and the number of tasks learned factor has one level (N = 3) that nullifies
the significance of the effect of varying the levels of the other factor 7" (with the exception of
changing from a task 7, ), the factors N and T appear nearly equal with respect to their

contributions to performance. This concurs with the main affect results; see Figure 4.1(c). Again,

the special case 3-way interactions of: a worker transfer policy of 250, and/or a low worker
forgetting rate (95%), and/or the upfront training policy is FAP — 2, significantly reduces the

harshest factor 2-way interaction 7, N,

4.1.2.3.7 The interactions between 7 and R

Given task-type T}, , varying the R -value of the task has no significant effect on performance.
Given task-type T}, increasing the R -value at any level yields a significant increase in
performance. Given task T, ,, increasing the R -value from one-third to one provides

significant benefits, however, an additional increase to an R -value of three provides no further
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significant benefits. Given task T, the performance is only significantly increased if the R -
value is increased from one-third to three; no significant benefit result from just an increase from

one-third to one, or from one to three. Also, as expected, T’ y is not significantly affected by the

change in R -value since there are no distinct cognitive or motor elements in the task. Given a

task with an R -value of one-third, every task-type change, except from T, to T,., causes a

significant change in performance. Given a task with an R -value of one, only a task-type
change from T, to T, or from T}, to T, causes a significant change, every other task-type
change has no significant effect on performance. However, given a task with an R -value of
three, the task-type factor has no significant effect on performance. Performance is best when the

task-type is 7. and the R -value of the task is three. Performance is poorest when the task-type

is 7,, and the R -value of the task is one-third; however, an exception is when there is upfront

training provided ( FAP —1 or FAP —2), and/or the worker transfer policy is 250, in these

special cases forgetting losses are significantly reduced.

4.1.2.3.7.1 Discussion

An interesting observation is the relative lack of performance sensitivity with the change in task-
type when the R -value of the task is three. Also, it is evident how an increasing fraction of

motor elements increases the relative benefit of changing from task 7, to T, or from T,

to 7. ; this is because the detrimental effect of performing a task containing a motor element is

exacerbated as the fraction of motor content increases. This interaction is important because it

stresses that even though the R -value factor has, overall, the second smallest main effect, it
interacts closely with the task-type factor (a higher ranked main effect factor), and as a result, its

importance should not be entirely overlooked.

4.1.2.3.8 The interactions between FAP and R

Given no upfront training ( FAP —0), increasing the R -value of the task at any level
significantly increases performance. However, given upfront training (FAP —1 or FAP -2),
changing the R -value of the task has no significant effect on performance. Irrespective of the
R -value of the task, increasing the upfront training policy from FAP —0 to FAP -1 yields
increased performance; however, a further increase to FAP —2 provides no significant

additional benefit. Performance is best when the upfront training policy is FAP —2 and the
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. R -value of the task is three. Performance is poorest when there is no upfront training
(FAP —0) and the R -value of the task is one-third; however, an exception is when the worker
transfer policy is 250 and/or the worker forgetting rate is low (95%), in these special cases

forgetting losses are significantly reduced.

4.1.2.3.8.1 Discussion

In this interaction, there are effects that, again, have a strong influence on performance, such as:
the benefit of just providing FAP —1, and the minor influence of the R -value of a task in the
presence of upfront training. Changing the R -value of a task at any level is indeed only

significant when there is no upfront training ( FAP —0), whereas just the addition of 1x 1,

amount of upfront training causes the R -value of the task factor to be immaterial. This finding
concurs with the main effect results (see, Figure 4.1(c)) that the upfront training factor (FAP)

overshadows the effect of the R -value factor.

4.1.2.3.9 The interactions between N and R

Irrespective of the number of tasks learned, the performance is only significantly increased if the
R -value of the task is increased from one-third to three; no significant benefits result from just

an increase from an R -value of one-third to one, or from one to three. Given that the R -value

of the task is one-third or one, decreasing the number of tasks learned from three to two

significantly improves performance. However, given that the R -value of the task is three, the

number of tasks learned factor has no significant effect on performance. Performance is best
when the number of tasks learned is two and the R -value of the task is three. Performance is
poorest when the number of tasks learned is three and the R -value of the task is one-third;

however, an exception is when the upfront training policy is FAP —2 and/or the worker
transfer policy is 250 and/or the forgetting rate is low (95%), in these special cases forgetting

losses are significantly reduced.

4.1.2.3.9.1 Discussion

In this interaction, the observations reiterate the minor effect of the R -value factor. However,
given that an R -value of three causes the number of tasks learned factor to be immaterial, the

significance of the R -value factor should not be entirely overlooked. In addition, this

" interaction reflects the main effect conclusion that only learning two tasks is preferable.
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4.1.2.4 Interaction effect conclusions - DPLFM -

Several notable conclusions are inferred from the previous analysis. Firstly, in the DPLFM, the
worker transfer level of 250 and upfront training (especially FAP —2) remain important
policies for reducing the harshest 2-way forgetting losses, as they were included in 10
(C =250), nine (FAP —2), and six (FAP—1) out of the 34 special case 3-way upper
interaction exceptions (located below the upper interaction criterion, see inequality in (4.4)).
However, in eight of the interactions, upfront training and/or a reduced transfer frequency were

not necessary for reducing the harshest 2-way forgetting losses if the worker forgetting rate was

low (95%). Also, it may also be of interest to note that performing a task-type T',, came within

0.5% of exceeding the upper interaction criterion of the 2-way interaction FAP—0—R,,,.

Again, this highlights the significance of how much the forgetting losses may be underestimated
by not accounting for the dual phase cognitive-motor elements of a task. There were no observed
3-way interaction exceptions for a best case 2-way interaction (located above the lower

interaction criterion, see inequality in (4.4)).

Secondly, a remarkable observation was that changing the task-type from 7,, to any other task
significantly reduces forgetting losses in three out of five 2-way interactions containing the task-
type factor (C/T, FR/T,T /N ). Forgetting losses are significantly reduced in these cases
except for when the worker transfer policy is 250 in the C'/7T" interaction, when the worker
forgetting rate is low (95%) in the FR/T interaction, and when the number of tasks learned is
two in the 7'/ N interaction. This finding provides credit to the superb benefit of trying to
avoid the production of a task-type 7T, ; however, this is unnecessary in the above specified 2-

way interactions if the forgetting rate of the worker is low (95%), if an employer can reduce the

worker transfers to every 250 units, or if the number of tasks learned is kept at two.

Thirdly, the interaction effect of the R -value factor of the task was found to be inferior to the
other factors; this concurred with the main effect conclusions. However, the R -value factor still

may be of significance because the results suggest that even though the R -value factor has,
overall, the second smallest main effect, it interacts closely with the task-type factor (a higher

ranked main effect factor). Also, a task that has three times more motor than cognitive elements

(R,,;) came within 1.1% of exceeding the lower interaction criterion, and as a result, nearly

caused the only exception for a best case 2-way interaction ( Cy5) F Ry, ). Furthermore, in the
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interaction N/ R , a task with an R -value of three caused the number of tasks learned factor to
be immaterial. Therefore, because of the above reasons, the significance of the R -value factor

should not be entirely overlooked.

Finally, as in the LFCM, there is no additional benefit for the worker to learn three tasks instead
of just two tasks. However, the results of the interaction effect suggest that the level of the

number of tasks learned factor (V) is insignificant if: the worker transfer policy is 250 in the
C/N interaction, the worker forgetting rate is low (95%) in the FR/N interaction, the
upfront training policy is FAP —2 in the FAP/N interaction, the task being performed is
cognitive (7.) in the 7'/ N interaction, or the R -value of the task is three in the N/R

interaction.

4.1.3 Comparison of the results of model A with Jaber et
al. (2003)

Jaber et al. (2003) conducted their experiment in order to answer the following three questions:
(A) Will providing a worker upfront training reduce forgetting? (B) How does the frequency of
worker transfers (C') relate to forgetting? (C) Do the answers to the above questions A and B
change as the number of tasks for which a worker is trained increases or for different forgetting
rates? The interplay between the upfront training policy ( FAP) and the worker transfer policy
(C) in the LFCM was also examined. In this section, the results of Jaber et al. (2003) are
compared with the results of modeling worker learning and forgetting using the DPLFM and are

discussed as they relate to the aforementioned A, B, C questions and (D): the interplay between
upfront training and transfer policy.

4.1.3.1 Discussion of question (A)

Jaber et al. (2003) concluded that, in the LFCM, increasing worker training from FAP —0 to
FAP-1 to FAP -2 reduced forgetting losses. The percentage improvement from
FAP ~0 to FAP -2 was 29.4% for the LFCM (see Table 4.2). It can also be concluded
that, when using the DPLFM, increasing worker training from FAP ~0 to FAP-1 to
FAP -2 also reduces forgetting losses. Upfront training in the DPLFM reduces forgetting
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losses less than in the LFCM; this is evident since the overall relative improvement from

FAP -0 to FAP -2 inthe DPLFM was 17.2% (see Table 4.3).

4.1.3.2 Discussion of question (B)

Jaber et al. (2003) concluded that, in the LFCM, reducing the frequency of worker transfers
(increasing the worker transfer policy from 10 to 25 to 250) reduces forgetting losses. The
percentage benefit by changing the worker transfer policy from 10 to 250 is 24.1% for the
LFCM (see Table 4.2). It can also be concluded that, when using the DPLFM, reducing the
frequency of worker transfers reduces forgetting losses. However, the magnitude of forgetting
loss reduction provided by reducing the frequency of worker transfers in the DPLFM from 10 to
250 is less (14.5%) than that of the LFCM (see Table 4.3).

4.1.3.3 Discussion of question (C)

Due to the complexity of the interacting experimental factors, the conclusions made by Jaber et
al. (2003) regarding question C are numbered and then referenced by the corresponding
conclusions of model A. Also, the conclusions for the DPLFM in this section were acquired by
examining the DPLFM results of model A in a suppressed format (similar to the results of Jaber

et al. (2003)), see appendix section 7.5.

Conclusion (1) of Jaber et al. (2003) suggested that, in the LFCM, given a worker transfer policy
of 10, FAP —1 was all that was needed to reduce forgetting losses at all forgetting rates when
the number of tasks learned was two, and (conclusion (2)) with a low forgetting rate when the
number of tasks learned is three. Conclusion (3) suggested that, when three tasks are learned,
and the forgetting rate is medium or high, there is additional benefit to providing more upfront
training to FAP —2 . Conclusion (4) suggested that, given no upfront training ( FAP —0),
increasing the worker transfer policy from 10 to 25 is sufficient to counter forgetting losses for
two tasks learned and a low forgetting rate. In conclusion (5) it was suggested that, given no
upfront training ( FAP — 0), for medium and high forgetting rates, and for three tasks learned,

there is an additional benefit to increasing worker transfer policy to 250.

The results of this experiment suggest the following: conclusion (1) of Jaber et al. (2003) is true
in the DPLFM with the exception of when a worker with a high forgetting rate (85%) performs a

task 7,, with an R -value of one-third (FRy, T, R,;3); in this case even upfront training to
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two times the standard number of units (FAP —2) is ineffective in significantly reducing
forgetting losses. However, conclusion (2) is true in the DPLFM at all task-types and R -values.
Conclusion (3) only concurs with the following DPLFM factor settings of
CioF R Tytea R /3> Cro F Ry Te Ry CioF Ryso, Tgoa Ry s CioFRyso Ty Ry 5,

CroFRes Ty Ry . Cos FRyso T Ry 3, Cos FRyso Te Ry, O Reso Ty Ry, Cos FRysy T i Ry
Cy FRyo, T Ry 3, Cos FRys, TR, and CysFRy0 T Ry, at all other settings either
FAP -2 is insufficient in providing forgetting loss reductions, FAP —1 is all that is required
to reduce forgetting losses, or even no upfront training is required at all (FAP—0) to

significantly reduce forgetting losses. Namely, only 12 out of the possible 72 factor settings

specified within the criteria of conclusion (3) concurred with the LFCM. As a result, it is evident

how influential the task-type and R -value factors are at certain settings of N and FR.

Overall, conclusion (4) differs from the results of the LFCM because, given the settings of
conclusion (4) of FAP -0, N =2, and FR =95%, the shop conditions in the DPLFM

already provide significant forgetting loss reductions regardless of the level of the worker
transfer policy. Also, interestingly, for the factor setting of N,FRys, T, R, 5, increasing the
worker transfer policy is actually insufficient in significantly reducing forgetting losses, a further

increase to C =250 is required due to the inherent magnitude of the motor elements of the task

at this setting. Conclusion (5) is also true in the DPLFM with the exception of when a worker
with a medium forgetting (90%) rate performs a task TC with an R -value of one or three, or a
task 7}, with an R -value of three (FRyy It-R,, FRyw TRy, FRy, T, g R;). In these

cases, the amount of forgetting losses is so small initially that only an increase to a worker

transfer policy of 25 is necessary to reduce forgetting losses. Also, conversely, even an increase
to a worker transfer policy of 250 (C = 250) in conclusion (5) is insufficient in reducing

forgetting losses in the DPLFM when a worker with a medium forgetting rate (90%) performs a

task 7), with an R -value of one-third (FRyy,, T}, R, ), when a worker with a high forgetting
rate (85%) performs a task T,, with an R -value of one-third or one (FRy, T} R,/; or
FRy50, T\, R,), or when a worker with a high forgetting rate (85%) performs a task 7T, vea With

an R -value of one-third ( FR;s,, 7, R, /5)-



4.1.3.4 Discussion of issue (D)

The conclusions made by Jaber et al. (2003) regarding issue D are numbered and then
referenced by the corresponding conclusions of model A. Conclusion (1) of Jaber et al. (2003)

suggested that, given two tasks learned, a low forgetting rate (95%), a transfer policy of 10, and
no initial training ( FAP — 0), either increasing the transfer policy (to 25 or 250) or introducing

initial training (to FAP —1 or FAP —2) would significantly remove forgetting losses. It is
not necessary to both increase the transfer policy and provide upfront training, as either method
alone is sufficient in reducing forgetting losses. Conclusion (2) stated that the general pattern in
conclusion (1) holds as the forgetting rate increases to medium (90%) or high (85%) and/or the
number of tasks learned increases to three. Conclusion (3) suggested that, given that three tasks
are learned and a high forgetting rate, both providing upfront training and increasing the transfer

policy are required to achieve maximum forgetting loss reduction.

Conclusion (1) of Jaber et al. (2003) is also true in the DPLFM. In fact, only the factor setting of
N,FR,, T, R,,; requires the use of either upfront training or an increased transfer policy to

reduce forgetting, all other factor settings within those specified in conclusion (1) are already
significantly absent of forgetting losses even before any policy changes. Conclusion (2) is true in

the DPLFM, with the exception of when a worker with a high forgetting rate learns two tasks of
type 7,, with an R -value of one-third (N, FRy,T,, R+ ), when a worker with a medium
forgetting rate learns three tasks of type 7, withan R -value of one-third ( N; FR,. T, R,,3),
when a worker with a high forgetting rate learns three tasks of type 7,, with an R -value of
one-third or one ( N3 FReso. Ty, R, )3, NyFRgso, T,, R, ), or when a worker with a high forgetting

rate learns three tasks of type 7,,, with an R -value of one-third (N3 FRge T}, R, 3), in

these cases increasing the worker transfer policy and introducing initial training are not even

sufficient in removing forgetting losses. Again, conclusion (3) is true in the DPLFM with the

exception of when a task 7}, with an R -value of one-third (7}, R, ;) is performed, or when

a task T,, with an R -value of one-third or one (7, R,,; or T, R,) is performed, in these

cases increasing the worker transfer policy and introducing initial training are not even suffictent

in removing forgetting losses.
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It is interesting to note that all three issue (D) DPLFM conclusions suggested that the
detrimental effect of performing a motor dominated task is such that the combined effort of

providing upfront training and increasing the transfer policy may be insufficient in countering

forgetting losses.

4.1.4 Implications of results for the five DRC issues

The five possible issues that affect DRC shop performance measures as given by Hottenstein and
Bowman (1998) are: (1) worker flexibility, (2) centralization of control, (3) worker assignment,
(4) queue disciplines, and, (5) cost of transferring workers. The results of model A are compared

to these issues and are summarized briefly below.

4.1.4.1 Issue 1: worker flexibility (number of tasks learned)

Hottenstein and Bowman (1998) found that cross-training beyond two or three skills per worker
does not significantly enhance DRC system performance. In model A, and in Jaber et al. (2003),
it was evident that, overall (see row two, column four of Table 4.3), training workers beyond two
skills does not benefit shop performance; and as a result, the results in model A concur with

those of Jaber et al. (2003) and Hottenstein and Bowman (1998).

4.1.4.2 Issue 2: centralization of control (‘when’ rule)

The survey by Hottenstein and Bowman (1998) regarding centralization of control concluded the
following: (1) an efficiency control rule that moves a worker as soon as the worker can be
moved to a stage that he/she is most efficient is shown to be a superior rule under most
conditions; (2) the degree of centralized control is not independent of the assignment rule; and,
(3) centralized control only marginally reduces mean and variance of flow-time compared to
decentralized control; and if the efficiency levels of the workers at various tasks differ, then the
level-of-control-decision is far less dependent on the status of the queue but is determined by the

time of the availability of a station where the worker is more efficient.

In model A, and in Jaber et al. (2003), the implications of the above conclusions are as follows.
Regarding conclusion (1), in model A, it was assumed that a worker is equally efficient in all
stages; therefore this analysis is not applicable. As for conclusion (2), the degree of

independence of the centralized control was not addressed in either model A or in Jaber et al.
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(2003) because the worker was always assigned to the next available job and different

assignment rules were not examined. Regarding conclusion (3) in model A, and in Jaber et al.
(2003), the 7, (the level of centralized control of jobs in stage i parameter), is neither 0 nor 1

but varies between these two values. More specifically, the level of centralized control is
determined by the number of units processed. The worker moves from the station after a fixed
number of jobs are completed (C'), e.g.: batch sizes of 10, 25, or 250. However, the conclusion
(3) by Hottenstein and Bowman (1998) suggests that a level of control closer to 0 than to 1 is
preferred. In model A (see row 13, column two in Table 4.3), and in Jaber et al. (2003), out of
the possible levels of 10, 25 and 250, it was found that a worker transfer policy of 250 reduced
forgetting losses most significantly. As a result, it can be inferred that the results of model A and
those of Jaber et al. (2003) differed from those researched by Hottenstein and Bowman (1998)
because they concluded that a centralized control policy was superior to a decentralized policy;
albeit, Hottenstein and Bowman (1998) concluded that it was superior by only a marginal
amount. Again, as for the remaining remarks in conclusion (3), the analysis in model A and in
Jaber et al. (2003) is not applicable because the worker is assumed equal efficiency on all

stations.

4.1.4.3 Issue 3: worker assignment

As previously mentioned, since the worker in model A and in Jaber et al. (2003) was always

assigned to the next available job, different assignment rules were not examined.

4.1.4.4 Issue 4: queue disciplines

There are no arrivals in model A or in Jaber et al. (2003) until a unit is complete, therefore, it is
a simple static, first-come-first-serve model. As a result, the comparison between different queue

discipline rules was not made.

4.1.4.5 Issue 5: cost of transferring workers

There are no conclusions made in either model A or in Jaber et al. (2003) because no transfer

delay was assumed and hence the costs of transferring workers was assumed zero.
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4.1.5 Model A conclusions S |

The purpose of the experiment conducted in model A wasto determme if modeiiilg worker
learning and forgetting according to the dual-phase learning-forgetting model (DPFLM) changed
the conclusions made by Jaber et al. (2003), where worker learning and forgetting was modeled
according to the LFCM. Determining if there was a difference may be important because the
DPLFM is the only learning and forgetting model that closely models the seven characteristics
of learning as summarized by Jaber et al. (2003), and theoretically models cognitive and motor
learning elements that were validated experimentally; and as a result, model A may provide
more appropriate conclusions regarding the effectiveness of DRC performance enhancing
policies. The implications of the results of model A on the five possible issues that affect DRC

shop performance given by Hottenstein and Bowman (1998) were also addressed.

The following conclusions can be made. Model A suggested that the DPLFM credits less benefit
for an increased upfront training policy ( F4AP ) and a less frequent worker transfer policy (C')
than the LFCM (see Table 4.3 versus Table 4.2). The difference of benefit for FAP and C in
the DPLFM is due to the additional consideration for the task-type that is being performed. This
difference is evident in the discussions in sections 4.1.3.3 and 4.1.3.4 when a highly motor
dominated task is being performed; especially when the R -value of the task is low. The results
of model A suggest that the nature of the task being performed with respect to its learning rate
(T") and proportion of cognitive and motor elements (R ) may be an important issue, and
therefore, could be brought under consideration for future DRC research. The DPLFM is a
model that can provide a measure that recognizes both these inherent task characteristics. In fact,
the results of model A suggest that the task-type factor (7") is of such importance that the
detrimental effect of performing a motor dominated task (7, ) is such that the combined effort

of providing upfront training and increasing the transfer policy may be insufficient in countering
forgetting losses in workers with a high forgetting rate ( FR = 85% ) when two tasks are

learned, and in workers with a medium ( FR =90% ) and high ( FR = 85% ) forgetting rate

when three tasks are learned.

It was also observed that upfront training was still an important factor in reducing the forgetting
losses in the DPLFM; albeit at a slightly less degree than in the LFCM. In Jaber et al. (2003), it
was suggested that since the results of the LFCM showed that upfront training was more
important in the LFCM than in the VRVF, the LFCM more closely modeled tasks that were
more dissimilar. The results of model A suggest that the DPLFM stresses the importance of
upfront training more than the VRVF but less than the LFCM. As suggested by Jaber et al.
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(2003), what the worker does during an interruption period may affect the degree of forgetting
losses. As a result, the inclusion of the similarity factor in model B of this thesis examines how

the task similarity factor interacts with the DPLFM as compared with the LFCM. In addition, it
was observed that further upfront training to #4P —2 was more beneficial in the DPLFM than

in the LFCM. An interesting observation of model A was that performing task T',, resulted in
less forgetting losses than performing 7, ,, a task with an equal average learning rate. Also, it
was of interest to note that performing a task-type 7',, came within 0.5% of exceeding the upper

interaction criterion of the 2-way interaction FAP—0—R,,;. As a result, it can then be

inferred that forgetting losses may be underestimated when the dual cognitive and motor task

elements are not distinguished from each other as they are in the DPLFM.

Model A suggested that learning an additional task (from N =2 to N =3) increases
forgetting losses; however, the detrimental effect of learning an additional task was slightly less
in the DPLFM than in the LFCM. Also, the number of tasks learned factor ( NV ) is insignificant
in specific 2-way interactions if the worker transfer policy is 250, if the worker forgetting rate is
low (95%), if the upfront training policy is FAP —2, or if the task being performed is
cognitive. Also, the interaction effect analysis of model A illustrated how some factor settings
reduce the influence of the levels of less significant factors. For example, given upfront training
levels of FAP —1 or FAP — 2 in the 2-way interaction 7 / F'/AP |, performance is insensitive
to the change in task-type, whereas, conversely, given any task-type, providing just one-times
the standard time number of units ( FAP —1) of upfront training is sufficient to significantly
reduce forgetting losses. This observation stresses the importance of the magnitude of
interaction between factors and how this interaction may affect conclusions drawn by only

considering the factors individually (as in the main effect results).

As for the unique DPLFM factor interactions, it was found that, the interaction effect of the R -
value of the task was found to be inferior to the other factors. However, the R -value factor still
may be of significance because the results suggest that even though the R -value factor has,
overall, the second smallest main effect, it closely interacts closely with the task-type factor (a

higher ranked main effect factor). Also, a task that has three times more motor than cognitive

elements (R, ) came within 1.1% of exceeding the Jower interaction criterion, and as a result,
nearly caused the only exception for a best case 2-way interaction ( C,5, FRyse, ). Furthermore,

in the interaction N / R , a task with an R -value of three caused the number of tasks learned
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factor to be immaterial. Therefore, because of the above reasons, the significance of the R-

value factor should not be entirely overlooked.

The avoidance of producing a task of type 7, is suggested by the results of model A; however,

this is unnecessary in specified 2-way interactions if the forgetting rate of the worker is low
(95%), if an employer can reduce the worker transfers to every 250 units, or if the number of

tasks learned is kept at two. Finally, in the DPLFM, the worker transfer level of 250 and upfront
training (especially FAP —2) remain important policies for reducing the harshest 2-way
forgetting losses, as they were included in 10 (C =250), nine (FAP~2), and six
(FAP—1) out of the 34 special case 3-way upper interaction exceptions for reducing the

harshest 2-way forgetting losses.

4.2 Model B results

Appendix section 7.6 contains the tables for the suppressed = average processing time results
for the DPLFM when two tasks (N =2 ) and three tasks (N =3) are learned with various
degrees of similarity for the three worker transfer levels (C =10, C =25, C = 250).

Jaber et al. (2003) examined how the inclusion of the task similarity factor affected the results of
the original assumption of no task similarity. The following section examines how the results of

model B compare to those of Jaber et al. (2003), where the LFCM was used.

4.2.1 Comparison of the results of model B with Jaber et
al. (2003)

Intuitively, what a worker does during an interruption period may affect the amount of forgetting
that occurs. Jaber et al. (2003) suggested that a worker forgets less if he/she performs tasks that
are similar during the interruption period. The original assumptions of the LFCM and the
DPLFM were that the tasks performed are totally dissimilar; and hence, do not contribute to

experience gained during an interruption. Jaber et al. (2003) concluded that the results of the

E L2
The theoretical average processing time is 1.04. For ease of interpretation, the results from 1.04 and 1.06 have been
suppressed with a "-". This is consistent with the formatting of results of Jaber et al. (2003).
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LFCM with the similarity factor for two tasks learned suggested that the benefit or motivation to
provide upfront training or a reduced transfer frequency decreases with increased similarity
because the average processing times decrease as similarity increases. The model B results
tables in appendix section 7.6.1 suggest that this is also true for the DPLFM, irrespective of the
new factors of task-type (") and the R -value of the task. It can be concluded that the DPLFM
also attributes less forgetting losses with increased levels of task similarity; this concurs with the
findings of Jaber et al. (2003).

However, for two tasks learned, the relative degree of forgetting loss reduction is less
pronounced in the DPLFM than in the LFCM. This is evident when the change in the average
processing times between task similarity levels is averaged irrespective of all other factors in
each model, see Table 4.6. As shown in the shaded cells of Table 4.6, the overall reduction in
average processing time from a task similarity level of s =0 to s = 0.8 is less in the DPLFM

than in the LFCM. It can then be inferred that forgetting loss reduction in the DPLFM is less

Table 4.65*Percent decrease in average processing times with increasing task
similarity - the DPLFM versus the LFCM (N =2)

Change in the degree of | DPLFM LFCM
task similarity (As)

0.0-0.2 -1.39% -1.91%
0.0-04 -2.75% -3.93%
0.0-0.6 -3.96% -6.20%
0.0-0.8 -5.07% -8.78%

*%&

The baseline for comparison is no task similarity, it is calculated as follows:
[{APT(s = i) — APT(s=0)}/ APT(s=0)J*100, where i= 0.0, 0.2, 0.4, 0.6

95




.. - sensitive to changes in the degree of task similarity; and hence, there is slightly more motivation

to reduce forgetting losses when performing similar tasks with upfront training or a reduced
transfer frequency in the DPLFM than in the LFCM. Again, for the suppressed average
processing time results in the DPLFM when three tasks are learned with various degrees of task
similarity (see appendix section 7.6.2), it is evident that forgetting losses reduction is significant

as the task similarity level increases.

The conclusions made by Jaber et al. (2003) regarding the effect of the similarity factor on the
LFCM when three tasks are learned are numbered as follows: (1) Jaber et al. (2003) concluded

that, for the LFCM when three tasks are learned, when task similarity is low and forgetting rates

are high, extensive training ( AP — 2 ) alone cannot completely reduce forgetting losses, and
reducing the frequency of worker transfers is necessary to reduce forgetting losses; and (2) the

results of Jaber et al. (2003) suggested, however, that as the degree of task similarity increases
(S, or greater), even a moderate amount of training (FAP —1) is sufficient in reducing

forgetting losses without aiso having to resort to more frequent worker transfers.

Conclusion (1) of Jaber et al. (2003) is true with the exception of when a cognitive task (17 )
with an R -value of one is performed, when a median task (7, ) with an R -value of three is

performed, or when a uniform task'"" with an R -value of one-third or three is performed (bold

font numbers in 85% forgetting rate column of the suppressed average processing time results
for the DPLFM with the task similarity factor — C =10, N = 3, see Table 4.7); in these cases
extensive training (FAP —2) is sufficient in reducing forgetting losses without having to

reduce the frequency of worker transfers. In addition, when a cognitive task (7. ) with an R -

value of three is performed (bold and italicized font), just moderate training ( FAP —1) is
sufficient in reducing forgetting losses. Conclusion (2) of Jaber et al. (2003) is true with the

DPLFM with the following exceptions: (a) when a cognitive task (7. ) with an R -value of
three is performed, in this case, tasks can be totally dissimilar (similarity factor of S, or greater)

in order for moderate training ( 4P —1) to be sufficient in reducing forgetting losses, (b) when

a cognitive task with an R -value of one, or when a median task (7, ) with an R -value of

three is performed, in these cases tasks can be even less similar (similarity factor of S, or

greater) in order for FAP ~1 to be sufficient in reducing forgetting losses,

H As in model A, forgetting losses may be underestimated if the cognitive and motor task requirements are not accounted for.
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Table 4.7: Suppressed average processing time results for the DPLFM with the
task similarity facior —-C =10, N =3

Low forgetting Medium forgetting High forgetting
rate of 95% rate of 90% rate of 85%
Task- Similarity
Type | R f;c)“" FAP-0 | FAP—1 | FAP-2 | FAP-0 | paP—1 | FAP-2 | FAP-0 | FAP-1 | FaP-2
So 1.1263 - - 1.7420 R - 20664 | 12708 | 1.1274
3 S - - - 1.6165 - - 19494 | 1.1365 -
Sz - - - 1.4097 - - 1.7521 - .
Ss - - - - - - 1.2537 - -
So - - - 1.4647 - - 1.8559 | 1.1903 -
T, 1 Si - - - 1.3355 . - 1.7331 - -
S - - - L1110 - - 1.5284 - -
S3 - - - - - . - - -
So - - - 1.0833 - - 14711 - -
3 S - - - - - - 1.3361 - -
S - - - - - - 1.0946 - -
Ss - - - - - - - - .
So 1.7488 - - 23971 1.1351 11079 | 26494 | 14259 | 13012
3 Si 1.6160 - - 2.2934 - - 2.5583 | 13008 | 1.2062
S; 1.4007 - - 2.1180 - - 23982 | 1.1i80 | 1.0936
S 1.0733 - - 1.6663 - - 1.9671 - -
So 1.3887 - - 2.0008 - - 23408 | 13416 | 12275
1 S 1.2530 - - 1.8835 - - 22349 | 12105 1.1083
T, S - - - 1.6888 - - 2.0543 - -
Ss - - - 12186 - - 1.5878 - -
So - - - 1.6476 . - 19818 | 12181 1.0805
3 Si - - - 1.5207 - - 1.8627 | 1.0833 -
S; - - - 13132 - - 1.6637 - -
Ss - - - - - - 1.1724 - -
So 1.4156 - - 20616 | 1.0919 - 23549 | 13814 | 1.2599
- Si 1.2772 - - 1.9451 - - 2.2491 12475 | 1.1343
S, - - - 1.7505 - - 2.0676 - -
Ss - - - 1.2689 - - 1.5943 - -
So 1.0811 - - 1.7204 - - 2.0906 | 12697 | 1.1301
S - - . 1.5957 - - 1.9751 1.1379 -
T tea ! S - - - 13911 - - 1.7803 - -
Ss - - - - - - 1.2895 - -
So - - - 13773 - - 1.7287 | 11005 -
S - - - 12432 - - 1.6030 - -
3 S, ) . . ] ; ; 13956 . -
S - - - - - - - - -
So - N - 1.6480 - - 1.9866 | 1.2271 .
Si - - - 1.5175 - - 1.8654 | 1.0824 -
13 S: - - - 1.3025 - - 1.6615 - -
Ss . - - - - - 1.1477 - -
So 1.0850 - - 1.7472 - - 21198 | 12937 1.1291
St - - - 1.6194 - - 2.0034 | 1.1559 -
Ty 1 S, ) ] - 1.4075 . . 1.8045 - .
S: . - - - - - 1.2905 - -
So - - - 1.6480 - - 1.9866 | 1.2271 R
St - - - 1.5175 - - 1.8654 | 1.0824 -
3 S - - - 1.3025 - - 1.6615 - -
Ss - - - - - - 1.1477 - -
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and, (c) when a motor task (7}, ) with an R -value of one-third is performed, in this case tasks
need to be almost totally similar (similarity factor of S, or greater) in order for moderate

training (FAP —1) to be sufficient in reducing forgetting losses. The aforementioned

exceptions to conclusion (2) are illustrated in Table 4.7 by shaded numbers.

Also, for three tasks learned, the degree of forgetting loss reduction is less pronounced in the
DPLFM than in the LFCM. This is evident when the change in the average processing times

between task similarity levels is averaged irrespective of all other factors in each model, see

Table 4.8. As shown in shaded cells.of Table 4.8, the overall reduction in average processing

time from a task similarity level of S, to S, is less in the DPLFM than in the LFCM. It can

then be inferred that forgetting loss reduction in the DPLFM is also less sensitive to changes in
the degree of task similarity when three tasks are learned; and hence, there is slightly more
motivation to reduce forgetting losses when performing similar tasks with upfront training or a
reduced transfer frequency in the DPLFM than in the LFCM. These findings also support the
deduction made in the main effect results of model A that the DPLFM accrues less importance
on the dissimilarity of the tasks being performed than the LFCM. Also, Jaber et al. (2003)
concluded that it is possible to use greater flexibility in shops with similar tasks. The results of
model B suggest that this is even truer for the DPLFM (see shaded values of the DPLFM versus
the LFCM column in Table 4.9). For example, Jaber et al. (2003) concluded that the assumption
of the LFCM with no task similarity suggested that an increase to N =3 provided no further
benefit.

The overall average processing time in the LFCM when two tasks are learned (N =2)

(irrespective of all factors) is 1.16 (see bold font number in the N =2, s =0 cell of Table
4.9). The equivalent value for the DPLFM is 1.07 (also in bold font). It can then be inferred that
a combination of factors yielding an average value equal to or less than 1.16 for the LFCM, or

1.07 for the DPLFM, may suggest an equally feasible policy. As shown in the shaded N =3

values for the LFCM, tasks should have a similarity of at least S, or greater in the LFCM for
N =3 to be as feasible as N =2 with no similarity. However, in the DPLFM, only a task

similarity of S, or greater is necessary for the feasibility of training workers for three tasks.

Therefore, the results of model B indicate that it may be even more feasible than suggested by

Jaber et al. (2003) that it is possible to use greater flexibility in shops with similar tasks.
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Table 4.8: Percent decrease in average processing times with increasing task

similarity’** - the DPLFM versus the LFCM (N =3)

Change in the degree of

task similarity DPLFM | LFCM
So =5 -2.83% | -4.37%
S, -5, -6.00% | -9.58%
Sy — 85 9.97% | -16.43%

Table 4.9: Average processing times with respect to number of tasks learned
and task similarity factor — the DPLFM and the LFCM

DPLFM LFCM
0.0 | 1.07 0.0 1.16
0.2 | 1.06 0.2)1.14

N=2 04 104 | N=2 041 1.12
0.6 | 1.03 0.6 | 1.09
0.8 | 1.02 0.8 | 1.06
So | 1.14 So | 1.29

N=3 S; | 111 N =3 S; | 1.24
S, | 1.07 S; 1117
S; 11.03 S; | 1.08

4.2.2 Implication of results for the five DRC issues

The five possible issues that affect DRC shop performance measures as given by Hottenstein and
Bowman (1998) are: (1) worker flexibility, (2) centralization of control, (3) worker assignment,
(4) queue disciplines, and, (5) cost of transferring workers. The results of model B are compared

to these issues and are summarized as follows.

#1 The values in Table 4.8 are calculated as in Table 4.6
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4.2.2.1 Issue 1: worker flexibility (number of tasks learned)

Hottenstein and Bowman (1998) found that cross-training beyond two or three skills per worker
does not significantly enhance DRC system performance. In model B, and in the similarity
section of Jaber et al. (2003), it was evident that training workers for up to three skills may be
possible without severe forgetting losses in cases where there is similarity between tasks.
Furthermore, the results of model B indicate that it may be even more feasible than suggested by
Jaber et al. (2003) that it is possible to use greater flexibility in shops with similar tasks. As a
result, the results in model B support those of Jaber et al. (2003) and Hottenstein and Bowman

(1998).

4.2.2.2 Issue 2: centralization of control (‘when’ rule)

The survey by Hottenstein and Bowman (1998) regarding centralization of control concluded the
following: (1) an efficiency control rule that moves a worker as soon as the worker can be
moved to a stage that he/she is most efficient is shown to be a superior rule under most
conditions, (2) the degree of centralized control is not independent of the assignment rule, and,
(3) centralized control only marginally reduces mean and variance of flow-time compared to
decentralized control; and if the efficiency levels of the workers at various tasks differ, then the
level-of-control-decision is far less dependent on the status of the queue but is determined by the
time of the availability of a station where the worker is more efficient. The implications of the

results of model B regarding the above three issues are the same as in mode! A.

4.2.2.3 Issue 3: worker assignment

As previously mentioned, since the worker modeled in model B and in Jaber et al. (2003) was

always assigned to the to the next available job, different assignment rules were not examined

4.2.2.4 Issue 4: queue disciplines

There are no arrivals in model B or in Jaber et al. (2003) until a unit is complete; therefore, it is
a simple static, first-come-first-serve model. As a result, the comparison between different queue

discipiine rules was not made.
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4.2.2.5 Issue 5: cost of transferring workers

There are no conclusions made in either model B or in Jaber et al. (2003) because no transfer

delay was assumed and hence the costs of transferring workers was assumed zero.
4.2.3 Model B conclusions

It can then be concluded that when worker learning and forgetting is modeled according to the
DPLFM, the effect of the task similarity factor is affected by the type of task that is being
performed with regards to the effectiveness of upfront training, frequency of worker transfers,
and the number of tasks learned. The main findings of model B are as follows: (1) the results
suggest that the DPLFM may emphasize a greater benefit for upfront training and more a
frequent worker transfer policy than the LFCM when tasks are similar, and (2) model B
supported the conclusions of Jaber et al. (2003) by an even greater extent that it is possible to
use more flexibility (up to three tasks learned) in DRC shops with similar tasks, and, (3) the
findings support the deduction made in the main effect results of model A that the DPLFM
accrues less importance on the dissimilarity of the tasks being performed than the LFCM.
Consequently, the results of model B suggest that the task-type factor, as modeled by the

DPLFM, could also be included in DRC research when task similarity factors are examined.

4.3 Model C results

4.3.1 Preliminary main effect analysis of C* and FAP"

An optimization search routine was programmed in Excel-Visual Basic. This computer
procedure searched for the optimal set of output variables (FAP®,C") for each corresponding
combination of input variables (s, 0, LR, FR). This produced a 5(degree of task similarity
(5 ))x5(initial processing time to standard time ratio (o ))x5(worker learning rate

( LR Y)x5(worker forgetting rate ( FR )) table of results yielding 625 optimized values of the
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upfront training policy ( FAP ") and the centralization of control policy (C "). The tables of

results are given in the appendix section 7.7. As previously mentioned, the search range of

FAP" was { FAP —0— FAP —5} in increments of 0.5x 7, and the search range of ol

was {10 — 250 units} in increments of one unit.

Initially, the main effect of each input variable (s,0,LR,FR) on the output variables

(FAP",C") were calculated. As previously mentioned, the main effect can be defined as the

change in response or output caused by the change in a level of the factor in question

(Montgomery, 1997). In this analysis, the main effect of each input variable on the optimized

level of FAP and C was found by averaging each optimized value of FAP" and C°

irrespective of the other levels of the input variables. For example, the effect of the degree of
similarity was calculated by averaging all of the FAP' and C° values at each level of
5(0.0,0.2,0.4,0.6,0.8) over all of the levels of ©(2,3,4,5,6), LR (70%,75%,80%,85%,90%),
and FR (95%,92.5%,90%,87.5%,85%). As a result, the effect of the degree of similarity on

both C* and FAP" was found by plotting the main effect of C~ and FAP" at each level of
§ . This was performed for each input variable. This was done to determine if there were any
mathematical trends between the levels of each input variable and the resulting optimized output
variable. This section examines the behaviour of the main effect of each input variable on each
of the output variables, the justification for their apparent mathematical relationship, and the

conclusions that can be drawn from this analysis.

The resulting main effect calculations resulted in a total of eight plots: four for each of the input

variables versus each output variable C~ and FAP" .

4.3.1.1 Main effect analysis of ol

The main effect results for C  are given in Table 4.10. The results in Table 4.10 are

subsequently illustrated as scatter plots that are used for analysis and discussion.

43.1.1.1 C’ versus s

The scatter plot of the main effect behaviour of C with degree of task similarity (§ ) is given in
Figure 4.3. As shown in Figure 4.3, the average optimal batch size appears to decrease with
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Table 4.10: The main effect of each input variable versus level of C"

Input variable Level c’
Degree of task similarity (s) 0.0 109.0
0.2 94.5
0.4 75.8
0.6 50.0
0.8 24.3
Initial processing time to standard | 2 137.0
time ratio ( p) 3 100.7
4 33.5
5 28.6
6 53.9
Worker learning rate (LR ), where | 70% 87.0
LR=100x2" 75% 67.9
80% 54.2
85% 96.0
90% 48.6
Worker forgetting rate (FR), | 95% 354
where FR =100x 2/ 92.5% |52.3
90% 74.0
87.5% (914
85% 100.6
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~ Figure 4.3: Plot of C “versus §
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increasing levels of task similarity. This observation concurs with the results of Jaber et al.
(2003) when it was noted that “.forgetting losses decrease with increasing similarity, there is
Jess motivation to provide upfront training or reduce transfer frequency.” Figure 4.3 also concurs
with the mathematical relationship between the number of units remembered and the degree of

task similarity. For example, the relationship between § and the forget curve intercept is given

by (Jaber et al., 2003):

1 -s)yW(y, + ni)—(b+f) +sy(D(; + ni)-b, if (u, +n)<n, '

@7
(1-9)y,(u, +n)7 +sy, , otherwise

j}i(l)z{

Simplifying equation (4.7) suggests a direct relationship:
y;()~s, (4.79)

insomuch as when § increases in the range (0 < s <1), J,(1) increases.
Therefore, in a similar manner, simplifying equations (2.2) and (2.7) give:
i T;l_'_ P (48)
BAQ),

and

u, ~—. (4.83)
Consequently, substituting § through equations (4.7a) to (4.8a) gives the following:

U ~. (4.9)

The relationship in (4.9) suggests that when the degree of task similarity increases (0 < s <1),
the amount of experience retained at the beginning of cycle 7 also increases, representing a
decrease in forgetting losseé between cycles. This also concurs with the relationship shown in
Figure 4.3, because, as the degree of task similarity increases, forgetting losses decrease, and

therefore, there is less incentive to increase C .
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4.3.1.1.2 C’versus LR

The scatter plot of the main effect behaviour of C* versus learning rate is given in Figure 4.4.

Figure 4.4 suggests that C " tends to decrease as the learning rate slows; this is evident between
learning rates of 70% to 80%. This behaviour is contrary to intuition because it can be assumed
that, as learning deteriorates, batch sizes should increase to compensate for the large forgetting
losses. However, increasing C greatly magnifies the detrimental effect of a slow learner. This is
illustrated by plotting a graph of the average processing time ( APT ) versus the worker

learning rate for several values of C' (no initial training: FAP —0 ), see Figure 4.5.

As shown in Figure 4.5, larger lot sizes (longer production cycles) become increasingly more

effective in reducing APT values as learning slows. This observation is consistent with

intuition but is also contradictory to the results depicted in Figure 4.4. However, it is important

to reiterate that the data points in Figure 4.4 are the ‘minimized’ value of C (or C') for all
possible combinations of the factors previously mentioned in Table 3.5. As a result, averaging
the values as in Figure 4.5 is beneficial for overall trends in forgetting losses but does not
account for interactions between factors that have yielded optimized factor settings that only the
search procedure in model C could have found. For example, factor interactions are overlooked
by only examining one factor such as ‘worker learning rate’. As previously mentioned, the
interaction effect is when the change in response (output) between the levels of one factor is not
the same at all the levels of the other factors (Montgomery, 1997). Montgomery (1997) clearly
outlines this caveat of interactions when analyzing factors by using a simple example of a golfer
experimenting with factors to improve his golf score, see Figure 4.6. As shown in Figure 4.6, the
effect of the type-of-beverage-consumed factor (W-water versus B-beer) has little effect on the
golf score when the regular-sized driver factor is used. However, at the other driver factor setting
of ‘oversized driver’, the beverage factor is significant. Using this analogy in model C, this
interaction effect is evident when the level of initial training moves from FAP -0 to
FAP —1. Figure 4.7 illustrates the unique changes in the average processing time as initial

training is introduced. Figure 4.7 reveals that, with some initial training (FAP —1), and as
learning slows, the minimized value of C changes from C * =300 when learning is 70% to

C"* = 10 when learning is 80%.
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Figure 4.4: Plot of C’ versus LR
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Figute 4.5: Average processing time (APT) versus leaming rate
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Figure 4.6: Interaction between type of driver and type of beverage for
the golf experiment (Montgomery, 1997)
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Figure 4.7: Average processing time (APT) versus learning rate
(FAP —1) for several valuesof C (s =0, N =2, p =4)
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This observation is different than the result shown in Figure 4.5 where there was no initial
training. As a result, this observation supports the conclusion that unique factor interactions may
result in optimized performance measures that cannot be readily observed by just examining the
performance behaviour at one factor setting. Also, unique factor interactions that yield

minimized points cannot be found by averaging across factors such as in Figure 4.8, where the

average processing time ( APT ) for both FAP —0 and FAP —1 were averaged.

Consequently, the results of Figure 4.4 are minimized values of C (C ") that are found in the
search routine of model C. This search routine included all the possible interactions of all the

factors, and therefore, do not necessarily reflect overall trends concerning average processing

times ( APT ) versus worker learning rate. This is true for all of the following main effect
analyses of the optimized centralization of control policy (C ‘) and the optimized upfront

training policy (FAP"). Having said this, however, some trends in the optimized values of

FAP and C can be explained by examining the mathematical trends of the main factors. For

example, Figure 4.4 also depicts C ) increasing to a maximum at a learning rate of
approximately 85% before decreasing again at a learning rate of 90%. In order to further
investigate the reasons for this behaviour, a 3-D plot of the time to total forgetting (D) as a
function of the worker learning rate and the initial specified forgetting rate was constructed as

shown in Figure 4.9. Where the time to total forgetting ( D) is related to the transfer size and the

learning and forgetting rate by:

b(1-b)log(C)

D@,f,C)=|10 7  -1|xA4PT;, (4.10)

and APT; is the actual processing time in the first production cycle and is given by:

APT, =%C“”. .11

In all the models of this thesis, the time for total forgetting (D) is calculated in the first
production cycle and remains constant throughout all subsequent cycles. As a result, the time for
total forgetting calculated in the initial cycle has a large effect on the forgetting slopes of
successive cycles, and as a result, may affect the final performance measure; namely, a large D

~ should contribute to improved performance since forgetting in successive cycles should be less

108



severe. As shown in Figure 4.9, varying the range of f has a relatively insignificant effect on
D as compared with varying LR . For example, it is not until the initial forgetting rate is as
slow as 95% ( f = 0.088) that the time to total forgetting (D) increases by any significant
amount. Also, as illustrated in Figure 4.9, it is only at this low range of initial forgetting ( FR >
94%) that the effect of varying the learning rate affects [, whereas, at other levels of f,
varying b has little effect on the magnitude of D . As a result, if the effect of LR on D isto
be examined it must be done at low initial forgetting rate levels. The effect of varying LR at an
initial forgetting rate of 95% is shown in leftmost section of Figure 4.9. It appears that D is a

concave function throughout the chosen range of b at this initial forgetting rate level, achieving

a maximum value when:

— =0. (4.12)

2.5e+16
2e+161
1.5e+16 7
19+1E%
Se+157

08

Figure 4.9: 3-dimensional plot of D as a function of b and f with ranges of
0.074 < b < 0.862 and 0.074 < f < 0.234; where C and p are kept constant at
100 and 4 respectively. (s = 0)
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~+ Keeping f constant at 0.074 (FR =95%)and C and p constant at 100 and 4 respectively

—b)log(100) —b
aD _ 10————“‘ So 1| 4007 1 1
ob 1-b \1-b logy,,e

gives:

b(1-b)log(100)
4 s ) |10 007 log(100) | _
—(100 — (-2 x———[=0. @4.13)
+(1—b( ) Jx log,, e ( ) 0.074

Solving for & using bisection gives & = 0.4997, or LR = 70.7%. Therefore, as the learning
rate quickens in these circumstances ( f =0.074, C =100, p = 4), the time to total forgetting
initially increases from a learning rate of LR = 95% to LR — 70.7%. In other words, when a
worker learns quickly (0.75 < b < 1) he/she also tends to forget quickly, corresponding to a
small D). This concurs with the findings of Nembhard (2000), and Nembhard and Uzumeri
(2000). When the learning rate of the worker siows (0.25 < b < 0.75), the worker remains at the
job for a longer period of time, therefore he/she requires a longer time to totally forget; a
maximum D is reached when b = 0.5 (LR = 70.7%). However, if the learning rate of the
worker is very slow 0 < b < 0.25 (100% < LR < 84%), little is learnt in slow-learning

workers; therefore this small amount is forgotten quickly. As a result, for a given value of f
and C, the value of D is a bell-shaped curve reaching a maximum value at b = 0.5 (LR =
70.7). However, the maximum value of D at LR = 70.7% does not correspond with the
findings concluded by Figure 4.4 because the location of this critical point ( LR ) ) is not similar

to the location of the maximum C (C") in Figure 4.4. Furthermore, the range of LR in model
C is 70% < LR < 90%, this is outside the range that would reveal the bell-shaped function
illustrated in Figure 4.9. As a result, the critical point depicted in Figure 4.4 cannot be attributed
to the phenomenon of the maximum point illustrated in Figure 4.9 and must be a result of some

other model parameter. This was investigated further by averaging the performance measure of
APT' within the range of the upfront training policy ( FAP ). For example, if the performance

measure ( APT ) versus C is plotted again at FAP —1 instead of FAP —0, the following
functions result, see Figure 4.10.
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Figure 4.10: Plot of Average processing time (APT) vetsus C for all FAP-1
values averaged across all forgetting rate levelsat p =4 (s =0, N =2)

As shown in Figure 4.10, the minimal APT value occurs at different transfer policy levels. For
example, it is clear that the minimal APT value for a learning rate of 70% occurs at a

maximum C value. However, as learning slows (corresponding to increasingly darker lines) the
minimized APT value is located at shorter transfer times: 70% learning (C~ = 300 units),
75% (C‘ = 300 units), 80% (C‘ = 10 units). However, when learning is 85%, the transfer time
increases to C° = 50 units. This observation corresponds to the increase in C~ at LR = 85%
in Figure 4.4 to a level nearly as high as when LR = 70% then decreases to a lowest value of

C' =53.46 at LR = 90%. Therefore, the behaviour depicted in Figure 4.10 concurs with that

of Figure 4.4 that performance tends to improve” " greatly before it worsens.

This peculiar behaviour was further investigated by plotting the relationship between time-for-
total-forgetting in the first cycle versus the learning rate of the worker for different levels of
initial training, as shown in Figure 4.11. The graph in Figure 4.11 provides a plot of the equation
of time to total forgetting ( [D ) against the three initial training policies of model C. Intuitively,
the plot of the equation depicts what is expected for the time to total forgetting (D) as the
learning rate slows at a setting of FAP —0. However, the plot of D corresponding to
FAP —1 and FAP —2 appears to increase after a learning rate of approximately 90% and
reaches a maximum at 95% before decreasing again. The explanation for this behaviour is given

as follows.

**** Larger baich sizes are required, suggesting lower forgetting losses; see previous explanation accompanying Figure
4.5.
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Figure 4.11: Time to total forgetting (D) in the first cycle versus learning rate for
different levels of initial training (C = 100, FR =88%, s =0, N =2, p =4

For example, given C = 100, the upfront training policy is such that, in a FAP -1 or

FAP —2 situation, the worker in the initial cycle only produces a lot size of 100 in situations

of high-learning. At a fast learning rate the lot-size is greater than the number of units needed to
reach the low number of units needed to reach standard time (n_) of the worker. As the
learning rate deteriorates, the time for total forgetting decreases, and thus the optimal policy
decreases as previously explained (see pg. 158) from LR =70% (b =0.515)to LR =87%
(b =10.201). However, if the learning rate decreases to such a point as to cause n, to be greater
than the batch size (100), he/she remains at the first station and produces more than the batch

size until the standard number of units 7_ (in a FAP —1 situation) or twice the standard
number of units 27, (in a FAP —2 situation) are produced. Since such a low learning rate

causes the worker to have such a high #_, this large amount increases the value of C ! greater

than if the learning rate of the worker was faster. However, this benefit reaches a maximum

value at a certain learning rate (depending on the level of ) and then decreases as the

detrimental effect of a low learning rate outweighs the benefit of producing a large initial

training batch. Also, as expected, the plot of FAP —0 is identical to that of the equation plot

since there is no initial training.

However, the learning rate at which the time to total forgetting ( D) reaches a maximum is
dependent of the value of p. Since APT is dependent on 0 it follows that D is also
dependent on p . This relationship is plotted in Figure 4.12.
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Figure 4.12: Time for total forgetting (D) in the first cycle versus learning rate for
different p -values (C =100, FAP—1, FR =88%, s =0, N =2)

As shown in Figure 4.12, the learning rate at which D reaches a maximum differs according to

the value of o . The maximum value of D is greater and occurs earlier as o increases. This is

because #2, increases exponentially with O, as given by:

Bl
n=l=| . (4.14)
Yo

This causes the experience gained by producing the standard number of units to increase,
thereby increasing the length of time required to totally forget acquired experience. Also, as
shown in Figure 4.12, the average of the range of the value of p yields an optimal learning rate
value of approximately 85%. Consequently, this finding explains the reason for the convexity

found at an 85% worker learning rate in Figure 4.4.
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43.1.1.3 C'versus p

The scatter plot of the main effect behaviour of C * with p is given in Figure 4.13.
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Figure 4.13: Plot of C* vetsus p

Figure 4.13 suggests that C " decreases as p increases from p =2 to S, and then increases at

P = 6. Again, examining the general overall trend in APT versus p and C does not
necessarily explain why the plot in Figure 4.13 behaves as it does. For example, in Figure 4.14, a

3-D plot of the time to total forgetting ( D) as a function of p and C was constructed.

Figure 4.14: 3-dimensional plot of average processing time (APT) as a function
of p and C with ranges of 2 < p < 6and 100 < C < 300; where b and [ are

kept constant at 0.152 (LR = 90%) and 0.322 (FR = 80%) tespectively
(FAP-0,s5s =0, N =2)
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As shown in Figure 4.14, and in most instances of o, performance worsens as 0 increases.
This is intuitive because more learning is required simply because the initial unit processing
time is greater. However, an exception to this is found in cases when learning is fast and
forgetting is slow. For example, in Figure 4.15, when the learning rate is 70%, forgetting rate is
95%, and C' = 10, it appears that the average processing time increases in the range

2 < p <3, reaches a maximum at 0 = 3, and actually decreases when p > 3.
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Figure 4.15: 3-dimensional plot of average processing time (APT ) as a function
of p and C with ranges of 2 < p < 6 and 100 < C < 300; where b and f are
kept constant at 0.515 (LR = 70%) and 0.074 (FR = 95%) respectively.
(FAP-1,5s =0, N =2)

Since the model C search procedure would have found the exceptions to the APT behaviour

with respect to © and C, as found in the parameters used to construct Figure 4.15, it is

logical that the minimized values of C " found in Figure 4.13 do not necessarily conform to
‘average’ behaviour (as in Figure 4.14) but are equal to extreme values of APT as shown in
specific combinations of parameters such as FAP—1, LR =70%, FR =95%, C =10, and

s =0.

4.3.1.1.4 C versus FR
The scatter plot of the main effect behaviour of C" versus forgetting rate is given in Figure

4.16. Figure 4.16 suggests that C ' decreases as the worker forgetting rate slows from a high

forgetting rate of FR =85% to low forgetting of FR =95%.
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Figute 4.16: Plot of C~ versus FR

This is as expected because as the worker forgetting rate slows, the shorter batch sizes are
allowed because total forgetting losses are less when the initial forgetting rate is slower. As

previously mentioned, the time for total forgetting ( D) calculated in the initial cycle has a large

effect on the forgetting slopes of successive cycles and is dependent upon the initially specified
forgetting rate. The value of [ remains constant throughout successive cycles. However, as
shown in Figure 4.9, varying the range of f has a relatively insignificant effect on D as

compared with varying b . Nonetheless, varying the initial worker forgetting rate has a

detectable affect on the average processing time, see Figure 4.17.

Figure 4.17: 3-dimensional plot of avetage processing time (APT ) as a function
of FR and C with ranges of 85% < FR < 95% and 100 < C < 300; where b
and p ate kept constant at 0.322 (LR = 80%) and 4 respectively (FAP—0, s =
0, N =2
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As shown in Figure 4.17, the feasibility of transferring after smaller lot sizes increases as the
worker forgetting rate slows.

4.3.1.2 Main effect analysis of FAP"

The main effect results (which are the information for the plots) for FAP" are given in Table
4.11.

Table 4.11: The main effect of each input variable versus level of FAP'

Input variable Level FAP®
Degree of task similarity (5 ) 0.0 0.788
0.2 0.844
04 0.972
0.6 1.148
0.8 1.252
Initial processing time to |2 1.296
standard time ratio ( 0 ) 3 1.136
4 0.804
5 0.876
6 0.892
Worker leamning rate (LR), | 70% 1-524
— -b 75% 0.912
where LR =100x2 0% 972
85% 0.904
90% 0.892
Worker forgetting rate (FR), | 95% ;322

— S 92.5% .

where FR =100x 2 S0 0932
87.5% 0.884
85% 0.908

4.3.12.1 FAP® versus s

The scatter plot of the main effect behaviour of FAP" with degree of task similarity () is
. given in Figure 4.18.
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Figure 4.18: Plot of FAP' versus s

Figure 4.18 suggests that FAP" increases as the degree of task similarity increases (5 ). As
previously mentioned, examining one main effect may not fully explain the reasons for the
above FAP' values. For example, the raw results of model C (see section 7.7) oscillate
between an optimal upfront training policy of FAP -0, FAP—1, and FAP~-5. As a
result, since Figure 4.18 just represents averaged results across all the specified levels of the
parameters, the upward trend simply indicates more FAP —5 results than FAP -0 or
FAP -1 results.

For example, in the particular parameter setting used to construct Figure 4.19, an upfront

training policy of FAP —5 always seems optimal.

Figure 4.19: 3-dimensional plot of average processing time (APT ) as a function
of 5 and FAP with ranges of 0 < 5 < 0.82and 0 < FAP < 5; whete b and S are

kept constant at 0.139 (LR = 80%) and 0.152 (FR = 90%) respectively (s =
0, p =4, N =2,C =100
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However, if only one parameter such as the batch transfer size (C ) is changed from C = 100
(Figure 4.19) to C = 250 (Figure 4.20), the plots suggest that a smaller upfront training policy

such as FAP—~1 or FAP —0 (instead of FAP —5) is the preferred upfront training policy,
see Figure 4.19 versus Figure 4.20.

TLLLL LAY
T

Figure 4.20: 3-dimensional plot of average processing time (APT ) as a function
of § and FAP with ranges of 0 < § <0.8and 0 < FAP < 5;where b and f are

kept constant at 0.139 (LR = 80%) and 0.152 (FR = 90%) respectively (s =
0, p=4, N =2, C =250)

As shown later, the multivariate function g(s, p,LR,FR)=(FAP",C") accounts for all

these unique optimal points that may not be initially obvious by only examining the main effect

but may occur at particular interaction combinations of all the parameters listed in Table 3.5. As

a result, the remaining main effect of each input variable versus levels of FAP " (Table 4.11)
are plotted with their general trend lines and are included in Figure 4.21, Figure 4.22, and Figure
4.23 without further analysis since their variation above and below FAP —1 is so minimal that
a detailed interaction analysis would be unwieldy given the minimal benefit of obtaining this
information. Furthermore, any overlooked interactions between any of the factors is accounted
for in the multivariate function that follows and their application is explicitly demonstrated in the

numerical example supporting the use of this multivariate function.
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Figure 4.23: Plot of FAP" versus FR |
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4.3.2 Logistic regression equations and numerical

example

4.3.2.1 Prologue

The distribution of the 625 output variables for both the optimal batch transfer size policy (C .)

and the optimal level of upfront training policy ( FAP") are illustrated by histogram plots given

in Figure 4.24 and Figure 4.25.
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Figure 4.24: Histogram plot of the distribution of C" values
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Figure 4.25: Histogram plot of the distribution of FAP" values
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As shown in Figure 4.24 and Figure 4.25, the distributions-of C * and FAP® are irregular with
few or no data points in the middle sections of the specified ranges. The optimal values appear to
cluster at the extremes of both specified ranges of C and FAP . The reason for this unusual
distribution is described as follows. Note that the data in Figure 4.24 and Figure 4.25 are
‘optimized’ values of FAP and C that minimize the performance measure of the DRC system
in question, namely: average processing (service) time (APT ) calculated over approximately
3000 jobs per station. In order to explain why the distributions in Figure 4.24 and Figure 4.25
have these densities, it may help to plot four sections . of the behaviour of the performance
measure with respect to C and FAP, see the graphs in Figure 4.26(a), Figure 4.26(b), Figure
4.27(a), and Figure 4.27(b).
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Figure 4.26(a): Plot of APT versus C (s =0, N =2, p =5, LR = 80%,
FR = 85%)

e ..
Combination of factors allowing for a two-dimensional plot.
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Figure 4.26(b): Plot of APT vetsus C (s =0, N =2, p =2, LR =90%,
FR = 95%)
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Figure 4.27(a): Plot of APT versus FAP (s =0, N =2, p =3, LR = 80%,
FR = 95%)

123



s ——
N au| |
1.03 \ : L :
1.025 l\ : /I !
E 1.02 ! :
e 1] '
1.01 \ ! l :
1.006 Yi] :

LV | | _

Figure 4.27(b): Plot of APT versus FAP (s =0, N =2, p =6, LR = 80%,
FR =92.5%)

As shown in the above graphs, depending on the levels of the input variables (s, o, LR, FR),

the shape of function of APT versus C and FAP varies greatly within certain variable
settings. However, regardless of the shape of the function, the minimum value of the
performance measure usually appears at the extremes of the ranges. See the vertical dotted range

bars in the graphs. For example, in Figure 4.26(a), the minimum value is located at the leftmost
range of C, C' =10, and in Figure 4.26(b) (a change in the levels of p, LR, and FR from
the settings used in Figure 4.26(a)), the minimum value is located at the rightmost range of C,
C' = 250. Similarly, with the graphs of APT versus FAP (Figure 4.27(a) and Figure
4.27(b)), the minimum value is located at the rightmost range of FAP, FAP" =5 in Figure

4.27(a), and in Figure 4.27(b) (a change in the levels of p, and FR from settings used in

Figure 4.27(a)), the minimum value is located at the leftmost range of FAP,0< FAP <1.

As a result, fitting a function to the data using regular non-linear multiple regression was not
feasible because it resulted in a function that provided outputs that occurred in the middle
sections of the range. Namely, the function in the middle of the range was not representative of
the actual result data, yet, in the process of regression, it was still recognized because the
regression technique had to account for just a few data points occurring in the middle sections of

the ranges. The problem of fitting a function to the peculiar distributions was circumvented by
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excluding a small fraction of the data in each distribution and re-fitting the data using binary
logistic multiple regression (professor Gharghouri, Dr. Kolasa, and Dr. Todorow, personal

communication, 2003). Namely, the use of binary logistic regression necessitated creating a set
of data with only two outcomes: ‘1’ or ‘0’. In the C" output data the ‘1° data corresponded to
DRC shop situations where the optimal C ' equalled 250 units, whereas the ‘0’ data

corresponded to C~ = 10.

Likewise, in the FAP® output data, the “1° data corresponded to DRC shop situations where the
optimal FAP" equalled five times the standard number of units and the ‘0’ data corresponded

to 0< FAP" <1, a policy ranging between no upfront training to one times the standard

number of units. The adoption of logistic multiple regression necessitated excluding a total of 52

data points located in the middle sections of the distributions of C~ and FAP" . As a result,
only 91.7% (573/625) of the total possible DRC situations as specified in Table 3.5 were
accounted for by using this regression technique. This compromise was deemed as the preferred
trade-off because the alternative of including all the data would result in either erroneous or

irrelevant results.

Consequently, due to the distribution of the output variables, the values were fitted to the
functions in (3.10) and (3.11) using binary logistic multiple-regression. The following section
provides a pseudo DRC shop situation and demonstrates the application of the logistic

regression equations with a numerical example.

4.3.2.2 Numerical example — the application of the logistic

equations

4.3.2.2.1 The logistic equations
As previously discussed, the results of model C suggest that the optimal batch transfer policy
(C") is a binary result with ‘1” corresponding to C" =250 and ‘0’ corresponding to C" = 10.

The calculation of the optimal batch transfer policy C .) is illustrated in the following

numerical example. The goodness-of-fit tests for both logistic equations in (4.15) and (4.18) are
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given in the appendix section 7.8.

The binary logistic regression equation for the optimal batch transfer policy (C ) for model C
was calculated using SAS® statistical computer software and is given as follows (Cody and
Smith, 1997):

Logistic Equation(C*) =

= log(oddsof C* = 250) , (4.15)
=59.1698—1.8838x p— 6.5048x s —42.5111x FR-18.0364x LR

where the ‘odds’ is defined by:

odds = L , (4.16)
1-P

and P is the probability.
Therefore, from (4.16), P is given by:

odds
P=—r—"7—. 4.17)
1+ odds
Similarly, since the results of model C also suggest that the optimal upfront training policy is a

binary result with ‘1’ corresponding to FAP" =5 and ‘0’ corresponding to 0 < FAP" <1,

the optimal upfront training policy ( FAP" ) is calculated in a similar manner.

The binary logistic regression equation for the optimal upfront training policy (FAP") for
model C was calculated using SAS statistical computer software and is given as follows (Cody
and Smith, 1997):

Logistic Equation(FAP*) =
= log(odds of FAP* =5) . (419
=3.0171-1.5797x p +1.5667 x s + 6.5473x FR —9.7559 x LR

As a result, the equations in (4.15) and (4.18) could assist the manager of a DRC shop in
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determining, within a given probability, whether the optimal batch transfer size (C") and the

optimal upfront training policy (FAP" ) should be set at their minimum or maximum ranges.

4.3.2.2.2 Description of the pseudo DRC shop problems

4.3.2.2.2.1 DRC shop problem 1

Consider a DRC shop that utilizes one worker to assemble two types of musical instruments: V]
and V,. Experimental data suggests that the worker has a learning rate of 87.5% for this
particular set of tasks."™" The tasks of assembling the musical instruments V, and ¥V, consist of

sub-task  attributes  given as  follows: Task, = {A, B,C,D,Q,Z } and
Task, = {B,C,E,F }. The time to produce the first musical instrument V, or V, was

calculated as y(1) =240 minutes.** The worker is transferred back and forth between stations

and some experience is lost during transfers; the rate at which this experience is forgotten is

19%, or a forgetting rate of 81%.5%% The manger of the musical instrument shop has set an

assembly time standard of y . = 114.3 minutes. Using the logistic equations in (4.15) and (4.18),

what will the manager suggest as an optimal batch transfer size policy (C ) ) and upfront training

policy ( FAP ") in order to minimize the DRC shop performance measure of average processing

(service) time ( APT ) calculated over approximately 3000 jobs per station?

4.3.2.2.2.2 DRC shop problem 2

Suppose the current employee of the musical instrument DRC shop resigned and a new
employee from another division was hired. His learning rate was obtained by performing similar

work in the other division and was measured as 89%, a slower learning rate than the previous

employee. The manger has also replaced the assembly of musical instrument V, with a new and

1 Musical instrument learning rates provided by Dar-El, 2000.
Hi Musical instrument initial assembly times provided by Dar-El, 2000.
§88 Guidelines on forgetting rate selection are not available (Kher, 2000).
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improved design ¥ , an instrument that consists of fewer sub-task attributes than
V,: Task, = {B,C A } . Also, the manager reduced the assembly standard time to Y, =43.6

minutes. Again, using the logistic equations in (4.15) and (4.18), what will the manager suggest

as a new optimal batch transfer size policy (C *) and upfront training policy (FAP ") in order
to minimize the DRC shop performance measure of average processing (service) time (APT')

calculated over approximately 3000 jobs per station?

4.3.2.2.3 Solution of DRC shop problem 1

Initially, before any calculations can begin, the parameters s, £, LR, and FR must be
determined by examining the problem statement. The learning and forgetting rate of the worker

are stated explicitly and are as follows: LR = 87.5 % and FR = 81%. The initial processing

time to standard processing time of the task ( p) is given by:

_y(1) _ 240

5 —m= “.19)

The degree of task similarity between 7 aSle and Task,,2 (§) is determined by using

equation (3.5). The required parameters are calculated as follows:

N{Task, NTask, }=2,
N{Task, }=6,
N{Task, } =4 ,

which gives:

.o 2x N{Task, NTask,} 2x2
N{Task,}+N{Task,} 6+4

(4.20)

Therefore, the odds and probability of an optimal batch size transfer of C = = 250 to be
required in order to minimize the performance measure (namely: average processing (service)
time (APT') calculated over approximately 3000 jobs per station) given that the ratio of initial
processing time to standard processing time of the task ( p) is 2.1, the degree of task similarity

(5) is 0.4, the worker forgetting rate (FR ) is 81%, and the worker learning rate (LR ) is
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87.5% are calculated as follows: . .

e,

log(odds of C* = 250) = 59.1698 —1.8838(2.1) - 6.5048(0.4)
—42.5111(0.81) -18.0364(0.875) =2.40, (4.21)

the odds that the optimal batch transfer policy is C T =250is given by:

odds(C" =250)=e** =11.02, (4.22)

and the probability that the optimal batch transfer policy is C ' =250is given by:

P(C" =250)= 02 0.917. (4.23)
1+11.02

Therefore, the probability of an optimal batch size of C~ = 250 with these new

DRC shop conditions is significant at 91.7%. Since this binary logistic regression equation has
only two dependent variables: ‘0> and ‘1°, corresponding to C " =10 and C = 250
respectively, the probability of an optimal batch transfer size of C " =250 of 91.7% is

equivalent to the probability of the optimal batch transfer size of C "=10 being 8.3% (100% -~
91.7%). In this case, given the DRC shop parameters specified in problem 1, it is evident that an

optimal batch size of C " =250 is more preferable than C " =10.

Also, given the same parameters specified in the C ’ logistic regression equation, namely, the
ratio of initial processing time to standard processing time of the task ( © = 2.1), the degree of
task similarity (s = 0.4), the worker forgetting rate ( FR = 81%), and the worker leamning
rate (LR = 87.5%), the odds and probability of an optimal upfront training policy batch size
transfer of FAP ™ = 5 to be required in order to minimize the performance measure (namely:

average processing (service) time ( APT ) calculated over approximately 3000 jobs per station)

are calculated as follows:

log(odds of FAP* = 5) =3.0171-1.5797(2.1) +1.5667(0.4)

, (4.24)
+6.5473(0.81) —9.7559(0.875) = —2.91
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and the probability that the optimal upfront training policy is FAP * =5 s given by:

. 0.054
P =5)=—=0.051. 4.26
P4 ) 1+0.054 )

Therefore, the probability of an optimal upfront training policy of FAP " =5 is small at 5.1%.
Since the FAP" binary logistic regression equation also has only two dependent variables: ‘0’
and ‘1’, corresponding to 0 < FAP" <1 and FAP" = 5 respectively, the probability of an
optimal upfront training policy of FAP" =5 of 5.1% is equivalent to the probability of the

optimal upfront training policy of 0 < FAP" <1 being 94.9% (100% - 5.1%). As a result,
given this information, the manager would suggest that the DRC shop should only provide

either: no initial training or initial training up to the standard number of units (0 < FAP <1).

1.1.1.1.1 Solution of DRC shop problem 2

Again, before any calculations can begin, the new degree of task similarity parameter § must

be determined because a new Task,, replaced the previous

T ask,,2 . The required parameters are calculated as follows:

N{Task, NTask, } =3,
N{Task, }=6,
N{Task,,}} =3 ,

which gives,
. 2x N{Task, "Task,} 2x3
N{Task, }+ N{Task,} 6+3

=0.67. @427

130



Also, the new initial processing time to standard processing time of the task ( p ) is given by:

1 240
= y)f ) =m=5.5. (4.28)

Therefore the odds and probability of an optimal batch size transfer of C® = 250 to be required
in order to minimize the performance measure if the new worker with a slower learning rate
(LR = 89%) performed tasks that were more similar s = 0.67 and had a larger initial

processing time to standard time ratio p = 5.5, are calculated as follows:

log(odds of C* = 250) = 59.1698 —1.8838(5.5) — 6.5048(0.67)
—42.5111(0.81) —18.0364(0.89) = —6.04 (4.29)

the odds that the optimal batch transfer policy is C " =2501is given by:

odds(C" =250)= e =0.0024, (4.30)

and the probability that the optimal batch transfer policy is C " =250is given by:

P(C" =250)= 00024 _ 4 504 4.31)
1+0.0024

Therefore, the probability of an optimal batch size of C " =250 with these new DRC shop
conditions is marginal at 0.24%. Since this binary logistic regression equation has only two
ciependent variables: ‘0’ and ‘1’, corresponding to C "=10and C' =250 respectively, the
probability of an optimal batch transfer size of C " =250 of 0.24% is equivalent to the
probability of the optimal batch transfer size of C T =10 being 99.76% (100% - 0.24%). In this
case, given a reduced rate of worker learning, different task characteristics, and a new standard
time, it is evident that an optimal batch size of C * =10 is now much more preferable than C ’

=250.

Again, using the same changes in DRC shop parameters as the new C ) example, if a worker
with a slower learning rate ( LR = 89%) performed tasks that were more similar (§ = 0.67) and
had a larger initial processing time to standard time ratio ( 0 = 5.5), the associated odds and
probabilities are:

log(odds of FAP*=5)=3.0171-1.5797(5.5)+1.5667(0.67)

, (4.32)
+6.5473(0.81) —9.7559(0.89) = -8.0
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the odds that the optimal upfront training policy is FAP’ =5 is given by:

odds(FAP" =5)=¢™*" =0.0003, (4.33)

and the probability that the optimal upfront training policy is FAP * =5 is given by:

PP =5)=—29% __4.0003. @34)
1+0.0003

Therefore, the probability of an optimal upfront training policy of FAP’ =5 in with these new
DRC shop conditions is even smaller at 0.03%. This is equivalent to the probability of the
optimal upfront training policy of 0 < FAP " <1 being 99.97% (100% - 0.03%). As a result,
these new DRC shop conditions would also suggest to the manager that the DRC shop should

only provide either: no initial training or initial training up to the standard number of units

(0< FAP" <1). The summary of solutions for problem 1 and 2 of the DRC shop numerical

example is given in Table 4.12.

Table 4.12: Summary of results of numerical example for the binary logistic
regression equation of model C

Problem Musical instrument Optimal policy
DRC shop input solution
parameters parameters

#1 s =04, p=21, LR = C* =250
87.5%, FR =81% 0< FAP'<1

#2 s =067, p=55 LR=|C"'=10
89%, FR =81% 0< FAP'<1
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4.3.3 Implications of results for the five DRC issues

The five possible issues that affect DRC shop performance measures as given by Hottenstein and
Bowman (1998) are: (1) worker flexibility, (2) centralization of control, (3) worker assignment,
(4) queue disciplines, and, (5) cost of transferring workers. The results of model C are obtained
by examining the LFCM with a task similarity factor, and as a result, the results of model C
regarding the shop performance measures of Hottenstein and Bowman (1998) are identical to

those obtained by the results of model B.

4.3.4 Model C conclusions

Model C resulted in two unexpected findings: (1) C " decreases as the learning rate slows
between a learning rate of 70% and 80%, and increases again to a maximum at a learning rate of
approximately 85% before decreasing again at a learning rate of 90% (see Figure 4.4), and, (2)
the distribution of the 625 output variables for both the optimal batch transfer size policy (C ‘)
and the optimal level of upfront training policy ( FAP") are irregular with few or no data points
in the middle sections of the specified ranges. The optimal values seem to cluster at the extremes

of both specified ranges of C and FAP.

The unexpected finding in (1) that suggests that C " tends to decrease with respect to the
learning rate is contrary to intuition because it can be assumed that, as learning deteriorates,
batch sizes should increase to compensate for the large forgetting losses. This observation was
due to the unique factor interactions that resulted in optimized performance measures that were

not observed by just examining the performance behaviour at one factor setting or by averaging

across factors, such as in Figure 4.4. Also, the expected rise in the behaviour of C "ata learning
rate of approximately 85% (see Figure 4.4) was due to the interaction between the effect of the

batch transfer size and the initial training batch size. Namely, if the worker has a fast learning
rate, he/she only initially produces the batch transfer size number of units (C') because this

quantity is greater than the number of units needed to reach the standard time of the worker

(n,). However, if the learning rate of the worker is slower, 7 increases and exceeds the batch

transfer size. Since the worker under an FAP —1 or an FAP —2 upfront training policy must
remain at the first station until #_ units or 27, units are processed, he/she gains enough

experience as to cause the overall optimal policy to increase beyond that of even a worker with a
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.- faster learning rate that had less initial training. However, this benefit decreases as the

L detrimental effect of a low learning rate outweighs the benefit of producing a large initial

training batch. This effect explains the unexpected rise the behaviour of C" found in Figure 4.4.

The learning rate at which this rise occurs was shown to be dependent on the value of o ; and in
model C, the average influence over the range of p caused this overall rise to occur at an

approximate worker learning rate of 85%.

The unexpected finding (2) was circumvented by the use of binary logistic multiple regression

that necessitated excluding a total of 52 data points located in the middle sections of the

distributions of C* and FAP" . Therefore, only 91.7% (573/625) of the total possible DRC
situations as specified in Table 3.5 were accounted for by using this regression technique. This
compromise was deemed as the preferred trade-off because the alternative of including all the
data would result in either erroneous or irrelevant results. Consequently, due to the distribution
of the output variables, the functions in (3.10) and (3.11) were fitted to the values using binary
logistic multiple-regression. Model C provided a pseudo DRC shop situation and demonstrated
the application of the logistic regression equations with a numerical example. The development
of these equations may be important from a managerial perspective because they suggest
preferred settings for controllable DRC shop factors (training and transfer policies) given
existing factors that cannot be as easily changed (job similarity, task-times, and worker learning-

forgetting rate).

4.4 Chapter 4 summary

The previous chapter 4 has provided the results, analysis and conclusions to the models in this
thesis and has discussed how they compare to those of Jaber et al. (2003) and the five possible
issues that affect DRC shop performance given by Hottenstein and Bowman (1998). Chapter 5

provides thesis conclusions and suggestions for further work in this area.
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Chapter 5: thesis conclusions and
recommendations for further research

5.1 Thesis summary

This thesis has extended upon Jaber et al. (2003) that investigated worker learning and forgetting
phenomenon in dual resource constrained system (DRC) settings. This thesis also introduced the
concept of worker learning and forgetting in a two and three stage DRC system according to the
dual-phase learning-forgetting model (DPLFM) developed by Jaber and Kher (2002). This
learning and forgetting model is based on the theory that a task has separate cognitive and motor
requirements. The effect of including task similarity was also examined. The experiments in
model A, model B, and model C consisted of deterministic simulation models; the results were
compared to those of Jaber et al. (2003) and the five possible issues that affect DRC shop

performance given by Hottenstein and Bowman (1998).

Chapter 1 provided a survey of research done in the areas of DRC systems, worker learning
theory, learning and forgetting models, and the learning and forgetting phenomenon in DRC
systems. Chapter 2 summarized the development of the dual-phase learning-forgetting model
(DPLFM), the learning and forgetting model used in model A and model B of this thesis.
Chapter 3 discussed the modeling or experimental design used in model A, model B, and model
C of this thesis. Chapter 4 provided the results, analysis and conclusions to these models and
discussed how they compare to those of Jaber et al. (2003) and the five possible issues that affect
DRC shop performance given by Hottenstein and Bowman (1998). This thesis ended at model C
because the applicability of model C would have to be further tested before the inclusion of the
DPLFM (for example) as a possible extension of model C. Also, the author wished to keep the
scope of the thesis within the boundaries of worker flexibility issues; whereas to also include
issues such as machine flexibility (group technology (GT)) would possibly require additional
collaboration with persons familiar with such an established research area. These topics are left
as possible extensions and are discussed in section 5.4. The remainder of this chapter
summarizes the unique contributions provided by this thesis, exposes limitations in the

investigation of this thesis, and proposes possible future research extensions.
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5.2 Thesis contributions to DRC research

This thesis has provided several contributions to DRC research. Firstly, in model C, it has
developed binary logistic equations that may be important from a managerial perspective
because they express preferred settings for controllable DRC shop factors such as worker
training and transfer policies as functions of existing factors that cannot be as easily changed
such as the degree of job similarity, task processing times, and the learning and forgetting rate of
the worker. A pseudo DRC shop situation demonstrated the application of these logistic
regression equations with a numerical example. This technique may enhance future DRC
research by recognizing the need for research pertaining to job shops that are already in

operation and that are either resistant to change or incapable of significant change.

Secondly, in model A, it has shown that the type of task that the worker performs with respect to
its learning rate and proportion of cognitive and motor elements is a factor that could be
included in future DRC research. The DPLFM developed by Jaber and Kher (2002) is a model
that can provide a measure that recognizes both these inherent task characteristics. Thirdly, in
model B, the results have suggested that the DPLFM emphasized a greater benefit for upfront
training and more a frequent worker transfer policy than the LFCM when tasks are similar, and
supported the conclusions of Jaber et al. (2003) by an even greater extent that it is possible to
use more flexibility (up to three tasks learned) in DRC shops with similar tasks. Furthermore,
this thesis has also developed a DRC summary matrix that could be used as a guide for future
DRC research.

5.3 Thesis limitations

The thesis investigation has two important limitations. The first limitation is that this research
area has an absence of studies that provide a quantitative unit to measure the benefits of added
DRC shop flexibility. As previously mentioned, DRC shops have provided benefits such as the
reduction of manufacturing lead times (reduction in WIP), improved customer service, and the
ability to adapt to frequent changes in product demand (Kher, 2000). However, in order to truly
weigh the benefits of DRC shop flexibility against the detriments of DRC shop forgetting losses,
a significant trade-off analysis should also utilize a single quantitative unit to measure the
benefits of flexibility. Intuitively, in order for a significant trade-off analysis to be conducted,
this unit should be similar to the unit used to measure the detriments of flexibility.
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The second limitation is the performance measure used in this thesis, by Jaber et al. (2003), and

by Kher et al. (1999) of average processing (service) time (APT) calculated over
approximately 3000 jobs per station. Modern DRC shop products may have product life-cycles
much lower than a total production count of 3000 jobs per station (Vokurka, and Lummus,
2003). For example, from the work experience of the author, typical yearly production counts of
make-to-order shop products such as customized fine furniture average approximately 300 units

with approximately 225 different units within that group. Approximately 50% of the sub-tasks
are similar between products. Therefore, on average, only 188 [(300—225)+ (0.5)x225]

units are processed per year with an average life-cycle of seven years per product. Consequently,

the average life-cycle production count for a customized fine furniture shop is approximately
1316 mmits. The graph in Figure 5.1 illustrates the average processing (service) time ( APT)
versus the centralization of control policy C (the batch transfer quantity) for various levels of
product life-cycles measured in units per station (./ ) for the LFCM. Note that when the product

life-cycles are J = 3000, 2500, 2000 units per station the optimal batch transfer quantity is

250 units (C~ =250). However, for items with shorter product life-cycles such as fine

furniture (J =1500, 1000) units per station), items characteristic of a DRC shop, the optimal

batch transfer quantity is 10 units (C~ = 10).
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Figure 5.1: Plot of APT versus C forvariouslevelsof J (s =0, N =2,
p =7, LR =70%, FR = 80%, LFCM)
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Consequently, the performance measure used in this thesis, by Jaber et al. (2003), and Kher et al.
(1999) of average processing (service) time ( APT") calculated over approximately 3000 units
per station ( APT ) may not be the most preferable DRC shop performance measure since DRC
shop products may have shorter life-cycles than 3000 units per station (ie. 1316 units).
However, for consistency of comparison with Jaber et al. (2003) and Kher et al. (1999), 3000

units per station was retained as the duration of the production simulation study.

5.4 Recommendations for further research

The following sections outline some possible research extensions that might be of some interest.

5.4.1 Combine DRC and GT

The benefits and drawbacks of worker learning and forgetting could be integrated with ongoing
research on the combined effect of using worker flexibility (DRC systems) in shops with
machine flexibility (commonly referred to as group technology (GT)). For interested readers, see
Jensen (2000).

5.4.2 Equations using DPLFM

A possible extension to model C of this thesis may include developing similar equations using
the DPLFM as the leaming forgetting model instead of the LFCM. In this case the new equations
could take the form:

g(s,N, p,T,FR,R) =(C" ,FAP")" .1)

where T, and R represent the additional DPLFM task parameters of task-type and the ratio of
time for the first unit under purely cognitive conditions to time for the first unit under purely
motor conditions respectively. Depending on the distribution of the output data, a binary logistic
regression equation may not be appropriate for equation (5.1). Multi-factor cubic spline

interpolation may be a more feasible curve fitting technique if the data results are not clustered
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at the extremes of both specified ranges of C and FAP (as shown in Figure 4.24 and Figure

4.25) but are more equally spread across the specified range of the dependent variables.

5.4.3 Task sequence

The examination of the effect of task sequence on forgetting losses could also be studied. For
example, in a N =3 DRC shop, the worker can transfer from a cognitive task to a motor task

and then back to a cognitive task, i.e. (1. —7,, —T.), or from a motor task to a median task

and then back to a cognitive task, i.e. (T,, —7T,,, — T, ), etc. Depending on the sequence of

task-type assignments the optimal sequence can be determined in order to minimize forgetting

losses.

5.4.4 Worker attrition rates

The periodic loss of trained workers for various reasons presents a serious problem to the
performance of DRC shops. This is because newly hired workers have to undergo more upfront
training than experienced workers. As a result, the inclusion of the rate at which workers leave
(equal to the rate at which new workers are acquired), also called the worker attrition rate, is an
important factor that could be included as a possible research extension. Kher et al. (1999)
included an attrition rate that was measured as the ratio between the worker attrition interval and
the length of the initial training period (atr/tr). This particular method of measuring worker
attrition is an improvement over a simple yearly attrition rate (as used by earlier studies) because
it better represents the detrimental effect of each worker attrition occurrence by relating it to the

length of the subsequent training period (Kher et al., 1999).
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5.4.5 Further recommendations — DRC summary matrix

5.4.5.1 DRC summary matrix overview

As shown in the appendix (see section 7.1), the DRC summary matrix is an organized table
listing DRC research criteria amongst the titles of the leftmost column (heading for rows) of the
matrix and listing DRC research studies along the upper row (heading for columns). In section
7.1.1 the model assumption issues ‘Workload issues” and ‘Operating issues’ are listed in the
lefimost column of the table. They are the headings for the rows they contain. The column
headings ‘Jaber et al. (2003)’, ‘Thesis — model A’, ‘Thesis — model B’, and ‘Thesis — model C*
are the column headings for the specified DRC research studies. The experimental factors of
each study are listed in bold font text and the fixed factors are listed in regular font. For
example, in section 7.1.1, for the Workload issue ‘Mean job service rate’, an initial and standard
processing time of four units and one unit respectively are specified as fixed factors (regular font
text) for the DRC study Jaber et al. (2003). However, for the DRC study Thesis — model C, the
mean job service rate is actually an experimental factor (bold font text) that has five different

settings for both the initial and standard processing times.

The partition of the DRC matrix illustrated in section 7.1.1 denotes the model assumptions of
each study listed in every column, whereas the partition illustrated in section 7.1.2 denotes the
model results and conclusions of each study as they relate to DRC shop performance measures

categorized by the particular experimental factors examined.

This DRC summary matrix could be used as a guide for future research by just adding
subsequent research (or newly discovered old or new research) as new columns in the matrix.
This could aid the research path by indicating the possible performance measures or
experimental factors overlooked in current research and/or avoiding redundant research tangents

by clearly listing the conclusions of previous studies.

The following section uses the DRC summary matrix as a guide for recommending further DRC
research.
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5.4.5.2 Further recommendations for DRC research

The DRC summary matrix could be also used as a guide for recommending future research
initiatives, for example: in the design issues section pertaining to worker learning and forgetting
of the summary matrix (see section 7.1.1), one row mentions a possible situation where the
performance of the worker either temporarily remains constant or increases shortly after an
interruption. Since the three studies listed so far in the summary matrix assume that worker
forgetting begins (performance decreases) as soon as an interruption occurs, a natural inquiry

would be to examine worker forgetting experimentally to see if this occurrence was observed.

Also, in the design issues section pertaining to worker product variety (as categorized by
McKreery and Krajewski, (1999)) of the summary matrix (see section 7.1.1), one row mentions
a possible situation where there is product turnover measured as a rate per year. The three '
studies listed so far in the summary matrix assume no product turnover. However, a further study
could include a rate of product turnover to compensate for the aforementioned limitation in
section 5.3 regarding the long production simulation duration of 3000 units per station. The
inclusion of a product turnover rate may emulate a model containing a shorter product life-cycle
more characteristic of make-to-order products commonly found in dual resource constrained

shops.
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7.1 DRC summary matrix

7.1.1 Model assumptions

Jaber et al. (2003) Thesis - model | Thesis - model | Thesis - model
A B C
Type of . . . .
Issue Des. - . Modeling Modeling Modelin
Issue cription Modeling Method Method Method Meﬁmdg
Deterministic job arrivals? Yes o non won
Probabilistic job arrivals? No w o w )
Job arrival density function (a) N/A since arrivals are " v v
deterministic
Mean job arrival rate(s) (1) Equal to service rate i.e. O o "
constant availability of work
with no queue formation
Deterministic job service rate? Yes won won w o
Probabilistic job service rate? No Wow ) . n
§ Job service density function (y;) N/A "o "o "o
7]
;E Mean job service rate(s) (y;) Ay(l)and y,of40and 1.0 "o " »i)=12,3,4,
3 time units per job respectively 5,6 and
= is specified (p = 4). =1
§ corresponding
to five
different p
values:
p=2234,56
Is the system motionally balanced? Only one worker, therefore non non "o
(average service time of the average N/A.
worker identical across stations)
Deterministic job routing? Yes v non "
Probabilistic job routing? No "o "o "on
Probability matrix from stage i to j (p;) N/A "o " non
Is the job release policy a finite or an A finite capacity policy with a " " "
infinite loading policy? If finite, what rule || rule that a job is released only
was used? after the worker has completed
processing the previous job.
Global, local, or dynamic queue No queue formed, therefore o " "o
disclipline(s)? (g:) N/A.
Centralization of control ('when' rule) (z;) || Neither fixed nor floating, the A " In this model,
(e.g.: fixed/floating) worker moves from the the
-workers that only left an assigned home station after a fixed number centralization
] station’ after the queue was empty and that of jobs are completed, of control rule
g returned to the home station after the work e.g.:batch size of 10, 25, or was an
'fo was completed (fixed) 250. optimized
£ ~workers that move to another station they output factor
g are additionally trained for with the longest that was
2 queue after the completion of every unit searched
°© (floating). within the
range 10 - 250
(see McCreery and Krajewski ,1999) units in
increments of
one unit.
Worker assignment rule (‘where' rule) () || The worker is always . " "
transferred to the next stage,

namely, to 1 or 2 in the 2 stage
model, orto 1, 2, or 3 in the 3
stage model.

147



Jaber et al. (2003) Thesis - model Thesis - model Th
A B mo
i odelin Mo
e Issue Description Modcling Method Method Method M
Number of stages in the system Modeled as 2 and 3 stages. " " !
(M) non non "
Number of identical machines at One machine per stage.
each stage i (c))
How many different tasks can Each machine is assumed to v " "
each machine perform? process only one task, therefore
(i.e. is there machine flexibility or no machine flexibility is
group technology (GT)) assumed.
The number of workers in the 1 " . "
system (W)
What are the labour utilization 100% T " "
rate(s)?
What is the relative efficiency of Only one worker, therefore " " "
worker j on stage i (¢;) N/A.
Can the jobs revisit stations? Yes, the worker starts back at " " N
the first station after completing
acycle.
Is job pre-emption allowed? No. " " "
Static or dynamic scheduling of There are no arrivals until a " "" "
jobs? unit is complete; therefore it is
a simple static, first-come-first-
serve model.
Is there a job transfer time No. " "o "
between stations?
Is there worker attrition rates, if No. non non "
g ? so, what are they?
£
53 g Is there job blocking? Since there is only one task in " " "
2 & progress at any one time, this is
NA.
Is there a distinction made No. o "o "
between procedural and
continucus tasks (Globerson et
al.,1989), if so, how is this
distinction modeled?
What is/are the performance Average processing (service) Average "o "
measure(s) of the system? time calculated over processing
approximately 3000 jobs per (service) time
station. Also, final efficiency calculated over
defined as the processing time approximately
of the first job in cycle n+ 1, 3000 jobs per
where n is the number of cycles | station.
of data collection in the
simulation run.
Are there setup times on some No setup time assumed. no "o "
operations? Are they sequence
dependent?
Is there a cycle length specified? Yes, a cycle is complete when " n o w
a worker visits 1 and 2 stations
when he/she is trained for 2
stations, and when a worker
visits 1, 2, and 3 stations when
he/she is trained for 3 stations
A.re the products perishable? The product is assumed to have " "o "
(i.c.: a non-infinite storage an infinite storage life.

assumption, also see complexity
below)
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Jaber et al. (2003) Thesis - model Thesis - Thesis - model
A model B [of
Type of - . Modeling Modeling Modelin
Issue Issue Description Modeling Method Method Method Methodg
What is the upfront training FAP-0, FAP-1, and FAP-2 which "on now In this model,
(flexibility acquisition policy)? corresponds to: no injtial the upfront
training, worker must process training policy
until standard time is reached (flexibility
(370 units) in the first cycle, and acquisition
worker must process twice this policy) was an
amount (740) in the first cycle optimized
respectively before any transfers output factor
occur that was
= searched within
g g the range 0- §
3= n, in increments
=g
6% of one a,.
7 a What is the range of flexibility The worker is either trained for "o "ow Just modeled
=3 (N), and is each worker flexible in || 2 or 3 tasks/stages. Note that a for N=2
the same number of stations? maximum of 3 workstations is
used because of the Malhotra et
al. (1993) finding that cross
training workers in more than
three departments worsens
system performance.
Are workers perfectly Since there is only one worker, " " v
interchangeable? (are the ¢;'s the || this is N/A.
same or different?)
Are the workers' learning rates The worker learning rate is The worker v There are five

Design Issues
(learning/forgetting)

the same or different for each
worker on each task? What are
these rates?

assumed constant at 85%.

learning rate
varies
according to the
task being
performed. The
compogition of
the learning
rate of each
task is specified
using unique
cognitive and
motor learning
rates, see the
learning rates
of the cognitive
and motor tasks
below.

worker learning
rates specified:
0%, 75%,
85% 90%.

Is a specific y(1} and y; specified?

A (i} of 4 minutes per job is
specified, y, is 1 minute (p = 4)

" on

y(’) = 27 3' 41 s'
6 and

yi=1
corresponding
to five different

p values:
£=1,3,4,56
Is there worker forgetting? If so, Yes, it is modeled according to Yes, it is "o Yes, itis
how is it modeled? the VRVF and LFCM with modeled modeled
three different initial forgetting according to the according to the
rate levels of 85%, 80%, and DPLFM with LFCM with
95%. unique five different
cognitive and initial
motor forgetting rate
forgetting rates levels of 95%,
calculated for 92.5%, 90%,
each cycle. The §7.5%, and
initial 85%.

forgetting rate
levels are 85%,
90%, and 95%.
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Jaber et al. (2003) Thesis - model Thesis - Thesis
A model B model
. Modeli Modeling Modeli
Type of Issue Issue Description Modeling Method Mited Method Methc
What is the time to total The time to total forgetting (D)isa | The time to total "o Same as
forgetting? function of the forgetting rate, forgem'_ng D)is the LFC.
leaming slope, number of units a function of the model of
produced and the time to produce forgetting rate, Jaber et
these units. learning slope, (2003).
number of units
produced and the
time to produce
these units.
However, in the
DPLFM, there is
a unique time to
forgetting
parameter for
both cognitive
and motor
elements.
What is the interruption No, the interruption is the function v "o "o
interval length (4)? of the time since this station's task
Is this constant for every cycle || was last processed. As a result, it
i? is variable across cycles since the
processing times change with time.
G What is the initial processing Not applicable in the VRVF and A ratio of 1, 173 " Not
g E time cognitive to motor ratio. LFCM models. and 3 is applicab.
2 % (R) assumed. These since the
=3 ratios LFCM w
B corresponds to used.
g a those
=} ..
3 empirically
= observed by
Dar El et
aL(1995)
Do workers begin forgetting as || Workers begin forgetting as soon "o " "o
soon as an interruption occurs as an intermuption occurs,
or does performance
temporarily remain constant
(or increase) shortly after an
interruption? Is this
phenomenon related to the
level of job complexity (as
defined by McKreery and
Krajewski) and/or cognitive-
motor contents of the job
and/or the present model's
definition of complexity?
If performance improves after || Workers begin forgetting as soon "on "o won
an interruption(experimentally || as an interruption occurs.
found by Arzi and Shtub,
1997), is this effect enhanced
by the inclusion of workshop-
type training during the
breaks of mental(cognitive)
tasks(suggested by Arzi and
Shtub, 1997)
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Thesis - model

Thesis - model

Thesis - model

Jaber et al. (2003) A B C
Type of Issue Issue Description Modeling Method Modcling Modeling Madeling
Method Method Method
Does the model distinguish No, cognitive and/or motor A predominantly "o No, copnitive
between cognitive and motor clements of the tasks are not copnitive task 1, and/or motor
aspect of a job? And if so, is mentioned. and motor task 7, elements of the
the relative arrangement or . are distinguished task: t
sequence of the jobs (i.e.: from each other asl svarc nOA
. L with their own mentioned since
cogmtwe—motl?r-eogmtwe, for composite the LFCM was
example) specified? learning rates. used.
The respective
cognitive and
motor learning
rates of cognitive
task 7 is as
follows:
IR =72.5%, LRy
= 82.5%; and for
motor task /y, :
LR-=T15%, LR,
= 87.5%. The
median task 7).
and uniform task
T have cognitive
and motor
learning rates of
LRc=75%, LRy =
85%, and LR =
LRy =80%
respectively, The
sequence of these
jobs do not
change, i.e. the
worker remains
on & cognitive task
—_ if he/she began
o0 working on a
3 E cognitive task.
&
25
59 S Are the workers modeled as Only one worker, therefore N/A. " now wow
7 £ heterogeneous or homogeneous
a E with respect
= learning/forgetting
distributions (see Shafer et al,,
2001)?
Is the degree of learning No relationship between task " " "o
and/or forgetting a function of || complexity and learning/forgetting
the complexity of the task suggested.
and/or the individual worker-
perceived complexity?
Does this model allow for No. " " "o
negative forgetting? (see
Nembhard and Uzumeri 2000,
25(4), 315-326.
Does the size of the lots of the No, product or process distinction " " "
products interact with the is not made.
‘product’ vs. 'product’
learning/forgetting variables?
(i.e.: try a lot size of I as an
extreme case of make to order;
what about a variable lot size
per product?)
Does the paper No, product or process distinction v . ..
distinguish(qualitatively and/or || is not made.
mathematically) between
'product’ vs. 'process' learning
as in McKreery and
Krajewski?
What fraction of worker Product or process distinction is " " "

learning is 'process’ and what
fraction is 'product’ learning?

not made.
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Jaber et al. (2003)

Thesis -
model A

Thesis - model
B

Thesis

Type of Issue

Issue Description

Modeling Method

Modeling
Method

Modeling
Method

Mo
Me

Design issues
(product variety)
(McCreery and Krajewski)

Are the jobs assumed to be
similar or different, and if
different, how many distinct
products in product line?

In the first part of the study, it
was assumed that all tasks are
identical. In the second section,
one experiment dealt with 2
distinct tasks with 5 different
levels of similarity, the second
experiment dealt with 3 distinct
tasks with 4 different levels of
similarity.

No job
similarity was
assumed.

When N =2, there
are five levels of
task similarity
defined:
s=0,8=0.2,
5=04,8=06,8=
0.8; when

N=3, there are
four levels of task
similarity defined:

$05,8,8;

There
levels «
similai
defines
s =0,

s=04
0.6,8=

What is the task time
variability? (i.e.: varying task
times due to random
conditions or differences
between workers)

No service time variability,
deterministic.

Has the paper considered the
sensitivity of worker
performance variability (¢;) on
the model?

N/A

‘What is the variability in job
routings
(i.e.: variability in py)

N/A

What is the rate of product
turnover per year? (i.e.:
50%/yr signifies that if there
are 10 different products then
5 of the products are turned
over in a year's time)

N/A

Design issues
(task complexity)
(McCreery and Krajewski)

How is task complexity

defined?

The complexity of the tasks was
not addressed.

Is task complexity related to
processing time or is it defined
as something relatively
independent of who works on
the job and therefore is
inherent to the job itself?

The complexity of the tasks was
not addressed.

If it is not independent of the
worker, then does each worker
regard each task as equally
complex or is this different?

The complexity of the tasks was
not addressed.

If it is independent, then is
each job/task equally complex?

The complexity of the tasks was
not addressed.

How does task complexity
affect performance? Is it
linear, or possibly curvilinear
as suggested by Wood (1990)
and Pepinsky and Pepinsky
(1960)? If it is curvilinear, then
how can the performance be
maximized by maintaining
worker interest while at the
same time not exceed workers'
abilities?

The complexity of the tasks was
not addressed.

Is task complexity modeled as
a function of several
parameters like McKreery and
Krajewski (learning rate,
potentiality of learning,
predominant type of learning-
product/process, speed of
forgetting)? If not, explain.

The complexity of the tasks was
not addressed.

Is the perishability of the product
related to the inherent esoteric
complexity of the task? Is this
esoteric complexity related to the
cognitive element described in
the DPLFM? i.e. Knowledge
lifespan (similar to the worker

L)
proposed by Ash and Smith-
Daniels (1999))

Items are assumed to have an
infinite storage life.
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Jaber et al. (2003) Thesis - Thesis - model | Thesis - model
— model A B C
pe o - . Modeling Modelin Modeling
Issue fssue Deseription Modeling Method Method Method Method
How does the model distinguish This paper does this by settinga | No job This paper does | This paper
whe‘ther the jobs are different or similarity coefficient between similarity was | this by settinga | does this by
similar? two and three jobs based on the assumed. similarity setting a
ratio of the number of shared (s=0) coefficient similarity
task attributes and the total between two cocfficient
number of attributes among the and three jobs between two
tasks based on the jobs based on
ratio of the the ratio of
number of the number of
shared task shared task
attributes and attributes and
the total the total
number of number of
attributes attributes
among the tasks | among the
tasks
What kind of job/task attributes The nature of the attributes was " " "
contribute to this similarity (or not explicitly described.
lack of difference)?
Does each worker regard each job || Yes, it is assumed that the .o won won
with the same degree of similarity coefficient is
similarity(or lack of difference)? independent of the perceptions of
the workers, and hence is not
dependent on who works on the
task.
How does the degree of similarity || There is no relationship defined No job Same as in Jaber oo
relate to cognitive/motor between these factors. The degree similarity was | et al. (2003).
components and/or task of similarity or similarity assumed.
complexity? coefficient affects the (s=0)
determination of the forget curve
— intercept for all cycles. For
g & example, if there is no
g E.. similarity(coeff. of 0) then there is
‘= E maximum forgetting between
% _E cycles; if, on the other hand, there
a 2 is total similarity (coeff. of 1), then
there is no forgetting between
cycles, and the intercept is just
determined using the traditional
learning power function.
Are there quantitative measures Yes, the similarity coefficient. It | No similarity | When N=2, There are five
of similarity? What were they? wassetats=0,8=0.2,3=04, was assumed. | there are five levels of task
s = 0.6, and s = 0.8 for two tasks, | (5=0) levels of task similarity
and s =0, s = 0.2, s = 0.25, and similarity defined (N=2):
8 = 0.8 for three tasks defined: s=(0, s=0.2,
(see Jaber et al. (2003) for all 8=0,s=02, s s=0.4,8=
the 3-task coefficients). =04,s=0.6, 0.6,5=038

s = 0.8; when

N =3, there are
four levels of
task similarity
defined: S, S,
sZ’ S
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7.1.2 Model results/conclusions (as they relate to DRC shop

performance measures: categorized by experimental factors

examined)
Jaber et al. (2003) Thesis - Thesis - Thesis -
model A model B model €
Modelin: Modelin; Modelin
Type of Issue Modeling Method Method | Method | Methot
It was concluded that training workers for " " v
Worker flexibility more than 2 different tasks (3 tasks) is not
results/conclusions necessary because the forgetting losse.s for
(level of cross training) learning 3 tasks are greater than leamning 2
tasks.
Out of the possible levels of 10, 25 and 250, Model A non "o
Overall, a worker transfer policy of 250 was also
optimal. These results differed from those of | concurred
Hottenstein and Bowman (1998) because with Jaber et
they concluded that a centralized policy was al.(2003)
superior to a decentralized policy; albeit, that, overall,
Hottenstein and Bowman (1998) concluded a worker
Centralization of control that is was superior by only a marginal traqsfer
results/conclusions amount. policy quaSIO
('when' rule) was optimal
Again, as in
Jaber et al.
(2003), this
differed from
the results of
Hottenstein
and Bowman
(1998).

Worker assignment rule
resnlts/conclusions
('where' rule)

This experimental factor was not examined.

non

" on

Queue discipline rule
results/conclusions

There are no arrivals until a unit is complete,
therefore it is a simple static, first-come-first-
serve model. As a result, the comparison
between different queue discipline rules was
not made.

now

[T

Cost of transferring
workers
results/conclusions

There are no conclusions made since the
costs are assumed to be zero.

"o

non

154




7.2 Model A results

7.2.1 DPLFM results (4PT)

N =2 FR =95%

C Task Type R FAP -0 | FAP-1 | FAP-2
173 1.0231 1.0008 1.0137

T, 1 1.0150 | 1.0010 1.0100

3 1.0110 1.0012 1.0079

13 1.3609 1.0009 1.0516

T, 1 1.0495 1.0006 1.0254

10 3 1.0214 1.0008 1.0141
173 1.0498 1.0006 1.0231

T tea 1 1.0222 1.0008 1.0145

3 1.0144 1.0010 1.0099

1/3 1.0205 1.0010 1.0125

T, 1 1.0219 1.0011 1.0126

3 1.0205 1.0010 1.0125

1/3 1.0180 1.0014 1.0142

T, 1 1.0123 1.0015 | 1.0104

3 1.0091 1.0017 1.0082

1/3 1.0867 1.0011 1.0521

Ty 1 1.0329 1.0010 1.0259

' 3 1.0177 1.0013 1.0146
25 1/3 1.0311 1.0010 1.0236
T peu 1 1.0182 1.0013 1.0150

3 1.0120 1.0016 1.0103

173 1.0166 1.0017 1.0130

T, 1 1.0171 1.0018 1.0131

3 1.0166 1.0017 1.0130

1/3 10141 1.0016 1.0158

T, 1 1.0099 1.0013 1.0115

3 1.0075 1.0011 1.0089

1/3 1.0552 1.0020 1.0612

T, 1 1.0260 1.0018 1.0293

3 10144 1.0015 1.0161

250 173 1.0240 1.0019 1.0272
T e 1 1.0148 1.0015 1.0165

3 1.0098 1.0012 1.0114

1/3 1.0126 1.0017 1.0145

I, 1 10127 | 1.0018 | 10145

3 1.0126 1.0017 1.0145
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N =2 FR =90%

C | TaskType | R | FAP-0 | FAP-1| FAP-2
13 1.3784 1.0048 1.0164

I, 1 1.0814 | 1.0055 | 10128

3 1.0302 1.0059 1.0106

13 2.1088 1.0070 1.0566

Ty 1 1.6664 1.0034 1.0276

3 1.2797 1.0038 1.0161

10 1/3 1.7298 1.0041 1.0258
Titea 1 1.3600 1.0040 1.0167

3 1.0441 1.0049 1.0123

173 12673 1.0046 1.0149

T, 1 1.3750 1.0053 1.0153

3 1.2673 1.0046 1.0149

173 1.0453 1.0083 1.0186

T, 1 1.0277 1.0088 1.0147

3 1.0175 1.0084 1.0121

1/3 1.6000 1.0075 1.0573

T, 1 1.2155 1.0052 1.0289

25 3 1.0376 1.0065 1.0179
1/3 1.2672 1.0063 1.0272

T\ 1 1.0425 1.0069 1.0185

3 1.0244 1.0077 1.0140

13 1.0365 1.0077 1.0168

T, 1 1.0430 1.0090 1.0175

3 1.0365 1.0077 1.0168

13 1.0182 1.0101 1.0211

T, 1 1.0122 1.0083 1.0156

3 1.0087 1.0068 1.0120

1/3 1.0760 1.0110 1.0672

T, 1 1.0333 1.0098 1.0346

250 3 1.0178 1.0081 1.0203
1/3 1.0318 1.0113 1.0332

Trtea 1 10186 | 1.0088 | 1.0211

3 1.0117 1.0072 1.0149

13 1.0156 1.0083 1.0186

I, 1 10160 | 1.0097 | 1.0192

3 1.0156 1.0083 1.0186
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N=2 FR =85%

C Task Type | p FAP-0 | FAP-1 | FAP-2
1/3 1.7251 1.0128 1.0212
T. 1 1.4919 1.0167 1.0188
3 1.0835 1.0159 1.0159
1/3 2.3914 1.0869 1.0805
T, 1 2.0386 1.0130 1.0335
10 3 1.6370 1.0103 1.0202
13 2.0511 1.0161 1.0326
T rtea 1 1.7541 1.0123 1.0216
3 1.3595 1.0132 1.0170
13 1.6324 1.0121 1.0194
T, 1 1.7746 1.0155 1.0210
3 1.6324 1.0121 1.0194
1/3 1.2281 1.0218 1.0262
T. 1 1.0735 1.0269 1.0240
3 1.0365 1.0230 1.0196
13 1.9010 1.0785 1.0794
T, 1 1.5409 1.0170 1.0362
3 1.1716 1.0177 1.0245
25 13 1.5471 1.0206 1.0359
Thtea 1 12574 1.0210 1.0265
3 1.0548 1.0211 1.0213
13 1.1227 1.0205 1.0241
1, 1 1.2250 1.0261 1.0265
3 1.1227 1.0205 1.0241
13 1.0250 1.0264 1.0302
T, 1 1.0169 1.0271 1.0253
3 1.0111 1.0213 1.0192
13 1.1506 1.0368 1.0826
T, 1 1.0498 1.0285 1.0456
3 1.0242 1.0223 1.0285
250 1/3 1.0486 1.0322 1.0456
Trtea 1 1.0266 1.0267 1.0311
3 1.0154 1.0209 1.0222
13 1.0209 1.0224 1.0264
T, 1 1.0225 1.0282 1.0291
3 1.0209 1.0224 1.0264
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N=3 FR =95%

C Task Type | R FAP -0 | FAP-1 | FAP-2
13 1.1263 1.0030 1.0152
T, 1 1.0284 1.0036 1.0118
3 1.0196 1.0041 1.0097
13 1.7488 1.0032 1.0534
T, 1 1.3887 1.0022 1.0266
3 1.0469 1.0028 1.0155
10 13 1.4156 1.0023 1.0244
T\ 1 1.0811 1.0028 1.0159
3 1.0265 1.0036 1.0116
13 1.0439 1.0035 1.0143
T, 1 1.0850 1.0038 1.0144
3 1.0439 1.0035 1.0143
13 1.0281 1.0049 1.0165
T, 1 1.0186 1.0051 1.0127
3 1.0131 1.0051 1.0104
13 1.3159 1.0036 1.0541
T, 1 1.0548 1.0034 1.0276
3 1.0268 1.0045 1.0168
25 13 1.0519 1.0036 1.0254
T 1 1.0276 1.0044 1.0171
3 1.0179 1.0050 1.0126
13 1.0259 1.0054 1.0156
T, 1 1.0274 | 1.0058 1.0158
3 1.0259 1.0054 1.0156
13 1.0156 1.0043 1.0176
T, 1 1.0108 1.0033 1.0130
3 1.0080 1.0028 1.0100
133 1.0629 1.0057 1.0637
T, 1 1.0291 1.0051 1.0316
250 3 1.0159 1.0041 1.0179
13 1.0268 1.0051 1.0295
T 1 1.0164 1.0041 1.0183
3 1.0106 1.0032 1.0127
13 1.0140 1.0042 1.0162
I, 1 1.0141 1.0045 1.0164
3 1.0140 1.0042 1.0162
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N=3 FR =90%

C Task Type | R FAP-0 | FAP-1 | FAP-2
13 1.7420 1.0197 1.0254
T, 1 14647 | 1.0198 | 1.0214
3 1.0833 1.0198 1.0189
13 2.3971 1.1351 1.1079
T, 1 2.0008 1.0543 1.0370
10 3 1.6476 1.0147 1.0232
13 2.0616 1.0919 1.0371
T fea 1 1.7204 1.0159 1.0241
3 1.3773 1.0174 1.0201
13 1.6480 1.0174 1.0231
T, 1 1.7472 1.0206 1.0246
3 1.6480 1.0174 1.0231
13 1.2385 1.0287 1.0313
T, 1 1.0653 1.0276 1.0260
3 1.0369 1.0242 1.0215
13 1.8715 1.1131 1.0990
T, 1 1.5121 1.0235 1.0394
” 3 L1711 1.0223 1.0281
13 1.5616 1.0346 1.0395
Trtea 1 1.2253 1.0238 1.0292
3 1.0552 1.0241 1.0241
13 1.1251 1.0258 1.0282
T, 1 1.1932 1.0301 1.0303
3 1.1251 1.0258 1.0282
13 1.0253 1.0231 1.0298
T, 1 1.0160 1.0184 1.0220
3 1.0109 1.0147 1.0168
13 1.1191 1.0313 1.0798
T, 1 1.0474 1.0253 1.0450
3 1.0240 1.0190 1.0277
250 13 1.0461 1.0283 1.0443
Ttea 1 1.0253 1.0207 1.0290
3 1.0152 1.0160 1.0206
13 1.0209 1.0189 1.0256
T, 1 1.0219 1.0217 1.0271
3 1.0209 1.0189 1.0256
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N =3 FR =85%

C Task Type | R FAP-0 | FAP—1 | FAP-2
13 2.0664 12708 1.1274
T, 1 1.8559 1.1903 1.0438
3 1.4711 1.0541 1.0366
13 2.6494 1.4259 1.3012
T, 1 2.3408 1.3416 1.2275
3 1.9818 1.2181 1.0805
10 13 2.3549 1.3814 1.2599
T, 1 2.0906 12697 1.1301
3 1.7287 1.1005 1.0370
13 1.9866 12271 1.0619
T, 1 2.1198 1.2937 1.1291
3 1.9866 12271 1.0619
13 1.5078 1.1533 1.0579
T 1 1.2545 1.0828 1.0548
3 1.0870 1.0638 1.0426
13 2.1302 1.3605 12634
T, 1 1.8015 1.2623 1.1718
3 1.4555 1.1062 1.0510
25 1/3 1.8090 1.2912 1.1936
T 1 1.5335 1.1612 1.0576
3 1.1561 1.0647 1.0463
1/3 1.4220 1.0879 1.0523
T, 1 1.5065 1.1561 1.0608
3 1.4220 1.0879 1.0523
13 1.0395 1.0525 1.0481
T, 1 1.0259 1.0494 1.0406
3 1.0160 1.0381 1.0303
13 1.2789 1.1234 1.1253
Ty 1 10836 | 1.0658 | 10702
250 3 1.0377 1.0462 1.0448
|13 1.0818 1.0711 1.0717
T 1 10422 | 1.0540 | 1.049
3 1.0230 1.0401 1.0351
13 1.0323 1.0447 1.0415
I, 1 10355 | 1.0538 | 1.0465
3 1.0323 1.0447 1.0415
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7.2.2 LFCM and VRVF results (4PT)

LFCM VRVF
(Jaber et al., 2003) (Jaber et al., 2003)

N | FR C | FAP-0 | FAP-1 | FAP—-2 | FAP-0 | F4P-1 | FAP-2
Low 10 1.3075 1.0011 1.0390 1.0516 1.0011 1.0391
(95%) 25 1.0675 1.0675 1.0675 1.0675 1.0675 1.0675

250 1.0431 1.0028 1.0433 1.0422 1.0024 1.0435

Med 10 1.8990 1.0065 1.0432 1.0848 1.0071 1.0450

2 (90%) 25 1.4478 1.0075 1.0441 1.0755 1.0078 1.0458
250 1.0566 1.0125 1.0494 1.0522 1.0107 1.0504

High 10 2.1925 1.0486 1.0532 1.3201 1.1196 1.0962
(85%) 25 1.7187 1.0379 1.0541 1.2008 1.0753 1.0766

250 1.0817 1.0314 1.0593 1.0696 1.0273 1.0631

Low 10 1.7138 1.0042 1.0415 1.0774 1.0044 1.0424
(95%) 25 1.2960 1.0051 1.0423 1.0683 1.0052 1.0433

250 1.0501 1.0078 1.0468 1.0477 1.0069 1.0473

Med 10 2.2197 1.1722 1.0958 1.7301 1.5305 1.4178

3 (90%) 25 1.7457 1.1346 1.0785 1.4249 1.2953 1.2447
250 1.0849 1.0344 1.0627 1.0741 1.0310 1.0668

High 10 24774 14218 1.2785 2.2692 2.0962 1.9228
(85%) 25 1.9757 1.3460 1.2330 1.8368 1.7190 1.6104

250 1.1445 1.0813 1.0876 1.1221 1.0788 1.1026

161



7.3 2-way interaction tables

7.3.1 2-way DPLFM interaction tables

The interactions between C and FR

Forgetting rate (FR)
95% 90% 85%
Worker 10 1.044 1.198 1.365
transfer policy | 25 1.020 1.080 1.181
(C) 250 1.014 1.024 1.045
The interactions between C and FAP
Upfront training policy (FAP)
0 1 2
Worker transfer | 10 1.514 1.053 1.040
policy (C) 25 1.206 1.038 1.036
250 1.032 1.020 1.031
The interactions between C and N
Number of tasks learned (/N )
2 3
Worker transfer | 10 1.138 1.267
policy (C) 25 1.058 1.130
250 1.021 1.034
The interactions between FR and FAP
Upfront training policy (FAP)
0 1 2
Forgetting rate | 95% 1.056 1.003 1.019
(FR) 90% 1.255 1.019 1.028
85% 1.441 1.089 1.060
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The interactions between FR and N

Number of tasks learned (N )
2 3
Forgetting rate 95% 1.017 1.035
(FR) 90% 1.068 1.134
85% 1,132 1.262

The interactions between FAP and N

Number of tasks learned (N )
2 3
Upfront 0 1.182 1.319
training policy 1 1.011 1.063
(FAP) 2 1.024 1.048
The interactions between C andT
Task-type (T)
TC TM TMed TU
Worker 10 1.126 1.301 1.202 1.180
transfer 25 1.049 1.168 1.093 1.065
policy (C) | 250 1.018 1.046 1.025 1.021
The interactions between C and R
R-value (R)
1/3 1 3
Worker transfer | 10 1.280 1.206 1.121
policy (C) 25 1.146 1.089 1.045
250 1.039 1.025 1.018
The interactions between FR andT
Task-type (1)
TC TM TMed TU
Forgetting | 95% 1.012 1.056 1.023 1.014
rate ( FR) 90% 1.054 1.169 1.100 1.079
85% 1.127 1.291 1.198 1.170
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The interactions between FR and R

R-value (R)
13 1 3
Forgetting rate | 95% 1.046 1.021 1.011
(FR) 90% 1.153 1.096 1.052
85% 1.267 1.203 1.121
The interactions between 7 and FAP
Upfront training policy (FAP)
0 1 2
Task-type (T) | T, 1.143 1.027 1.023
T, 1405 1.052 1.059
Thted 1.249 1.037 1.035
T, 1.207 1032 1.026
The interactions between 7 and N
Number of tasks learned (N )
2 3
Task-type (T') | T, 1.039 1.090
Ty 1.124 1.220
T pted 1.070 1.144
T, 1.056 1.121
The interactions between 7 and R
R-value (R)
173 1 3
Task-type (T) | T, 1101 1.062 1.029
Ty 1.268 1.162 1.085
Tyteq 1.170 1.101 1.049
Ty 1.082 1.073 1.073
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The interactions between FAP and R

R-value (R)

1/3 1 3
Upfront 0 1.364 1.249 1.139
training policy 1 1.050 1.037 1.023
(FAP) 2 1.052 1.034 1.022
The interactions between N and R

R-value (R)

1/3 1 3
Number of tasks | 2 1.109 1.070 1.037
learned (N ) 3 1.201 1.144 1.086
7.3.2 2-way LFCM interaction tables
The interactions between C and FR

Forgetting rate (FR)

95% 90 % 85%
Worker 10 1.185 1.406 1.579
transfer policy 25 1.091 1.243 1.394
(C) 250 1.032 1.050 1.081
The interactions between C and FAP

Upfront training policy (FAP)

0 1 2
Worker transfer | 10 1.968 1.109 1.092
policy (C) 25 1.542 1.100 1.087

250 1.077 1.028 1.058

The interactions between C and N

Number of tasks learned (N )
2 3
Worker transfer | 10 1.288 1.492
policy (C) 25 1.168 1.317
250 1.042 . 1.067
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The interactions between FR and FAP

Upfront training policy (FAP)
0 1 2
Forgetting rate | 95% 1.246 1.015 1.047
(FR) 90% 1.576 1.061 1.062
85% 1.765 1.161 1.128
The interactions between FR and N
Number of tasks learned (N )
2 3
Forgetting rate | 95% 1.071 1.134
(FR) 90% 1.174 1.292
85% 1.253 1.450
The interactions between FAP and N
Number of tasks learned (N )
2 3
Upfront D 1.424 1.634
training policy |1 1.024 1.134
(FAP) 2 1.050 1.107
7.4 3-way interaction tables
7.4.1 3-way DPLFM interaction tables
3-way interactions for C, FR,
CIOFR85% i
T % FAP %0 N % R
Te | 1251 233% | 2 | 1254 | 23.6% | 1B | 1442 | 42.1%
Ty | 1493 | 472% | 3 11476 | 455% | ! | 1376 | 3570%
T
Med | 1368 | 34.9% 3] 1302 | 28.3%
Ty | 1346 ] 327%
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3-way interactions for C,,FR

95%

CosoFRosq, S
T P FA % N % R
T, 0 ; 1
: 1009 | -0.5% 1.019 | 05% 1013 | 01% | 3 | 1.070 | 55%
Ty [1025] 10%| ! |1003|-11% |3 |1015]01% | ! | 1013 | -0.1%
Twed | 1013 01% | 2 | 1021 | 07% 31 1.009 | -05%
Ty |1018| 04%
3-way interactions for C,(FAP -0
C,,FAP—0
i [y
T % N % R %
00% | Tc | 1317 | 29.1% | 2 | 1383 | 356% | V3| 1.675 | 64.2%
00% | 1547 | 51.7% | T | 1764 | 73.0% | 3 | 1645 | 613% | | | 1.525 | 49.3%
85% | 1.884 | 84.7% | Tmea | 1513 | 48.4% 3| 1379 | 352%
Ty | 1462 | 434%
3-way interactions for C,  FAP -1
' C, FAP -1
FR % T % N % R %
95% | 1003 | -17% | Ic 10171 03% | 2 | 1012] -07% | 13| 1027]| 07%
90% | 1.015| 05% | Tu 10251 05% | 3 | 1028] 07%| ! | 1026 0.6%
85% | 1.002| 2.1% | Tmed | 1020 00% 3 1026 0.6%
Ty | 1018 -02%
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3-way interactions for C,jN,

% T % FAP % R

1 oa2el Te| 1176 150% 0| 1645 | 61.1% | 13 | 1358 | 32.9%
V1274 | 247%

31 1169 | 14.5%

234% | Ty | 1380 35.2%
445% | Twea | 1270 | 244% |

Ty | 1240 214%

3-way interactions for C,, N,

C250N2 T

FR % T % FAP % R %

95% | 1.013| 08%| Tc| 1014| -07% 01 1026] 04% | 13| 1.031] 09%

90% | 1.019] 02% | Tw | 1.035] 14% o012 -09% | 1] 1.020] -02%

85% | 1.032] 1.1%| Tma | 1000| -02% 21 1026] 05%| 3| 1.014] -07%
Ty | 1016 -0.5%

3-way interactions for FR,, FAP -0

FRyy, FAP 0 e
C % T % N % R
10 1279 | 27.5% 2| 1341 338% | 13| 159 | 588%
25 1.648 | 64.4% 31 1540 | 53.6% | 1| 1457 453%
Lo 1441 | 4379% 31 1274 27.0%
1395 | 39.2%
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3-way interactions for FR . FAP—1

FR,, FAP -1
C %o T % N %
10| 1002 | -01% Te | 1003| 00% 21 1001 | -0.1% | 13] 1.003| 0.0%
251 1.003| 00%| Ty | 1.003| 0.0% 311004| 01%| 1| 1.003| 0.0%
250 | 1.003 | 0.0% | Twea | 1003 | 00% 30 1003] 00%
Ty | 1003| 00%
3-way interactions for FR,., N,
F RsS%N 3 . fh
T % FAP % R % C %
Te | 1176 | 159% 0} 1540 | 51.4% | 13| 1346 | 323% | 10| 1.476 | 45.1%
Ty | 1372 | 34.9% 1 1154 | 13.5% 1) 1271 | 250% | 25| 1.252 | 23.1%
Tyea | 1264 | 243% 201090 72% 31 1168 | 14.8% | 1
Ty | 1234 | 21.3%
3-way interactions for IRy, N,
FR95%N2 -
T % FAP % R % C %
Te | 1009 | -08% 0| 1031 | 14%| 13| 1029 12%| 10] 1.024 | 0.6%
Ty | 1036 | 1.8% Pl 1001 -1.5% 1| 1013| -04% | 25| 1.014 | -0.3%
Tyes | 1013 | -0.4% 2] 1018| 01% 31 1009| -08% | 250 | 1.013 | -0.4%
Ty | 1011 -06%
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3-way interactions for FAP—-0N,

FAP-ON,
C %e FR % T % R
10 | 1.645 1195 | 183% | 13| 1447 43.1%
. 1490 | 47.4% 1] 1320 30.6%
wam | gsa | 1540 52.4% | Twea | 1318 | 304% | 3| 1.191 | 17.8%
Ty | 1274 ] 26.0%
3-way interactions for FAP-1N,
FAP-1N,
C % FR o T %o R
0] 1.008] 02% | 95% | 1001] 09%| Tc | 1010] -01%| 13| 1.014] 03%
251 1012 01% | 90% | 1.007| -04% | Ty | 1014] 03% 1] 1010 -0.1%
250 | 1.012] 0.1% | 85% | 1.024| 13% | Twea | 1.009| -0.1% 31 1.009 | -0.2%
Ty | 1010 -0.1%
3-way interactions for C,,T,,
C]OTM
FR % [ FAP % N % R
8.1% ,0 1.764 | 73.2% 2| 1222] 200% | 13| 1.443 | 41.7%
90% | 1310 | 287% | . 1| 1074 54% 3 1380 | 35.6% 1] 1293 [ 27.0%
85% | 1.493 | 46.6% 211067 | 47% 3] 1.169 | 14.8%
3-way interactions for C, T
CZSOTC
FR % | FAP % N % R %
95% | 1.009 | -0.9% 01 1016 -02% 1014 | -04% | 13| 1023| 05%
90% | 1.016 | -0.2% 1] 1.017] 0.1% 1022 | 0.4% 1| 1.018 [ 0.0%
85% | 1.030 | 12% 21 1022 03% 3 1.014 | -05%
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3-way interactions for C, R,

C10R1/3
FR % | T % FAP %
T
195% 6.5% c | 1200 179% | 0 1707 | 67.8% 1.202 | 18.1%
90% | 1289 | 266% | Ty | 1443 | 4179 | .1 1358 | 33.4%
85% | 1.466 | 44.1% | Twed | 1309 | 286% |
Ty | 1167 147%
3-way interactions for C,,
CisoR; C g @
FR % | T %o FAP % | N %
95% | 1.009 | -0.9% T | 1014 | -04% 0| 1.017] -01%| 2| 1.014| -04%
90% | 1.016 | 02% | Ty | 1.022| 04% V'l 1016 ] -02% | 3| 1.022] 04%
85% | 1.029 | 1.0% | Thea | 1016 | -02% 20 1021 | 03%
Ty | 1020] 02%
3-way interactions for FR,., T,

. : )
FRBS%[M . . i‘:@
C % | FAP %o N % | R %

0| 1648 | 62.8% 2 1209 | 195% | 13| 1.419| 40.2%
1] 1.126 | 11.2% 3 1372 356% | 1] 1.287] 27.2% |
2| 1.098| 85% 3] 1.165| 15.2%
3-way interactions for FR,, T
FRosq T - P A
C % | FAP % N % | R %
10| 1017 05% 0 1022] 09% 20 1.009] 03% | 13] 1.019] 0.6%
25| 1.011 | -0.1% 11 1.003| -09% 3| 1016 | 03%| 1] 1.010] -02%
250 | 1.009 | -0.3% 21 1012 0.0% 3| 1.008| -04%
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3-way interactions for FR,, R,/

FR85%R113
C %| T % FAP %| N
10| 1466 | 450% | Tc | 1191 21 1.187 ] 174%
' T, | 1419 31 1346 | 33.1%
Toed | 1.297
Ty | 1159 | 146%
3-way interactions for FR, R,
FR9S%R3
C %| T % FAP %| N
!l 103 029! Tc| 1008 -03% 0 10018 07% | 2| 1009!| -02%
25| 1011 | 00%| Ty | 1014] 03% 11 1003] -08% | 3| 1.013] 02%
250 | 1.009 | -02% | Tmea | 1.010| -01% 21 03] 019
Ty | 1013 02%
3-way interactions for 7, FAP -0
T, FAP—0 |
C %o FR % N % ! R %
10| 1764 | 724% | 95% | 1.131] 105% 1319 | 289% | 13| 1628 | 59.1%
354% | 90% | 1.435| 402% 1490 | 457% | 1| 1.384 | 353%
40% | 85% | 1.648 ]| 61.1% 3| 1.202] 17.4%
3-way interactions for 7. FAP -2
T.FAP -2 |
C %] FR % N % | R %
10| 1.024 | 01%| 95% | 1012 | -1.1% 1.016 | 07% | 3] 1030 07%
25| 1.023] 00%| 90% | 1.019 | -04% 1.030 | 07% | 1] 1.022| -01%
250 | 1.022 | -02% | 85% | 1.038 | 14% 3 1017 -06%
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3-way interactions for T, N,

v TM N3 ‘ « %‘
C %| FR %
95% | 1.07 1331 | 28.1%
90% 1212 | 16.7%
85% LII7|  75%
3-way interactions for 7N,
TN, ,
C % | FR % FAP %| R %
10| 1.075| 35%| 95% | 1.009 | -2.9% 01 1090 | 49% | 13| 1.064 | 2.5%
251 1.027 | -12% | 90% | 1.030 | -0.8% 1] 1.010] 28%| 1] 1.036] -02%
250 | 1.014 | -23% | 85% | 1.077| 3.1% 2] 1016 | -22% | 3] 1.015] -2.2%
3-way interactions for 7, R, ,
TyRy; g
C % | FR e FAP % | N %
10 | 1443 | 40.1% | 95% | 1.110 | 7.9% O] 1628 | 582% | 2| 1.206| 17.1%
25| 1.282 | 245% | 90% | 1.275 | 23.8% 1] 1.080 | 49% | 3] 1.331] 293%
3001 85% | 1419 | 37.9% 2] 1.096 | 6.5%
3-way interactions for T R,
TR , 7
C %] FR % FAP %| N %
10| 1.050 | 2.0% | 95% | 1.008 | -2.1% 0] 1053 | 23%| 2| 1.015]| -14%
25| 1.024 | -05% | 90% | 1.020 | -0.9% 1 1017 ] -12% | 3] 1043] 14%
250 | 1.014 | -1.5% | 85% | 1.060 | 3.0% 2 1017 | -1.2%
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3-way interactions for FAP-0R,,

FAP-0R,
C %| FR % | T % | N

1237 | 210% | 2| 1.281| 25.4%
1.628 | 59.3% | 3| 1.447 | 41.6%
1.399 | 36.9%

1.192 | 16.7%
3-way interactions for FAP — 2R,
FAP - 2R,
C % | FR %o T % N

10| 1022] 00% | 95% | 1.013] 09%| Tc | 1017] -05%| 2| 1.016] -0.6%
25| 1023 01%| 90% | 1.019] 03% | Ty | 1.027] 04% | 3] 1.028] 06%
250 | 1021 -0.1% | 85% | 1034 | 12% | Twea | 1020] -02%
v | 1.024] 02%

3-way interactions for N,R,,,

N,R,;
C T % FAP %
10 | 1358 o) 1063 | 25% | Tc | 1138 | 9.7% 0| 1.447 | 39.5%
25 | 1197 90% | 1194 ] 15.1% | Tw | 1331 ] 283% ! 47%
85% | 1346 | 298% | Twea | 1224 | 18.0% |
Ty | 1112] 72%
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3-way interactions for N,R,

N,R,
C % FAP
10 | 1.074 %:| 1.00¢ 1.015 | -2.1% 011.087 | 4.8%
25 [1.024 | -1.3% | 90% | 1.029 | -0.8% | T |1.054
85% | 1.074 | 35% | Twes | 1.028
Ty |1.051

7.4.2 3-way LFCM interaction tables

3-way interactions for C, FR,.,

ClOFRBS%I‘
N % | FAP %
2| 1.431 | 38.8% 0
3| 1726 | 67.3% .1
2

3-way interactions for C,, FR,,

CZSOFR95%

N % | FAP %
211030 | -02% 0| 1.047 1.4%
31103 ] 03% 1 [ 1.005 -2.6%

2| 1.045 1.3%

3-way interactions for C,,FAP -0

C,FAP-0

N % | FR %

2 | 1.800 75.0% | 95% | 1.511 46.9%
3 (2137 107.8% | 90% | 2.059 | 100.3%
85% | 2.335 | 127.1%
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3-way interactions for C,;, FAP -1

C250FAP "‘1 .
N % | FR %
2| 1.016 -1.2% | 95% | 1.005 -2.2%
"3 1.041 1.2% | 90% | 1.023 -0.5%
85% | 1.056 2.7%

3-way interactions for C (N,

C10N3
FAP %
105% |-
15.1%
9.2% | 85% | 1.726 | 65.6%

3-way interactions for C, N,

CasoV,

FAP % | FR %
0] 1.060 1.7% | 95% | 1.030 | -1.2%
1] 1.016 -2.6% | 90% | 1.039 | -0.3%
2] 1.051 0.8% | 85% | 1.057 1.5%

3-way interactions for FR,,, FAP -0

N %] C %
211664 640% | 10 2.335 130.1%
31866 | 839% | 25

250

1.847

3-way interactions for FR,, FAP -1

FRyg FAP -1
N %] C %
2] 1.024 0.9% 10 [ 1.003 -1.2%
3] 1.006 -0.9% 25| 1.036 2.1%
250 ] 1.005 | -0.9%
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3-way interactions for FR, N,

FRysq N,
FAP %| C %

0| 1.866 | 742% | 10| 1.726 | 61.1%
8% 1 25| 1.
0% 1250 [ 1.

3-way interactions for FR,., N,

FR9$% N2

FAP %] C %
0 1.139 6.4% 10| 1.116 4.2%
1| 1.024 -4.4% 25 | 1.068 -0.3%
21 1.050 -2.0% | 250 | 1.030 -3.9%

3-way interactions for FAP ~0N,

FAP —ON,
FR %] C %

322% | 10| 2.137 | 108.7%

90% | 1683 | 644% | 25| 1672 | 63.3%
85% 1.866 | 82.2% | 250 | 1.093Z1 68

3-way interactions for FAP — 1N,

FAP—I1N,
FR %] C %

95% | 1.024 0.0% 10 | 1.019 -0.5%
90% 1.009 | -1.5% 25 | 1.038 1.3%
85% | 1.039 1.5% | 250 | 1.016 -0.8%
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7.5 Suppressed model A results - APT (DPLFM) -

N=2, FR =95%

C Task Type R FAP-0 | FAP-1 | FAP-2

TC 1

1/3 1.3609

10

1/3 1.0867

25

250
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N =2, FR =90%

C

Task Type

FAP-1

FAP-2

10

T,

25

250
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N=2, FR =85%

C Task Type | R FAP-0 | FAP-1 | FAP-2
1/3 1.7251 - -
T, 1 1.4919 - -
3 1.0835 - -
1/3 2.3914 1.0869 1.0805
T, 1 2.0386 - -
10 3 1.6370 - -
1/3 2.0511 - -
Ttea 1 1.7541 - -
3 1.3595 - -
1/3 1.6324 - -
T, 1 1.7746 - -
3 1.6324 - -
13 1.2281 - -
T, 1 1.0735 - -
3 - - -
13 1.9010 1.0785 1.0794
T, 1 1.5409 - -
25 3 1.1716 - -
13 1.5471 - -
Ty 1 12574 ] _
3 - - -
13 1.1227 - -
T, 1 1.2250 - -
3 1.1227 - -
1/3 - - ]
T. 1 - - -
3 . . .
13 1.1506 - 1.0826
T, 1 . . .
250 3 : - -
13 - - -
TMed 1 - - -
3 - . .
13 ; . .
Tu 1 - - -
3 - . -
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N=3, FR =95%

C

Task Type

10

T,

C

25

250
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N =3, FR =90%

C Task Type | R FAP-0 | FAP-1 | FAP-2
13 1.7420 - -
T, 1 1.4647 - -
3 1.0833 - -
' 1/3 2.3971 1.1351 1.1079
T, 1 2.0008 - -
3 1.6476 - -
10 13 2.0616 1.0919 -
T\ 1 1.7204 - -
3 13773 - -
13 1.6480 - -
T, 1 17472 - -
3 1.6480 - -
13 1.2385 - -
T. 1 - . i
3 - - -
13 1.8715 1.1131 1.0990
T, 1 1.5121 - -
25 3 1.1711 - -
13 1.5616 - -
T e 1 1.2253 ] ]
3 - - -
13 1.1251 - ]
T, 1 1.1932 - -
3 1.1251 . .
13 - - R
T, 1 _ . .
3 - ] .
13 1.1191 - 1.0798
Ty 1 - - ]
250 3 - - -
13 - _ _
TMed 1 - - _
3 . - .
13 - _ .
TU 1 - - -
3 ; . .
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N=3, FR =85%

C Task Type | g FAP—-0 | FAP-1 | FAP-?
13 2.0664 1.2708 1.1274
T, 1 1.8559 1.1903 -
3 14711 - .
1/3 2.6494 1.4259 1.3012
T, 1 2.3408 1.3416 1.2275
10 3 1.9818 1.2181 1.0805
1/3 2.3549 1.3814 1.2599
Ttea 1 2.0906 1.2697 1.1301
3 1.7287 1.1005 -
1/3 1.9866 1.2271 -
T, 1 2.1198 1.2937 1.1291
3 1.9866 1.2271 -
1/3 1.5078 1.1533 -
T, 1 1.2545 1.0828 -
3 1.0870 - -
13 2.1302 1.3605 1.2634
T, 1 1.8015 1.2623 1.1718
25 3 1.4555 1.1062 -
1/3 1.8090 1.2912 1.1936
Titea 1 1.5335 1.1612 ]
3 1.1561 - -
1/3 1.4220 1.0879 -
T, 1 1.5065 1.1561 -
3 1.4220 1.0879 -
1/3 - - -
T, 1 - - -
3 - - -
1/3 1.2789 1.1234 1.1253
T, 1 1.0836 - 1.0702
3 - - -
250 1/3 1.0818 1.0711 1.0717
TMed 1 - - -
3 ] _ .
1/3 - - -
T, 1 - - -
3 _ . .
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7.6 Model B results (APT)

7.6.1 Two tasks learned

Suppressed average processing time results for the DPLFM with the task similarity factor

-C=10, N=2
Low forgetting Medium forgetting High forgetting
rate of 95% rate of 90% rate of 85%
Task- Similarity | pap | pap | Fap | FAP | FAP | FAP | FAP | FAP | FaP
R Factor 0 1 2
Type (5) 0 1 2 0 1 2
0.0 ; . . 1.3784 - - 1.7251 - -
0.2 - . - 1.2539 - - 1.6014
1/3 0.4 - B - 1.1057 - - 1.4475
0.6 - - - - - - 1.2467 - -
0.8 - - - - - -
0.0 ; . . 1.0814 - - 14919
0.2 - - - - - - 1.3661
TC 1 0.4 g E j B } - 12122
0.6 - - - - - - -
0.8 - - - - - - -
0.0 - B - - - - 1.0835
0.2 -
3 0.4
0.6
0.8 - B - - - - - - -
0.0 1.3609 - - 2.1088 - - 23914 | 1.0869 | 1.0805
0.2 1.2489 - - 1.9974 - - 22876 - -
1/3 0.4 1.1366 - g 1.8574 B B 21541
0.6 1.0742 - - 1.6716 - - 1.9708
0.8 - - - 1.3994 - - 16822
: 0.0 - - - 1.6664 - - 20386
! 0.2 - - - 1.5466 - - 19239
! TM 1 04 - - - 14013 - - 1.7793
0.6 - - - 1.2201 - - 1.5864
0.8 - - - - 1.2994
0.0 - - - 12797 - - 16370
| 0.2 - - - 1.1580 R - 15137
: 3 0.4 - . - - - B 13621
i 0.6 - - - - - - 1.1679
f 0.8 g B B R .
0.0 g - - 1.7298 - B 20511
i 0.2 - - - 1.6087 - - 1.9353
i 1/3 0.4 - - - 1.4597 ) ) 1.7886
i 0.6 - - - 1.2699 - - 1.5918
E 0.8 - - - - - € 1.2957
? 0.0 B - - 13600 - B 17541
[ T 0.2 - - - 1.2380 . - 16322
) Med 1 0.4 - - } 1.0940 » . 1.4806
‘,‘ 0.6 - - - - - - 12827
] 0.8 N R _
I3 0.0 - - - - - - 1.3595
I . 0.2 - - - - - - 1.2341
P 3 0.4 - - - - B - 10717
; 0.6 - - B _
i 0.8 ; f . R R . _
{ . 0.0 - - - 12673 ; . 1.6324
: 0.2 - - g 11393 - - 1.5047
i 1/3 04 - - - - - ] 13464
0.6 - - - - - - 1.1414
0.8 R R N .
0.0 - - - 1.3750 - . 1.7746
0.2 - - - 1.2463 - - 16483
T U 1 04 - - - 1.0920 - . 1.4896
0.6 - - - - - - 12793
0.8 R _ . _
0.0 : - - 1.2673 - . 1.6324
0.2 - - - 1.1393 - - 1.5047 -
3 04 - - - - - - 13464 -
0.6 - - - - - - 1.1414
0.8 - - -
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Suppressed average processing time results for the DPLFM with the task similarity factor
-C=25,N=2

Low forgetting Medium forgetting High forgetting
rate of 95% rate of 90 % rate of 85%

Task- R Similarity FAP | FAP | FAP | FAP | FAP | FAP | FAP | FAP | FaP
Type Factor (S ) 0 1 2 0 1 2 0 1 2

g-g - - - - - - 1.228]
. - - - - - - L1170
3 a2 : - » : _ 1_17(
0.6 - -
0.8 B B ; ) )
0.0 - - - - - - 1.0735
0.2 - B )

T, 1 0.4 -
0.6 -
0.8 -
0.0 - - - - : ) ; X
0.2 - - - - . } ) .
3 0.4 - - - - - - - -
0.6 - - - - - ] } R
0.8 - - - B - - ; - -
0.0 1.0867 - - 1.6000 } - 19010 | 1.0785 | 1.0794
0.2 1.0730 - l 1.4969 - - 1.8074 - -

1/3 0.4 - » . 1.3713 B R 1.6872 .
0.6 " - - 1.2185 - - 1.5244 -
0.8 - - . 1.0726 - - 1.2834 -
0.0 - - - 1.2155 - - 1.5409 -
0.2 - - - 1.1150 - - 1.4413
TM 1 0.4 - - - - - - 13172
0.6 - - - - B - 1.1576
0.8 - - - - - - -
0.0 - - - - - - 11716
0.2 - - -

3 0.4 - -
0.6 - -
0.8 - - - - - - -
0.0 - - - 1.2672 - - 1.5471 - -
0.2 - - - 1.1628 - - 1.4462 - -
1/3 0.4 - - - - - - 1.3196 - -
0.6 - _ R B } . 1.1549 - -
0.8 - - - - - : :
0.0 - - B - - R 1.2574
0‘2 - - - - - - Ils}‘)
0.4 - - -
0.6 - -
0.8 - -
0.0 - -
0.2 - -
3 0.4 - -
0.6 - -
0.8 - - -
0.0 - - - - - - 1.1227
0.2 -
1/3 0.4
0.6 - -
0.8 - - - - ' : :

0.0 - n - _ . ) 1.2250
0.2 " " X _ R . 1.1056
TU 1 0.4 - - - - :
0.6 - - - -
0.8 - - " - ' Z . -
m - - . N . . 1.1227 -
0.2 - - -
3 0.4 - -
0.6 - - - - '
0.8 - - - ' - -

Med 1
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Suppressed average processing time results for the DPLFM with the task similarity factor
-C=250, N=2

Low forgetting Medium forgetting High forgetting
rate of 95% rate of 90% rate of 85%

Similarity | c1p | ap | pap | FAP | FAP | FAP | FAP | FAP | FAP

Task-
Type |R [P tol 2o 2o 1|2

0.0 - - - - - - - - -
0.2 - - - - - - - - -
1/3 0.4
0.6
0.8
0.0
0.2
T, 1 04
0.6 - . - . -
08 - - - - - - - - -
0.0 - - - - - -
0.2
3 0.4
0.6
0.8 - - . - - - - - -
0.0 - - . 1.0760 . . 1.1506 - 1.0826
0.2 - - . - - - 1.1121 - 1.0746
1/3 0.4 - - - - - - 1.0872 -
0.6 . - . - . . B
0.8
0.0
0.2
T, 1 0.4
0.6
0.8
0.0
0.2
3 0.4
0.6 ! - - - . . . N
0.8 - B . . - . - .
0.0
0.2
1/3 0.4
0.6
0.8
0.0 - B . . N - N "
0.2 - . ) . - : N N -
Ttea 1 0.4 - - - - ; ; - - -
0.6 - . - - . :
0.8
0.0
0.2
3 04 - - - . . R - N -
0.6 - . . B - N N B -
0.8
0.0
0.2
1/3 0.4
0.6
0.8
0.0
0.2
T v 1 0.4 B B . _ - N N N
0.6 } - . - - : " -
0.8
0.0
0.2
3 0.4
0.6 . . N - -
0.8 . B N . _
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7.6.2 Three tasks learned

Suppressed average processing time results for the DPLEM with the task stmilarity factor

~-C=10, N=3
Low forgetting Medium forgetting High forgetting
rate of 95% rate of 90 % rate of 85%
Task- Similarity
Type R Factor (S ) FAP-0 FAP—1 | FAP-2 | FAP-0 | FAP-1 | FAP-2 | FAP=0 | FAP-1 | FAP=-2
So 1.1263 - - 1.7420 - . 2.0664 1.2708 1.1274
13 S - - - 1.6165 - . 1.9494 1.1365 -
S, - - . 1.4097 - 1.7521 - -
S, . . B} . . 1.2537 - -
Su - - - 1.4647 - 1.8559 1.1903 -
T 1 Si - - - 13355 - - 17331 - -
< S, - - - 11110 - 1.5284 - -
Ss - - - . . . . . -
S, . - - 1.0833 - 14711 - .
3 Si - - - - - 1.3361 - -
Sz - - - - - 1.0946 - -
S, - - - - - ) - . .
So 1.7488 - - 2.3971 1.1351 1.1079 2.6494 1.4259 1.3012
3 S 1.6160 - - 22934 - - 2.5583 1.3008 1.2062
S; 1.4007 - - 2.1180 - - 2.3982 1.1180 1.0936
S; 1.0733 - - 1.6663 - 1.9671 - -
So 1.3887 - - 2.0008 - 2.3408 1.3416 1.2275
1 S 1.2530 - - 1.8835 - 2.2349 1.2105 1.1083
TM S, - - - 1.6888 - 2.0543 -
S; - - - 1.2186 - 1.5878 - -
S - - - 1.6476 - 1.9818 1.2181 1.0805
3 S - - - 1.5207 - 1.8627 1.0833 -
S, - - - 13132 - - 1.6637 -
S, . . - ; - - 1.1724 - -
So 1.4156 - - 2.0616 1.0919 - 2.3549 1.3814 1.2599
3 S 1.2772 - - 1.9451 - 2.2491 1.2475 1.1343
S, - - - 1.7505 - 2.0676 - -
S; - - - 1.2689 - - 1.5943 . .
So 1.0811 - - 1.7204 - 2.0906 1.2697 1.1301
; S, B - - 1.5957 - - 1.9751 1.1379 -
T S . - - 1.3911 - - 1.7803 -
Med s, . i . ] - ) 1.2895 : :
S, . - - 13773 - 1.7287 1.1005 :
3 S, . . - 1.2432 - 1.6030 - -
S, R _ - R - 1.3956 - -
Ss - - - - - - - -
So - . - 1.6480 - 1.9866 1.2271 -
S, N - - 1.5175 - 1.8654 1.0¥24 -
13 S, - - - 1.3025 - 1.6615 - -
S5 ) B ) - - - 1.1477 - -
So 1.0850 - - 1.7472 - - 2.1198 1.2937 1.1291
T S, . B - 1.6194 - - 2.0034 1.1559 -
v |1 S, i . - 1.4075 - - 1.8045 - -
S5 ) ) . . . 1.2905 - -
So - " - 1.6480 . . 1.9866 1.2271 -
S, i} - - 1.5175 - 1.8654 1.0824 -
3 S i . . 1.3025 - - 1.6615 - -
S; - - - - - - 1.1477 - -
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Average processing time results for the DPLFM with the task similarity factor -C=125,
N=3

Low forgetting Medium forgetting High forgetting
rate of 95% rate of 90% rate of 85%
Task- Similarity FAP FAP | FAP FAP FAP FAP FAP FAP FAP
Type R Factor (S ) 0 | 2 0 1 2 0 1 2
S, _ ; - 1.2385 - - 1.5078 | 1.1533 -
S, . . . 1.1208 - - 1.4096 -
173 S, ; - . - - - 1.2391 - -
S; - - : : - - - - -
S, . } - - - - 1.2545 | 1.0828 -
S, - - - - - - 1.1466 - -
TC 1 S, - . - - - - 1.0739 -
S, - - - - - - - - :
So B . . - - - 1.0870 - -
S, - . - . - - - ;
3 S, ] ) ) ) ) i i ) )
S, - - - - - - - - -
Sy 1.3159 - - 18715 | 11131 | 10990 | 2.1302 | 1.3605 | 1.2634
13 S, 1.2082 - - 1.7755 - - 20493 | 12582 | 1.1855
S: 1.0922 - - 1.6124 - - 19061 | 1.1027 | 1.0877
Ss - - - 1.2139 - - 1.5191 - -
So - - - 15121 - - 1.8015 | 1.2623 | L1718
T 1 S - - - 1.4090 - - 17103 | 1.1565 -
M S, - - - 1.2382 - - 1.5538 - -
S; - - - - - - 1.1560 - -
S, - - - 11711 - - 14555 | 1.1062 -
3 S - - - - - - 1.3554 -
S, - - - - - - 1.1817 - -
S - - - - - - - - -
S, - - - 1.5616 - - 1.8000 | 1.2912 | 1.1936
3 S - - - 1.4593 - - 17180 | 1.1836 | 1.0884
S, - - - 1.2879 - - 1.5606 - -
S; - - - - - - 1.1541 - -
So - - - 1.2253 - - 1.5335 | 1.1612 -
S, - - - 1.1081 - - 1.4371 - -
Tted ! S - - - . . - 12712 ; ;
S - - - } . . ] )
So - - - - - - 1.1561 - -
S - - - - - - 1.0996 - -
3 S; - - - - - R R . _
S - . N R
S - - - 1.1251 - - 14220 | 1.0879 -
13 Si - - - - - - 1.3178 -
S: - - - - - - 1.1311 -
S; - - - - - - _ . _
S . - - 1.1932 - - 1.5065 | 1.1561 -
TU 1 S - - - 1.0789 - . 1.4074 - B
S; - - - - - - 1.2327 - -
S - - - - - - - - -
So - - - 1.1251 - - 14220 | 1.0879 -
3 Si - - - - - - 13178 - -
S; - - - - - - 11311 - -
S3 - - - - - - - - -
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Average processing time results for the DPLFM with the task similarity factor -C = 250,
N=3

Low forgetting Medium forgetting High forgetting
rate of 95% rate of 9% rate of 85%

Task- Similarity FAP | FAP | FAP FAP FAP FAP FAP FAP FAP
Type R Factor ( 5 ) 0 1 2 0 1 2 0 1 2
Sy - - - - -
S, - - - - -
S: - - - -
SJ - - - - -
Se - - - - - - - -
Sl = - - - = - - - =
T, 1 S ] ] ) ) ] » _ _
S; - - - - - - - - -
So - - - -
S] - = = - -
S, - - - - - - - -
S - - - - - - - - -
So - - - 1.1191 - 10798 | 1.2789 | 1.1234 | 1.1253
S, - - - 1.0958 - 1.0729 1.2293 1.0771 1.1013
13 S; - - - 1.0736 - . 1.1434 . 1.0804
S] - - = - - - = =
Sy - - - - - - 1.0836 - 1.0702
S - - - - - - - -
(oW I - N R I
S;q - - - - -
So - - - - - - " - -
S] - = - - - - - - b
Sz - = = = - - - = -
S; - - - - - - - -
So - - - - - - 1.0818 1.0711 1.0717
S, - - - - - - - -
S - - - - - - - -
SJ - - d - _ - -
So - - - - - i )
S, - - - - - - - - -
S; - - - - - - - - -
S; - - - - - - - - .
Se - - - - - - - -
S, - - - - - - - -
S: - - - - - - - -
S - - - - - - - -
So - - - - - - ) '
S, - - - - - - -
S, - - - - - - - - :
e o s
S - - - - - - -
Sl - - - - - - ° i
U S, ; - - - - : - .
Ss - - - - - - = -
Sn - - - - - : - i
S] - - - - - i . i
S - - - - ° . i
53 - - - - - ~ -

1/3

173

TMed 1

173
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7.7 Model C results

LFCM, s =0,
N =2

Optimal Policy

Forgetting Rate

Learning Rate

Initial time to standard time ratio

{12

FAP

Batch Size

95%

70%

75%

80%

85%

90%

— = == o= === ||~ |=|=|= ] |= |—= |= |n |l

0.5

0.5

0.5

92.5%

70%

75%

80%

85%

90%
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LFCM, s =0,
N =2
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LFCM,
s=0, N =2

Optimal Policy
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LFCM,

; =02, N = L ’ Optimal Policy
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LFCM,
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2

Optimal Policy
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LFCM,

s =02, N = : Optimal Policy
2
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Initial time to standard time ratio (p)_ FAP Batch Size
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LFCM, )
s =04, N = Optimal Policy

2
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LFCM,
s =04, N =
2

Forgetting Rate Learning Rate

Optimal Policy

Initial time to standard time ratio (p) FAP Batch Size
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2

Optimal Policy
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FAP Batch Size

85%

70%

250

250

250

10

10

75%

250

250

10

10

10

80%

250

250

10

10

10

85%

250

10

10

227

230

90%

W= [t ot [ Ot fpm | = [ OO | = | — = O=]—~|O|lo|

10

—

250

@
tr

10

o
[

10

An|alwINnN(a|lWNIA A IW|INIAN A |[WINnan|n[a|wiN

o
ta

10

198




LFCM,

;‘ =0.6, N = o Optimal Policy
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Initial time to standard time ratio (p) FAP | Batch Size
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LFCM, 1
s=06 N = : Optimal Policy

2

Forgetting Rate Learning Rate Initial time to standard time ratio (p) FAP Batch Size
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LFCM,

s =06, N = C e Optimal Policy
2

Forgetting Rate Learning Rate

Initial time to standard time ratio (p) FAP Batch Size
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LFCM,
s=08 N = ' ' " | * Optimal Policy
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LFCM,

; =08, N = e ' ' Optimal Policy
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7.8 The Hosmer-Lemeshow goodness of fit tests for the

binary logistic equations of model C

* Hosmer-Lemeshow Goodness of fit for the g(s, p, LR, FR) = C" binary logistic equation:

Given the following null hypothesis:

H : The model g(s,p,LR,FR)=C" fits the output data
the Hosmer-Lemeshow test statistic is calculated as:

,1’2 HL =947,
and the Chi-square distribution at & =0.05and v =8 is given by:

2
Z ayv = 155 1 )

~.since y’m < ¥ av, there was a failure to reject the null hypothesis that the model
g(s, p, LR, FR) = C" fits the data at the 0.05 level of significance.

e Hosmer-Lemeshow Goodness of fit for the g(s, o, LR, FR) = FAP" binary logistic
equation:

Given the following null hypothesis:

H,: The model g(s,p,LR,FR)=FAP" fits the output data
the Hosmer-Lemeshow test statistic is calculated as:

ZZHL =6.01

and the Chi-square distribution at & =0.05and v =8 is given by:
ey =15.51,

c.since y’m < ¥ av, there was a failure to reject the null hypothesis that the model
g(s, p, LR, FR) = FAP"fits the data at the 0.05 level of significance.
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