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requirements for the degree of Master of Applied Science in Mechanical 

Engineering, John Zamiska, 2004

ABSTRACT

This thesis examines worker learning and forgetting in dual resource constrained 

systems according to the dual-phase learning-forgetting model (DPLFM). The 

contributions are as follows: (1) equations were developed that output 

controllable shop factors such as training and transfer policies given existing 

factors such as the degree of job similarity, processing times, and the learning 

and forgetting rate of the worker, (2) results suggest that the task-type factor 

with respect to the worker learning rate and proportion of cognitive and motor 

elements is a factor to include in DRC research, and (3) the results have 

suggested that the DPLFM emphasized a greater benefit for upfront training and 

more a frequent transfer policy than the learn forget curve model (LFCM) when 

tasks are similar, and supported the conclusions of Jaber et al. (2003) by an even 

greater extent that it is possible to use more flexibility in DRC shops with 

similar tasks.
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Chapter 1: introduction and literature 
review

1.1 Thesis overview

This thesis investigation used deterministic simulation models to examine the effect of worker 

learning and forgetting on dual resource constrained (DRC) shops, facilities with fewer workers 

than machines. New factors such as job similarity and a variable worker learning rate as a 

function of the task type were introduced and examined to determine their effect on the shop 

performance measure of average processing time. It was assumed that the DRC shop under 

investigation is a static pure-flow shop with deterministic job arrival and processing times with 

no job queue formation, zero transfer times, and no machine flexibility. The shop consists o f a 

single worker trained for either two or three tasks. It was also assumed that the worker 

undergoes both learning and forgetting of task experience.

In the first model, model A, the learning-forgetting effects of a worker on the performance of 

DRC systems was examined. Worker learning and forgetting was modeled according to the dual­

phase learning-forgetting model (DPLFM). The DPLFM is a model that assumes that a task has 

separate cognitive and motor requirements. A variable worker learning rate was introduced and 

was measured as a function of the type of task processed.

In the second model, model B, the assumption of totally different tasks was released to include 

the processing of tasks with varying degrees of task similarity. The effect of this assumption 

change on the performance of DRC shops was also examined.

In the third and final model, model C, binary logistic equations were developed that could serve 

as a management decision making tool for suggesting optimal worker transfer and training 

policies given less controllable factors such as the worker learning rate, the woiicer forgetting 

rate, the level of task similarity, and the ratio of initial processing time to the standard time of



ttje job. The method by which these equations could be used as a tool for modifying policies in a 

pre-existing DRC system was illustrated by a numerical example.

Dual resource constrained (DRC) systems, or multi-skilled flexible workforces, are shops where 

both machines and labour are limiting resources, namely, /i-machines and w-labourers, with 

w < h  (Wisner and Pearson, 1993). Research on DRC systems is motivated by: (1) increasing 

labour costs (Naitove, 2003), (2) more widespread Just-in-Time (JIT) implementation 

(Altemburg et al., 1999), and (3) increased global competition spurred by demands for more 

customized, make-to-order products (Tompkins, 2002, Karnes and Karnes, 2000).

DRC systems respond to ( 1 ) by reducing the size of the labour force by training workers for 

more than one task, to (2) by reducing bottlenecks at work centers by more frequent worker 

transfers and by reducing manufacturing lead times, and finally, DRC systems respond to (3) by 

improving customer service and adapting to frequent changes in product demand (Kher, 2000).

However, the frequent worker transfers common in DRC systems necessitate the relearning of an 

operation that otherwise might not have been forgotten if the worker was only trained for, and 

dedicated to, one task. As a result, worker learning and forgetting in DRC shops is an important 

investigation because it determines, to what degree, how the benefits of a DRC system are 

overestimated by the detrimental effects of worker learning and forgetting.

This thesis extends upon Jaber et al. (2003) that investigated worker learning and forgetting 

phenomenon in DRC settings. This thesis also introduces the concept of worker learning and 

forgetting in a two and three stage DRC system according to the dual-phase learning-forgetting 

model (DPLFM) developed by Jaber and Kher (2002). This learning and forgetting model is 

based on the theory that a task has separate cognitive and motor requirements. The effect of 

including task similarity is also examined. The experiments consist of deterministic simulation 

models; the results are compared to those of Jaber et al. (2003) and the five possible issues that 

affect DRC shop performance given by Hottenstein and Bowman (1998).

This thesis is organized as follows. The remainder of chapter I provides a survey of research 

done in the areas of DRC systems, worker learning theory, learning and forgetting models, and 

the learning and forgetting phenomenon in DRC systems. Chapter 2 summarizes the 

development of the dual-phase learning-forgetting model (DPLFM), the learning and forgetting



model used in model A and model B of this thesis, and illustrates the behaviour of the DPLFM 

with a numerical example.

Chapter 3 discusses the modeling or experimental designs used in model A, model B, and model 

C o f this thesis. Chapter 4 provides the results, analysis and conclusions to these models and 

discusses how they compare to those of Jaber et al. (2003) and the five possible issues that 

affect DRC shop performance given by Hottenstein and Bowman (1998). Chapter 5 provides 

thesis conclusions and suggestions for further work in this area.

1.2 Dual resource constrained (DRC) systems

Research on scheduling in DRC systems may be easily examined by first outlining the 

characteristics of the scheduling problem. In this thesis, the production problem falls under the 

category of short-range production scheduling (Silver et al., 1998). Namely, scheduling that 

does not require detailed and advanced production planning, but rather, involves individual 

workstation decision-making initiated by workers or supervisors. Silver et al. (1998) clarified 

an important distinction when studying short-range production scheduling problems: whether or 

not the sequence of processing one or more jobs allows for new job arrivals. If the schedule is 

fixed and no new jobs are expected until each job is processed, then the method is called ‘static 

scheduling’. If the schedule allows for the possibility of new job arrivals the method is called 

‘dynamic scheduling’ (Silver et al., 1998). The work environment in this thesis does not allow 

for new job arrivals while each job is being processed; and as a result, this thesis only deals with 

static scheduling. The shop structure also dictates which scheduling approach to use. The 

simplest shop layout is a pure flow shop. This is where all the jobs must follow the same 

predetermined sequence through the shop and visit every station. A general flow shop is where 

the jobs are allowed to skip stations (Silver et al., 1998). In a job shop, the order of jobs on each 

station may be different for each job and they may be processed in any order. In this thesis, the 

job routing is known for certain; and as a result, the assumption of deterministic pure flow shop 

job routing is used. An additional scheduling complication involves parallel machines. In 

parallel machines, the flow shop or job shop may have more than one machine for processing at 

any stage. This adds flexibility to the shop structure. In job shop research, the individual woric 

center is referred to as a machine or station, whereas the group of machines with the same 

operation and processing time is referred to as a stage. In this thesis only individual stations are 

included in the model. To summarize, the DRC system modeled in this thesis is a static-pure



flow shop with deterministic job routings, job arrival times, initial job processing times, and, has 

only one station per stage.

The performance of a shop system is evaluated as various experimental factors are adjusted to 

determine their effect on one or more performance measure. Sequencing rules are one such 

experimental factor. Silver et al. (1998) organized sequencing rules into 4 classes: local rules, 

global rules, static rules, and dynamic rules. Local rules only require information about the 

queue in question; whereas global rules also require information about work elsewhere in the 

shop. Static rules are rules based on information that does not change over time such as earliest 

due date (EDD) rule or shortest processing time (SPT) rule. Dynamic rules rely on information 

that changes with time such as the minimum slack time rule (Silver et al., 1998). As discussed 

later, DRC systems can include all of the above types of global and local dispatching rules in 

addition to ‘when’ and ‘where’ each worker should be transferred (Treleven, 1989). Since this 

thesis examines a static DRC shop model, rules pertaining to station queues are not applicable 

because no queues are formed. Namely, there is never a job waiting to be processed, or workers 

waiting to process a task.

Common job shop performance measures are usually classified by their effect on shop 

congestion or work in process (WIP), and those that are used for meeting due dates (Silver et al., 

1998). As previously mentioned, no queues form in this thesis model, and as a result, shop 

congestion performance measures are not applicable. This thesis uses the shop performance 

measure of average processing (service) time ( A P T  ) calculated over approximately 3000 jobs, 

the same performance measure used by Jaber et al. (2003).

1.2.1 Characteristics of a DRC system
As previously mentioned, the DRC system is a shop where both machines and labour are 

limiting resources, namely, A-machines and w-labourers, with w  < h  (Wisner and Pearson, 

1993). The benefits of a DRC shop, commonly referred to as a shop with a multi-skilled flexible 

workforce, are the reduction of manufacturing lead times (reduction in WIP), improved 

customer service, and the ability to adapt to frequent changes in product demand (Kher, 2000). 

The improved customer service is characterized by on-time delivery performance measured by 

mean tardiness and percent tardy jobs (Park and Bobrowski, 1989). Also, adaptation to frequent 

demand changes is necessaty in a highly competitive work force (Treleven, 1989). Job shops.



common production settings for DRC systems (Hottenstein and Bowman, 1998), are 

predominantly make-to-order shops with large WIP and little inventory of finished goods; 

typical job shop products include printed circuit boards, metal parts, and commercial printers, 

with each item usually tailored to the wishes of customers (Silver et al., 1998). Rosser (1967) 

first proposed the concept of dual resource constrained (DRC) work systems. Until that time, 

only shop problems involving machine-limited resources were examined. The introduction of an 

additional labour constraint increased the complexity of the shop problem while enhancing upon 

the flexibility already known in queue discipline rules. Rosser (1967) suggested that the 

introduction of the labour constraint opened up new levels of design parameters such as the level 

and quality of the labour force. Most notable was that the quality and level of the workforce 

were interrelated in DRC systems. This interrelation is described as follows; as the workforge, 

level decreased, the degrees of possible w;orker flexibility increased, and therefore the quality p f  

the workers increased. Conversely, as the workforce level increased, the amount of possible 

flexibility decreased, and therefore the quality of the workforce decreased (Rosser, 1967).

1.2.2 Parameters of a DRC system

Rosser (1967) clearly outlines the scope (and some possible extensions) of a DRC shop system 

in his paper “Labour and Machine Limited Production Systems”. The DRC system examined in 

his paper was a stochastic flexible job shop with stochastic job routings. The scope of a DRC 

system and its design parameters is shown in Figure 1.1.

The notations shown in Figure LI represent workload, design, and control parameters. The 

workload parameters are as follows: job arrival density function, a , mean job arrival rate, A , 

the service rate density function for each machine in stage /, , the mean service rate of each

machine in stage i, y . , and the job routing transition probability matrix from stage i to stage j ,  

Py  (Rosser, 1967). The models in this thesis are deterministic, and as a result only the A  and

y^ workload parameters are required to describe the DRC system. The design parameters are as 

follows: the number o f stages in the system, m , the number o f identical machines at each
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stage i, C ,, the number o f workers in the system, w , and the relative efficiency of worker j  on 

stage i,S jj. The efficiency parameter is used to determine the service time of the individual at 

stage i. This is done by dividing the service rate for job k on stage / by e ,where e

ranges fiom 0 to 1, and = 1 represents maximum worker efficiency. The central control 

assigns workers to each stage according to the queue discipline of each stage. In this thesis, it is 

assumed that each machine at a particular stage has the same processing time distribution

Also, since the models in this thesis are deterministic, only m  , c , , and w  are applicable. In this 

thesis, w  = 2 or 3, c  = I for every /, and w = I. The control parameters are as follows: the 

stage selection procedure in the central control, / ,  the queue discipline used in stage /, q^, and

the level of centralized control of jobs at stage /, 7T- (Rosser, 1967). Again, since the models in 

this thesis are static, and therefore no queues are formed, only / and are applicable. The 

level of centralized control represents the extent by which the central control determines when 

the worker is assigned to the next task. Full control, or when %j = l, means that central control

determines where the worker should go next after the present unit is completed. When 71 ̂ = 0

means that central control does not allocate the worker to a new station until the worker has 

completed the work remaining in queue at that station (Hottenstein and Bowman, 1998). In the

models of this thesis, the 71̂  parameter is neither 0 nor 1 but varies between these two values.

Namely, the level of centralized control is determined by the number of units processed as in 

Jaber et al. (2003). The worker moves from the station after a fixed number of jobs are 

completed, e.g.: batch sizes of 10, 25, or 250 units. Also, in the thesis, I is assumed to be the 

next stage in the sequence, i.e. stage l-stage2-stage3.

The common managerial decisions in DRC systems can be grouped into two categories: 

operating issues and design issues. Operating issues are as follows: when to transfer workers, 

where to transfer them, queue discipline policies (local, global and dynamic sequencing rules), 

and job release policies. The ‘when’ rule is often called the ‘centralization of control rule’ and 

the ‘where’ decision is called ‘worker assignment rule’ (the aforementioned stage selection 

procedure in central control,/). When the control is said to be ‘centralized’ means that the 

worker is eligible for a transfer after the present unit is completed ( 7T,- = 1  ); ‘decentralized’ 

control is when a worker is not eligible for a transfer until the queue at the station is empty 

{TVI =  0 ) (Hottenstein and Bowman, 1998). The queue discipline policy determines the order in



which the jobs waiting in station queues are processed. The Job release policy decides when 

previously arrived jobs are dispatched to the job floor. Job release policies are classified by 

either finite loading or infinite loading policies. Finite loading policies consider machine 

capacities and load jobs to machines according to priorities in order to fill machine capacities, 

with lower priority jobs postponed until capacity is available. Infinite loading policies, on the 

other hand, release jobs without considering station capacities, current station loads, or job 

arrival times. Instead, criteria such as critical ratios (time remaining until due date/total 

processing time) are used to determine when jobs are released to the shop floor (Wisner and 

Pearson, 1993). The models in this thesis include the assignment rule, the centralization of 

control policy (this thesis also refers to this as the worker transfer policy), and job release policy 

operating issues. In this thesis, the assignment rule is governed simply by transferring the worker 

to the next station in a simple two or three-stage sequence. The centralization of control policy in 

this thesis is governed by the worker completing a fixed batch number of units (0  < < 1). The

job release policy in this thesis is a finite loading policy where a job is released into the system 

only after the worker has completed releasing the previous job since the capacity at every 

machine is only one unit. Therefore no queues are formed, and hence, a queue discipline policy 

is not applicable.

Design issues are as follows: the degree by which workers are trained and cross-trained, the 

degree of worker flexibility, labour utilization levels, the routing pattern of jobs, and the manner 

by which information is collected and used. An important caveat must be considered when 

discussing flexibility. In DRC literature, labour flexibility may have different meanings such as: 

the machine staffing level, the level of worker-station efficiency (as previously discussed, e ),

the level of centralized control (;r. ), and number of possible stages that a worker can be 

transferred (Treleven, 1989). In this thesis worker flexibility is defined as the number o f stages 

for which the worker is trained ( N  ), a synonym for the degree of worker cross-training.



1.2.3 DRC research: an overview

Two good surveys of DRC research are Treleven (1989) and Hottenstein and Bowman (1998)*. 

Several notable conclusions that Treleven (1989) made regarding past DRC research were as 

follows: the dispatching rules that work well with machine limited systems also tend to work 

well with DRC systems; DRC systems work most efficiently with a staffing level between 50% 

and 75%; the effectiveness of the ‘where’ assignment rule is dependent on the level of labour 

flexibility; the mean and variance of flow time decrease as the control becomes more 

centralized; the importance of having greater flexibility is heightened as the labour efficiency in 

the subsequent station is decreased; the relative rankings of decision rules remain the same as the 

size of the DRC system increases thereby allowing conclusions for larger systems with the 

simulation of smaller systems; and, performance criteria, such as the ranking of decision rules, 

are found to be sensitive to high labour utilization levels.

Hottenstein and Bowman (1998) provided a comprehensive survey of DRC research. The 

research was categorized into five areas of study: worker flexibility, centralization of control, 

worker assignment rules, queue discipline, and the cost of transferring workers (Hottenstein and 

Bowman, 1998).

Some of the notable conclusions of their survey concerning worker flexibility were as follows: 

cross-training beyond two or three skills per worker { N - 2 o r 3 )  does not significantly 

enhance DRC performance; the high cost of cross-training further impacts on the cost 

effectiveness of DRC systems; and, workers need not be perfectly interchangeable as far as their

value of 6ji is concerned.

Conclusions of their survey concerning centralization of control were as follows: an efficiency 

control rule that moves a worker as soon as the worker can be moved to a stage that he is most 

efficient is shown to be a superior rule under most conditions; the degree of centralized control 

is not independent of the assignment rule; centralized control (^ ,  =  1 ) only marginally reduces

mean and variance of flow-time compared to decentralized control (̂ T̂  = 0 ) ;  and if the 

efficiency levels of the workers between tasks vary, then the level of centralized control decision

* Note that in this section the term ‘flexibility’ refers to the level of worker cross-training, just as it 
does throughout this thesis.



is far less dependent on the status of the queue but is determined by the time of the availability 

of a station where the worker is more efficient.

Conclusions of their survey concerning worker assignment rules were as follows: the question of 

where to assign workers has a greater impact on shop performance than when to assign workers; 

the assignment o f workers to stages with queues having the greatest number of jobs (LNQ) had 

the greatest improvement on the mean and variance of flow-time; the performance of the worker

assignment rule is not independent of the queue discipline used at that stage; and, when the e 

of workers vary, they should be assigned to the stages where they are most efficient.

Conclusions of their survey concerning queue discipline rules were as follows: there is an 

interaction between the effectiveness of the queue discipline rule and the worker assignment rule 

because the state of the next assigned queue is dependent on the queue discipline used at that 

queue; the shortest operation time (SOT) in the queue rule results in the smallest mean flow-time 

and the largest flow-time variance; the first in system-first served (FISFS) rule results in the 

smallest flow-time variance but the largest mean flow-time; the combination of the SOT queue 

discipline rule and the LNQ assignment rule results in the lowest mean flow-time; and, the 

combination of LNQ assignment rule and the FISFS queue discipline results in the lowest queue 

time variance. It is interesting to note that specific assignment rules can be combined with 

specific queue discipline rules depending on whether improvements of either mean flow-time or 

mean variance of flow-time is desired.

Finally, Hottenstein and Bowman (1998) provided conclusions for research on the cost of 

transferring workers. They are given as follows: overall, increasing the transfer delay hinders 

shop performance; and, the greater the transfer delay the higher the effectiveness of 

decentralized control (Æ, = 0  ). Also, Hottenstein and Bowman (1998) concluded that the efifect

of learning in setups encountered when transferring a worker to a new station is a relevant 

transfer cost.

Hottenstein and Bowman (1998) also discussed future research of the implications o f variety, 

teams, and forgetting on DRC systems. The effect of variety assumes the introduction o f mean- 

demand changes or new products. The concept of teams involves using a group of individual 

workers as a base unit instead of one cross-trained worker. Hottenstein and Bowman (1998) 

suggested that the effect of worker forgetting may cause centralized control to be much more
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effective than decentralized control. He proposed that centralized control would allow the 

worker to more frequently hone certain skills and thereby reduce the effect of long-term 

forgetting. The assignment rule would therefore be based on the unique forgetting tiuiction of 

each worker across skill levels; and, the assignment rule would be less dependent on where the 

worker is more efficient, but rather, where the worker would best relearn in order to prevent 

further forgetting. In other words, the short-term costs of not adhering to the ‘best worker to the 

best job rule’ are offret by the long-term benefits of a more homogenous cross-trained flexible 

workforce (Hottenstein and Bowman, 1998). Further research on the implications of learning 

and forgetting in DRC systems are discussed in subsequent sections.

As previously shown, the common performance measures of a DRC system are similar to those 

of a regular job shop such as mean job flow-time, variance of flow-time and mean number of 

jobs in the system. The inclusion of a labour constraint has proved beneficial in both increasing 

the possible areas of job shop research and improving the effectiveness of actual shop 

performance. For example, it was found that because DRC systems allow for the introduction of 

cross-trained workers, utilization of labour resources improved during periods of product mix 

changes and material shortages (Treleven, 1989). Also, DRC research has shown that it is 

always preferable to acquire flexibility in any degree ( N  > 2 )  over a strictly machine limited 

system (where #  =  1 ) (Hottenstein and Bowman, 1998). However, few papers have reported on 

empirical studies of DRC systems or studies of models of existing systems. As a result, the bulk 

of the research on DRC systems uses simulation models. This leads to difficulty in analysis 

because simulation studies often have difficulty interpreting statistically significant differences 

between mean values of results (Treleven, 1989). However, this thesis uses deterministic 

simulation modeling as an experimental tool. As a result, the models use deterministic input 

parameters and therefore statistical analysis of the output parameters is not required. For readers 

interested in DRC system research, the following papers are also suggested by Hottenstein and 

Bowman (1998); Bobrowski and Park (1993), Fryer (1973), Fryer (1976), Gunther (1979), 

Nelson (1967), and Treleven (1987,1988).
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1.3 Learning and forgetting models

1.3.1 The learning phenomenon -  an introduction

The learning phenomenon has been recognized in industiy for many years as a factor that should 

be considered when determining labour costs. Worker learning must be taken into account when 

tasks are preformed repetitively so that appropriate labour costs and processing times can be 

determined. Wright (1936) first proposed that worker learning follows a power function such 

that the processing time of the worker decreases at a constant rate whenever the amount o f umts 

produced is doubled. Wright’s learning function is of the form:

y { n )  = y { \ ) n \  (1.1)

where y ( n )  is the processing time of the n* unit, j ( l )  is the processing time of the first unit, rt

is the number of units produced so far, and b  is the learning slope. The slope is determined as 

follows:

where LR is the learning rate, and 0% < LR < 100%. Larger learning rates usually indicate 

less difficult tasks since there is less opportunity for further learning when tasks are relatively 

simple. Typical learning rates have been reported to range from as low as 68% for a difficult 

task such as ‘truck body assembly’ to 98.5% for more tedious tasks such as ‘manual 

grinding’(Konz, 1990). Therefore, the nature of the task performed is a crucial factor when 

determining appropriate fiiture processing times.

Human learning occurs whenever a task is done repetitively, and may be defined as an increase 

in performance for successive operations of a task. Often, the improvement between adjacent 

repetitions is relatively large in the early cycles but becomes small or negligible in later cycles. 

As a result, in the leitter cycles, the improvement can only be measured by improvements in large
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groups of repetitions. Human learning is a phenomenon that we know occurs but are still 

uncertain about exactly why it occurs (Dar-El, 2000). As for how learning occurs, several 

authors have proposed their views on this matter. Some of the hypotheses for how learning 

occurs are as follows: discontinuous movements become smoother, tumbling disappears, greater 

simultaneity in movements is obtained, and wasted or unsuccessful movements are gradually 

‘weeded’ out (Dar-El, 2000). A previous methods time measurement (MTM) supported this idea 

by finding that the standard velocity of motions of the worker are achieved early in the learning 

process, and as a result, supported the idea that learning is not caused by an increased speed of 

motion but rather a more discriminating choice of movements (Dar-El, 2000). Dar-El (2000) 

classified human learning research into four broad categories: individual learning, product 

learning, product development learning, and organisational learning. The learning-forgetting 

models used in this thesis just pertain to individual learning; this is learning that occurs among 

individuals, not in groups of people as in the latter three types of learning.

The learning curve models are usually expressed as univariate functions with the dependent 

variable being the unit processing time or unit cost and the independent variable as the 

cumulative production or cycle count. Some of the common learning curve models are: the log- 

linear model, the Stanford-B model, DeJong’s learning formula, and the S-curve (Dar-El, 2000).

The power curve in equation (1.1) is the most common and widely applied univariate learning 

curve function. It is also called the log-linear model. The power curve model can also be given 

in a cost form as follows (Dar-El, 2000);

K{n)  = K { \ ) n ‘’ , (1.3)

where K{n) is the cost o f producing the /j* unit and K(ï) is the cost of producing the first 

unit- The log-linear form of the power model is as follows:

log|>(«)] = log|>(l)] - b x  log(«), (1.4)
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and the learning rate LR (as a percentage) is a function of b\

M  = 100x2"*  (%). (1.5)

The relationship in (1.5) is because, by definition, the power curve learning model states that, as 

production doubles, the time to produce the /î* unit decreases at a set rate. For illustration:

Let production(V) =  n , , and production(2) = « 2 = 2 » , ,  then substituting into (1.1) gives 

T (« i )  =  and X » ] )  =  ,

then LR =  = 2 "* . (1.6)

The graphical form of the power curve and the log-Iog linear form of the power curve is given in 

Figure 1.2 and Figure 1.3 respectively. The power curve can be used to find the total time to 

complete m units [y ( jn )]  by assuming that (1.1) is a continuous function; note that the 

following integration in (1.7) is just an approximation as shown (Dar-El, 2000);

then the average time to complete each unit if m  units are produced is given as

j/(m ) =  * - (1.8)
m  \ - b

The Stanford B model accounts for the amount of experience at the commencement o f the first 

production cycle by including an ‘experience factor’ B (Dar-El, 2000). The amount of time to
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Figure 1.2: Wright’s (1936) power learning curve (Dar-El, 2000)
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Figure 1.3: Log-log linear form of the power curve (Dar-El, 2000)

15



process the unit by the Stanford B model is given by;

y (n )  = >’(!)(«  +  -S) *. (1-9)

The Stanford B curve eventually asymptotes to the regular log-linear power model. This effect 

and the effect of increasing B  -values are shown in Figure 1.4.

DeJong’s learning model was developed to account for sub-components of tasks that do not 

follow the learning effect such as a machine-dominated portion of a task. A ‘non-compressible’ 

factor M  is used to account for the machine portion of the task (Dar-El, 2000). DeJong’s 

learning model is given as follows:

y (n )  = y ( l ) [ M +  (1.10)

where M  = 0 is the case of no machine content (model reverts to the original power curve), 

and M  = l  is the case where the task is fully automated and no learning is possible. The 

Stanford B model tends to be more accurate in the early stages, and the DeJong learning model 

tends to be more accurate in the latter cycles. As a result, the S-curve learning model was 

developed to take advantage of the characteristics of both the Stanford B model and the DeJong 

learning model (Jaber, 1996). The S-curve learning model is given as follows:

y (n )  = y ( l ) {M  +  (1 -  M ){n  + ). (1.11)

The behaviour of the above learning models is shown together when the units of output increases 

by the base of 10 in Figure 1.5. There are many other learning models that have been developed. 

However, they are not commonly used and they are beyond the scope of this thesis. For 

interested readers the following papers are suggested; Baloff (1971), Belkaoui (1986), Bohlen 

and Barany (1976), Buck et al. (1976), Knecht (1974), Lippert (1976), Smith (1989), Steedman 

(1970), and Teplitz (1991). This thesis uses the DPLFM which is partially based on the learning 

theory of the dual-phase learning model (DPLM) of (Dar-El et al., 1995). The DPLFM and the 

DPLM are described in section 2.2 and section 2.1.1 respectively.
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Figure 1.4: The Stanford B model (Dar-El, 2000)
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Figure 1.5: The behaviour of common learning models (Jaber, 1996)
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Human learning is influenced by many internal and external factors. Internal factors include the 

nature of the task being performed or the skill and experience of the worker. External factors 

include the effectiveness of the ability of the organisation to make workplace improvements such 

as continuous improvement teams. This thesis only examines internal factors, or those factors 

that directly relate to pre-established worker and task characteristics. Dar-El (2000) listed 11 

factors that effect human learning, they are as follows: methods improvement, worker selection 

(differences between workers and variations within each operator), previous experience, 

training, motivation, job complexity, number of repetitions (or cycles), length of the task, errors, 

continuous improvement, and forgetting. This thesis assumes that the workplace and methods for 

performing the task are well established beforehand, and as a result, methods improvement is not 

an experimental factor. Differences between workers are not a factor because the models in this 

thesis only assume one worker. Also, this thesis assumes that the variation o f performance within 

the worker is negligible. Previous experience is a factor in this thesis because the amount of 

worker proficiency on the present station is dependent on the experience acquired at predecessor 

stages. Training is an obvious experimental factor in the models of this thesis because it pertains 

to the effect o f the upfront training policy (FAP). Motivation and worker errors are not 

addressed in this thesis as experimental factors. Job complexity is not an experimental factor in 

this thesis as each job is assumed to be equally complex as perceived by the worker. The number 

of repetitions ( «^ ) or the time to reach standard time is discussed in experimental design section

of chapter 3. Dar-El (2000) explained that the task can in fact be a product o f several sub-tasks, 

some of which may be repeated. In these repeated sub-tasks, the learning rate can be greater than 

that of the entire task. This is due to the fact that the repeated sub-tasks are being performed 

more times than the task itself. This phenomenon was categorized as the ‘task length’ factor. 

This factor is not addressed in this thesis. The continuous improvement factor is not addressed in 

this thesis because these models only examine internal learning factors. Finally, forgetting is an 

experimental design as it is defined and modeled in this thesis by the DPLFM. The importance 

of the forgetting factor cannot be overlooked if there are interruptions. For example, if there are 

interruptions in the learning process, the aforementioned learning models do not always provide 

an appropriate estimation o f future processing times. Modem production environments often 

encounter foreseen or unforeseen work stoppages. For example, the setup of a machine is a task 

that has foreseen breaks between subsequent setup operations. These foreseen breaks or 

interruptions are due to the machine processing time between successive setup operations. Also, 

unforeseen work stoppages such as machine failures, employee related interruptions, or product 

changes cause interruptions that have a significant effect on the effectiveness of traditional 

learning curve models. Interruptions cause the deterioration of worker knowledge thorough the 

phenomena of forgetting. As a result, this lost knowledge has to be eventually relearned in order
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to resume the same level of worker efficiency that was achieved prior to the interruption. For 

example, Globerson et al. (1998) noted that Anderlohre (1969) found that a plant may lose 

around 50% of its productivity due to a production break of three to six months and may lose 

75% of its productivity after a break of one year. Globerson et al. (1998) also noted that 

McKenna et al. (1985) corroborated Anderholer’s findings of performance decay, where they 

found that there was a decay of 60% in performance after a break of six months with a total loss 

of learning after three years. Also, Dar-El (2000) noted that an interruption of a one year can 

cause a productivity drop of 60% to 75%. It is important to note that this thesis deals only with 

forgetting that relates directly to the knowledge lost in individual employees and not other 

organizational forgetting factors such as employees leaving, changes in products/processes, or 

lost records or routines. For example, total organisational forgetting caused the cost of 

producing the Lockheed L-1011 Tri-Star plane to continually rise as cumulative output 

increased from 1975 to 1982 (Argote and Epple, 1990). As a result, forgetting in this thesis only 

pertains to individual forgetting and hence is not modeled as potentially severe as total 

organizational forgetting. Learning and forgetting curves can be applied for needs such as: 

determining staffing levels, labour costing, production planning, setting time standards, 

establishing wage incentives, and determining optimal cycle times for assembly (Dar-El, 2000). 

In this thesis, learning and forgetting models are applied in a multi-function role: (1) in model A, 

to determine the effect of the task-type factor (variable learning rate) on DRC shop performance 

using the dual-phase learning-forgetting model (DPLFM) developed by Jaber and Kher (2002) 

instead of the VRVF or the LFCM to model worker learning and forgetting, and, to determine 

how this compares with the results of Jaber et al. (2003) where all tasks where assumed equal 

(fixed learning rate), (2) in model B, to determine how the inclusion of the task similarity factor 

affects the results of model A and how this compares with the results of Jaber et al. (2003), 

where the LFCM was used, and, (3) in model C, to construct a multivariate function that

provides the optimal upfront training policy ( FAP ) and the optimal centralization of control 

policy ( C  ) (batch transfer frequency) as output variables given four prescribed DRC system 

factors: task similarity factor ( 5 ), initial processing time to standard time ratio of the task ( /? ) ,

worker learning rate {LR ), and worker forgetting rate ( FR ). All of the policy decisions in 

models A, B and C are examined as they minimize the labour costing performance measure of 

average processing (service) time ( APT ).

The following summaiy of learning-forgetting papers illustrate that worker relearning is costly 

and is not accounted for in traditional learning curve models such as Wright’s power curve 

model.
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1.3.2 Learning and forgetting research: an overview

The costs of forgetting become an important factor to consider when analyzing work 

environments. As a result, worker-forgetting research was appended and integrated into 

traditional learning theories. Research on industrial learning and/or learning and forgetting can 

be grouped into two categories; (1) those papers that perform an experiment and then validate 

the results statistically with partial or no theoretical validation; and (2) those that develop a 

theoretical (mathematical) model that describes the learning-forgetting phenomena with partial 

or no empirical or experimental validation. The following summarizes predominantly 

experimental papers in learning-forgetting research, or type (1) papers.

Globerson et al. (1989) experimentally derived a forgetting function that allows for the 

calculation of processing time lost due to an interruption. A specific power model consisting of 

two parameters and the break time between sets was fitted to the experimental results. This 

model was then combined with the Stanford B model to obtain a function that determined the 

relative magnitude o f forgetting as a function of the break length and the performance time prior 

to the break. Bailey (1989) experimentally tested five hypotheses on the nature of learning and 

forgetting and subsequent relearning. The three most notable hypotheses were: (1) forgetting of 

a ‘continuous’ task is negligible; (2) the learning rate is not correlated with the forgetting rate; 

and, (3) the relearning rate for an assembly task is a function of the original learning rate. The 

experiment consisted of testing 31 subjects with a ‘procedural’ and ‘continuous’ task. A 

procedural task was defined as one that consists of discrete motor responses such as a car repair 

job, and a continuous task was defined as consisting of repetitive movements with no clear 

beginning or end such as riding a bicycle. His experiment used the assembly and disassembly o f 

an Erector set toy, which corresponded to a procedural and continuous task respectively. It was 

found that hypotheses (1) and (2) were true and hypothesis (3) was false.

The aforementioned experimental research effectively draws conclusions about the behaviour of 

industrial learning and forgetting. However, they fail to distinguish between the learning and 

forgetting of simple tasks versus those of complex tasks.

The notion o f simple versus complex tasks was highlighted by Bailey (1989) when he 

distinguished between ‘procedural’ and ‘complex’ tasks respectively. However, task distinction 

may be more explicitly described when tasks are classified as either ‘cognitive’ or ‘manual’ 

(motor) tasks, suggesting that task difficulty is a function of the elements of cognitive and 

manual components of the task. This distinction was suggested in the experimental paper by
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Sparks and Yearout (1990). In their paper, an experiment was conducted in order to determine if 
there is a difference between the forgetting functions of manual versus cognitive tasks. The 

experiment used 16 subjects, eight of whom were tested on a manual peg-board task and eight of 
whom were tested on a cognitive computer game task on a computer display monitor. The 

subjects were tested again after a 28-day break period. The time to reach steady state and the 

learning curve results were obtained for before and after the break period for the manual task 

subjects, the cognitive task subjects, and a control group who maintained a certain level of 
practice during the break period. The results concluded that the learning curve rates before the 

break were 91% and 95% for the cognitive and manual task respectively. The learning curve 

rates after the break were 94.5% and 99.15% for the cognitive and manual task respectively. 

Steady state was reached almost immediately following the break for the manual task, whereas it 
took an additional 33 iterations for the cognitive task. These results implied that forgetting for a 

manual task was negligible as compared to that of a cognitive task. It was suggested that this was 

an important conclusion because of the increasing amount of cognitive tasks found in modem 

manufacturing environments. Hewitt el al. (1992) conducted an experiment to determine if 
worker-relearning rates were different than learning rates after an interruption that ranged 

between two and 83 days. The experiment used a low-cognitive pegboard task and a moderately 

high cognitive computer graph/spreadsheet task. This experiment was modeled after the dual 

motor and cognitive study of Sparks and Yearout (1990). The time-lost-to-forgetting results 

obtained in the experiment were compared to results of Globerson et al. (1989), where the 

learning and relearning rates were assumed equal. The results of their experiment concluded that 

assuming that the learning and relearning rates are equal may cause overly conservative task 

times after an interruption and thereby may result in excessive worker idle time and worker 

utilization.

The cognitive and motor elements described in the above papers were either just implicitly 

described or just included as a synonym for difficult and simple tasks. Also, what was lacking 

was an explicit mathematical model of how these cognitive and motor elements interact with the 

learning phenomena. Dar-El et al. ( 1995) developed such a model and referred to it as the dual­

phase learning model (DPLM). This model was the first to account for cognitive and motor 

elements in a learning model that was validated experimentally. Their paper could be classified 

as both a theoretical and an experimental paper, or as a type (I) and type (2) paper. The ‘dual’ 

term implied the dual cognitive and motor nature of human learning. Their study suggested that 

the learning slope is a variable, and that it gradually reduces as experience is gained. It is 

hypothesized that this reduction is due to the dual cognitive and motor aspects of learning 

inherent in the learning slope; namely, the learning slope b, actually consists of both a cognitive
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element and a motor element . In this way, Dar-El et al. (1995) suggested that Wright’s

learning model (Wright, 1936) implicitly included both cognitive and motor elements. During 

the early task repetitions it is reasoned that the individual retrieves information from the long­

term memory. As a result, the early stages are dominated by cognitive elements of learning. As 

experienced is gained, and as less long-term knowledge is required, the motor element 

dominates the task. This hypothesis is tested experimentally using one task that is highly 

cognitive and one task that requires mainly motor skills. The following summarizes 

predominantly theoretical papers in learning-forgetting research, or type (2) papers.

Carlson and Rowe (1976) addressed the cost of worker forgetting. This paper proposed the use 

of a log-linear and cubic learning curve as a means of determining the relative effect of an 

interruption in the learning process. The use of the cubic curve was validated both 

experimentally in this paper and empirically using historical data. It was assumed that the 

forgetting portion of the learning curve could be modeled as a negative decay function 

comparable to electrical losses in condensers. However, they provided no empirical evidence for 

this assumption. It was suggested that the cubic model is a more accurate representation of the 

learning process because it is derived from a natural ‘S-shape’ learning process. A leam-forget 

model was developed based on this shape. This model was later referred to as the ‘variable 

regression to variable forgetting model’ or the VRVF model (Jaber and Bonney, 1997).

Jaber and Bonney (1996) developed another leam-forget model by mathematically determining 

the forgetting slope if the amount of units of production (up to the point of interruption), the 

learning rate, and the time to total forgetting is known. This model is called the leam-forget 

curve model (LFCM). The accuracy of this model is empirically verified using the experimental 

results of the forgetting phenomena in Globerson et al. (1989), where the Stanford B model was 

used (Jaber and Bonney, 1997).

In a theoretical comparative study by Jaber and Bonney (1997), three leam-forget curve models 

(VRIF, VRVF, and LFCM) were tested against two hypotheses deemed important to teaming 

and forgetting phenomena, namely; (1) in the case of total forgetting, the curve asymptotes to a 

unique value equivalent to the time to produce the first unit with no prior experience; and, (2) 

the intersection point of interruption is equal on both the learning and forgetting curve (Jaber 

and Bonney, 1997). Their study showed that the VRIF satisfied the first hypothesis but violated 

the second, the VRVF violated the first hypothesis but satisfied the second, and the LFCM 

satisfied both hypotheses. The unique characteristic of the LFCM was that in addition to 

calculating a unique intersection
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point every interruption-cycle like in the VRVF, the LFCM also recalculated a unique forgetting 

curve slope f . The LFCM model accuracy was validated empirically using historical 

experimental data (Jaber and Bonney, 1997).

Jaber and Kher (2002) took this dual nature of learning one step further and accounted for the 

forgetting efifect by combining the dual-phase learning model (DPLM) of Dar-El et al. (1995) 

with the LFCM developed by Jaber and Bonney (1996). This resulted in the dual-phase learning- 

forgetting model or the DPLFM. The DPLFM combined the dual cognitive-motor aspects of 

learning of the DPLM with the variable forgetting slope function of the LFCM. The DPLFM 

was then able to determine the level of forgetting that occurs when the forgetting rate, the length 

of interruption, and the level of experience gained prior to the point of interruption is known 

Jaber and Kher (2002). The inclusion of the dual nature of learning allowed for the variation in 

learning and forgetting when the specific cognitive and motor contents of the task are taken into 

account.

Shafer et al. (2001) examined the effect of learning and forgetting on assembly line 

performance. In their paper, a simulation experiment was conducted in order to find if there was 

a statistically significant difference in shop performance when workers are modeled as having 

homogeneous learning and forgetting distributions as compared to having heterogeneous 

distributions. Contrary to intuition, the results of the experiment suggested that the productively 

of the workforce increases as the variability of the learning and forgetting parameters of the 

workers increase. In other words, the productivity of the system is greater if workers are 

modeled as having unique learning-forgetting distributions as compared to assuming a fixed 

distribution across workers.

This thesis examines the effect of learning and forgetting on DRC systems, more specifically, 

worker learning and forgetting that resembles that of the DPLFM of Jaber and Kher (2002). The 

next section highlights research on learning and forgetting in DRC research.
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1.4 Learning and forgetting in DRC systems: an 

overview

Worker transfers result in interruptions in the learning process of the worker. These interruptions 

cause forgetting losses that affect the benefits of using DRC systems. For example, when a 

worker is transferred to a new workstation without adequate training on the present station, 

he/she experiences significant forgetting losses after returning to the original workstation. These 

forgetting losses can be mitigated by providing a worker with upfront training and/or 

determining the optimal level of centralized control or assignment policies. As a result, the issue 

o f determining the optimal trade-off between acquiring flexibility and reducing forgetting losses 

in a DRC system is relevant and complex.

The effect of worker learning and forgetting may change the assumptions and conclusions made 

in traditional DRC systems research as summarized by Hottenstein and Bowman (1998) and 

Treleven (1989). Again, as in the previous learning and forgetting research summaiy, this 

section is divided into: (1) those papers that perform an experiment and then validate the results 

statistically with partial or no theoretical validation; and, (2) those that develop a theoretical 

(mathematical) model that describes the learning-forgetting phenomena in DRC systems with 

partial or no experimental validation. A review of learning and forgetting research in DRC 

systems begins with the former type (1) research paper.

Wisner and Pearson (1993) were the first to address the notion that relearning losses in DRC 

systems may affect previously studied DRC performance measures. Their paper is classified as 

an empirical simulation study because many of the input parameters are empirically validated by 

an actual DRC shop environment such as: mean processing time, job flow time, tardy costs, 

labour costs, and labour utilizations rates. Wisner and Pearson (1993) assumed that when a 

worker is transferred a relearning loss is incurred. However, even though it was implied that 

relearning involved task-forgetting, the relearning was not time dependent and therefore the 

concept of worker forgetting was not explicitly addressed in their paper. Their full factorial 

simulation experiment concluded that relearning losses significantly affect traditional DRC 

performance measures and that the notion of worker forgetting should be considered whenever 

DRC systems are studied or managed. The remaining papers are all of the 

theoretical/mathematical type. The following summarizes predominantly theoretical papers in 

learning-forgetting research in DRC systems, or type (2) papers.
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Malhotra et al. (1993) were the first to examine the detrimental effects of learning in a DRC job 

shop. Their paper used a mathematical simulation model where the results were statistically 

validated, and the inputs and results were partially validated empirically. Previous work that Just 

incorporated the factor of worker flexibility was extended upon in their paper to include the 

effects of worker learning and attrition rates. The degree by which performance measures such 

as mean flow time, mean tardiness, and percentage of jobs tardy differed from those of the base 

case (of just job flexibility) was examined. However, their paper did not assume any costs of 

relearning due to worker forgetting. An interesting finding of their study was that, in the 

presence of high learning losses, cross-training workers in more than three departments worsens 

system performance. Kher et al. (1999) were the first to address both learning and forgetting 

effects in a DRC system. Their paper utilized mathematical modeling with partial empirical 

validation of inputs and results. Statistical validation of results was not necessary because of 

deterministic input parameters. Their paper integrated the worker forgetting effects of the leam- 

forget-leam (LFL) (referred to by Elmaghraby (1990) as the VRVF) model developed by 

Carlson and Rowe (1976) into a DRC system context. The experimental factors considered by 

Kher et al. (1999) were as follows: (!) the degree of the upfront training policy {FAP — Q), 

{FAP — {FAP — 2), (2) the level of worker flexibility, ( #  — 2, 3 )̂ , (3) the forgetting 

rate (85% or 95%), (4) the attrition rate/training period ratio (2,4,8,12,16,20,40), with the 

attrition rate being a random variable, and, (5) three batch size transfer intervals of (10, 25, 250). 

The FAP — 0,  FAP — l ,  and FAP —2 upfront training policies meant that the training 

period of the worker was complete after the first batch, after the ‘standard time’ was reached, or 

after two times the ‘standard time’ was reached. The centralization of control rule (C) was 

governed by the completion of batches and was tested for the above three batch sizes. The two 

performance measures tested were the attrition adjusted average processing time, and the final 

level of efficiency defined by standard time divided by the last unit processed. The results of 

their paper concluded that in the presence of high forgetting and attritions rates, workers do not 

even achieve their standard processing time efficiency (Kher et al., 1999). Also, only in 

situations of extensive initial training and large batch sizes is a worker flexibility of three a 

feasible option with respect to average processing time values (Kher et al., 1999). This limits the 

benefits of flexibility beyond two in DRC systems of significant learning and relearning losses 

(Kher et al., 1999).

McCreery and Krajewski (1999) were the first to test the effects of task variety and task 

complexity on the performance of a DRC system with learning and forgetting effects. Their

 ̂ Note that a maximum o f three workstations is used because o f  the Malhotra et a i (J993) finding that 
cross-training workers in more than three departments worsens system performance.
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paper utilized a mathematical simulation model where the results were statistically validated and 

the input parameters were partially validated experimentally from field data and empirical 

studies. There was no empirical validation of results. Their simulation experiment answered the 

following two hypotheses; (1) there is no difference between different levels of cross training 

given to workers, and; (2) there is no performance difference between different worker 

deployment policies. The model consisted of a U-shaped assembly configuration with 12 stages, 

and 12 workers with two stations per stage. The type of work described in McCreery and 

Krajewski (1999) consisted of assembly operations where workers were allowed to transfer 

between stations according to whether they were ‘fixed’ or ‘floating’. Fixed workers were 

designated a ‘home’ station, and only left this station when the queue was empty. Workers could 

visit another station that they were additionally trained for but must immediately return to their 

home station as soon as there was work available. However, a floating worker would move to 

another station they are additionally trained for with the longest queue after the completion of 

every unit. Their paper assumed a worker learning curve according to the DeJong (1957) model. 

However, their paper did not use a power forgetting curve rate but rather assumed a linear 

progress back up the original learning curve during an interruption, and, that total forgetting 

occurred according to the difficulty of the task, with a complex task requiring 30 days for total 

forgetting and a simple task requiring 60 days. As a result, the forgetting function was linear 

with respect to the interruption interval. The experiment consisted of four experimental factors 

and eight fixed factors. The experimental factors were: product variety, task complexity, degree 

of cross-training, and proportion of fixed workers. The product variety factor consisted of four 

sub-factors: number of products in product line, task-time variability within product types, 

variability in product routings, and rate of product turnover. The task complexity factor also 

consisted of four sub-factors: learning rate, proportion of learning possible, predominant type of 

learning, and speed of forgetting. The proportion of learning possible measured the fraction of 

standard processing time to initial processing time. This fraction varied between the ‘home’ and 

‘away’ tasks of the workers. The predominant type of learning sub-factor included two levels: 

‘process’ learning and ‘product’ learning. Process learning pertained to generic skills that were 

transferable to any product that required those tasks. As a result, the interruption interval just 

included the elapsed time since this generic task was last performed. Product learning, on the 

other hand, specified that the task is different across products. Therefore, the interruption 

interval included the elapsed time since this unique product-process task was performed. The 

effect of these factors on the performance measures of product throughput, work in process, and 

worker utilization was examined by analyzing the results of four work environment settings: low 

task complexity-low product variety, low task complexity-high product variety, high task 

complexity-low product variety, and high task complexity-high variety. The results o f their 

simulation experiment concluded that performance in the first environment is best with just a
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little cross-training; however, high levels of cross-training do little good. In the second 

environment, high levels of cross-training and flexible worker deployment are the best policy. In 

fact, the second level environment benefited most from worker cross-training. In the third 

environment, a little cross-training and restricted deployment is best. In the fourth environment, 

high cross-training and restrictive deployment was the best policy.

In Kher (2000), a stochastic version of the study done by Kher et al. (1999) was conducted. His 

study utilized a mathematical simulation model where the results were statistically validated, and 

there was partial empirical validation of inputs and results. Also, the same learning-forgetting 

model (LFL), upfront training policies, attrition rate/training period ratios, and forgetting rates 

(85%, 90%, 95%) as Kher et al. (1999) were assumed, with the last two factors varying in 

quantity only. However, in Kher (2000), the DRC system was modeled as stochastic with 

exponentially distributed job arrivals and processing times. The number of operations per Job 

was also random and uniformly distributed. The DRC system consists of six departments, each 

containing four machines and two workers, resulting in a staffing level of 50%. The 

centralization of control rule was decentralized and the worker assignment rule was first come, 

first served (FCFS). The shop performance measures used were mean flow time and mean 

tardiness. A warm-up period of three years was used prior to the collection of the simulation 

results over a subsequent period of 15 simulated years. A base-case of no flexibility was used for 

comparison. The results of the simulation were as follows: DRC systems with forgetting rates of 

90% and 95% are always preferable to the base case with respect to both performance measures; 

worker flexibility when forgetting rates are 85% is only preferable to the base case when the 

attrition rate is lowest; incremental flexibility can overcome the detrimental effects of worker 

attrition in the 90% - 95% forgetting range; and, FAP — 1 and FAP — 2 reduce relearning 

losses but do not help to improve the two performance measures in the 90% - 95% forgetting 

range.

Jaber et al. (2003) used mathematical modeling in a deterministic simulation where there was 

partial empirical validation of inputs and results. Statistical validation of results was not 

necessary because of deterministic input parameters. They extended upon the findings of Kher 

(2000) by incorporating the LFCM of learning and forgetting of Jaber and Bonney (1996) 

instead of the VRVF model of Carlson and Rowe (1976). Their choice of the LFCM over other 

models was justified by its ability to satisfy what was stated as the seven characteristics of 

learning and forgetting. These characteristics were obtained through past studies of learning and 

forgetting and were listed as follows (Jaber et al., 2003): (1) the amount of experience gained 

before interruption occurs in the learning process influences the level of forgetting; (2) the 

length o f the interruption
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interval influences the level o f forgetting; (3) the relearning rate is the same as the original 

learning rate; (4) the power-based model is appropriate for capturing forgetting effects; (5) 

learning and forgetting are mirror images of each other; (6) the level of forgetting depends on 

the rate at which a worker learns; and, (7) the nature of the task being performed influences the 

amount of forgetting. The VRVF model used by Kher (2000) was shown to underestimate the 

amount of forgetting in Jaber and Bonney (1996). As a result, Jaber et al. (2003) used the LFCM 

in a similar but deterministic experimental design as Kher (2000). The results of Jaber et al. 

(2003) were as expected: the VRVF underestimated the amount of total forgetting over 

subsequent cycles because the VRVF does not recalculate a unique forgetting curve slope every 

cycle as does the LFCM. The conclusions of Kher (2000) stated that no upfront training 

{FAP — 0) is the best way to improve shop performance under severe forgetting (85%). The 

results of Jaber et al. (2003) suggest that this conclusion had to be further justified since the 

VRVF may mislead managers by providing shorter estimates of time standards. The results for 

FAP — 1 and FAP — 2 concur with the findings of Kher (2000) when the worker learns two 

tasks. However, when the worker learns three tasks, the VRVF overestimates forgetting losses 

due to the absence of the adjustment of the forgetting rates of subsequent cycles. In addition, 

Kher (2000) stated that upfront training did not improve worker performance. The results of 

Jaber et al. (2003) suggest that this also may be unsubstantiated because the VRVF model does 

not carry over the positive affects of training through subsequent cycles, as does the variable 

forgetting slope of the LFCM.

Jaber et al. (2003) also organized their analysis by posing three specific questions: (1) Will 

providing upfront training reduce forgetting? (2) Does the frequency of worker transfers relate to 

forgetting? (3) Do the answers to (1) and (2) change if the amount of training or forgetting rates 

is changed? The notable results of the three questions were as follows: increasing training to 

FAP — l or FAP —2 always reduces forgetting losses, varying the forgetting rate and the 

number of tasks learned affects the impact of the worker transfer frequency ( C ) and upfront 

training ( FAP ) on forgetting losses, and increasing the rate of worker transfers reduces the 

forgetting losses. Interestingly, most notable was the unexpected degree of interaction between 

the transfer and training polices. For example, either increasing the transfer policy or introducing 

initial training reduces forgetting losses when forgetting rates are low and there is a transfer 

policy of 10 units (C = 10 ). It is not necessary to increase both the training and transfer policy. 

This phenomenon is observed until the case of when three tasks are learned { N  = 3 )  and 

forgetting rates are high. It is not until this point that both increasing the transfer policy and the 

amount of training is needed to reduce forgetting effects.
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Jaber et al. (2003) also included the effect of the degree of job similarity in the LFCM model. 

Their extension to the LFCM model allowed for a degree of similarity between two or three jobs 

over the original LFCM assumption of no job similarities. The effect of job similarity caused the 

relative importance of initial training and transfers to decline with increasing levels of job 

similarity (Jaber et al., 2003). This thesis has the same experimental design structure of Jaber et 

al. (2003) with respect to DRC system formulation and task similarity factors. However, this 

thesis extends upon the work of Jaber et al. (2003) by examining the effect of a variable worker 

learning rate on the performance of DRC shops by introducing different task-types with respect 

to the degree of cognitive and motor elements of the task. This dual nature of learning in DRC 

systems is modeled using the dual-phase leaming-forgetting model (DPLFM) developed by 

Jaber and Kher (2002). This model is hereafter referred to as model A. Then a second model 

incorporates the new job similarity factor into model A and examines how this compares with 

the results of Jaber et al. (2003), where the learn forget curve model (LFCM) was used. This 

model is hereafter referred to as model B. Then a third model develops a multivariate function 

that provides the optimal upfront training policy (FAP) and the optimal centralization of 

control policy (C  ) (batch transfer frequency) as output variables given four prescribed DRC 

system factors: task similarity factor ( j"), initial processing time to standard time ratio of the 

task (p) ,  worker learning rate ( LR ), and worker forgetting rate ( FR ). This model is hereafter 

referred to as model C. All of the policy decisions in models A, B and C are examined as they 

minimize the labour costing performance measure of average processing (service) time ( APT ) 
calculated over approximately 3000 jobs, the same performance measure used by Jaber et al. 

(2003). A numerical example is included to illustrate the practicality of the function developed 

in model C. In addition, all of the results of the aforementioned models are compared to the 

results of Jaber et al. (2003) and the five possible issues that affect DRC shop performance 

given by Hottenstein and Bowman (1998).

1.5 Chapter 1 summary

The previous chapter 1 has provided a survey of DRC systems research, briefly outlined woricer 

learning theory, described some pertinent worker learning and forgetting models, and has 

reviewed research on the learning and forgetting phenomenon in DRC systems. The following 

chapter 2 summarizes the development of the dual-phase leaming-forgetting model (DPLFM), 

the learning and forgetting model used in model A and model B of this thesis. Chapter 2 

concludes by illustrating the behaviour of the DPLFM with a numerical example.
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2 Chapter 2: the dual-phase leaming- 
forgetting model (DPLFM)

2.1 Prologue

In modem industrial settings, workers perform tasks that have various levels of mental and 

manual requirements. Also, frequent interruptions and shorter production runs cause workers to 

forget previously gained task experience. Traditional learning curves such as Wright’s (Wright, 

1936) power model do not capture these two characteristics of worker learning in industrial 

settings. The dual-phase leaming-forgetting model or the DPLFM (Jaber and Kher, 2002) is the 

first to model both the cognitive and motor elements of leaming, and teaming and forgetting 

losses due to intermptions. Jaber and Kher (2002) did this by integrating the dual-phase 

teaming model (DPLM) of Dar-El et al. (1995) with the leam-forget curve model (LFCM) of 

Jaber and Bonney (1996) to develop the DPLFM.

As previously discussed, the DPLM was the first model to account for cognitive and motor 

elements in a leaming model that was validated experimentally. Also, the LFCM is the only 

empirically validated mathematical model of leaming and forgetting that contains two important 

features of leaming and forgetting curves; it contains a forgetting curve that asymptotes to a 

unique value equivalent to the time to produce the first unit with no prior experience and, it has 

an intersection point of interruption equal on both the leaming and forgetting curves (Jaber and 

Bonney, 1996). The LFCM does this by re-calculating a unique forgetting curve slope after each 

interruption.

The unique features of both models were combined to formulate the DPLFM. New 

mathematical qualities inherent to the DPLFM resulted. These qualities are used to model the 

seven characteristics of leaming and forgetting that have been summarized in industrial leaming 

and forgetting research (Jaber et al., 2003). These characteristics are given by Jaber et al. (2003) 

and are listed as follows; (I) the amount of experience gained before an interruption occurs in 

the leaming process influences the level of forgetting; (2) the length of the intermption interval 

influences the level o f forgetting; (3) the releaming rate is the same as the original leaming rate; 

(4) the power-based model is appropriate for capturing forgetting effects; (5) leaming and 

forgetting are mirror images of each other; (6) the level of forgetting depends upon the rate at
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which a worker learns; (7) Ihe nature of a task being performed influences the amount o f

forgetting.

The DPLFM learning and forgetting model most closely embodies the above characteristics, and 

accounts for cognitive and motor elements in a learning model that was validated experimentally 

(Jaber et al., 2003); and as a result, the DPFLM was chosen to simulate the woiker learning and 

forgetting effect in the DRC systems modeled in this thesis.

2.1.1 The dual-phase learning model (DPLM)

The dual-phase learning model (DPLM) (Dar-El et al., 1995) was developed in order to model 

two main learning phenomena found in experimental settings, namely: that cognitive and motor 

learning occurs at different rates, and, these rates vary with time. It was also developed to 

account for prediction errors in carefully researched empirical data (Dar-El, 2000). When the 

empirical data were taken in the early stages of the learning curve, traditional learning curve 

models underestimated future processing times, see Figure 2.1 (Dar-El et al., 1995). Also, when 

the estimation of initial processing times were predicted from later empirical data, the early 

cycle estimates underestimated actual processing times, see Figure 2.2 (Dar-El et al., 1995). It 

was found that tasks that involve both cognitive and motor learning have a faster learning rate 

than tasks with mainly motor learning; and that cognitive-motor tasks have a larger learning 

constant in the initial learning stages than the later stages (Dar-El et al., 1995). These two 

finding imply that cognitive tasks have a larger learning rate than motor tasks and that the 

cognitive portion of the task is most prevalent in the early stages, whereas the motor element 

dominates the latter stages, see Figure 2.3. This dual-leaming phenomenon explained the 

aforementioned empirical prediction errors of traditional learning models. These findings led to 

the development o f the DPLM which included a variable learning slope as a hinction of both the 

cognitive and motor learning rates. The behaviour of this variable learning rate is shown in 

Figure 2.3.
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Figure 2.1: Prediction based on early data (Dar-El, 2000)

 Predicted
 Actual

log(n)

Figure 2.2: Prediction based on late data (Dar-El, 2000)
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 motor leaning
— actual leaniing

Figure 2.3: The combined effect on learning performance (Dar-El et al., 1995)
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The cognitive portion of the task is designated a learning constant under pure cognitive 

conditions, ; and the motor portion of the task is designated a learning constant under pure

motor conditions, (Dar-El et al., 1995). These slopes, and their respective initial processing

times, are combined to form the actual dual-leaming of the DPLM, it is given by (Dar-El et al., 

1995);

=  (2.1)

where y(ri )  is the time to process the n* unit, (1) is the time to process the first unit under 

purely cognitive conditions, y ^  (1) is the time to process the first unit under purely motor 

conditions, and 6. is the combined learning slope (Dar-El et al., 1995).

$2.1.2 The learn-forget curve model (LFCM)

Jaber and Boimey (1996) developed the leam-forget curve model (LFCM) in order to reflect 

three characteristics of learning highlighted in learning-forgetting literature (Jaber et al., 2003): 

(1) forgetting is a function of the amount of experience gained prior to an interruption; (2) 

forgetting is a function of the break length and the learning rate; and, (3) the model should 

satisfy the two hypotheses that when total forgetting occurs, the processing time reverts to the 

time to produce the first unit with no prior experience, and the processing time on the learning 

curve equals the forgetting curve at the point of inteiruption (Jaber and Bonney, 1996). The 

LFCM achieved these three criteria respectively by expressing the forgetting slope as a function

of the amount of experience prior to the point of interruption, denoted by M, +  « , , where M, is 

the amount of experience retained at the beginning of cycle i, and is the number of units

processed in the current cycle i  before the inteiruption; and, the number of imits that could have 

been processed in cycle i if there was no inteiruption (Jaber and Bonney, 1996):

<t>i =

I
1-6

(2.2)

where f(%, +n^ )  = [>>(1) /(I -  6)] x («. * is the time required to process -F/f, units

^equations taken fix>m Jaber and Bonney (1996)
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and f/, is the length of the interruption interval and b  is the learning constant, and the intercept

of the forgetting equation in cycle i is given by:

(2.3)

therefore, the forgetting slope is calculated by:

f t -
^>(l-Z>)log(t/,+/î,.)

log(a,+l)
(2.4)

where a ,  is found by the following:

a, = D
1 - 6

l-b - 1 - 1

(2.5)

and D is the time to total forgetting. The time to process the first unit in cycle i is given by;

(2.6)

where , the amount of experience retained from the previous cycle, is found by;

(2.7)

Using the expressions above, interested readers can confirm that the processing time reverts 

back to the time to produce the first unit when the interruption interval reaches D , and the 

processing time on the learning curve equals the forgetting curve at the point of interruption 

(Dar-El et al., 1995),
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2.2 The dual-phase learning-forgetting model 
(DPLFM)

The unique strengths of both the above models, namely, the dual cognitive-motor learning o f the 

DPLM, and the mathematical modeling of the forgetting phenomena of the LFCM were 

combined by Jaber and Kher (2002) to form the dual-phase learning-forgetting model (DPLFM). 

Therefore, the DPLFM model has similar relationships to the LFCM with the exception that 

there is unique learning and forgetting slopes, intersects, levels of transferred experience, and, 

time to total forgetting parameters for both the cognitive and motor elements of a task (Jaber and 

Kher, 2002). These dual parameters were then combined to form a processing time for the entire 

task (both motor and cognitive portions), effective number of units remembered, and, combined 

learning slopes for every subsequent cycle (Jaber and Kher, 2002). The following is a numerical 

example that illustrates the calculations involved in the DPLFM. In addition, a table of results is 

given to examine the behaviour o f the DPLFM parameters over several production cycles.

2.2.1 Numerical example of the DPLFM

Jaber and Kher (2002) provided a numerical example to illustrate the use o f the DPLFM. 

Reasonable initial estimates of the parameters are given using historical estimates of appropriate 

cognitive and motor learning rates and R values, where R is the ratio of time for the first unit 

under purely cognitive conditions to the time for the first unit under purely motor conditions 

(Jaber and Kher, 2002). In Jaber and Kher (2002), a sensitivity analysis was conducted by 

varying the length of the interruption interval {d )̂, R values, , and values; where

is the time to totally forget motor elements, and is the time to totally forget cognitive

elements. In this thesis, however, it was sufficient to just examine the behaviour of the 

parameters across several cycles by keeping the parameters constant throughout the analysis. For 

a detailed sensitivity analysis, it is recommended that readers see Jaber and Kher (2002).

Initially, the estimated parameters used for the numerical example are shown in Table 2.1; the 

settings o f these parameters differ only slightly from the numerical example in Jaber and Kher 

(2002). This numerical example only illustrates the calculations involved to reach the desired 

parameters for the start o f the second cycle. After the sample calculations are shown, a table of 

parameter values is given in Table 2.2 to display results for five full cycles.
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-Table 2.1: Parameter estimations for the DPLFM numerical example

Parameter Definition Setting
A Time to totally forget 

cognitive element of task

45 days

Time to totally forget motor 

element of task

250 days

K Cognitive learning slope 0.4150 (75% learning rate)

K Motor learning slope 0.0740 (95% learning rate)

R Initial unit processing time: 

cognitive-to-motor ratio

1 l>c(l)/ym(l)]

y ( i ) Initial unit processing time 0.25 days

Number of units processed in 

each cycle i (equal for every 

cycle)

30

< Interruption interval length 

between cycle / (equal for 

every cycle)

15 days
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Initially, the parameters a /  and a ” are calculated for the first cycle, namely, Cl^ and O t " .

These parameters represent the ratio of total forgetting to the time needed to acquire (m/  +  « /)

units of cognitive and ( u ” +  n, ) units of motor experience in the first cycle respectively. This 

is given by;

- !

= 45 ’0.125(0 + 30)'‘”'"̂ “’
= 28.80

1 - 6 , 1-0.4150
(2 .8)

and

- 1

= 250
0.125(0 + 30)'-"°"^°'

L J 1-0.0740
= 79.40. (2.9)

The DPLFM assigns learning slopes for the cognitive and motor portions o f a task, given as 

and respectively. The combined slope 6,, for the first cycle is given by:

K i P )  = b c ~ log(w, + ri)

substituting the values gives:

0i.(30) = 0.4150
log[(l + (0 + 30)04150-0 0740̂ ^̂  +1)] _

log(0 + 30)

(2 .10)

0.198. (2.11)

The forgetting slopes for the first cycle under pure cognitive and motor 

conditions are given respectively by:

ft ,( l-ft ,) lo g (» ;+ « ) 0.4150(l-0.4150)log(0 + 30)
' log(l + ) log(l + 28.80)

and

b „ { \-b „ ) \o g {u :^ n )  0.0740(1 -0 .0740)log(0 + 30)
log(l + « D  log(l + 79.40)
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The time needed to acquire (m/  +  n, ) units of cognitive experience and (m, '" +  «, ) units of 

motor experience in the first cycle is given by:

= 0.125(0 + 30^ ^ ^

l - b . 1-0.4150

and

=  =  ( 2 ,5 ,
l -6 _  1-0.0740

Therefore, the time to acquire («, +  «, ) units of combined experience in the first cycle is given 

by;

.  «, ) = = 0.25(0 + 3 0 ^ 2  = 4.769.
1 — 6,, 1-0.198

(2.16)

The combined forgetting slope f  for the first cycle is given by;

J-* _  6;« (1 — 6). ) log(ŵ  + M]) _ 0.198(1 — 0.198)log(0 + 30) _  ^

log 1 +
max log[l + 250/4.769]

.(2.17)

The forget curve intercept for the first cycle is given by;

i î(l) = >'(l)(Wi =0.25(0+ =0.080 (2.18)

If there was not an interruption in the production process, and if learning continued throughout 

this process, a theoretical number of units could have been produced. The number of both

cognitive units ( ) and motor units ( ̂ , ) that could have been processed in the first cycle if

there was not an interruption is given as follows;

\ y ( u "  + n^) + d ]

1-0.4150
0.125

(1.563 + 15)
X - o . ..4150

= 1698, (2.19)
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and

[ y i u "  + n , )  + d , \

1-0.0740
0.125

(3.149 + 15)
X -0 .0740

= 199. (2.20)

Since the DPLFM models a partial transmission of learning after each interruption, this retained 

experience must be accounted for in successive cycles. The DPLFM does this by calculating the 

equivalent number of units of experience retained (or transferred) to the subsequent cycle. 

Therefore, the number of cognitive and motor units of experience retained at the start of the 

second cycle is given by:

_  ^ Q _ ^ ^ Q y 0 .4 1 5 0 + 0 .2 4 3 ) /0 .4 1 5 0  x  ( ] ^ g g y O 2 4 3 /0 .4 1 S 0  _  g '
(2 .21)

and

= ( « /  + 7 1 , X(<^,

= (0 +  0.0740 ^  -0.053/0.0740 _  g  '

The processing time for the first unit in the second cycle is now foimd as follows:

>’2(l) =  y2^(l) +  > '2 '" (l)= ;^ c (l)(« / + 1 ) ''^  +  J .( l ) (« 2 '"  + 1 )“'" 

= 0.125(3 +1)^"’'° + 0.125(8 + 1 )™ °  

= 0.177 days.

(2 .22)

(2.23)

The value of 0.177 follows the logic of the assumption that experience is still transferred to flie 

next cycle causing (1) <  Ti (1) as long as < D . The number o f units o f experience 

remembered at the start of the second cycle is given by:

«2 = M )
7 ,(1 ).

- 1  =
0.177
0.250

-1/0.198

- 1  = 5 (2.24)
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Therefore, since the processing time and the number of transferred units of experience for the 

first unit of the second cycle is now known for both cognitive and motor elements, all of the 

previous calculations can be performed for the

second cycle and all other successive production cycles. For interest, tiie combined leammg 

slope for the second cycle is given by:

substituting the values give:

62. (30) =  0.4150 -   M1±11I =  o.196. (2.25)
' log(5+30)

Likewise, the parameters for the first five production cycles are calculated and summarized in 

Table 2.2. As shown in Table 2.2, the behaviour of the initial unit processing time of each cycle 

decreases at a non-uniform rate through successive cycles. This implies that some experience is 

transferred after the interruption period between cycles. The equivalent units of experience

transferred between cycles, or w ,, represents the degree by which forgetting has caused the 

experience of the worker to rise back up the learning curve. The increasing level of M, suggests 

that this corresponds to more transferred experience between cycles as the number of cycles 

increase. However, it appears that w, slowly asymptotes to some fixed value after successive

cycles. Also, the combined cognitive/motor learning slope è,, appears to behave in the same

manner, suggesting that, in this particular example, the rate at which the worker learns gradually 

decreases with successive cycles.

In summary, the DPLFM is the only learning and forgetting model that closely models seven 

characteristics of learning as summarized by Jaber et al. (2003), and it theoretically models 

cognitive and motor learning elements that were validated experimentally.
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Table 2.2: Initial five production cycle parameters o f the DPLFM numerical
example

Cycle i n T,(l) K

1 30 0.250 0 0.198

2 30 0.177 5 0.196

3 30 0.175 6 0.195

4 30 0.174 6 0.195

5 30 0.174 6 0.195

2.3 Chapter 2 summary

The previous chapter 2 has summarized the development of the dual-phase learning-forgetting 

model (DPLFM) and has illustrated its behaviour with a numerical example. The following 

chapter 3 summarizes the modeling or experimental designs used in the three models of this 

thesis.
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Chapter 3: experimental design and
modeling

3.1 Experimental design of model A

There are two main components to any experimental problem: the design of the experiment and 

the statistical analysis of the results. This chapter outlines the experimental design for the models 

in this thesis. The statistical analysis of the results is not necessary or possible since the 

experiment is deterministic. That is, all of the models in this thesis use a series of functions and 

logical statements, and each observation for each cell of the experiment is identical to the next. 

Consequently, no statistical methods are necessary since the results are definite and not 

probabilistic.

Montgomery (1997) stated three basic principles of experimental design: (1) replication, (2) 

randomization, and, (3) blocking. The experiments in model A, model B, and model C do not 

have any errors due to variability because of their deterministic input parameters, and therefore 

no replications or randomizations of replications are necessary. Also, blocking is not necessary 

because nuisance sources of variability do not exist in a deterministic model. However, this 

thesis does conduct a mathematical test in which changes are made to the input variables that 

result in changes to output responses, and hence, this thesis does use experiments in all of its 

models. As a result, this thesis employs an experimental design for all of its models. An 

effective experiment includes the following seven steps (Montgomery, 1997): (1) recognition 

and statement of the problem, (2) choice of factors, levels, and ranges, (3) selection of the 

response variable, (4) choice of experimental design, (5) performing the experiment, (6) 

statistical analysis of the data, and, (7) conclusions and recommendations. However, since the 

models in this thesis are deterministic, the statistical analysis of the data is excluded. Instead, all 

the main factor effects and factor interactions are examined in a logical and qualitative fashion.
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3.1.1 Recognition and statement of the problem

The purpose of Jaber et al. (2003) was to see the relative effect of modeling a DRC shop system 

with worker learning and forgetting following the LFCM of Jaber and Bonney (1996) versus the 

VRVF learning model of Carlson and Rowe (1976). Four other experimental factors were varied 

in addition to the type of learning model.

The problem or purpose of model A is to determine the effect of the task-type factor on DRC 

shop performance using the DPLFM instead of the VRVF or the LFCM (used in Jaber et al. 

(2003)) to model worker learning and forgetting. Namely, the learning rate of the worker is the 

new variable in the DRC system and it varies in relation to the type of task being processed. The 

degree and pattern of the difference in results obtained by including the task-type factor 

(variable learning rate) in model A versus the results of a fixed task-type (learning rate) in Jaber 

et al. (2003) is commented upon and conclusions are drawn for the reasons for the change in 

output as it relates to a DRC system context.

3.1.2 Choice of factors, levels, and ranges

Jaber et al. (2003) used a five factor experiment with different levels within each factor. The 

experimental factors and their corresponding levels are summarized in Table 3.1. Montgomery

(1997) stated that relevant process knowledge in the form of practical experience or theoretical 

understanding is necessary in order to set appropriate factor levels and ranges of those levels. 

The levels chosen in Jaber et al. (2003) have been justified empirically by referencing studies in 

DRC research. For example, as shown in Table 3.1, the levels of worker flexibility chosen were 

justified empirically by a study by Malhotra et al. (1993). The levels chosen for worker 

forgetting rates were also justified by Malhotra et al. (1993) as representing a relatively 

challenging machine-paced environment. The range of the centralization of control levels is 

appropriate given the transfer time penalties associated with the levels of forgetting used (Kher 

et al., 1999). The range of the upfront training levels were chosen to reflect the trade off between 

the choice to take advantage of flexibility as soon as possible {FAP - 0 )  and the desire for 

greater worker efficiency in the long run (Kher et al., 1999). However, even though training 

periods of zero ( FAP — 0), one ( FAP - 1 ), and two ( FAP — 2 ) times the standard times 

seem appropriate, no empirical evidence was given for choosing these levels (Kher et al., 1999). 

Finally, the two levels for learning and forgetting were justified in the original development of 

these models by
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Table 3.1: Experimental factors used in the stucfy ofJaber et al. (2003)

Experimental factor Levels per factor Notes

Level of woricer flexibility
(N )

2 The worker is either trained for two 
or three tasks/stages. Note that a 
maximum of three workstations is 
used because of the Malhotra et al. 
(1993) finding that cross-training 
workers in more than three 
departments worsens system 
performance.

Centralization of control
( C )

3 The worker moves from the station 
after a fixed number of jobs are 
completed, i.e.: after batch sizes of 
10, 25, and 250. Kher et al. (1999) 
suggested that a batch size transfer 
less than 10 or greater than 250 
causes too many transfer time 
penalties to be effective.

Worker forgetting rate 
(FR)

3 Three different worker forgetting rate 
levels of 85%, 80%, and 95%. The 
range of these levels is the same as in 
Jaber et al. (2003). Kher et al. (1999) 
used the same range and commented 
that it represented reasonably 
challenging yet sufficiently broad 
forgetting conditions.

Extent of upfront worker 
training

3 FAP — 0, FAP — 1, and 
FAP — 2 which corresponds to: no 
initial training, the worker must 
process until standard time is reached 
(370 units**) in the first cycle, and, 
the worker must process twice this 
amount (740) in the first cycle 
respectively before any transfers 
occur.

Worker learning-forgetting 
model

2 Worker learning-forgetting is 
modeled according to the VRVF and 
the LFCM.

Based on equation (1) in Kher et al. (1999) for an 85% learning environment
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Carlson and Rowe (1976) (VRVF) and Jaber and Bonney (1996) (LFCM). The comprehensive 

summary of assumptions and results of Jaber et al. (2003), and the assumptions and results o f the 

models of this thesis as they relate to DRC system research are given in the DRC summary 

matrix in the appendix, see section 7.1. The experimental factors of Jaber et ai. (2003) and all 

the models in this thesis are also included in this DRC summary matrix^^. In model A, the first 

four experimental factors of Jaber et al. (2003) are used, as described in Table 3.1 (excluding the 

learning-forgetting model factor). The additional experimental factors used in this thesis are the 

initial unit processing time cognitive-to-motor ratio ( R ), and the introduction of four different 

task-types with respect to both cognitive and motor learning elements of the task. The additional 

experimental factors used in model A are summarized in Table 3.2. As a result, from Tables 3.1 

and 3.2, this experiment is a 2(level of worker flexibility)x3(centralization of control ('when' 

mle))x3(worker forgetting rate)x3(extent of upfront worker training)x4(task-type)x3(/? ) model 

yielding 648 individual data points, where each data point represents the performance measure 

of the average processing (service) time ( APT ) calculated over approximately 3000 jobs per 

station, the same performance measure used by Jaber et al. (2003). In Jaber et al. (2003), a fixed 

learning rate was assumed to apply to the task as a whole. However, in model A, the 

composition of the learning rate of each task is specified using unique cognitive and motor 

learning rates. Four different task-types, a predominantly cognitive task ( 7}. ), a motor task

( 7 ^  ), a median task (7^^^ ), and a uniform task (7j, ) are defined by their own respective

cognitive and motor learning rates. In model A, as in Jaber et al. (2003), there is no difference in 

factors between stations. The levels and ranges for the learning rates of the four task-types are 

supported by an initial parameter learning estimation section by Dar-El et al. (1995). The 

classification of learning rates as a function of task-type is given in Figure 3.1. Dar-El et al. 

(1995) classified high cognitive tasks (Cl) LR = 70% to 75%, more cognitive than motor tasks 

(C2) LR = 75% to 80%, more motor than cognitive tasks (M2 ) LR = 80% to 85%, and high 

motor tasks (M l) LR = 80% to 85%. In model A, the cognitive task 7}. has a cognitive

leammg rate equal to the mean of the ‘high cognitive task’ range, or 72.5%, and a motor 

learning rate equal to the mean of the ‘more motor than cognitive’ task range, or 82.5%.

Please note that the matrix clearly distinguishes the similarities and differences between models and highlights the 
assumptions of each model in bold.
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Table 3.2: Additional experimental factors used in model A

Experimental factor Levels per factor Notes

Task-type A predominantly cognitive task T ç-, and

motor task , are distinguished from 
each other with their own composite 
learning rates. The respective cognitive 
and motor learning rates o f cognitive task

Tq  are as follows:

L R q =72.5% , = 82.5%; and for

motor task 7 ^  : LR^^ =77.5% , LR^^

= 87.5%. The median task and

uniform task have cognitive and

motor learning rates o f LR^^ =  75%,

L R /^  =85% , and LR^^ =  L R j^  =  

80% respectively.
R Initial unit processing time: cognitive-to-

motor ratio [ (1) / (1) ]. The three

levels are set at 1/3, 1, and 3. These ratios 
correspond to those empirically observed 
by Dar El et al. (1995) and used in a  
numerical example by Jaber and Kher 
(2002).____________

More 
Cognitive 

than Motor

More 
motor than 
Cognitive

Highly
Cognitive

Highly
Motor

70% 72.5% 75% 77.5% 80% 82.5% 85% 87.5% 90%

Pure Pure
Cognitive Motor

Figure 3.1: Classification of learning slopes (Dar-El et al, 1995)
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The motor task has a cognitive learning rate equal to the mean of the ‘more cognitive than

motor’ task range, or 77.5%, and a motor learning rate equal to the mean of the ‘high motor

task’ range, or 87.5%. The median task represents a task that is neither predominantly

cognitive nor motor, and hence, has a cognitive and motor learning range spread equally across 

the median of the learning range in Figure 4.5 with a cognitive learning rate equal to 75%, and a

motor learning rate equal to 85%. The uniform task 7",, represents a task that has an average 

learning rate equal to that of the median task (80%); however, this task has no distinctive

cognitive and motor elements and therefore has both cognitive and motor learning rates equal to 

80%. The values and ranges of the four task-types are shown in Figure 3.2. Model A also uses 

two additional parameters. These parameters, their values, and the justification for their levels 

are listed in Table 3.3. The parameter in each station is given by substituting equation (2.8) 

into (2 .12) to get;

b X ^ - b ^ ) \ o g { u "  +n)

log 1 -F

(3.1)

and solving for gives:

10 -1 (3.2)

D  is found similarly and is given by:

10 -1
l-6 _

(3.3)

where f ^ ,  f ^ ,  « j , are the specified initial cognitive and motor forgetting slopes and the
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70% 715% 75% 77i% 80% 815% 85% 87i% 90%

Pute Motor

LRc LRm

CogmDvoMfTc)

Figure 3.2: T he ranges o f  learning rates for the four task-types in  m odel A

Table 3.3: Additional parameters related to time-for-total-forgetting used in 
model A.
Parameter Definition Level Justification

Tim e to totally 
forget cognitive 
elem ents o f  a  task

The time to total forgetting ( Z) ) is 
a function of the forgetting rate, 
learning slope, number of units 
produced and the time to produce 
these units. However, in the 
DPLFM, there is a unique time to 
forgetting parameter for both 
cognitive and motor elements.

Faster learned tasks are also 
forgotten faster, given that 
cognitive tasks are learned a 
a faster rate (Jaber et al., 
2003). These levels o f time 
to total forgetting were also 
used in Jaber and Kher 
(2002).

T im e to  totally  
forget m otor 
elem ents o f  a task

The time to total forgetting (Z) ) is 
a function o f the forgetting rate, 
learning slope, number of units 
produced and the time to produce 
these units. However, in the 
DPLFM, there is a unique time to 
forgetting parameter for both 
cognitive and motor elements.

Same as above.
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number of units processed in the first cycle respectively. Also, in model A, the determination of 

the number of units needed to reach the standard time of the worker ( n  ̂  ) necessitated solving

for in the following expression using a simple bisection numerical technique:

=  y , ■ (3.4)

3.1.3 Selection of the response variables

The response variable in model A is the performance measure of the DRC system in question, 

namely: average processing (service) time ( A P T )  calculated over approximately 3000 jobs per 

station {APT). This response variable is consistent with the one used in Jaber et al. (2003).

The results of model A are compared to those of Jaber et al. (2003). Also, the results are 

interpreted as they pertain to the five possible issues that affect DRC shop performance 

measures: worker flexibility, centralization of control, worker assignment, queue disciplines, and 

cost of transferring workers (Hottenstein and Bowman, 1998). This comparison is conducted for 

every model in this thesis. These issues are summarized in the results/conclusions section of the 

summary matrix in the appendix (see section 7.1.2) and are included for the results of every 

model examined in this thesis.

3.1.4 Choice of experimental design

As previously discussed, model A uses deterministic input parameters, and hence the results do 

not require the statistical tools of replication, randomization, or blocking. However, a judgement 

had to be made to determine whether the difference in outputs obtained by using the DPLFM 

instead of the VRVF and the LFCM learning models is of any practical significance. The 

implications of the results of model A are also discussed as they pertain to five possible DRC 

shop performance issues discussed by Hottenstein and Bowman ( 1998).

3.1.5 Modeling methodology

The calculations for model A were performed using an Excel spreadsheet. Any necessary 

p ro g ram m ing was performed in Excel-Visual Basic.
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3.2 Experimental design of model B

Task similarity can be defined as the ratio of shared task attributes (between tasks) and the total 

task attributes of all tasks, where each task attribute is inherent to the task (i.e. irrespective to 

who works on the task), is identical in each task, and does not depend on other attributes. This 

simplification of the definition of task similarity and task attributes is given for ease of 

quantification.

Intuitively, performing a similar task during a work interruption yields less forgetting losses than 

performing a task that is totally dissimilar. Jaber et al. (2003) used this reasoning to remodel the 

forgetting losses associated with the LFCM by assuming that tasks have various levels of 

similarity. This was done by assigning a similarity coefficient that measures the degree of 

commonality between task attributes for two and three tasks. For example, a similarity 

coefficient of f  =  0  and 5' = 1 represent tasks that are totally dissimilar and totally similar 

respectively. They then remodelled the LFCM and determined how the task similarity factor 

affected the previous assumption of no task similarities. The similarity coefficient for two tasks 

is calculated as follows (Jaber et al., 2003):

S  =
_  2 [v{r(l)r ,r(2 )}], (3.5)

V{r(l)} + V{7-(2)}

where N { X }  in the denominator is the number of attributes in task X . The numerator 

represents the number of common attributes between tasks multiplied by two. The sim ilarity  

coefficients for three tasks consist of one three-way coefficient and three two-way coefficients.

They are calculated as follows (Jaber et al., 2003):

the three-way coefficient is given by.

_ 3[iV{r(l)nr(2)nr(3)}1
(1-2.3) # { T ( l)} +  # { T (2 )}+  # { T (3)} '  ̂ ^
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the two-way coefficient is given by.

_ 2 [ N{ T( i ynT{2y } ]

where =T(l) — {T{l)r^T{2)r^T{3)] for / =  1,2 . The other two-way coefficients 

5(2,3) 5(, 3̂  are calculated similarly. For a detailed numerical example of the determination

of similarity coefficients see Jaber et al., (2003). The determination of the forget curve intercept 

equation (2.18) of the DPLFM is then modified for two similar tasks as follows:

(1 -  5) j^(l)(«  +  w, )  ̂  ̂+ 5 t(1 )(«  +  Uf ) , i f  n  + u^<
• 1 (3*^)

(1 -  5)j/^ {n +  M, y ^ '  + % ,  otherw ise

where is the standard time and is the required effective quantity to reach standard time.

Also, the determination of the forget curve intercept equation (2.18) of the DPLFM is then 

modified for three similar tasks as follows:

' +(5,* +5 ,̂M1X«+m, i f  n+u, <«,
,(3.9)

(^ -S jk -yM ^ y^ + ^ y  +(■5# + otherwise

where 5̂  ̂ is the similarity coefficient of the task of the current station j  and the task at the 

successor station k , and Sji^ is the three-way similarity coefficient.

3.2.1 Recognition and statement of the problem

Jaber et al. (2003) examined how the inclusion of the task similarity factor affected the results o f 

the original assumption of no task similarity. The purpose of model B of this thesis is to 

determine how the inclusion of the task similarity factor affects the results o f model A and how 

this compares with Jaber et al. (2003), where the LFCM was used.
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3.2.2 Choice of factors, levels, and ranges

In model B, the same experimental factors of model A are used. The additional experimental 

factor in model B is the degree of similarity between tasks, this is denoted by s . For 

consistency, the levels in model B are identical to those chosen by Jaber et al. (2003). They are 

listed for two and three tasks in Table 3.4. As shown in Table 3.4, there are five similarity levels 

for two tasks and four similarity levels for three tasks. The ranges for the levels for two tasks 

seem appropriate because the degree of similarity increases in a constant manner in a wide range 

fi-om two totally dissimilar tasks, s = 0 ,  to two very similar tasks j' = 0.8 . Also, for three 

tasks, the levels chosen represent an ever-increasing degree of similarity, with the highest level 

( S^ )  having all three tasks sharing many common task attributes. As a result, fi-om Tables 3.1,

3.2 and 3.4, the experiment in model B is a [3(centralization of control ('when' rule))x3(worker 

forgetting rate)x3(extent of upfront worker training)x4(task-type)x3( R  )x5(levels of similarity 

when jV =  2)] + [3(centralization of control ('when' rule))x3(worker forgetting rate)x3(extent 

of upfi-ont worker training)x4(task-type)x3( R  )x4(levels of similarity when = 3 )] model 

yielding 2916 individual data points, where each data point represents the performance measure 

of the average processing (service) time calculated over approximately 3000 jobs per station, the 

same performance measure used in model A and in Jaber et al. (2003).

3.2.3 Selection of the response variables

The response variable in model B is the same as in model A.
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Table 3.4: The levels o f  the factors in model B

N Factor levels
2 5  = 0 .0 5 = 0 .2 ^ =0.4 S  — 0.6 S  —  0.8
3 Level Sq

S ( l , 2 )  = 0.0 
S ( 2 ,3 )  =  0.0 
S ( I , 3 )  = 0.0
S ( I ,2 ,3 )  =  0.0

Level S',
S ( i 2 )  =  0.2 
S ( 2 .3 )  = 0.2 
S ( i . 3 )  -  0.2 
^ ( 1 .2 .3 )  ^ 0.0

Level Sj
S ( i . 2 j  -  0.25 
S ( 2 ,3 )  = 0.25 
S ( i , 3 )  ~ 0.25
S ( I ,2 ,3 )  = 0.2

Level
S ( I . 2 )  =  0.0 
^ ( 2 .3 )  = 0.0 
S ( , . 3 )  =  0.0 
^ d . 2 . 3 )  ^ 0.8

Table 3.5: Input and output factors used in the formulation o f the multivariate 
function in model C
Factor Levels/ranges Justification

Input factors Degree of task 
similarity (s)

.y : {0.0,0.2, 0.4, 0.6, 0.8} Same levels and ranges 
used in Jaber et al. 
(2003).

Initial processing time 
to standard time ratio
i p )

p : { 2 ,  3,4,5,6} Malhotra et al. (1993) 
used a p  value of 2
and 4 to represent a low 
and high initial cost of 
learning respectively. 
Model C also includes 
the effect of a more 
severe initial learning 
loss { p  = 5 ,6 )

Worker learning rate 
( LR ), where 
LR = 1 0 0 x 2 - ”

LR:
{70%, 75%, 80%, 85%, 90%}

As in model A, the 
range of the worker 
learning rate 
encompasses the entire 
estimated range as 
noted by Dar-El et al. 
(1995a), see Figure 3.1.

Worker forgetting rate 
( FR ), where 
FR = l 0 0 x 2 ^

FR:
{95%,92.5%,90%,87.5%,85%)

Same as in model A, see 
Table 3.1.

Optimal output 
factors (translated)

Optimal upfront 
training policy
{FAP*)

The optimal policy was 
searched within the range;
{ FAP — 0 — FAP — 5 } in 
increments of 0.5 times the 
standard-time number of units 
( 0 . 5 x » J .

An upfront training 
policy of
/v I / ’ - 0 / ] / 2 was 
used in Jaber et al. 
(2003). Model C 
includes the effect of 
further upfront training.

Optimal centralization 
o f control policy (batch
transfer policy) ( C  )

The optimal policy was 
searched within the range: 
{10-250 units} in 
increments of one unit.

Same as in model A, see 
Table 3.1.
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Choice of experimental design

Model B differs from model A because the assumption of no task similarity has been released to 

include tasks that are similar by varying degrees. The magnitude of the effect of the similarity 

factor on the forgetting losses of the DPLFM is compared to the results of Jaber et al. (2003), 

where the LFCM was used. The implications of the results of model B are also discussed as they 

pertain to five possible DRC shop performance issues discussed by Hottenstein and Bowman

(1998). As in model A, the analysis in model B is predominantly qualitative.

3.2.4 Modeling methodology

The modelling methodology is the same as in model A except that the assumption o f no task 

similarity was released to include tasks that are similar by varying degrees.

3.3 Experimental design of model C

In model C, two multivariate functions were found that provide the optimal upfront training 

policy ( FAP ) and the optimal centralization of control policy ( C* ) (batch transfer frequency) 

as output variables to the LFCM model ( N  = 2 )  given four prescribed DRC system factors: 

task similarity factor ( s ) ,  initial processing time to standard time ratio of the task ( p ) ,  worker

learning rate ( LR ), and worker forgetting rate ( FR ).

3.3.1 Recognition and statement of the problem

The problem statement of model C is as follows; Given a degree of job similarity ( j ) ,  initial 

processing time to standard time ratio of the task i p ) ,  and the learning and forgetting rate of the

worker {LR,FR), what should the upfront training policy {FAP ) and centralization of

control policy (C ) (batch transfer frequency) be in order to minimize the performance 

measures of average processing (service) time over approximately 3000 jobs per station?
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The results of the experiment in model C may prove important from a managerial perspective 

because it suggests preferred settings for controllable industrial DRC factors (training and 

transfer policies) given existing factors that cannot be as easily changed (job similarity, task- 

times, and worker leaming-forgetting rate). A numerical example is included to illustrate the 

practicality of the function developed in model C.

3.3.2 Choice of factors, levels, and ranges

The aforementioned problem of model C uses the following input and translated^ output factors 

as given in Table 3.5. The experiment in model C searches for an optimal level o f input factors 

given a fixed set of output factor ranges. The result yields two multivariate functions of the 

following form (the asterisks on F A P  and C  denote optimized values o f these parameters):

g(s,p,LR,FR) = C* • (3.10)

and

g{s,p,LR,FR) = F AP\  (3.11)

where the input variables (s,p,LR,FR), optimal output variables (̂ FAP ,C  ) ,  their 

levels/ranges, and justifications for these levels, are described in Table 3.5.

3.3.3 Selection of the response variables

The response variable in model C is the same as in model A and model B.

3.3.4 Choice of experimental design

Model C is an optimization experiment that searches for the optimal set of output experimental 

factors (see Table 3.5) based on prescribed input parameters that minimize the response variable 

of average processing (service) time ( APT ) calculated over approximately 3000 jobs per 

station, the same performance measure used in model A of this thesis and Jaber et al. (2003).

“each minimized A P T  value corresponded (and was translated ) to a specific value for C" and FAP'
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3.3.5 Modeling methodology

The modelling methodology is the same as in model A and model B. The multivariate function is 

fitted fi-om the table of optimized C* and FAP" values. Model C is a 5(levels of task 

similarity)x5(initial processing time to standard time ratio)x5(worker learning rate)x5(worker

forgetting rate) model yielding 625 pairs of output: C and FAP values. Due to tiie 

distribution of the output variables described in Chapter 4, the functions in (3.10) and (3.11) 

were fitted to the values using binary logistic multiple-regression; these functions were then used

to translate the input factors directly into optimal settings for C and FAP based on 

minimized APT values. Since these functions were fitted between data points, every optimal 

setting of C and FAP can be found for input factors throughout the continuous range of the 

input factors listed in Table 3.5.

3.4 Chapter 3 summary

The models in this thesis do not contain randomness in their design. However, they all conduct a 

mathematical test in which changes are made to the input variables that result in changes to 

output responses, and hence, this thesis does use a type of deterministic experiment in all of its 

models. Due to the complexity of the output response of all the models, following an outline of 

an experimental design aids interpretation despite the fact that the models are deterministic. The 

previous chapter 3 has outlined the first four steps of experimental design mentioned by 

Montgomery (1997) for each model in this thesis: (1) recognition of, and statement o f the 

problem, (2) choice of factors, levels, and ranges, (3) selection of the response variable, and, (4) 

choice of experimental design for all of the models with the addition of the description of the 

modelling methodology. The next two steps, (5) performing the experiments, and, (6) analysis 

(deterministic) of the data are summarized for each model in the following chapter 4.
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Chapter 4: results and analysis 

4.1 Model A results

Appendix section 7.2.1 contains the tables of results for both levels of worker flexibility for the 

DPLFM. The LFCM and the VRVF model results are given for comparison in appendix section 

7.2.2. The following analysis is based on these results. As previously mentioned, these results 

for the DPLFM were obtained from calculations performed using an Excel spreadsheet. Any 

necessary programming was performed using Excel-Visual Basic.

The analyses of the results of model A have been subdivided into two sections: the main effect 

analysis and the interaction effect analysis. These two terms have been taken from the discipline 

o f experimental design and their methods have been used in this thesis to enrich the analysis of 

model A. The main effect can be defined as the total change in response or output of one factor 

by changing the level of the factor from its highest level to its lowest level (Montgomery, 1997). 

In model A, the main effect of the factors was calculated for each learning-forgetting model. By 

finding this, the total relative direct influence of each factor is given quantitatively, and hence, is 

easily compared to the main effect of the other factors. The interaction effect is when the change 

in response (output) between the levels of one factor is not the same at all the levels of the other 

factors (Montgomery, 1997). In model A, the degree of interaction of each factor is measured 

quantitatively. In model A, the interaction effect of the factors was calculated to determine the 

degree by which each factor interacts with each other factor. Based on the degree of these 

interactions, conclusions were drawn regarding the influence of these factors as they compare 

with the conclusions given in Jaber et al. (2003) and the five possible issues that affect DRC 

shop performance measures: worker flexibihty, centralization of control, worker assignment, 

queue disciplines, and cost of transferring workers (Hottenstein and Bowman, 1998).
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4.1.1 The main effect analysis of model A

4.1.1.1 Description of the main effect

As previously mentioned, the main effect of a factor is the change in output response caused by a 

change in a level of the factor. In model A, this quantity is given as follows;

where M E,  is the main effect of factor i , AER^ ^  is the average experimental response at 

the maximum level of factor /, and AER^ is the average experimental response at the

minimum level of factor i. Note that the experimental response in model A is the performance 

measure of average processing (service) time ( A P T  ) calculated over approximately 3000 jobs 

per station. The main effect results for the VRVF, the LFCM, and the DPLFM are discussed in 

the subsequent sections.

As shown in Figure 4.1, the relative main effect graphs have percentage quantity measures; they 

are used to compare the magnitude of the main effect of each factor as a percentage of the 

maximum range of output values for the model. These percentage values are calculated as 

follows:

R M E , = - ^ ^ x m ,  (4.2)

where RME^ is the relative main effect of factor i , ME- is the main effect of factor i , and

M A X j  is the maximum range of output values for model j  . For example. Figure 4.1(c)

illustrates that the relative main effect of the upfront training policy ( F A P  ) factor is more than 

three times as influential as the number of tasks learned (_N ) factor (13.0% versus 4.3%). The 

changes in the relative main effect between models are shown in Figure 4.2. These values are 

used to compare the change in the influence of one factor between models. These values are 

calculated as follows:

,  -  R M E ,^  , (4.3)

where ARME^^^j^ is the change in the relative main effect of factor i from learning-forgetting 

model a  to learning-forgetting model b  , RME^ ^ is the relative main effect of
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foctor i in model a , and RME  ̂j  is the relative effect o f  factor / in  model b .

For example, Figure 4.2(c) illustrates that the effect of the FAP (upfront training policy) factor 

is approximately 17.5% less influential (-17.5%) in the DPLFM than in the LFCM.

4.1.1.2 Discussion of the main effect (the VRVF, the LFCM, and 

the DPLFM)

4.1.1.2.1 Main effect - VRVF

As shown in Figure 4.1(a), the relative main factor effects of the VRVF are ranked in decreasing 

effect as follows; (1) forgetting rate, (2) worker transfer policy, (3) number of tasks learned, and 

(4) upfront training policy ( FAP ). The relative change in performance between factor levels in 

the VRVF is shown in Table 4.1. For example, changing from three to two tasks learned in the 

VRVF causes a 19.8% increase (performance increases are denoted by a negative sign 

because of a percent decrease in forgetting losses) in performance (second row, fourth column).

The most notable main effect in the VRVF is that the forgetting rate ranks first in importance 

(see Figure 4.1(a)) whereas in the LFCM it only ranks second last (third) (see Figure 4 .1(b)), and 

only third in the DPLFM (see Figure 4.1(c)). The significance of this finding is beneficial since 

the worker forgetting rate factor is less controllable than the other factors.

4.1.1.2.2 Main effect - LFCM

As shown in Figure 4.1(b), the relative main factor effects of the LFCM are ranked in decreasing 

significance as follows; ( 1) upfront training policy (FAP), (2) worker transfer policy, (3) 

forgetting rate, and (4) number of tasks learned. The relative change in performance between 

factor levels in the LFCM is shown in Table 4.2. The most notable main effect in the LFCM is 

the large increase in relative influence of the main effect of the upfront training policy factor 

(FAP) over that of the VRVF. This is consistent with the findings of Jaber et al. (2003). In 

fact, the ranking increases from last to first, as shown in the change between Figure 4.1(a) to 

Figure 4.1(b). The relative change is over 23.5%, as shown in Figure 4.2(a). The relative 

influence of the worker transfer policy also increases slightly by 1.2% over the VRVF,
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Table 4.1: The main effect o f the factors in the VRVF

Number of 
tasks learned
(N )

APT Level change Relative % 
change in the 
main effect 
between levels

2 1.0670 3 tasks learned 
to 2 tasks 
learned

-19.8%3 1.3302
Main effect 0.2632
Forgetting rate
(FR)

APT Level change Relative % 
change in the 
main effect 
between levels

95% (low) 1.0403 90% to 95% -11.6%
90% (med) 1.1775 85% to 90% -14.6%
85%(high) 1.3781
Main effect 0.3378 85% to 95% -24.5%
Worker 
transfer policy
(C )

APT Level change Relative % 
change in the 
main effect 
between levels

10 1.3253 10 to 25 -8.1%
25 1.2185 25 to 250 -13.7%
250 1.0521
Main effect 0.2731 10 to 250 -20.6%
Upfront 
training policy
{FAP)

APT Level change Relative % 
change in the 
main effect 
between levels

0 1.2564 FAP-0 to FAP-1 -6.8%
1 1.1714 FAP-1 to FAP-2 -0.3%
2 1.1681
Main effect 0.0883 FAP-0 to FAP-2 -7.0%
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Table 4.2: The main effect o f the factors in the LFCM

Number of 
tasks learned
{ N )

APT Level change Relative % 
change in the 
main effect 
between levels

2 1.1660 3 tasks learned 
to 2 tasks 
learned

-9.7%3 1.2919
Main effect 0.1259
Forçetting rate
{FR)

APT Level change Relative % 
change in the 
main effect 
between levels

95% (low) 1.1026 90% to 95% -10.6%
90% (med) 1.2331 85% to 90% -8.7%
85%(high) 1.3513
Main effect 0.2487 85% to 95% -18.4%
Worker 
transfer policy
(C )

APT Level change Relative % 
change in the 
main effect 
between levels

10 1.3898 10 to 25 -10.6%
25 1.2427 25 to 250 -15.2%
250 1.0545
Main effect 0.3353 10 to 250 -24.1%
Upfront 
training policy
{FAP)

APT Level change Relative % 
change in the 
main effect 
between levels

0 1.5290 FAP-0 to FAP-1 -29.4%
1 1.0791 FAP-1 to FAP-2 -0.02%
2 1.0789
Main effect 0.4501 FAP-0 to FAP-2 -29.4%
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■whereas the relative influence of the forgetting rate and the number of tasks learned decreased 

by 9.8% and 12.2% respectively (see Figure 4.2(a)). Again, the significance of this finding is 

beneficial because if learning and forgetting is assumed to more closely follow the LFCM than 

the VRVF, there is added consolation to DRC job shop practitioners that more controllable 

factors such as the upfront training policy ( FAP) and the worker transfer policy ( C  ) are more 

significant than less controllable factors such as the worker forgetting rate ( F /2 ) and the number 

of tasks learned ( #  ).

4.1.1.2.3 Main effect - DPLFM

As shown in Figure 4.1(c), the relative main factor effects of the DPLFM are ranked in 

decreasing effect as follows: ( 1) upfront training policy ( FAP), (2) worker transfer policy (C), 

(3) forgetting rate, (4) task-type, (5) the P -value, and, (6) the number of tasks learned.

The relative change in performance between factor levels in the DPLFM is shown in Table 4.3. 

Note the two additional DPLFM experimental factors of R  -value and task-type in the first 

column of Table 4.3. There are several notable main effect observations in the DPLFM. Firstly, 

the overall detriment of learning three tasks is less pronounced in the DPLFM than in the other 

models (see the second row, fourth column of Table 4.3 compared with the same cell of Table 

4.1 and Table 4.2). Secondly, the benefit of providing the additional upfi-ont training of 

FAP — 2 over just FAP — 1 upfront training is slightly more evident in the DPLFM than in 

the LFCM, but slightly less evident than in the VRVF (see row 17, column four of Table 4.3 

compared with the same cell of Table 4.1 and Table 4.2). Thirdly, overall, upfront training 

(either FAP — 1 or FAP — 2 ) in the DPLFM reduces forgetting losses more than it did in the 

VRVF but less than in the LFCM (see row 19, column four of Table 4.3 compared with the same 

cell of Table 4.1 and Table 4.2). This relative change in the influence of uplfont training fi'om 

the VRVF and the LFCM to the DPLFM is also illustrated in Figure 4.2(b) and Figure 4.2(c) 

respectively. Jaber et al. (2003) deduced that since: (1) the LFCM attributed more benefit to 

upfront training than the VRVF, and, (2) a greater benefit is assumed by providing upfront 

training to workers performing dissimilar tasks, that the LFCM more closely models a job shop 

that performs dissimilar tasks. By this reasoning, it is deduced that the aforementioned main 

effect results of the DPLFM suggest that the DPLFM accrues less importance on the 

dissimilarity of the tasks being performed than the LFCM. Model B of this thesis addresses this 

issue. In addition, as shown in Figure 4.2(c), the inclusion of additional factors in the DPLFM 

( R -value and task-type) caused the reduction of the relative influence of all the factors
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Table 4.3: The main effect o f the factors in the DPLFM

Number of tasks 
learned {N )

APT Level change Relative % change 
in the main effect 
between levels

2 1.0722 3 tasks learned to 2 
tasks learned -6 .2%3 1.1435

M ain effect 0.0712
Forgetting rate
{FR)

APT Level change Relative % change 
in the main effect 
between levels

95%  (low) 1.0261 90% to 95% -6 .8%
90%  (med) 1.1006 85% to 90% -8 .0%
85%(high) 1.1968
M ain effect 0.1707 85% to 95% -14.3%
Worker transfer 
policy ( C )

APT Level change Relative % change 
in the main effect 
between levels

10 1.2022 10 to 25 -9.0%
25 1.0937 25 to 250 -6 .0%
250 1.0276
M ain effect 0.1746 10 to 250 -14.5%
Upfront training 
policy ( FAP )

APT Level change Relative % change 
in the main effect 
between levels

0 1.2507 FAP-0 to FAP-1 -17.1%
1 1.0369 FAP-I to FAP-2 -0 .1%
2 1.0358
M ain effect 0.2149 FAP-0 to FAP-2 -17.2%
Task-type APT Level change Relative % change 

in the main effect 
between levels

Tc 1.0643 '̂ M -9.2%

Tm 1.1718 ^M  ^M ed -5.5%
TMed 1.1070 T m  to T  „ -7.1%

T u 1.0884 Tmc-j  to f . -3.9%
T ,1 to f . -2 .2%

M ain effect 0.1075 Tm to f - -9.2%
R APT Level change Relative % change 

in the main effect 
between levels

1/3 1.1553 1/3 to 1 -4.2%
1 1.1067 1 to 3 -4.1%
3 1.0615
Main effect 0.0938 1/3 to 3 -8.1%
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common to all three models (number of tasks learned, forgetting rate, woricer transfer policy, and 

FAP) over that of the LFCM, with the main effect of FAP being reduced the most. As 

expected, the performance change between the levels of performing a motor task ( 7 ^  ) to 

performing a cognitive task ( 7^ ) is a main effect change in the DPLFM because both tasks are

found on opposite extremes of the range of learning slopes used in this thesis (see row 26, 

column four of Table 4.3). Also, it is interesting to note that, overall, the performance o f task 

T’y yields less forgetting losses ( T  -  1.0884, see row 24, column two of Table 4.3) than

Tĵ ed {APT = 1.1070, see row 23, column two of Table 4.3), a task with an average learning

rate equal to that of T’y , and nearly as little forgetting losses as task T’y ( APT  = 1.0643, see

row 21, column two of Table 4.3). Consequently, it could be inferred that forgetting losses may 

be underestimated when the dual phase cognitive and motor task elements are not considered. 

Finally, it is of importance to note that the main effect of the R  -value ranks second last in the 

DPLFM. However, the interaction effect of the R -value is significant, as shown in the 

following interaction effect section.

4.1.1.3 Main effect conclusions
From a managerial perspective, the following three findings of the main effect analysis should be 

noted: (1) the effectiveness of reducing forgetting losses in a DRC job shop may be more 

achievable by adjusting the controllable factors such as upfront training policy and worker 

transfer policy than by focusing on uncontrollable factors such as the worker forgetting rate (the 

LFCM versus the VRVF); this finding is used to develop the reasoning for model C of this 

thesis, (2) the results of the main effect of the DPLFM suggest that increasing the number of 

tasks learned beyond two may be more achievable in a DRC context than suggested by the 

LFCM; (3) the type of worker-task interaction with regards to the learning rates of the worker on 

the task (T  ) and the ratio of time for the first unit under purely cognitive conditions to time for 

the first unit under purely motor conditions (R )  may be more of an issue than the number of 

tasks for which the worker is trained (the DPLFM versus the LFCM, see Figure 4.1(c) and 

Figure 4.1(b)), and (4) the findings of model A suggest that forgetting losses may be 

underestimated when the dual phase cognitive and motor task elements are not considered, and 

as a result, the task-type factor mherent to the DPLFM is a factor that may be important to 

include when examining further DRC forgetting loss reductions.

It is of interest to note that finding (2) suggests that research pursuing a quantitative trade-off
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between forgetting loss reduction and job flexibility may be of signiflcance. However, a 
quantitative measure of shop flexibility would be required in order for a measurable trade-off 

analysis.

4.1.2 The interaction effect analysis of model A

4.1.2.1 Description of the interaction effect

As previously mentioned, the interaction effect of a factor is when the change in response 

(output) between the levels of one factor is not the same at all the levels of the other factors. In 

model A, the magnitude of the interaction effect between factor levels was calculated by sub­

dividing the results table into sub-tables forming all the possible 2-way interactions between 

factors. For simplification, the factors were given acronyms. These acronyms and the 2-way 

factor interactions are listed in Table 4.4. The 15 non-duplicated interactions are underlined.

For example, Table 4.4(a) illustrates a sub-table consisting of averaged results for each worker 

transfer policy level -  forgetting rate level pair. The values are averaged irrespective of the 

levels of any other factor. As a result, this is referred to as a 2-way interaction table C - FR, 

with C referring to the centralization of control policy (worker transfer policy) and FR 
referring to the worker forgetting rate. Since there were a total of 15 2-way factor interactions 

there were 15 2-way interaction tables constructed. All of the 2-way interaction tables are given 

in the appendix section 7.3. A baseline measure was required to determine the magnitude of the 

interaction at each factor level. This was done by measuring the relative percentage difference of 

each interaction pair with the lowest interaction pair in the table (professor Gharghouri, Dr. 

Kolasa, and Dr. Todorow, personal communication, 2003). Table 4.4(b) illustrates how the table 

looks after this is done. For example, the bolded value in Table 4.4(b) represents the baseline 

pair C 25oi -̂/?95% (referring to a batch transfer size of 250 with a worker forgetting rate of 95%)

since this pair has the lowest averaged result in Table 4.4(a) (see 1.014 and 0.0% in row five, 

column three of Table 4.4(a) and Table 4.4(b)). All the other 2-way factor level interactions are 

shown by their relative difference above the baseline measure. For example, in Table 4.4(b), the

2-way point interaction of C^^FR^y^ is 6.5% above the baseline measure. Also, only a relative 

change of 6% or greater between any 2-way point interaction is considered a significant change.
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Factor Acronym 2-Way interactions
Worker transfer 
policy c

C -F R ,C -T ,C -F A P ,C -N ,C -R

Forgetting rate FR FR -T ,F R -  F A P ,F R -N ,F R -R , F R -C
Task-type T T - C J - F R ,  T -F A P ,T -N ,T -R
Upfront training 
policy FAP

FAP -  C, FAP -  FR, FAP -  T, FAP -  N, FAP -  R

Number of tasks 
Learned N

N -C ,N  -  FR,N -T ,N  -  FAP, N -  R

R -value R R -C ,R -F R ,R -T ,R -F A P ,R -N

Table 4.4(a): 2-way interaction
Forgetting rate ( FR  )
95% 90% 85%

W orker 
transfer policy
( C )

10 1.044 1.198 1.365
25 1.020 1.080 1.181
250 1.014 1.024 1.045

Table 4.4(b): 2-way interaction with relative difference from baseline
Forgetting rate ( FR  )
95% 90% 85%

Worker 
transfer policy
( C )

10 2.9% 18.1% 34.6%
25 0.6% 6.5% 16.4%
250 0.0% 1.0% 3.0%

Table 4.5(a): 3-way interaction for

Q o-^-^85%

T % FAP % N % R %

Tc 1.251 23.3% 0 1.884 85.7% 2 1.254 23.6% 1/3 1.442 42.1%

7m 1.493 47.2% 1 1.135 11.9% 3 1.476 45.5% 1 1.376 35.7%
T̂ Med 1.368 34.9% 2 1.076 6.1% 3 1.302 28.3%

T v 1.346 32.7%

Table 4.5(b): 3-way interaction for C2soFRgs%

^ 2 5 0  T*-^95%

T % FAP % N % R %

Tc 1.009 -0.5% 0 1.019 0.5% 2 1.013 -0.1% 1/3 1.070 5.5%

Tm 1.025 1.0% 1 1.003 -1.1% 3 1.015 0.1% 1 1.013 -0.1%
T

1.013 -0.1% 2 1.021 0.7% 3 1.009 -0.5%

Tu 1.018 0.4%
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For example, moving from a 2-way point interaction of C 2̂ F R ^  to does not

constitute a significant change in output response since the difference in measure from the 

baseline for these two values is only 1.9% (2.9% - 1.0%). This base measure of 6% is consistent 

with the suppression measure used in Jaber et al. (2003). In addition, 3-way factor level 

interactions were also examined. This was done by extracting the largest two interactions 

(highest and lowest (baseline) performance result) within each 2-way interaction table and 

pairing them up against all other factors in order to search for any significant 3-way factor 

interactions. For example, and in Table 4.4(b) exhibited the largest

and smallest (baseline) performance interaction (34.6% and 0.0%) results respectively within all 

the levels of the C — FR interactions table. As a result, and were then

paired up against all the other factors to form additional 3-way interaction sub-tables. It was 

assumed that only significant 2-way interactions would foster any significant 3-way interactions 

(Dr. Gharghouri and Dr. Todorow, personal communication, 2003). Examples of 3-way 

interaction tables for and ^ 50̂ ^ 95% are given in Table 4.5(a) and Table 4.5(b).

The method for determining whether there were any significant 3-way interactions is given by 

listing maximum and minimum interaction criterion measures. These are given as follows;

Upper interaction criterion:
< (second highest 2-way interaction) - 6.0%

(4.4)
Lower interaction criterion:

> (secondlowest 2-way interaction) + 6.0%.

For example, for the 3-way interaction table in Table 4.5(a), the upper interaction criterion is 

calculated as follows;

Upper interaction criterion <(18.1%) — 6.0% = 12.1%, (4.5)

where the second highest 2-way interaction (18.1%) refers to the value in the third row, fourth 

column of Table 4.4(b). The 6% is used as a buffer value; this is consistent with the suppression 

measure used in Jaber et al. (2003). As shown in the shaded cells of Table 4.5(a), the 3-way 

interactions Ĉ qFR̂ ^̂ ^̂ FAP~ \  and Ĉ ^̂ FR̂ ŷ̂ FAP - 2  are significant 3-way interactions

because they are less than the upper interaction criterion; (11.9%, 6.1%) < 12.1%. The 

implications of significant 3-way interactions are that they provide exceptions to the general
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conclusions made concerning the 2-way interactions.

Also, for the 3-way interaction table in Table 4.5(b), the lower interaction criterion is calculated 

as follows:

Lower interaction criterion > (0.6%) + 6.0% = 6.6% , (4.6)

where the second lowest 2-way interaction (0.6%) refers to the value in the fourth row, third 

column of Table 4.4(b). However, in this particular case, as shown in Table 4.5(b), there are no 

shaded cells depicting significant 3-way interactions because all the 3-way interactions are less 

than the lower interaction criterion of 6.6%.

All the 3-way interaction tables are given in the appendix section 7.4. The conclusions drawn 

from these 2-way and 3-way factor interactions are compared to the conclusions of Jaber et al. 

(2003) and to the five possible issues that affect DRC shop performance measures: woricer 

flexibility, centralization of control, worker assignment, queue disciplines, and cost of 

transferring workers given by Hottenstein and Bowman (1998).

4.1.2.2 Discussion of the interaction effect (LFCM and DPLFM)

4.1.2.2.1 The interactions between C and FR

4.1.2.2.1.1 LFCM

Given a worker transfer policy of 250, varying the forgetting rate has no significant effect on 

performance. However, given a worker transfer policy of 10 or 25, decreasing the amount of 

forgetting at any level significantly improves performance. Given a worker with a low (95%) 

forgetting rate, inereasing the worker transfer policy from 10 to 25 benefits performance, 

whereas a further increase to 250 provides no significant additional benefit. Given a forgetting 

rate of 90% or 85%, increasing the worker transfer policy at any level improves performance. 

Performance is best when the worker transfer policy is 250 in a low forgetting rate (95%). 

Performance is poorest when the worker transfer policy is 10 in a high forgetting rate (85%);
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however, an exception is when the upfront training is FAP — 2 or FAP — 1, in these special 

cases forgetting losses are significantly reduced. There is no benefit in reducing the worker 

transfer policy regardless of the level of worker forgetting. These results contradict those of 

Hottenstein and Bowman (1998) who suggested that the effect of worker forgetting may cause 

centralized control (smaller batch transfer policy) to be much more effective than decentralized 

control (larger batch transfer policy).

4.1.2.2.1.2 DPLFM

With regards to this particular 2-way interaction of the DPLFM, the results differ from the above 

LFCM results by the following: (I) given a worker transfer policy of 25, decreasing the rate of 

worker forgetting from 85% to 90% significantly improves performance, however, an additional 

reduction to 95% provides no further significant benefit, (2) given a forgetting rate of 95%, 

increasing the worker transfer policy at any level has no significant effect on performance, (3) 

given a forgetting rate of 90%, increasing the worker transfer policy from 10 to 25 significantly 

improves performance, however, an additional increase to C = 250 provides no further 

significant benefit, and, (4) as in the LFCM, there is no benefit in reducing the worker transfer 

policy regardless o f the level of worker forgetting; and hence, the results contradict those of 

Hottenstein and Bowman (1998). Also, the best and worst 2-way interactions and the 3-way 

interaction exceptions to the worst case 2-way interaction (C,oF7(g;% ) are identical for the 

DPLFM.

4.1.2.2.1.3 Discussion

The results suggest that, at this interaction, the combined effect of reducing the forgetting rate 

and/or increasing the worker transfer policy is slightly less beneficial in reducing forgetting 

losses in the DPLFM than in the LFCM. This concurs with the relative main effect o f the factors, 

see Figure 4.1(b) and Figure 4.1(c).

4.1.2.2.2 The interactions between C and FAP

4.1.2.2.2.1 LFCM

Given a worker transfer policy of 250, varying the FAP level has no significant effect on 

performance. However, given a worker transfer policy of 10 or 25, increasing die FAP level
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from 0 to 1 improves performance, but a further increase to FAP — 2 provide no significant 

additional benefits. Given a FAP level of 2, varying the worker transfer policy has no 

significant effect on performance. Given a FAP level of 1, increasing the worker transfer 

policy from 10 to 25 yields no improvement; however, an increase from 25 to 250 provides 

significant benefits. Given a FAP level of 0, increasing the worker transfer policy at any level 

provides a significant performance improvement. Performance is best when the worker transfer 

policy is 250 and the upfront training policy is FAP - 1. Performance is poorest when the 

worker transfer policy is 10 and there is no upfront training ( F A P  — 0 ). At this interaction, 

there are no 3-way interaction exceptions to these extreme cases.

4A.2.2.22 DPLFM

The interactions of the DPLFM are similar to the LFCM except for the following: given FAP 
levels of 1 or 2, increasing the worker transfer policy at any level has no significant effect on 

performance, whereas in the LFCM, only FAP — 2 rendered the level of the worker transfer 

policy level immaterial. The best and poorest 2-way interactions for performance are identical to 

the LFCM for this particular interaction. However, in the DPLFM, a low forgetting rate (95%) 

yielded a 3-way exception that significantly reduced the harshest forgetting situation

(C,o -  FAP -  0 -  ).

4.1.2.2.2.3 Discussion

At this interaction, the results suggest that, since upfront training and worker transfer policies are 

more influential in the LFCM than the DPLFM (see Figure 4.2(c)), there is no remedy for the 

harshest forgetting conditions (C,q — FAP — 0) in the LFCM, whereas a reduction in worker 

forgetting (95%) does significantly mitigate forgetting losses in the DPLFM.

4.1.2.2.3 The interactions between C  and N

4.1.2.2.3.1 LFCM

Given a worker transfer policy of 250, vaiying the number of tasks learned has no significant 

effect on performance. However, given a worker transfer policy of 10 or 25, decreasing the 

number of tasks learned from three to two provides significant benefits. Irrespective of the
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number of tasks learned, increasing the worker transfer policy at any level provides significant 

benefits. Performance is best when the worker transfer policy is 250 and the number of tasks 

learned is two. Performance is poorest when the worker transfer policy is 10 and the number of 

tasks learned is three; however, an exception is when the upfront training is FAP — 2 or 

FAP — 1 and/or the forgetting rate is low (95%), in these special cases forgetting losses are 

significantly reduced.

4.1.2.2.3.2 DPLFM

With regards to this particular 2-way interaction of the DPLFM, the results are identical to the 

above LFCM results except for the following: when two tasks are learned in the DPLFM, 

increasing the worker transfer policy beyond 25 provides no further benefits whereas in the 

LFCM increasing C was effective at any level of N . Also, in the DPLFM, only FAP — 2 
upfront training and/or a low forgetting rate (95%) provide 3-way exceptions to the harshest 

forgetting losses.

4.1.2.2.3.3 Discussion

Again, the interaction effect of the factors that are more influential in the LFCM is evident. 

Namely, the upfront training factor {FAP) is far more influential in the LFCM than in the 
DPLFM (see Figure 4.2(c)); and as a result, only a lengthy upfront training policy o f FAP — 2 
is significant in reducing the harshest case of forgetting losses in the DPLFM, whereas in the 

LFCM just FAP —I is sufficient.

4.1.2.2.4 The interactions between FR and FAP

4.1.2.2.4.1 LFCM

Irrespective of the forgetting rate, increasing the upfront training policy from FAP -  0 to 

FAP — 1 provides significant benefits; however, an additional increase to FAP — 2 provides 

no significant additional benefit. Given an upfront training policy of FAP — 1 or FAP — 2 , 
decreasing the forgetting rate from high (85%) to medium (90%) provides significant benefits; 

however a further decrease to a low (95%) forgetting rate provides no significant additional

73



benefit. Given no upfront training FAP — 0 , decreasing the level of forgetting at any level 

provides improved performance. Performance is best when the forgetting rate is low (95%) and 

the upfi-ont training is FAP - 1. Performance is poorest when the forgetting rate is high (85%) 

and there is no upfi-ont training ( FAP -  0); however, an exception is when the worker transfer 

policy is 250, in this special case forgetting losses are significantly reduced.

4.1.2.2.4.2 DPLFM

The interactions of the DPLFM differ from the previous LFCM interactions by the following: 

given an upfi-ont training level of FAP -  2 , vaiying the level of worker forgetting does not 

significantly affect performance, whereas in the LFCM, a reduction in worker forgetting fi-om 

85% to 90% provides benefits at FA P-2.  Interestingly, the highest and lowest 2-way 

interactions and the 3-way interaction exception for the DPLFM were identical to the above 

LFCM interactions.

4.1.2.2.4.3 Discussion

The relative effect of decreasing the forgetting rate in this interaction is shown to be slightly less 

in the DPLFM than in the LFCM. This is probably due to the fact that the forgetting rate factor 

is less influential in the DPLFM than in the LFCM (see Figure 4.2(c)). However, overall, the 

difference in interaction results between both learning-forgetting models is minimal at this 

particular interaction. Also, in both learning models, increasing the worker transfer policy to 250 

can alleviate the poorest case of forgetting losses.

4.1.2.2.5 The interactions between FR and N

4.1.2.2.5.1 LFCM

Given a forgetting rate of 95%, varying the number of tasks learned does not significantly affect 

performance. However, given a forgetting rate of 90% or 85%, decreasing the number of tasks 

learned fi-om three to two significantly benefits performance. Irrespective of the number of tasks 

learned, decreasing the amount of forgetting at any level significantly benefits performance. 

Performance is best when the forgetting rate is low (95%) and the number of tasks learned is 

two. Performance is poorest when the forgetting rate is high (85%) and the number o f tasks

74



learned is three; however, an exception is when the worker transfer policy is 250 and/or the 

upfront training policy is FAP — 2 ,  in these special cases forgetting losses are significantly 

reduced.

4.1.2.25.2 DPLFM

The interactions of the DPLFM differ from the previous LFCM interactions by the following: 

when two tasks are learned (N  = 2), only a reduction in worker forgetting from 85% to 90% 

provides significant benefits, whereas a further reduction to a low forgetting rate provides no 

significant additional benefit. This differs from the LFCM because, in the LFCM, irrespective of 

N , reducing worker forgetting at any level is beneficial. Also, in the DPLFM, only the worker 

transfer policy of 250 (not also FAP ~2 as in the LFCM) is a special case 3-way interaction 

that significantly reduces the severest case of forgetting losses.

4.1.2.2.5.3 Discussion

Again, the relative influence of upfront training and the worker forgetting rate is less evident in 

the DPLFM than in the LFCM. This is because, in this case, the large initial training of two 

times the standard time was effective in reducing the severest cases of forgetting losses (3-way 

interaction) in the LFCM, whereas in the DPLFM, FAP —2 was ineffective. Also, in the 

DPLFM at A/ =  2 ,  the reduction of forgetting losses was slightly more insensitive to the level 

of worker forgetting than it was in the LFCM.

4.1.2.2.6 The interactions between FAP and N

4.1.2.2.6.1 LFCM

Given an upfront training policy of F A P -2 ,  varying N  has no significant effect on 

performance. However, given a FAP level of 0 or 1, decreasing N  from three to two causes a 

significant increase in performance. Irrespective of the number of tasks learned, increasing the 

FAP level from 0 to 1 provides significant benefits; however, a further increase to FAP — 2 
provides no significant additional benefit. Performance is best when the upfront training policy

75



is F A P  - 1  and the number of tasks learned is two. Performance is poorest when there is no 

upfront training ( FAF  - 0 )  and the number of tasks learned is three; however, an exception is 

when the worker transfer policy is 250 and/or the forgetting rate is low (95%), in these special 

cases forgetting losses are significantly reduced.

4.1.2.2.6.2 DPLFM

The interactions of the DPLFM differ from the previous LFCM interactions by the following: at 

an upfront training policy of FAP  - 1 ,  varying the level of N  has no significant effect on 

performance, whereas in the LFCM at F A P  - 1, decreasing N  from three to two provided 

significant benefits. Also, the special 3-way interactions are identical for the upfront training 

policy and the number of tasks learned in both models.

4.1.2.2.6.3 Discussion

Again, it is evident, that the relative influences of some factors in the LFCM cause interaction 

differences between models. Namely, in this interaction, the performance is slightly less affected 

by the level of the number of tasks learned factor ( TV ) in the DPLFM than in the LFCM. This is 

probably because N  is also less influential in the DPLFM than in the LFCM (see Figure 

4.2(c)).

4.1.2.2.7 Summary of the interaction effect (LFCM and DPLFM)

It is apparent from the previous comparison of the 2-way and 3-way interaction analysis between 

the DPLFM and the LFCM that the factors C , F A P , F R , and N  are less of an influence in 

the DPLFM than in the LFCM (this concurs with the main effect conclusions see Figure 4.2(c)). 

This was evident because of the following: (1) the insensitivity of the level of the worker 

forgetting rate and worker transfer policy was greater in the DPLFM than in the LFCM in the 

C  /  FR  interaction, (2) the insensitivity of the level of the worker forgetting rate was also 

greater in the DPLFM than in the LFCM in the FR  /  N  interaction, (3) the insensitivity of the 

level of the number of tasks learned factor N  was greater in the DPLFM than in the LFCM in 

the FAP  /  N  interaction, (4) the detrimental affect on forgetting losses of no upfront training 

( F AP  — 0 ) and a small transfer policy ( C  = 10 ) was unresolved by a reduction in worker 

forgetting to 95% in the LFCM in the C  f FAP  interaction, whereas, in the DPLFM, the
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forgetting reduction was sufficient in mitigating forgetting losses; this highlights the greater 

influence of both factors in the LFCM model, and, (5) in the C /  interaction, only an upfront 

training policy of FAP — 2 is significant in reducing the harshest case of forgetting losses in 

the DPLFM, whereas in the LFCM, just FAP — \ is sufficient. This suggests the overwhelming 

influence of the upfront training policy in the LFCM as compared with the DPLFM.

The inclusion of the task related factors inherent in the DPLFM model such as task-type ( 7" ) 

and the ratio of time for the first unit under purely cognitive conditions to time for the first unit 

under purely motor conditions {R)  were probably responsible for the change in the relative 

main effect of the factors illustrated in the main effect conclusions (see Figure 4.2(c)) and the 

above comparison of the interaction effect of the LFCM and the DPLFM.

4.1.2.3 Discussion of the interaction effects unique to the 

DPLFM

4.1.2.3.1 The interactions between C and T

The performance increases as the worker transfer policy and the degree of cognitive elements in 

the task increase. However, given a worker transfer level of 250, varying the task-type has no 

significant effect on performance. Given a worker transfer policy of 25, changing from a task- 

type to T jj , from Tç to Tfj , or from to T̂ . has no significant affect on

performance. Given a worker transfer policy of 10, changing from a task-type to or 

from Tfj to 7 .̂ does not significantly affect performance, whereas any other task-type change 

causes a significant change. Also, given a worker transfer policy of 10 or 25, changing the task- 

type from to any other task significantly benefits performance. Given task-type 7 ^  and 

increasing the worker transfer policy at any level significantly improves performance. 

Also, given task-type 7 .̂ or increasing the worker transfer policy from 10 to 25 

significantly improves performance, however, an additional increase to 250 provides no further 

benefits. Performance is best when the worker transfer policy is 250 and the task-type is 7 ^ .

Performance is poorest when the worker transfer policy is 10 and the task-type is 7 ^  ; however, 

an exception is when the upfront training is FAP— '1 or FAP , and/or the woriœr
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forgetting rate is low (95%), in these special cases forgetting losses are significantly reduced 

4.1 .2.3.1.1 D iscussion

At this interaction, it appears that the beneficial effect of a worker transfer policy of 250 

overrides any affect of task-type on performance. It is interesting to note that, except during an

infi-equent worker transfer policy (C  =  250), changing the task-type fi-om to any other 

task significantly benefits performance. This finding suggests that it may be almost always 

beneficial to change the task-type if it is predominantly a motor task. Also, it is interesting to 

note that, performing the uniform task T  y reduces forgetting losses more than , even

though the learning rate of T  y  is equal to the average of task . These results concur with

the main effect findings that forgetting losses may be underestimated if the dual cognitive and 

motor learning elements are not taken into account. It also appears that providing any upfi-ont 

training {F A P - \  or F A P - 2  ) or reducing worker forgetting can significantly counteract a 

harsh situation of performing a task 2^  with a frequent worker transfer of 10.

4.1.2.3.2 The interactions between C and R

Given a worker transfer policy of 250, changing the R  -value of the task has no significant 

effect on shop performance. Given a worker transfer policy of 10, increasing the R  -value of the 

task at any level yields significant performance benefits. However, given a worker transfer 

policy of 25, changing the R  -value of the task from one to three, or from one-third to one, does 

not yield a significant change in performance, whereas a change from one-third to three does 

provide a significant improvement. Given that the R  -value of the task is one-third or one, 

increasing the worker transfer policy at any level significantly improves performance. Also, 

given that the R  -value of the task is three, increasing the worker transfer policy from 10 to 25 

significantly improves performance; however, a further increase to 250 provides no further 

significant benefits. Performance is best when the worker transfer policy is 250 and the R  -value 

of the task is three. Performance is poorest when the worker transfer policy is 10 and the R  - 

value of the task is one-third; however, an exception is when the forgetting rate is low (95%), 

and/or upfront training is given ( F AP  — 1 or FAP  — 2 ), in these special cases forgetting 

losses are significantly reduced.
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4.1.2.3.2.1 Discussion

Again, it is evident that an increased worker transfer policy is sufficient in reducing forgetting 

losses irrespective of the qualities of the task, in this case the R -value of the task. In fact, when 

C = 250 , varying the task-type does not affect shop performance at this interaction. Also, 

irrespective of worker transfer policy level, the relative influence of varying the R -value of the 

task was small within the range chosen. This concurs with the main effect results, see Figure 

4.1(c) comparing C  versus R  in the DPLFM. Also, since three special 3-way cases could 

alleviate the harsh conditions of , this 2-way condition may not be a crucial issue.

4.1.23.3 The interactions between F R  and T

Given a situation of high forgetting (85%), changing the task-type to any setting, except for a 

task-type change from to T’y , or from to , has a significant effect on shop 

performance. Given a medium or low worker forgetting rate (90% or 95%), only changing the 

task-type from 7 ^  to any other task significantly improves performance; any other task-type 

change does not significantly affect performance. At every task-type except T^., any decrease in

worker forgetting at any level improves shop performance. Given the worker performs a 

cognitive task, reducing the worker forgetting from 85% to 90% significantly improves 

performance; however, an additional decrease to a worker forgetting rate of 95% provides no 

further significant benefits. Interestingly, irrespective of worker forgetting rate, performing a 

uniform task (T’y )  does not significantly improve performance over a cognitive task (T ^).

Again, it is interesting to note that performing task T ,, , a task with no specified motor or 

cognitive elements, is more beneficial in reducing forgetting losses than performing task , a 

task that has both learning elements but has an averaged combined learning rate equal to that of 

T’y . Performance is best when the forgetting rate is low (95%) and the task-type is 7 ^ ,

Performance is poorest when the forgetting rate is high (85%) and the task-type is ; 

however, an exception is when the worker transfer policy is 250 and/or upfront training is given 

( FAP - 1  or FAP - 2 ) ,  in these special cases forgetting losses are significantly reduced.

4.1.2.3.3.1 Discussion

The results of the above interaction suggest that significant benefits can be achieved by changing
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the task-type to counteract the forgetting losses associated when a worker with a high forgetting 

rate performs a more motor dominated task, especially when the positive effects of a worker 

transfer policy of 250 and/or upfront training are not available (3-way interaction exceptions). 

Also, in this interaction, the underestimation of forgetting losses when the dual learning elements 

are not recognized is evident when T ^  is performed versus . As in the main effect

conclusions (see Table 4.3), the benefits provided from changing from à T ^  task to a 7^ task 

are minimal, especially in medium and low forgetting rates. Again, the detrimental effect of 

performing motor dominated tasks is evident because changing from a Tf^ task to any other 

task is beneficial for two out of three worker forgetting rate levels. Also, at this particular 

interaction, with the exception of performing a cognitive task, decreasing the forgetting rate at 

any level provides significant performance improvements.

4.1.2.3.4 The interactions between FR and R

Given a low forgetting rate (95%), varying the R -value at any level has no significant effect on 

performance. Given a medium forgetting rate (90%), significant benefits may result if the R - 

value is increased from one-third to three; however an R -value change from one-third to one, 

or from one to three is not sufficient in yielding significant benefits. Given a high worker 

forgetting rate (85%), increasing the R -value of the task at any level provides significant 

performance improvements. Given that the R -value of the task is one-third or one, decreasing 

the forgetting rate at any level provides significant benefits. However, given that the R -value of 

the task is three, decreasing the worker forgetting from 85% to 90% provides significant 

benefits, whereas an additional decrease to 95% provides no further significant benefits. 

Performance is best when the forgetting rate is low (95%) and the R -value of the task is three. 

Performance is poorest when the forgetting rate is high (85%) and the R -value of the task is 

one-third; however, an exception is when there is upfront training ( FAP - 1 or FAP - 2 ) ,  
and/or the worker transfer policy is 250; in these special cases forgetting losses are significantly 

reduced.

4.1.2.3.4.1 Discussion

The result of the above interaction suggest that the R -value of the task has a less overall affect 

on performance as compared with the forgetting rate. This is evident because, given that the R - 
value is one-third or one (two out of three levels), reducing the forgetting rate greatly enhances 

performance, whereas, for example, the influence of the R -value is only of interest at a high 

forgetting rate (one out of three levels). Nonetheless, an R -value of three provides enough
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additional benefit that a further decrease in worker forgetting fi-om 90% to 85% provides no 

significant benefits (-4.09%). Also, the special case 3-way interactions of upfront training 

( FAP — 1 or FAP — 2 ), and/or a worker transfer policy o f 250 provide a significant reduction 

of forgetting losses in the harshest 2-way interaction FR^^y^ R^
' 1/3

4.1.2.3.5 The interactions between T and FAP

Given any task-type, increasing the upfront training policy beyond FAP — 1 provides no 

significant additional benefit. Given an upfront training policy of FAP — 1 or FAP — 2, a 

task-type change at any level does not significantly affect performance. However, given no 

upfront training (FAP — 0), any change in task-type, except from a Tĵ ĵ to a Ty task,

significantly affects performance. Performance is best when the task-type w and the upfront

training policy is FAP — 2  . Performance is poorest when the task-type is and there is no

upfront training (FAP — 0); however, an exception is when the worker transfer policy is 250 

and/or the worker forgetting rate is low (95%) in these special cases forgetting losses are 

significantly reduced.

4.1.2.3.5.1 Discussion

In this interaction, the results suggest that the upfront training policy factor (FAP) is much 

more influential on performance than the task-type factor, this finding concurs with the main 

effect results, see Figure 4.1(c). For example, given upfront training levels of FAP —I or 

FAP — 2 ,  performance is insensitive to the change in task-type, whereas, conversely, given any 

task-type, providing just the standard time number of units ( FAP — 1 ) of upfront training is 

effective in significantly reducing forgetting losses. In this interaction, the special case 3-way 

interaction of a worker transfer policy of 250 and/or a low worker forgetting rate (95%) reduces 

the harshest of forgetting losses.

4.1.2.3.6 The interactions between T and N

The results suggest that, given that a worker performs a task T y , the number o f tasks learned

has no significant effect on performance. However, given any other task ( Tf̂  , , or T y),

decreasing the number o f tasks learned from three to two causes a significant increase in
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performance. Given that Ae number of tasks learned is two, changing from a task to 

or from to T y  causes a significant increase in performance; however, any oAer task-type 

change has no significant effect on performance. Given that Ae number of tasks learned is three, 

changing from a motor task (7]^ ) to any other task causes a significant mcrease m performance; 

however, any other task-type change has no significant effect on performance. Performance is 

best when Ae task-type is Ty and the number of tasks learned is two. Performance is poorest

when Ae task-type is and Ae number of tasks learned is three; however, an exception is 

when Ae worker transfer policy is 250 and/or the worker forgettmg rate is low (95%) and/or Ae 

upfront traming policy is FAP  -  2 , in Aese special cases forgetting losses are significantly 

reduced.

4.1.2.3.6.1 Discussion

In this interaction, Ae results suggest that Ae performance of a cognitive task provides enough 

forgetting losses to deem Ae number of tasks learned factor immaterial. Also, similarly, Ae 

results suggest Aat if Ae number of tasks learned is three, only a task-type change from a motor 

task to any oAer task causes a significant increase in performance. Therefore, since the factor of 

task-type has one level ( T ^ )  that nullifies the significance of Ae effect of varymg the levels of 

Ae oAer factor N  , and Ae number of tasks learned factor has one level ( N  = 3)  Aat nullifies 

Ae significance of Ae effect of varymg the levels of the other factor T  (with Ae exception of 

changmg from a task 7]̂  ̂ ), the factors N  and T  appear nearly equal wiA respect to Aeir 

contributions to performance. This concurs with the main affect results; see Figure 4 .1(c). Again 

Ae special case 3-way interactions of; a worker transfer policy of 250, and/or a low worker 

forgetting rate (95%), and/or the upfront trainmg policy is FAP — 2 , significantly reduces Ae 

harshest factor 2-way interaction 7 ^  .

4.1.2.3.7 The interactions between T  and R

Given task-type T y , varying the R  -value of Ae task has no significant effect on performance. 

Given task-type , increasing the R  -value at any level yields a significant mcrease m 

performance. Given Ask 7̂ ^̂ , increasing Ae R  -value from one-Aird to one provides 

significant benefits, however, an additional mcrease to an 7Î -value of three provides no fiiither
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significant benefits. Given task Tç., the performance is only significantly increased if the R -  

value is increased from one-third to three; no significant benefit result from just an increase from 

one-third to one, or from one to three. Also, as expected, T ,, is not significantly affected by the 

change in R  -value since there are no distinct cognitive or motor elements in the task. Given a 

task with an R  -value of one-third, every task-type change, except from Tg, to 7^., causes a 

sigmficant change in performance. Given a task with an R  -value of one, only a task-type 

change from 2]^ to 7^ , or from 7 ^  to 7’,; causes a significant change, every other task-type

change has no significant effect on performance. However, given a task with an R  -value of 

three, the task-type factor has no significant effect on performance. Performance is best when the 

task-type is 7^ and the R  -value of the task is three. Performance is poorest when the task-type

is and the R  -value of the task is one-third; however, an exception is when there is upfront

training provided {F A P  — \ or FAP — 2), and/or the worker transfer policy is 250, in these 

special cases forgetting losses are significantly reduced.

4.1.2.3.7.1 Discussion

An interesting observation is the relative lack of performance sensitivity with the change in task- 

type when the R  -value of the task is three. Also, it is evident how an increasing fraction of 

motor elements increases the relative benefit of changing from task 7^^^ to T ^  or from

to 7^ ; this is because the detrimental effect of performing a task containing a motor element is 

exacerbated as the fraction o f motor content increases. This interaction is important because it 

stresses that even though the R  -value factor has, overall, the second smallest main effect, it 

interacts closely with the task-type factor (a higher ranked main effect factor), and as a result, its 

importance should not be entirely overlooked.

4.1.2.3.8 The interactions between FA P  and R

Given no upfront training ( FAP  -  0 ), increasing the R  -value of the task at any level 

significantly increases performance. However, given upfront training ( F A P  — l or F A P  — 2 ), 

changing the R  -value of the task has no significant effect on performance. Irrespective of the 

R  -value of the task, increasing the upfront training policy from FAP  — 0 to F A P  - 1  yields 

increased performance; however, a further increase to FA P  —2  provides no significant 

additional benefit. Performance is best when the upfront traming policy is F A P  -  2 and the
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R  -value of the task is three. Performance is poorest when there is no upfront training 

( FAP  - 0 )  and the .R -value of the task is one-third; however, an exception is when the worker 

transfer policy is 250 and/or the worker forgetting rate is low (95%), in these special cases 

forgetting losses are significantly reduced.

4.1.2.3.8.1 Discussion

In this interaction, there are effects that, again, have a strong influence on performance, such as: 

the benefit of just providing FAP — 1, and the minor influence of the R  -value of a task in the 

presence of upfront training. Changing the R  -value of a task at any level is indeed only 

significant when there is no upfront training ( FAP  — 0 ) , whereas just the addition of IxM^

amount of upfront training causes the R  -value of the task factor to be immaterial. This finding 

concurs with the main effect results (see. Figure 4.1(c)) that the upfront training factor ( Æ 4 f )  

overshadows the effect of the R  -value factor.

4.1.2.3.9 The interactions between N  and R

Irrespective of the number of tasks learned, the performance is only significantly increased if the 

R  -value of the task is increased from one-third to three; no significant benefits result from just 

an increase from an R  -value of one-third to one, or from one to three. Given that the R  -value 

of the task is one-third or one, decreasing the number of tasks learned from three to two 

significantly improves performance. However, given that the R  -value of the task is three, the 

number of tasks learned factor has no significant effect on performance. Performance is best 

when the number of tasks learned is two and the R  -value of the task is three. Performance is 

poorest when the number of tasks learned is three and the R  -value of the task is one-third; 

however, an exception is when the upfront training policy is FAP — 2 and/or the worker 

transfer policy is 250 and/or the forgetting rate is low (95%), in these special cases forgetting 

losses are significantly reduced.

4.1.2.3.9.1 Discussion

In this interaction, the observations reiterate the minor effect of the R  -value factor. However, 

given that an R  -value of three causes the number of tasks learned factor to be immaterial, the 

significance of the R  -value factor should not be entirely overlooked. In addition, this 

interaction reflects the main effect conclusion that only learning two tasks is preferable.
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4.1.2.4 Interaction effect conclusions - DPLFM

Several notable conclusions are inferred from the previous analysis. Firstly, in the DPLFM, the 

worker transfer level of 250 and upfront training (especially FAP — 2 ) remain important 

policies for reducing the harshest 2-way forgetting losses, as they were included in 10 

( ^  = 250), nine {FAP — 2), and six {FAP — \ )  out of the 34 special case 3-way upper 

interaction exceptions (located below the upper interaction criterion, see inequality in (4.4)). 
However, in eight of the interactions, upfront training and/or a reduced transfer frequency were 

not necessary for reducing the harshest 2-way forgetting losses if the worker forgetting rate was 

low (95%). Also, it may also be of interest to note that performing a task-type T y came within

0.5% of exceeding the upper interaction criterion of the 2-way interaction FAP — 0 — .

Again, this highlights the significance of how much the forgetting losses may be underestimated 

by not accounting for the dual phase cognitive-motor elements of a task. There were no observed

3-way interaction exceptions for a best case 2-way interaction (located above the lower 

interaction criterion, see inequality in (4.4)).

Secondly, a remarkable observation was that changing the task-type from to any other task 

significantly reduces forgetting losses in three out of five 2-way interactions containing the task- 

type factor {C IT ,  F R IT , T I N) .  Forgetting losses are significantly reduced in these cases 

except for when the worker transfer policy is 250 in the C I T  interaction, when the worker 

forgetting rate is low (95%) in the FR / T interaction, and when the number of tasks learned is 

two in the T I N  interaction. This finding provides credit to the superb benefit of trying to 

avoid the production of a task-type 7"^ ; however, this is unnecessary in the above specified 2-

way interactions if the forgetting rate of the worker is low (95%), if an employer can reduce the 
worker transfers to every 250 units, or if the number of tasks learned is kept at two.

Thirdly, the interaction effect of the R -value factor of the task was found to be inferior to the 
other factors; this concurred with the main effect conclusions. However, the R -value factor still 

may be of significance because the results suggest that even though the R -value factor has, 

overall, the second smallest main effect, it interacts closely with the task-type factor (a higher 

ranked main effect factor). Also, a task that has three times more motor than cognitive elements 

( i? ,/3 ) came within 1.1% of exceeding the lower interaction criterion, and as a result, nearly

caused the only exception for a best case 2-way interaction { C j i o ^ ^ y / a ) -  Furthermore, in the
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interaction N  / R , a task wiüi an R -value of three caused the number of tasks learned factor to 

be immaterial. Therefore, because of the above reasons, the significance of the R -value factor 

should not be entirely overlooked.

Finally, as in the LFCM, there is no additional benefit for the worker to learn three tasks instead 

of just two tasks. However, the results of the interaction effect suggest that the level of the 

number of tasks learned factor (TV) is insignificant if: the worker transfer policy is 250 in the 

C / N  interaction, the worker forgetting rate is low (95%) in the FR / N  interaction, the 

upfront training policy is FAP- 2  in the FAP I N  interaction, the task being performed is 

cognitive (7^)  in the T I N  interaction, or the R -value of the task is three in the N  f  R 

interaction.

4.13 Comparison of the results of model A with Jaber et 

al. (2003)

Jaber et al. (2003) conducted their experiment in order to answer the following three questions: 

(A) Will providing a worker upfront training reduce forgetting? (B) How does the frequency of 

worker transfers ( C  ) relate to forgetting? (C) Do the answers to the above questions A and B 

change as the number of tasks for which a worker is trained increases or for different forgetting 

rates? The interplay between the upfront training policy ( FAP )  and the worker transfer policy 

( C  ) in the LFCM was also examined. In this section, the results of Jaber et al. (2003) are 

compared with the results of modeling worker learning and forgetting using the DPLFM and are 

discussed as they relate to the aforementioned A, B, C questions and (D): the interplay between 

upfront training and transfer policy.

4.1.3.1 Discussion of question (A)

Jaber et al. (2003) concluded that, in the LFCM, increasing worker training from FAP — 0  to 

FAP — 1 to FAP — 2 reduced forgetting losses. The percentage improvement from 

FAP — 0 to FAP —  2 was 29.4% for the LFCM (see Table 4.2). It can also be concluded 

that, when using the DPLFM, increasing worker training from FAP — Q to FAP — I to 

FAP — 2 also reduces forgetting losses. Upfront training in the DPLFM reduces forgetting
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losses less than in the LFCM; this is evident since the overall relative improvement from

FAP -  0 to FAP  -  2 in the DPLFM was 17.2% (see Table 4.3).

4.1.3.2 Discussion of question (B)

Jaber et al. (2003) concluded that, in the LFCM, reducing the frequency of worker transfers 

(increasing the worker transfer policy from 10 to 25 to 250) reduces forgetting losses. The 

percentage benefit by changing the worker transfer policy from 10 to 250 is 24.1% for the 

LFCM (see Table 4.2). It can also be concluded that, when using the DPLFM, reducing the 

frequency of worker transfers reduces forgetting losses. However, the magnitude o f forgetting 

loss reduction provided by reducing the frequency of worker transfers in the DPLFM from 10 to

250 is less (14.5%) than that of the LFCM (see Table 4.3).

4.1.3.3 Discussion of question (C)

Due to the complexity of the interacting experimental factors, the conclusions made by Jaber et 

al. (2003) regarding question C are numbered and then referenced by the corresponding 

conclusions of model A. Also, the conclusions for the DPLFM in this section were acquired by 

examining the DPLFM results of model A in a suppressed format (similar to the results of Jaber 

et al. (2003)), see appendix section 7.5.

Conclusion (1) of Jaber et al. (2003) suggested that, in the LFCM, given a worker transfer policy 

o f 10, FAP — 1 was all that was needed to reduce forgetting losses at all forgetting rates when 

the number o f tasks learned was two, and (conclusion (2)) with a low forgetting rate when the 

number of tasks learned is three. Conclusion (3) suggested that, when three tasks are learned, 

and the forgetting rate is medium or high, there is additional benefit to providing more upfront 

training to FAP —2 .  Conclusion (4) suggested that, given no upfront training {FAP — 0), 
increasing the worker transfer policy from 10 to 25 is sufficient to counter forgetting losses for 

two tasks learned and a low forgetting rate. In conclusion (5) it was suggested that, given no 

upfront training {FAP — 0), for medium and high forgetting rates, and for three tasks learned, 

there is an additional benefit to increasing worker transfer policy to 250.

The results of this experiment suggest the following: conclusion (1) of Jaber et al. (2003) is true 

in the DPLFM with the exception of when a worker with a high forgetting rate (85%) performs a 

task with an R  -value of one-third {FR^^yTj^Ry^  ); in this case even upfront training to
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two times the standard number of units { F A P - 2 )  is ineffective in significantly reducing 

forgetting losses. However, conclusion (2) is true in the DPLFM at all task-types and R  -values. 

Conclusion (3) only concurs with the following DPLFM factor settings of

C xaF R ^/T ^^R ^l^ , J ? , , , Q o '^ 8 s % ^ ^ i/3  >

C ] o F R g s % ^ u R 3  'C j s P R g s Y o ^ c  R \/3  ’ ’ ^ 25^ ^ 85% ^ M ^ 3 ’ ^ 2 5 ^ ^ 5 % ^ M e d ^ l  '

C 2sF R ^soJuR y^ ,C ,,F R ,,oJ ,;R ,,  and C ^ ,F R ^ , .J y R , ,  at all other settings either

FAP — 2 is insufficient in providing forgetting loss reductions, FAP — 1 is all that is required 

to reduce forgetting losses, or even no upfront training is required at all {FAP — d )  to 

significantly reduce forgetting losses. Namely, only 12 out of the possible 72 factor settings 

specified within the criteria of conclusion (3) concurred with the LFCM. As a result, it is evident 

how influential the task-type and R  -value factors are at certain settings of N  and F R . 

Overall, conclusion (4) differs from the results of the LFCM because, given the settings of 

conclusion (4) of FAP — 0 , N  = 2 , and FR = 95% , the shop conditions in the DPLFM 

already provide significant forgetting loss reductions regardless of the level of the worker 

transfer policy. Also, interestingly, for the factor setting of NjFR^^^/TjyR^j-^, increasing the 

worker transfer policy is actually insufficient in significantly reducing forgetting losses, a further 

increase to C = 250 is required due to the inherent magnitude of the motor elements of the task 

at this setting. Conclusion (5) is also true in the DPLFM with the exception of when a worker 

with a medium forgetting (90%) rate performs a task Tç with an R  -value of one or three, or a

task T̂ ued with an 7?-value of three {FR^^^T^R^ ,FR^^^.JcR^,FR^^,Jiy^^R^). In these

cases, the amount of forgetting losses is so small initially that only an increase to a worker 

transfer policy of 25 is necessary to reduce forgetting losses. Also, conversely, even an increase 

to a worker transfer policy of 250 (C  = 25 0 ) in conclusion (5) is insufficient in reducing 

forgetting losses in the DPLFM when a worker with a medium forgetting rate (90%) performs a 

task 7 ^  with an R  -value of one-third {FR^^yT^R-^/-^ ), when a worker with a high forgetting

rate (85%) performs a task with an i?-value of one-third or one {FR^^oyT/yRi/2 or

)’ when a worker with a high forgetting rate (85%) performs a task with

an R  -value of one-third ( FR^^yT^^^Ry^ ).
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4.1.3.4 Discussion of issue (D)

The conclusions made by Jaber et al. (2003) regarding issue D are numbered and then 

referenced by the corresponding conclusions of model A. Conclusion (1) of Jaber et al. (2003) 

suggested that, given two tasks learned, a low forgetting rate (95%), a transfer policy of 10, and 

no initial training ( F A P  — 0  ), either increasing the transfer policy (to 25 or 250) or introducing 

initial training (to F A P  — 1 or F A P  — 2 )  would significantly remove forgetting losses. It is 

not necessary to both increase the transfer policy and provide upfront training, as either method 

alone is sufficient in reducing forgetting losses. Conclusion (2) stated that the general pattern in 

conclusion (1) holds as the forgetting rate increases to medium (90%) or high (85%) and/or the 

number of tasks learned increases to three. Conclusion (3) suggested that, given that three tasks 

are learned and a high forgetting rate, both providing upfront training and increasing the transfer 

policy are required to achieve maximum forgetting loss reduction.

Conclusion (1) of Jaber et al. (2003) is also true in the DPLFM. In fact, only the factor setting o f 

requires the use of either upfront training or an increased transfer policy to

reduce forgetting, all other factor settings within those specified in conclusion (1) are already 

significantly absent of forgetting losses even before any policy changes. Conclusion (2) is true in 

the DPLFM, with the exception of when a worker with a high forgetting rate learns two tasks o f 

type Tf^ with an R  -value of one-third ( Â 2^ ^ 85%^m^i/3 )’ '''hen a worker with a medium

forgetting rate learns three tasks of type with an R  -value of one-third ( N^FRgQ„/Tj^^ ^ 1/3)»

when a worker with a high forgetting rate learns three tasks of type Tf^ with an R  -value o f

one-third or one {N^FR^^„^Tf^Ry^, Nj^FR^^yT^R^ ), or when a worker with a high forgetting

rate learns three tasks of type with an -value of one-third ( -^1/3)» ®

these cases increasing the worker transfer policy and introducing initial training are not even 

sufficient in removing forgetting losses. Again, conclusion (3) is true in the DPLFM with the 

exception of when a task Ti^^d ^  -value of one-third ( ) is performed, or when

a task T y  with an R  -value of one-third or one {T|^R^|^ or ) is performed, in these

cases increasing the worker transfer policy and introducing initial training are not even sufficient 

in removing forgetting losses.
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It is interesting to note that all three issue (D) DPLFM conclusions suggested that the 

detrimental effect of performing a motor dominated task is such that the combined effort of 

providing upfront training and increasing the transfer policy may be insufficient in countering 

forgetting losses.

4.1.4 Implications of results for the five DRC issues

The five possible issues that affect DRC shop performance measures as given by Hottenstein and 

Bowman (1998) are: (1) worker flexibility, (2) centralization of control, (3) worker assignment, 

(4) queue disciplines, and, (5) cost of transferring workers. The results of model A are compared 

to these issues and are summarized briefly below.

4.1.4.1 Issue 1: worker flexibility (number of tasks learned)

Hottenstein and Bowman (1998) found that cross-training beyond two or three skills per worker 

does not significantly enhance DRC system performance. In model A, and in Jaber et al. (2003), 

it was evident that, overall (see row two, column four of Table 4.3), training workers beyond two 

skills does not benefit shop performance; and as a result, the results in model A concur with 

those of Jaber et al. (2003) and Hottenstein and Bowman (1998).

4.1.4.2 Issue 2: centralization of control (‘when’ rule)

The survey by Hottenstein and Bowman (1998) regarding centralization of control concluded the 

following: (1) an efficiency control rule that moves a worker as soon as the worker can be 

moved to a stage that he/she is most efficient is shown to be a superior rule under most 

conditions; (2) the degree of centralized control is not independent of the assignment rule; and, 

(3) centralized control only marginally reduces mean and variance of flow-time compared to 

decentralized control; and if the efficiency levels of the workers at various tasks differ, then the 

level-of-control-decision is far less dependent on the status of the queue but is determined by the 

time of the availability of a station where the worker is more efficient.

In model A, and in Jaber et al. (2003), the implications of the above conclusions are as follows. 

Regarding conclusion (1), in model A, it was assumed that a worker is equally efficient in all 

stages; therefore this analysis is not applicable. As for conclusion (2), the degree of 

independence of the centralized control was not addressed in either model A or in Jaber et al.
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(2003) because the worker was always assigned to the next available job and différent 

assignment rules were not examined. Regarding conclusion (3) in model A, and in Jaber et al. 

(2003), the K^ (the level of centralized control of jobs in stage / parameter), is neither 0 nor 1

but varies between these two values. More specifically, the level of centralized control is 

determined by the number of units processed. The worker moves from the station after a fixed 

number of jobs are completed ( C ) ,  e.g.: batch sizes of 10, 25, or 250. However, the conclusion 

(3) by Hottenstein and Bowman (1998) suggests that a level of control closer to 0 than to 1 is 

preferred. In model A (see row 13, column two in Table 4.3), and in Jaber et al. (2003), out of 

the possible levels of 10, 25 and 250, it was found that a worker transfer policy of 250 reduced 

forgetting losses most significantly. As a result, it can be inferred that the results of model A and 

those of Jaber et al. (2003) differed from those researched by Hottenstein and Bowman (1998) 

because they concluded that a centralized control policy was superior to a decentralized policy; 

albeit, Hottenstein and Bowman (1998) concluded that it was superior by only a marginal 

amount. Again, as for the remaining remarks in conclusion (3), the analysis in model A and in 

Jaber et al. (2003) is not applicable because the worker is assumed equal efficiency on all 

stations.

4.1.4.3 Issue 3: worker assignment

As previously mentioned, since the worker in model A and in Jaber et al. (2003) was always 

assigned to the next available job, different assignment rules were not examined.

4.1.4.4 Issue 4: queue disciplines

There are no arrivals in model A or in Jaber et al. (2003) until a unit is complete, therefore, it is 

a simple static, first-come-first-serve model. As a result, the comparison between different queue 

discipline rules was not made.

4.1.4.5 Issue 5: cost of transferring workers

There are no conclusions made in either model A or in Jaber et al. (2003) because no transfer 

delay was assumed and hence the costs of transferring workers was assumed zero.
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4.1.5 Model A conclusions
The purpose of the experiment conducted in model A was to determine if modeling worker 

learning and forgetting according to the dual-phase leaming-forgetting model (DPFLM) changed 

the conclusions made by Jaber et al. (2003), where worker learning and forgetting was modeled 

according to the LFCM. Determining if there was a difference may be important because the 

DPLFM is the only learning and forgetting model that closely models the seven characteristics 

of learning as summarized by Jaber et al. (2003), and theoretically models cognitive and motor 

learning elements that were validated experimentally; and as a result, model A may provide 

more appropriate conclusions regarding the effectiveness of DRC performance enhancing 

policies. The implications of the results of model A on the five possible issues that affect DRC 

shop performance given by Hottenstein and Bowman (1998) were also addressed.

The following conclusions can be made. Model A suggested that the DPLFM credits less benefit 

for an increased upfront training policy ( FAP ) and a less frequent worker transfer policy ( C ) 

than the LFCM (see Table 4.3 versus Table 4.2). The difference of benefit for FAP and C in 

the DPLFM is due to the additional consideration for the task-type that is being performed. This 

difference is evident in the discussions in sections 4.1.3.3 and 4.1.3.4 when a highly motor 

dominated task is being performed; especially when the R -value of the task is low. The results 

of model A suggest that the nature of the task being performed with respect to its learning rate 

( r  ) and proportion of cognitive and motor elements ( i? ) may be an important issue, and 

therefore, could be brought under consideration for future DRC research. The DPLFM is a 

model that can provide a measure that recognizes both these inherent task characteristics. In fact, 

the results of model A suggest that the task-type factor ( T )  is of such importance that the 

detrimental effect of performing a motor dominated task ( ) is such that the combined effort

of providing upfront training and increasing the transfer policy may be insufficient in countering 

forgetting losses in workers with a high forgetting rate ( FR = 85% ) when two tasks are 

learned, and in workers with a medium ( FR = 90%  ) and high ( Fi? = 85% ) forgetting rate 

when three tasks are learned.

It was also observed that upfront training was still an important factor in reducing the forgetting 

losses in the DPLFM; albeit at a slightly less degree than in the LFCM. In Jaber et al. (2003), it 

was suggested that since the results of the LFCM showed that upfront training was more 

important in the LFCM than in the VRVF, the LFCM more closely modeled tasks that were 

more dissimilar. The results of model A suggest that the DPLFM stresses the importance of 

upfront training more than the VRVF but less than the LFCM. As suggested by Jaber et al.
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(2003), what the worker does during an interruption period may affect the degree of forgetting 

losses. As a result, the inclusion of the similarity factor in model B of this thesis examines how 

the task similarity factor interacts with the DPLFM as compared with the LFCM. In addition, it 

was observed that further upfront training to F A P  — 2 was more beneficial in the DPLFM than 

in the LFCM. An interesting observation of model A was that performing task T ^  resulted in

less forgetting losses than performing , a task with an equal average learning rate. Also, it

was of interest to note that performing a task-type came within 0.5% of exceeding the upper

interaction criterion of the 2-way interaction F A P - 0 - R y^. As a result, it can then be

inferred that forgetting losses may be underestimated when the dual cognitive and motor task 

elements are not distinguished from each other as they are in the DPLFM.

Model A suggested that learning an additional task (from N = 2 to N = 3)  increases 

forgetting losses; however, the detrimental effect of learning an additional task was slightly less 

in the DPLFM than in the LFCM. Also, the number of tasks learned factor ( #  ) is insignificant 

in specific 2-way interactions if the worker transfer policy is 250, if the worker forgetting rate is 

low (95%), if the upfront training policy is F A P  — 2 ,  or if the task being performed is 

cognitive. Also, the interaction effect analysis of model A illustrated how some factor settings 

reduce the influence of the levels of less significant factors. For example, given upfront training 

levels of F A P  — 1 or F A P  — 2 in the 2-way interaction T  /  F A P  , performance is insensitive 

to the change in task-type, whereas, conversely, given any task-type, providing just one-times 

the standard time number of units ( F A P  — 1 ) of upfront training is sufficient to significantly 

reduce forgetting losses. This observation stresses the importance of the magnitude of 

interaction between factors and how this interaction may affect conclusions drawn by only 

considering the factors individually (as in the main effect results).

As for the unique DPLFM factor interactions, it was found that, the interaction effect of the R - 
value of the task was found to be inferior to the other factors. However, the R -value factor still 

may be of significance because the results suggest that even though the R -value factor has, 

overall, the second smallest main effect, it closely interacts closely with the task-type factor (a 

higher ranked main effect factor). Also, a task that has three times more motor than cognitive 

elements iR y i^ )  came within 1.1% of exceeding the lower interaction criterion, and as a result,

nearly caused the only exception for a best case 2-way interaction ( ). Furthermore,

in the interaction N  /  R  ,a. task with an R -value of three caused the number of tasks learned
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factor to be immaterial. Therefore, because of the above reasons, the significance of the R -  

value factor should not be entirely overlooked.

The avoidance of producing a task of type is suggested by the results of model A; however,

this is unnecessary in specified 2-way interactions if the forgetting rate of the worker is low 

(95%), if an employer can reduce the worker transfers to every 250 units, or if file number of 

tasks learned is kept at two. Finally, in the DPLFM, the worker transfer level of 250 and upfront 

training (especially FAP — 2 ) remain important policies for reducing the harshest 2-way 

forgetting losses, as they were included in 10 (C = 250), nine {FAP —2), and six 

{FAP — \ )  out of the 34 special case 3-way upper interaction exceptions for reducing the 

harshest 2-way forgetting losses.

4.2 Model B results

Appendix section 7.6 contains the tables for the suppressed*** average processing time results 

for the DPLFM when two tasks (N  —2) and three tasks (N = 3) are learned with various 

degrees of similarity for the three worker transfer levels (C = 10, C = 25, C = 250).

Jaber et al. (2003) examined how the inclusion of the task similarity factor affected the results of 

the original assumption of no task similarity. The following section examines how the results of 

model B compare to those of Jaber et al. (2003), where the LFCM was used.

4.2.1 Comparison of the results of model B with Jaber et 

al. (2003)
Intuitively, what a worker does during an interruption period may affect the amount of forgetting 

that occurs. Jaber et al. (2003) suggested that a worker forgets less if he/she performs tasks that 

are similar during the interruption period. The original assumptions of the LFCM and the 

DPLFM were that the tasks performed are totally dissimilar; and hence, do not contribute to 

experience gained during an interruption. Jaber et al. (2003) concluded that the results of the

The theoretical average processing time is 1.04. For ease of interpretation, the results from 1.04 and 1.06 have been 
suppressed with a This is consistent with the fomatting of results of Jaber et al. (2003).
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LFCM with the similarity factor for two tasks learned suggested that the benefit or motivation to 

provide upfront training or a reduced transfer frequency decreases with increased similarity 

because the average processing times decrease as similarity increases. The model B results 

tables in appendix section 7.6.1 suggest that this is also true for the DPLFM, irrespective of the 

new factors of task-type ( T )  and the R -value of the task. It can be concluded that the DPLFM 

also attributes less forgetting losses with increased levels of task similarity; this concurs with the 

findings of Jaber et al. (2003).

However, for two tasks learned, the relative degree of forgetting loss reduction is less 

pronounced in the DPLFM than in the LFCM. This is evident when the change in the average 

processing times between task similarity levels is averaged irrespective of all other factors in 

each model, see Table 4.6. As shown in the shaded cells of Table 4.6, the overall reduction in 

average processing time from a task similarity level of 5 =  0 to ^ =  0.8 is less in the DPLFM 

than in the LFCM. It can then be inferred that forgetting loss reduction in the DPLFM is less

Table 4.6: Percent decrease in average processing times with increasing task 
similarity*** - the DPLFM versus the LFCM (N  = 2)

Change in the degree of 

task similarity (A 5 )

DPLFM LFCM

0.0 -0.2 -1.39% -1.91%

0.0 - 0.4 -2.75% -3.93%

0.0 - 0.6 -3.96% -6.20%

0.0 - 0.8 -5.07% -8.78%

The baseline for comparison is no task similarity, it is calculated as follows: 
[{APT(s = i)-APT(s= 0)}/APT(s= 0)]*m , where i =  0.0,0.2,0.4,0.6
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sensitive to changes in the degree of task similarity; and hence, there is slightly more motivation 

to reduce forgetting losses when performing similar tasks with upfront training or a reduced 

transfer frequency in the DPLFM than in the LFCM. Again, for the suppressed average 

processing time results in the DPLFM when three tasks are learned with various degrees o f task 

similarity (see appendix section 7.6.2), it is evident that forgetting losses reduction is significant 

as the task similarity level increases.

The conclusions made by Jaber et al. (2003) regarding the effect of the similarity fector on the 

LFCM when three tasks are learned are numbered as follows: (1) Jaber et al. (2003) concluded 

that, for the LFCM when three tasks are learned, when task similarity is low and forgettmg rates 

are high, extensive training ( FAP - 2 )  alone cannot completely reduce forgetting losses, and 

reducing the frequency of worker transfers is necessary to reduce forgetting losses; and (2) the 

results of Jaber et al. (2003) suggested, however, that as the degree of task similarity increases 

(S2 or greater), even a moderate amount of training {FAP — \ )  is sufficient in reducing 

forgetting losses without also having to resort to more frequent worker transfers.

Conclusion (1) of Jaber et al. (2003) is true with the exception of when a cognitive task (7^  )

with an R  -value of one is performed, when a median task ( ) with an R  -value of three is

performed, or when a uniform task^^  ̂with an R  -value of one-third or three is performed (bold 

font numbers in 85% forgetting rate column of the suppressed average processing time results 

for the DPLFM with the task similarity factor - C  = 10 ,A ^ = 3 ,se e  Table 4.7); in these cases 

extensive training ( FAP — 2 ) is sufficient in reducing forgetting losses without having to 

reduce the frequency of worker transfers. In addition, when a cognitive task (7^ ) with an 7? -

value of three is performed (bold and italicized font), just moderate training ( FAP - 1  ) is 

sufficient in reducing forgetting losses. Conclusion (2) of Jaber et al. (2003) is true with the 

DPLFM with the following exceptions: (a) when a cognitive task (7^  ) with an R  -value of

three is performed, in this case, tasks can be totally dissimilar (similarity factor of or greater) 

in order for moderate training ( FAP — 1 ) to be sufficient in reducing forgetting losses, (b) when 

a cognitive task with an R  -value of one, or when a median task ( ) with an R  -value of

three is performed, in these cases tasks can be even less similar (similarity factor of »Sj or 

greater) in order for FAP — 1 to be sufficient in reducing forgetting losses.

A s in model A , forgettmg losses may be underestimated i f  the cognitive and m otor task requirements are not accounted for.
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Table 4.7: Suppressed average processing time results for the DPLFM with the 
task similarity factor -  C = 10, TV = 3

Low forgetting 
rate o f 95%

Medium forgetting 
rate of 90%

High forgetting 
rate of 85%

Task-
Type R

Similarity
Factor
( f )

FAP-Ü F A P - \ F AP~ 1 F A P - ^ FAP-X F A P - l FAP-Q F A P - \ FAP- 2

So 1.1263 - - 1.7420 - - 2.0664 1.2708 1.1274

1/3 s ,
Sz :

- 1.6165
1.4097

- - 1.9494 
1.7521

1.1365 -

S3 - - - - - - 1.2537 - -
So - - - 1.4647 - - 1.8559 1.1903 -

T n I s , - - - 1.3355 - - 1.7331 - -
c Sz - - - 1.1110 - - 1.5284 - -

S3 - - - - - - - - -
So - - - 1.0833 - - I .47II - -

3 s , - - - - - - 1.3361 - -
Sz - - - - - - 1.0946 - -
S3 - - - - - - - - -
So 1.7488 - - 2.3971 1.1351 1.1079 2.6494 1.4259 1.3012

1/3 s , 1.6160 - - 2.2934 - - 2.5583 1.3008 1.2062
Sz 1.4007 - - 2.1180 - - 2.3982 1.1180 1.0936
S3 1.0733 - - 1.6663 - - 1.9671 - -
So 1.3887 - - 2.0008 - - 2.3408 1.3416 1.2275
s, 1.2530 - - 1.8835 - - 2.2349 1.2105 1.1083

T m Sz - - 1.6888 - - 2.0543 - -
Sj - - - 1.2186 - - 1.5878 - -
So - - - 1.6476 - - 1.9818 1.2181 1.0805
s , - - - 1.5207 - - 1.8627 1.0833 -
Sz - - - 1.3132 - - 1.6637 - -
S3 - - - - - - 1.1724 - -
So 1.4156 - - 2.0616 1.0919 - 2.3549 1.3814 1.2599

1/3 s, 1.2772 - - 1.9451 - - 2.2491 1.2475 1.1343
Sz - - - 1.7505 - - 2.0676 - -
S3 - - - 1.2689 - - 1.5943 - -
So 1.0811 - - 1.7204 - - 2.0906 1 2697 1.1301
Si - - 1.5957 - - 1.9751 1.1379 -

'^Med
1

Sz - - - 1.3911 - - 1.7803 - -
S3 - - - - - 1.2895 - -
So - - 1.3773 - - 1.7287 1.1005 -

3 s,
Sz

- - - 1.2432
;

1.6030
1.3956

S3 - - - - - - - -
So - - - 1.6480 - - 1.9866 1.2271 -

1/3 Si
Sz

- - - 1.5175
1.3025

- - 1 8654 
1.6615

1.0824

S3 - - - - - - 1.1477 ■ ■

So 1.0850 - - 1.7472 - - 2.1198 1.2937 1.1291

T u 1 Si
Sz

- - - 1.6194
1.4075

- 2.0034
1.8045

1.1559

S3 - - - - - 1.2905 - -

So _ - 1.6480 - - 1.9866 1.2271 -

3 Si
Sz

- - 1.5175
1.3025

- - 1.8654
1.6615

1.0824

S3 - - - - - - 1.1477 - -
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and, (c) when a motor task ( ) with an i? -value of one-third is performed, in this case tasks

need to be almost totally similar (similarity factor of or greater) in order for moderate

training (F A P - l)  to be sufficient in reducing forgettmg losses. The aforementioned 

exceptions to conclusion (2) are illustrated in Table 4.7 by shaded numbers.

Also, for three tasks learned, the degree of forgetting loss reduction is less pronounced in the 

DPLFM than in the LFCM. This is evident when the change in the average processing times 

between task similarity levels is averaged irrespective of all other factors in each model, see 

Table 4.8. As shown in shaded cells-of Table 4.8, the overall reduction in average processing 

time from a task similarity level of S q to S-̂  is less in the DPLFM than in the LFCM. It can

then be inferred that forgetting loss reduction in the DPLFM is also less sensitive to changes in 

the degree of task similarity when three tasks are learned; and hence, there is slightly more 

motivation to reduce forgetting losses when performing similar tasks with upfront training or a 

reduced transfer frequency in the DPLFM than in the LFCM. These findings also support the 

deduction made in the main effect results of model A that the DPLFM accrues less importance 

on the dissimilarity of the tasks being performed than the LFCM. Also, Jaber et al. (2003) 

concluded that it is possible to use greater flexibility in shops with similar tasks. The results of 

model B suggest that this is even truer for the DPLFM (see shaded values of the DPLFM versus 

the LFCM column in Table 4.9). For example, Jaber et al. (2003) concluded that the assumption 

of the LFCM with no task similarity suggested that an increase to N = 3 provided no further 

benefit.

The overall average processing time in the LFCM when two tasks are learned (N  = 2) 

(irrespective of all factors) is 1.16 (see bold font number in the N = 2, j  = 0 cell of Table 

4.9). The equivalent value for the DPLFM is 1.07 (also in bold font). It can then be inferred that 

a combination of factors yielding an average value equal to or less than 1.16 for the LFCM, or 

1.07 for the DPLFM, may suggest an equally feasible policy. As shown in the shaded N = 3 

values for the LFCM, tasks should have a similarity of at least or greater in the LFCM for 

N  = 3 to be as feasible as N = 2 with no similarity. However, in the DPLFM, only a task 

similarity of S 2 or greater is necessary for the feasibility of training workers for three tasks. 

Therefore, the results of model B indicate that it may be even more feasible than suggested by 

Jaber et al. (2003) that it is possible to use greater flexibility in shops with similar tasks.
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Table 4.8: Percent decrease in average processing times with increasing task
similarit)/^^ - the DPLFM versus the LFCM (N  = 3)

Change in the degree of 
task similarity DPLFM LFCM
So -  Si -2.83% -4.37%
So -S g -6.00% -9.58%
So -S 3 -9.97% -16.43%

Table 4.9: Average processing times with respect to number o f  tasks learned 
and task similarity factor -  the DPLFM and the LFCM

DPLFM LFCM

N  = 2

0.0 1.07

N  = 2

0.0 1.16
0.2 1.06 0.2 1.14
0.4 1.04 0.4 1.12
0.6 1.03 0.6 1.09
0.8 1.02 0.8 1.06

N  = 3

So 1.14

N  = 3

So 1.29
Si 1.11 S i 1.24
S2 1.07 S2 1.17
S3 1.03 S3 1.08

4.2.2 Implication of results for the five DRC issues

The five possible issues that affect DRC shop performance measures as given by Hottenstein and 

Bowman (1998) are: (1) worker flexibility, (2) centralization of control, (3) worker assignment, 

(4) queue disciplines, and, (5) cost of transferring workers. The results o f model B are compared 

to these issues and are summarized as follows.

*** The values in Table 4.8 are calculated as in Table 4.6
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4.2.2.1 Issue 1: worker flexibility (number of tasks learned)

Hottenstein and Bowman (1998) found that cross-training beyond two or three skills per worker 

does not significantly enhance DRC system performance. In model B, and in the sumlarity 

section of Jaber et al. (2003), it was evident that training workers for up to three skills may be 

possible without severe forgetting losses in cases where there is similarity between tasks. 

Furthermore, the results of model B indicate that it may be even more feasible than suggested by 

Jaber et al. (2003) that it is possible to use greater flexibility in shops with similar tasks. As a 

result, the results in model B support those of Jaber et al. (2003) and Hottenstein and Bowman 

(1998).

4.2.2.2 Issue 2: centralization of control (‘when’ rule)

The survey by Hottenstein and Bowman (1998) regarding centralization of control concluded the 

following: (1) an efficiency control rule that moves a worker as soon as the worker can be 

moved to a stage that he/she is most efficient is shown to be a superior rule under most 

conditions, (2) the degree of centralized control is not independent of the assignment rule, and, 

(3) centralized control only marginally reduces mean and variance of flow-time compared to 

decentralized control; and if the efficiency levels of the workers at various tasks differ, then the 

level-of-control-decision is far less dependent on the status of the queue but is determined by the 

time of the availability of a station where the worker is more efficient. The implications of the 

results of model B regarding the above three issues are the same as in model A.

4.2.2 3 Issue 3: worker assignment

As previously mentioned, since the worker modeled in model B and in Jaber et al. (2003) was 

always assigned to the to the next available job, different assignment rules were not examined

4.2.2.4 Issue 4: queue disciplines

There are no arrivals in model B or in Jaber et al. (2003) until a unit is complete; therefore, it is 

a simple static, first-come-first-serve model. As a result, the comparison between different queue 

discipline rules was not made.
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4.2.2.5 Issue 5: cost o f transferring workers

There are no conclusions made in either model B or in Jaber et al. (2003) because no transfer 

delay was assumed and hence the costs of transferring workers was assumed zero.

4.2.3 Model B conclusions

It can then be concluded that when worker learning and forgetting is modeled according to the 

DPLFM, the effect o f the task similarity factor is affected by the type o f task that is being 

performed with regards to the effectiveness of upfront training, frequency o f worker transfers, 

and the number o f tasks learned. The main findings of model B are as follows: (1) the results 

suggest that the DPLFM may emphasize a greater benefit for upfront training and more a 

frequent worker transfer policy than the LFCM when tasks are similar, and (2) model B 

supported the conclusions o f Jaber et al. (2003) by an even greater extent that it is possible to 

use more flexibility (up to three tasks learned) in DRC shops with similar tasks, and, (3) the 

findings support the deduction made in the main effect results o f model A that the DPLFM 

accrues less importance on the dissimilarity o f the tasks being performed than the LFCM. 

Consequently, the results o f model B suggest that the task-type factor, as modeled by the 

DPLFM, could also be included in DRC research when task similarity factors are examined.

4.3 Model C results

4.3.1 Preliminary main effect analysis of C* and FAP*

An optimization search routine was programmed in Excel-Visual Basic. This computer 

procedure searched for the optimal set o f output variables ( FAP*, C* ) for each corresponding 

combination o f input variables (s ,p ,LR,FR) . This produced a 5(degree o f task similarity 

( 5 ))x5(initial processing time to standard time ratio (p ))x5(w orker learning rate 

(LR ))x5(worker forgetting rate {FR))  table o f results yielding 625 optimized values o f the
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upfront training policy {F A P  ) and the centralization of control policy ( C  ). The tables of 

results are given in the appendix section 7.7. As previously mentioned, the search range of 

FAP' was {FAP -  0 -  FAP -  5 } in increments of 0.5 x and the search range of C* 

was {10-250 units} in increments of one unit.

Initially, the main effect of each input variable (s,p,LR,FR) on the output variables

(FAP' ,C ' ) -were calculated. As previously mentioned, the main effect can be defined as the

change in response or output caused by the change in a level of the factor in question 

(Montgomery, 1997). In this analysis, the main effect of each input variable on the optimized

level of FAP and C was found by averaging each optimized value of FAP and C 
irrespective of the other levels of the input variables. For example, the effect of the degree of

similarity was calculated by averaging all of the FAP and C values at each level of 

5(0.0,0.2,0.4,0.6,0.8) over all of the levels of (2,3,4,5,6), (70%,75%,80%,85%,90%),

and F/?(95%,92.5“/o,90%,87.5%,85%). A s a result, the effect of the degree of similarity on

both C and FAP was found by plotting the main effect of C and FAP at each level of 

5 . This was performed for each input variable. This was done to determine if  there were any 

mathematical trends between the levels of each input variable and the resulting optimized output 

variable. This section examines the behaviour of the main effect of each input variable on each 

of the output variables, the justification for their apparent mathematical relationship, and the 

conclusions that can be drawn from this analysis.

The resulting main effect calculations resulted in a total of eight plots; four for each o f the input 

variables versus each output variable C* and FAP*.

4.3.1.1 Main effect analysis of C*

The main effect results for C* are given in Table 4.10. The results in Table 4.10 are 

subsequently illustrated as scatter plots that are used for analysis and discussion.

4.3.1.1.1 C* versus s

The scatter plot of the main effect behaviour of C with degree of task similarity ( 5 ) is given in 

Figure 4.3. As shown in Figure 4.3, the average optimal batch size appears to decrease with
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Table 4.10: The main effect o f  each input variable versus level o f  C*

Input variable Level C*
Degree of task similarity ( ̂  ) 0.0 109.0

0.2 94.5
0.4 75.8
0.6 50.0
0.8 24.3

Initial processing time to standard 
time ratio { p )

2 137.0
3 100.7
4 33.5
5 28.6
6 53.9

Worker learning rate ( LR ), where 
LR = \Q0x2~‘’

70% 87.0
75% 67.9
80% 54.2
85% 96.0
90% 48.6

Worker forgetting rate {FR),  
where FR = 100 x 2^

95% 35.4
92.5% 52.3
90% 74.0
87.5% 91.4
85% 100.6

120

100

40

0.70.6 0.80.50.40.30.1 0.2

Figure 4.3: Plot o f C versus s
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increasing levels of task similarity. This observation concurs with the results of Jaber et al. 

(2003) when it was noted that “..forgetting losses decrease with increasing similarity, Aere is 

less motivation to provide upfront traming or reduce transfer frequency.” Figure 4.3 also concurs 

wiA Ae mathematical relationship between the number of units remembered and Ae degree of 

task similarity. For example, Ae relationship between S and Ae foi^et curve intercept is given 

by (Jaber et al., 2003):

(1 -  y ”, i f  («/ +  «/ ) < n ,
*

(1 - (u^+n^)  ̂ +sy, , otherwise

Simplifying equation (4.7) suggests a direct relationship;

jp ,.( l)~ 5 , (4.7a)

insomuch as when s  mcreases in Ae range (0  < 5 < 1 ), j), (1) mcreases.

Therefore, in a similar manner, simplifymg equations (2.2) and (2.7) give:

and

M, ~  . (4.8a)
<!>i

Consequently, substituting s  through equations (4.7a) to (4.8a) gives Ae following:

(4.9)

The relationship in (4.9) suggests Aat when Ae degree of task similarity mcreases ( 0 < j  < 1 ), 

Ae amount of experience retained at the beginning of cycle i  also mcreases, representing a 

decrease in forgetting losses between cycles. This also concurs wiA Ae relationship shown in 

Figure 4.3, because, as Ae degree of task similarity increases, forgetting losses decrease, and 

Aerefore, Aere is less mcentive to mcrease C .
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4.3.1.1.2 C* versus LR

The scatter plot o f the main effect behaviour o f C  versus learning rate is given in Figure 4.4.

Figure 4.4 suggests that C  tends to decrease as the learning rate slows; this is evident between 

learning rates o f 70% to 80%. This behaviour is contrary to intuition because it can be assumed 

that, as learning deteriorates, batch sizes should increase to compensate for the large forgetting 

losses. However, increasing C  greatly magnifies the detrimental effect o f a slow learner. This is 

illustrated by plotting a graph o f the average processing time ( A P T  ) versus the worker 

learning rate for several values o f C  (no initial training; F A P  -  0 ), see Figure 4.5.

As shown in Figure 4.5, larger lot sizes (longer production cycles) become increasingly more 

effective in reducing A P T  values as learning slows. This observation is consistent with 

intuition but is also contradictory to the results depicted in Figure 4.4. However, it is important

to reiterate that the data points in Figure 4.4 are the ‘minimized’ value o f C  (or C  ) for all 

possible combinations of the factors previously mentioned in Table 3.5. As a result, averaging 

the values as in Figure 4.5 is beneficial for overall trends in forgetting losses but does not 

account for interactions between factors that have yielded optimized factor settings that only the 

search procedure in model C could have found. For example, factor interactions are overlooked 

by only examining one factor such as ‘worker learning rate’. As previously mentioned, the 

interaction effect is when the change in response (output) between the levels o f one factor is not 

the same at all the levels o f the other factors (Montgomery, 1997). Montgomery (1997) clearly 

outlines this caveat o f interactions when analyzing factors by using a simple example of a golfer 

experimenting with factors to improve his golf score, see Figure 4.6. As shown in Figure 4.6, the 

effect o f the type-of-beverage-consumed factor (W-water versus B-beer) has little effect on the 

golf score when the regular-sized driver factor is used. However, at the other driver factor setting 

o f ‘oversized driver’, the beverage factor is significant. Using this analogy in model C, this 

interaction effect is evident when the level of initial training moves from FAP — 0  to 

FAP — \ . Figure 4.7 illustrates the unique changes in the average processing time as initial 

training is introduced. Figure 4.7 reveals that, with some initial training ( FAP — 1 ), and as 

learning slows, the minimized value of C  changes from C  = 300 when learning is 70% to 

C* = 10 when learning is 80%.
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Figure 4.5; Average processing time {APT)  versus learning rate 
{FAP-Q)  for several values of C {s -Q, N - 2 ,  FR = 0.9, p  = 4)
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This observation is different than the result shown in Figure 4.5 where there was no initial 

training. As a result, this observation supports the conclusion that unique factor interactions may 

result in optimized performance measures that cannot be readily observed by just examining the 

performance behaviour at one factor setting. Also, unique factor interactions that yield 

minimized points cannot be found by averaging across factors such as in Figure 4.8, where the 

average processing time ( T  ) for both FAP-0  and FAP-I  were averaged.

Consequently, the results of Figure 4.4 are minimized values of C (C ) that are found in the 

search routine of model C. This search routine included all the possible interactions of all the 

factors, and therefore, do not necessarily reflect overall trends concerning average processing 

times ( APT ) versus worker learning rate. This is true for all of the following main effect 

analyses of the optimized centralization of control policy (C ) and the optimized upfront 

training policy ( FAP* ). Having said this, however, some trends in the optimized values of 

FAP and C can be explained by examining the mathematical trends of the main factors. For

example, Figure 4.4 also depicts C increasing to a maximum at a learning rate of 

approximately 85% before decreasing again at a learning rate of 90%. In order to further 

investigate the reasons for this behaviour, a 3-D plot of the time to total forgetting ( D  ) as a 

function of the worker learning rate and the initial specified forgetting rate was constructed as 

shown in Figure 4.9. Where the time to total forgetting ( D )  is related to the transfer size and the 

learning and forgetting rate by:

D(6,/,C) =
6(l-è)log(C)

10  ̂ -1 x A P T 1, (4.10)

and APT^ is the actual processing time in the first production cycle and is given by:

T(1) r̂ X-b

In all the models of this thesis, the time for total forgetting ( D )  is calculated in the first 

production cycle and remains constant throughout all subsequent cycles. As a result, the time for 

total forgetting calculated in the initial cycle has a large effect on the forgetting slopes of 

successive cycles, and as a result, may affect the final performance measure; namely, a large D  

should contribute to improved performance since forgetting in successive cycles should be less

108



severe. As shown in Figure 4.9, varying the range o f f  has a relatively insignificant effect on 

D  as compared with varying LR . For example, it is not until the initial forgetting rate is as 
slow as 95% { f  ~ 0.088) that the time to total forgetting {D )  increases by any significant

amount. Also, as illustrated in Figure 4.9, it is only at this low range o f initial forgetting ( FR > 
94%) that the effect o f varying the learning rate affects D , whereas, at other levels of f ,

varying b has little effect on the magnitude o f Z). As a result, if the effect o f LR on D  is to 

be examined it must be done at low initial forgetting rate levels. The effect o f varying LR at an 

initial forgetting rate o f 95% is shown in leftmost section o f Figure 4.9. It appears that Z) is a 

concave function throughout the chosen range o f b at this initial forgetting rate level, achieving 

a maximum value when;

ÔD
db

=  0 . (4.12)

2.58+16

1.58+16

l8+ie

Figure 4.9: 3-dimensional plot of Z) as a function of b and f  with ranges of 
0.074 < b < 0.862 and 0.074 < /  < 0.234; where C and p  are kept constant at 
100 and 4 respectively, (j  = 0)
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Keeping /  constant at 0.074 (FR =  95%) and C and p  constant at 100 and 4 respectively 

gives:

dD
db

^  A (l-A )log (100 )

2Q  0.074 - 1
4(100) l-b

(100)'-*
l - b

\ - b

»(1 -A )log (100 )

1 1

10 0.074

logio g
( l-2 6 )x

\ - b  log,00 e

log(lOO)
0.074

= 0. (4.13)

Solving for b using bisection gives b  = 0.4997, or LR -  70.7%. Therefore, as the learning 

rate quickens in these circumstances ( /  = 0.074, C  = 100, p  = 4), the time to total forgetting 

initially increases from a learning rate of LR = 95% to LR — 70.7%. In other words, when a 

worker learns quickly (0.75 < 6 < 1) he/she also tends to forget quickly, corresponding to a 

small D . This concurs with the findings of Nembhard (2000), and Nembhard and Uzumeri 

(2000). When the learning rate of the worker slows (0.25 < b < 0.75), the worker remains at the 

job for a longer period of time, therefore he/she requires a longer time to totally forget; a 

maximum D is reached when b =  0.5 ( LR = 70.7%). However, if the learning rate of the 

worker is very slow 0 < b < 0.25 (100% < LR < 84%), little is learnt in slow-learning 

workers; therefore this small amount is forgotten quickly. As a result, for a given value of f  

and C , the value oi D is a bell-shaped curve reaching a maximum value at 6 = 0.5 ( LR = 

70.7). However, the maximum value of D at LR = 70.7% does not correspond with the 

findings concluded by Figure 4.4 because the location of this critical point ( LR ) is not similar 

to the location of the maximum C  ( C  ) in Figure 4.4. Furthermore, the range of LR in model 

C is 70% < LR < 90%, this is outside the range that would reveal the bell-shaped function 

illustrated in Figure 4.9. As a result, the critical point depicted in Figure 4.4 cannot be attributed 

to the phenomenon of the maximum point illustrated in Figure 4.9 and must be a result of some 

other model parameter. This was investigated further by averaging the performance measure of 

APT within the range of the upfront training policy ( FAP ). For example, if the performance 

measure ( APT ) versus C  is plotted again at FAP — 1 instead of FAP — 0 , the following 

functions result, see Figure 4.10.
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F igure 4.10: Plot o f  Average processing time { A P T )  versus C  for all F A P  — \  
values averaged across all forgetting rate levels at p  =  4 ( j  =  0, A  = 2 )

As shown in Figure 4.10, the minimal APT value occurs at different transfer policy levels. For 

example, it is clear that the minimal A P T  value for a learning rate o f 70% occurs at a 

maximum C value. However, as learning slows (corresponding to increasingly darker lines) the 

minimized A P T  value is located at shorter transfer times; 70% learning ( C  = 300 units), 

75% ( C  = 300 units), 80% ( C = 10  units). However, when learning is 85%, the transfer time 

increases to C* = 50 units. This observation corresponds to the increase in C  at L R  = 85% 

in Figure 4.4 to a level nearly as high as when L R  = 70% then decreases to a lowest value of

C* = 53.46 at L R  = 90%. Therefore, the behaviour depicted in Figure 4.10 concurs with that 

o f Figure 4.4 that performance tends to improve**** greatly before it worsens.

This peculiar behaviour was further investigated by plotting the relationship between time-for- 

total-forgetting in the first cycle versus the learning rate o f the worker for different levels o f 

initial training, as shown in Figure 4.11. The graph in Figure 4.11 provides a plot o f the equation 

o f time to total forgetting { D )  against the three initial training policies of model C. Intuitively, 

the plot o f the equation depicts what is expected for the time to total forgetting ( D  ) as the 

learning rate slows at a setting o f F A P  -  0 .  However, the plot of D  corresponding to 

F A P  — 1 and F A P  — 2  appears to increase after a learning rate of approximately 90% and 

reaches a maximum at 95% before decreasing again. The explanation for this behaviour is given 

as follows.

4 .5.

' Larger batch sizes are required, suggesting lower forgetting losses; see previous explanation accompanying Figure
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Figure 4.11: T im e to  to tal forgetting ( D )  in  the first cycle versus learning rate for 
different levels o f  initial training (C  =  100, FR  =  88% , s  — 0, N  = 2, p  = 4)

For example, given C  = 100, the upfront training policy is such that, in a FA P  —I or 

FAP —2 situation, the worker in the initial cycle only produces a lot size of 100 in situations 

of high-leaming. At a fast learning rate the lot-size is greater than the number of units needed to 

reach the low number o f units needed to reach standard time ( ) of the worker. As the

learning rate deteriorates, the time for total forgetting decreases, and thus the optimal policy 

decreases as previously explained (see pg. 158) from LR = 70% (6  = 0.515 ) to L R  = 87% 

{b = 0.201). However, if the learning rate decreases to such a point as to cause to be greater 

than the batch size (100), he/she remains at the first station and produces more than the batch 

size until the standard number of units M, (in a FAP — 1 situation) or twice the standard

number of units 2n^ (in a FAP  — 2 situation) are produced. Since such a low learning rate

causes the worker to have such a high , this large amount increases the value of C  greater

than if the learning rate of the worker was faster. However, this benefit reaches a maximum 

value at a certain learning rate (depending on the level of p )  and then decreases as the

detrimental effect of a low learning rate outweighs the benefit of producing a large initial 

training batch. Also, as expected, the plot of FAP — 0 is identical to that of the equation plot 

since there is no initial training.

However, the learning rate at which the time to total forgetting ( Z) ) reaches a maximum is 

dependent of the value of p . Since A P T  is dependent on p  it follows that D  is also 

dependent on p . This relationship is plotted in Figure 4.12.
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Figure 4.12: Time for total forgetting (Z)) in the first cycle versus learning rate for 
different p  -values (C = 100, FAP — l ,  FR = 88%, s = 0 ,  N  = 2)

As shown in Figure 4.12, the learning rate at which D  reaches a maximum differs according to 

the value o f p . The maximum value o f D  is greater and occurs earlier as p  increases. This is

because increases exponentially with p , as given by:

n, = (4.14)

This causes the experience gained by producing the standard number o f units to increase, 

thereby increasing the length o f time required to totally forget acquired experience. Also, as 

shown in Figure 4.12, the average of the range o f the value o f p  yields an optimal learning rate 

value o f approximately 85%. Consequently, this finding explains the reason for the convexity 

found at an 85% worker learning rate in Figure 4.4.
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43.1.1.3 C* versus p

The scatter plot of the main effect behaviour of C  with p  is given in Figure 4.13.

Figure 4.13: P lo t o f  C  versus p

Figure 4.13 suggests that C  decreases as p  increases from p  = 2 to 5, and then increases at 

p  =6. Again, examining the general overall trend in APT versus p  and C  does not 

necessarily explain why the plot in Figure 4.13 behaves as it does. For example, in Figure 4.14, a 

3-D plot of the time to total forgetting ( £) ) as a fimction o f p  and C  was constructed.

.APT

Figure 4.14: 3-dim ensional p lo t o f  average processing tim e (^APT)  as a function  
o f  p  and C  w ith ranges o f  2 <  p  < 6  and  100 <  C  <  300; w here b and  f  are

kep t constant a t 0.152 {LR =  90%) and  0.322 {FR = 80%) respectively 
{FAP-0,  s =0,  N  =2)
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As shown in Figure 4.14, and in most instances o f p , performance worsens as p  increases. 

This is intuitive because more learning is required simply because the initial unit processing 

time is greater. However, an exception to this is found in cases when learning is fast and 

forgetting is slow. For example, in Figure 4.15, when the learning rate is 70%, forgetting rate is 

95%, and C  = 10, it appears that the average processing time increases in the range 

2 < p  < 3 , reaches a maximum at p  ~ 2, and actually decreases when p  >2.

F ig u r e  4.15: 3 -d im en sio n a l p lo t o f  average p ro cessin g  tim e ( A P T  ) as a fu n c tio n  
o f  p  a n d  C  w ith  ranges o f  2  <  p  < 6  and  100 <  C  <  300; w here  b and  f  a re  

k e p t c o n s ta n t a t  0.515 {^LR — 70% ) and  0 .074 {^FR — 95% ) respectively. 
{ F A P - \ , s  -  Q, N  = 2 )

Since the model C search procedure would have found the exceptions to the A P T  behaviour 

with respect to p  and C ,  as found in the parameters used to construct Figure 4.15, it is

logical that the minimized values of C  found in Figure 4.13 do not necessarily conform to 

‘average’ behaviour (as in Figure 4.14) but are equal to extreme values o f A P T  as shown in 

specific combinations o f parameters such as F A P  — 1, L R  = 70%, F R  -  95%, C  = 10, and 

S  = 0 .

4.3.1.1.4 C* versus F R

The scatter plot o f the main effect behaviour o f C* versus forgetting rate is given in Figure 

4.16. Figure 4.16 suggests that C* decreases as the worker forgetting rate slows from a high 

forgetting rate o f F R  = 85% to low forgetting o f F R  = 95%.
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Figure 4.16: Plot of C versus FR

This is as expected because as the worker forgetting rate slows, the shorter batch sizes are 

allowed because total forgetting losses are less when the initial forgetting rate is slower. As 

previously mentioned, the time for total forgetting {D)  calculated in the initial cycle has a large 

effect on the forgetting slopes of successive cycles and is dependent upon the initially specified 

forgetting rate. The value of D remains constant throughout successive cycles. However, as 

shown in Figure 4.9, varying the range of f  has a relatively insignificant effect on Z) as

compared with varying b . Nonetheless, varying the initial worker forgetting rate has a 

detectable affect on the average processing time, see Figure 4.17.

Figure 4.17: 3-dimensional plot of average processing time (APT)  as a function 
of FR and C with ranges of 85% < FR < 95% and 100 < C < 300; where b 
and p  are kept constant at 0.322 (LR ~ 80%) and 4 respectively (FAP — 0, s — 
0, N  =2)
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As shown in Figure 4.17, the feasibility o f transferring after smaller lot sizes increases as the 
worker forgetting rate slows.

4.3.1.2 Main effect analysis of F A P

The main effect results (which are the information for the plots) for FAP* are given in Table 

4.11.

Table 4.11: The main effect o f each input variable versus level o f  FAP*

Input variable Level FAP*
Degree o f task similarity {s) 0.0 0.788

0.2 0.844
0.4 0.972
0.6 1.148
0.8 1.252

Initial processing time to 
standard time ratio ( p  )

2 1.296
3 1.136
4 0.804
5 0.876
6 0.892

Worker learning rate ( LR ), 
where LR =  100 x 2 *

70% 1.224
75% 0.912
80% 1.072
85% 0.904
90% 0.892

Worker forgetting rate {FR), 
where FR =  100  x  2^

95% 1.212
92.5% 1.068
90% 0.932
87.5% 0.884
85% 0.908

4.3.1.2.1 FAP versus s

The scatter plot o f  the main effect behaviour o f FAP* with degree of task similarity ) is 

given in Figure 4.18.
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F ig u re  4.18: P lo t o f  FAP  versus s

Figure 4.18 suggests that FAP  increases as the degree of task similarity increases {s) .  As 

previously mentioned, examining one main effect may not fully explain the reasons for the

above FAP  values. For example, the raw results of model C (see section 7.7) oscillate 

between an optimal upfront training policy of FAP — 0 , F A P  — l ,  and FAP —5 .  As a 

result, since Figure 4.18 just represents averaged results across all the specified levels of the 

parameters, the upward trend simply indicates more F A P - 5  results than FAP — 0  or 

FAP — l results.

For example, in the particular parameter setting used to construct Figure 4.19, an upfixmt 

training policy of FAP  -  5 always seems optimal.

F ig u re  4,19: 3-dim ensional p lo t o f  average processing tim e { A P T )  as a function  
o f  s  and FAP  w ith ranges o f  0 <  s < 0.8 and  0 <  F A P  <  5; w here b and  f  are 

kep t constan t a t 0.139 {LR = 80%) and  0.152 {FR  =  90% ) respectively {s = 
0, p  -  A, N  = 2 , C  = 100)
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However, if only one parameter such as the batch transfer size (C ) is changed from C = 100 

(Figure 4.19) to C = 250 (Figure 4.20), the plots suggest that a smaller upfront training policy 

such as FAP — 1 or FAP — 0 (instead o f FAP — 5 ) is the preferred upfront training policy, 

see Figure 4.19 versus Figure 4.20.

Figiite 4.20: 3-dimensional plot of average processing time ( APT ) as a function 
of s and FAP with ranges of 0 < s < 0.8 and 0 < FAP < 5; where b and f  are 
kept constant at 0.139 {LR — 80%) and 0.152 {FR = 90%) respectively ( f  = 
0, /) = 4, #  = 2, C = 250)

As shown later, the multivariate function g(s,p,LR,FR) = {FAP ,C ) accounts for aU 

these unique optimal points that may not be initially obvious by only examining the main effect 

but may occur at particular interaction combinations o f all the parameters listed in Table 3.5. As

a result, the remaining main effect of each input variable versus levels o f FAP (Table 4.11) 

are plotted with their general trend lines and are included in Figure 4 .21, Figure 4.22, and Figure 

4.23 without further analysis since their variation above and below FAP — 1 is so minimal that 

a detailed interaction analysis would be unwieldy given the minimal benefit o f obtaining this 

information. Furthermore, any overlooked interactions between any o f the factors is accounted 

for in the multivariate function that follows and their application is explicitly demonstrated in the 

numerical example supporting the use of this multivariate function.
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Figure 4.23: Plot of FAP versus FR
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4.3.2 Logistic regression equations and numerical 

example

4.3.2.1 Prologue

The distribution o f the 625 output variables for both the optimal batch transfer size policy ( C* )

and the optimal level o f upfront training policy ( FAP ) are illustrated by histogram plots given 

in Figure 4.24 and Figure 4.25.
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Figure 4.24: Histogram plot of the distribution of C values
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Figure 4.25: Histogram plot of the distribution of FAP values
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As shown in Figure 4.24 and Figure 4.25, the distributions of C* and FAP are irregular with 

few or no data points in the middle sections of the specified ranges. The optimal values appear to 

cluster at the extremes of both specified ranges of C and FAP . The reason for this unusual 

distribution is described as follows. Note that the data in Figure 4.24 and Figure 4.25 are 

‘optimized’ values of FAP and C that minimize the performance measure of the DRC system 

in question, namely; average processing (service) time ( APT ) calculated over approximately 

3000 jobs per station. In order to explain why the distributions in Figure 4.24 and Figure 4.25 

have these densities, it may help to plot four sections*"* of the behaviour o f the performance 

measure with respect to C and FAP, see the graphs in Figure 4.26(a), Figure 4.26(b), Figure 

4.27(a), and Figure 4.27(b).
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Figure 4.26(a): Plot of APT versus C = 0, = 2, p  = 5, LR = 80%,
FR = 85%)

Combination of factors allowing for a two-dimensional plot.
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Figure 4.26(b): Plot o f APT versus C (j  = 0, ='2., p  = 2 , LR = 90%,
FR = 95%)
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Figure 4.27(a): Plot o f APT versus FAP {s — 0, N  — 2, p  — 3, LR — 80%,
FR =  95%)

123



1.04

1.035

1.03

1.025

1.02

1.015

1.01

1.005

5 84 6 72 310

FAP

Figure 4.27(b): Plot of APT versus FAP {s — Q, N — 2, p  — 6, LR — 80%, 
FR = 92.5%)

As shown in the above graphs, depending on the levels of the input variables {s, p , LR, FR),

the shape of function of APT versus C and FAP varies greatly within certain variable 

settings. However, regardless of the shape of the function, the minimum value o f the 

performance measure usually appears at the extremes of the ranges. See the vertical dotted range 

bars in the graphs. For example, in Figure 4.26(a), the minimum value is located at the leftmost

range of C , C =10, and in Figure 4.26(b) (a change in the levels of p , LR , and FR from 

the settings used in Figure 4.26(a)), the minimum value is located at the rightmost range o f C , 

^  ~ 250. Similarly, with the graphs of APT versus FAP (Figure 4.27(a) and Figure 

4.27(b)), the minimum value is located at the rightmost range of FAP, FAP* = 5 in Figure 

4.27(a), and in Figure 4.27(b) (a change in the levels of p , and FR from settings used in

Figure 4.27(a)), the minimum value is located at the leftmost range of FAP, 0 < FAP* < 1.

As a result, fitting a function to the data using regular non-linear multiple regression was not 

feasible because it resulted in a function that provided outputs that occurred in the middle 

sections of the range. Namely, the function in the middle of the range was not representative of 

the actual result data, yet, in the process of regression, it was still recognized because the 

regression technique had to account for just a few data points occurring in the middle sections of 

the ranges. The problem of fitting a function to the peculiar distributions was circumvented by
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excluding a small fraction o f the data in each distribution and re-fitting the data using binary 

logistic multiple regression (professor Gharghouri, Dr. Kolasa, and Dr. Todorow, personal 

communication, 2003). Namely, the use of binary logistic regression necessitated creating a set

o f data with only two outcomes: ‘1’ or ‘O’. In the C  output data the ‘1’ data corresponded to

DRC shop situations where the optimal C equalled 250 units, whereas the 'O’ data

corresponded to C =10.

Likewise, in the FAP  output data, the ‘ 1 ’ data corresponded to DRC shop situations where the

optimal FAP  equalled five times the standard number o f units and the ‘0’ data corresponded

to 0 <  FAP  <  1, a policy ranging between no upfront training to one times the standard 

number o f units. The adoption o f logistic multiple regression necessitated excluding a total o f 52

data points located in the middle sections of the distributions of C and FAP  . As a result, 

only 91.7% (573/625) o f the total possible DRC situations as specified in Table 3.5 were 

accounted for by using this regression technique. This compromise was deemed as the preferred 

trade-off because the alternative of including all the data would result in either erroneous or 

irrelevant results.

Consequently, due to the distribution o f the output variables, the values were fitted to the 

functions in (3.10) and (3.11) using binary logistic multiple-regression. The following section 

provides a pseudo DRC shop situation and demonstrates the application o f the logistic 

regression equations with a numerical example.

4.3.2.2 Numerical example -  the application of the logistic 

equations

4.3.2.2.1 The logistic equations

As previously discussed, the results o f model C suggest that the optimal batch transfer policy

(C* ) is a binary result with ‘ 1 ’ corresponding to C ’ = 250 and ‘0’ corresponding to C* = 1 0 .

The calculation o f the optimal batch transfer policy (C*) is illustrated in the following 

numerical example. The goodness-of-fit tests for both logistic equations in (4.15) and (4.18) are
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given in the îç>pendix section 7.8.

The binary logistic regression equation for the optimal batch transfer policy ( C  ) for model C 

was calculated using SAS° statistical computer software and is given as follows (Cody and 

Smith, 1997);

Logistic Equation(C*) =
= log(oddsof C* = 250) , (415)

= 59.1698 -1.8838 X p -  6.5048 X j -  42.5111X F/Î -18.0364 X Zi?

where the ‘odds’ is defined by:

odds =  > (4.16)

and P is the probability.

Therefore, from (4.16), P is given by:

(4.17)
1 + odds

Similarly, since the results of model C also suggest that the optimal upfront training policy is a 

binary result with ‘1’ corresponding to FAP = 5 and ‘0’ corresponding to 0 < FAP < 1, 

the optimal upfront training policy ( FAP*) is calculated in a similar manner.

The binary logistic regression equation for the optimal upfront training policy (FAP*) for 

model C was calculated using SAS® statistical computer software and is given as follows (Cody 

and Smith, 1997):

Logistic Equation (FAP*) -
= \og(odds of FAP* = 5) . (4 .18)
= 3.0171-1.5797 X p  +1.5667 x  ̂+ 6.5473 x F R -  9.7559 x LR

As a result, the equations in (4.15) and (4.18) could assist the manager of a DRC shop in
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determ ining, w ithin a  g iven probability , w hether the  optim al batch  transfer size (C*) and the

optim al upfront train ing policy  ( FAP )  should be set a t their m inim um  o r m axim um  ranges.

43.2.2.2 Description of the pseudo DRC shop problems

4.3.2.2.2.1 DRC shop problem I

Consider a DRC shop that utilizes one worker to assemble two types of musical instruments: Rj

and V2 . Experimental data suggests that the worker has a learning rate o f 87.5% for this

particular set o f tasks.^^^^ The tasks of assembling the musical instruments V̂  and V2 consist o f

sub-task attributes given as follows: T a s k y = { A ,B ,C ,D ,Q ,Z ]  and

Tasky^ = The time to produce the first musical instrument K, or was

calculated as t (1) ~ 240 minutes.^^^* The worker is transferred back and forth between stations 

and some experience is lost during transfers; the rate at which this experience is forgotten is 

19%, or a forgetting rate of 81%.̂ ^®̂  The manger of the musical instrument shop has set an 

assembly time standard o f 114.3 minutes. Using the logistic equations in (4.15) and (4.18),

what will the manager suggest as an optimal batch transfer size policy ( C  ) and upfront training 

policy ( F A P  ) in order to minimize the DRC shop performance measure o f average processing 

(service) time ( A P T  ) calculated over approximately 3000 jobs per station?

4.3.2.2.2.2 DRC shop problem 2

Suppose the current employee o f the musical instrument DRC shop resigned and a new 

employee from another division was hired. His learning rate was obtained by performing similar 

work in the other division and was measured as 89%, a slower learning rate than the previous

employee. The manger has also replaced the assembly o f musical instrument F j wiA a new and

Musical instrument learning rates provided by Dar-El, 2000.
Musical instrument initial assembly times provided by Dar-El, 2000. 

Guidelines on forgetting rate selection are not available (Kher, 2000).
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improved design F j , an instrument that consists of fewer sub-task attributes than 

V2 : Tasky^ =  {B,C , Z )  . Also, the manager reduced the assembly standard time to y  ̂ = 43.6 

minutes. Again, using the logistic equations in (4.15) and (4.18), what will the manager suggest 

as a new optimal batch transfer size policy (C*)  and upfront training policy {,FAP  ) in order 

to minimize the DRC shop performance measure of average processing (service) time ( A P T  ) 

calculated over approximately 3000 jobs per station?

4.3.2.2.3 Solution of DRC shop problem 1

Initially, before any calculations can begin, the parameters s , p , L R , and FR  must be 

determined by examining the problem statement. The learning and forgetting rate o f the worker 

are stated explicitly and are as follows: LR  = 87.5 % and FR  = 81%. The initial processing 

time to standard processing time of the task ( yO ) is given by:

y. 114.3

The degree of task similarity between Tasky^ and Tasky  ̂  (.9) is determined by using 

equation (3.5). The required parameters are calculated as follows:

N{Tasky^ n T a sky^} = 2 ,

N{Tasky^} =  6 ,

N{Tasky^} =  4 ,

which gives:

2 X N {Tasky  n  Tasky } 2 x 2
s = --------------- '■-----------^  = -------= 0.4 (4 20)

N{FaskyJ + N{TaskyJ 6 +  4 ' ^

Therefore, the odds and probability of an optimal batch size transfer of C* = 250 to be 

required in order to minimize the performance measure (namely: average processing (service) 

time ( APT ) calculated over approximately 3000 Jobs per station) given that the ratio of initial 

processing time to standard processing time of the task ( p )  is 2.1, the degree of task similarity

( j )  is 0.4, the worker forgetting rate (F R  ) is 81%, and the worker learning rate ( L R  ) is
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87.5% are calculated as follows:

loziodds o f  C* = 250) = 59.1698 -1.8838(2.1) -  6.5048(0.4)
-  42.5111(0.81) -18.0364(0.875) = 2.40, (4.21)

the odds that the optimal batch transfer policy is C* = 250 is given by:

oJ£fe(C* = 250) = =11.02, (4.22)

and the probability that the optimal batch transfer policy is C* = 250 is given by:

P(C* = 250) = - 1 1 ^  = 0.917 . (4.23)
1 +  11.02

Therefore, the probability of an optimal batch size of C* = 250 with these new

DRC shop conditions is significant at 91.7%. Since this binary logistic regression equation has 

only two dependent variables; ‘0 ’ and ‘1’, corresponding to C* = 10 and C  = 250 

respectively, the probability o f an optimal batch transfer size o f C* = 250 of 91.7% is

equivalent to the probability o f the optimal batch transfer size o f C  * = 1 0  being 8.3% ( 100% - 

91.7%). In this case, given the DRC shop parameters specified in problem 1, it is evident that an 

optimal batch size o f C  = 250 is more preferable than C  =10.

Also, given the same parameters specified in the C  logistic regression equation, namely, the 

ratio o f initial processing time to standard processing time of the task ( /? =  2.1 ), the degree o f 

task similarity { s  = 0.4), the worker forgetting rate {F R  =  81%), and the worker learning 

rate {L R  =  8 7 .5 %  ), the odds and probability of an optimal upfront training policy batch size

transfer o f F A P *  = 5 to be required in order to minimize the performance measure (namely; 

average processing (service) time ( A P T  ) calculated over approximately 3000 jobs per station) 

are calculated as follows:

logipddsof FAP* = 5) = 3.0171 -1.5797(2.1) +1.5667(0.4) 
+ 6.5473(0.81) -  9.7559(0.875) = -2.91 ’

129



and the probability that the optimal upfront training policy is FAP =  5 is given by:

P(FAP^ =5)=  = 0 . 0 5 1 .  (4.26)
 ̂ 1 +  0.054

Therefore, the probability of an optimal upfront training policy o f FAP = 5 is small at 5.1%.

Since the FAP* binary logistic regression equation also has only two dependent variables: ‘0’

and ‘r ,  corresponding to 0 < FAP* < 1 and FAP* = 5 respectively, the probability o f an

optimal upfront training policy of FAP* = 5 of 5.1% is equivalent to the probability of the

optimal upfront training policy of 0 <  FAP  < 1 being 94.9% (100% - 5.1%). As a result, 

given this information, the manager would suggest that the DRC shop should only provide

either: no initial training or initial training up to the standard number of units (0 < FAP < 1). 

l . l . l . l . l  Solution of DRC shop problem 2

Again, before any calculations can begin, the new degree of task similarity parameter S  must 

be determined because a new Tasky^ replaced the previous

Tasky^ . The required parameters are calculated as follows:

N{fasky  ̂ n Taskŷ } = 3,

N {T asky }̂ = 6 ,

N {T a sk y  } = 3 ,

which gives.

2 X N  {Tasky n  Tasky } 2x3
s  = ------------   —  =  — -  = 0 67 (4 27')

N{Tasky^} + N {T askyJ  6 +  3  ̂ ^
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Also, the new initial processing time to standard processing time of the task ( p  ) is given by:

y(^) 240  ̂ ^

Therefore the odds and probability of an optimal batch size transfer o f C  = 250 to be required 
in order to minimize the performance measure if the new worker with a slower learning rate 
(LR = 89%) performed tasks that were more similar s = 0.67 and had a larger initial 
processing time to standard time ratio p  = 5.5, are calculated as follows:

log(oddsof C* = 250) = 59.1698 -1.8838(5.5) -  6.5048(0.67)
-  42.5111(0.81) - 18.0364(0.89) = -6 .0 4 , (4.29)

the odds that the optimal batch transfer policy is C* = 250 is given by:

oddsiC* =  250) -  =  0.0024 , (4.30)

and the probability that the optimal batch transfer policy is C* = 250 is given by:

P (C *  =  250) =  — =  0.0024 . (4.31)
1 + 0.0024

Therefore, the probability o f an optimal batch size o f C  = 250 with these new DRC shop 
conditions is marginal at 0.24%. Since this binaiy logistic regression equation has only two

dependent variables: ‘0’ and ‘1’, corresponding to C  = 1 0  and C  = 250 respectively, the

probability o f an optimal batch transfer size o f C  = 250 of 0.24% is equivalent to the

probability o f the optimal batch transfer size of C  = 1 0  being 99.76% (100% - 0.24%). In this 

case, given a reduced rate o f worker learning, different task characteristics, and a new standard

time, it is evident that an optimal batch size of C = 10 is now much more preferable than C 
= 250.

Again using the same changes in DRC shop parameters as the new C  example, if a worker 

with a slower learning rate ( L R  = 89%) performed tasks that were more similar ( 5 = 0.67) and 

had a larger initial processing time to standard time ratio { p  = 5.5), the associated odds and

probabilities are:

Xogipddsof i^ /** = 5) = 3.0171 —1.5797(5.5) + 1.5667(0.67) 
+ 6.5473(0.81) -  9.7559(0.89) = -8 .0  ’
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the odds that the optimal upfront training policy is FAP -  5 is given by: 

odds{FAP* = 5) = e"*” = 0.0003,

and the probability that the optimal upfront training policy is FAP = 5  is given by:

(4.33)

P{FAP' = 5) = = 0.0003.
 ̂ 1 + 0.0003

(4.34)

Therefore, the probability of an optimal upfront training policy of FAP* = 5 in with these new 

DRC shop conditions is even smaller at 0.03%. This is equivalent to the probability o f the

optimal upfront training policy of 0 < FAP < 1 being 99.97% (100% - 0.03%). As a result, 

these new DRC shop conditions would also suggest to the manager that the DRC shop should 

only provide either: no initial training or initial training up to the standard number of units

(0 < FAP < 1). The summary of solutions for problem 1 and 2 of the DRC shop numerical 

example is given in Table 4.12.

Table 4.12: Summary o f results o f numerical example for the binary logistic 
regression equation of model C

Problem Musical instrument 
DRC shop input 
parameters

Optimal policy
solution
parameters

#1 s = 0.4, p  = 2.1, LR = 
87.5%, FR=%\%

C* = 250 
^<FA P*< \

#2 s = 0.67, p  = 5.5, LR = 
89%, FT? =81%

C* = 10
0 < F A P * < \
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4.3.3 Implications of results for the five DRC issues

The five possible issues that affect DRC shop performance measures as given by Hottenstein and 

Bowman (1998) are: (1) worker flexibility, (2) centralization of control, (3) worker assignment, 

(4) queue disciplines, and, (5) cost o f transferring workers. The results o f model C are obtained 

by examining the LFCM with a task similarity factor, and as a result, the results o f model C 

regarding the shop performance measures o f Hottenstein and Bowman (1998) are identical to 

those obtained by the results o f model B.

4.3.4 Model C conclusions

Model C resulted in two unexpected findings: (1) C  decreases as the learning rate slows 

between a learning rate o f 70% and 80%, and increases again to a maximum at a learning rate o f 

approximately 85% before decreasing again at a learning rate o f 90% (see Figure 4.4), and, (2)

the distribution o f the 625 output variables for both the optimal batch transfer size policy ( C  )

and the optimal level of upfront training policy ( FAP*) are irregular with few or no data points 

in the middle sections o f the specified ranges. The optimal values seem to cluster at the extremes 

o f both specified ranges o f C and FAP.

The unexpected finding in (1) that suggests that C tends to decrease with respect to the 

learning rate is contrary to intuition because it can be assumed that, as learning deteriorates, 

batch sizes should increase to compensate for the large forgetting losses. This observation was 

due to the unique factor interactions that resulted in optimized performance measures that were 

not observed by just examining the performance behaviour at one factor setting or by averaging

across factors, such as in Figure 4.4. Also, the expected rise in the behaviour of C  at a learning 

rate o f approximately 85% (see Figure 4.4) was due to the interaction between the effect o f the 

batch transfer size and the initial training batch size. Namely, if the worker has a fast learning 

rate, he/she only initially produces the batch transfer size number of units ( C )  because this 

quantity is greater than the number of units needed to reach the standard time of the worker 

(M^ ). However, if the learning rate o f the worker is slower, , increases and exceeds the batch 

transfer size. Since the worker under an FAP - 1 or an FAP -  2 upfront training policy must 

remain at the first station until units or 2n^ units are processed, he/she gains enough 

experience as to cause the overall optimal policy to increase beyond that of even a worker with a
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faster learning rate that had less initial training. However, this benefit decreases as the 

detrimental effect of a low learning rate outweighs the benefit of producing a large initial

training batch. This effect explains the unexpected rise the behaviour of C found in Figure 4.4. 

The learning rate at which this rise occurs was shown to be dependent on the value of /? ;  and in 

model C, the average influence over the range of p  caused this overall rise to occur at an 

approximate worker learning rate of 85%.

The unexpected finding (2) was circumvented by the use of binary logistic multiple regression 

that necessitated excluding a total of 52 data points located in the middle sections of the

distributions of C* and FAP*. Therefore, only 91.7% (573/625) of the total possible DRC 

situations as specified in Table 3.5 were accounted for by using this regression technique. This 

compromise was deemed as the preferred trade-off because the alternative of including all the 

data would result in either erroneous or irrelevant results. Consequently, due to the distribution 

of the output variables, the functions in (3.10) and (3.11) were fitted to the values using binary 

logistic multiple-regression. Model C provided a pseudo DRC shop situation and demonstrated 

the application of the logistic regression equations with a numerical example. The development 

of these equations may be important from a managerial perspective because they suggest 

preferred settings for controllable DRC shop factors (training and transfer policies) given 

existing factors that cannot be as easily changed (job similarity, task-times, and worker learning- 

forgetting rate).

4.4 Chapter 4 summary

The previous chapter 4 has provided the results, analysis and conclusions to the models in this 

thesis and has discussed how they compare to those of Jaber et al. (2003) and the five possible 

issues that affect DRC shop performance given by Hottenstein and Bowman (1998). Chapter 5 

provides thesis conclusions and suggestions for further work in this area.
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Chapter 5: thesis conclusions and 
recommendations for further research

5.1 Thesis summary

This thesis has extended upon Jaber et al. (2003) that investigated worker learning and forgetting 

phenomenon in dual resource constrained system (DRC) settings. This thesis also introduced the 

concept o f worker learning and forgetting in a two and three stage DRC system according to the 

dual-phase learning-forgetting model (DPLFM) developed by Jaber and Kher (2002). This 

learning and forgetting model is based on the theory that a task has separate cognitive and motor 

requirements. The etfect o f including task similarity was also examined. The experiments in 

model A, model B, and model C consisted of deterministic simulation models; the results were 

compared to those o f Jaber et al. (2003) and the five possible issues that affect DRC shop 

performance given by Hottenstein and Bowman (1998).

Chapter 1 provided a survey of research done in the areas of DRC systems, worker learning 

theory, learning and forgetting models, and the learning and forgetting phenomenon in DRC 

systems. Chapter 2 summarized the development o f the dual-phase learning-forgetting model 

(DPLFM), the learning and forgetting model used in model A and model B o f this thesis. 

Chapter 3 discussed the modeling or experimental design used in model A, model B, and model 

C o f  this thesis. Chapter 4 provided the results, analysis and conclusions to these models and 

discussed how they compare to those o f Jaber et al. (2003) and the five possible issues that affect 

DRC shop performance given by Hottenstein and Bowman (1998). This thesis ended at model C 

because the applicability o f model C would have to be further tested before the inclusion o f the 

DPLFM (for example) as a possible extension o f model C. Also, the author wished to keep the 

scope o f  the thesis within the boundaries o f worker flexibility issues; whereas to also include 

issues such as machine flexibility (group technology (GT)) would possibly require additional 

collaboration with persons familiar with such an established research area. These topics are left 

as possible extensions and are discussed in section 5.4. The remainder o f this chapter 

summarizes the unique contributions provided by this thesis, exposes limitations in the 

investigation o f this thesis, and proposes possible future research extensions.
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5.2 Thesis contributions to DRC research

This thesis has provided several contributions to DRC research. Firstly, in model C, it has 

developed binary logistic equations that may be important from a managerial perspective 

because they express preferred settings for controllable DRC shop factors such as worker 

training and transfer policies as functions of existing factors that caimot be as easily changed 

such as the degree of job similarity, task processing times, and the learning and forgetting rate of 

the worker. A pseudo DRC shop situation demonstrated the application of these logistic 

regression equations with a numerical example. This technique may enhance future DRC 

research by recognizing the need for research pertaining to Job shops that are already in 

operation and that are either resistant to change or incapable of significant change.

Secondly, in model A, it has shown that the type of task that the worker performs with respect to 

its learning rate and proportion of cognitive and motor elements is a factor that could be 

included in future DRC research. The DPLFM developed by Jaber and Kher (2002) is a model 

that can provide a measure that recognizes both these inherent task characteristics. Thirdly, in 

model B, the results have suggested that the DPLFM emphasized a greater benefit for upfront 

training and more a frequent worker transfer policy than the LFCM when tasks are similar, and 

supported the conclusions of Jaber et al. (2003) by an even greater extent that it is possible to 

use more flexibility (up to three tasks learned) in DRC shops with similar tasks. Furthermore, 

this thesis has also developed a DRC summary matrix that could be used as a guide for future 

DRC research.

5.3 Thesis limitations

The thesis investigation has two important limitations. The first limitation is that this research 

area has an absence of studies that provide a quantitative unit to measure the benefits of added 

DRC shop flexibility. As previously mentioned, DRC shops have provided benefits such as the 

reduction of manufacturing lead times (reduction in WIP), improved customer service, and the 

ability to adapt to frequent changes in product demand (Kher, 2000). However, in order to truly 

weigh the benefits of DRC shop flexibility against the detriments of DRC shop forgetting losses, 

a significant trade-off analysis should also utilize a single quantitative unit to measure the 

benefits of flexibility. Intuitively, in order for a significant trade-off analysis to be conducted, 

this unit should be similar to the unit used to measure the detriments o f flexibility.
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The second limitation is the performance measure used in this thesis, by Jaber et al. (2003), and 

by Kher et al. (1999) o f average processing (service) time (APT)  calculated over 

approximately 3000 jobs per station. Modem DRC shop products may have product life cycles 

much lower than a total production count of 3000 jobs per station (Vokurka, and Lummus, 

2003). For example, from the work experience o f the author, typical yearly production coimts o f 

make-to-order shop products such as customized fine furniture average approximately 300 units 

with approximately 225 different units within that group. Approximately 50% of the sub-tasks 

are similar between products. Therefore, on average, only 188 [(300  -  225) + (0.5) x 225] 

units are processed per year with an average life-cycle of seven years per product. Consequently, 

the average life-cycle production count for a customized fine furniture shop is approximately 

1316 imits. The graph in Figure 5.1 illustrates the average processing (service) time (APT)  

versus the centralization o f control policy C  (the batch transfer quantity) for various levels o f 

product life-cycles measured in units per station ( / )  for the LFCM. Note that when the product 

life-cycles are J  =  3000, 2500 , 2000 units per station the optimal batch transfer quantity is

250 units (C =250). However, for items with shorter product life-cycles such as fine 

furniture ( J  = 1500,1000) imits per station), items characteristic o f a DRC shop, the optimal

batch transfer quantity is 10 units ( C =10).
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Figufe 5.1: Plot of APT  versus C for various levels of J  ( j  -  0, 
p  = 1 ,  LR = 70%, FR = 80%, LFCM)
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Consequently, the performance measure used in this thesis, by Jaber et al. (2003), and Kher et al. 

(1999) of average processing (service) time (^APT)  calculated over approximately 3000 units 

per station ( APT) may not be the most preferable DRC shop performance measure since DRC 

shop products may have shorter life-cycles than 3000 units per station (i.e. 1316 units). 

However, for consistency of comparison with Jaber et al. (2003) and Kher et al. (1999), 3000 

units per station was retained as the duration of the production simulation study.

5.4 Recommendations for further research

The following sections outline some possible research extensions that might be o f some interest.

5.4.1 Combine DRC and GT

The benefits and drawbacks of worker learning and forgetting could be integrated with ongoing 

research on the combined effect of using worker flexibility (DRC systems) in shops with 

machine flexibility (commonly referred to as group technology (GT)). For interested readers, see 

Jensen (2000).

5.4.2 Equations using DPLFM

A possible extension to model C of this thesis may include developing similar equations using 

the DPLFM as the learning forgetting model instead of the LFCM. In this case the new equations 

could take the form:

g{s,N,p,T,FR,R) = {C\FAP*)'  (5.1)

where T , and R represent the additional DPLFM task parameters of task-type and the ratio of 

time for the first unit under purely cognitive conditions to time for the first unit under purely 

motor conditions respectively. Depending on the distribution o f the output data, a binary logistic 

regression equation may not be appropriate for equation (5.1). Multi-factor cubic spline 

interpolation may be a more feasible curve fitting technique if the data results are not clustered
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at the extremes o f both specified ranges o f C and FAP (as shown in Figure 4.24 and Figure 

4.25) but are more equally spread across the specified range o f the dependent variables.

5.4.3 Task sequence

The examination o f the effect o f task sequence on forgetting losses could also be studied. For 

example, in a TV =  3 DRC shop, the worker can transfer from a cognitive task to a motor task 

and then back to a cognitive task, i.e. (7 ^  — 7]̂  ̂ — ), or from a motor task to a median task

and then back to a cognitive task, i.e. ( 7]̂  ̂ — — 7^ ), etc. Depending on the sequence o f

task-type assignments the optimal sequence can be determined in order to minimize forgetting 

losses.

5.4.4 Worker attrition rates

The periodic loss o f trained workers for various reasons presents a serious problem to the 

performance o f DRC shops. This is because newly hired workers have to undergo more upfront 

training than experienced workers. As a result, the inclusion o f the rate at which workers leave 

(equal to the rate at which new workers are acquired), also called the worker attrition rate, is an 

important factor that could be included as a possible research extension. Kher et al. (1999) 

included an attrition rate that was measured as the ratio between the worker attrition interval and 

the length o f the initial training period (atr/tr). This particular method o f measuring worker 

attrition is an improvement over a simple yearly attrition rate (as used by earlier studies) because 

it better represents the detrimental effect o f each worker attrition occurrence by relating it to the 

length o f  the subsequent training period (Kher et al., 1999).

139



5.4.5 Further recommendations -  DRC summary matrix

5.4.5.1 DRC summary matrix overview

As shown in the appendix (see section 7.1), the DRC summary matrix is an organized table 

listing DRC research criteria amongst the titles of the leftmost column (heading for rows) o f the 

matrix and listing DRC research studies along the upper row (heading for columns). In section

7.1.1 the model assumption issues ‘Workload issues’ and ‘Operating issues’ are listed in the 

leftmost column of the table. They are the headings for the rows they contain. The column 

headings ‘Jaber et al. (2003)’, ‘Thesis -  model A’, ‘Thesis -  model B’, and ‘Thesis -  model C’ 

are the column headings for the specified DRC research studies. The experimental factors of 

each study are listed in bold font text and the fixed factors are listed in regular font. For 

example, in section 7.1.1, for the Workload issue ‘Mean job service rate’, an initial and standard 

processing time of four units and one unit respectively are specified as fixed factors (regular font 

text) for the DRC study Jaber et al. (2003). However, for the DRC study Thesis -  model C, the 

mean job service rate is actually an experimental factor (bold font text) that has five different 

settings for both the initial and standard processing times.

The partition of the DRC matrix illustrated in section 7.1.1 denotes the model assumptions of 

each study listed in every column, whereas the partition illustrated in section 7.1.2 denotes the 

model results and conclusions of each study as they relate to DRC shop performance measures 

categorized by the particular experimental factors examined.

This DRC summary matrix could be used as a guide for future research by just adding 

subsequent research (or newly discovered old or new research) as new columns in the matrix. 

This could aid the research path by indicating the possible performance measures or 

experimental factors overlooked in current research and/or avoiding redundant research tangents 

by clearly listing the conclusions of previous studies.

The following section uses the DRC summary matrix as a guide for recommending further DRC 
research.
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5 4.5.2 Further recommendations for DRC research

The DRC summary matrix could be also used as a guide for recommending future research 

initiatives, for example: in the design issues section pertaining to worker learning and forgetting 

o f the summary matrix (see section 7.1.1), one row mentions a possible situation where the 

performance o f the worker either temporarily remains constant or increases shortly after an 

interruption. Since the three studies listed so far in the summary matrix assume that worker 

forgetting begins (performance decreases) as soon as an interruption occurs, a natural inquiry 

would be to examine worker forgetting experimentally to see if this occurrence was observed.

Also, in the design issues section pertaining to worker product variety (as categorized by 

McKreery and Krajewski, (1999)) of the summary matrix (see section 7.1.1), one row mentions 

a possible situation where there is product turnover measured as a rate per year. The three 

studies listed so far in the summary matrix assume no product turnover. However, a further study 

could include a rate o f product turnover to compensate for the aforementioned limitation in 

section 5.3 regarding the long production simulation duration of 3000 units per station. The 

inclusion o f a product turnover rate may emulate a model containing a shorter product life-cycle 

more characteristic o f  make-to-order products commonly foimd in dual resource constrained 

shops.
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7.1 DRC summary matrix

7.1.1 Model assumptions

J a b e r  e t  a l. (2003) T hesis - m odel 
A

T hesis  -  m odel 
B

T hesis  -  m odel
C

T y p e  o f  
Issue Issue  D escrip tion M odeling  M ethod

M odeling
M ethod

M odeling
M ethod

M odeling
M ethod

D ete rm in istic  jo b  a rr iv a ls? Yes " " " "

P ro b ab ilis tic  jo b  a rr iv a ls? No " " " '•

Jo b  a r r iv a l  tlen sity  function  (a) N/A since arrivals are 
deterministic

M ean  jo b  a r r iv a l ra te (s)  (J) Equal to service rate i.e. 
constant availability of work 
with no queue formation

D ete rm in istic  jo b  serv ice  ra te? Yes " " " "

P ro b ab ilis tic  jo b  serv ice  ra te? No " " " "

1 J o b  se rv ic e  tlensity  function  (/,) N/A " " " "

.3

i
M ean  jo b  se rv ic e  ra te (s)  (y j A y(l) and y, of 4.0 and 1.0 

time units per job respectively 
is specified ( f i = 4).

y ( / j  = 2 ,3 ,4 ,  
5 ,6  and  

3’. =  1
co rresp o n d in g  
to  five 
d iffe re n t p 
values:
p  ■= 2 , 3 , 4 , 5 , 6

Is  th e  sy stem  no tionally  balanced? 
(av e ra g e  se rv ice  tim e  o f th e  average  
w o rk e r  iden tica l a c ro ss  sta tions)

Only one worker, therefore
N/A.

D ete rm in istic  jo b  rou ting? Yes

P ro b ab ilis tic  jo b  rou ting? No

P ro b a b ility  m a tr ix  from  s tage  i to  j  (pj) N/A

Is th e  jo b  re lease  policy a  fin ite o r  an  
in fin ite  lo ad ing  policy? I f  finite, w b a t ru le 
w as u sed ?

A finite capacity policy with a 
rule that a job is released only 
after the worker has completed 
processing the previous job.

G lobal, local, o r  dy nam ic  queue 
discU plinefs)? (*,)

No queue formed, therefore
N/A.

i
.s

!o

C en tra liza tio n  o f  con tro l ( 'w hen ' ru le) ( a j  
(e.g .: fixeil/floating)
-workers that only left an assigned 'home 
station' after the queue was empty and that 
returned to the home station after the work 
was completed (fixed)
-workers that move to another station they 
are additionally trained for with the longest 
queue after the completion of every unit 
(floating).

(see McCreeiy and Krajewski ,1999)

N either fixed n o r  floa ting , the  
w o rk e r m oves from  the  
sta tion  a f te r  a  fixed n u m b e r 
o f  jo b s  a re  com pleted , 
e .g .:ba tch  size o f  10, 25, o r  
250.

In  th is  model, 
the
cen tra liza tion  
o f  con tro l ru le  
w as an  
optim ized  
o u tp u t fac to r 
th a t was 
sea rched  
w ithin the  
ran g e  10 - 250 
un its  in  
Increm ents o f 
one u n i t

W o rk e r  ass ig n m e n t ru le  ( 'w h e re ' ru le ) (f) The w orker is always 
transferred to  the next stage, 
namely, to  1 o r 2 in the 2 stage 
model, o r to  1 ,2 , o r 3 in the 3 
stage model.
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J a b e r  et aL (2003) T hesis -  model 
A

T hesis - m odel 
B

T h
m o

T ype o f 
Issue

Issue Description M odeling M ethod
M odeling
M ethod

M odeling
M ethod

Mo(
M<

N um ber o f stages in the  system 
( h i )

Modeled as 2 and 3 stages.

N um ber o f  Identical m achines a t  
each  stage 1 (ci)

One machine per stage.

How m any d iffe ren t ta sks can 
each m achine perfo rm ?
(i.e. is there machine flexibility or 
group technology (GT))

Each machine is assumed to 
process only one task, therefore 
no machine flexibility is 
assumed.

T he num ber o f w orkers in the 
system  (w)

1

W hat a re  the  labour utilization 
rate(s)?

100%

W hat is the  relative efliciency o f 
w orker J on stage i {ejj)

Only one worker, therefore 
N/A.

C an  the  jobs  revisit stations? Yes, the worker starts back at 
the first station after completing 
a cycle.

Is jo b  pre-em ption allowed? No.

S tatic o r  dynam ic scheduling of 
jobs?

There are no arrivals until a 
unit is complete; therefore it is 
a simple static, first-come-fitst- 
serve model.

Is th e re  a jo b  tra n sfe r tim e 
between stations?

No.

If
Is th e re  w o rk er attrition  rates, if 
so, w hat a re  they?

No.

f l Is  th e re  job  blocking? Since there is only one task in 
progress at any one time, this is 
N/A.

Is th e re  a distinction m ade 
between p rocedura l and 
continuous tasks (G loberson et 
al.,1989j, if  so, how is this 
distinction m odeled?

No.

W h a t is/a re the  perfo rm ance 
m easure(s) o f the  system ?

Average processing (service) 
time calculated over 
approximately 3000 jobs per 
station. Also, final efficiency 
defined as the processing time 
of the first job in cycle n + 1, 
where n is the number of cycles 
of data collection in the 
simulation run.

Average 
processing 
(service) time 
calculated over 
approximately 
3000 jobs per 
station.

A re  there  setup  tim es on some 
operations? A re  they sequence 
dependent?

No setup time assumed.

Is th e re  a cycle length specified? Yes, a cycle is complete when 
a worker visits 1 and 2 stations 
when he/she is trained for 2 
stations, and when a worker 
visits 1,2, and 3 stations when 
he/she is trained for 3 stations

A re  the  products perishable?
(i.e.: a  non-infinite storage 
assumption, also see complexity 
below)

The product is assumed to have 
an infinite storage life.
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J a b e r  e t aL (2003) Thesis - model
A

T hesis-
model B

T hesis  • m odel
C

T y p e  o f  
Issue Issue  D escrip tion M odeiing M ethod M odeling

M ethod
M odeling
M ethod

M odeling
M ethod

W h a t is th e  u p fro n t tra in in g  
(flex ib ility  acqu isition  policy)?

W h a t is th e  ra n g e  o f  flexibiiity 
(N)t a n d  is each  w o rk e r  flexible in 
th e  sam e n u m b e r o f  stations?

A re  w o rk e rs  perfec tly  
in te rch an g e ab le ?  (a re  th e  eji's the 
sam e o r  d iffe re n t? )

FAP-0, FAP-l, and  FAP-2 w hich 
co rresp o n d s to: no in itia l 
tra in ing , w o rk e r  m u s t process 
until s ta n d a rd  tim e is reached  
(370 units) in the  f irs t cycle, and  
w o rk e r m ust p rocess tw ice this 
am oun t (740) in the  f irs t cycle 
respectively before any tra n sfe rs  
occur

T he w o rk er is e ith e r tra in e d  fo r  
2 o r  3 tasks/stages. N ote th a t a 
m axim um  o f  3 w orksta tions  is 
used because o f  the  M alh o tra  et 
aL (1993) finding  th a t c ross 
tra in in g  w o rk ers  in m o re  th a n  
th re e  d ep a rtm en ts  w orsens 
system  perfo rm ance.

Since there is only one worker, 
this is N/A,

In  th is  m odel, 
th e  u p fro n t 
tra in in g  policy 
(flexibility  
acqu isition  
policy) w as an  
optim ized  
o u tp u t fa c to r  
th a t w as 
sea rch e d  w ith in  
th e  ra n g e  0 - 5  
fl, in inc rem en ts  
o f  one n „
J u s t m odeled 
foriV =2

A re  th e  w o rk e rs ' le a rn in g  ra tes  
th e  sam e  o r  d iffe re n t fo r  each 
w o rk e r  on each  ta sk ?  W h a t a re  
th e se  ra te s?

The worker learning rate is 
assumed constant at 85%.

1 1

T h e  w o rk e r 
le a rn in g  ra te  
v aries
a cco rd ing  to  the  
ta sk  being 
p erfo rm ed . T h e  
com position o f  
th e  learn ing  
ra te  o f  each 
ta sk  is specified 
using unique 
cognitive and  
m o to r le a rn ing  
ra te s , see the  
le a rn in g  ra tes  
o f  th e  cognitive 
an d  m o to r ta sk s 
below.

I s  a  s p e c if ic y (f)  an d  y ,  specified? Ay(Vy of 4 minutes per job is 
specified, y, is 1 minute (/> = 4)

Is  th e re  w o rk e r  fo rg e ttin g ?  I f  so, 
how  is  i t  m ode led?

Yes, it  is m odeled acco rd ing  to  
the  V R V F  and L F C M  w ith 
th re e  d iffe ren t in itia l fo rgetting  
ra te  levels o f  8 5 % , 8 0 % , and  
95% .

Y es, it  is 
m odeled 
a cco rd ing  to  the 
D P L F M  w ith  
un ique  
cognitive and  
m o to r
fo rgetting  ra te s  
ca lcu la ted  fo r 
each  cycle. T he 
in itia l
fo rgetting  ra te  
levels a re  8 5 % , 
9 0 % , and  95% .

T h e re  a r e  five 
w o rk e r  ie am in g  
ra te s  specified : 
7 0 % , 75% ,
8 5 %  90% .

y ( l)  = l , 3 ,  4 ,5 ,  
6 and  

3’. =  *
co rresp o n d in g  
to  five d iffe re n t 
p  values; 
p - 2 , 3 , 4 , 5 , 6
Yes, it  is 
m odeled 
a cco rd in g  to the 
L F C M  w ith  
five d iffe re n t 
in itia l
fo rge tting  ra le  
levels o f  9 5 % , 
9 2 .5 % , 9 0 % , 
8 7 .5 % , and  
8 5 % .
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Type o f  Iw ne

I r

Issue D escription

W h a t Is the  tim e to  to tal 
foiigetting?

W ha t is the  in terrup tion  
in terval length (4 )?
Is  this constan t fo r every  cycle 
f t

W hat is the initial processing 
tim e cognitive to m otor ratio .

W

Do w orkers begin forgetting as 
soon as an  in terrup tion  occurs 
o r  does perform ance 
tem porarily  rem ain  constant 
(o r  increase) shortly  a f te r  an 
in terrup tion?  Is this 
phenom enon related  to the 
level of jo b  com plexity (as 
defined by M cK reery  and 
K rajew ski) and /o r cognitive- 
m otor contents of the  job  
and /o r the p resen t m odel's 
definition o f  com plexity?

I f  perfo rm ance im proves a fte r  
an  in terruption(experim enta lly  
found by A rzi and  S htub,
1997), is th is  effect enhanced 
by the  inclusion o f  w orkshop- 
type tra in ing  during  the  
breaks o f  mental(cognitive) 
tasks(suggested by A rzi and 
S htub, 1997) _____________

Jaber et a l  (2003)

M odeling M ethod

The lime to total forgetting (D )  is a 
fimction of the forgetting rate, 
learning slope, number of units 
produced and the time to produce 
these units.

No, the interruption is the fimction 
of the time since this station’s task 
was last processed. As a result, it 
is variable across cycles since the 
processing times change with time.

Not applicable in the VRVF and 
LFCM models.

Workers begin forgetting as soon 
as an interruption occurs.

Workers begin forgetting as soon 
as an interruption occurs.

Thesis - model
A

M odeling
M ethod

Thesis -
model B

M odeling
M ethod

The tune to total Same as
forgetting (D) is theLFC
a fimction of the model ol
forgetting rate. Jaber et
learning slope. (2003).
number of units
produced and the
time to produce
these units.
However, in the
DPLFM, there is
a unique time to
forgetting
parameter for
both cognitive
and motor
elements.

A ra tio  o f 1 ,1 /3  
an d  3 is
assum ed. T hese  
ra tios
co rresponds to 
those
em pirically  
observed by 
D a r  El et 
a l(1995 )

Thesh
model

Model!
M eth i

Not
applicab 
since the 
LFCMv 
used.
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Jab e r et al. (2003)
Thesis - model

A
Thesis - model

B
Thesis - m otlel 

(
T y p e  o f  Issue Issue D escrip tion M odeling M ethod M odeling

M ethod
M odeling
M ethod

M<xleling
M ethod

II
t î

Does th e  m odel d istingu ish  
betw een cognitive a n d  m o to r 
a sp ec t o f  a  jo b ?  A nd  i f  so, is 
th e  re la tiv e  a r ra n g e m e n t o r  
sequence  o f  th e  jo b s  (Le.: 
cognitive-m otor-cogn itive , fo r  
exam p le) specified?

A re  th e  w o rk e rs  m ode led  as  
h e terogeneous o r  hom ogeneous 
w ith  re sp ec t 
le am in g /fo rg e ttm g  
d is tr ib u tio n s  (see S h a fe r  e t  al., 
2001)?____________________
Is  th e  d eg re e  o f  le a rn in g  
a n d /o r  fo rg e ttin g  a  function  o f 
th e  com plex ity  o f  th e  ta sk  
a n d /o r  th e  in d iv idua l w o rk e r-  
p e rce ived  com plex ity?_________
D oes th is  m odel allow  fo r 
n eg a tiv e  fo i^ e ttin g ?  (see 
N e m b h a rd  a n d  U zum eri 2000, 
25(4), 315-326.

D oes th e  size o f  th e  lots o f  th e  
p ro d u c ts  in te ra c t  w ith  the 
'p roduct*  vs. p ro d u c t ' 
le a rn in g /fo rg e ttin g  va riab le s?  
(i.e .: t r y  a  lo t size o f  1 as an  
e x trem e  ca se  o f  m ake to o rd e r ; 
w h a t a b o u t a  v a r ia b le  lo t size 
p e r  p ro d u c t? )__________________
D oes th e  p a p e r
d istingu isb (q u a lita tiv e ly  an d /o r  
m a th em atica lly ) betw een 
'p roduct*  vs. 'p ro cess ' le a rn ing  
a s  in  M cK re e ry  an d  
K ra jew sk i? ____________________
W h a t f ra c tio n  o f  w o rk e r  
le a rn in g  is 'p ro cess ' a n d  w h a t 
f rac tio n  is  'p roduct*  le a rn in g ?

No, cognitive and/or motor 
elements of the tasks arc not 
mentioned.

A prcdomiiiantl> 
cognilivç task /, , 
and motor task 
. are distiRguished 
from each other 
with their own 
composite 
learning rales.
The respective 
cognitive and 
motor learning 
rates of cognitive 
task /; is as 
follows:
/Ji,- = 72.5%, /./^„ 
= 82.5%: and for 
motor task 7^ : 
/J^- = 77.5%, LRu 
-  87.5%. The 
median task 7'u«/ 
and uniform task 
T(j have cognitive 
and motor 
learning rates of

85%, and LRc-= 
;J7m-=80% 
respectively. The 
sequence of these 
Jobs do not 
change, Le. the 
worker remains 
on a cognitive task 
if he/she began 
worfdng on a 
cognitive task.

Only one worker, therefore N/A.

N o relationship between task 
complexity and leaming/forgetting 
suggested.

No.

No, product or process distinction 
is not made.

N o, product o r process distinction 
is not made.

Product or process distinction is 
not made.

No, cognitive 
aiui/or motor 
elem ents o f  the 
tasks arc  not 
mentioned since 
the LFCM  was 
used.
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T ype o f  Issue Issue D escription

Jaber e t aL (2003)

M odeling M ethod

Thesis-
model A

M odeling
M ethod

Thesis - model
B

M odeling
M ethod

Thesis lodel

M ot ng
M e id___

ifive

l i t
■So

A re the jobs  assum ed to  he 
s im ilar o r  d itferen t, and  if  
d ifferent, how m any distinct 
products in p roduct line?

W ha t is the task  tim e 
variab ility? (i.e.: vary ing  task 
tim es due to random  
conditions o r  differences 
between w orkers)____________
H as the p ap e r considered the 
sensitivity o f w orker 
perfo rm ance variability  (eji) on 
the  model?
W ha t is the variability  in Job 
routings
(Le.: variability  in p j)

W ha t is the ra te  o f product 
tu rnove r p e r  year?  (i.e.: 
50% /yr signifies th a t if  there 
a re  10 d iffe ren t products then 
S o f  the products a re  turned  
over in a y ea r's  time)

In  the  f irs t p a r t  o f  the  study, it 
was assum ed th a t all tasks a re  
id e n tic a l In  the second section, 
one experim ent dea lt w ith 2 
d istinct tasks w ith 5 d iffe ren t 
levels o f  sim ilarity , th e  second 
experim ent dea lt w ith 3 d istinct 
tasks w ith 4 d ifferen t levels o f 
sim ilarity.

No job 
similarity was 
assumed.

When iV= 2, there 
are five levels of 
task similarity 
defined:
! = 0, s = 0.2, 
s = 0.4, s = 0.6, s = 
0.8; when 
A  = 3 , there are 
four levels of task 
similarity defined; 
So, Si, Sa, S3______

T here  
levels I ask 
sim ilai
dehnei 1^2):
s =  0, 
s  =  0.4 
0.6, s = 8

0.2,

No service time variability, 
deterministic.

N/A

N/A

N/A

IÎI

III

How is ta sk  complexity 
defined?

The complexity of the tasks was 
not addressed.

Is ta sk  com plexity related  to 
processing tim e o r is it  defined 
as  som ething relatively 
independent o f who w orks on 
th e  job  and therefore is 
inherent to  the job  itself?______

The complexity of the tasks was 
not addressed.

I f  it  is not independent o f  the 
w orker, then does each w orker 
regard  each task  as equally 
complex o r  is this d ifferent?

The complexity of the tasks was 
not addressed.

I f  it  is independent, then is 
each job /task  equally com plex?

The complexity of the tasks was 
not addressed.

How does ta sk  com plexity 
affec t perform ance? Is it 
linear, o r  possibly cu rv ilinear 
as  suggested by W ood (1990) 
and  Pepinsky and Pepinsky 
(I960)? If  it is curv ilinear, then 
how can the  perfo rm ance be 
maximized by m aintaining 
w orker in teres t while a t  the 
sam e tim e not exceed w orkers ' 
abilities?

The complexity of the tasks was 
not addressed.

Is ta sk  com plexity m odeled as 
a  function o f  several 
pa ram ete rs  like M cK reery  and 
K rajew ski (learn ing  rate , 
potentiality o f  learning, 
p redom inant type o f leam ing- 
product/process, speed of 
forgetting)? I f  not, explain.

The complexity of the tasks was 
not addressed.

Is the perishability o f the product 
related to the inherent esoteric 
complexity of the task? Is this 
esoteric complexity related to the 
cognitive element described in 
the DPLFM? i e. Knowledge 
lifespan (similar to the worker 
retention multiplier concept 
proposed by Ash and Smith- 
Daniels (1999))_________________

Items are assumed to have an 
infinite storage life.

" ^ 1 . i|l|H I

152



T y p e  o f  
Issue

i-t

Q.2

Issue  D escrip tion

H ow  does th e  m ode l d istingu ish  
w h e th e r  th e  jo b s  a r e  d if fe re n t o r  
s im ila r?

W h a t k ind  o f  jo b / ta s k  a ttr ib u te s  
c o n tr ib u te  to  th is  s im ila rity  (o r 
la c k  o f  d iffe ren ce)?______________
D oes each  w o rk e r  re g a rd  each  job  
w ith  th e  sam e  d e g ree  o f  
s im ila r ity (o r  la c k  o f  d iffe rence)?

H ow  does th e  d e g ree  o f  s im ilarity  
re la te  to  cogn itive /m otor 
com p o n en ts  a n d /o r  ta sk  
com plex ity?

A re  th e re  q u a n tita tiv e  m easu res 
o f  s im ila rity ?  W h a t w e re  they?

J a b e r  e t al. (2003)

M odeling  M ethod

T h is  p a p e r  does th is  by se ttin g  a 
s im ila rity  coefficient betw een 
tw o  and  th re e  jo b s  based  on th e  
ra tio  o f  the  n u m b e r  o f  sh ared  
ta sk  a ttr ib u te s  and  the  to ta l 
n u m b e r  o f  a ttr ib u te s  am ong  the 
tasks

The nature of the attributes was 
not explicitly described.

Yes, it is assumed that the 
similarity coefficient is 
independent of the perceptions of 
the workers, and hence is not 
dependent on who works on the 
task.
There is no relationship defined 
between these factors. The degree 
of similarity or similarity 
coefficient affects the 
determination of the forget curve 
intercept for all cycles. For 
example, if there is no 
simiiarityfcoeff. of 0) then there is 
maximum forgetting between 
cycles; if, on the other hand, there 
is total similarity (coeff. of I ), then 
there is no forgetting between 
cycles, and the intercept is just 
determined using the traditional 
learning power function.
Yes, th e  s im ilarity  cocfficienL It 
w as se t a t  s  =  0, s  =  0.2, s =  0.4, 
s  =  0.6, and  s  =  0.8 fo r  tw o tasks, 
an d  s =  0, s =  0.2, s  =  0.25, and  
s  =  0.8 fo r  th re e  ta sk s  
(see J a b e r  e t  al. (2003) fo r  all 
th e  3 -ta sk  coefficients).

T hesis-
model A

M odeling
M ethod

No job
similarity was 
assumed.
(X = 0)

No job  
similarity was 
assumed.
(s = 0)

No similarity 
was assumed. 
(s = 0)

Thesis - model
B

M odeling
M ethod

T his p a p e r  does 
th is  by se tting  a 
sim ila rity  
coefficient 
betw een tw o 
an d  th re e  jo b s  
based  on the 
ra tio  o f  the 
n u m b e r  o f 
sh a red  task  
a t tr ib u te s  and  
th e  to ta l 
n u m b e r  o f 
a ttr ib u te s  
am ong  the  ta sks

Same as in Jaber 
et al. (2003).

W hen A  = 2 ,  
th e re  a r e  five 
levels o f  ta sk  
s im ilarity  
defined: 
s  =  0, s = 0.2, s 
=  0.4 , s  =  0.6, 
s =  0.8; w hen 
A =  3 , th e re  a re  
fo u r levels o f  
ta sk  s im ila rity  
defined ; Sg, S |, 
S j, S j

T hesis  -  m odel
C

M odeling
M ethod

T h is  p a p e r  
does th is  by 
se ttin g  a  
sim ila rity  
coefficien t 
betw een tw o 
jo b s  based  on 
th e  ra tio  o f 
the  n u m b e r  o f 
s h a re d  ta sk  
a t tr ib u te s  and  
th e  to ta l 
n u m b e r  o f 
a ttr ib u te s  
am ong  th e  
tasks

T h e re  a r e  five 
levels o f  ta sk  
s im ila rity  
defined  (A W ): 
s  =  0 , s  -  0.2, 
s  -  0.4, s -  
0 .6 , s  =  0.8
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7.1.2 Model results/conclusions (as they relate to DRC shop

performance measures: categorized by experimental factors 

examined)
Jaber et al. (2003) Thesis -

model A
Thesis -
model B

Thesis ■
model (

Type of Issue Modeling Method
Modeling
Method

Modeling
Method

Modelin
Method

Worker flexibility 
results/conclusions

(level o f cross training)

It was concluded that training workers for 
more than 2 different tasks (3 tasks) is not 
necessary because the forgetting losses for 
learning 3 tasks are greater than learning 2 
tasks.

Centralization of control 
results/conclusions

('when' rule)

Out o f  the possible levels o f 10, 25 and 250, 
Overall, a worker transfer policy o f  250 was 
optimal. These results differed from those o f 
Hottenstein and Bowman (1998) beeause 
they concluded that a centralized policy was 
superior to a  decentralized policy; albeit, 
Hottenstein and Bowman (1998) concluded 
that is was superior by only a marginal 
amount.

Worker assignment rule 
resnlts/conclusions

('where' rule)

This experimental factor was not examined.

Model A 
also
concurred 
with Jaber et 
al.(2003) 
that, overall, 
a  worker 
transfer 
policy o f  250 
was optimal. 
Again, as in 
Jaber et al. 
(2003), this 
differed from 
the results o f  
Hottenstein 
and Bowman 
(1998).

Queue discipline rule 
results/conclusions

There are no arrivals until a unit is complete, 
therefore it is a  simple static, first-come-first- 
serve model. As a  result, the comparison 
between different queue discipline rules was 
not made.

Cost of transferring 
workers 

results/conclusions

There are no conclusions made since the 
costs are assumed to be zero.
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7.2 Model A results

7.2.1 DPLFM results (APT)

N = 2, FR ^ 95%

c Task Type R FAP-Q FAP-\ FAP-2
1/3 1.0231 1.0008 1.0137

Tc 1 1.0150 1.0010 1.0100
3 1.0110 1.0012 1.0079

1/3 1.3609 1.0009 1.0516
Tu 1 1.0495 1.0006 1.0254

10 3 1.0214 1.0008 1.0141
1/3 1.0498 1.0006 1.0231

TMed 1 1.0222 1.0008 1.0145
3 1.0144 1.0010 1.0099

1/3 1.0205 1.0010 1.0125
Tu 1 1.0219 1.0011 1.0126

3 1.0205 1.0010 1.0125
1/3 1.0180 1.0014 1.0142

Tc 1 1.0123 1.0015 1.0104
3 1.0091 1.0017 1.0082

1/3 1.0867 1.0011 1.0521

Tm 1 1.0329 1.0010 1.0259

25
3 1.0177 1.0013 1.0146

1/3 1.0311 1.0010 1.0236

T u e d 1 1.0182 1.0013 1.0150
3 1.0120 1.0016 1.0103

1/3 1.0166 1.0017 1.0130

Tu 1 1.0171 1.0018 1.0131

3 1.0166 1.0017 1.0130
1/3 1.0141 1.0016 1.0158

Tc 1 1.0099 1.0013 1.0115

3 1.0075 1.0011 1.0089

1/3 1.0552 1.0020 1.0612

Tm 1 1.0260 1.0018 1.0293

250
3 1.0144 1.0015 1.0161

1/3 1.0240 1.0019 1.0272

T u e d 1 1.0148 1.0015 1.0165

3 1.0098 1.0012 1.0114

1/3 1.0126 1.0017 1.0145

Tu 1 1.0127 1.0018 1.0145

3 1.0126 1.0017 1.0145
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N = 2, FR = 90%

c Task Type R FAP-0 FAP-\ FAP-2

1/3 1.3784 1.0048 1.0164

Tc 1 1.0814 1.0055 1.0128

3 1.0302 1.0059 1.0106
1/3 2.1088 1.0070 1.0566

Ty 1 1.6664 1.0034 1.0276

10 3 1.2797 1.0038 1.0161
1/3 1.7298 1.0041 1.0258

T'ued 1 1.3600 1.0040 1.0167

3 1.0441 1.0049 1.0123
1/3 1.2673 1.0046 1.0149

Tv 1 1.3750 1.0053 1.0153

3 1.2673 1.0046 1.0149
1/3 1.0453 1.0083 1.0186

Tc 1 1.0277 1.0088 1.0147
3 1.0175 1.0084 1.0121

1/3 1.6000 1.0075 1.0573

Ty 1 1.2155 1.0052 1.0289

25 3 1.0376 1.0065 1.0179
1/3 1.2672 1.0063 1.0272

Tyed 1 1.0425 1.0069 1.0185
3 1.0244 1.0077 1.0140

1/3 1.0365 1.0077 1.0168
Tv 1 1.0430 1.0090 1.0175

3 1.0365 1.0077 1.0168
1/3 1.0182 1.0101 1.0211

Tc 1 1.0122 1.0083 1.0156
3 1.0087 1.0068 1.0120

1/3 1.0760 1.0110 1.0672
Ty 1 1.0333 1.0098 1.0346

250 3 1.0178 1.0081 1.0203
1/3 1.0318 1.0113 1.0332

Tyed 1 1.0186 1.0088 1.0211
3 1.0117 1.0072 1.0149

1/3 1.0156 1.0083 1.0186
Tv 1 1.0160 1.0097 1.0192

3 1.0156 1.0083 1.0186
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N  = 2, FR = 85%

c Task Type R FAP-Q FAP-\ FAP-2
1/3 1.7251 1.0128 1.0212

Tc 1 1.4919 1.0167 1.0188
3 1.0835 1.0159 1.0159

1/3 2.3914 1.0869 1.0805
Tm 1 2.0386 1.0130 1.0335

10 3 1.6370 1.0103 1.0202
1/3 2.0511 1.0161 1.0326

T
M e d 1 1.7541 1.0123 1.0216

3 1.3595 1.0132 1.0170
1/3 1.6324 1.0121 1.0194

Tu 1 1.7746 1.0155 1.0210
3 1.6324 1.0121 1.0194

1/3 1.2281 1.0218 1.0262
Tc 1 1.0735 1.0269 1.0240

3 1.0365 1.0230 1.0196
1/3 1.9010 1.0785 1.0794

Tm 1 1.5409 1.0170 1.0362

25 3 1.1716 1.0177 1.0245
1/3 1.5471 1.0206 1.0359

T̂
 M e d 1 1.2574 1.0210 1.0265

3 1.0548 1.021! 1.0213
1/3 1.1227 1.0205 1.0241

Tu 1 1.2250 1.0261 1.0265
3 1.1227 1.0205 1.0241

1/3 1.0250 1.0264 1.0302
Tc 1 1.0169 1.0271 1.0253

3 1.0111 1.0213 1.0192
1/3 1.1506 1.0368 1.0826

T^ 1 1.0498 1.0285 1.0456

250
3 1.0242 1.0223 1.0285

1/3 1.0486 1.0322 1.0456
T

M e d 1 1.0266 1.0267 1.0311
3 1.0154 1.0209 1.0222

1/3 1.0209 1.0224 1.0264
Tu 1 1.0225 1.0282 1.0291

3 1.0209 1.0224 1.0264
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N = 3, FR =95%

c Task Type R FAP-Q FAP-\ FAP-2
1/3 1.1263 1.0030 1.0152

Tc 1 1.0284 1.0036 1.0118

3 1.0196 1.0041 1.0097

1/3 1.7488 1.0032 1.0534

T^ 1 1.3887 1.0022 1.0266

10
3 1.0469 1.0028 1.0155

1/3 1.4156 1.0023 1.0244

T^ed 1 1.0811 1.0028 1.0159

3 1.0265 1.0036 1.0116

1/3 1.0439 1.0035 1.0143

Tu 1 1.0850 1.0038 1.0144

3 1.0439 1.0035 1.0143
1/3 1.0281 1.0049 1.0165

Tc 1 1.0186 1.0051 1.0127
3 1.0131 1.0051 1.0104

1/3 1.3159 1.0036 1.0541
Ty 1 1.0548 1.0034 1.0276

25
3 1.0268 1.0045 1.0168

1/3 1.0519 1.0036 1.0254

Tyed 1 1.0276 1.0044 1.0171
3 1.0179 1.0050 1.0126

1/3 1.0259 1.0054 1.0156
Ty 1 1.0274 1.0058 1.0158

3 1.0259 1.0054 1.0156
1/3 1.0156 1.0043 1.0176

Tc 1 1.0108 1.0033 1.0130
3 1.0080 1.0028 1.0100

1/3 1.0629 1.0057 1.0637
Ty 1 1.0291 1.0051 1.0316

250
3 1.0159 1.0041 1.0179

1/3 1.0268 1.0051 1.0295
Tyed 1 1.0164 1.0041 1.0183

3 1.0106 1.0032 1.0127
1/3 1.0140 1.0042 1.0162

Tu 1 1.0141 1.0045 1.0164
3 1.0140 1.0042 1.0162
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N  ̂ 3 , FR =90%

c Task Type R F A P - 0 F A P --Ï F A P - 2
1/3 1.7420 1.0197 1.0254

Tc 1 1.4647 1.0198 1.0214
3 1.0833 1.0198 1.0189

1/3 2.3971 1.1351 1.1079
Tm 1 2.0008 1.0543 1.0370

10 3 1.6476 1.0147 1.0232
1/3 2.0616 1.0919 1.0371

TM ed 1 1.7204 1.0159 1.0241
3 1.3773 1.0174 1.0201
1/3 1.6480 1.0174 1.0231

Tu 1 1.7472 1.0206 1.0246
3 1.6480 1.0174 1.0231

1/3 1.2385 1.0287 1.0313
Tc 1 1.0653 1.0276 1.0260

3 1.0369 1.0242 1.0215
1/3 1.8715 1.1131 1.0990

Tm 1 1.5121 1.0235 1.0394
3 1.1711 1.0223 1.0281
1/3 1.5616 1.0346 1.0395

TM ed 1 1.2253 1.0238 1.0292
3 1.0552 1.0241 1.0241
1/3 1.1251 1.0258 1.0282

Tu 1 1.1932 1.0301 1.0303
3 1.1251 1.0258 1.0282

1/3 1.0253 1.0231 1.0298
Tc 1 1.0160 1.0184 1.0220

3 1.0109 1.0147 1.0168
1/3 1.1191 1.0313 1.0798

Tm 1 1.0474 1.0253 1.0450

250
3 1.0240 1.0190 1.0277

1/3 1.0461 1.0283 1.0443
TM ed 1 1.0253 1.0207 1.0290

3 1.0152 1.0160 1.0206
1/3 1.0209 1.0189 1.0256

Tu 1 1.0219 1.0217 1.0271
3 1.0209 1.0189 1.0256
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N = 3, FR ^ 85%

C Task Type R FAP-0 FAP-\ FAP-2
1/3 2.0664 1.2708 1.1274

Tc 1 1.8559 1.1903 1.0438

3 1.4711 1.0541 1.0366

1/3 2.6494 1.4259 1.3012

T ^ 1 2.3408 1.3416 1.2275

10
3 1.9818 1.2181 1.0805

1/3 2.3549 1.3814 1.2599
TMed 1 2.0906 1.2697 1.1301

3 1.7287 1.1005 1.0370

1/3 1.9866 1.2271 1.0619

Tu 1 2.1198 1.2937 1.1291

3 1.9866 1.2271 1.0619

1/3 1.5078 1.1533 1.0579

Tc 1 1.2545 1.0828 1.0548

3 1.0870 1.0638 1.0426

1/3 2.1302 1.3605 1.2634

7L 1 1.8015 1.2623 1.1718

25
3 1.4555 1.1062 1.0510

1/3 1.8090 1.2912 1.1936
TMed 1 1.5335 1.1612 1.0576

3 1.1561 1.0647 1.0463
1/3 1.4220 1.0879 1.0523

Tu 1 1.5065 1.1561 1.0608
3 1.4220 1.0879 1.0523

1/3 1.0395 1.0525 1.0481

Tc 1 1.0259 1.0494 1.0406

3 1.0160 1.0381 1.0303

1/3 1.2789 1.1234 1.1253

Tm 1 1.0836 1.0658 1.0702

250 3 1.0377 1.0462 1.0448
1/3 1.0818 1.0711 1.0717

TMed 1 1.0422 1.0540 1.0496
3 1.0230 1.0401 1.0351

1/3 1.0323 1.0447 1.0415
Tu 1 1.0355 1.0538 1.0465

3 1.0323 1.0447 1.0415

160



7.2.2 LFCM and VRVF results {APT)

LFCM
(Jaber et al., 2003)

VRVF
(Jaber et al., 2003)

N FR C FAP-0 FAP-\ FAP-2 FAP-0 FAP-\ FAP-2

2

Low
(95%)

10 1.3075 1.0011 1.0390 1.0516 1.0011 1.0391
25 1.0675 1.0675 1.0675 1.0675 1.0675 1.0675
250 1.0431 1.0028 1.0433 1.0422 1.0024 1.0435

Med
(90%)

10 1.8990 1.0065 1.0432 1.0848 1.0071 1.0450
25 1.4478 1.0075 1.0441 1.0755 1.0078 1.0458
250 1.0566 1.0125 1.0494 1.0522 1.0107 1.0504

High
(85%)

10 2.1925 1.0486 1.0532 1.3201 1.1196 1.0962
25 1.7187 1.0379 1.0541 1.2008 1.0753 1.0766
250 1.0817 1.0314 1.0593 1.0696 1.0273 1.0631

3

Low
(95%)

10 1.7138 1.0042 1.0415 1.0774 1.0044 1.0424
25 1.2960 1.0051 1.0423 1.0683 1.0052 1.0433
250 1.0501 1.0078 1.0468 1.0477 1.0069 1.0473

Med
(90%)

10 2.2197 1.1722 1.0958 1.7301 1.5305 1.4178
25 1.7457 1.1346 1.0785 1.4249 1.2953 1.2447
250 1.0849 1.0344 1.0627 1.0741 1.0310 1.0668

High
(85%)

10 2.4774 1.4218 1.2785 2.2692 2.0962 1.9228
25 1.9757 1.3460 1.2330 1.8368 1.7190 1.6104

250 1.1445 1.0813 1.0876 1.1221 1.0788 1.1026
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7.3 2-way interaction tables '

7.3.1 2-way DPLFM interaction tables

The interactions between C and FR

Forgetting rate ( FR )
95% 90% 85%

Worker 10 1.044 1.198 1.365
transfer policy 25 1.020 1.080 1.181
(C) 250 1.014 1.024 1.045

The interactions between C and FAF

Upfront training policy ( FAF )
0 1 2

Worker transfer 10 1.514 1.053 1.040
policy (C ) 25 1.206 1.038 1.036

250 1.032 1.020 1.031

The interactions between C and N

Number of tasks learned ( N  )
2 3

Worker transfer 10 1.138 1.267
policy ( C ) 25 1.058 1.130

250 1.021 1.034

The interactions between FR and FAF

Upfront training policy ( FAF )
0 1 2

Forgetting rate 95% 1.056 1.003 1.019
{FR) 90% 1.255 1.019 1.028

85% 1.441 1.089 1.060
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The interactions between FR and N

Number of tasks learned ( N )
2 3

Forgetting rate
(FR)

95% 1.017 1.035
90% 1.068 1.134
85% 1.132 1.262

The interactions between FAP and N

Number of tasks learned (N  )
2 3

Upfront 
training policy
(FAF)

0 1.182 1.319
1 1.011 1.063
2 1.024 1.048

The interactions between C and T

Task-type (T )

Tc T , TMed Tu
W orker 
transfer 
policy {C  )

10 1.126 1.301 1.202 1.180
25 1.049 1.168 1.093 1.065
250 1.018 1.046 1.025 1.021

The interactions between C and R

R-value ( R )
1/3 1 3

W orker transfer 
policy ( C )

10 1.280 1.206 1.121
25 1.146 1.089 1.045
250 1.039 1.025 1.018

The interactions between FR and T

T ask-type(T )

Tc Tm TMed Tu
Forgetting 
rate ( F R  )

95% 1.012 1.056 1.023 1.014
90% 1.054 1.169 1.100 1.079
85% 1.127 1.291 1.198 1.170
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The interactions between FR and/?

R-value ( R  )
1/3 1 3

Forgetting rate 95% 1.046 1.021 1.011
{ F R ) 90% 1.153 1.096 1.052

85% 1.267 1.203 1.121

The interactions between T  and F A P

Upfront training policy ( F A P )
0 1 2

Task-type ( T  ) Tc 1.143 1.027 1.023

Tm 1.405 1.052 1.059

T•' MeJ 1.249 1.037 1.035

Tv 1.207 1.032 1.026

The interactions between T  and N

Num ber o f tasks learned { N  )
2 3

Task-type ( T  ) Tc 1.039 1.090

Tm 1.124 1.220

Tmcc! 1.070 1.144

Tv 1.056 1.121

The interactions between T  and R

R-value ( R  )
1/3 1 3

Task-type ( T  ) Tc 1.101 1.062 1.029

Tm 1.268 1.162 1.085
T̂ Med 1.170 1.101 1.049

Tv 1.082 1.073 1.073
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The interactions between FAP and R

R-value ( R  )
1/3 1 3

Upfront 0 1.364 1.249 1.139
training policy 1 1.050 1.037 1.023
(F A P ) 2 1.052 1.034 1.022

The interactions between N  and R

R-value ( R  )
1/3 1 3

Number of tasks 
learned ( N  )

2 1.109 1.070 1.037
3 1.201 1.144 1.086 .

7.3.2 2-way LFCM interaction tables

The interactions between C and FR

Forgetting rate ( FR )
95% 90% 85%

W orker 
transfer policy
(C)

10 1.185 1.406 1.579
25 1.091 1.243 1.394
250 1.032 1.050 1.081

The interactions between C and FAP

Upfront training policy ( FAP)
0 1 2

W orker transfer 
policy ( C )

10 1.968 1.109 1.092
25 1.542 1.100 1.087
250 1.077 1.028 1.058

The interactions between C and N

Number of tasks learned ( N  )
2 3

W orker transfer 
policy ( C )

10 1.288 1.492
25 1.168 1.317
250 1.042 1.067
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The interactions between FR and FAP

Unfront training policy ( FAP)
0 1 2

Forgetting rate
iFR)

95% 1.246 1.015 1.047
90% 1.576 1.061 1.062
85% 1.765 1.161 1.128

The interactions between FR and N

Number of tasks earned ( N )
2 3

Forgetting rate
iFR)

95% 1.071 1.134
90% 1.174 1.292
85% 1.253 1.450

The interactions between FAP and N

Number of tasks earned ( N )
2 3

Upfront 
training policy
{FAP)

0 1.424 1.634
1 1.024 1.134
2 1.050 1.107

7.4 3-way interaction tables

7.4.1 3-way DPLFM interaction tables

3-way interactions for 1 0 ' “ 85%

^ 1 0 ^ ^ 8 5 %

T % FAP % N % R %

Tc 1.251 213% 0 1.884 85.7% 2 1.254 23.6% 1/3 1.442 42.1%
Tm 1.493 47.2% 1 .  ' 1.135'' 11.9% 3 1.476 45.5% 1 1.376 35.7%
T̂ Med 1.368 34.9% 2 ■ 1.076 6.1% 3 1.302 283%
Tu 1.346 32.7%
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3-way interactions for CjjqF/?,'95%

^2 5 0 ^ ^95%
T % FAP % N % R %

Tc 1.009 -0.5% 0 1.019 0.5% 2 1.013 -0.1%
1/
3 1.070 5.5%

Tm 1.025 L0% 1 1.003 -1.1% 3 1.015 0.1% 1 1.013 -0.1%

TmccI 1.013 -0.1% 2 1.021 &7% 3 1.009 -0.5%

T u 1.018 0.4%

3-way interactions for C.gFAF -  0

C ,„ F A P - 0  1

FR % T % N % R %

95%, 1.112 9.0% Tc 1.317 29.1% 2 1.383 35.6% 1/3 1.675 64.296

90% 1.547 51.796 Tm 1.764 73.0% 3 1.645 61.396 1 1.525 49.3%

85% 1.884 84.7% Tm ü̂ 1.513 48.4% 3 1.379 35.2%

Tu 1.462 43.4%

3-way interactions for Ĉ ^̂ FAP -1

FR % T % N % R %

95% 1.003 -1.7% Tc 1.017 -0.3% 2 1.012 -0.7% 1/3 1.027 0.7%

90% 1.015 -0.5% Tm 1.025 0.5% 3 1.028 0.7% 1 1.026 0.6%

85% 1.042 2.1% TmbiI 1.020 0.0% 3 1.026 0.6%

Tu 1.018 -0.2%
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3-way interactions for

C |oÂ 3

FR % T % FAP % R %

1.064 42% Tc 1.176 15.1% 0 1.645 61.1% 1/3 1.358 32.9%

90% 1.260 214% T , 1.380 35.2% 1 1.097 74% 1 1.274 24.7%

85% 1.476 44.5% TmcJ 1.270 244% 2 1.059 3 j% 3 1.169 14.5%

Tu 1.240 21.49&

3-way interactions for

T-250̂ 2̂
FR % T % FAP % R %

95% 1.013 -0.8% Tc 1.014 ^ 2 % 0 1.026 04% 1/3 1.031 0.9%

90% 1.019 -0.2% Tm 1.035 1.496 1 1.012 -0.9% 1 1.020 -0.2%

85% 1.032 1.19& TMed 1.020 42 % 2 1.026 &5% 3 1.014 -0.7%

Tu 1.016 4 j %

3-way interactions for FAP -  0

TR%s%FAP 0

C % T % N % R %

10 1.884 8T9% Tc 1.279 2T5% 2 1.341 33.8% 1/3 1.592 58.8%
25 1.390 382% Tm 1.648 64.4% 3 1.540 53.6% 1 1.457 45.3%

T•* Med 1.441 43296 3 1.274 27.096

Tu 1.395 392%
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3-way interactions for FRg^^FAP-1

C % T % N % R %

10 1.002 -0.1% Tc 1.003 0.0% 2 1.001 -0.1% 1/3 1.003 0.0%
25 1.003 0.0% T ^ 1.003 0.0% 3 1.004 0.1% 1 1.003 0.0%

250 1.003 0.0% TmcJ 1.003 0.0% 3 1.003 0.0%
Tu 1.003 0.0%

3-way interactions for FR̂ ^̂ ŷ N̂

, 1

T % FAP % R % c %

Tc 1.176 15.7% 0 1.540 51.4% 1/3 1.346 32.3% 10 1.476 45.1%

T^ 1.372 34.9% 1 1.154 13.5% 1 1.271 25.0% 25 1.252 23.1%
TM ed 1.264 24.3% 2 1.090 7.2% 3 1.168 14.8% 250 5 ;0 5 7 ''

T u 1.234 21.3%

3-way interactions for FR̂ ^̂ N̂̂

FRgs%N2
T % FAP % R % c %

Tc 1.009 -0.8% 0 1.031 1.4% 1/3 1.029 1.2% 10 1.024 0.6%

Tm 1.036 1.8% 1 1.001 -1.5% 1 1.013 -0.4% 25 1.014 -0.3%

T/yied 1.013 -0.4% 2 1.018 0.1% 3 1.009 -0.8% 250 1.013 -0.4%

T u 1.011 -0.6%
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3-way interactions for FAP -  ON^

FAP--ON,
C % FR % T % R %

10 1.645 62.8% 95% 1.081 7.0% Tc 1.195 18.3% 1/3 1.447 43.1%

25 1.275 26.1% 90% 1.336 32.2% Tm 1.490 47.4% 1 1.320 30.6%

• 250,
Ù-*'
.1.038 2.7% 85% 1.540 52.4% TMed 1.318 30.4% 3 1.191 17.8%

Tu 1.274 26.0%

3-way interactions for FAP -  IN,

FAP -IN ,
C % FR % T % R %

10 1.008 -0.2% 95% 1.001 -0.9% Tc 1.010 -0.1% 1/3 1.014 0.3%

25 1.012 0.1% 90% 1.007 -0.4% Tm 1.014 0.3% 1 1.010 -0.1%

250 1.012 0.1% 85% 1.024 1.3% 1.009 -0.1% 3 1.009 -jO.2%

Tu 1.010 -0.1%

3-way interactions for

Ĉ oTm
FR % FAP % N % R %

. 95% 11 0 1 8.1% 0 1.764 73.2% 2 1.222 20.0% 1/3 1.443 41.7%
90% 1.310 28.7% , 1 1.074 5.4% 3 1.380 35.6% 1 1.293 27.0%
85% 1.493 46.6% 2 1.067 4.7% 3 1.169 14.8%

3-way interactions for

2̂5qTc
FR % FAP % N % R %

95% 1.009 -0.9% 0 1.016 -0.2% 2 1.014 -0.4% 1/3 1.023 0.5%
90% 1.016 -0.2% 1 1.017 -0.1% 3 1.022 0.4% 1 1.018 0.0%
85% 1.030 1.2% 2 1.022 0.3% 3 1.014 -0.5%
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3-way interactions for C,„R10“ l/3

/3 #
FR % T % FAP % N %

95% 1.084 T c 1.200 17.9% 0 1,707 67.8% 2 1.202 18.1%
90% 1.289 26.6% T , 1.443 41.7% 3 1.358 33.4%
85% 1.466 44.1% T u i e d 1.309 28.6% 1.059 4.1%

T u 1.167 14.7%

3-way interactions for Ĉ q̂Rj,

^250^3 '
FR % T % FAP % N %

95% 1.009 -0.9% Tc 1.014 -0.4% 0 1.017 -0.1% 2 1.014 -0.4%
90% 1.016 -0.2% Tm 1.022 0.4% 1 1.016 -0.2% 3 1.022 0.4%

85% 1.029 1.0% TmccI 1.016 -0.2% 2 1.021 0.3%
Tu 1.020 0.2%

3-way interactions for FR̂ ĉ,T,̂

'  Î
C % FAP % N % R %

10 1.493 47.5% 0 1.648 62.8% 2 1.209 19.5% 1/3 1.419 40.2%
25 1.304 28.8% 1 1.126 11.2% 3 1.372 35.6% 1 1.287 27.2%

250 1.075 - 6.2% 2 1.098 8.5% 3 1.165 15.2%

3-way interactions for FR̂ ŷ T̂

TR<js%Tc
C % FAP % N % R %

10 1.017 0.5% 0 1.022 0.9% 2 1.009 -0.3% 1/3 1.019 0.6%
25 1.011 -0.1% 1 1.003 -0.9% 3 1.016 0.3% 1 1.010 -0.2%

250 1.009 -0.3% 2 1.012 0.0% 3 1.008 -0.4%
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3-way interactions for

^ ^ 8 5 %  ■ ^1 /3

C % T % FAP % N %

10 1.466 45.0% Tc 1.191 17.8% 0 1.592 57.4% 2 1.187 17.4%

25 1.268 25.4% T^ 1.419 40.4% 1 1.120 10 7'. 3 1.346 33.1%

250 1.065 5.3% T•* Mvd 1.297 28.3% 2 1.088
AANNHNk

7.6%

Tu 1.159 14.6%

3-way interactions for

F/?95%/?3
C % T % FAP % N %

10 1.013 0.2% Tc 1.008 -0.3% 0 1.018 0.7% 2 1.009 -0.2%
25 1.011 0.0% Tm 1.014 0.3% 1 1.003 -0.8% 3 1.013 0.2%

250 1.009 -0.2% TMed 1.010 -0.1% 2 1.013 0.1%
Tu 1.013 0.2%

3-way interactions for T/^FAP-0

c % FR % N % R %

10 1.764 72.4% 95% 1.131 10.5% 2 1.319 28.9% 1/3 1.628 59.1%
25 1.386 35.4% 90% 1.435 40.2% 3 1.490 45.7% 1 1.384 35.3%

01064 4.0% 85% 1.648 61.1% 3 1.202 17.4%

3-way interactions for T^FAP -  2

T çF A P -l
C % FR % N % R %

10 1.024 0.1% 95% 1.012 -1.1% 2 1.016 -0.7% 1/3 1.030 0.7%
25 1.023 0.0% 90% 1.019 -0.4% 3 1.030 0.7% 1 1.022 -0.1%

250 1.022 -0.2% 85% 1.038 1.4% 3 1.017 -0.6%
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3-way interactions for N

, : .

c % FR % FAP % R %

10 1.380 32.9% 95% 1.075 3.5% 0 1.490 43.5% 1/3 1.331 28.1%
25 1.222 17.6% 90% 1.212 16.7% 1 1.090 4.9% 1 1.212 16.7%

#ki,7% 85% 1.372 32.1% 2 3 1.117 7.5%

3-way interactions for

c % FR % FAP % R %

10 1.075 3.5% 95% 1.009 -2.9% 0 1.090 4.9% 1/3 1.064 2.5%
25 1.027 -1.2% 90% 1.030 -0.8% 1 1.010 -2.8% 1 1.036 -0.2%

250 1.014 -2.3% 85% 1.077 3.7% 2 1.016 -2.2% 3 1.015 -2.2%

3-way interactions for

C % FR % FAP % N %

10 1.443 40.1% 95% 1.110 7.9% 0 1.628 58.2% 2 1.206 17.1%
25 1.282 24.5% 90% 1.275 23.8% 1 1.080 4.9% 3 1.331 29.3%

250 1.080 ""4 9 % 85% 1.419 37.9% 2 1.096 6.5%

3-way interactions for

% R , ;
C % FR % FAP % N %

10 1.050 2.0% 95% 1.008 -2.1% 0 1.053 2.3% 2 1.015 -1.4%
25 1.024 -0.5% 90% 1.020 -0.9% 1 1.017 -1.2% 3 1.043 1.4%

250 1.014 -1.5% 85% 1.060 3.0% 2 1.017 -1.2%
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3-way interactions for FAP -QRu^

FAP-ORy,
C % FR % T % N %

10 1.707 67.1% .95% 1.108 8.4%. Tc 1.237 21.0% 2 1.281 25.4%

25 1.333 30.4% 90% 1.393 36.3% 1.628 59.3% 3 1.447 41.6%
_ ’ K

g^l.052 3.0% 85% 1.592 55.8% T
■* Med 1.399 36.9%

Tu 1.192 16.7%

3-way interactions for F A P - 2R^

FAP - 2 / ? 3

C % FR % T % N %

10 1.022 0.0% 95% 1.013 -0.9% T c 1.017 -0.5% 2 1.016 - 0 . 6 %

25 1.023 0.1% 90% 1.019 -0.3% Tm 1.027 0.4% 3 1.028 0 . 6 %

250 1.021 -0.1% 85% 1.034 1.2% TMed 1.020 -0.2%

T u 1.024 0.2%

3-way interactions for N̂ Ry^

•̂ 3̂ 1/3
c % FR % T % FAP %

10 1.358 30.9% ' 95% 1.063. 2 j% Tc 1.138 9.7% 0 1.447 39.5%
25 1.197 15.4% 90% 1.194 15.1% Tm 1.331 28.3% 1 1.086 4.7%

85% 1.346 29.8% T■* Med 1.224 18.0% 2. 1 0:0.

Tu 1.112 7.2%
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3-way interactions for N 2 R 2

N ^ R 3 1
C % FR % T % F A P %

10 1.074 3.5% 95% 1.009 -2:7% Tc 1.015 -2.1% 0 1.087 4 .8%
25 1.024 -1.3% 90% 1.029 -0.8% T^ 1.054 1.6% 1 1.009 -2.7%

250
* ' ^ 
1 014 -2 2% 85% 1.074 3.5% TMed 1.028 -0.9% ' ‘ - ' 1 mmwm

T c 1.051 1.4%

7.4.2 3-way LFCM interaction tables

3-way interactions for

‘T'IoT'Rs5%
N % F A P %

2 1.431 38.8% 0 2.335 126.3%
3 1.726 67.3% 1 1235»

2 1.166*

3-way interactions for

2̂50-̂ 9̂5%
N % F A P %

2 1.030 -0.2% 0 1.047 1.4%
3 1.035 0.3% 1 1.005 -2.6%

2 1.045 1.3%

3-way interactions for C^qF A P  - 0

Q , F A P - 0

N % F R %

2 1.800 75.0% 95% 1.511 46.9%
3 2.137 107.8% 90% 2.059 100.3%

85% 2.335 127.1%
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3-way interactions for - 1

N % FR %

2 1.016 -1.2% 95% 1.005 -2.2%
3 1.041 1.2% 90% 1.023 -0.5%

85% 1.056 2.7%

3-way interactions for

3
FAP % FR %

0 2.137 105% 959! 20.2%
: :■! # i l9 9 15.1% 90% 1.496 43.5%

^ 1 3 9 9.2% 85% 1.726 65.6%

3-way interactions for C25qÂ2

^250 ̂ 2
FAP % FR %

0 1.060 1.7% 95% 1.030 -1.2%
1 1.016 -2.6% 90% 1.039 -0.3%
2 1.051 0.8% 85% 1.057 1.5%

3-way interactions for FAP -  0

N % C %

2 1.664 64.0% 10 2.335 130.1%
3 1.866 83.9% 25 1.847 82.0%

250 1113 9.7% 1

3-way interactions for FAP - 1

N % c %

2 1.024 0.9% 10 1.003 -1.2%
3 1.006 -0.9% 25 1.036 2.1%

250 1.005 -0.9%
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3-way interactions for

FAP % c %

0 1.866 74.2% 10 1.726 61.1%
1 1.283 19.8% 25 1.518 41.8%
2 1 200 '̂12.0% 250 m m

3-way interactions for FRĝ rr̂ N̂

FAP % C %

0 1.139 6.4% 10 1.116 4.2%
1 1.024 -4.4% 25 1.068 -0.3%
2 1.050 -2.0% 250 1.030 -3.9%

3-way interactions for FAP -

FAP-ON ̂
FR % C %

95% 1.353 "̂ '32.2% 10 2.137 108.7%
90% 1.683 64.4% 25 1.672 63.3%
85% 1.866 82.2% 250 1 .0 #

3-way interactions for FAP -1

FAP-IN^
FR % c %

95% 1.024 0.0% 10 1.019 -0.5%
90% 1.009 -1.5% 25 1.038 1.3%
85% 1.039 1.5% 250 1.016 -0.8%
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7.5 Suppressed model A results - APT (DPLFM)

N  = 2, FR = 9 5 %

c Task Type R F A P -0 F A P -l F A P -2

1/3 - - -

Tc 1 - - -

3 -

1/3 1.3609 -

Tm 1 - - -

10
3 - -

1/3 - - -

TMed 1 - - -

3 - - -

1/3 - - -

Tu 1 - - -

3 - - -

1/3 - - -

Tc 1 - - -

3 - - -

1/3 1.0867 - -

Tm 1 - - -

25
3 - - -

1/3 - - -

T■* Med 1 - - -

3 - - -

1/3 - - -

Tu 1 - - -

3 - - -

1/3 - - -

Tc 1 - - -

3 - _ _

1/3 - - -

Tm 1 - - -

3 - _ _

1/3 - - _

TMed 1 -

3 - _ _

1/3 - - _

Tu 1 - - _

3 - - -
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N  = 2, FR = 90%

C Task Type R F A P -0 F A P - l F A P -2
1/3 1.3784 - _

Tc I 1.0814 - _

L  3 - .

1/3 2.1088 . _

T^ 1 1.6664 - _

10 3 1.2797 _ _

1/3 1.7298 - _

T̂ Med 1 1.3600 - -

3 - -

1/3 1.2673 - -

Tu 1 1,3750 - -

3 1.2673 - -

1/3 - - -

Tc 1 - - -

3 - - -

1/3 1.6000 - -

T^ 1 1.2155 - -

25 3 - - -

1/3 1.2672 - -

TMed 1 - - -

3 - - -

1/3 - -

Tu 1 - - -

3 - -

1/3 - -

Tc 1 - - -

3 - - -

1/3 1.0760 - -

Tu 1 _ -

250 3 _ -

1/3 _ - -

Tued 1 _ - -

3 - -

1/3 - -

Tu 1 _ - -

3 - -
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N  = 2, FR = 85%

c Task Type R FAP-0 FAP-\ FAP-2
1/3 1.7251 - -

Tc 1 1.4919 - -

3 1.0835 -

1/3 2.3914 1.0869 1.0805
Tm 1 2.0386 - -

10 3 1.6370 - -

1/3 2.0511 - -

TMed 1 1.7541 - -

3 1.3595 - -

1/3 1.6324 - -

Tc 1 1.7746 - -

3 1.6324 - -

1/3 1.2281 - -

Tc 1 1.0735 - -

3 - -

1/3 1.9010 1.0785 1.0794
Tm 1 1.5409 - -

25
3 1.1716 - -

1/3 1.5471 - -

TMed 1 1.2574 -

3 - -

1/3 1.1227 - -

Tu 1 1.2250 - -

3 1.1227 - -

1/3 - - -

Tc 1 - - -

3 - - _

1/3 1.1506 _ 1.0826
Tm 1 - - -

^cn 3 - - _

1/3 - _ _

T̂ Med 1 - _

3 - _

1/3 - _

Tu 1 - -

3 - - -
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N  = 3, FR = 95%

c Task Type R F A P - 0 F A R - I F A P - 2
1/3 1.1263 _

Tc 1 - -

3 - _

1/3 1.7488 _ _

Tm 1 1.3887 - _

10
3 - - _

1/3 1.4156 -

T̂ Med 1 1.0811 -

3 - -

1/3 - - _

Tu 1 1.0850 - _

3 - - _

1/3 - - _

Tc 1 - - -

3 - - -

1/3 1.3159 - -

Tm 1 - - -

25
3 - - -

1/3 - - -

T/Hed 1 - - -

3 - - -

1/3 - - -

Tv 1 - - -

3 - - -

1/3 - - -

Tc 1 _ . -

3 - - -

1/3 _ - -

Tm 1 _ - -

250
3 - - -

1/3 - -

TMed 1 - -

3 - -

1/3 - -

Tv 1 - -

3 - - -
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N  = 3, F R =  90%

c Task Type R F A P -Q F A P - l F A P - 2

1/3 1.7420 - -

Tc 1 1.4647 -

3 1.0833 -

' 1/3 2.3971 1.1351 1.1079

T^ 1 2.0008 - -

10 3 1.6476 -

1/3 2.0616 1.0919 -

T•* Med 1 1.7204 - -

3 1.3773 - -

1/3 1.6480 -

Tu 1 1.7472 - -

3 1.6480 - -

1/3 1.2385 - -

Tc 1 - - -

3 - - -

1/3 1.8715 1.1131 1.0990

Tm 1 1.5121 - -

25 3 1.1711 - -

1/3 1.5616 - -

TMed 1 1.2253 -

3 - - -

1/3 1.1251 - -

Tu 1 1.1932 - -

3 1.1251 - _

1/3 - - -

Tc 1 - - -

L  3 - - _

1/3 1.1191 - 1.0798
T^ 1 - - -

250 3 - - .

1/3 - - _

T̂
 M e d 1 - - _

3 - _

1/3 - -

Tu 1 -

3 - - -

182



N  = 3, FR  =85%

c T ask  Type R F A P - 0 F A P - l F A P - 2
1/3 2.0664 1.2708 1.1274

Tc 1 1.8559 1.1903
3 1.4711 _

1/3 2.6494 1.4259 1.3012
Tm 1 2.3408 1.3416 1.2275

10
3 1.9818 1.2181 1.0805

1/3 2.3549 1.3814 1.2599
T■* M e d 1 2.0906 1.2697 1.1301

3 1.7287 1.1005 -

1/3 1.9866 1.2271 -

Tu 1 2.1198 1.2937 1.1291
3 1.9866 1.2271 -

1/3 1.5078 1.1533 -

Tc 1 1.2545 1.0828 -

3 1.0870 - -

1/3 2.1302 1.3605 1.2634
Tm 1 1.8015 1.2623 1.1718

25 3 1.4555 1.1062 -

1/3 1.8090 1.2912 1.1936
T

M e d 1 1.5335 1.1612 -

3 1.1561 - -

1/3 1.4220 1.0879 -

Tu 1 1.5065 1.1561 -

3 1.4220 1.0879 -

1/3 - - -

Tc 1 _ - -

3 - - -

1/3 1.2789 1.1234 1.1253

Tm 1 1.0836 - 1.0702

250
3 - - -

1/3 1.0818 1.0711 1.0717
T̂

 M e d 1 _ - -

3 _ - -

1/3 _ - -

Tu 1 _ - -

3 - - -
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7.6 Model B results {APT)

7.6.1 Two tasks learned

Suppressed average processing time results for the DPLFM with the task similarity factor 
-C  = 10, N = 2

Low forgetting  
ra te  o f 95%

M edium  fo rgettit
ra te  of 90%

ïg H igh fo 
ra te  o f

rge ttin g
iS%

Task-
Type R

Similarity
Factor
( S )

FAP
0

FAP
1

FAP
2

FAP
0

FAP
I

FAP
2

FAP
0

FAP
1

FAP
2

T c

1/3
0.0 1.3784 1.7251 - -
0.2 1.2539 - - 1.6014 - -

0.4 1.1057 1.4475 - -

0.6 1.2467 - -

0.8 - - - - -

1
0.0 1.0814 1.4919 - -
0.2 1.3661 - -
0.4 - 1.2122 - -
0.6 - -
0.8 - -

3
0.0 - 1.0835 • -
0.2 -
0.4 - - -
0.6 - - -
0.8 -

T m

1/3
0.0 1.3609 2.1088 2.3914 1.0869 1.0805
0.2 1.2489 1.9974 2.2876 - -
0.4 1.1366 1.8574 2.1541 -
0.6 1.0742 1.6716 - 1.9708 - -
0.8 1.3994 - 1.6822 - -

1
0.0 1.6664 2.0386
0.2 1.5466 - 1.9239 -

0.4 1.4013 1.7793 - -
0.6 1.2201 1.5864 -

0.8 1.2994 -

3
0.0 1.2797 - . 1.6370 - -

0.2 1.1580 1.5137
0.4 1.3621 - -

0.6 - 1.1679 - -

0.8 -

T̂
 M e d

1/3
0.0 1.7298 2.0511
0.2 1.6087 . 1.9353 - .

0.4 1.4597 1.7886
0.6 1.2699 1.5918 .

0.8 1.2957 - -

1
0.0 1.3600 1.7541
0.2 1.2380 1.6322 -

0.4 1.0940 . 1.4806 -

0.6 1.2827 -

0.8 -

3
0.0 1,3595 . .

0.2 1.2341 -

0.4 1.0717 .

0.6 . .

0.8 -

T u

1/3
0.0 1.2673 1.6324 .

0.2 1.1393 1,5047 . .

0.4 1.3464 . .

0.6 1.1414
0.8 . .

1
0.0 1.3750 1.7746 .

0.2 1,2463 1.6483 -

0.4 1.0920 1.4896 .

0.6 1.2793
0.8

3
0.0 1.2673 1.6324
0.2 1.1393 . 1.5047
0.4 - . . 1.3464
0.6 - . . 1.1414
0.8 - -
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Suppressed average processing time results for the DPLFM with the task similarity factor
- C  = 2 5 , N  = 2

Low forgetting Medium forgetting High forgetting
ra te  of 95% rate of 90% rate of 85 %

Task-
Type R

Similarity 
Factor ( S )

FAP
0

FAP
1

FAP
2

FAP
0

FAP
1

FAP
2

FAP
0

FAP FAP
2

0.0 - 1.2281

1/3
0.2 - 1.1 n o
0.4 - .

0.6 - .

0.8 -
0.0 - 1.0735 .

0.2 - .

1 0.4 -
0.6 -
0.8 ■
0.0 -
0.2 -

3 0.4 -
0.6 -
0.8 -
0.0 1.0867 1.6000 1.9010 1.0785 1.0794
0.2 1.0730 1.4969 - 1.8074

1/3 0.4 - 1.3713 - - 1.6872 .
0.6 - 1.2185 - 1.5244 .
0.8 - 1.0726 - . 1.2834 .
0.0 - - 1.2155 - - 1.5409 -
0.2 - - 1.1150 - 1.441.3 .

1 0.4 - - - - 1.3172 .
0.6 - - - 1.1576 .

0.8 - - - -
0.0 - - - - 1.1716 -

0.2 - - - - .

3 0.4 - - . .

0 .6 - - - -

0.8 - - - -

0.0 - 1.2672 - . 1.5471 -

0.2 - - 1.1628 - 1.4462 -

1/3 0.4 - - 1.3196 -

0.6 - . 1.1549 -

0.8 - -

0.0 - - 1.2574 - -

0.2 - - 1.1539 . -

T 1 0.4 - - - -
M e d

0.6 - - -

0.8 - - - -

0.0 . - - -

0.2 . - -

3 0.4 . -

0.6 - -

0.8 . - -

0.0 1.1227 -

0.2 - -

1/3 0.4 . -

0.6 . . -

0.8 - - - - -

0.0 _ . - - 1.2250 - -

0.2 . - - 1.1056 - -

T u 1 0.4 . - - - -

0.6 _ . - - - - -

0.8 - - - - - -

0.0 . . - - - 1.1227 - -

0.2 - - - - -

3 0.4 - - - - -

0.6 . - - - - - -

0.8 - - - - - - - - -
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Suppressed average processing time results for the DPLFM with the task similarity factor

Low forgetting Medium forgetting High forgetting

rate of 95 % rate of 90% rate of 85%

T ask-
Type R

Similarity
Factor
( ^ )

FAP
0

FAP FAP
2

FAP
0

FAP
1

FAP
2

FAP
0

FAP
1

FAP
2

0.0 . . - - -
0.2 . - - - -

1/3 0.4 - - - -
0.6 - - -
0.8 . - - -
0.0 . - . ' - - -
0.2 . - - -

Tc 1 0.4 - - - -
0.6 . - - - -
0.8 - - - -
0.0 - - -
0.2 - - - - -

3 0.4 - - - -
0.6 - - - -
0.8 - - - - -
0.0 - - 1.0760 - 1.1506 - 1.0826
02 - 1.1121 - 1.0746

1/3 0.4 . - 1.0872 - -
0.6 . - - - -
0.8 - - - -
0.0 - - - -
0.2 - - - - -

T , 1 0.4 - - - - -
0.6 - - - -
0.8 - - - - -
0.0 - - - - - -
0.2 - - - -

3 0.4 - - - - -
0.6 - - - - -
0.8 ' - - - - - - -
0.0 - - - - -
0.2 . - - - .

1/3 0.4 - - - - - - -
0.6 - - - -
0.8 - - - - -
0.0 - - - - - . -
0.2 - - - - -

T̂ Med 1 0.4 - - - - -
0.6 - - - - . .
0.8 - - - - - - -
0.0 - - - . -
0.2 - - - - - -

3 0.4 - - - - - - -
0.6 - - - - - -

0.8 - - - - . -
0.0 - - - - - - -
0.2 - - - - . - -

1/3 0.4 - - - - - - -
0.6 - - - - - - - -
0.8 - - - - - - - - -
0.0 - - - - - - . .

1
0.2 - - - - . . _ .

T u 0.4 - - - - - - - _ .

0.6 - - - - . - _ -

0.8 - - - - - - - _ .

0.0 - - - - . . . _ _

0.2 - - - - - . - _ -

3 0.4 - - - - - - _ _ _

0.6 - - - - - _

0.8 - - - - - - - - -
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7.6.2 Three tasks learned

Suppressed average processing time results for the DPLFM with the task similarity factor
-C  = 10,iV = 3

Low forgetting 
rate of 95%

Medium forgetting 
rate of 90%

High forgetting 
rate of 85%

Task-
Type R

Similarity 
Factor ( S ) FAP -0 F A P -l FAP -2 FAP-0 F A P -l F A P -2 FAP -0 F A P -l F A P - 2

So 1.1263 - - 1.7420 - - 2.0664 1.2708 1.1274
1/3 s, - - - 1.6165 - - 1.9494 1.1365 -

S: - - - 1.4097 - - 1.7521 - -

s . - - - - - - 1.2537 _

So - - - 1.4647 - - 1.8559 1.1903 - m

T r 1 s , - - - 1.3355 - - 1.7331 -

c Sz - - - LI 110 - - 1.5284 -

Sa - - - - - - - _

So - - - 1.0833 - - 1.4711 .

3 s, - - - - - - 1.3361 -
Sz - - - - - - 1.0946 - -
Sa - - - - - - - - ■ -
So 1.7488 - - 2.3971 1.1351 1.1079 2.6494 1.4259 1.3012

1/3 s , 1.6160 - - 2.29.34 - - 2.5583 1.3008 1.2062
Sz 1.4007 - - 2.1180 - - 2.3982 1.1180 1.0936
Sa 1.0733 - - 1.6663 - - 1.9671 . _
So 1.3887 - - 2.0008 - - 2.3408 13416 1.2275

1 s, 1.2530 - - 1.8835 - - 2.2349 1.2105 1.1083

'J'm Sz - - - 1.6888 - - 2.0543 - -
Sa - - - 1.2186 - - 1.5878 - -

So - - - 1.6476 - - 1.9818 1.2181 1.0K05
3 S. - - - 1.5207 - - 1.8627 1.0833 -

Sz - - - 1.3132 - - 1.6637 - -
Sa - - - - - - 1.1724 - -

So 1.4156 - - 2.0616 1.0919 - 2.3549 1.3814 1.2599

1/3 s, 1.2772 - - 1.9451 - - 2.2491 1.2475 1.1343
Sz - - - 1.7505 - - 2.0676 - -
Sa - - - 1.2689 - - 1.5943 - -
So 1.0811 - - 1.7204 - - 2.0906 1.2697 I.I30I

1 Si - - 1.5957 - - 1.9751 1.1379 -

T■' Med Sz
Sa

- - - 1.3911 - - 1.7803
1.2895

- -

So _ - - 1.3773 - - 1.7287 1.1005 -

Si - 1.2432 - - 1.6030 - -
3

Sz - - - - - - 1.3956 - -

Sa _ - - - - - - -
So - - 1.6480 - - 1.9866 1.2271 -

1/3 Si
Sz

- - - 1.5175
1..3025

- - 1.8654
1.6615

1.0824

Sa - - - - - 1.1477 ■ -

T u 1

50
51 
Sz

1.0850
- -

1.7472
1.6194
1.4075

- -

2.1198
2.0034
1.8045

1.2937
1.1559

1.1291

Sa - - - - - 1.2905 - -
So 1.6480 - - 1.9866 1.2271 -

S| 1,5175 - - 1.8654 1.0824 -
3

Sz 1.3025 - - 1.6615 - -

Sa - - - - - ■ 1.1477 - -
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Average processing time results for the DPLFM with the task similarity factor C — 25, 
N  = 3

Task-
Type R

Similarity 
Factor ( S )

Low forgetting 

rate of 95%

FAP
0

FAP
1

FAP
2

Medium forgetting 

rate of 90%

FAP
0

FAP
I

FAP
2

High forgetting 

rate of 85%

FAP
0

FAP
1

FAP
2

1/3

S„
S.
Si
Sj

1.2385
1.1208

1.5078
1.4096
1.2391

1.1533

S„
S,
Si
S.,

1.2545
1.1466
1.0739

1.0828

S.
S i

S i

Si

1.0870

1/3

50
51 
S i 

S i

1.3159
1.2082
1.0922

1.8715
1.7755
1.6124
1.2139

1.1131 1.0990 2.1302
2.0493
1.9061
1.5191

1.3605
1.2582
1.1027

1.2634
1.1855
1.0877

50
51 

S i 

S i

1.5121
1.4090
1.2382

1.8015
1.7103
1.5538
1.1560

1.2623
1.1565

1.1718

50
51 
S i 

S i

1.1711 1.4555
1.3554
1.1817

1.1062

1/3

50
51 
S i 

S i

1.5616 
1.4593 
1.2879

1.8090
1.7180
1.5606
1.1541

1.2912
1.1836

1.1936
1.0884

■ Med

S i,
S i

S i

S i

1.2253
1.1081

1.5335
1.4371
1.2712

1.1612

50 
S,
51 
S i

1.1561
1.0996

1/3

50
51 
S i 

Si

1.1251 1.4220
1.3178
1.1311

1.0879

50 
S,
51 
S i

1.1932
1.0789

1.5065
1.4074
1.2327

1.1561

50 
S,
51 
S i

1.1251 1.4220
1.3178
1.1311

1.0879
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Average processing time results for the DPLFM with the task similarity factor -  C = 250.
N  = 3

Low forgetting 

rate of 95 %

Medium forgetting 

rate of 90%

High forgetting 

rate of 85%

Task- p Similarity FAP FAP FAP FAP FAP FAP FAP FAP FAP
Type i \ Factor ( S ) 0 1 2 0 1 2 0 1 2

s„ - - -

s , - - - • - .

S2 - - - - . . .
s , - - - - . .

So - - . . .

Tc 1 s ,
S2

- - - - - - - - -

S3 - - - . _

So - - . _ -

3 s , - - - .

S2 - - - . . .

S3 - - - - . .

So - - - 1.1191 - 1.0798 1.2789 1.1234 1.1253

1/3 s , - - - 1.0958 - 1.0729 1.2293 1.0771 1.1013
Si - - - 1.0736 - . 1.1434 . 1.0804
Sj - - - - - . . . -

So - - - - - 1.0836 - 1.0702

T ^ 1 s ,
Sz ;

* ■

S3 - . . . . .

So - - - - . - -

3 s , - - - - - - -
Sz - - - - - - - -

S3 - . - - - - - -

So - - - - 1.0818 1.0711 1.0717

1 /3
s , - - - - - - -

Sz - - - - - •
S3 - . - - - -

So - - - -

TMed 1 s ,
Sz

- - *

S3 - . - - - - -

So - - - - - - -

3 s , - - - - - - -

Sz - - -
S3 - - - - - •
So - - - - - - -

s ,
1/3

Sz - - - -
S3 - - - - - - -
So - - - - - - -

T„ 1 s , - - - *
u Sz - -

S3 - - - - - - -

So - - - - - - ■
Si . . - - - -

3
Sz - - -
S3 - - - - - - -
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7.7 Model C results
LFCM, 5=0, 
N =2

Optiinal Policy

F o rg e tt in g  R a te L e a rn in g  R a te
In it ia i tim e  to  s ta n d a r d  tim e  ra tio

ip) F A P B a tch  S ize

2 0 250

3 5 10

' 70% 4 1 10

S I 10

6 1 10

2 250

3 1 10

75% 4 1 10

5 1 10

6 1 10

2 250

3 1 10

95% 80% 4 1 10

S 1 10

6 1 10

2 250

3 1 10

85% 4 1 10

S 1 10

6 1 229
2 1 10
3 1 231

90% 4 0.5 10
S 0.5 10
6 0.5 10
2 0 250
3 0 250

70% 4 1 10
S 1 10
6 1 10
2 250
3 250

75% 4 1 10
5 1 10
6 1 10
2 250
3 1 10

92.5% 80% 4 1 10
5 1 10
6 1 10
2 250
3 1 10

85% 4 1 10
5 I 10
6 1 250
2 1 10
3 1 231

90% 4 0.5 10
5 0.5 10
6 0.5 10
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L F C M , 5 = 0 ,  

N  = 2 Optimal Policy

Forgetting Rate Learning Rate Initial time to standard time ratio (j>) FAP Batch Size
2 0 250
3 0 250

70% 4 0 250
5 1 10
6 1 10
2 0 250
3 0 250

75% 4 1 10
5 1 10
6 1 10
2 0 250
3 0 250

90% 80% 4 1 10
5 1 10
6 1 10
2 0 250
3 1 10

85% 4 1 10
5 1 250
6 1 230
2 5 10
3 1 250

90% 4 0.5 10
5 0.5 10
6 0.5 10
2 0 250
3 0 250

70% 4 0 250
5 0 250
6 1 10
2 0 250
3 0 250

75% 4 0 250
5 1 10
6 1 10
2 0 250
3 0 250

87.5% 80% 4 1 10
5 1 10
6 1 10
2 0 250
3 1 10

85% 4 I 10
5 1 250
6 1 230
2 5 10
3 1 232

90% 4 0.5 10
5 0.5 10
6 0,5 10
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LFCM, 
s =0, N = 2

Optimal Policy

Forgetting Rate Learning Rate Initial time to standard time ratio (p) FAP Batch Size

2 0 250
3 0 250

70% 4 0 250
5 0 250
6 0 250
2 0 250
3 0 250

75% 4 0 250
5 I 10
6 1 10
2 0 250
3 0 250

85% 80% 4 1 10
5 1 10
6 1 10
2 0 250
3 5 10

85% 4 I 64
5 I 250
6 1 230
2 5 10
3 1 232

90% 4 0.5 10
5 0.5 10
6 0.5 10
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LFCM, 
s =  0.2, N = 
2

Optim al Policy

Forgetting Rate Learning Rate Initial time to standard time ratio <o) FAP Batch Size
2 0 250

70%
3 5 10
4 1 10
5 1 10
6 1 10
2 10
3 1 10

75% 4 1 10
5 1 10
6 1 10
2 250

95%
3 1 10

80% 4 1 10
5 1 10
6 1 10
2 1 10
3 1 10

85% 4 1 10
5 1 10
6 1 229
2 1 10
3 1 202

90% 4 0.5 10
5 0.5 10
6 0.5 10
2 0 250
3 5 10

70% 4 1 10
5 1 10
6 1 10
2 250
3 1 10

75% 4 1 10
5 1 10
6 1 10
2 250
3 1 10

92.5% 80% 4 1 10
5 1 10
6 1 10
2 250
3 1 10

85% 4 1 10
5 1 10
6 1 229
2 1 10
3 1 231

90% 4 0.5 10
5 0.5 10
6 0.5 10
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LFCM, 
s  =0.2, N  = 
2

Optimal Policy

Forgetting Rate Learning Rate Initial time to standard time ratio (p) FAP Batch Size

2 0 250
3 0 250

70% 4 0 250
, 5 1 10

6 1 10
2 250
3 250

75% 4 1 10
5 1 10
6 1 10
2 250
3 1 10

90% 80% 4 1 10
5 1 10
6 1 10
2 250
3 1 10

85% 4 1 10
5 1 204
6 1 230
2 1 10
3 1 250

90% 4 0.5 10
5 0.5 10
6 0.5 10
2 0 250
3 0 250

70% 4 0 250
5 1 10
6 1 10
2 0 250
3 0 250

75% 4 0 250
5 1 10
6 1 10
2 0 250
3 0 250

87.5% 80% 4 1 10
5 1 10
6 1 10
2 0 250
3 1 10

85% 4 1 10
5 1 250
6 1 230
2 5 10
3 1 250

90% 4 0.5 10
5 0.5 10
6 0.5 10
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L F C M , 

s =  0 .2 ,  N  = 
2

Optim al Policy

Forgetting Rate Learning Rate Initiai time to standard time ratio {p) FAP Batch Size
2 0 250
3 0 250

70% 4 0 250
'■ 5 0 250

6 1 10
2 0 250
3 0 250

75% 4 0 250
5 1 10
6 1 10
2 0 250
3 0 250

85% 80% 4 1 10
5 1 10
6 1 10
2 0 250
3 1 10

85% 4 1 10
5 1 250
6 I 230
2 5 10
3 1 232

90% 4 0.5 10
5 0.5 10
6 0.5 10

195



LFCM ,
s = 0 .4 ,  N  = Optimal Policy

2

Forgetting Rate Learning Rate Initial time to standard time ratio (p)
FAP Batch

Size
2 5 10
3 5 10

70% 4 1 10
5 1 10
6 1 10
2 17
3 1 10

75% 4 1 10
5 1 10
6 1 10
2 10
3 1 10

9 5 % 80% 4 1 10
5 1 10
6 1 10
2 1 10
3 1 10

85% 4 1 10
5 I 10
6 1 229
2 1 10
3 1 231

90% 4 0.5 10
S 0.5 10
6 0.5 10
2 0 250
3 5 10

70% 4 1 10
5 1 10
6 1 10
2 250
3 ] 10

75% 4 1 10
5 ] 10
6 1 10
2 250
3 1 10

9 2 .5 % 80% 4 1 10
5 1 10
6 1 10
2 250
3 1 10

85% 4 1 10
5 1 10
6 1 229
2 1 10
3 1 231

90% 4 0.5 10
5 0.5 10
6 0.5 10
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LFCM, 
s =0.4, N = 
2

Optimal Policy

Forgetting Rate Learning Rate Initial time to standard time ratio (p) FAP Batch Size
2 0 250

70%
3 5 10
4 I 10
5 1 10
6 I 10
2 250
3 250

75% 4 1 10
5 1 10
6 1 10
2 250
3 1 10

90% 80% 4 1 10
5 1 10
6 1 10
2 250
3 1 10

85% 4 1 10
5 1 10
6 1 229
2 1 10
3 1 231

90% 4 0.5 10
5 0.5 10
6 0.5 10
2 0 250
3 0 250

70% 4 0 250
5 1 10
6 1 10
2 250
3 250

75% 4 1 10
S 1 10
6 1 10
2 250
3 1 10

87.5% 80% 4 1 10
5 1 10
6 1 10
2 250
3 1 10

85% 4 1 10
5 1 10
6 I 230
2 1 10
3 1 250

90% 4 0.5 10
5 0.5 10
6 0.5 10
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LFCM, 
s =  0.4, N = 
2

Optimal Policy

Forgetting Rate Learning Rate Initial time to standard time ratio (p) FAP Batch Size
2 0 250
3 0 250

70% 4 0 250
5 1 10
6 1 10
2 0 250
3 0 250

75% 4 1 10
5 1 10
6 1 10
2 0 250
3 0 250

85% 80% 4 1 10
5 1 10
6 1 10
2 0 250
3 1 10

85% 4 I 10
5 1 227
6 ] 230
2 5 10
3 1 250

90% 4 0.5 10
5 0.5 10
6 0.5 10
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LFCM, 
s =  0.6, N = 
2

Optimal Policy

Forgetting Rate Learning Rate Initial time to standard time ratio (o) FAP Batch Size
2 5 10
3 0 20

70% 4 1 10
5 1 10
6 I 10
2 15
3 1 10

75% 4 1 10
5 1 10
6 1 10
2 10
3 1 10

95% 80% 4 ! 10
5 1 10
6 1 10
2 1 10
3 1 10

85% 4 1 10
5 1 10
6 1 183
2 1 10
3 1 180

90% 4 0.5 10
5 0.5 10
6 0.5 10
2 5 10
3 5 10

70% 4 1 10
5 1 10
6 1 10
2 17
3 1 10

75% 4 1 10
5 1 10
6 1 10
2 10
3 1 10

92.5% 80% 4 1 10
5 1 10
6 1 10
2 1 10
3 1 10

85% 4 1 10
5 1 10
6 1 229
2 1 10
3 1 231

90% 4 0.5 10
5 0.5 10
6 0.5 10
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L F C M , 

s =  0 .6 , N = 
2

Optimal Policy

Forgetting Rate Learning Rate Initial time to standard time ratio (p) FAP Batch Size

2 0 250
3 5 10

70% 4 1 10
5 1 10
6 1 10
2 10
3 1 10

75% 4 1 10
5 1 10
6 1 10
2 250
3 1 10

90% 80% 4 1 10
5 1 10
6 1 10
2 250
3 1 10

85% 4 1 10
5 1 10
6 1 229
2 1 10
3 1 231

90% 4 0.5 10
5 0.5 10
6 0.5 10
2 0 250
3 5 10

70% 4 1 10
5 1 10
6 1 10
2 250
3 1 10

75% 4 1 10
5 1 10
6 1 10
2 250
3 1 10

87.5% 80% 4 1 10
5 1 10
6 1 10
2 250
3 1 10

85% 4 1 10
5 1 10
6 1 229
2 1 10
3 1 231

90% 4 0.5 10
5 0.5 10
6 0.5 10
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L F C M , 

s =  0 .6 , N = 
2

Optimal Policy

Forgetting Rate Learning Rate Initial time to standard time ratio (p) FAP Batch Size
2 0 250
3 5 10

70% 4 1 10
5 1 10
6 1 10
2 250
3 250

75% 4 1 10
5 1 10
6 1 10
2 250
3 1 10

85% 80% 4 1 10
5 1 10
6 1 10
2 250
3 1 10

85% 4 1 10
5 1 10
6 1 229
2 1 10
3 1 231

90% 4 0.5 10
5 0.5 10
6 0.5 10
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LFCM,
s =0.8, N = Optimal Policy

2
Forgetting Rate Learning Rate Initial time to standard time ratio (p)

FAP Batch
Size

2 5 10
3 0 10

70% 4 1 10
5 1 10
6 1 10
2 10
3 1 10

75% 4 1 10
5 1 10
6 1 10
2 10
3 1 10

95% 80% 4 1 10
5 1 10
6 1 10
2 1 10
3 I 10

85% 4 1 10
5 1 10
6 1 91
2 1 10
3 1 10

90% 4 0.5 10
5 0.5 10
6 0.5 10
2 5 10
3 0 10

70% 4 1 10
5 1 10
6 1 10
2 10
3 1 10

75% 4 I 10
5 1 10
6 1 10
2 10
3 1 10

92.5% 80% 4 1 10
S 1 10
6 1 10
2 1 10
3 1 10

85% 4 1 10
S 1 10
6 1 152
2 1 10
3 1 10

90% 4 0.5 10
5 0.5 10
6 0.5 10
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L F C M , 

s =  0 .8 , N  = 
2

Optimal Policy

Forgetting Rate Learning Rate Initial time to standard time ratio (o) F A P Batch Size
2 5 10

70%
3 0 24
4 1 10
S 1 10
6 1 10
2 20

75%
3 1 10
4 1 10
5 1 10
6 1 10
2 10

9 0 %
3 1 10

80% 4 1 10
5 1 10
6 1 10
2 1 10
3 1 10

85% 4 1 10
5 1 10
6 1 229
2 1 10
3 1 10

90% 4 0.5 10
5 0.5 10
6 0.5 10
2 5 10
3 0 250

70% 4 I 10
5 1 10
6 1 10
2 17
3 1 10

75% 4 1 10
5 1 10
6 1 10
2 10
3 1 10

8 7 .5 % 80% 4 1 10
5 1 10
6 1 10
2 1 10
3 1 10

85% 4 1 10
5 1 10
6 1 229
2 1 10
3 1 231

90% 4 0.5 10
5 0.5 10
6 0.5 10
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LFCM, 
s =  0.8, N = 
2

Optimal Policy

Forgetting Rate Learning Rate Initial time to standard time ratio (p) FAP Batch Size
2 0 250
3 5 10

70% 4 1 10
5 1 10
6 1 10
2 10
3 1 10

75% 4 1 10
5 1 10
6 1 10
2 10
3 1 10

85% 80% 4 1 10
5 1 10
6 1 10
2 1 10
3 1 10

85% 4 1 10
5 1 10
6 I 229
2 1 10
3 1 180

90% 4 0.5 10
5 0.5 10
6 0.5 10
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7.8 The Hosmer-Lemeshow goodness of fit tests for the 
binary logistic equations of model C

• Hosmer-Lemeshow Goodness of fit for the g{s,p,LR,FR) = C* binary logistic equation: 

Given the following null hypothesis:

H q : The model g{s,p,LR, FR) = C* fits the output data 

the Hosmer-Lemeshow test statistic is calculated as:

^HL =9.47,

and the Chi-square distribution at «  = 0.05 and v = 8 is given by:

=15.51,

since z ĥl < Z^a.v, there was a failure to reject the null hypothesis that the model 
g(s, p, LR, FR) = C* fits the data at the 0.05 level of significance.

• Hosmer-Lemeshow Goodness of fit for the g{s,p,LR,FR) = FAR* binary logistic
equation:

Given the following null hypothesis:

H q  : The model g{s,p,LR,FR) =  FAP* fits the output data

the Hosmer-Lemeshow test statistic is calculated as:

HL =6.01

and the Chi-square distribution at a  = 0.05 and k = 8 is given by:

=15.51,

since , there was a failure to reject the null hypothesis that the model
g(s,p, LR, FR) = FAR* fits the data at the 0.05 level of significance.
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