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Abstract

Error Locating: Degree Constraints

Master’s of Science 2016

Christopher Dennis

Applied Mathematics

Ryerson University

Error graphs are a useful mathematical tool for representing failing inter-

actions in a system. This representation is used as the basis for constructing

an error locating array (ELA). However, if too many errors are present in a

given error graph, it may not be possible to locate all interactions. We say

that a graph is locatable if an ELA can be built. Bounds on the total size of

an error graph are known, bounds on the degree an error graph can have have

not been considered. In this thesis we explore the maximum degree an error

graph may have while still guaranteeing its locatability. We consider special

cases for 3 and 4 partite error graphs as well as developing bounds on the

degree of a general error graph. We describe a linear time algorithm which

can be used to generate tests which have at most one failing interaction.
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Chapter 1

Introduction

Combinatorial design theory is a study which concerns itself with tak-

ing a finite set of elements and arranging them according to a given set of

rules. Typically we look to create subsets which satisfy certain properties.

Different designs will select for different properties, so we can model many

real world problems as design problems. Sometimes a design problem can be

constructed in terms of graph theory, this can be important for making new

insights into the original design problem. In this thesis we consider just such

a case, where a covering problem is reformulated as a graph design problem.

In Section 1.1 we will cover the basics of the testing problem, in addition

we will provide an example and discuss some practical considerations that will

give insight into the direction our research should take. In Section 1.2 we give
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some background terminology, particularly some specific graph theory terms

which will be useful for our discussion. In Section 1.3 we will discuss some

terms particular to covering type problems and introduce covering arrays. In

Section 1.4 we introduce the concept of locating interactions within a given

TP , particularly from a graph theory viewpoint as well as the fundamental

concepts or error locating array and locatability. Much of this is due to the

work of Mart́ınez, Moura, Panario and Stevens [15]. In Section 1.5 we discuss

the work of Colbourn and McClary [3], specifically the nature of locating

and detecting arrays. Finally a brief summary of the thesis is provided in

Section 1.6.

1.1 The Testing problem

Modern technological systems are typically a complex set of interacting

components. It may be possible to determine that these components are

not defective in and of themselves but it is possible that when paired with

another component they will cause a fault. If a single defective component

can be thought of as being “one dimensionally” defective, one might think of

these problems as “defectiveness in higher dimensions”. Locating these fail-

ures then becomes an important task in order to ensure that the final product

will be functional. Most devices are a combination of sub-components which

must all work in tandem for the piece of technology to function. Although

2
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defects in any single component may be detected, modern devices may have a

dizzying array of possible configurations. We assume that individual compo-

nents have been tested for defects and consider the more difficult problem of

detecting detrimental interactions between two or more otherwise functional

components. This thesis will consider this possibility by examining pairwise

testing through the lens of a combinatorial object. Before we get into the

actual problems we must first establish a vocabulary for the testing problem,

starting with the testing problem itself.

Definition 1.1.1. A testing problem is defined as a system with k compo-

nents, hereafter called factors. Each factor i ∈ {1, . . . , k} has size gi. A test

is defined as a k-tuple, S, with one element from each factor. We designate a

given testing problem as TP (k; g1, g2, . . . , gk), if all g1 = g2 = . . . = gk = g

we write TP (k; g).

For simplicity we typically refer to the general testing problem as simply

TP , without the part number or size of the individual parts.

We must also introduce some terminology surrounding Testing Problems.

An alphabet is defined as a set of g elements. In our case, each element from

a factor will represent a different level of a component that we are testing.

By convention this set is numerically represented as {0, . . . , g − 1}. In most

cases that we consider, the size of the alphabet g is presumed to be constant

across all k factors.
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The testing problem reaches its apotheosis when the actual tests are con-

ducted. So it is helpful to define what a test is in the context of the testing

problem. A test is run with one element from each factor from a given

TP (k; g1, g2, . . . , gk), creating a k-tuple. It will return either a pass in

which case the test contained no failing interactions or a fail in which case

at least one failing interaction is present. If a test passes it may be referred

to as a passing row.

This type of testing is often referred to as black box testing where the

result is binary (pass/fail) and cannot be audited. It should be noted that

even in the case where a given test returns a spectrum of results it may

still be possible to convert that test to a pass/fail paradigm. This may be

achieved by having a threshold value and if the test returns a result over or

under the specified threshold then a fail is returned.

How do we distinguish between passing and failing tests mathematically?

We test for interactions, specifically failing interactions.

Definition 1.1.2. [6] Given a TP (k; g1, g2, . . . , gk) a t-way interaction

is a t-tuple with each vertex in the tuple belonging to a different factor. If

a t-way interaction T is a failing interaction, then every test (k-tuple)

containing T will fail.

It should be noted that we assume implicitly that non-failing interactions

vastly outnumber the failing ones for a given TP (k; g1, g2, . . . , gk), since if
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this were not the case, it would be difficult to create any passing tests what-

soever. This is problematic since it is necessary to create a large number of

passing rows to determine which interactions will fail. Having characterized

some basic terms that we will need, we now move on to an example which

will illuminate some of the problems encountered when studying the testing

problem.

1.1.1 The Pizza Problem

Consider that we want to make a tasty pizza and while no ingredients

on their own are going to make it taste bad, it is possible that some pair of

ingredients will make it taste bad. We also assume we will pick one meat,

one vegetable, one type of cheese and one type of sauce. We can represent

these choices in a table (Table 1.1).

Table 1.1: The Pizza Problem

Sauce Vegetable Cheese Meat
BBQ Mushroom Mozzarella Pepperoni
Tomato Peppers Cheddar Chicken
Italian Onion 3-Cheese Bacon

One critical assumption made regarding the testing problem is that we

will not be able to ascertain which combination of ingredients is causing the

pizza to taste bad. That is if a pizza tastes bad we will not know which

combination of ingredients is causing the problem. This situation does arise
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frequently in real world tesitng scenarios regarding food products [16]. With

that in mind, we will actually create three different pizzas and then taste

them to see if any ingredients are causing problems.

Table 1.2: The Pizza Problem Test Outcomes

Test Sauce Vegetable Cheese Meat How does it taste
1 BBQ Peppers Cheddar Bacon Bad
2 Italian Onion Cheddar Bacon Good
3 Tomato Mushroom Mozzarella Chicken Good

Now that we have our results we wish to find the failing interactions in our

ingredients. First we can immediately guarantee that any interactions in a

pizza that tastes good will not be failing interactions, since if any were present

the pizza would taste bad. We can further investigate which interactions are

the failing interactions causing pizza 1 to fail. We can immediately rule out

the cheddar cheese and the bacon, since this combination appears in a pizza

which tastes good on row 2. In fact, we can eliminate all pairs on rows 2

and 3. However, this leaves 5 other possible pairs of ingredients which do

not appear in either of the other two pizzas. So while our test found at least

one failing interaction, it failed to locate it. We also remain unsure about

the exact number of errors, it is possible that multiple bad interactions exist

in pizza 1. Our array also did not cover all pairs, so it is possible that other

failing interactions exist as well which have not been included in any of our

3 pizzas.

It is possible to cover all pairs of ingredients in 12 pizzas as shown in

6
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Table 1.3. If all of these pizzas were to taste good we would be certain that

no pair of ingredients would make any pizza taste bad.

Table 1.3: The Pizza Covering Array

Sauce Vegetable Cheese Meat
BBQ Mushroom Cheddar Bacon
BBQ Peppers Cheddar Pepperoni
BBQ Onion Mozzarella Pepperoni
Tomato Mushroom 3-Cheese Pepperoni
Tomato Peppers Mozzarella Chicken
Tomato Onion Cheddar Bacon
Italian Mushroom Mozzarella Chicken
Italian Peppers 3-Cheese Bacon
Italian Onion Cheddar Chicken
BBQ Onion 3-Cheese Chicken
Italian Onion Mozzarella Pepperoni
BBQ Onion Mozzarella Bacon

It should be noted that, this table will not tell us which pair of ingredients

in pizza 1 from Table 1.2 causes the pizza to taste bad. If we presuppose

the failing interaction is BBQ sauce and Mushrooms, this array will locate

that failing interaction. However, if we supposed the failing interaction is

BBQ Sauce and Onions the array will not. If we specify the array carefully

and give a predefined set of good/bad tasting pizzas, it should be possible

to create an array which would locate all the failing interactions with only a

few extra rows assuming there are not too many failing interactions.

In practice since pizzas are usually ordered a few at a time we could

adaptively order pizzas with one possible bad ingredient pair and all other

7
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ingredient pairs being known “good” pairs, but as we shall see this is not

always an option.

1.1.2 Practical Considerations

Ultimately, when we analyze a testing problem we are seeking failing

interactions. Optimally, we would like to know not only how many failing

interactions exist, but also which components they contain. Given the time

and expense involved in running quality assurance tests, the interest from

the private sector in this problem has been considerable.

A first effort might be to run all possible tests in a given TP . Since any

TP implicitly contains a finite number of factors and within those factors a

finite number of levels, it is possible to create a finite test suite covering every

combination of components. The difficulty inherent to this method lies in the

fact that the number of tests will increase exponentially in both the number

of factors and the size of the factors. Explicitly, the number of tests required

is gk. Even a TP (4; 4) would require 256 tests to ensure all combinations are

represented in a test. In real world situations a test suite’s cost to execute

will depend largely on the number of tests in the suite. Therefore, running

the minimal number of tests for a given testing problem is vitally important.

One might try a “probabilistic” approach, where a random subset of all

tests are selected, with the expectation that with a high probability all or
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most failing interactions will be covered. However, starting with the premise

that all failing interactions are pairwise, ie. all failing interactions contain

two components, the fraction of tests which include any given interaction is

only 1
g2

. Thus unless the probabilistic test suite is almost as big as a complete

one there is a high probability that a failing interaction will not be covered

by a test.

Failing this we might consider an “adaptive” model which initially runs

tests randomly, while ensuring that no interactions in a test which passes are

covered twice. Then after a test fails, all interactions in the failing test are re-

tested with known “safe” interactions from passing tests. This will precisely

locate which interactions are failing interactions. However, in many real

world test scenarios, tests must be scheduled well in advance and cannot be

altered “on the fly” [7]. Thus the adaptive method is often not feasible. In

addition the detection of “safe” values can itself be problematic.

What is needed is a method for constructing test suites which are smaller,

in that they contain fewer tests than an exhaustive one. This suite must

be defined in advance and are not presumed to be adaptive. Inevitably,

not every interaction can be included in this smaller test suite. However,

if certain restrictions are placed on a given TP , such as how many failing

interactions are present or the placement of the failing interactions it may

be possible to locate those interactions. With this as a starting point we

begin laying out the necessary theoretical foundations for the discussion of

9
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this problem.

1.2 Graph Theory Notation

As was previously suggested at the testing problem can be thought of as a

graph theory problem; for this thesis we will need to define some basic graph

theory terms before advancing any further, though we assume the reader is

familiar with the basic concepts of graph theory. We will be using the text

by West [19] as a basis for our graph theoretic terminology.

1.2.1 Basic Terminology

A Graph is defined a set of vertices, V, with a binary relation, E, called

edges on each pair of elements forming the graph G = {V,E}. We define

V (G) to be the set of all vertices on the graph G. We additionally define

E(G) as the set of all edges on the graph. We denote an edge between vertices

x and y as simply xy. If an edge connects a vertex to itself it is said to be

a loop. If two vertices share an edge they are considered to be adjacent.

If we allow for the same two vertices to share multiple edges, it is said that

we allow for parallel edges. A graph with no loops and no parallel edges

is called a simple graph. For the purposes of this thesis, readers should

implicitly assume that all graphs are simple.

10
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There is a well known function which we will need to explicitly select the

vertices adjacent to a given vertex. We define the open neighborhood of

a vertex x or N(x) to be the set of all vertices which are adjacent to x but

not including x itself. The closed neighborhood of x or N [x] is the set of

all vertices which are adjacent to x as well as x itself.

A vertex’s degree denoted, d(x), is defined as the number of edges at-

tached to that vertex. We define the maximum degree of a graph ∆ as

being the maximum number of edges any vertex has incident to it in G.

Mathematically this can be represented as ∆ = maxx∈V (G) d(x). A regular

graph is a graph where all vertices have the same degree. In many cases

it suffices to consider the regular graph of degree ∆. Although in general a

graph may have an infinitely large edge set |E(G)| or vertex set |V (G)|. We

will only be considering cases where the edge set and vertex set are finite in

size. Such graphs are called finite graphs. We also define a graph G known

as an empty graph if |V (G)| 6= 0 and E(G) = ∅. An isomorphism from

a simple graph G to a simple graph H is a bijection f : V (G)→ V (H) such

that uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). We say G is isomorphic to

H, denoted G ∼= H if there exists an isomorphism from G to H.

11
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1.2.2 Subgraphs and Special Graphs

We define H as a subgraph of G if E(H) ⊆ E(G) and V (H) ⊆ V (G),

further the endpoints of the edges of E(H) must lie in V(H), this is denoted

as H ⊆ G. We call it a proper subgraph when either E(H) ⊂ E(G) or

V (H) ⊂ V (G). We denote this as H ⊂ G. Given a set of vertices S ⊆ V (G)

the subgraph induced by, S, which we call H, is the subgraph of G with

V (H) = S and given x, y ∈ S xy ∈ E(H) ⇔ xy ∈ E(G). We denote the

edge set of this graph as E(S).

We also define the notion of a complement graph, which will become

important later. The complement of a graph G, known as the complement

graph G∗, is the graph where V (G∗) = V (G) and e ∈ E(G) ⇔ e 6∈ E(G∗).

We also define a special class of graphs, complete graphs. We define the

complete graph on n vertices to be the graph Kn on n vertices in which

all pairs vertices are adjacent. When an induced subgraph of G is itself a

complete graph it is typically referred to as a clique.

There is a special set on a graph that will be important to this thesis in

upcoming chapters known as the independent set.

Definition 1.2.1. Given a graph G, we define an Independent Set, S, as a

set of vertices in a graph S ⊆ V (G), where no two vertices in S are adjacent.

That is to say E(S) = ∅.

12
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There is a similar concept for a set which is adjacent to every vertex in a

given graph. A Dominating Set defined on a graph G as a set S ⊆ V (G)

where every vertex in V (G) \ S is adjacent to a vertex in S.

We can also define a special type of graph in which edges cover more than

two vertices.

Definition 1.2.2. We define a hypergraph H as a set of vertices V (H) and

a set of hyperedges E(H), each hyperedge consists of two or more vertices.

We call H to be a t-uniform hypergraph if all edges have size t.

Unlike the edges of a graph which contain a pair of vertices, hyperedges

of a hypergraph may contain an arbitrary set of vertices.

1.2.3 Multipartite Graphs

We will also introduce the concept of the multipartite graph, which will

be critical to our future work. In addition to the conventional graph theory

terms, we will need some terminology relating to the class of graphs known

as multipartite graphs.

Definition 1.2.3. A multipartite graph is defined as any graph G whose

vertices can be partitioned into k independent sets. A multipartite graph

with k parts of sizes g1, . . . , gk is denoted as G(g1, . . . , gk). If g1 = . . . = gk =

g we denote this as Gk(g).

13
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If the parts are of different sizes we implicitly order them so that g1 ≤

g2 ≤ . . . ≤ gk. Within a multipartite graph we will label a vertex vi as being

in the ith part. Typically, when we are examining testing problems, we will

presume all graphs to be of the form Gk(g) and they may simply be referred

to as G. We define a k-tuple, (v1, . . . , vk), as a set vertices vi ∈ G(g1, . . . , gk),

where one vertex from each part is present. We can extend this notion to

the complete multipartite graph. We define a complete multipartite

graph to be a graph G(g1, . . . , gk) in which ∀x, y ∈ V (G), xy ∈ E(G) ⇐⇒ x

and y are not in the same part. We denote such a graph as K(g1, . . . , gk).

Figure 1.1: A complete multipartite graph K(7, 3, 2)

In Chapter 3 we will need the concept of the blow up graph, which should

not be conflated with the better known blow up lemma.

Definition 1.2.4. Given a graph G of order k, we say that the k-partite

graph G′(g1, . . . , gk) is a blow up graph of G, if there are edges between

vertices vi and uj, i 6= j of G′(g1, . . . , gk) (i.e. viuj ∈ E(G′)), only if there are
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edges between the corresponding two vertices in G.

We also define the complete blow up graph of G to be the blow up

graph where two parts of G′k form a complete bipartite subgraph if and only

if there is a corresponding edge in G.

We introduce a special version of the neighborhood function, which not

only selects adjacent vertices but also those in a given part.

Definition 1.2.5. Given a multipartite graph G(g1, g2, . . . , gk) and a point

x ∈ V (G) we define the function M(x), where M(x) = N(x) ∪ P (x) where

P (x) are the vertices of the part containing x. This includes the set of all

vertices adjacent to x as well as all vertices in the part which contain x. We

call M(x) the meighborhood of x.

As an example the meighbourhood, of every point in a complete multi-

partite graph is every vertex in the graph.

0

0

0

0

1

2

0

2

4

xx

Figure 1.2: The Meighbourhood of x in a complete multipartite graph

Some special varieties of subgraphs will be useful in our discussion. We

begin by defining a subgraph on the edge set of a set a graph G

15
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Definition 1.2.6. Given a graph G, we define a graph H as an edge sub-

graph of G, when V (H) = V (G) and E(H) ⊆ E(G).

Important to this thesis is a particular type of subgraph which is unique

to multipartite graphs, the partition subgraph.

Definition 1.2.7. Given a multipartite graph G(g1, . . . , gk), we define a par-

tition subgraph H(g1, . . . , gl) to be an induced subgraph of G(g1, . . . , gk)

obtained by removing entire parts from G. ie. V (H) = {vj ∈ V (G) |

j ∈ {σ(1), σ(2), . . . , σ(l)}}, where σ is a permutation on {1, . . . , k} and

E(H) = {vivj ∈ E(G) | vi, vj ∈ V (H)}

When we discuss the partition subgraph we will typically discuss it in

relation to a multipartite graph Gk(g). We will refer to the partition sub-

graph as Hl(g) where l ≤ k, this will typically be done after removing the

meighbourhood M(a), where a ∈ V (Gk(g)), from Gk(g) such that we are left

with H(r1, . . . , rl) = Gk(g) \M(a).

1.2.4 Turán’s Theorem

We will find the well known Turán’s theorem useful when discussing mul-

tipartite graphs. This theorem was proved by Hungarian mathematician

Paul Turán. It has many implications for the construction of multipartite

graphs. The construction of cliques on a multipartite graph is the opposite of

16
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Figure 1.3: The Turan Graph T25,5 = K(5, 5, 5, 5, 5)

the construction of independent sets on that graph, so the utility of Turán’s

theorem is quite obvious. We begin by defining the Turán graph.

Definition 1.2.8. A Turán graph Tn,r, is defined to be a complete mul-

tipartite graph with n vertices over r parts, with each part differing by at

most 1. By the pigeonhole principle, the smallest part has size bn/rc and

the largest has size dn/re.

The accompanying theorem will allow us to construct our independent

k-tuples later.

Theorem 1.2.9 (Turáns Theorem). [19] Among the n-vertex simple graphs

with no r + 1 clique, Tn,r has the maximum number of edges.

17
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The proof of this theorem is found in most graph theory textbooks, see

[19] for example. However, we will mention that Tn,r has at most
(
1− 1

r

)
n2

2

edges.

1.2.5 Computational Complexity and Decision prob-

lems

We assume that the reader is familiar with the basic concepts of complex-

ity theory, for more information see [1]. In particular, a decision problem

is a set within a known universe. A particular instance of the problem is in

the set if it satisfies a given property. We will generally be operating on the

set of graphs, or the set of multipartite graphs so we restrict our attention

to this case. Generally an instance of a problem consists of a member of the

universe, G (in our case a graph) and it is required to determine if G is in

the set or not.

The question of complexity relates to the time an algorithm will take

solve a problem. Every decision problem with a finite number of inputs

can be solved eventually by simply exhausting all possible combinations of

inputs. However, this is obviously not efficient and would require a lot of

time, but there are obviously algorithms which can solve some problems

more efficiently. Every algorithm we have developed in this thesis will run in

linear time relative to the number of parts k on a given multipartite graph

18
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G(g1, g2, . . . , gk).

1.3 The Covering Problem

As previously mentioned, the total number of possible tests in a given

TP will increase exponentially, in both k and g. This implies that the time

required to actually run all these tests will also increase exponentially. How-

ever, it is possible to create an array which contains every possible t-tuple at

least once without testing every possible k-tuple. Obviously, if k = t we will

need to exhaustively test the entire TP . However, when t < k we create an

array which is smaller than the exhaustive one. This allows for fewer total

tests to be run for a given TP . In this section we will discuss this problem

further.

1.3.1 The Error Graph

It is possible to define the interactions of any two components in a testing

problem where we presume t = 2 as a graph G. This graph is necessarily

multipartite with k parts. Any adverse interactions between two components

can be represented as an edge between the two corresponding vertices. We

wish to determine when such an edge exists.

Before we can begin our discussion we must consider what a passing test
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would look like in a graph theory context. Here a passing test is labelled a

passing row.

Definition 1.3.1. Given a multipartite graph G(g1, g2, . . . , gk), take a k-

tuple, S, containing a given pair of vertices vi, vj ∈ V (G), with i 6= j. A

passing row for vi, vj is a row, (k-tuple) S which is independent in G and

a failing row if S is not.

With this simple transformation we can take a testing problem and con-

vert it to a graph theory one. Specifically a design problem where we attempt

to take two vertices from two separate parts of a multipartite graph and try

and construct an independent k-tuple on the remaining partite subgraph

Hk−2(g). While most of the interactions we deal with in this thesis are pair-

wise, and so are represented by graphs, it is straightforward to generalize

to the case of arbitrary t-wise interactions, which are represented by hyper-

graphs.

We have previously defined a t-way interaction in Section 1.1 as a t-tuple,

we now begin to look at the testing problem not as a combinatoral object

but as a graph. In most cases we will be implicitly considering only the case

where t = 2 and therefore we can limit ourselves to conventional graphs as

opposed to hypergraphs. We begin by introducing the notion of avoiding a

given graph G

Definition 1.3.2. We say that a set of vertices S avoids a graph G if no
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pair of vertices vi, vj ∈ S is an edge of G.

If S includes one vertex from each part of a multipartite graph Gk(g) , this

set not only avoids Gk(g) but would constitute a passing row as specified in

Definition 1.3.1. This definition will be critical to the construction of locating

rows in Chapters 2 and 3.

1.3.2 Covering Arrays

The covering problem has been considered extensively [2, 3, 4, 6, 8, 9, 12,

13, 15, 18]. The problem has a particularly large range of applications when

one is considering all the possible t-way interactions between software con-

figurations. Studies have shown [10] that most configuration problems in a

software system are between two settings, so the pairwise interaction remains

the most commonly studied model. Covering problems have attracted atten-

tion from mathematicians as well as computer scientists. Due to this parallel

development, there are often divergent terminologies for identical concepts.

We will adopt various terminologies as they seem appropriate.

As we have previously mentioned, exhaustively testing all possible combi-

nations in a testing problem is prohibitively expensive and often unecessary

[10]. Given these limitations the problem then becomes one of actually de-

signing a test suite which tests some number of pairs but not all. Extenisve

work [2, 3, 4, 6, 8, 9, 12, 13, 15, 18] has already been done the problem of
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covering arrays, giving us a good initial definition to work from.

Definition 1.3.3. [3] A Covering Array denoted as CAλ(N, t, k, g), is an

N × k array A, with entries from an alphabet of size g. We have all t-tuples

taken across all parts appearing at least λ times over all rows in A. N is the

size of the array, here meaning the number of rows, t is the strength of the

interaction that we are testing; k is the number of factors; g is the size of the

alphabet, called the order. λ is known as the index and typically is set as

1 and is omitted.

We generate an array which covers a given TP . For example, for a

TP (4, 2) we can construct an array which covers all pairs as show below

in Table 1.4 [5].

If any interactions are present at least one row will fail. However, if

any rows given above fail we will not know which interaction caused the

failure. Although there are many possible arrays that would cover a given

G(g1, . . . , gk), there must be some, smallest array for a given CA(N, t, k, g).

Definition 1.3.4. We define the covering array number or CAN as the

minimum N for which a CA(N, t, k, g) exists.

We also note that the smallest CA need not be unique, there may be many

possible minimal CA’s. The size of the covering array has been determined

asymptotically for strength t = 2.
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Table 1.4: Covering array (t = 2 for k = 4, g = 2)

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Theorem 1.3.5. [8] Let g ≥ 2 be fixed, Then as k →∞, the upper limit on

the covering array number behaves as follows.

CAN(2, k, g) ∼ g

2
log2 k

It interesting to note that while exhaustive testing will increase exponen-

tially in both k and g, when we use covering arrays, the increase is linear in

g and logarithmic in k.

We can also consider the case where not all parts of a graph are of equal

size that is we allow for a graph G(g1, g2, . . . , gk) we allow for one or more

gi 6= gj, for this case we obtained a mixed covering array.
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Definition 1.3.6. [6] A Mixed Covering Array denoted as

MCAλ(N, t, g1, . . . , gk), is an N × k array A, with the ith part containing an

alphabet of size gi. We have all t-tuples accross all parts appearing at least λ

times over all rows in A. As before N is the size of the array, here meaning

the number of rows, t is the strength of the interaction that we are testing;

the set of values {g1, . . . , gk} are size of the alphabets in each part of the

array, called the order. λ is known as the index and typically is set as 1

and is omitted.

The MCA has an a analogue to the covering array number

Definition 1.3.7. For a given t, k, g has a mixed covering array number

or MCAN(t, (g1, . . . , gk)), is the smallest N for which an

MCA(N, t, (g1, . . . , gk)) exists.

Definition 1.3.8. [6] Given a multipartite graph Gk(g) We define a cov-

ering array avoiding forbidden edges or CAFE. This is defined as an

N × k array A, with each column i having symbols from an alphabet of size

g, such that each row in A forms a k-tuple which avoids all edges in G and

between all rows all pairs of vertices which avoid Gk(g) are covered.

Much like covering arrays and mixed covering arrays we can define a

CAFE number. We denote CAFEN(G) as the minimum N for which a

CAFE(N,G) exists.
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1.3.3 The Decision Problems COVER and AVOID

We define some decision problems relevant to our work. These results

come from [6].

Definition 1.3.9. A graph G(g1, . . . , gk) is said to be in AVOID if there is

a k-tuple denoted as S where ∀vi, vj ∈ S, vivj 6∈ E(G).

We can also state that if a graph G is in AVOID then every pair of vertices

in G can be put into a passing row.

Definition 1.3.10. A graph G(g1, . . . , gk) is in COVER & AVOID if for

every t-tuple, T , there is a k-tuple S, such that S contains T and S avoids

G′, where G′ ∼= G(g1, . . . , gk) \ T .

We can extend the definition of AVOID to include hyperedges of size t,

by introducing the concept of AVOID(t).

Definition 1.3.11. A graph G(g1, . . . , gk) is in AVOID(t) if and only if

given any t-tuple T , ∃ a k-tuple S, where T ⊆ S, such that S avoids G′

where G′ ∼= G(g1, . . . , gk) \ T , ie. S is a locating row in G′.

It is important to note that in general determining whether or not a

graph G is in AVOID or AVOID(t) is an NP-complete problem [6]. These

definitions come from the notion of the covering array as discussed in Section

1.3.2.
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1.4 Locating

Obviously, simply covering all interactions will not necessarily be enough

to actually locate all failing interactions. For example, if we presume that we

are looking for pairwise failing interactions and our covering array covers each

pair exactly once then any failing row will contain a possible
(
k
2

)
interactions

which caused the failure. As a further confounding factor, if a given row

contains multiple failing interactions the pass/fail nature of the testing we

conduct does not yield any information about the number of errors in a given

row. This was briefly intimated in Section 1.1.1 but now we will discuss this

problem in more explicit detail.

If we are interested in a known subset of interactions, denoted as I, then

we would like to construct an array which will locate those errors, if they are

present. In a graph theory context, a given TP has associated with it a family

of graphs G which contains all possible combinations of failing interactions,

represented as edges. However, there is one graph G ∈ G which represents

the actual configuration of failing interactions that a given TP has. With

this in mind, we can think of a locating array as a kind of meta-test where

we presume a given G and the locating array will return either a pass if that

G is the actual error graph corresponding to a given TP or a fail if it is not.

In order to do this, we must first define what it means, in general, for an

interaction as well as a hypergraph to be locatable.
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1.4.1 Locatability

It is not always possible to create a locating row containing any two non-

adjacent components for all possible Gk(g). Indeed, an example is given in

Sections 1.4.5 and 1.4.6 many more examples will be given in Chapter 2 of

non-locatable graphs, where there exsists least one interaction which can not

be located. Locatability is a major concern when conducting tests. It is good

to know that errors exist but it is important to know which interactions are

causing them. As we shall see in the next chapter it is possible for two or

more interactions to “mask” another. There are a few ways to define locata-

bility. If it is possible, for a given G, to construct an ELA(n,G), defined in

Section 1.4.2, where n ∈ Z then the graph G is locatable. However, this

is not a particularly informative definition and it would be good to specify

exactly under what circumstances a graph is or is not locatable. While there

are other equivalent definitions [15] we use the following.

Definition 1.4.1. A t-way interaction T , is locatable if and only if it is

possible to create a k-tuple, S, where T ⊆ S, and EG′(S) = ∅, where E(G′) =

E(G)\{T} and V (G′) = V (G). We say S locates T and we call S a locating

row for T .

A t-uniform hypergraph G is t-locatable if and only if all interactions

T ∈ E(G) are locatable.

For this thesis, we presume that t = 2. Therefore, we can restrict ourselves
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to considering conventional edges as opposed to more general hyperedges. In

this context, a graph is locatable if and only if every pair of vertices in G

can be placed in a locating row, see Definition 1.4.1. It should be noted

that there is a connection between a graph G being locatable and being in

AVOID(2).

Lemma 1.4.2. If a graph G is locatable then G is also AVOID(2).

Proof. The proof comes from the definition of AVOID(2), if we make the xy

our t-tuple, then by the definition of locatablility, it must be possible for that

tuple to avoid G.

1.4.2 Error Locating Arrays

Mart́ınez, Moura, Panario, and Stevens [15] define an Error Locating Ar-

ray as an array which both locates and detects errors for a graph which satis-

fies certain conditions. In Section 1.5, we will further discuss the sometimes

counter intuitive distinction between locating and detecting errors. However,

the definition of the Error Locating Array ignores such distinctions.

Definition 1.4.3. An Error Locating Array or ELA for a graph

G(g1, . . . , gk), denoted by ELA(N,G), is an N × k (mixed) covering array A

with each column i having symbols from an alphabet of size gi, such that

every interaction {vi, vj} corresponding to a pair of vertices vi, vj ∈ V (G)

with i 6= j is located by a row of A.
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It should be noted that there is no requirement that an ELA be a minimal

covering array, it may take many “additional” rows to create an array that

has the property we are looking for. It should be noted briefly that a graph

has an ELA if and only if it is locatable. For an example of a non-locatable

graph see section 1.4.5.

The construction of an Error Locating Array is in general an NP-complete

problem [6, 13]. In fact even constructing a locating row is in general an NP-

complete problem.

Theorem 1.4.4 (locating row complexity). [6] Constructing a k-tuple S

which avoids G is an NP-complete problem.

The proof of this theorem requires some descion theory concepts not

developed in this thesis and is covered in Danziger, Mendelsohn, Moura and

Stevens [6].

1.4.3 Conditions for Locatability

The total number of interactions that given graph G(g1, g2, . . . , gk) may

have has been determined [15] as being one less than the size of the smallest

part g1. However, this is a coarse measure and simply having g1 edges does

not guarantee that a given graphG(g1, g2, . . . , gk) is non-locatable. Particular

edge configurations are required to actually make a graph non-locatable.
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1.4.4 Safe Values

As previously mentioned not all graphs are locatable. However, if a G

has certain properties, it is possible to guarantee locatability. In Mart́ınez,

Moura, Panario, and Stevens [15] the concept of “safe values” is discussed,

safe values occur when we know certain vertices to be safe. That is, a vertex

s1 ∈ V (G), is safe if for every vi ∈ V (G), is no s1vi 6∈ E(G). Now consider, if

we have at least one safe vertex in every part of a given G(g1, . . . , gk), then

G(g1, . . . , gk) must be locatable, since we can construct an ELA where k-tuple

would contain {x, s1, . . . , sk−2, y} and if the row failed the failing interaction

would be immediately identified as xy. We can also introduce the notion of a

safe set denoted by Sj which is a set of j safe values from j different factors

such that Sj = {s1, s2, . . . , sj}.

1.4.5 An example of a non-locatable tripartite graph

When discussing locatability it is instructive to consider a case where

a graph will not be locatable. Consider the following graph G3(g), leaving

g arbitrary. Take two vertices from two distinct parts, x and y. Label all

the vertices in the remaining part vi. If for every vi, either xvi ∈ E(G)

or yvi ∈ E(G) then G is non-locatable. Note that if any Gk(g) has this

configuration as an partition-subgraph then that Gk(g) is non-locatable.
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Figure 1.4: A non-locatable graph g3(5)

Now it is not possible in any k-tuple containing x and y to determine

whether xy ∈ E(G).

Mart́ınez, Moura, Panario, and Stevens [15] describes a theorem which

determines a condition on whether a graph is non-locatable.

Theorem 1.4.5 (Locatablility). [15] Let G = G(g1, g2, . . . , gk), with k ≥ 3

1. If there exists vi ∈ V (G) and a factor j ∈ [1, k]\{i} such that {vi, vj} ∈

E(G) for all v ∈ V (vj) then G is not locatable.

2. If there exists vi, vs ∈ V (G) with i 6= s and a factor j ∈ [1, k] \ {i, j}

such that for all v ∈ V (vj), {vi, vj} ∈ E(G) or {vs, vj} ∈ E(G), then G

is not locatable.

Proof. It is enough to prove the second statement, since the first is a special

case of the second, by taking s ∈ [1, k] \ {i, j}. Let G′ = G \ {vi, vs} if
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{vi, vs} ∈ E(G), and G′ = G otherwise. It is easy to see that there is no

k-tuple, T avoiding G′ since either some {vi, vj} ∈ T or {vs, vj} ∈ T covers

an edge of G′.

It should be noted that the degree conditions which allow for Theorem

1.4.5 to be relevant are not discussed here and will be discussed in Section

2.3.1.

1.4.6 Non-Locatability for binary alphabets g = 2

If we are examining an error graph with at least 3 parts of size 2, then

all possible non-locatable graphs on those parts have been characterized by

Mart́ınez, Moura, Panario, and Stevens [15]. In addition, the NP-Completeness

of locating an error in such a graph has been determined by Maltias [11].

In general, there are 6 non-locatable subgraphs in the “binary”, gi = 2

case. However, there are 2 possible non-locatable graphs for g = 2 and t = 2

[15]. If a graph Gk(2) contains at least one of the following graphs in Figure

1.5 as a partition subgraph, it will not be possible to locate the edge shown

in the dashed line.
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Figure 1.5: Non-Locatable binary graphs
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1.5 Locating and Detecting Arrays

Confusingly, two different formulations have been developed; a theoretical

approach [15] and a practical design approach [3]. While we focus on the

graph theory approach from [15], there are equivalent formulations. We will

engage in a brief discussion of the work done by Colbourn and McClary in

characterizing locating and detecting arrays [3]. We will have to characterize

some terms before moving forward. In Colbourn and McClary arrays are

characterized by the strength of the interaction t and the total number of

interactions d. These are appended by either the term locating or detecting

depending on what type of array we are describing, so arrays will be either

(d, t)-locating or (d, t)-detecting. The symbols t̄ and d̄ denote arrays that will

either detect or locate, up to t strength interactions or number of interactions

respectively. It should be noted that we have not discussed which errors

actually exist in a given TP and what their strengths are. We are only

interested in detecting errors in a given array. With the terminology specified,

we can now begin discussing the actual results of Colbourn and McClary.
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1.5.1 Locating Arrays

Now that we have described the concept of the locating array we can now

provide a more technical definition of what exactly constitutes a locating

array. In contrast to an Error Locating Array, Colbourn and McClary [3]

characterizes a locating array as an array where if a set of errors are present

they will be located by the array. Also, in locating arrays, only the number of

failing interactions d and the strength of those interactions t are considered,

as opposed to Error Locating Arrays where the nature of the error graph is

taken into account.

Definition 1.5.1. Given a TP (k; g1, . . . , gk) and a specified set of t-way

interactions I, where |I| = d and all failing interactions are presumed to be in

I. A Locating array LA(d, t) is an N×k covering array MCA(N, t, g1, . . . , gk)

such that the set of Pass/Fail results obtained by running the N tests of the

MCA are unique for each configuration of failing interactions in I.

It should be noted that sometimes an array will be said to be (d, t)-

locating rather than a LA(d, t). It should be noted that a LA must also be

a covering array, although it may not be a minimal one. It should also be

noted that if it is possible to construct a LA for a given graph G then that

graph is locatable. An example of a LA(1,1) is given below in 1.5 [3].
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Table 1.5: Locating array t = 1 and k = 6, g = 3

0 0 0 0 0 0
0 0 1 2 2 1
0 1 0 1 2 2
1 2 1 0 1 2
1 2 2 1 0 1
1 1 2 2 1 0

Interestingly, the lower bound on the number of rows any locating array

will have has not been determined. In the case where exactly one failing inter-

action is to be located, the lower bound has been established [17]. However,

while arrays which locate multiple errors have been shown to exist, the min-

imum bounds on such arrays are an open problem. It should also be noted

that the actual construction of locating arrays is in general NP-Complete [6].

1.5.2 Detecting Array

As previously discussed, a locating array will not determine which interac-

tions are present. However, if we presuppose a certain number of interactions

in a given testing problem, then there will be a finite number of configura-

tions that those interactions may fall into. It is obvious that if it is possible

to construct an array which will locate a given set of interactions it must be

possible to construct an array which will detect all such interactions. This is

known as a detecting array.

Definition 1.5.2. [3] An array A(d, t) is said to detect up to d faults of
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strength t if the set of all interactions I can be determined from the test

outcomes. This is denoted as DA(d, t).

A simple way to think about DA(d, t) construction is to imagine creating

an LA(d, t) for each combination of faults up to d and running them in

sequence, removing any identical rows. While locating arrays will only locate

one graph G detecting arrays will locate every graph in G, since a detecting

array is constructed from multiple locating arrays constructing a minimal

error detecting array will be an NP-complete problem.

1.5.3 Conditions for Locating and Detecting Arrays

We explore the relationship between the number of errors d, in a given

TP and the strength of the interactions t.

Lemma 1.5.3. [3] If t = k then the exhaustive array E, is a (d̄, t)-detecting

array for all d.

This property emerges from the definition of locatability. If the strength

of the interactions is exactly the size of a row, then any failing interactions

must be the only interaction in that row.

Lemma 1.5.4. [3] A (d, t̄)-detecting array is a (d̄, t̄)-locating array and a

(d, t̄)-locating array.
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(d, t̄)-detecting → (d̄, t̄)-detecting → (d̄, t̄)-locating

Figure 1.6: Relation between Detecting and Locating Arrays

This property simply emerges from the fact that if an array detects a set

of interactions it must have located that set to do so, therefore any detecting

array is a locating array.

We can visualize the relationship between detecting arrays (DAs) and

locating arrays (LAs) in a helpful flowchart shown below. the terminology

here is particularly unfortunate since, one might imagine that a locating array

would determine where, in a given TP faulty interactions would actually exist

and a detecting array would “detect” if a given set of interactions is present.

It should also be noted that an array is an Error Locating Array if and only

if it is a (d̄, t̄)-detecting array [15].

1.5.4 A theorem for mixed strength loctability

Although we focus on regular graphs with pairwise edges, the concept of

locatability can apply to hypergraphs in general. In particular, it should be

noted that if a hypergraph is t locatable it is locatable up to t as well.

Theorem 1.5.5 (t̄-locatability). If a hypergraph H(g1, . . . , gk) with fixed de-

gree ∆ is in avoid(t), then it is also in avoid(t̄), where t̄ ≤ t.

Proof. Any vertex x in H(g1, . . . , gk) must be contained in only ∆ failing
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interactions, T -tuples, of size t. Since it is possible to put any T ⊆ S,

such that S avoids H ′ ∼= H(g1, . . . , gk) \ T , then it must be possible to

put T̄ ⊆ T , where T̄ is of size t̄ into that same S and it will avoid H ′ ∼=

H(g1, . . . , gk) \ T̄

While we do not examine cases other than t = 2 this result is still impor-

tant to the construction of Error Locating Arrays.

1.6 Overview of Thesis

We have already established the necessary concepts that we need to dis-

cuss the topics covered later in this thesis. We will exclusively focus on

degree constraints that will guarantee whether or not a graph is locatable.

We will not concern ourselves with constructing detecting arrays which is in

general an NP-Hard problem [15]. In this thesis we focus on the error graph

approach as opposed to looking at conditions on locating arrays. While the

general size an error graph can have while still being locatable has been well

described, the question of whether of not restricting the degreee of an error

graph, so that we can guarantee it’s locatability, is the subject of this thesis.

In Chapter 2, we will discuss the problem of locatability and examine

particular cases in which a given error graph will be non-locatable. We will

also look at some examples where a given graph will certainly be locatable if
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certain degree constraints are satisfied. In Chapter 3, we will discuss specific

constraints on the degree of a given graph, which guarantees the locatability

of a graph, in this case for arbitrary values of k. In Chapter 4, we will review

our conclusions and discuss some open problems which remain.
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Chapter 2

Special Cases of Locatability

We are now ready to look at some special classes of graphs in which either

locatability can be inferred from a given degree property of the graph or they

are non locatable. First we will need to establish some basic theorems that

will allow us to prove the locatability of our subsequent graphs. In order

to proceed, we need to know that we can delete edges from a graph whilst

maintaining locatability. In section 2.3 we touch upon some special cases

where a given graph G(g1, g2, . . . , gk) is not locatable. These cases require

specific configurations which would necessitate that certain vertices have a

particular degree. This leaves open the question:

What if we restrict the degree of all vertices on a given graph G(g1, g2, . . . , gk)?

Can we then guarantee that the graph is locatable?
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In some special cases the answer is reasonably straightforward, particu-

larly when we can restrict the number of parts k. We will examine these

special cases in this section.

2.1 Subgraph Locatability

We begin by considering cases when locatability is inherited by a sub-

graph. We would like a theorem which guarantees that edge deletion can not

make an otherwise locatable graph non-locatable.

Theorem 2.1.1 (Locatability of Edge Subgraphs). If a graph G is locatable,

then any edge-subgraph, H, of G is also locatable.

Proof. Consider that if G is locatable then ∀x, y ∈ V (G) there is a locating

row S, where S ⊆ V (G) with EG′(S) = ∅, and G′ = G \ {xy} where EG′(S)

is the edge set of the graph induced by S in G′. Then on any subgraph H

where V (G) = V (H) and E(H) ⊆ E(G), S will still be a locating row and

therefore H is locatable.

This Theorem means that it suffices to consider only multipartite regular

graphs of degree ∆. Since if any regular graph with degree ∆ is locatable,

then a graph where ∆ is the maximum degree of any vertex is also locatable.

We can generate an almost identical theorem relating to the partition
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subgraph. This will become important later in this section when we need to

operate on particular partition subgraphs.

Theorem 2.1.2 (Locatability of Partition Subgraphs). If a graph Gk(g) is

locatable then any partition subgraph Hl(g) ⊆ Gk(g) is also locatable.

Proof. By assumption Hl(g) is formed by deleting parts from Gk(g). So any

locating row in Gk(g) contains an independent set in Hl(g) which covers

every part of Hl(g).

The contrapositive of Theorem 2.1.2 will also be useful. If there is some

partition subgraph Hl(g) ⊆ Gk(g) which is non-locatable, then Gk(g) is non-

locatable. This leads to an interesting corollary.

Corollary 2.1.3. A graph Gk(g) is locatable if and only if every partition

subgraph Hl(g) ⊆ Gk(g) is locatable.

With these two theorems we can begin to generate some specific examples

where a graph is locatable regardless of the actual edge configuration is, as

well as show some examples where a graph contains a non-locatable edge

configuration.
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2.2 Safe Values

Recall that a vertex is called safe in a given graph Gk(g) if that vertex

has degree 0, i.e. is an isolated vertex. If some vertex, s1, is known to be

safe, it can immediately be put into a locating row with any vertices x and y,

{x, s1, . . . , y}, without any further examination. Interestingly, any part of a

graph Gk(g) which contains a safe vertex can effectively be removed from the

graph, unless one of the vertices we are testing is in that part. Additionally,

we can create a safe set with safe values S = {s1, s2, . . . , sj}. The vertices

in the safe set effectively remove the parts which contain them so that the

the number of factors we need to consider becomes k− j. If there is at least

one safe vertex in each part of a given graph Gk(g) then that graph is always

locatable.

2.3 Some Cases of a Non-Locatable Graph

We shall begin by generating some examples where a given graph is not

locatable.
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2.3.1 A non-locatable 3-Partite graph

As discussed in Section 1.4.5, it is possible to construct a graph which

has at least one interaction which cannot be located by any 3-tuple. We give

such a graph below where there exists a non-locatable edge between vertices

x and y.

0

0

0

0

0

0

1

2

3

4

0

2

4

6

8

x
x

y

y

Figure 2.1: A non-locatable 3-partite graph

There is no way to put x and y into a locating row since any k-tuple

containing x and y will also contain a separate failing interaction, therefore,

the graph depicted in Figure 2.1 will not be locatable. It should be noted

again that if some graph contains the graph referenced in Figure 2.1 as a

partition subgraph, that graph will be non-locatable.
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2.3.2 A non-locatable 4-Partite graph

In all cases that we have discussed so far, the two “test” vertices have

been adjacent to all vertices in one part. So that after the neighbors of those

two vertices are removed there exists a part of the graph with no vertices

remaining. However, as we will see this does not necessarily have to be the

case and it is possible remove the meighbourhood of the two “test” vertices

M(x) and M(y), and still have live i.e. non-adjacent vertices in all remaining

parts, but the graph is non-locatable.

We can formulate a non-locatable interaction in a 4-partite graph. We

again construct a graph which contains an non-locatable interaction between

vertices x and y.

0
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0

0

1

2

3

0

2

4

6

0

3

6

9

x
x

y

y

Figure 2.2: A non-locatable 4-partite graph

Clearly there is no row that locates x or y since the only vertices not

adjacent to either of those vertices are adjacent to each other.

Interestingly, if any part of this graph is removed it will become locatable.
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It is also interesting to note that this graph has vertices in every part which

are not adjacent to x or y and yet is still not locatable. This graph therefore

serves as an important example demonstrating that an interaction may only

be non-locatable if the entire graph is taken into account, and not over some

number of parts in the graph, locatability is a global . It also should be

noted again that the graph shown in Figure 2.2 requires some vertices have

a degree greater than g−1
2

, to actually construct.

2.4 Locatability with ∆ = 1

We begin our discussion by looking at a simple case. What if for any

graph G(g1, g2, . . . , gk) all vertices are restricted to a degree of one? From

section 1.4.6 we know that if we restrict the size of our parts to the binary

case where gi = 2, such a graph can be non-locatable. However, if we presume

that gi ≥ 3 and a maximum degree ∆ = 1, then we will now show that a

graph G(g1, g2, . . . , gk) is locatable.

Theorem 2.4.1. If a graph G(g1, g2, . . . , gk) where all parts gi ≥ 3 and

∆ = 1, then G(g1, g2, . . . , gk) is locatable.

Proof. Starting with G(g1, g2, . . . , gk), we must show that given any two ver-

tices x and y, where x, y ∈ V (G(g1, g2, . . . , gk)), we can create a locating

row containing x and y. If we delete M(x) and M(y), we are left with the
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partition subgraph H(r1, r2, . . . , rk−2), where the part Ri with size ri is the

remaining vertices from gi. We reorder the parts from smallest to largest so

that r1 is a part of smallest size and rk−2 is the largest, although there may

be other parts equally as large. Since ∆ = 1, we removed at most 2 vertices

and so ri ≥ 1 ∀i. Let a1 ∈ R1, if we delete M(a1) and reorder the new

partition subgraph H, so that r′1 ≤ . . . ≤ r′k−3, then the next smallest part

is still of size r′1 ≥ 1. Again, every part in the remaining graph has size at

least 2. Similarly we now select a2 ∈ R2 and delete M(a2). Again, after this

step and subsequent reordering the smallest part is of size r′′1 ≥ 1. We can

continue this process sequentially with no part Ri ever being empty. Thus

G(g1, g2, . . . , gk) must be locatable.

The proof of Theorem 2.4.1 implies an algorithm to directly construct a

locating row on a graph G(g1, g2, . . . , gk) with ∆ = 1 given any two x and y

where x, y ∈ V (G(g1, g2, . . . , gk)).

Algorithm: 2.4 a ∆ = 1 locating Row Algorithm

Begin Algorithm

Function ∆ = 1 locate (G, k, x, y)

\\Inputs a multipartite graph G with k parts Ri, . . . , Rk

\\and two vertices x and y in different parts of G

S = {x, y}

G = G \M(x)

G = G \M(y)
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For (i = 1 to k − 2)

Sort(R1, . . . , Ri) \\Here we are sorting parts from smallest to largest

If |R1| = 0

Return Fail

a = Random Select(R1) \\Selects a random vertex from R1

S = S ∪ {a}

G = G \M(a)

Next i

Return S

End Algorithm

It is clear that this algorithm will run for k steps, at which point a locat-

ing row, a k-tuple, will have been created. Thus algorithm 2.4 will execute

in O(k) time. This algorithmic approach suggests that it might be possible

to not only prove the existence of a locatable graph given certain constraints

but that it is possible to create all the necessary locating rows in linear

time. Although running algorithm 2.4 for every pair of vertices on a given

G(g1, g2, . . . , gk) will not necessarily create a minimal testing suite, it will

locate all errors. However, even with this simple bound the number of allow-

able errors in a given TP has risen from g−1 [3] to gk, a significant increase,

with the proviso that no single vertex is the cause of too many errors.
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2.5 Errror Graphs with fixed part sizes

2.5.1 Special Note on G2(g)

In case where a graph contains only 2 factors it is certainly pairwise

locatable regardless of degree, since any two vertices x and y in G2(g) will

form a k-tuple with at most one failing interaction. The interaction between

x and y themselves. Thus every failing row definitively locates the pair it

covers. Therefore any covering array is also a pairwise locating and detecting

array if k = 2.

Interestingly, we can make a statement about 1-way interactions onG2(g).

Specifically, if we restrict the degree of a G2(g) graph to ∆ < g then it is

locatable for t ≤ 2 since if there exists at least one x and y in G2(g) which

passes then neither x nor y contains a 1-way failing interaction. If for any

x all rows fail then it must have contained a 1-way interaction. Otherwise

there should have been at least one passing row containing x since ∆ < g.

2.5.2 A locatable graph G3(g)

We have discussed in section 1.4.5 a special case where a graph G3(g)

would be non-locatable. However, we can use Theorem 1.4.5 from [15] to

create a degree bound which guarantees that a given graph G3(g) will be
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locatable.

Theorem 2.5.1. [15] If a graph G3(g) has a maximum degree ∆ ≤
⌊
g−1

2

⌋
then it is locatable.

Proof. Consider there are two vertices {x, y}. There is only one remaining

factor R1 after removing M(x) and M(y) this factor has at least |R1|−2∆ ≥ 1

vertices. This remaining vertex can be put into a 3-tuple with {x, y}, to

create a locating row on G3(g).

It should be noted that adding only one more edge could remove the last

vertex available to us and make part R1 empty, which would in turn make

the graph non-locatable. This method suggests that our algorithm can be

adapted to this tripartite case.

Begin Algorithm

Algorithm: 2.5.2 a G3(g) locating Row Algorithm

Function G3(g) Locater (G, x, y)

\\Inputs a multipartite graph G with 3 parts and two vertices x and y

\\in different parts of G

S = {x, y}

G = G \M(x)

G = G \M(y)

If |V (G)| = 0 \\If the remaining graph G is empty the algorithm fails.
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Return Fail

a = Random Select(G) \\Selects a random vertex from the

\\remaining part

S = S ∪ a

Return S

End Algorithm

2.5.3 A locatable graph G4(g)

We have established that a tripartite graph can be locatable if we restrict

∆ =
⌊
g−1

2

⌋
. Can we say the same for a 4-paritite graph? As it turns out the

same bounds can be applied to G4(g).

Theorem 2.5.2. If a graph G4(g) has a maximum degree ∆ ≤
⌊
g−1

2

⌋
then

it is locatable.

Proof. Consider two vertices x, y ∈ V (G). We can then delete M(x) and

M(y). Since there are 4 parts if there is at least one vertex remaining in each

of the other parts of the graph which are non-adjacent then those 2 vertices

can form a locating row with x and y. Consider that M(x) can delete at most

g−1
2

vertices from the remaining two parts, the same can be said of M(y).

Therefore collectively we can delete at most g−1 vertices from the remaining

subgraph. The remaining partition subgraph H2(r1, r2) has 2 parts, we will

designate R1 and R2, of sizes r1 and r2 respectively. These have at least one
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vertex in either part. Unless the graph H2(r1, r2) is a complete multipartite

graph then G4(g) must be locatable since the remaining two vertices can be

put into a locating row with x and y. If H2(r1, r2) is complete then there must

be at least |r1r2| edges, this is minimal when both parts are equal. However,

since the maximum degree of any vertex is g−1
2

and the smallest size of any

part ri ≤ g+1
2

then the size of our subgraph |E(H2(r))| ≤
(
g+1

2

) (
g−1

2

)
. Which

is not sufficient to create a complete multipartite graph on H2(r1, r2). Thus it

is possible to put the vertices x and y into an independent 4-tuple, therefore

G4(g) is locatable.

We can again create a similar algorithm to create a locating row on a

given G4(g).

Algorithm: 2.5.3 a locating Row Algorithm on a graph G4(g)

Begin Algorithm

Function G(g1, g2, g3, g4) Locater (G, x, y)

\\Inputs a multipartite graph G with 4 parts and two vertices x and y

\\in different part of G

S = {x, y}

G = G \M(x)

G = G \M(y)

For (i = 1 to 2)

Sort(R1, R2) \\Here we sort parts from smallest to largest

If |R1| = 0 \\If the smallest part is 0 the algorithm has failed
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Return Fail

a = Random Select(R1) \\Selects a random vertex from R1

S = S ∪ {a}

G = G \M(a)

Next i

Return S

End Algorithm
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Chapter 3

General Degree Bounds for

Locatability

3.1 Introduction

As previously mentioned, although it is possible to derive tight degree

constraints for some special graphs, we would like to take a more general

approach and explore degree bounds for an arbitrary testing problem TP . We

look at one way to determine locatability on a graph with arbitrary factors.

In addition, a greedy algorithm can be used to create locating rows and we

show this algorithm is guaranteed not to fail given certain degree constraints.

We also discuss a bound derived from an application of a modified version of
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Turán’s theorem. It should be noted that while the construction of locating

rows is in general an NP-Complete problem, as shown in Theorem 1.4.4.

However, given certain degree constraints it is possible to construct locating

rows in polynomial time.

3.2 A Turan-type proof

We normally consider failing interactions to be edges of the error graph

but in a complementary problem we may consider the non failing interactions

to be the edges in our graph and attempt to build a k-clique on those edges.

We can consider vertex degrees in the error graph to be non-edges in a Turán

graph. We previously discussed Turán results in Section 1.2.4 and we will

need some of the tools developed in that section here. The problem then

becomes how to put 2 vertices into a clique with one vertex from each part

of our graph. In this formulation, upon deletion, we will allow each vertex

to delete ∆ edges from our graph. We then ask how many edges can each

vertex delete while still guaranteeing a clique can be formed. Cliques have

the useful property that, on a multipartite graph G(g1, . . . , gk), any clique of

size k must contain one vertex from each part.

Fortunately, we can use some pre-existing work to help us generate a

bound on the number of allowed non edges in a graph Gk(g) while still

forcing a clique spanning all parts to exist between any two vertices. Nagy
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[14] has shown the following result.

Theorem 3.2.1 (Turan Based Bound [14]). Let G be a graph G of order k

and size M . If G is not contained in its blow up graph Gk(g) then Gk(g) has

at most (M − 1)n2 edges.

We now have a bound on the most edges a blow up graph of G can have

without it containing a copy of G. We can take this bound and use it to

examine some limitations on the general error graph, Gk(g).

Theorem 3.2.2 (Bound on edge deletions in a multipartite graph). If a

multipartite graph Gk(g), with k > 4, has degree ∆ ≤ b2g
k
c it must contain

an independent set between any two vertices containing one vertex from each

part.

Proof. Given two vertices x and y we can analyze the graph after we have

removed M(x) and M(y). Since we only need a clique on the remainder

Rk(g) = Gk(g) \ (M(x) ∪M(y)) we then analyze R∗k(g).

Using Theorem 3.2.1 with our blow up graph H = Kk−2, if we have(
k−2

2

)
g2 edges in our blow up graph then we are guaranteed to have a clique

of order k−2 somewhere in Gk(g). When taken with x and y this clique would

form a locating row on the error graph. Thus if
((
k−2

2

)
− 1
)
g2 ≥ |E(R∗k(g))|

then ∃ Kk−2 ⊆ R∗k(g).

Since, we have inverted our usual error graph we will be deleting edges
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from a complete multipartite graph. Therefore, the total number of edges is

|E(R∗k(g))| =
(
k − 2

2

)
g2 − gk∆

2
.

Noting that, this problem reduces to

(
k − 2

2

)
g2 − gk∆

2
≥
((

k − 2

2

)
− 1

)
g2.

When k > 4 this becomes

∆ ≤ 2g

k
.

Since ∆ is an integer, we may write the bound as ∆ ≤
⌊

2g
k

⌋
.

Of course this theorem would predict that for k > 2g that ∆ = 0. How-

ever, we know by Theorem 2.4.1 that given a graph G(g1, . . . , gk) where every

gi ≥ 3 and ∆ = 1 it will be locatable for any k, so this bound cannot be

tight.

3.3 An Algorithm for General k

We start with a k-partite graph G(g1, . . . , gk), we are attempting to put

any 2 vertices x and y from different parts into an independent set with one

vertex from each part. We can remove M(x) and M(y) from our graph to

get an new graph G(r1, . . . , rk−2). We are trying to create a locating row
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S containing x and y, so we add x and y to S. We now iterativly pick the

smallest part, choose a vertex from that part to add to our set and delete

the Meighbourhood of that vertex. If at any step the smallest part is empty

the algorithm fails. The proof of Theorem 3.4.1 relies on showing that if a

certain degree bound is met, this algorithm never fails.

Alogrithm 3.3 Input a multipartite graph G with k parts

and pick 2 vertices x and y from each part.

Begin Algorithm

Function Greedy Locate (G, x, y)

S = {x, y}

G = G \M(x)

G = G \M(y)

While (|S| <= k) \\Once we have a set of k vertices our algorithm

\\exits successfully

Sort(R1, . . . , Ri) \\We sort our remaining graph by parts from

\\smallest to largest

If |R1| = 0

Return Fail \\If at any point our algorithm encounters

\\an empty part

it fails

a = Random Select(R1) \\Selects a random vertex from R1

S = S ∪ a
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G = G \M(a)

End while

Return S

End Algorithm

If this algorithm loops for k − 2 times then we must have our independent

set since S will now contain k vertices.

3.4 Establishing Bounds for a general graph

Gk(g)

While the Turán bound examined in Section 3.2 provides a useful esti-

mate, a different approach arises when we examine a graph Gk(g) and we

carefully choose vertices in parts when creating a locating row. We do this by

selecting the smallest part after each progressive deletion and then choosing

a vertex at random in that part, vi and deleting the meighbourhood set of

that vertex M(vi). If this can continue this process for k−2 vertices then we

can be sure that the set of all vertices we selected originally is independent.

This raises an immediate question about how to assign the edges of each

selected vertex. We want to consider the “worst case” configuration for any

graph. The “worst case” in our construction is the case where after i itera-
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tions a graph Gk(g) has the fewest number of vertices remaining. However if

any part becomes smaller than all the others, our algorithm will remove that

part first. So when we calculate the bound of our algorithm we presume that

at each step the remaining parts are having vertices deleted evenly. This is

not always possible since we will not necessarily have a multiple of ∆ parts

at each step. However it serves as a useful lower bound to work from.

Theorem 3.4.1 (Degree bound for a locatable graph). Given a multipartite

graph Gk(g), with k > 4 and every vertex having maximum degree

∆ ≤

 g − 1

2
k−2

+
⌊∑k−3

j=1
1

k−2−j

⌋
 .

For any two vertices x and y there is a row that locates x and y. That is this

graph is in AVOID(2).

Proof. By Theorem 2.1.1 we need only consider the regular degree graph.

We will put x and y into a locating row, that is we will find a set of inde-

pendent vertices one from each of the remaining parts. First we delete the

meighbourhood sets of x and y, M(x) and M(y). We have deleted at most

2(g − 1)

k + 1
+

2(g − 1)

k + 1
=

4(g − 1)

k + 1

vertices from all parts.

We now iterativly choose a “live” vertex in the smallest remaining part,
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add it to our set and delete it’s meighbourhood. At the ith step let us define

the set of the remaining vertices in each part as Ri, . . . , Rk−2−i. Without

loss of generality we take |R1| ≤ |R2| . . . ≤ |Rk−2−i|. We note that at the

first step i = 0, |R1| cannot be 0 since ∆ < g/2. In general, |R1| cannot be

greater than the average number of deletions over all remaining parts. Since

initially there are k − 2 parts remaining,

|R1| ≤
g(k − 2)− 2∆

k − 2
.

We now pick some a1 ∈ R1, we add this to our set S and delete M(a1). After

every iteration i we lose at most ∆ vertices from our remaining graph with

parts R = {R1, R2, . . . , Rk−2−i}.

Since on the first step |R1| ≥ 1 we can’t eliminate that part on the first

round and if all edges are allocated to R1 then all those edges will be removed

at the next step. However, if we spread the edges evenly across 2 parts we

will only lose ∆
2

edges in the next iteration. Recursively, the strategy which

leads to the fewest edges being removed at each iteration is to spread the

edges over ∆ parts if n > ∆, where n is the number of remaining parts and

∆
n

otherwise i.e. Thus we want to minimize the number of vertices remaining,

so we delete the average number of vertices on each part at each step. Thus

the smallest part remaining, R1, would have received the floor of the average

number of deletions. After i steps the average number of deletions on each
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part is ⌊
i∑

j=1

∆

k − 2− j

⌋
.

As long as our smallest part |R1| ≥ 1 there is some vertex that is inde-

pendent of all previously chosen vertices {x, v1, . . . , vi, y}. After k − 3 steps

we have one remaining part so long as that part |R1| ≥ 1 a locating row can

be constructed. This can be represented by the inequality

g(k − 2)− 2∆

k − 2
−∆

⌊
k−3∑
j=1

1

k − 2− j

⌋
≥ 1.

Where the left hand side represents the size of the last remaining part. This

can be expressed in terms of ∆ as

∆ ≤

 g − 1

2
k−2

+
⌊∑k−3

j=1
1

k−2−j

⌋
 .

Although this bound is interesting it is by no means the lowest possible

bound. We might want to use a different more simpler bound instead of the

complex one we currently have for this we can create a corollary which is

simpler.

Corollary 3.4.2. If a given graph Gk(g) has degree ∆ ≤
⌊

g−1

b k+1
2 c

⌋
, it is

locatable.
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Proof. If k = 3 the bound is established by Theorem 2.5.1 and if k = 4 the

bound is established by Theorem 2.5.2. Therefore we now presume k ≥ 5

and use Theorem 3.4.1 by showing that

⌊
g − 1

2
k−2

+
∑k−3

j=1
1

k−2−j

⌋
>

⌊
g − 1⌊
k+1

2

⌋⌋ .
Since we can use the integral approximation of our sum to derive

k−3∑
j=1

1

k − 2− j
= 1 +

k−4∑
j=1

1

k − 2− j
≤ 1 +

∫ k−3

1

dx

k − 2− x
= 1 + ln(k − 3).

Now consider the inequality

2

k − 2
+ 1 + ln(k − 3) =

k

k − 2
+ ln(k − 3) ≤

⌊
k + 1

2

⌋
.

This inequality holds for k = 5 and the right hand side grows linearly,

while the left hand side grows logarithmically, therefore it is easy to see that

this inequality holds for k > 5.

Since we have shown g − 1

2
k−2

+
⌊∑k−3

j=1
1

k−2−j

⌋
 ≤ ⌊ g − 1

2
k−2

+ ln(k − 3)

⌋
≤ g − 1⌊

k+1
2

⌋ .

Therefore the result follows.
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This approach is obviously not exact, the approach is entirely greedy in

the sense that all vertices chosen are chosen at random. It is possible that we

could allow for a higher bound if we used a method for constructing locating

rows for all pairs of vertices that do not rely on random selections. Indeed,

as k becomes large these bounds become 0. However, Theorem 2.4.1, will

guarantee the construction of a locating row for ∆ = 1. Still, for g >> k,

this approach guarantees the construction of some locating row on a graph

with degree ∆ > 1.

3.5 Creating an Error Locating Array

Previously we have only discussed algorithms which create individual lo-

cating rows given any two test vertices. While in general this is sufficient for

showing that a given graph is locatable, ideally we would like construct an

algorithm where we build an array which covers every pairwise interaction

in a given graph G. We can create an algorithm which calls one of our other

algorithms 2.4.1, 2.5.2, 2.5.3, or 3.3. When this is done we produce a Error

Locating Array.

We will be adding locating rows to an array L while minimizing the

number of rows in the array in total. We keep track of the coverage between
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pairs x and y throughout, with covered(x,y) which is true if a pair xy has

been covered and false otherwise. This is so we don’t have any extra rows.

We call the function Row which will be defined by the type of graph we

start with initially, in practice one of the algorithms described above. The

function addrow is used to add the Row S to the array L. So long as every

pair x and y can be put into a locating row, this algorithm will not fail.

Algorithm: 3.5 ELA construction algorithm for a given graph G

Begin Algorithm

Function ELA Creator (G, k, x, y, Row)

for all pairs x, y ∈ G set covered(x, y) = False

L = ∅

While (there is an uncovered pair, x, y)

S = Row(G, k ,x, y)

if S = Fail

Return Fail

for (every pair, s1, s2 ∈ S)

covered(s1, s2) = True

L = addrow(L,S)

End While
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Chapter 4

Conclusion

4.1 Results

Locatability was the primary motivation of this work. Viewing the gen-

eral testing problem as a graph theoretic one was the lens through which

locatability was considered. Traditionally the testing problem focuses on the

total number of failing interactions in a given TP . However, by viewing

those errors as an edge in a graph one begins to consider the degree, a basic

property of a graph.
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Degree Bounds

The first aspect of this graph theoretic approach to be realized was made

in Theorem 2.1.2, that if any partite subgraph is non locatable the whole

graph is non-loctable. This lead to the conclusion that the degree bound

∆ =
⌊
g−1

2

⌋
is sharp, even one more failing interaction could create a non-

locatable 3-partite subgraph and thus no graph Gk(g) can have a higher

degree and guarentee locatability. In addition, the same bound held for a

4-partite graph G4(g). Interestingly, no non-locatable graph with degree

bound ∆ ≤
⌊
g−1

2

⌋
was ever characterized. There is however a lower bound

for a graph with any number of parts k. If any graph G(g1 . . . gk) with all

gi ≥ 3 has a degree ∆ = 1 then that graph is certainly locatable, and locating

rows can be constructed in linear time. A general result was obtained using

a variant of Turáns theorem, described by Nagy [14]. This result establishes

a lower degree bound of ∆ =
⌊

2g
k

⌋
and although this is not a sharp lower

bound it does give a maximum degree for some graph Gk(g).

A known bound for any graph with arbitrarly many parts k,

∆ ≤

 g − 1

2
k−2

+
⌊∑k−3

j=1
1

k−2−j

⌋
 ,

is derived Theorem 3.4.1. In Corollary 3.4.2 we derive the bound ∆ =⌊
g−1

b k+1
2 c

⌋
, for this bound an algorithm is described which can construct lo-

cating rows in linear time. In fact in all cases discussed an algorithm was
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described which will return a locating row in linear time if given the appro-

priate bounds.

We have outlined some special cases where it is possible that all graphs

created will be locatable. However, all of these cases are rather specific

and all the algorithms require foreknowledge of the structure of the error

graph. That is, they require that the neighborhoods of all vertices be known

in advance before any actual locating rows can be constructed. However,

in a practical case this might not be as limiting as one thinks. If enough

locating rows can be constructed initially, that information can be used to

map out many of the interactions which are not failing interactions. When

this is done, those interactions become effectively the non-edges of our error

graph. With this information a more complete picture of the error graph can

be created, which might allow for the construction of further locating rows

more directly.

While we may be able to find specific classes of graphs which are locatable

or non-locatable. Locatability is in general an NP-Complete problem. There-

fore it is unlikely that we will be able to find a general algorithm constructing

locating rows for an arbitrary graph Gk(g).
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4.2 Conjectures and Possible Future work

Conjectures

In this section we will briefly discuss some conjectures that arose during

the creation of this thesis.

Conjecture 4.2.1. There is some fixed value l, for which non-locatable

Hl(g) (or a set of non-locatable Hl(g)) exists such that for any non-locatable

graph Gk(g), with ∆ = g−1
2

and k > l, the remaining induced subgraph

G′j(g) = Gk \Hl(g) is locatable.

The bound ∆ ≤ g−1
2

is a sharp upper bound, even one more edge can

form a non-locatable graph on three parts. It remains open however whether

or not given this restriction non-locatblility is truly global or whether there

is some number of parts beyond which any non-loctable interaction must be

on a partition subgraph.

Conjecture 4.2.2. A graph Gk(g) is locatable if it has maximum degree

∆ ≤ g−1
2

.

This arises from the fact the we were unable to construct a non-locatable

graph Gk(g) for any k, with ∆ ≤ g−1
2

and although we could not conclusively

prove that this bound holds in general, we could not come up with a counter

example. It should be noted that this bound is k independent. Even if con-
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jecture is false there may be a lower bound which is k independent. Indeed,

the bound ∆ = 1 found in Theorem 2.4.1 is such a bound.

Conjecture 4.2.3. There are no P-time algorithms for constructing locating

rows for a general graph Gk(g) with a degree ∆ = g−1
2

.

In general,, constructing a locating row is NP-Complete. Although we

characterized some algorithms which can construct locating rows in P-time,

they did not use the bound ∆ ≤ g−1
2

except on G3(g) and G4(g). In fact

using ∆ ≤ g−1
2

as a bound could cause the general Algorithm 3.3 to fail on a

G5(g) graph even though this graph may be locatable.

Further Work

We now discuss some future work that might be done in this field. The

study of testing problems as a mathematical object is relatively new, and

thus has not been well explored. Particularly, graph theoretic approaches still

have many unexplored facets which could yield interesting new approaches

to creating ELA’s.

Although work exsists on the relationship between the size of Detecting

Arrays and the number of errors in a given TP [5], we did not investigate the

impact that degree constraints would have on the minimum size of a detect-

ing array. We dismissed “randomly” constructing an array which correctly

locates errors Section 1.1.2 as unreliable. However, it remains open whether
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or not some “probablistic” method exists which can create ELA’s which are

not guaranteed to locate all errors but are likely to. Of particular interest

would be the possibility of creating smaller ELA’s with this method.

Although all the algorithms we described searched for pairwise interac-

tions. It should be possible to construct locating rows for any strength t

interactions. A good focus for future work might also be the construction

of mixed strength algorithms which can create rows which locate up to t

strength interactions.

As an applied topic, a survey of where failing interactions lie in real world

testing problems would be interesting. Although we can set bounds where

non locatable graphs can be constructed. Very particular edge configura-

tions are required to actually create non-locatable interactions. It would be

interesting to learn how probable these configurations actually are.
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