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Abstract

During the last few years, digital filtering methods for image/video processing applications

have reached a satisfactory level. However, their performance degrades in the presence of

noise, trend, motion, shape deformation, intensity inhomogeneity, shadows, or low image

quality, to name a few. To cope with these challenges, this dissertation presents novel

filtering methods for image/video processing applications that outperform the existing and

state-of-the-art methods.

The dissertation starts by introducing a novel trend filtering method that transforms

the inter-frame registration problem into low complexity trend filtering problem. In the

proposed method, Laplacian eigenmaps in conjunction with the modified empirical mode

decomposition has been used to suppress the noise artifacts and the trend term.

In multi-dimensional signals, the trend term is often referred to as non-uniform illumi-

nation or global intensity inhomogeneity. This dissertation presents a new filtering method

for estimating the global intensity inhomogeneity in two dimensional and volume images.

Global intensity inhomogeneity often arises due to the imperfections of data acquisition
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device, direction of source light, and properties of the subject under study. The proposed

method generates a high-pass filter based on the grey-weighted distance transform of the fre-

quency content of an image/volume. It provides an accurate estimation of global intensity

inhomogeneity without any parameter tweaking, which makes it applicable to many imaging

modalities.

The dissertation also presents a filtering methodology to cope with local intensity inho-

mogeneity that gives rise to shadow artifacts. These artifacts appear as sharp discontinuities

and are often corrected at different scales and orientations. The proposed method makes use

of decimation-free directional filter bank to suppress the local intensity inhomogeneity and

shadow artifacts irrespective of scale and orientation.

In addition to intensity inhomogeneity correction, the dissertation also presents a filtering

method that utilizes the Gabor filter bank to generate rotation invariant feature codes.

The effectiveness of the proposed method has been evaluated in both identification and

verification modes for fingerprint recognition.

The uniqueness of the presented filtering methods lies in the fact that they are essentially

parameter free and can easily be scaled to higher dimensions. This makes them applicable

to many different image/video processing applications with least of effort from the end user,

i.e., eliminating the user biases.
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Chapter 1

Introduction

Vision is often considered as the most powerful human sense. The human visual system

in conjunction with the brain produce an organized perception in terms of motion, size,

shape, distance, relative position, and texture [1–3]. Recently, many applications are being

developed to mimic the human vision in areas related to multimedia processing, autonomous

navigation, motion analysis, surveillance, biometrics, optical character reading and medical

imaging [4–6]. Generally, there are two principal approaches taken towards solving the

problem of visual processing - reproducing the human visual system and simulating a similar

system [7]. Since, it is still largely unknown how our brain processes the visual information;

the simulation approach is the most common one. It has brought diversity to the field

of digital image processing where researchers from different areas are trying to solve the

problem in their own way, making image processing a multidisciplinary field of study.

Digital image processing generally refers to the use of computer algorithms that operate

on or analyse digital images [8]. It enables the computer to extract useful information

from the increasingly complex scenes, volumes, and time sequences [9]. Due to the rapid

development of data acquisition devices, digital image processing has gained a lot of attention

in fields such as biometrics and biomedical [6,10]. One of the earliest applications of digital

image processing was in the newspaper industry in the early 1920s [11]. Since then, the field

of digital image processing has progressed immensely, especially with the advent of cheaper

and smaller computers, digital cameras, television channels, and the internet.
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Digital filtering is an integral part of many digital image/video processing applications..

It is not only used to improve the quality of an image but can also serve as a preprocessing

step for subsequent processing, for instance, trend removal, noise suppression, motion analy-

sis, intensity inhomogeneity correction, restoration, segmentation and feature extraction, to

name a few [11–16]

In this dissertation, we focus on the research and development of advanced filtering

methods for image and video processing applications. Specifically, our focus is on the filtering

methods for trend removal/intensity inhomogeneity correction and feature extraction.

1.1 Trend Filtering

Trend filtering is an important task in signal analysis. It has a wide range of applications

in areas like macroeconomics [17, 18], social sciences [19], revenue management [20], and

biological and medical sciences [21–23]. The presence of the trend term in a signal often gives

rise to false extrema which in return degrades the performance of data analysis methods [24].

For instance, in a heart signal, the localization and the counting of the heart beat can be

affected by the presence of these false extrema [25]. Therefore, it is highly desirable to

suppress the trend term before performing any kind of data analysis.

Generally, the trend of a signal is defined as a slowly varying component [16]. It is often

approximated with the help of regression methods [16]. These methods transform the trend

filtering problem into a curve fitting problem where the parameters of the curve (lower order

polynomial) are approximated with the help of weighted least squares. However, estimation

of the trend term with the help of data regression is a highly complex problem. Moreover,

the performance of such methods is highly sensitive to the choice of polynomial, i.e., the

order and the number of terms in the polynomial.

Trend filtering plays a vital role in signal analysis, as it may hide or give rise to false

extrema [24]. The Fourier transform is a widely used tool for signal analysis. It has sinusoidal

basis functions which are global in nature [11]. Due to this global nature, the Fourier

transform is considered as a weak tool to perform non-stationary signal analysis. In case of
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non-stationary signal analysis, STFT is often preferred over the Fourier transform due to

its local nature [26]. In STFT, a non-stationary signal is assumed to be stationary within a

small window. However, determination of the stationary portion and its size is a dilemma

in itself.

Wavelets are often considered to be one of the best tools to perform the non-stationary

signal analysis [11,12]. Wavelets perform the signal analysis depending on the selection of the

mother wavelet and the number of scales. Ideally, these parameters should be derived from

the underlying signal. But, there is no such methodology to provide any a priori knowledge

about these parameters.

On the other hand, empirical mode decomposition (EMD) is a fully data driven method [24,

27]. It does not use any predetermined filter or fixed basis functions [24]. It provides a pa-

rameter free methodology to decouple the trend term from a 1D non-stationary signal.

In case of video analysis, image registration is often considered to be a prerequisite to a

meaningful data/signal analysis [28]. Especially, in motion analysis, it is often preferred to

perform the non-rigid inter-frame registration before extracting the motion information from

the videos [28–31]. Moreover, the presence of the trend term further complicates the motion

analysis process [25]. To cater this problem, this dissertation presents a robust method

that transforms the high complexity non-rigid inter-frame registration problem into a 1D

trend filtering problem. Furthermore, the proposed method extracts the trend term without

defining any regression model.

1.2 Global Intensity Inhomogeneity Correction

In multi-dimensional signals, the trend term is often referred to as shading, non-uniform illu-

mination, intensity non-uniformity, global intensity inhomogeneity, or bias field [32]. Image

filtering has been widely used for the correction of global intensity inhomogeneity [32–34],

where inhomogeneity can be described as smooth variations in intensities. Global inten-

sity inhomogeneity is very smooth across the whole image, i.e., it varies slowly and is often

characterized by low frequency components [34]. In the Fourier transform, it is often char-
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acterised by low frequencies located in the proximity of the DC component or the zeroth

frequency component [33].

During the last decade, a number of intensity inhomogeneity correction methods have

been proposed in the literature [32,34]. Generally, these methods can be classified into surface

fitting, filtering, and histogram thresholding [32,34]. In [35], a surface fitting method based

on bivariate polynomial of degree N was used to approximate the intensity inhomogeneity

in an image. Furthermore, Gaussian filter was used to suppress the additive noise followed

by the logarithmic transformation. This transformation helps to convert the multiplicative

image model to an additive one for subsequent processing. The parameters of the surface

fitting model were calculated from the gradient of the smoothed image by using a weighted

least squares method. An exponential weighting function was used to give small weights to

the pixels with large gradient magnitudes and vice versa. The method is computationally

expensive, as one needs to solve a system of 2P (N + 1)(N + 2)/2 − 1 linear equations to

find the (N + 1)(N + 2)/2 parameters, where P is the total number of pixels and N is the

degree of the polynomial. The performance of the method is dependent on the degree of

the polynomial used to estimate the intensity inhomogeneity. Furthermore, the method is

sensitive to the choice of the parameter in the weighting function.

In [36], maximum a posteriori estimation with the sparseness prior of the image gradient

was used to estimate the global intensity inhomogeneity in natural images. It is based on

the assumption that adjacent pixels have the same intensities unless separated by edges [36].

The method works well as long as the image follows the sparseness property of the gradient

probability distribution function. This method is also computationally expensive and heavily

depends on the parameters of the weighting function. Here, it is worth mentioning that the

gradient magnitude must in general be sampled at twice the original sampling rate to avoid

aliasing [37], which was not followed in [36]. Doubling the sampling rate will at least double

the computational cost of the method proposed in [36].

A well-known iterative method (N3) for global intensity inhomogeneity correction in mag-

netic resonance (MR) images was proposed in [38]. It corrects global intensity inhomogeneity
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without requiring a priori knowledge of the tissue classes. It iteratively estimates the global

intensity inhomogeneity by maximizing the high frequency content of the distribution of the

tissue classes.

Homomorphic unsharp masking (HUM) is a frequency domain filtering method to de-

couple the global intensity inhomogeneity from an image [11, 39]. HUM scales down the

magnitude of the low frequency components by multiplying them with a smaller value (γL)

and amplifies the magnitude of the high frequency components by multiplying them with a

larger value (γH). For better performance, HUM requires fine tuning of three parameters,

γL, γH and c, where c controls the transition of the filter. One of the main challenges in using

HUM is to determine the order and the cut-off of the filter. In a qualitative analysis [40], it

was reported that HUM-based mean filtering outperforms HUM-based median filtering. It

was also concluded that a window size of 65 × 65 or larger (to apply this method to other

images, the window size should be scaled inversely with voxel size to maintain the window

size in millimeters) is appropriate. If HUM is applied to an image composed by a grey

foreground with a dark background, it produces halo artifacts on the boundaries [41]. In

HUM, these artifacts become more prominent when a large window is used. The Guillemaud

filter [42] was successfully used in [41, 43, 44] to avoid these artifacts. In [45], an automatic

method was proposed to select the cut-off frequency for HUM. Later on, this method was

generalized to 3D [41].

1.3 Local Intensity Inhomogeneity Correction

One of the issues closely related to global intensity inhomogeneity is shadow artifacts and

illumination variations. These shadow artifacts appear as sharp discontinuities. Unlike the

global intensity inhomogeneity, these sharp changes are only visible at shadow boundaries,

making intensity inhomogeneity local in nature. The literature shows that the presence of

local intensity inhomogeneity affects the performance of image matching [46,47]. Especially,

the suppression of local intensity inhomogeneity in facial images has been one of the major

challenges in most of the current face recognition systems [48]. Presence of the local intensity
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inhomogeneity can alter the face appearance and can produce strong shadow artifacts [49].

These artifacts can degrade the performance of a face recognition system. It is revealed in

the face recognition vendor tests [50,51] that the performance of the face recognition system

is highly sensitive to shadow artifacts and the variations produced in the face appearance

by the illumination conditions can be much larger than the changes caused by the personal

identity.

In literature, a large number of methods have been proposed for the correction of local

intensity inhomogeneity in facial images [52]. In [53, 54], self quotient image (SQI) based

methods were used to estimate the local intensity inhomogeneity in facial images. These

methods model the reflectance as a ratio between the image and the estimated illumination.

However, these methods produce halo effects at large illumination discontinuities. In order

to reduce the halo effects, a multi scale retinex (MSR) model was proposed in [55] which

attempts to estimate the local intensity inhomogeneity at different scales. This method is

computationally expensive and requires the selection of parameters, i.e., number of scales,

weights associated with each scale and the standard deviation of the smoothing function at

each scale, which itself is an optimization problem.

A number of edge-preserving filtering methods have also been used to estimate the local

intensity inhomogeneity in facial images, such as anisotropic diffusion, bilateral filtering

and mean shift filtering [48]. A logarithmic total variation (LTV) method was proposed

in [56], which exploits the edge-preserving and multi-scale decomposition capability of the

TV −L1 [57] model. This method also helps to extract the smaller intrinsic facial structures.

In [58], a wavelet based method has been proposed, where the histogram equalization was

applied to the low-low sub-band image and the high frequency components were enhanced

in the other 3 sub-band images. Discrete cosine transform (DCT) transform has also been

used for the illumination normalization in the logarithmic domain [59] where some of the

DCT coefficients corresponding to the low frequency contents were discarded to compensate

for illumination variations.
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1.4 Image filtering based feature extraction

In literature, a number of filtering methods have been proposed to extract the most compact

and informative set of features from images/videos [15]. This compact representation is usu-

ally preferred to improve the efficiency of classification problems. The importance of feature

extraction is constantly increasing with the fast growing diversity of signals/images. How-

ever, the extraction of stable and discriminatory features from a signal/image is a dilemma

in itself.

Feature extraction is an essential pre-processing step to pattern recognition and machine

learning problems. It has been widely used in extracting discriminatory information from

the biometric samples which can be further used for person identification. Among various

biometrics, fingerprint has gained popularity due to its high accuracy, stability, public accept-

ability, and low cost [5,60]. Many different methods have been proposed in the literature for

fingerprint recognition, which can be categorized as minutiae-based and image-based meth-

ods [5]. In minutiae-based methods, a set of un-ordered minutiae points are identified after

some pre-processing steps and compared with the minutiae points of the template [5,61,62].

The dissimilarity measure is based on the set difference. A post-processing step is usually

adopted to remove the false minutiae points [62]. In general, minutiae-based methods are

computationally complex due to the requirement of time-consuming preprocessing, and the

performance of such methods are highly dependent on the quality of the fingerprint images.

In contrast to minutiae-based methods, image-based methods extract the features directly

from the fingerprint image. It requires less pre-processing and hence is computationally more

efficient. Moreover, image-based methods generally work well in case of low quality images

in comparison to minutiae-based methods. A number of image-based methods have been

proposed in the past, majority of which employ texture analysis using filter banks [5]. In gen-

eral, local texture analysis has shown to be more effective than the global counterparts [63].

In [64], a local texture analysis based approach was proposed, where a set of Gabor filters

with four and eight different orientations were applied to the region of interest (ROI) of

96 × 120 pixels, cropped with the core point as its center. The detection of the core point
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was performed manually and the ROI was divided into non-overlapping blocks of size 8× 8.

The magnitudes of each non-overlapping block corresponding to different orientations of the

Gabor filters were used as the features. In [65, 66], the core point was detected manually

and the ROI of 64× 64 pixels was cropped centered at the core point. The ROI was further

divided into four non-overlapping blocks of size 32 × 32, and a set of different wavelets up

to the fourth level were applied to each block. On each level, the standard deviation of

the wavelet coefficients was calculated and a feature vector of length 48 was extracted for

the representation of each fingerprint. Finally, Euclidean distance was used to measure the

similarity between the feature vectors of a template and a query image. A similar approach

was presented in [67]. The ROI of size 64×64, centered at the manually detected core point,

was first identified. The ROI was divided into four non-overlapping blocks of size 32 × 32,

and DCT was applied on each sub-image independently. The standard deviations of six pre-

defined blocks in each sub-image were used to generate a feature vector. In all of the above

mentioned methods, core point was detected manually and the features were extracted from

the ROI of the original input image without any fingerprint enhancement.

In [68], a filter-bank based approach was proposed, where a ROI centered at the core

point was divided into B concentric bands and each sub-band was further divided into k

sectors. A set of Gabor filters with eight orientations were applied to the image, and the

absolute average deviation (AAD) of each sector was used as a feature. A cyclic shift method

was also proposed to make the images invariant to the rotation of 11.25◦. Euclidean distance

was used as the similarity metric. However, this method is computationally complex and

requires the storage of a large number of cyclicly rotated images as templates. Furthermore,

it is only invariant to the rotation of 11.25◦, therefore provides limited rotation invariance.

In [69], Fourier Mellin transform has been used in conjunction with wavelet. The ROI of

128×128 pixels centered at the core point was cropped and a two-level wavelet was applied.

At each level of wavelet, Fourier Mellin transform was used to make the ROI translation,

rotation and scale invariant. Finally, Euclidean distance was used to find the matching score

between the two fingerprints.
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Recently, the Hu’s invariant moments [70] based methods have been utilized in [71, 72].

The ROI of size 96× 96 centered at the core point was divided into 16× 16 non-overlapping

blocks. The invariant moments were calculated for each non-overlapping block and a feature

vector of length 252 was used to represent each fingerprint.

1.5 Contributions

The main contributions of this dissertation are enumerated as follows:

• One of the main contributions of this dissertation is the development of novel trend fil-

tering method that transforms the inter-frame registration problem into a low complex-

ity trend filtering problem. The proposed method provides a mechanism to transform

the motion information from a video sequence to a 1D signal. The proposed method

has been used to analyse the embryonic heart rate in vitro from the video recordings of

rat. In the proposed method, LEM in conjunction with correlation coefficient is used to

extract the motion information from the video sequence whereas the modified EMD is

used for the signal analysis. Moreover, the modified EMD provides a data dependent

decomposition which helps in the suppression of noise and trend term, i.e., motion

artifacts. Furthermore, the proposed method finds the trend term without defining

any regression model which makes it attractive for the biologists to analyse the heart

motion without any need of parameter tweaking and expensive imaging equipment.

• Another major contribution is the accurate estimation of global intensity inhomogene-

ity in two dimensional (2D) and volume images. In the proposed method, global

intensity inhomogeneity has been estimated by using grey-weighted distance transform

(GWDT) in conjunction with Fourier transform. The proposed method is based on

the observation that if global intensity inhomogeneity is visible in an image then the

magnitude of affected frequency components should have a higher magnitude than

their neighbouring components. In the proposed method, these affected frequency

components are localised in the frequency domain by GWDT. The proposed method
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generates a regular/irregular shaped high-pass filter based on the frequency content

of an image affected by the global intensity inhomogeneity. The proposed method it-

eratively suppresses the magnitude of the affected frequency components without any

prior knowledge about the imaging modality. Moreover, all of the filter parameters are

automatically determined from the affected low frequency components. The effective-

ness of the proposed methods has been evaluated on the images acquired from several

imaging modalities, which makes it different and unique from most of the existing

methods in this field of study. Experimental results demonstrate that the proposed

method performs better, in some cases, strikingly better than some of the existing and

state-of-the-art methods.

The same idea has been extended to 3D for the volume images, especially for brain

MR volumes. The proposed method constructs a 3D high-pass filter with the help

of 3D GWDT in the frequency domain. The comparison of the experimental results

with some of the recent and state-of-the-art methods demonstrates the versatility and

robustness of the proposed 3D method.

• Another main contribution of this dissertation is the development of filtering method

for local intensity inhomogeneity correction and shadow artifacts suppression. The

proposed method is based on the gamma transformation and the decimation-free di-

rectional filter bank (DDFB). In the proposed method, gamma transformation is used

to normalize the input image whereas DDFB is used to suppress the shadow artifacts

and the local intensity inhomogeneity irrespective of scale and orientation. The pro-

posed method has been deployed to suppress these artifacts in facial images. Moreover,

it has been empirically shown that most of the discriminatory power lies within the

horizontal facial features in presence of shadows and local intensity inhomogeneity.

• A novel filtering method has been proposed to generate rotation invariant feature codes

from the 2D images. However, in this dissertation the proposed method has been

used to extract the rotation invariant feature codes from the fingerprint images. The
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proposed method helps to improve the recognition accuracy of a fingerprint recognition

system. The proposed method generates the rotation invariant feature codes based on

the output of the complex filters and the Gabor filter bank. The effectiveness of the

proposed approach has been demonstrated on the FVC2002 set a public database, in

both identification and verification modes.

1.6 Organization

The organization of this dissertation is as follows:

Chapter 2 provides a description and the background of the methods used in this

dissertation.

Chapter 3 introduces the proposed method for the signal generation and trend removal

from the video recordings. The effectiveness of the proposed method is demonstrated through

extensive experimentation on the video recordings of rat embryos.

Chapter 4 presents the proposed filtering method for global intensity inhomogeneity

correction in 2D and volume images. The proposed method has been tested on several imag-

ing modalities. Theoretical foundations of the proposed method along with experimental

results are also reported.

Chapter 5 presents the proposed filtering method for local intensity inhomogeneity cor-

rection in facial images. The proposed method has been evaluated on two public databases.

Chapter 6 presents the proposed filtering method for extracting the rotation invariant

feature codes from the fingerprint images. The effectiveness of the proposed method in both

identification and verification scenarios is also reported.

Chapter 7 summarizes the work presented in this dissertation and outlines the directions

for future research.
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Chapter 2

Materials and Methods

In an effort to make the dissertation self contained, this chapter provides a brief description

of the material and methods employed in this dissertation.

2.1 Digital Signal/Image Filtering

Digital filtering is often considered as a key step in digital signal and image processing. It

is mainly used for amplification or attenuation of some frequencies depending on the nature

of application. In general, filtering can be performed in either time/spatial or frequency

domain [12]. In spatial domain, filtering is generally performed with the help of spatial

masks (also known as spatial filters, kernels, or templates) that are convolved over the entire

image. Mathematically, it can be written as:

g(x, y) = h(x, y) ∗ f(x, y) =
∞
∑

i=−∞

∞
∑

j=−∞

h(i, j)f(x− i, y − j) (2.1)

where ∗ represents the convolution between the input image f and the spatial mask h.

The values or the co-efficients of the mask determine the nature and the properties of

filtering technique [9]. Generally, the spatial mask whose co-efficients sums to one is known

as a low-pass filter and it is used for smoothing purpose [11]. On the other hand, the co-

efficients of a high-pass filter sums to zero and it is used to detect sharp changes and edges.

In spatial filtering, the output value at the location (x, y) not only depends on the input
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value at (x, y), but also on the specified number of neighbouring pixel values around (x, y)

determined by the size of mask.

In the frequency domain, filtering can be performed by the point-wise multiplication:

G(u, v) = F (u, v)H(u, v) (2.2)

where F (u, v) represents the Fourier transform of f(x, y) and H(u, v) represents the Fourier

transform of h(x, y). Once, the filtering has been performed in the frequency domain, inverse

Fourier transform is applied to G(u, v) to bring it back to the spatial domain. For better

understanding of the frequency domain, a brief description of the 2D sinusoids and the

Fourier transform is presented in the sections to follow.

2.1.1 Two Dimensional Sinusoids

A 2D sinusoid is characterized by phase shift, frequency and the direction of oscillation [12].

Mathematically, a 2D sinusoid can be written as:

S(x, y) = Asin(2π(Ux+ V y) + φ), (2.3)

where A represents the amplitude, φ represents the phase shift, U and V (with units of

cycles/pixel) represents the frequency of oscillation along the horizontal and the vertical

spatial image dimensions.

In case of 2D sinusoids defined on a finite grid of size M ×N , it is often preferred to use

scaled frequencies (u, v) that have the visually intuitive units of cycles/image [11, 12]. So, a

2D sinusoid defined on a finite grid of size M ×N can be written as:

S(x, y) = Asin(2π(
ux

M
+

vy

N
) + φ), (2.4)

Fig. 2.1 represents a 2D sinusoid with its cross sectional view.

Generally, a 2D sinusoid oscillates along every direction except for the direction orthogo-

nal to the direction of fastest oscillation [12]. The direction of the fastest oscillation is given
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(a) (b)

Figure 2.1: a) 2D sinusoid. b) Cross sectional view of 2.1(a).

Figure 2.2: Examples of 2D sinusoids of varying frequencies of size 255 × 255 with A = 10
and φ = 0.

by:

θ = tan−1
(v

u

)

, (2.5)

whereas its frequency can be expressed as:

ω =
√
u2 + v2. (2.6)

Fig. 2.2 shows multiple sinusoids of varying frequencies and orientations.
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2.1.2 Two Dimensional Fourier Transform

Fourier transform is a signal/image analysis tool that decomposes a signal/image into its

sine and cosine components [12]. It transforms a spatial domain image into its frequency

domain representation. In the frequency domain, each point represents a particular frequency

contained in the spatial domain image [11]. As, we are dealing with the digital images only,

so we will restrict our discussion to the Discrete Fourier Transform (DFT) which is a sampled

version of the Fourier transform.

According to the DFT, an image can be resolved into sinusoids of varying frequencies [73,

74]. Mathematically, it can be written as:

F (u, v) =
1

MN

M−1
∑

x=0

N−1
∑

y=0

f(x, y)e−2πj(ux
M

+ vy
N

), (2.7)

where 0 ≤ u ≤ M − 1, 0 ≤ v ≤ N − 1, and F (u, v) represents a complex-valued function of

the sinusoid passing through the whole image f(x, y) of size M×N . Here, frequency (u, v) is

defined in terms of cycles/image. The basis functions of the DFT are complex exponentials

with increasing frequencies that exist through out the signal/image at each time/spatial

location [11]. Due to this global nature, Fourier transform provides the information only

about the frequency components that are present in a signal/image irrespective of where

these components appear in the signal/image.

Generally, a 2D DFT F (u, v), is characterised by the frequency (ω), magnitude (|F (u, v)|),
phase (∠F (u, v)) and direction of the fastest oscillation (θ). Mathematically, these four

characteristics can be expressed as:

ω =
√
u2 + v2,

θ = tan−1
(

v
u

)

,

| F (u, v) |=
√

ℜ(F (u, v))2 + ℑ(F (u, v))2,

φ = tan−1
(

ℑ(F (u,v))
ℜ(F (u,v))

)

.

(2.8)
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In the polar form, F (u, v) can be written as:

F (u, v) = ℜ(F (u, v)) + jℑ(F (u, v)) = |F (u, v)|ejφ (2.9)

where |F (u, v)| is the magnitude and φ represents the phase. The magnitude of the Fourier

transform decreases rapidly as one moves away from origin [11]. Fig. 2.3(b) represents the

magnitude of the center shifted Fourier transform (CSFT).

(a) (b)

Figure 2.3: a) Original TEM image of a c-elegans. b) Magnitude of the CSFT of 2.3(a).

The 2D DFT can be implemented efficiently by computing the 1D DFT row-wise followed

by column-wise computation of 1D DFT or vice versa. This separability property of the DFT

helps to reduce the number of computations. Even with these computational savings, an

N-point 1D DFT has the computational complexity of O(N2). However, this computational

complexity can be further reduced to O(N log2N) by using the Fast Fourier Transform (FFT)

to compute the 1D DFT [11].

2.2 Directional Analysis

Directional analysis is a process of decomposing an image into a set of several directional

components, each one containing a set of frequency subbands. These subbands can be

represented in the frequency domain by partitioning the Fourier spectrum of an image [75].
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Directional analysis has been widely used for texture analysis, feature extraction, image

enhancement, segmentation, edge detection, and target detection [64, 68, 76, 77].

2.2.1 Gabor Filter

The most commonly used directional analysis tool is Gabor filter which is a frequency and

orientation selective filter [78]. It is a modified version of Gaussian filter which can be

constructed by modulating a Gaussian in some particular frequency and orientation [79].

Mathematically, the 2D Gabor filter can be written as:

g(x, y) =
1

2πσxσy

exp

[

−1
2

(

x2

σ2
x

+
y2

σ2
y

)]

cos(2πuox) (2.10)

where uo represents the center frequency of a cosine wave along the x-axis and (σx, σy) defines

the standard deviation of the 2D Gaussian along the x− and y−axes, respectively [79, 80].

The 2D Gabor filter g(x, y) has the following Fourier transform:

G(u, v) = A

[

exp

{

−1
2

(

(u− uo)
2

σ2
u

+
v2

σ2
v

)}

+ exp

{

−1
2

(

(u+ uo)
2

σ2
u

+
v2

σ2
v

)}]

(2.11)

where A = 2πσxσy, σu = 1/2πσx and σv = 1/2πσy [81].

The 2D Gabor filter of arbitrary orientation can be obtained by rotating x−y coordinate

system in Eq. 2.10. Fig. 2.4 shows the power spectrum of the 2D Gabor filter, which is a sum

of a pair of Gaussians oriented in a particular direction with some radial center frequency

uo.

Gabor filters have been widely used for local texture analysis [12]. However, in most of

the natural images, it is hard to find a single filter resolution at which one can localize a

spatial structure in an image [82].

2.2.2 Directional Filter Bank (DFB)

Another directional analysis tool is Directional Filter Bank (DFB) which is capable of ex-

tracting the spatial directional information that is global in nature [83]. DFB was proposed
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Figure 2.4: Power spectrum of the 2D Gabor filter.

by Bamberger [84] and later refined by Sang [85]. It decomposes the spectrum of an image

into wedge-shaped like passbands as shown in Fig. 2.5. These passbands corresponds to

global features in a specific direction in spatial domain [84]. The outputs of DFB are known

(-p,-p)

(p,p)

w1

w2

(a)

(-p,-p)

(p,p)

w1

w2

w0

(b)

Figure 2.5: Passbands are represented by the greyish area. a) Frequency partition map of
DFB [85]. b) Frequency partition map of Gabor filter bank.

as directional subbands which are maximally decimated and are orthogonal to each other.

Each subband is of smaller size as compared to the original image because of the presence

of downsamplers. The original structure of DFB suffers from frequency scrambling [84], i.e.,

after the second stage of DFB, subbands become visually distorted. The solution to this

frequency scrambling was proposed in [85], where all the sampling matrices were moved to
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the end of analysis section of DFB. Fig. 2.6 shows the structure of latest version of 3-stage

DFB proposed in [85], which eliminates frequency scrambling.

Ho(ω1,ω2) ↓Q

RHo(ω1,ω2) ↓Q

e-j
ω π
1

e-j
ω π
1

BH1(ω1,ω2) ↓Qe-j
ω π
1

BHo(ω1,ω2) ↓Qe-j
ω π
1

(a)

Hmo(ω1,ω2) ↓Q

Hmo(ω1,ω2) ↓Q R

Hmo(ω1,ω2)

Hm1(ω1,ω2)

↓Q B

↓Q B

(b)

Figure 2.6: 3-stage DFB structure proposed in [85]. a) DFB modulated structure. b) DFB
non-modulated structure.

The basic structure of the DFB shown in Fig. 2.6(a) consists of diamond shaped low-

pass filter Ho(ω1, ω2), diamond shaped high-pass filter H1(ω1, ω2), Quincunx down sampler

Q, diamond conversion matrices R, modulators e−jω1π, and postsampling matrix B. The

modulator varies the spectrum of the image so that the modulated image can be divided

into two directional subbands using Ho(ω1, ω2) and H1(ω1, ω2). The Quincunx downsampling

matrix used in DFB structure is given below:

Q =

[

1 1

−1 1

]

.

The matrix Q not only downsamples the image diagonally but also rotates the image by 45

degrees around its origin [85]. Figure 2.7 shows the effect of Quincunx downsampling on the

cameraman image. The four diamond conversion matrices R applied in the DFB structure

are given below:

19



(a) (b)

Figure 2.7: Example of Quincunx downsampled image. a) Cameraman. b) Downsampled
by Q.

R1 =

[

1 1

0 1

]

R2 =

[

1 −1
0 1

]

R3 =

[

1 0

1 1

]

R4 =

[

1 0

−1 1

]

.

These matrices helps to map the parallelogram shaped passband to a diamond shaped pass-

band [85]. The matrix B in the DFB structure is the post sampling matrix which is used to

correct the frequency scrambling associated with each subband [75, 85].

In Fig. 2.6(b), the modulators e−jω1π has been moved inside the diamond shaped filters

to give rise to hour-glass shaped filters Hmo(ω1, ω2) and Hm1(ω1, ω2), as shown in Fig. 2.8(b).

However, the outputs of the two structures shown in Fig. 2.6 are equivalent to each other [85].

Fig. 2.9 illustrates the filtering steps associated with a 3-stage DFB decomposition. The two

subbands corresponding to the first stage of DFB are shown in Fig. 2.9(a). In the second

stage, the outputs of the first stage are further divided into four subbands using a procedure

shown in Fig. 2.9(b). In the third stage, eight directional subband outputs are generated.

Fig. 2.9(c) shows two of the eight directional subbands created by the third stage of DFB.

In [75, 86], DFB has been used for the image enhancement, where directional energies

of subbands were calculated for the enhancement purpose. Interpolation was used before

calculating directional energies to establish a one-to-one correspondence between all the
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(a)

(b)

Figure 2.8: Types of ideal passbands for DFB structure proposed in [85]. a) For modulated
structure shown in Fig. 2.6(a). b) For non-modulated structure shown in Fig. 2.6(b).

directional subbands of DFB. To overcome the extra step of interpolation, Decimation-Free

Directional Filter Bank (DDFB) was proposed in [87], where the decimators and resamplers

were shifted to the right of the filters by using the multi-rate noble identities [88]. The outputs

of the DDFB are known as directional images and they are of same size as the input image.

In DDFB, there is a one-to-one correspondence between pixels of all directional images, i.e.,

two pixels located at a spatial position (x, y) in two different directional images corresponds

to the same position (x, y) in the original image. Fig. 2.10 shows the structure of 3-stage

DDFB proposed in [87]. Here, Q and R corresponds to the same Quincunx downsampling

matrix and the diamond conversion matrices used in DFB [87].

Fig. 2.11 shows a 3-stage DDFB decomposition where the outputs corresponding to the

first stage of DDFB are shown in Fig 2.11(a). Fig. 2.11(b) and Fig. 2.11(c) shows some of

the filters corresponding to the second and the third stage of DDFB .
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Figure 2.9: Sang DFB structure proposed in [85]. a) First stage. b) Second stage. c) Third
stage.
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Directional Image 2
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TQTQT(ω1,ω2))

↓Q↓Q R ↓Q

↓Q↓Q R ↓Q

B

B

Directional Image 1

Figure 2.10: 3-stage DDFB structure proposed in [87].

2.3 Empirical Mode Decomposition (EMD)

EMD is an adaptive multi-scale representation that decomposes a non-stationary signal into

a sum of oscillatory functions known as intrinsic mode functions (IMFs) [24,89], that: 1) have

the same number of extrema and zero-crossings or differ by at most one; 2) are symmetric

with respect to local zero mean.

To be successfully decomposed into IMFs, a signal must have at least two extrema, i.e.,

one maximum and one minimum. Each IMF is computed through an iterative process known

as sifting process [89], which is summarized in Algorithm 1.

At the end of this process, the original signal z(t) can be expressed as:

z(t) =

n−1
∑

i=0

hi(t) + r(t), (2.12)

where n is the total number of IMFs, r(t) represents the final residue also known as the

trend term of the signal z(t), and hi(t) is an IMF.

It is important to mention that sifting is an iterative process that normally takes more

than one iteration to generate a single IMF. Generally, the number of iterations are controlled

by a stopping criterion (SD). In literature, several different types of stopping criteria have

been proposed [27]. For instance, in conventional EMD [24], the sifting process continues

until the normalized squared difference between two successive p(t) is smaller than a pre-
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Figure 2.11: DDFB structure proposed in [87]. a) First stage. b) Second stage. c) Third
stage.
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Algorithm 1 Empirical Mode Decomposition

1: i←− −1.
2: j ←− 0.
3: repeat
4: Find all the extrema of a given signal z(t).
5: Create an upper and lower envelope, zup(t) and zlow(t), by fitting a cubic spline through

maxima and minima, respectively.
6: Find the mean envelope m(t) by:

m(t) =
zup(t) + zlow(t)

2

7: if z(t)−m(t) is an IMF then
8: i←− i+ 1
9: Find the IMF, hi(t):

hi(t)←− z(t)−m(t)
10: Find the residual, r(t):

r(t)←− z(t)− hi(t)
z(t)←− r(t)

11: j ←− 0.
12: else
13: pj(t)←− z(t),
14: z(t)←− z(t)−m(t),
15: j ←− j + 1.
16: end if
17: until z(t) is monotonic or one extremum is left

determined value:
T
∑

t=0

| pj−1(t)− pj(t) |2

T
∑

t=0

p2j−1(t)

≤ SD. (2.13)

Typically, the value of SD is choosen between 0.2 and 0.3 [24]. In [90], a second type

of criterion, termed as the S stoppage criterion was proposed. According to S stoppage

criterion, the sifting process stops only if: 1) the number of zero crossings and extrema are

equal or differ by at most one and 2) remain same for S successive p(t). The optimal value

of S is found to be between 3 and 8 [27].

In contrast to the traditional signal analysis methods like Fourier transform, STFT and
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wavelets, EMD is a fully data driven method [27]. It does not use any predetermined filter

or fixed basis functions [24]. Due to these reasons, it has been widely used in the areas

like oceanography, feature extraction, noise removal, trend removal, biometrics, biomedical

signal and image analysis [91–93].

2.4 Clustering

Clustering is a supervised/unsupervised classification of patterns (objects, observations, data

items, or feature vectors) into groups or clusters [94]. The main goal of clustering is to min-

imize the within cluster dissimilarity and to maximize the between cluster dissimilarity [95].

It can also be considered as finding groups of patterns such that the patterns within a group

are similar to each other and different from the patterns in other groups [96].

2.4.1 K-Medoids Clustering

K-medoids is a classical partitioning method where each cluster is represented by one of the

data points in the cluster as its center, i.e., medoid [97]. A medoid can be defined as the

data point of a cluster, whose average dissimilarity to all the data points in the cluster is

minimal [98].

Given an unlabelled data set X = {x1, x2, · · · , xn} of n data points where xi ∈ R
d,

K-medoids algorithm partitions X into K clusters by minimizing the total squared error

between X and all the medoids V, where V = {v1, v2, · · · , vK} ⊂ X with cardinality K [99].

Mathematically, it can be written as:

min
V

J(V) =

K
∑

j=1

n
∑

i=1

‖ xi − vj ‖2, (2.14)

K-medoids algorithm works as follows:

1. Fix the number of clusters K, K ∈ [2, n)

2. Randomly choose the initial configuration of medoids V.
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3. Associate each data point to the closest medoid using a distance measure and calculate

the cost.

4. For each medoid vj

(a) Swap the non-medoid data point with vj .

(b) Compute the cost of the configuration, i.e., total squared error.

(c) Select the configuration with the lowest cost.

5. Repeat steps 3 to 4 until there is no change in the medoids.

2.4.2 Fuzzy C-Means Clustering

Fuzzy C-Means (FCM) is a clustering method [100], which allows a pattern xk to belong

to more than one cluster with a certain degree of membership µik ∈ [0, 1]. The degree of

membership µik represents the fuzzy membership of k-th pattern to the i-th cluster.

Given an unlabelled data set X = {x1, x2, · · · , xn}, where n is the total number of data

points in X and xi ∈ R
d. FCM partitions X into c clusters where c ∈ [2, n). It iteratively

updates the membership µik and the cluster centers vi by minimizing the following objective

function:

min
U,V

J(U,V) =
c

∑

i=1

n
∑

k=1

µm
ik ‖ xk − vi ‖2, 1 ≤ m <∞ (2.15)

where V = {v1, v2, · · · , vc} ⊂ R
d, m represents the weighting exponent and U = [µik]c×n is

a fuzzy c-partition matrix of X under the conditions:

µik ∈ [0, 1] |
c

∑

i=1

µik = 1 ∀ k ∧ 0 <
n

∑

k=1

µik < n ∀ i.

The standard FCM algorithm can be summarized as follows:

1. Select c ∈ [2, n), m ∈ [1,∞), ǫ > 0, h = 0 and initialize the partition matrix U = U(0).
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2. At iteration h, compute the cluster centers v
(h)
i using:

vi =

n
∑

k=1

µm
ikxk

n
∑

k=1

µm
ik

, i = 1, 2, · · · , c, (2.16)

where µik ∈ U(h).

3. Compute the coefficients in U(h+1) using:

µik =
1

c
∑

j=1

(

‖xk−ci‖
‖xk−cj‖

)
2

m−1

, k = 1, 2, · · · , n,
(2.17)

where ‖ · ‖ denotes the Euclidean norm. Typically, the value of m is set to 2, which is

equivalent to normalizing the coefficient linearly to make their sum 1.

4. If ‖ U(h+1)−U(h) ‖< ǫ, then stop; otherwise return to step 2 and increase h by 1, i.e.,

h = h + 1.

2.5 Dimensionality Reduction

Dimensionality reduction is the mapping of the higher dimensional data to a lower dimen-

sional space such that a subspace in which the data lives is detected [101]. For instance,

let Z = {Zi}Ci=1 denote a set of training images (or feature vectors), containing C subjects

with each subject Zi = {zij}Ci

j=1, consisting of Ci images zij. Each image is represented

by a column vector of length J , i.e., zij ∈ R
J . In general, the objective of dimensionality

reduction is, based on optimization of some criterion, to find a map ϕ(·) to produce a lower

dimensional feature representation yij = ϕ(zij),yij ∈ R
M ,M << J .

Here, we will address the two most widely used subspace techniques for linear dimension-

ality reduction, i.e., Principal Component Analysis (PCA) and Linear Discriminant Analysis

(LDA).

PCA [102] is one of the the most influential subspace techniques for linear dimensionality
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reduction. It is an unsupervised learning technique which provides an optimal, in the mean-

squared-error sense, representation of the input data in a lower dimensional space. Let St

be the sample covariance matrix defined as follows,

St =
1

N

C
∑

i=1

Ci
∑

j=1

(zij − z̄)(zij − z̄)T (2.18)

where z̄ = 1
N

C
∑

i=1

Ci
∑

j=1

zij is the mean of all gallery samples and N represents the total number

of images available in the training set. The PCA feature space is thus spanned by the

first M (M < N) eigenvectors of St corresponding to the largest eigenvalues. The feature

representation of a feature vector z in the PCA space can be obtained by a linear mapping :

y = AT
PCA(z− z̄), where APCA = [v1, ..,vM ] is the transformation matrix consisting of the

first M eigenvectors.

LDA is another commonly used method for linear dimensionality reduction [103]. In

contrast to PCA, LDA is a supervised learning technique which produces a class-specific

feature space based on the maximization of the so-called Fisher’s criterion defined as the

ratio of between-class scatter to within-class scatter, i.e.,

ALDA = argmax
A

|ATSbA|
|ATSwA|

, A = [a1, ..., aM ], ak ∈ R
J , (2.19)

s.t. aT
i aj =

{

1 if i = j

0 if i 6= j

where Sb and Sw denote the between- and within-class scatter matrices defined as follows,

Sb =
1

N

C
∑

i=1

Ci(z̄i − z̄)(z̄i − z̄)T (2.20)

Sw =
1

N

C
∑

i=1

Ci
∑

j=1

(zij − z̄i)(zij − z̄i)
T (2.21)

where z̄i = 1
Ci

Ci
∑

j=1

zij is the mean of the i-th class and z̄ = 1
N

C
∑

i=1

Ci
∑

j=1

zij is the mean of
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all classes. Thus, LDA-based feature representation of an input vector z can be obtained

by a linear projection: y = AT
LDAz. The maximization of the Fisher’s criterion given in

Eq. 2.19 is equivalent to solving an eigenvalue problem of S−1
w Sb. If Sw is non-singular, the

transformation matrix ALDA is comprised of the first M most significant generalized eigen-

vectors of Sw and Sb corresponding to M largest eigenvalues λk, i.e., ALDA = [v1, ...,vM ],

λ1 > λ2 > ..., λM , where Sbvk = λkSwvk.
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Chapter 3

Novel Trend Filtering Method

3.1 Introduction

Trend filtering plays a vital role in data analysis. The presence of the trend term in a

signal may hide or give rise to false extrema which severely affects the detection of true

extrema [24]. For instance, localization and the counting of heart beat in an embryonic

heart signal becomes a challenging problem in presence of trend term [25].

Estimation of the motion signal from a video recording of an embryonic heart has been

widely used for the drug screening process [104, 105]. However, the extracted motion signal

is often degraded by the trend term which leads to poor data analysis [105]. To solve this

problem, we present a novel filtering method that transforms the motion information from

the videos to a 1D signal. Moreover, the proposed method estimates the trend term in the

generated motion signal without defining any regression model and also helps in screening

of pharmaceutical drugs.

Prior to dosing in human subjects, these pharmaceutical drugs are often tested on rat

embryos. For this purpose, rat whole embryo culture on gestation day (GD) 13 is often used

to investigate if drugs may have an effect on the embryonic heart in vitro. If a drug cause

reduced heart rate and/or irregular heart rate, it may have the potential to damage the

embryo by causing periods of reduced oxygen supply. There is a clear relationship between

reduced oxygen supply during mammalian development and an increased risk of birth defects
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and embryonic death [106]. For instance, in pregnant women a ∼20% reduction in fetal heart

rate during the first trimester is associated with a markedly increased risk of spontaneous

abortion [107].

The in vitro method of investigating drug effects on the rat embryonic heart has improved

over the years. However, it is just recently that feasible image analysis tools have been

introduced to assess the effect on embryonic heart rate in vitro [104, 108]. In comparison, a

lot more work has been done to set up image analysis tools in the zebrafish in vivo culture

system. For instance, in [109], the changes in average light intensity of each frame was

combined with pixel differential computed across the frames to construct the heart signal.

In [110], the heart signal was visualised as a waveform of dynamic pixels produced by the

oscillatory movement of blood cells. Later on, short-time Fourier transform (STFT) was used

to analyse the non-stationary heart signal. In STFT, it is assumed that some portion of a

non-stationary signal is stationary. However, the determination of the stationary portion and

its size is a dilemma in itself. In [111], fast differential interference contrast imaging carried

out at 250 frames/sec was combined with autocorrelation to measure the heart activity. To

have a true representation of the heart activity, the reference image should represent either

of the extreme states in the heart. However, the selection of the reference image, manual or

automatic, is un-conclusive in [111].

In the current study, rat embryos are cultured with an open yolk sac. This, together with

the vigorous heart beats at GD 13, results in a non-rigid deformation in the shape of the

embryo. It can also result in translation of the embryo in the culture medium. Furthermore,

in case of an irregular heart rate, the motion of the heart can become non-stationary in

nature.

To cope with the above mentioned issues, we carried out the assessment of the heart

activity in two steps, heart signal generation and heart signal analysis. Signal generation is

achieved by LEM in conjunction with correlation coefficient, while the signal analysis has

been performed by the modified EMD.
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3.2 Proposed Method

Existing methods to assess embryonic heart rate requires a skilful operator to perform the

experiment by means of expensive imaging equipment [109]. The aim of this study is to

present a simple and low cost solution to measure the rat embryonic heart rate in vitro.

The proposed solution requires an ordinary light microscope with a video camera capable of

capturing a video at 30 frames per second along with a desktop computer. The section to

follow will present a robust method to generate a signal representing the heart motion from

video recording of the cultured rat embryos.

3.2.1 Heart Signal Generation

LEM is a non-linear dimensionality reduction method which aims to find the lower dimen-

sional manifold embedded in the higher dimensional space while preserving the spatial re-

lationship [112]. To accomplish this task, LEM constructs a graph G in which every data

point di is connected to its k-nearest neighbours. All edges between the connected data

points in a graph G have a cost equal to one. It is followed by the construction of an adja-

cency matrix Cij which have an entry 1 at location (i, j), if the data point di is among the

k-nearest neighbours of dj. The rest of the locations in Cij are set to zero. LEM requires

the construction of Laplacian matrix L, which can be computed as:

Lij =











Dij if i = j

−Cij if di and dj are adjacent data points

0 otherwise.

(3.1)

Here, D is a diagonal matrix computed as Dii =
∑

j

Cij . The final step in the LEM method

is to find the generalized eigenvector solution to:

Lf = λDf. (3.2)

As L is a symmetric positive semi-definite matrix with λ0 = 0 as a trivial eigenvalue, it

implies that all eigenvalues can be ordered as: 0 = λ0 ≤ λ1 ≤ λ2 · · · ≤ λN−1. Now, the
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mapping of di in a low-dimensional space m is computed by leaving the eigenvector f0 and

using the next m eigenvectors as [112]:

di −→ (f1(i), f2(i), · · · , fm(i)). (3.3)

Here, the mapping F is the solution to the following minimization problem [112]:

F = arg min
f1···fm

∑

(i,j)

Cij‖f(i) − f(j)‖2 with: FTF = I (3.4)

where F = [f1, f2, · · · , fm] is a n ×m matrix, n represents the total number of data points,

and f (i) represents the i-th row of matrix F, i.e., corresponds to the m-dimensional Euclidean

coordinates of the i-th data point di.

As, we are interested in measuring the heart rate in the atrium and the ventricle, re-

spectively, the method requires manual selection of these regions. In our case, the area

representing either chamber would be treated as di. It is intuitive that LEM on such data

will provide quite logical representation by mapping the filled, semi-filled, emptied atrium

frames close to filled, semi-filled, emptied atrium frames, respectively in the lower dimen-

sional space. The same would be the case with the ventricle. K-medoids clustering of this

low-dimensional mapping into three clusters yields intuitive classification, i.e., filled, semi-

filled, emptied chamber classes. This mapping eases the selection of the template frame for

the atrium and the ventricle. It is worth mentioning that each low-dimensional point has

a one-to-one correspondence with the higher dimensional point. The class having the least

average value (computed among the corresponding higher dimensional points) is considered

as the state when the specific heart chamber is fully filled. It is mainly because the least

light would pass through blood in the case when chamber is fully filled. The point in the

higher dimensional space is considered as a template if the corresponding lower dimensional

point represents the centre of this chamber class. The template selected using this method

is relatively insensitive to outliers and noise [112]. To construct the adjacency matrix, we

have used 5-nearest neighbours and for the low-dimensional embedding, we have set m = 2.
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The choice of 5-nearest neighbours is motivated by the fact that it always resulted in one-

connected component in the graph for our test videos.

Later on, cross-correlation of the template frame (representing the atrium filled class)

with the area representing the atrium will yield the heart signal representing motion of the

atrium (As). The ventricle activity (Vs) is achieved similarly by using the template frame

(representing the ventricle filled class) with the area representing the ventricle. For the sake

of simplicity, we will use the term heart signal to refer to both, As and Vs.

3.2.2 Heart Signal Analysis

Depending on the heart conditions, the associated heart motion is intrinsically non-stationary

in nature. It is also observed that the spatial movement of the embryo due to placement in

a culture medium (liquid in nature) results in a trend term in the associated heart signal.

In case of arrhythmia, the heart motion will change over time which demands for time-

frequency analysis tool. Generally, wavelets and filter banks provide a pre-defined multi-

scale representation of a non-stationary signal. The application of wavelets require the

definition of a mother wavelet as well as the total number of scales that are both user

defined parameters [24, 113]. However, it will be more logical to select these parameters

based on the frequency content of the underlying signal but they are a priori unknown. The

recently developed EMD seems suitable, as it overcomes the above mentioned shortcomings.

EMD is an adaptive multi-scale representation that decomposes a non-stationary signal

into symmetrical oscillating functions known as intrinsic mode functions (IMF) and a less

oscillating local mean [24,89]. Each IMF has the same number of extrema and zero-crossings

or can differ at most by one. IMF should also be symmetric with respect to local zero mean.

To extract each IMF, EMD uses an iterative procedure known as sifting process [89]. In [114],

the sifting process was replaced with partial differential equations to improve the performance

of EMD. Another approach to improve the performance of EMD is to better approximate

the mean envelope as the conventional mean envelope can result in undershoot, overshoot,

instabilities to noise, and erroneous detection of extrema [115].
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To overcome the above mentioned problems, we have followed the same lines as discussed

in [116] and [89] along with a new relaxation in the stopping criterion, which helps in faster

convergence. The proposed method provides the steps to remove the trend term and noise

from the heart signal as summarized in Algorithm 2.

Algorithm 2 Modified EMD for Signal Analysis and Trend Removal
1: fr ←− frame rate of the camera

2: fh ←− 6Hz (Maximum heart beat rate)

3: i←− −1, ε1 ←− 0.05, ε2 ←− 0.10, α←− 2

4: repeat

5: Find all extrema locations (tk) in z(t).

6: Compute the centroid (z̄k(t̄k)) between two consecutive extremum as:

z̄k ←−
1

tk+1 − tk

∫ tk+1

tk

z(t)dt

t̄k ←−
∫ tk+1

tk
t | z(t)− z̄k |2 dt

∫ tk+1

tk
| z(t)− z̄k |2 dt

7: Find a mean envelope m(t) by fitting a cubic spline through all centroids (z̄k(t̄k)).

8: if (z(t)−m(t)) is an imf then

9: i←− i+ 1

10: Find the IMF, hi(t):

hi(t)←− z(t)−m(t)

11: Find the residual, r(t):

r(t)←− z(t)− hi(t)

z(t)←− r(t)

12: Find all extrema locations tk in z(t).

13: Find the symmetry ratio, sr:

λ(k)←− z(tk+1)− z(tk−1)

tk+1 − tk−1

(tk − tk−1) + z(tk−1)
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sr ←−
| z(tk) + λ(k) |
| z(tk)− λ(k) |

14: else

15:

z(t)← z(t)−m(t)

16: Find all extrema locations tk in z(t).

17: Find the symmetry ratio, sr:

λ(k)←− z(tk+1)− z(tk−1)

tk+1 − tk−1
(tk − tk−1) + z(tk−1)

sr ←−
| z(tk) + λ(k) |
| z(tk)− λ(k) |

18: end if

19: Find the number of extrema ne in z(t).

20: until ((sr ≥ ε1) ∧ (ne > α))

21: Find the cut-off frequency cutoff to remove noise and higher order harmonics:

cutoff ←−
2fh
fr

+ ε2

22: Convolve h0 with a FIR low-pass filter fil, with a cut-off frequency of cutoff .

23: Drop the trend term to compensate for the spatial heart motion in the culture medium:

zcomp(t)←−
n−1
∑

i=0

hi(t)

where n is the total number of IMFs.

The proposed method helps to find the trend term without defining the regression model.

Moreover, the non-rigid shape deformation produced due to the vigorous heart motion, the

noise induced during the data acquisition, and the higher order harmonics (produced due to

unequal stay of blood in each of the heart chambers) are also catered during step 21 to 23 of

Algorithm 2. Taking benefit from the zero mean property of the IMF, we have defined a beat
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in a different way. We count it as a beat if there is a negative minimum between two positive

maxima. Here, maxima is defined as the highest positive value between every two negative

minima. The positive minimum separating the two positive maxima is consider as false

minima and the negative maxima separating the two minima is considered as false maxima.

This methodology avoids false maxima/minima detection and also avoids the computation

of differential for maxima/minima detection. Such a definition assures that every beat has

substantial amplitude and also justifies the removal of the trend term.

3.3 Results and Discussion

For evaluation of the proposed method, we have used 151 videos to investigate the effects of

pharmaceutical drugs on the heart activity of rat embryos. To generate the videos, we used

a culture system (with some modification) previously published in [105]. In this study, each

embryo was cultured in 25 ml bottles containing 4 ml of Dulbeccos Modified Eagles Medium

(DMEM, Ref. No. D1145, Sigma Chemical Co., St. Louis, MO, USA). Intermittent gassing

(95% O2, 5% CO2) for 2 minutes instead of continuous gassing was used, and the bottles

were gassed after addition of the drugs to the culture media, and after every recording of

the heart rate.

After 1 hour of incubation, each embryo still in its bottle, was examined under a light

microscope (Olympus SZ-40) equipped with a camera (uEye UI-2210-M/C). A 30-second

video of the embryos was recorded to be used for later analysis. Damaged and dead embryos

or embryos with a heart rate less than 160 beats per minute were discarded. After recording

the embryonic heart rate, the test compound (or vehicle serving as control) was added to

the culture medium and the bottles were gassed for 2 minutes with the same gas mixture

as above. The embryos were then incubated for 1 hour before being re-examined again

as described above. In total, we have used 151 videos for the evaluation of our proposed

method.

We opted to compare our heart signal analysis method with the analysis methods men-

tioned in [104,110,111]. We skipped the comparison between the proposed signal generation
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method and the signal generation methods mentioned in [110, 111], because they have used

different imaging technique to acquire images. However, it seems fair to compare the sig-

nal analysis methods as there is no difference in the generated signals. For validation of

our method, we have generated a ground truth (Gt) where videos were stepped through

frame by frame and the exact heart rate was determined visually. Fig. 3.1(a) shows the

number of heart beats counted by each of these methods in 151 different videos. It is clear

from Fig. 3.1(a) that the proposed method is quite accurate in counting the heart beats in

comparison to the others.

Fig. 3.1(b) shows the difference between Gt and the number of beats counted by the

proposed method for all 151 videos. It also shows the difference between Gt and the beats

counted by [110]. It is clear from Fig. 3.1(b) that the difference between Gt and the number

of beats counted by the proposed method is quite small as compared to [110]. Fig. 3.1(c)

shows the difference between Gt and the number of heart beats counted by [104,111], which

is quite higher as compared to the proposed method. It is interesting to mention that the

method proposed in [110], provides quite accurate count of the heart beats by finding the

fundamental frequency in the frequency domain but fails to localize the location of the peaks

in the time domain. Fig. 3.1(d) shows the standard deviation of the inter-beat time, which

is often used by biologists to judge the heart condition, i.e., to differentiate between regular

and irregular heart activity. Here, the higher values are often associated with the irregularity

of the heart motion. It is evident from the results that the proposed method outperforms

the other methods but still there are 5 instances when the proposed method fails to correctly

count the heart beats.

3.4 Summary

To develop an accurate and suitable method for measuring the embryonic heart rate in

vitro, a system combining LEM and EMD has been proposed. The proposed method assess

the heart activity in two steps; heart signal generation and heart signal analysis. Signal

generation is achieved by LEM in conjunction with correlation coefficient, while the signal
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Figure 3.1: a) Number of heart beats counted by different methods on 151 videos. b)
Difference between Gt and the number of beats counted by the method proposed in [110]. c)
Difference between Gt and the number of beats counted by the methods proposed in [104,111].
d) Standard deviation of the inter-beat time computed individually for every video.
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analysis of the heart motion has been performed by the modified EMD. LEM helps to find

the template for the atrium and the ventricle respectively, whereas EMD helps to find the

trend term without defining any regression model.

The proposed method also removes the motion artifacts produced due to the non-rigid

deformation in the shape of embryo, the noise induced during the data acquisition, and

the higher order harmonics. To check the authenticity of the proposed method, 151 videos

have been investigated. The results clearly show the accuracy of the proposed method

in counting and localizing different heart states. The efficiency and the robustness of the

proposed method makes it more attractive for the biologists to analyse the heart motion

without the need of expensive imaging equipment and parameter tweaking.
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Chapter 4

Global Intensity Inhomogeneity

Correction

4.1 Introduction

In multi-dimensional signals, the trend term is often referred to as shading, non-uniform illu-

mination, intensity non-uniformity, global intensity inhomogeneity, or bias field [32]. Global

intensity inhomogeneity is a multiplicative field that induces smooth variations across the

whole image [33]. Due to these smooth variations, it is often characterised by the low fre-

quency components [35]. It is mainly caused due to the imperfections of data acquisition

device, direction of light source, and subject topology, etc [32]. Global intensity inhomogene-

ity correction is often considered as a prerequisite to a successful image segmentation [33].

The performance of image matching, retrieval and tracking algorithms are also affected by

the presence of global intensity inhomogeneity [46, 47]. This wide range of applications has

lead to the development of a plethora of methods. A thorough review of the development

during the last decade is reported in [32, 34].

Generally, an image is modelled as a product of the true signal t(x, y) and intensity inho-

mogeneity i(x, y) with some noise η(x, y) added by the acquisition device. Mathematically,

it can be written as:

f(x, y) = t(x, y)i(x, y) + η(x, y). (4.1)
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In the discussion to follow, we will assume an additive image model as the noise η(x, y) in

Eq. 4.1 can be suppressed by low-pass filtering. This allows us to transform the multiplicative

image model into an additive model by using a logarithmic transformation.

The main task of the global intensity inhomogeneity correction is to adjust the mag-

nitudes of those low frequencies that are affected by the addition of global intensity inho-

mogeneity. Now, a simple question arises: how and where to find those frequencies in the

Fourier transform? Theoretically, the question is complex to answer. Usually, it is solved

empirically with user interaction where the user selects the appropriate parameters of the

filter which suppresses the affected frequency components [11]. Normally, circular filters are

used due to the lack of information about the location of the frequencies that are affected

by global intensity inhomogeneity. Another reason for using circular filters is the ease in

their design [41]. The circular filter not only suppresses the affected frequencies but also

removes additional frequency components of an image. This often results in a high-pass look

of the resulting image and can also result in inducing further inhomogeneity in an image.

So, it is desirable to only suppress the frequencies that are affected by the global intensity

inhomogeneity and to have very low effect on rest of the frequency components of an image.

During a literature review [32], we have found that most of the Fourier transform based

global intensity inhomogeneity correction methods require user interaction where the user

fine tunes the parameters based on his/her visual inspection [32, 34]. This user interaction

makes the use of those methods impractical, especially in a large dataset.

4.2 ProposedMethod for Global Intensity Inhomogene-

ity Correction

The proposed method constructs a low-pass filter based on the assumption that the addi-

tion of the global intensity inhomogeneity will amplify the magnitude of the affected low

frequencies. So, we can expect a relatively higher magnitude for those low frequencies as

compared to their neighbours in the Fourier transform. As the proposed method is based
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on the magnitude of the affected low frequencies, it can produce a filter whose shape (reg-

ular or irregular) depends on the distribution of frequencies affected by the global intensity

inhomogeneity. To the best of our knowledge, this prior information has never been used in

filter design nor has been considered by the user while choosing the cut-off of the filter.

Another crucial issue is to determine the magnitude of the affected low frequencies that

needs to be suppressed. Should it be suppressed completely? In homomorphic unsharp

masking (HUM), this is controlled by a parameter γL which is used to scale down the mag-

nitude of the low frequency components [11]. Generally, the value of γL is selected by the

user on the basis of visual inspection which tends to make the results highly subjective and

dependent on user’s experience. To overcome these issues, the proposed method iteratively

selects the amount of magnitude of the affected low frequencies that needs to be suppressed.

This is extremely important as complete suppression of these low frequencies can produce

further inhomogeneity in an image. In other words, retaining a certain amount of magnitude

of these low frequencies is necessary to recover the true image. The proposed method is

summarized in Algorithm 3.

Algorithm 3 Global Intensity Inhomogeneity Correction based on GWDT in 2D Images
1: f = input image

2: F = fftshift(fft2(f)); // Compute the centered shifted Fourier transform (CSFT).

3: j = 0; // initialization

4: similarity[j] = 1; // initialization.

5: repeat

6: j = j + 1;

7: Fmag = abs(F ); // Magnitude calculation.

8: Distmap = GWDT(Fmag); // Compute the distance map using GWDT.

9: for r = 1, ..., n do

10: Dist = (Distmap ≤ r) × Fmag;

11: PR(r) =
sum(abs(Dist)2)

sum(abs(F )2)
× 100; // Calculating the percentage of the image power.

12: end for
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13: Select a threshold value (T );

14: Mask = Distmap ≤ T ;

15: Low Pass = Mask ∗ Gaussian filter; // Here, ∗ represents the convolution operator.

16: High Pass = max(Low Pass) - Low Pass;

17: ADJUSTED = High Pass × F ; // Frequency domain filtering.

18: F = ADJUSTED;

19: adjusted = real(ifft2(ifftshift(ADJUSTED)));

20: similarity[j] = correlation(adjusted,f);

21: until 0 ≤ (similarity[j − 1]− similarity[j]) < ǫ

The proposed method starts by calculating the magnitude of the Fourier transform of the

given input image as shown in Fig. 4.1(b). As, we are interested in suppressing the magnitude

of the affected low frequency components, i.e., relatively higher in magnitude and spatially

close to the DC component, GWDT is one of the methods that can be used to fulfil both

constraints. GWDT provides a framework to combine spatial information with magnitude

information [117]. For this reason, the magnitude image Fmag, becomes an input to the

GWDT. For instance, let Ppq represents the set of all possible paths between pixels p and q.

Let π ∈ Ppq such that π = {p = p0, p1, . . . , pn−1 = q}, where pi and pi+1 are adjacent

pixels. Then, the length L of the path π is defined as:

L(π) =
n−1
∑

i=0

| Fmag(pi)− Fmag(pi+1) | · ‖ pi − pi+1 ‖, (4.2)

where Fmag(pi) and Fmag(pi+1) represents the magnitude value of Fourier transform at pi

and pi+1. Here, | · | represents the absolute and ‖ · ‖ denotes the Euclidean norm. Now, the

grey-weighted distance between p and q can be defined as:

d(p, q) =







min
π∈Ppq

L(π) if p 6= q

0 if p = q.
(4.3)

Readers interested in deep understanding of GWDT and its efficient implementation are
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referred to [117,118]. In the proposed method, the DC component of the magnitude of CSFT

serves as the only seed point for the GWDT. Fig. 4.1(c) shows the distance map (Distmap)

computed using the GWDT on the magnitude (Fmag) of the CSFT. Here, the range of the

values from low to high shows the grey-weighted distance from the seed.

The next step of the proposed method is to compute the percentage of the image power

(a) (b) (c)

Figure 4.1: a) Original TEM image of a c-elegans. b) Magnitude of the CSFT of 4.1(a). c)
Result after applying GWDT on 4.1(b).

depending on the grey-weighted distance from the DC component. This distance shows

the change in the magnitude of the frequencies from the DC component in each direction

independently, which helps to find the irregular distribution of frequencies affected by the

global intensity inhomogeneity. It is followed by finding the locations of these affected

frequencies. To accomplish this, let M : Distmap → Fmag, and s0 ∈ Distmap is the location

of the seed. Let B(s0, r) be a ball with the centre in s0 and radius r, i.e.,

B(s0, r) = {q | d(s0, q) ≤ r}, (4.4)

where q defines the location of the pixels contained within a radius r. Then, the set of the

frequencies within radius r is defined as:

K(s0, r) = {M(q) | q ∈ B(s0, r)}. (4.5)
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It is followed by computing the percentage of the image power (PR(r)) as shown in Fig. 4.2.

Mathematically, it can be written as:

Figure 4.2: Percentage of the image power for a ball of radius r. Here, the threshold value
(T = 4) is highlighted in red.

PR(r) =
Ω(K(s0, r))

Ω(F )
× 100, (4.6)

where the total image power is computed by:

Ω(F ) =
M−1
∑

u=0

N−1
∑

v=0

| F (u, v) |2 . (4.7)

where the M and N represents the total number of rows and columns of an image.

The value of r at which there is a sharp change in PR(r) for the ball B(s0, r) will serve

as the threshold (T ) as shown in Fig. 4.2. This threshold T , corresponds to the ball outside

which the magnitude Fmag, drops abruptly. Essentially, this means that all the low frequen-

cies contained within this ball have relatively much higher magnitude than the frequencies
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outside the ball. This ball can take on any shape depending on the magnitude of the affected

low frequencies relative to the DC component. Fig. 4.3(a) shows an example of a filter re-

sulting from Fig. 4.1(c). Fig. 4.3(b) shows the zoomed version of Fig. 4.3(a). According to

our observation this threshold is usually between 3 to 5. This threshold value will help us to

find an ideal low-pass filter (Flow), which will correspond to the frequencies affected by the

global intensity inhomogeneity. Flow can be expressed as:

Flow =











1 if Fmag ∈ K(s0, T )

0 if Fmag ∈ K(s0, T ).

(4.8)

To avoid the ringing artifacts produced by an ideal filter, we have smoothed our filter with

a Gaussian of σ = 1 as shown in Fig. 4.3(c). To suppress these frequencies, we have used a

High Pass filter as shown in Fig. 4.3(d), which is produced in step 16 of Algorithm 3. The

next step of the proposed method is to filter the given image by using the High Pass filter

and take the resulting image (adjusted) back to the spatial domain. The whole process is

repeated until the difference between the similarity (as computed in step 20 of Algorithm 3)

is less than ǫ. We have set ǫ to 0.05, however any value less than 0.1 works fine for the

applications that we have tested. In each iteration, the filter will suppress the magnitude of

the affected low frequencies, gradually from one iteration to the next. Empirically, we have

noticed that the proposed method takes between 3 to 5 iterations to converge.

4.3 Experimental Setups

For the experimental evaluation of the proposed method, we have used five different setups.

4.3.1 Experimental Setup 1

In experimental setup 1, we have used 40 binary images from the digital retinal images for

vessel extraction (DRIVE) database [120]. Here, a binary retinal image B(x, y) represents

the pure reflectance which essentially means that illumination is constant throughout the
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(a) (b)

(c) (d)

Figure 4.3: a) Ideal low-pass filter. b) Zoomed version of the filter in 4.3(a). c) Smoothed
version of the filter in 4.3(b). d) High-pass filter.

image as shown in Fig. 4.4(a). To synthesize the image In(x, y) having global intensity

(a) (b) (c)

Figure 4.4: a) Binary retinal image B(x, y) from the DRIVE database [120]. b) Global
intensity inhomogeneity pattern P (x, y). c) Global intensity inhomogeneity image In(x, y)
produced by adding the global intensity inhomogeneity pattern of 4.4(b) to the binary retinal
image.
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inhomogeneity, the first step is to generate an image Q(x, y) having values randomly drawn

from a standard normal distribution N (0, 1). It is convolved with a Gaussian low-pass filter

G by using the following equation:

P (x, y) = Q(x, y) ∗Gµ,σ, (4.9)

where P (x, y) is the synthetic global intensity inhomogeneity pattern and G ∼ N (0, 75).

Finally, an inhomogeneous synthetic image In(x, y) is created by:

In(x, y) = B(x, y) + P (x, y). (4.10)

One such example is shown in Fig. 4.4(c), where the synthetic global intensity inhomogeneity

pattern P (x, y) is added to the binary retinal image B(x, y). For simplicity, we are consider-

ing the additive image model in Eq. 4.10, as one can easily transform a multiplicative model

into additive by using the logarithmic transform. We have added a random pattern to each

of the 40 binary retinal images. This process was repeated 10 times to produce a test set of

400 images.

4.3.2 Experimental Setup 2

In experimental setup 2, we have created 400 synthetic images Sg(x, y) by using Gaussians

of varying sigmas. All of these Gaussians were placed randomly in a digital grid with their

centers apart from each other by 6σmax, where σmax is the maximum standard deviation

among all the Gaussians used to create Sg(x, y). Their centers were kept 6σmax apart to

avoid the overlap between the neighbouring Gaussians. For each image, four Gaussians of

different sigmas were used and they were placed randomly to form an image. One such

synthetic image is shown in Fig. 4.5. Now, to induce global intensity inhomogeneity into

the synthetic image Sg(x, y), we created different kinds of sinusoidal intensity inhomogeneity

patterns using:

P (x, y) = A sin(2π(
ux

M
+

vy

N
)) + A, (4.11)
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where A is the amplitude, u is the horizontal frequency, v is the vertical frequency, M is

the total number of rows of an image and N is the total number of columns of an image.

Different values of u and v were picked randomly between (0, 1] for creating sine waves of

different frequencies as it resembles the global intensity inhomogeneity pattern produced by

different imaging modalities. Finally, the inhomogeneous image In(x, y) is created by:

In(x, y) = Sg(x, y) + P (x, y). (4.12)

We have also used global intensity inhomogeneity pattern generated by polynomial of

degree two and three. A third degree polynomial has the following form:

P (x, y; a) = a1x
3 + a2y

3 + a3, (4.13)

where a = a1, a2, a3 is the parameter vector that defines the surface. Finally, inhomogeneous

image is created by using Eq. 4.12. Fig. 4.6 illustrates few examples of our synthetic images.

4.3.3 Experimental Setup 3

A confocal scanning laser ophthalmoscope is widely used to assess the health of the retina.

Retinal images often suffer from global intensity inhomogeneity [119], which in return can

affect the feature extraction, registration, and segmentation process. Moreover, the perfor-

mance of the biometric systems based on the retinal vessel tree structure are also affected

Figure 4.5: Synthetic image Sg(x, y), created by using Gaussians of varying sigmas.
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: a) Global intensity inhomogeneity pattern created by using Eq. 4.11. b) Global
intensity inhomogeneity pattern created by a second order polynomial. c) Global intensity
inhomogeneity pattern created by using Eq. 4.13. d) Global intensity inhomogeneity image
created by adding 4.6(a) with Fig. 4.5. e) Global intensity inhomogeneity image created by
adding 4.6(b) with Fig. 4.5. f) Global intensity inhomogeneity image created by adding 4.6(c)
with Fig. 4.5.

by the presence of global intensity inhomogeneity. This makes the retinal image an ideal

candidate to test the proposed method.

To evaluate the performance of the proposed method, we have used three public databases:

DRIVE [120], STARE [121], and VICAVR [122]. The DRIVE database consists of 40 eye-

fundus color images taken with a Canon CR5 nonmydriatic 3CCD camera with a 45◦ field-

of-view (FOV). Each of the image is captured at a resolution of 768×584 pixels with 8 bits

per color channel and stored in TIFF format. The database is divided in two sets: a test set

and a training set. Each of the sets contains 20 images. The database also provides the FOV

masks corresponding to each image and the manually labelled ground truth images provided

by the two experts. Two examples from the DRIVE database are shown in Fig. 4.7(a) and
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Fig. 4.7(b). The STARE database contains 20 images captured by a TopCon TRV-50 fundus

camera at 35◦ FOV. All the images are captured at a resolution of 605×700 pixels with 8

bits per colour channel. All the images are manually labelled by the two experts. Fig. 4.7(c)

and Fig. 4.7(d) shows some of randomly selected images from the STARE database.

The VICAVR database contains 58 images. All the images are taken with TopCon non-

mydriatic camera NW-100 with a resolution of 768×584 pixels. Examples from the VICAVR

database are shown in Fig. 4.7(e) and Fig. 4.7(f).

4.3.4 Experimental Setup 4

In this experimental setup, we have used the transmission electron microscopy (TEM) images

of c-elegans as used in [35]. TEM images often suffer from global intensity inhomogeneity

due to electron imaging defects (non-uniform support films) and specimen staining [35]. One

such image is shown in Fig. 4.8, where the global intensity inhomogeneity is evident in the

center of the image. Presence of such inhomogeneities implies a need for image restoration

prior to further image analysis. Hence, they are suitable candidates for the proposed method.

4.3.5 Experimental Setup 5

The literature shows that many of the filtering methods for global intensity inhomogeneity

correction are tested on MR images [32]. In MR images, the global intensity inhomogeneity

can be induced by the choice of the radio-frequency coil, the acquisition pulse sequence and by

the nature and geometry of the sample itself [34]. To have a fair comparison, we have opted to

evaluate our method on 3DMR volumes obtained from the BrainWeb Simulated Brain (BSB)

Database [123]. This database provides both, the images suffering with global intensity

inhomogeneity as well as the ground truth. Here, the inhomogeneous images are created

using inhomogeneity estimated from real MR scans [123]. The induced global intensity

inhomogeneity is non-linear and complex in shape. In total, we have used 48 MR volumes

of dimensions 181 × 217 × 181. The simulated data sets are obtained with the following
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: a), b) Images from the DRIVE database [120]. c), d) Images from the STARE
database [121]. e), f) Images from the VICAVR database [122].
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settings: T1, T2 relaxation times, slice thickness of 1, 3, and 5 mm, all global intensity

inhomogeneity shapes, and 0%, 20%, 40%, 50%, 60%, 70%, 80%, and 90% inhomogeneity

levels. Here, 90% inhomogeneity level means that the global multiplicative inhomogeneity

has a range of values between 0.55 and 1.45 over the brain area. Linear scaling is used to

produce other inhomogeneity levels. We created six different (with various slice thickness,

inhomogeneity shapes, and relaxation times) MR volumes for each intensity inhomogeneity

level. Fig. 4.9(a) shows the transaxial view of a slice from the test volume.

4.4 Results and Discussion

4.4.1 Results of Setup 1

In experimental setup 1, a synthetic inhomogeneous pattern P (x, y) of size M × N was

added to a binary retinal image B(x, y) to produce a global intensity inhomogeneous image

In(x, y). One way to evaluate the proposed method in such a situation would be to recover

B(x, y) from In(x, y). To accomplish this task, we run the proposed method on In(x, y),

which resulted in an image R(x, y). Then Otsu’s thresholding was applied afterwards on

R(x, y) to convert it into a binary image BR(x, y) [124]. To quantify the accuracy of the

Figure 4.8: TEM image of c-elegans suffering from global intensity inhomogeneity.
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(a) (b)

(c) (d)

Figure 4.9: Transaxial view of a slice from the brain MR volume. a) Original image from the
brainweb database [123]. b) Result after applying the method proposed in [41]. c) Result
after applying the method proposed in [36]. d) Result after applying the proposed method.

proposed method, we computed the percentage of correctly classified pixels as:

percentc = 1−

M−1
∑

x=0

N−1
∑

y=0

(|B(x, y)−BR(x, y)|)

MN
, (4.14)
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where M and N represents the total number of rows and columns of an image.

Fig. 4.10(a) shows the percentage of correctly classified pixels on 400 test images. Ap-

plication of Otsu’s thresholding on images preprocessed by the proposed method recovered

more than 98.5% of the pixels in all 400 test cases. Fig. 4.10(b) shows that the direct appli-

cation of Otsu’s method on average recovers 12% of the pixels only.

Moreover, the sinusoidal pattern P (x, y) (as explained in experimental setup 2) was

added to the binary retinal image B(x, y) to produce a global intensity inhomogeneity image

In(x, y). The test set was increased from 40 to 400 in the same manner as mentioned in

experimental setup 1. The evaluation was performed along the same lines as mentioned ear-

lier in the current section. The result of applying Otsu’s thresholding after preprocessing by

the proposed method is shown in Fig. 4.10(c). The result shows that the proposed method

helps to recover 100% pixels in all the 400 test images, while direct application of Otsu’s

method recovers less than 18% pixels as shown in Fig. 4.10(d). Although, it is trivial to

find the edges in our intensity inhomogeneous images, but to find the internal areas of the

vessels is a bit tricky. However, the proposed method is able to find the whole structure very

efficiently. It is mainly due to the reason that the proposed method is able to exactly locate

the low frequency components which are affected by the global intensity inhomogeneity in

the image.

4.4.2 Results of Setup 2

In experimental setup 2, a polynomial pattern P (x, y) was added to a synthetic image Sg(x, y)

to produce a global intensity inhomogeneity image In(x, y). It is worth mentioning that the

maximum brightness of P (x, y) was increased to 1500 to make things more challenging

and to prove that the proposed method does not produce any artifacts while removing or

reducing the global intensity inhomogeneity. One such example of pattern P (x, y) is shown

in Fig. 4.11(b). To evaluate the proposed method, we approximated/recovered Sg(x, y) from

In(x, y). To approximate Sg(x, y), we ran the proposed method on In(x, y), which resulted in

an image R(x, y). Fig. 4.11(c) shows an example of a global intensity inhomogeneity image
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Figure 4.10: Percentage histograms. Here, the horizontal axis represents the percentage of
correctly classified white pixels, while the vertical axis represents the number of test images.
a) Histogram after application of the proposed method. The histogram shows that the
proposed method was able to recover 98.5% of the pixels. b) Results of applying direct
Otsu’s thresholding on images with intensity inhomogeneity pattern created by standard
normal distribution. The histogram shows that one can correctly recover 12% of the pixels.
c) Result of the proposed method when a sinusoidal wave was added as an inhomogeneous
pattern. Here, our method was able to recover 100% of the pixels. d) Results of applying
direct Otsu’s thresholding on images with intensity inhomogeneity pattern created by using
the sinusoidal wave. On average, one can only recover 18% of the pixels in an image.

In(x, y) produced by adding Fig. 4.11(b) with Fig. 4.11(a), while Fig. 4.11(d) shows the

approximated image R(x, y) using the proposed method. To quantify the similarity between

the approximated image R(x, y) and the ground truth Sg(x, y), we chose cross-correlation as

a similarity measure. Fig. 4.12(a) shows the cross-correlation values between Sg(x, y) and
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the approximated image R(x, y) for 400 test images. Fig. 4.12(b) shows the result of taking

direct cross-correlation between Sg(x, y) and In(x, y). The severity of the inhomogeneity

is obvious from the horizontal axis of Fig. 4.12(b), where the maximum cross-correlation

value is less than 0.1. The proposed method brought significant improvement as the average

cross-correlation value improved from 0.06 to 0.84.

Moreover, the sinusoidal pattern P (x, y) was added to the synthetic image Sg(x, y)

(a) (b)

(c) (d)

Figure 4.11: a) Original image. b) Global intensity inhomogeneity pattern created by a third
degree polynomial. c) Global intensity inhomogeneity image. d) Adjusted image after 5th

iteration of the proposed method.

to produce a global intensity inhomogeneity image In(x, y). Once again, the maximum

brightness of P (x, y) was increased to 800 for the same reasons as mentioned earlier in this

section. Fig. 4.13(a) shows an example of a sinusoidal pattern P (x, y), while Fig. 4.13(c)

59



0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

Cross Correlation Values

F
re

qu
en

cy

(a)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Cross Correlation Values

F
re

qu
en

cy

(b)

Figure 4.12: Histograms, where the horizontal axis represents the cross-correlation value
between two images, while the vertical axis represent the number of test images. a) Cross-
correlation of images produced by our method and the ground truth. Here, the images
were corrupted by third degree polynomials. The histogram is centered around 0.84. This
clearly shows that our results are quite similar to the ground truth. b) Cross-correlation
between the ground truth and the intensity inhomogeneity images produced using third
degree polynomials. The histogram is centered around 0.06.

shows the approximated image R(x, y) using the proposed method. The evaluation was

performed along the same lines as mentioned earlier in the current section. Fig. 4.14(a)

shows the cross-correlation values between Sg(x, y) and R(x, y) for 400 test images, while

Fig. 4.14(b) shows the result of taking cross-correlation between Sg(x, y) and In(x, y). It is

evident from the results that the proposed method has improved the average approximation

accuracy from 0.15 to 0.96.

4.4.3 Results of Setup 3

In this experimental setup, we have applied the proposed method on the green channel of

the original RGB retinal images. In RGB retinal images, the green channel provides the

best vessel-background contrast whereas the red channel is the brightest color channel and

has low contrast, and the blue channel has poor dynamic range [125]. For these reasons,

the green channel is preferred for the vessel extraction in the RGB retinal images [126].

Here, we have compared the performance of our method with the surface fitting method [35]
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(a) (b) (c)

Figure 4.13: a) Global intensity inhomogeneity pattern created by a sinusoidal wave. b)
Global intensity inhomogeneity image created by adding 4.13(a) and Fig. 4.5. c) Corrected
image at 5th iteration of the proposed method.

and the method based on the sparseness property of the gradient probability distribution

function [36]. Fig. 4.15 and Fig. 4.16 shows the result of applying the proposed method

on some of the randomly selected images from the DRIVE and STARE database. Here,

it is important to mention that we have used normalized convolution to avoid the halo

artifacts [42]. It is clear from the results that the proposed method has suppressed the

global intensity inhomogeneity with much less artifacts introduced in comparison to the

results produced by [35] and [36].

For the quantitative evaluation of the proposed method, we have used (1) detection

accuracy, (2) the corresponding true positive rate (TPR), and (3) the false positive rate

(FPR) at that accuracy as the performance measures [127]. The detection accuracy is defined

as the ratio of the total number of correctly classified pixels to the number of pixels inside

the FOV. The TPR is defined as the ratio of the number of correctly classified vessel pixels

to the number of total vessel pixels in the ground truth. The FPR is defined as the ratio of

the number of non-vessel pixels inside the FOV but classified as vessel pixels, to the number

of non-vessel pixels inside FOV in the ground truth. Here, we have used the vessel extraction

method proposed in [127] to extract the vessel tree structure from the homogenized images.

In case of DRIVE database, we have applied the proposed method on the 20 test images
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Figure 4.14: Histogram images. a) Cross-correlation of images produced by our method and
the ground truth. Here, the images were corrupted by using sinusoids. The histogram is
centered around 0.96 which clearly shows the ability of our method to restore the original
image. b) Cross-correlation between the ground truth and intensity inhomogeneity images
produced by using sinusoids. Here, the mean value is centered around 0.15.

and have used the hand-labelled images by the second expert as the ground truth. Fig. 4.15

shows the result of applying the proposed method on some of the randomly selected images

from the DRIVE database in comparison with the results produced by [35] and [36]. Once

the global intensity inhomogeneity has been suppressed, we have extracted the retinal vessel

tree structure for the quantitative evaluation of the proposed method. Table 4.1 shows the

results after applying the vessel extraction method on the homogenised images. Table 4.2

shows the vessel extraction accuracy of the proposed method in comparison with some of

the existing methods for global intensity inhomogeneity correction. It is clear from Table 4.2

that the proposed method has outperformed the global intensity inhomogeneity correction

methods proposed in [35] and [36]. Furthermore, the proposed method has achieved the

highest accuracy rate and TPR with the lowest FPR.

For STARE database, we have used the hand-labelled images by the first expert as the

ground truth. Fig. 4.16 shows the result of applying the proposed method on some of the

randomly selected images from the STARE database. It is clear from Fig. 4.16 that the

proposed method has been able to correct the global intensity inhomogeneity. Table 4.3

shows the vessel extraction accuracy of the proposed method. It is clear from the results
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Table 4.1: Segmentation Results for DRIVE Database.

Original Expert 2 T. Tasdizen [35] Y. Zheng [36] Proposed
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4.15: a), e), i), m) Original images from DRIVE database. b), f), j), n) Results after
applying [35]. c), g), k), o) Results after applying [36]. d), h), l), p) Results after applying
proposed method.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4.16: a), e), i), m) Original images from STARE database. b), f), j), n) Results after
applying [35]. c), g), k), o) Results after applying [36]. d), h), l), p) Results after applying
proposed method.

shown in Table 4.3 and Table 4.4 that the proposed methods helps in the suppression of

global intensity inhomogeneity while preserving the true vessel structures.
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Table 4.2: Vessel extraction results on the DRIVE database.

Methods TPR FPR Accuracy

T. Tasdizen [35] 0.5825 0.0175 0.9337

Y. Zheng [36] 0.5785 0.0169 0.9323

Proposed 0.5922 0.0135 0.9359

Table 4.3: Vessel extraction results on the STARE database.

Methods TPR FPR Accuracy

T. Tasdizen [35] 0.6939 0.0257 0.9449

Y. Zheng [36] 0.6967 0.0254 0.9454

Proposed 0.7376 0.0265 0.9485

Due to the absence of the ground truth in case of VICAVR database [122], we have

followed the subjective evaluation by humans that is considered as the most appropriate

criterion for the assessment of the image quality [11]. The subjective evaluations can be

done by using absolute rating scale or by means of side-by-side comparisons of the original

image and the resulting image. In our subjective evaluation, we have followed the side-

by-side scale that ranges from −3 to 3 (-3=Much Worse, -2=Worse, -1=Slightly Worse,

0=Same, 1=Slightly Better, 2=Better, 3=Much Better). All of the results were displayed on

the monitor screen and the students were asked to do the evaluation. In total 18 students

participated in this evaluation process who marked the images according to their visual

judgement. To make the evaluation process fair, the results were shown to the students

without mentioning the results of the proposed method and the results obtained by applying

other methods.

For the evaluation of VICAVR database, we compared our results with the methods pro-

posed in [35] and [36]. Fig. 4.17 and Fig. 4.18 shows the result of applying the proposed

method on some of the randomly selected images from VICAVR database [122]. The evalua-

tion in Fig. 4.19 shows that the proposed method works better than the methods developed

in [35] and [36].
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Table 4.4: Segmentation Results for STARE Database.

Original Expert 1 T. Tasdizen [35] Y. Zheng [36] Proposed
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(a) (b)

(c) (d)

Figure 4.17: a) Original image from the VICAVR database [122]. b) Result after applying
the method proposed in [35]. c) Result after applying the method proposed in [36]. d) Result
after applying the proposed method.

4.4.4 Results of Setup 4-5

For the evaluation of the experimental setups 4 and 5, we have followed the same subjective

evaluation by humans as used in experimental setup 3. In this subjective evaluation, 18

students participated to mark the images according to their visual judgement. On average,

each student evaluated 80 images in four different sessions. Fig. 4.20 shows the histograms

of the evaluation for the databases used in this work for experimental setup 4 and 5.

For TEM images, we compared our results with the methods developed in [11, 35, 36],

as shown in Fig. 4.21. We opted to compare our results with these recent methods as they
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(a) (b)

(c) (d)

Figure 4.18: a) Original image from the VICAVR database [122]. b) Result after applying
the method proposed in [35]. c) Result after applying the method proposed in [36]. d) Result
after applying the proposed method.

are reported [35, 36] to outperform the traditional methods. The evaluation in Fig. 4.20(a)

shows that the proposed method works better than the methods developed in [11, 35, 36].

We followed the same lines to evaluate experimental setup 5, as we did in experimen-

tal setup 4. Here, we have compared our results with methods developed in [36, 41]. It is

also important to mention that we have used normalized convolution as proposed in [42],

to avoid the halo artifacts. Fig. 4.9 presents a comparison of the proposed method with

methods developed in [36, 41]. The evaluation in Fig. 4.20(b) also depicts the effectiveness

of the proposed method.
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Figure 4.19: Average subjective evaluation of the retinal images after applying the proposed
method.

Along with the subjective evaluations of experimental setup 5, we also report the quan-

titative evaluations. As mentioned in experimental setup 5, the BSB database provides

the ground truth which can be used for evaluation purposes. It provides two types of

ground truth, either in the form of labelled volume, where each label represents a tissue

class (0=Background, 1=CSF, 2=Grey Matter, 3=White Matter, 4=Fat, 5=Muscle, 6=Mus-

cle/Skin, 7=Skull, 8=Vessels, 9=Around Fat, 10=Dura Matter, and 11=Bone Marrow) or

in the form of fuzzy volumes, where each fuzzy volume represents the contribution of each

tissue class. To keep the evaluation process simple, we opted to measure the quantity of

the white matter and the grey matter tissues among the 12 different tissue types. For this

purpose, we used the fuzzy volumes to construct a binary volume (V g) by assigning all the

voxels to 1, where the grey matter membership value is higher than all other tissue types.

On the same lines, we constructed another binary volume (V w) with value 1 at locations

where the white matter membership value is greater than all other tissue types.

To quantify the accuracy of the proposed method, we segmented the output of our method

using fuzzy c-means (FCM) clustering [128] into three clusters which resulted in three fuzzy

volumes, i.e., the grey matter (V gf ), the white matter (V wf) and the background (V bf ). It

is worth mentioning that the output of the proposed method was processed by equation:

adjustedp = adjusted× (V g + V w), (4.15)
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Figure 4.20: a) Average subjective evaluation of TEM images. b) Average subjective evalu-
ation of the brain MR images.

where adjusted represents the volume produced by applying the proposed method slice by

slice. This processing ensures that we are only processing the grey matter and the white

matter tissues. So, essentially our goal is to segment the grey matter and the white matter

tissues as accurately as possible. The final segmentation can be achieved by using the

following equations:

adjustedpg =











1 if V gf > max(V wf , V bf )

0 otherwise,

(4.16)
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(a)

(b) (c)

(d) (e)

Figure 4.21: a) Original image suffering from global intensity inhomogeneity. b) Result after
applying HUM [11]. c) Result after applying the method proposed in [35]. d) Result after
applying the method mentioned in [36]. e) Result produced by the proposed method.
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adjustedpw =











1 if V wf > max(V gf , V bf )

0 otherwise.

(4.17)

To quantify the recovery of grey matter tissue, we computed the cross-correlation slice by

slice between adjustedpg and V g volumes as:

corrgs =

M−1
∑

x=0

N−1
∑

y=0

(adjustedpgs (x, y)− adjustedpgs )(V g
s (x, y)− V g

s )

√

M−1
∑

x=0

N−1
∑

y=0

(adjustedpgs (x, y)− adjustedpgs )2
M−1
∑

x=0

N−1
∑

y=0

(V g
s (x, y)− V g

s )2

, (4.18)

where adjustedpgs and V g
s represents the mean of the sth slice in adjustedpg and V g, respec-

tively. The white matter tissue accuracy (corrws ) is computed by taking the cross-correlation

between adjustedpw and V w, slice by slice. Table 4.5 shows the mean and the standard

deviation of corrgs and corrws for 36 test volumes. It also reports the results of applying the

same evaluation procedure on the images processed by some of the recent methods [36, 41].

As, it is evident from Table 4.5 that the proposed method outperforms the other methods

for all the test volumes. It is also evident from the results that [36] and [41] segments the

white matter more accurately as compared to the grey matter tissue. However, the proposed

method segments the white matter tissue as accurately as the grey matter tissue.

Furthermore, we have compared the results in terms of coefficient of contrast (CC) [41]

Table 4.5: White matter and grey matter restoration accuracy of various inhomogeneity
levels (IL) in terms of cross-correlation coefficient

Tissue Type White Matter Grey Matter

Methods Y. Zheng [36] Ardizzone [41] Proposed Y. Zheng [36] Ardizzone [41] Proposed

# of Vols. IL[%] Mean(Std.) Mean(Std.) Mean(Std.) Mean(Std.) Mean(Std.) Mean(Std.)

6 40 0.8599(0.0024) 0.8896(0.0033) 0.9317(0.0173) 0.6718(0.0042) 0.7800(0.0006) 0.9433(0.0073)

6 50 0.8504(0.0025) 0.8823(0.0023) 0.9322(0.0171) 0.6531(0.0045) 0.7757(0.0008) 0.9437(0.0071)

6 60 0.8420(0.0026) 0.8720(0.0022) 0.9323(0.0168) 0.6381(0.0054) 0.7735(0.0026) 0.9436(0.0068)

6 70 0.8328(0.0029) 0.8640(0.0028) 0.9325(0.0167) 0.6199(0.0092) 0.7694(0.0028) 0.9434(0.0066)

6 80 0.8208(0.0045) 0.8553(0.0047) 0.9327(0.0164) 0.5935(0.0111) 0.7568(0.0055) 0.9433(0.0064)

6 90 0.7512(0.0924) 0.8058(0.0263) 0.9327(0.0164) 0.5152(0.0687) 0.7122(0.0298) 0.9433(0.0064)
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and coefficient of joint variation (CJV ) [129]. Here, CC and CJV are defined as:

CC =
µ(WM)

µ(GM)
, (4.19)

and

CJV =
σ(WM) + σ(GM)

| µ(WM)− µ(GM) | , (4.20)

respectively. Here, µ and σ represents the mean and the standard deviation. WM stands

for the white matter tissue and GM represents the grey matter tissue. CC measures the

contrast between WM and GM tissues. So, higher the ratio, the better it is. On the other

hand, CJV measures the overlap between WM and GM tissue distributions. So, smaller

the value, the less overlap it has between the distributions. It is worth mentioning that all

the methods were applied slice by slice to construct the corrected volumes. Table 4.6 shows

average CC and CJV values for each inhomogeneity level. It is evident from Table 4.6, that

the proposed method outperforms the methods developed in [36, 38, 41], both in terms of

CC and CJV . It is interesting to mention that the value of CJV decreases with increasing

intensity inhomogeneity for the proposed method. This is due to the fact that the increase

in inhomogeneity will increase the magnitude of the affected frequencies substantially, and

as a consequence, it will become trivial for GWDT to localize such frequencies.

Table 4.6: 2D - White and grey matter restoration accuracy in terms of CC and CJV

# of Vols. IL[%] Y. Zheng [36] Ardizzone [41] N3 [38] Proposed

CC CJV CC CJV CC CJV CC CJV

6 0 1.305276 0.483392 1.162004 0.013417 1.3269 0.008374 1.642670 0.006085

6 20 1.313817 0.449433 1.186173 0.012347 1.3263 0.008511 1.618956 0.005996

6 40 1.323322 0.452676 1.237673 0.011331 1.3269 0.008566 1.596365 0.005942

6 50 1.328033 0.460662 1.267643 0.010623 1.3275 0.008596 1.585846 0.005912

6 60 1.332611 0.467540 1.285935 0.010130 1.3282 0.008611 1.575819 0.005892

6 70 1.337113 0.471941 1.302322 0.009738 1.3292 0.008617 1.565964 0.005875

6 80 1.341433 0.475713 1.310956 0.009445 1.3302 0.008612 1.557453 0.005862

6 90 1.345732 0.479162 1.318917 0.009206 1.3315 0.008592 1.548814 0.005851
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4.5 Global Intensity Inhomogeneity Correction in Vol-

ume Images

In volume images, slice by slice global intensity inhomogeneity correction often results in

inter-slice variations, which may be problematic for subsequent image analysis [41]. To

overcome this problem, the method for global intensity inhomogeneity correction proposed

in Section 4.2 is extended to 3D for the volume images, especially for the brain MR volumes.

The proposed method is based on the 3D GWDT of the magnitude spectrum of MR

volume. The 3D GWDT of the magnitude spectrum helps to find the frequencies that are

affected by the global intensity inhomogeneity. These affected frequencies are localized by

defining a ball whose radius changes according to the GWDT. It is important to mention

that filtering is performed by normalized convolution [130] to avoid the halo artifacts [42].

The proposed method for the 3D global intensity inhomogeneity correction is summarized

below.

Algorithm 4 Global Intensity Inhomogeneity Correction in Volume Images
1: f(x, y, z)←− input image

2:

F (u, v, w)←− 1

MNO

M−1
∑

x=0

N−1
∑

y=0

O−1
∑

z=0

f(x, y, z)e−2πj(ux
M

+ vy
N

+wz
O

),

3: F (u, v, w)←− fftshift(F (u, v, w)),

4: j = 0; // initialization

5: similarity[j] = 1; // initialization.

6: repeat

7: j = j + 1;

8: Fmag(u, v, w)←−| F (u, v, w) |,
9:

d(p, q) =







min
π∈Ppq

L(π) if p 6= q

0 if p = q.
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where L(π) is computed as:

L(π) =
n−1
∑

i=0

| Fmag(pi)− Fmag(pi+1) | · ‖ pi − pi+1 ‖,

where Fmag(pi) is a grey-level value at voxel pi. where pi and pi+1 are adjacent voxels.

10: for r = 1, ..., n do

11:

B(s0, r) = {q | d(s0, q) ≤ r},

Then the set of low frequencies within radius r is defined as:

K(s0, r) = {M(q) | q ∈ B(s0, r)}.

where M : Distmap → Fmag, and s0 ∈ Distmap is the location of the seed.

12: It is followed by computing the percentage of the power spectrum (PR(r)):

PR(r) =
Ω(K(s0, r))

Ω(F )
× 100,

where the total image power is computed by:

Ω(F ) =

M−1
∑

u=0

N−1
∑

v=0

O−1
∑

w=0

| F (u, v, w) |2 .

13: end for

14: Select a threshold value (T );

15:

Flow =











1 if Fmag ∈ K(s0, T )

0 if Fmag ∈ K(s0, T ).

16: Smooth Flow with a Gaussian of σ = 1.

17: High Pass←− max(Flow)− Flow;

18: ADJUSTED ←− High Pass× F (u, v, w);
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19: adjusted←− real(ifftn(ifftshift(ADJUSTED)));

20: similarity[j] = correlation(adjusted,f);

21: until 0 ≤ (similarity[j − 1]− similarity[j]) < ǫ

4.5.1 Results and Discussion

We have opted to evaluate the proposed method on 3D MR volumes obtained from the

BrainWeb Simulated Brain Database [123]. We have used the same database as used in

Section 4.3.5. Here, we opted to compare our results with some of the recent methods

proposed in [36, 38, 41]. Fig. 4.22 shows the frontal view of a slice of the brain MR volume

after applying the proposed method. Table 4.7 shows the average CC and CJV values

computed over the database used in experimental setup 5. In Table 4.7, results are grouped

according to the inhomogeneity levels, as we are interested in observing the behaviour of

each method under different inhomogeneity levels. It is evident from the results that the

proposed 3D global intensity inhomogeneity correction method outperforms the 3D version

of the methods proposed in [36,38,41], both in terms of CC and CJV . The performance of

all methods goes down with increasing inhomogeneity. This is mainly because the spectrum

of global inhomogeneity and the spectrum of the volume starts to overlap.

Table 4.7: 3D - White and grey matter restoration accuracy in terms of CC and CJV

# of Vols. IL[%] Y. Zheng [36] Ardizzone [41] N3 [38] Proposed

CC CJV CC CJV CC CJV CC CJV

6 0 1.2865 0.195845 1.170462 0.012497 1.268995 0.006750 1.586980 0.0000283

6 20 1.3054 0.259103 1.179238 0.012237 1.267653 0.006692 1.611466 0.0000316

6 40 1.3243 0.370014 1.151662 0.013959 1.271201 0.006851 1.636120 0.0000367

6 50 1.3336 0.424884 1.255659 0.010895 1.271684 0.007098 1.648297 0.0000396

6 60 1.3427 0.460994 1.191073 0.013999 1.270182 0.006828 1.660282 0.0000424

6 70 1.3517 0.487349 1.217886 0.031443 1.272087 0.007061 1.672088 0.0000450

6 80 1.3604 0.516353 1.218399 0.047353 1.274926 0.007294 1.683705 0.0000475

6 90 1.3702 0.516594 1.173487 0.067265 1.274868 0.007845 1.696117 0.0000486
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(a) (b)

Figure 4.22: a) A frontal view of a slice from a 3D MRI volume corrupted with 90% global in-
tensity inhomogeneity. b) The same slice of the volume after applying the proposed method.
Significant improvement is visible in the lower part of slice.

4.6 Summary

The success of the method is based on the observation that if global intensity inhomogene-

ity is visible in an image, then the frequency components affected by such inhomogeneity

should have a higher magnitude than its neighbouring components. A filter is automatically

generated based on the frequency content of the degraded image. The results reported here

clearly shows that the natural look of the image has remained intact to much of the extent

after the global intensity inhomogeneity correction, which is often lost in classical filtering

methods. The method is general in nature as we have tested it on five different types of

images. It does not seem to require any prior knowledge of the imaging modality. It only

assumes that the input image is suffering from global intensity inhomogeneity. Moreover,

the proposed method is not user dependent as all of the filter parameters are automatically

generated based on the GWDT of the input image. In case of homogeneous image, the

method will not induce any inhomogeneity or any artifacts, however, it will decrease the

overall energy of the image. It works fine as long as the intensity inhomogeneity is global in
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nature otherwise it fails. The proposed method can also help to improve the segmentation

accuracy if used in conjunction with state-of-the-art segmentation methods. In future, we

are planning to extend this method to other image modalities and use a more sophisticated

method to convert our ideal filter to a smoothed one.

79



Chapter 5

Local Intensity Inhomogeneity

Correction

5.1 Introduction

Global intensity inhomogeneity is considered as a slowly varying component. However, this

assumption does not hold in case of images having shadow artifacts. These artifacts appear as

sharp discontinuities and are only visible at shadow boundaries. The presence of the shadow

artifacts shifts the paradigm from global to local intensity inhomogeneity correction. The

literature shows that the presence of local intensity inhomogeneity affects the performance

of image matching [46, 47]. Especially, in face recognition, the suppression of local intensity

inhomogeneity is considered to be one of the major challenges [48]. It is revealed in the

face recognition vendor tests [50, 51] that the performance of the face recognition system is

highly sensitive to local intensity inhomogeneity and shadow artifacts. These artifacts are

often corrected at different scales and orientations [52]. However, the selection of scale and

orientation is a problem in itself.

Generally, it is believed that the facial features invariant to expressions and local intensity

inhomogeneity are most discriminatory and helpful in face recognition [52]. Facial features

include eyes, irises, lips, nasal cavities and eyebrows [131]. In frontal pose images, most

of the facial features do not change their direction during different facial expressions. For
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instance, the orientation of an eye remains horizontal (−π
4

to +π
4
) during different facial

expressions. However, cheek wrinkles (due to facial expressions) are vertical (π
4
to 3π

4
) in

nature as shown in Fig. 5.1. So, one can interpret that the vertical features are relatively

less invariant to facial expressions as compared to horizontal. Moreover, the topographic

structure of facial features often gives rise to vertical shadows. This suggests that the

Figure 5.1: Original image.

horizontal features are least effected by the local intensity inhomogeneity. Fig. 5.1 shows

some of the vertical and horizontal features, where a dotted line is superimposed on some of

the vertical features and an ellipse is superimposed on the horizontal features. In this study,

we present a comparison between horizontal and vertical facial features in the presence of

local intensity inhomogeneity. We have empirically shown that in presence of local intensity

inhomogeneity, most of the discriminatory power lies within the horizontal features. The

details of the proposed method are given in the section to follow.

5.2 Proposed Method

The proposed method is based on the systematic approach where gamma transformation is

used for image normalization and DDFB is used to suppress the local intensity inhomogene-

ity. Mathematically, the gamma transformation can be written as:

I ′xy = G(Ixy; γ
∗)

G(Ixy; γ) = I
1

γ
xy

(5.1)
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where I ′xy is the grey-level of an image Ixy at location (x, y). Here, the optimal value of

gamma is represented by γ∗ and γ ∈ Z
+. In practice, gamma transformation is preferred

over log transformation, as log transformation often turns out to be too strong and tends to

over-amplify the noise in dark regions of an image [132]. A gamma transformation with γ ≥ 2

is often considered as a good compromise [133]. Here, we have used γ∗ = 5 as suggested

in [133]. Fig. 5.2 shows the result after gamma transformation with γ∗ = 5.

5.2.1 Decimation-Free Directional Filter Banks (DDFB)

Generally, global intensity inhomogeneity is modelled by low frequency components. How-

ever, this assumption does not hold in case of local intensity inhomogeneity as it gives rise to

shadows artifacts. These shadow artifacts are often considered as high frequency components

and they appear as edges after any global normalization method. The gamma transforma-

tion in itself is not an exception as it also results in edges at shadow boundaries as shown

in Fig. 5.2. Depending on the severity of the local intensity inhomogeneity, these edges at

the shadow boundaries can appear at different scales. Gabor filters provide a mechanism to

deal with edges occurring at different scales and orientation [134]. But to choose a specific

scale and orientation is an open question up till now. Concluding from the discussion in

Section 5.1, we can construct a partial solution to the orientation problem by using the prior

that the shadow boundaries are mainly vertical in nature. The ambiguity in scale selection

leaves us with no other option except to use all scales at the same time.

To suppress the edges produced at the shadow boundaries, DDFB appears to be an

appropriate candidate as it provides a mechanism to design orientation selective filters irre-

spective of the scale. These filters split the Fourier transform of an image into wedge shaped

passbands. In the spatial domain, these passbands correspond to all features in a specific

orientation irrespective of the scale. Readers interested in further details about the topic are

advised to consult [87, 135]. As, we are interested in suppressing the vertical shadows, we

have designed a filter pair using DDFB, which decomposes a face features into its horizontal

and vertical components.
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(a) (b)

(c) (d)

Figure 5.2: a), b) Original images of the same subject. c), d) Images having shadow artifacts
after gamma transformation with γ∗ = 5.

To make the discussion self-contained, we have enlisted the steps which are necessary to

construct the desired filter pair.

1. Construct a 1D linear phase FIR low-pass filter u, with a cut-off frequency of 0.47π to

avoid aliasing.

2. Construct a 2D filter by taking the tensor product of the 1D filter u, with itself. For

instance, a 1-dimensional filter u = (u1, u2, . . . , um) having m coefficients, after the

tensor product can be expressed as:

X = u⊗ u =













u1u1 u1u2 . . . u1um

u2u1 u2u2 . . . u2um

...
...

. . .
...

umu1 umu2 . . . umum













where the ⊗ symbol defines the tensor product. Fig. 5.3(a) shows the Fourier transform
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(a) (b)

(c) (d)

Figure 5.3: a) Frequency response of 2D low-pass filter. b) Frequency response of 2D fil-
ter after applying Quincunx downsampling matrix. c) Frequency response of v(x,y). d)
Frequency response of h(x,y).

of the 2D filter X constructed by using the tensor product.

3. Now, perform the directional downsampling on the 2D filter X by using the Quincunx

downsampling matrix M , where M is:

M =

[

1 1

−1 1

]

Mathematically, the whole operation in the frequency domain can be represented as:

Xw(ω) =
1

|det(M)|
∑

k∈N(MT )

X(M−T (ω − 2πk)) (5.2)

where N(MT ) is the set of integers of the form MTx, with x ∈ [0, 1)D. The result of

this transformation on Fig. 5.3(a) is shown in Fig. 5.3(b). Here, it is trivial that the

directional downsampling maps the square-shaped passband in Fig. 5.3(a) to diamond-

shaped passband as shown in Fig. 5.3(b). It is important to mention that the directional

downsampling will not decrease the total number of filter coefficients in the spatial

domain, however, it will introduce zeros in the filter.
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4. As a last step to construct the desired filter pair, we modulate the 2D filter having a

diamond shaped passband with π in each frequency dimension. Mathematically, it can

be stated as:
v(x, y) = xw(x, y)e

j2π(πx
R

)

h(x, y) = xw(x, y)e
j2π(πy

C
)

(5.3)

where xw(x, y) is the spatial domain representation of the diamond shaped passband

filter, v(x, y) will capture the vertical components, h(x, y) will capture the horizontal

components of the image, R and C defines the size of the filter.

5. As, it is obvious from Eq. 5.3, this transformation will map the diamond shaped pass-

band to an hour glass shaped passband. Fig. 5.3(c) and Fig. 5.3(d) shows the Fourier

transform after such a transformation. It is also worth mentioning that application

of these filters will decompose the input image into its directional components irre-

spective of their scale. We will use the filters shown in Fig. 5.3(c) and Fig. 5.3(d) to

decompose the face image into its directional components. The filter in Fig. 5.3(c)

will capture the vertical components while the filter in Fig. 5.3(d) will capture the

horizontal components of the image. This is mainly due to the fact that the horizontal

components (having gradient in the vertical direction) are localized vertically in the

Fourier transform and vice versa. Results after applying DDFB on the normalized

images are shown in Fig. 5.4.

5.3 Results and Discussion

To evaluate the performance of the proposed method, we have used two very well known

public databases: Yale Face Database B [136] and the Extended Yale Face Database B [137].

5.3.1 Database Preparation

Yale Face Database B contains 5, 760 single light source images of 10 different subjects.

Each subject has 9 poses with 64 different illumination conditions, inducing local intensity

inhomogeneity. The Extended Yale Face Database B contains 16, 128 images of 28 subjects
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.4: a), e) Original images of the same subject. b), f) Images having shadow effects
after gamma transformation with γ∗ = 5. c), g) Horizontal features after applying DDFB
on the normalized images. d), h) Vertical features after applying DDFB on the normalized
images.

under 9 poses and 64 illumination conditions. In our experiments, these two databases

were combined to form a single large database. Since, the proposed method deals with the

local intensity inhomogeneity correction, only the frontal pose images for each subject with

different 64 illumination conditions were selected. In total, the combined database contains

2, 432 images from 38 subjects. Out of 2, 432 images, 25 corrupted images were discarded

as reported in [137,138]. The whole database was divided into five subsets according to the

angle between the light source direction and the camera axis [137].

All face images were rotated by finding the slope between the two eye coordinates and

then rotating the images in such a way that the slope between the two eye coordinates

become zero. Once all the images were aligned, they were cropped and resized to 100× 100.

These images were given as an input to the proposed method. Fig. 5.5 shows the results

of the proposed method on some images of subset 5 of a randomly selected subject from the
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Yale Face Database B. It is clear from the Fig. 5.5 that the proposed method not only helps

in the face normalization but also helps in the suppression of local intensity inhomogeneity.

(a)

(b)

Figure 5.5: a) Some images of subset 5 of a randomly selected subject from the Yale Face
Database B. b) Results of the proposed system on 5.5(a).

5.3.2 Matching

In this study, we have used the correlation coefficient to measure the similarity between test

and training images. For the quantitative evaluation of the proposed method, images in

subset 1 taken under minor illumination variations were used for the training purpose while

the other images from subsets 2 to 5 were used as test images. It is often impractical to

have a large number of images per subject in the training set. So, it is desirable to have a

face recognition system that could achieve a higher recognition rate with fewer images per

subject.
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To check the robustness of the proposed method given fewer images per subject, we have

performed sampling without replacement on the training images. However, such sampling

with replacement will introduce biases that can result in poor statistics. To overcome the

sampling biases, we have used all possible k-combinations per subject within the subset 1.

The total number of combinations for each value of k is computed using:

(

n

k

)

=
n!

k!(n− k)!
(5.4)

where n is the total number of images per subject in subset 1. The presence of the three

corrupted images in subset 1 as reported in [137, 138] has limited us to use n = 6. Fig. 5.6

shows the average recognition rate for the horizontal and the vertical features for different

values of n. For instance, k = 1 implies that training was accomplished with one image

per subject. It is obvious from Fig. 5.6(a) that γ∗ = 5 used by the proposed method is the

optimal value which produces the best average recognition rate. The average recognition rate

achieved by the horizontal and the vertical features are shown in Fig. 5.6. The results support

our observation that horizontal features have more discriminating power in comparison to

vertical features.

Table 5.1 shows the comparison of the proposed method with some of the existing meth-

ods. On average, the recognition rate achieved by the proposed method is far better than

the other methods.

5.4 Summary

We have presented a novel filtering method for the local intensity inhomogeneity correction in

facial images. Gamma transformation has been used to normalize the input image whereas

DDFB is used to suppress the shadow artifacts and the local intensity inhomogeneity in

the normalized image. We have used correlation coefficient as a similarity measure for face

recognition. Empirically, it is shown that most of the discriminatory features in a human face

are horizontal in nature. The efficiency of the proposed method is evaluated on two public
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Figure 5.6: a) Average recognition rate for horizontal features. b) Average recognition rate
for vertical features.
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Table 5.1: Recognition rates (%) when using images of subset 1 as training set

Methods Subset 2 Subset 3 Subset 4 Subset 5 Average

Original 100.00 74.17 45.00 18.95 54.01

SQI [53] 99.56 98.68 88.74 91.8 94.13

DCT [59] 97.81 96.92 90.08 64.78 84.71

TVQI [139] 100.00 96.48 91.41 93.21 94.87

LTV [56] 100.00 99.78 82.25 94.06 93.62

DWT(Hist.) [58] 99.56 77.36 20.23 20.93 49.21

RLS (LOG-DCT) [140] 100.00 87.10 87.60 84.80 89.15

DWT+LTV [138] 100.00 92.53 85.11 86.00 90.12

DWT+TVQI [138] 100.00 99.78 96.18 97.17 98.10

WIIP [141] 94.17 90.00 82.86 55.26 77.51

INPS [142] 100.00 99.17 94.29 95.79 97.04

Proposed Method 100.00 100.00 96.24 99.44 98.89

databases: Yale Face Database B, and the Extended Yale Face Database B. Experimental

results demonstrate that the proposed method is superior to other methods in performance

and robustness.
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Chapter 6

Filter-Bank based Rotation Invariant

Feature Codes

6.1 Introduction

A biometric system determines or validates an individual’s identity based on his/her phys-

iological and/or behavioral traits. Physiological traits are related to the physical aspects

of a human such as fingerprint, iris, face and DNA, which are generally stable over a rel-

atively long period of time. On the other hand, behavioral traits depict the behavior of a

person. They tend to change with the time. Examples of behavioral traits include signature,

keystrokes, hand writing, and gait [60]. Biometrics are superior to traditional password or

token based methods in both security and convenience.

Depending on the application context, a biometric system can operate in either an iden-

tification mode or a verification mode [143]. Fig. 6.1 shows the block diagram of a biometric

system in both modes. Identification is a one-to-many comparison to find an individual’s

identity. Verification is a one-to-one match that determines whether the claimed identity is

true or false.

During enrolment, a feature vector xi, i = 1, 2, ..., C, where C is the total number of

participants, is extracted from the biometric data of each individual and stored in the system

database as a template. In identification mode, given an input feature vector y, if the identity
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Figure 6.1: Block diagram of biometric recognition systems.

of y, IDy, is known to be in the system database, i.e., IDy ∈ {ID1, ID2, ..., IDC}, then IDy

can be determined by IDy = IDk = argmin
k
{S(y,xk)}, k = 1, 2, ..., C, where S denote the

dissimilarity measure and a smaller value represents closer in distance. The performance of

a biometric identification system can be evaluated by the percentage of correctly recognized

attempts, i.e., correct recognition rate (CRR).

In the verification mode, a feature vector y is extracted from the biometric signal of the

authenticating individual IDy, and compared with the stored template xj of the claimed

identity IDj, through a similarity function S. The evaluation of a verification system can

be performed in terms of hypothesis testing [144]: H0: IDy = IDj, the claimed identity is

correct; H1: IDy 6= IDj, the claimed identity is not correct. The decision is made based on

the system threshold τ : H0 is decided if S(y,xj) ≤ τ and H1 is decided if S(y,xj) > τ .

The performance of a biometric verification system is usually evaluated in terms of false

accept rate (FAR), false reject rate (FRR), and equal error rate (EER). FAR is the probability

of deciding H0 when H1 is true, i.e., P(H0|H1). FRR is the probability of deciding H1

when H0 is true, i.e., P(H1|H0). In experimental evaluation, the FAR can be computed

as FAR = 1
C

C
∑

j=1

eFAR
j , where C is total number of human individuals in the evaluation,

and eFAR
j is the FAR for individual IDj . Let N

s
j denote the number of successful imposter
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attempts against individual IDj, and Na
j denote the total number of imposter attempts

against individual IDj , then eFAR
j = N s

j /N
a
j . Similarly, the FRR can be computed as

FRR = 1
C

C
∑

j=1

eFRR
j , eFRR

j = M r
j /M

a
j , where M r

j denote the number of rejected genuine

attempts for individual IDj , and Ma
j denote the total number of genuine attempts for

individual IDj. The FAR and FRR are closely related functions of the system decision

threshold τ . EER is defined as the operating point where FAR and FRR are equal. The

lower the EER, the better the system performance.

Among various biometrics, fingerprint has been one of the most extensively studied bio-

metric traits due to its high accuracy, stability, and low cost [5,60]. It has been used as a form

of identification since 7000 BC [145]. One of the first commercial applications of modern

biometric systems which was deployed in early 1970s was also based on fingerprint to provide

time keeping and monitoring applications. The location of the minutiae points (ridge endings

and bifurcations), and the arrangement of the ridges/valleys make the fingerprints unique.

Due to this uniqueness, it has been widely used in many commercial applications. Most

government and forensic applications operate in identification mode, such as border control,

social security, criminal investigation, and terrorist identification [146]. Examples of veri-

fication application include computer and network login, physical access control, electronic

data security, and ATM.

A large number of methods have been proposed in the literature for fingerprint recogni-

tion, which can be categorized as minutiae-based and image-based methods [5]. This chapter

presents an image-based fingerprint system, whose details are given in the section to follow.

6.2 Proposed System for Fingerprint Recognition

This section presents the detailed methodology of the proposed fingerprint recognition sys-

tem. Fig. 6.2 depicts a block diagram of the proposed system. An input fingerprint image

is first enhanced by using a contextual filtering based method [150]. After fingerprint en-

hancement, the core point is automatically detected by using complex filters [151], and a

ROI of size 223×223 centered around the core point is extracted. The ROI is made rotation
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invariant by rotating it around the core point in such a way that its core point is at an angle

of π/2. Then a set of Gabor filters oriented at eight different directions are applied to the

ROI. The filtered ROI is divided into 5 concentric bands, and each subband is further divided

into 16 sectors. For each sector, the AAD is calculated and finally a feature vector of length

8 × 5 × 16 = 640 is generated for each fingerprint image. This feature vector becomes an

input to the dimensionality reduction module, and the resulting lower-dimensional feature

vector is stored in the system database as a biometric template. At the recognition stage, the

same procedure is applied on a probing image, and the resulting lower-dimensional feature

vector is matched against those stored in the system database.

Figure 6.2: Block diagram of the proposed system.

6.2.1 Fingerprint Image Enhancement

The performance of a fingerprint recognition system highly depends on the quality of fin-

gerprint image. To enhance the image quality and obtain accurate representation of the

fingerprint characteristics, it is important to perform image enhancement. For this purpose,

a contextual filtering based method [150] has been employed. Fig. 6.3 depicts the block

diagram of the enhancement method. The enhancement method consists of two steps. It

starts by taking STFT to calculate the local ridge orientation, local ridge frequency, and the

region mask. In the second step, enhancement is performed in the frequency domain. The

details of each step are given below:

94



Figure 6.3: Block diagram of the enhancement method proposed in [150].

• Step 1: STFT Analysis

1. For each overlapping block B(x, y) in the image:

a. Calculate a zero mean block by using:

B(x, y) = B(x, y)−mean(B(x, y)). (6.1)

b. Multiply the zero mean block B(x, y) with the raised cosine spectral window,

which tapers smoothly near the border and is unity at the center of the

window.

c. Take the fast Fourier transform (FFT) of the block FB = FFT (B) and

perform the root filtering on FB:

R(x, y) = FFT−1(FB(u, v)|FB(u, v)|k). (6.2)

In the above equation, the elements of the power spectrum (|FB(u, v)|) are

raised to a power of k (0.4 is used) and then multiplied by FB(u, v). Fi-

nally, the inverse Fourier transform is calculated to generate the filtered block

R(x, y). The multiplication of the FFT elements by a power of the power
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spectrum has the effect of amplifying the dominant frequencies in the block.

Presumably, the dominant frequencies of the block are those corresponding

to the ridges, thereby increasing the ratio of ridge information to non-ridge

and adapting to variations in ridge frequency from one block to the next.

d. Perform the STFT analysis on the root filtered block R to obtain ridge orien-

tation image O(x, y), energy image E(x, y) and ridge frequency image F (x, y).

2. Generate a region mask M(x, y) by thresholding the energy image E(x, y) and cal-

culate the coherence image C(x, y) from the smoothed orientation image O′(x, y),

which is obtained by performing vector averaging on the orientation imageO(x, y).

• Step 2: Enhancement

3) For each overlapping block B(x, y) in the image:

a. Compute angular filter FA centered around O(x, y) with a bandwidth in-

versely proportional to C(x, y).

b. Compute radial filter FR centered around the frequency F (x, y).

c. Filter the block in the FFT domain F0 = F × FA × FR, and generate the

enhanced block by taking the inverse Fourier transform of F0.

4) Reconstruct the enhance image by composing the enhanced blocks.

The above enhancement steps are performed on overlapping blocks of size 32×32 pixels.

Fig. 6.4 shows examples of enhanced fingerprint images, which demonstrate significantly

improved image quality.

6.2.2 Core Point Detection

The accurate detection of the core point is a challenging problem. Many different methods

have been proposed in the past. One of the most common and widely used methods is the

Poincare index method. It was first developed in [152], used in [153] [154], and was enhanced

in [155]. Nilsson et. al [151] proposed an alternative method for the extraction of core and
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(a) (b)

(c) (d)

Figure 6.4: Images from FVC2002 set a: a) Original image 1 1 from Db 1a. b) Original
image 1 2 from Db 1a. c) Result of enhanced image 1 1. d) Result of enhanced image 1 2.

deltas based on complex filters. By using this method, an input fingerprint image was first

converted into a complex image, and a sub-sampled Gaussian pyramid was then applied up

to four levels, where level 3 has the lowest resolution, and level 0 has the highest. Only

the angle of the complex orientation field was used while the magnitude was set to one in

multiscale filtering. Filters of first order symmetry or parabolic symmetry were applied to

each resolution for the detection of singular points. Finally, singular points were tracked

from the lowest to the highest level. We have adopted this approach for core point detection

due to its accuracy and robustness. The detailed algorithm works as follows.

An input fingerprint image is first converted to complex-valued orientation tensor field
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image:

z(x, y) = (fx + ify)
2, (6.3)

where fx is the first derivative of the input image in the horizontal direction and fy is the first

derivative in the vertical direction. They are computed by taking the first derivative of a 1D

Gaussian with standard deviation σ = 0.8, and then convolving it in horizontal and vertical

directions, respectively. The small value of σ is selected to capture the small variations in

the fingerprint. A sub-sampled Gaussian pyramid is then applied to the resulting complex

image z(x, y). At each level of the pyramid, a Gaussian with σ = 0.8 is applied before

downsampling by 2. Finally, the first order symmetry or parabolic symmetry filter is applied

at each level of the pyramid to detect the singular points. The first order symmetry or

parabolic symmetry filters are computed as:

h1 = (x+ iy)g(x, y),

h2 = (x− iy)g(x, y),
(6.4)

where h1 is used to detect the core point, h2 is used to detect the delta, and g(x, y) is a

Gaussian low-pass filter with σ = 1.5 (as suggested in [151]). In this work, since we are

interested in the detection of the core point, only h1 is used. Fig. 6.5 shows some examples

of core point detection, in which the effectiveness of the employed method can be easily

observed.

6.2.3 ROI and Feature Extraction

Once the core point has been detected, the next step is to identify the ROI and perform

feature extraction. One of the most well-known feature extraction methods in fingerprint

recognition is the filter-bank based approach [156], which utilizes a bank of Gabor filters to

capture both local and global characteristics of a fingerprint. The filter-bank based approach

works as follows:

1. Detect the core point and extract the ROI centered around it.
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(a) (b)

(c) (d)

Figure 6.5: Images from FVC2002 seta: a) Enhanced image 1 1 from Db 1a. b) Enhanced
image 1 2 from Db 1a. c) Detected core point in image 1 1. d) Detected core point in image
1 2.

2. The ROI is then divided into B concentric bands and each subband further is divided

into k sectors. For a fingerprint scanned at 500 dpi, the value of B is set to 5, the value

of k is set to 16, and the width of each sector is 20 pixels as suggested in [156].

3. Normalize each sector such that the grey levels in each sector has a specified mean and

variance.

4. Apply a Gabor filter bank on the ROI. Gabor filters will enhance the ridges and valleys

that are oriented at the same angle as the filter, and suppresses the ridges and valleys

oriented at different angles as shown in Fig. 6.6.
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5. Compute AAD of the Gabor responses for each sector:

Viθ◦ =
1

ni

∑

ni

|Fiθ◦(x, y)−miθ◦|, (6.5)

where Fiθ◦(x, y) is the filtered image at direction θ◦, miθ◦ is the mean value of Fiθ◦(x, y)

in sector Si, and ni is the number of pixels in Si. In the above equation, for all i ∈
{0, 1, ..., 79} and θ ∈ {0◦, 22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦, 157.50◦}, the AAD feature

value (Viθ◦) is calculated. To this end, each filtered image will be represented by a

feature vector of size 16× 5 = 80, as shown in Fig. 6.7, and a fingerprint image will be

encoded by a feature vector of length 8× 80 = 640.

6. Rotate the features in the feature vector cyclically to generate more templates corre-

sponding to different rotations of 22.5◦. This cyclic rotation of the feature vector is

equivalent to the feature vector generated by the rotation of the original image corre-

sponding to different rotations of 22.5◦. For each fingerprint, five different templates

corresponding to different rotations of 22.5◦ will be saved in the database.

7. Rotate the original image by an angle of 11.25◦, generate its feature vector, and perform

cyclic rotation. Overall, the feature vector was made invariant to the rotation of 11.25◦.

For each fingerprint, ten templates corresponding to different rotations of of the original

image were stored in the database.

8. Match the feature vector of an input fingerprint with each of the ten templates gener-

ated in the above steps. The final results is the minimum of the matching scores.

The main drawback of this approach is that it is computationally expensive and it is only

invariant to the rotation of 11.25◦. For each fingerprint, one needs to generate ten templates.

It requires more enrolment time, more recognition time, and larger template storage. In this

work, we address the limitation of this approach by enabling the images rotation invariant

before feature extraction. Once the core point has been detected, we identify an ROI of size

223 × 223 with the core point as its center. To produce rotation invariance, the detected
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: a) Detected core point represented by black circle. b) Region of Interest. c) to
f) Results after applying four out of eight oriented Gabor filters on Fig. 6.6(b).

ROI is rotated by an angle of π/2 − θcore, where θcore is the angle of the core point, such

that the core point is aligned at an angle of π/2. As such, a sector to sector correspondence
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(a) (b)

(c) (d)

Figure 6.7: AAD features corresponding to the images c) to f) shown in Fig. 6.6, respectively.

between different feature vectors can be established. By using this method, it relaxes the

requirement of generating and storing multiple templates corresponding to different rotations

of the original image, and solves the problem of limited rotation invariance.

6.2.4 Dimensionality Reduction

The Gabor filter bank method captures the characteristics of a fingerprint image with respect

to different orientations, and outputs a feature vector of length 640. Although, it is possible

to perform matching using these feature vectors directly but it is generally computationally

complex, and provides limited discriminatory power. To address this problem, we apply

subspace techniques for dimensionality reduction. Specifically, we compare the performance
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of two representative techniques, PCA and LDA.

6.3 Experimental Results

The effectiveness of the proposed method is evaluated through experiments on the public

database FVC2002 set a, which contains four subsets: DB1 a, DB2 a, DB3 a, and DB4 a.

The details of each data set are shown in Table 6.1. Each of the subsets contains 800 images

from 100 subjects with 8 images per subject. In this work, we use six out of eight fingerprints

from each person to train our proposed system and the remaining two for testing. This

process is repeated four times by selecting different fingerprints for training and testing,

and the average of the experimental results is reported. For PCA method, the reduced

dimensionality M is selected automatically based on
M
∑

i=1

λi/
Q
∑

i=1

λi ≥ 99%, where λi is the

i-th largest eigenvalue, and Q is the total number of computed eigenvalues. For LDA, the

reduced dimensionality M is selected as M = C − 1 = 100− 1 = 99, where C is the number

of human subjects for training in each data set.

Name Sensor Type Image Size Resolution

DB1 a Optical Sensor 388× 374 pixels 500 dpi

DB2 a Optical Sensor 296× 560 pixels 569 dpi

DB3 a Capacitive Sensor 300× 300 pixels 500 dpi

DB4 a SFinGe v2.51 288× 384 pixels 500 dpi

Table 6.1: Details of FVC2002 Database Set A

6.3.1 Identification Results

For identification, CRR is used to evaluate the system performance, which is defined as the

ratio of the number of correctly identified attempts over the total number of identification

attempts. Since there are 800 samples in each data set, the experiments are composed of

800 identification attempts for each subset, with 3200 attempts in total. Table 6.2 shows the

experimental results of each data set respectively, as well as the average CRR for the whole
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database, using original Gabor features, PCA and LDA reduced lower-dimensional features,

with Euclidean and Cosine distance as similarity measure respectively. It can be seen that

the original Gabor features and the PCA dimensionality reduced features produce similar

performance. This is due to the fact that the PCA method only provides a more compact

representation of the original features, with no class information being taken into account.

On the other hand, it can be seen that the supervised LDA method, which provides a class

specific solution, is capable of improving the identification accuracy in all the data sets.

DB1 a DB2 a DB3 a DB4 a Average

Gabor
Euc. 97.5 97.5 82.25 84.3750 90.4063
Cos. 97.75 97.8750 82.00 85.1250 90.6875

PCA
Euc. 97.5 97.5 81.75 84.1250 90.2188
Cos. 97.25 97.25 81.8750 83.8750 90.0625

LDA
Euc. 98.25 99.00 88.1250 94.1250 94.875
Cos. 99.3750 99.00 90.6250 95.75 96.1875

Table 6.2: Identification results (CRR in %).

6.3.2 Verification Results

In the verification mode, EER is used to evaluate the performance of the proposed system.

It is defined as the operating point where FAR and FRR are equal. A lower EER indicates

a better verification performance. As illustrated before, the FAR is computed as the ratio of

the number of false accepted impostor claims over the total number of impostor attempts,

while the FRR corresponds to the ratio of the number of false rejected genuine claims over

the total number of genuine attempts. To compute the FAR and the FRR, the assessment

for the genuine match was conducted by comparing the fingerprint for each person with

other fingerprints of the same person, while impostor match was carried out by comparing

fingerprints of each person with fingerprints of other subjects. For each data set, there are

200 testing samples, therefore the number of genuine and impostor matches are 1×200 = 200

and 99× 200 = 19800, respectively.
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1. User-independent Threshold:

For user-independent threshold, the same system threshold is applied to all the users.

Table 6.3 shows the experimental results. Overall, similar as the identification mode,

PCA and the original Gabor features obtain similar EER. LDA based method provides

better verification performance, and the best result is achieved when cosine distance is

employed as the similarity measure.

DB1 a DB2 a DB3 a DB4 a Average

Gabor
Euc. 2.0208 3.4583 6.1136 7.4261 4.7547
Cos. 2.9602 3.8068 7.2134 9.4628 5.8608

PCA
Euc. 1.8775 3.1831 5.9899 7.1010 4.5379
Cos. 2.0903 3.1351 6.1111 6.9110 4.5619

LDA
Euc. 1.8794 2.0366 7.5657 5.8403 4.3305
Cos. 0.3194 0.4886 3.4785 2.9173 1.8009

Table 6.3: Verification results of user-independent threshold (EER in %).

2. User-specific Threshold:

For verification, it is possible to utilize user-specific threshold for the final decision

based on the characteristics of a specific user. To provide some insight into the design

of a user-specific thresholding scheme, we examine three schemes where the intra-class,

inter-class, and both intra- and inter-class distributions are taken into consideration.

Let µk
intra and σk

intra denote the mean and standard deviation of intra-class (or within-

class) distance distribution obtained from the training samples of a specific user IDk,

with respect to certain distance metrics, such as the Euclidean or cosine distance in this

work. Let µk
inter and σk

inter denote the mean and standard deviation of the inter-class (or

between-class) distance distribution obtained for a user, which is estimated by labelling

all the samples from other users as one class, and computing their distance to the

samples of the user IDk. Then for the intra-class scheme, the user-specific threshold

for IDk is computed as: τk = µk
intra + ξσk

intra, where ξ is a controlling parameter

such that different FAR and FRR can be obtained depending the requirement of the
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application. For the inter-class scheme, the user-specific threshold for IDk is computed

as: τk = µk
inter − ξσk

inter. For the intra- and inter-class scheme, we assume the intra-

class and inter-class distributions are both Gaussian, and compute a point τ0 at which

Pintra(x > τ0) = Pinter(x < τ0), where P denote probability. The user-specific threshold

for subject IDk is then defined as τ = ξτ0.

User-specific threshold DB1 a DB2 a DB3 a DB4 a Average

Intra-class
PCA

Euc. 2.6730 4.6850 8.9135 7.2696 5.8853
Cos. 2.6319 4.4091 9.3864 6.7702 5.7994

LDA
Euc. 4.5802 4.6275 12.2330 8.4255 7.4666
Cos. 5.7771 4.0795 16.4792 7.9596 8.5739

PCA
Euc. 1.8396 2.9981 6.4514 6.9912 4.5701

Intra- and Cos. 2.0676 2.9198 6.3144 5.4722 4.1935
Inter-class

LDA
Euc. 2.0884 2.5284 8.3870 5.5271 4.6327
Cos. 1.1957 1.2866 5.3864 3.8687 2.9344

Inter-class
PCA

Euc. 1.7241 2.9905 5.9268 6.5657 4.3018
Cos. 1.7538 2.5492 6.6963 5.3125 4.0779

LDA
Euc. 0.8340 1.6117 7.1231 4.8062 3.5937
Cos. 0.2740 0.5032 3.1812 2.0044 1.4907

Table 6.4: Verification results of user-specific thresholding schemes (EER in %).

Table 6.4 compares the experimental results obtained using different user-specific thresh-

olding schemes. It can be seen that compared with the user-independent scheme pre-

sented in Table 6.3, the intra-class scheme degrades the performance significantly. This

is due to the fact that there are only a small number of training samples for each sub-

ject, and hence the estimation of the intra-class distribution is not accurate. By using

both intra- and inter-class distributions, it can be improved to a level of approaching

the performance of user-independent thresholding scheme. Again, due to the inaccu-

rate estimation of the intra-class distribution, the verification accuracy still degrade

slightly. On the other hand, the inter-class distribution is computed based on a rel-

atively large number of training samples, and therefore provides a better estimation

of the characteristics of a certain user with respect to other users. Consequently, it

can be seen from Table 6.4 that the inter-class thresholding scheme provides a perfor-
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mance improvement over the user-independent scheme in Table 6.3. This observation

offers a guideline for the design of a user-specific scheme, in which the investigation of

inter-class distribution may possibly provide better recognition performance in a small

sample size problem.

6.4 Discussion

The proposed inter-class distribution based user-specific thresholding scheme achieves the

best recognition accuracy, when applied on LDA reduced low-dimensional Gabor features

with cosine distance as the similarity metric. Furthermore, the effectiveness of the pro-

posed solution is illustrated through a comparison with representative existing works in

image-based fingerprint verification, including the score-fusion based hybrid verification sys-

tem [146], and those based on the Fourier-Mellin transform [69], DCT [67], and Hu’s invariant

moments [71]. Table 6.5 compares the performance of the proposed system with the above

mentioned methods in terms of EER. It can be seen that the proposed method has outper-

formed some of the existing methods with an average EER of 1.49%.

Method DB1 a DB2 a DB3 a DB4 a Average

Ross [146] 1.87 3.98 4.64 6.21 4.17

Jin [69] 2.43 4.41 5.18 6.62 4.66

Amornraksa [67] 2.96 5.42 6.79 7.53 5.68

Park [71] 1.63 3.78 4.20 4.68 3.57

Proposed 0.27 0.50 3.18 2.00 1.49

Table 6.5: EER (%) comparison of existing methods with proposed system on FVC2002
set a

6.5 Summary

We have presented a new method for rotation invariant fingerprint recognition. The proposed

method employs contextual filtering based technique to enhance the quality of the fingerprint
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images, followed by a complex filtering based method for automatic core point detection.

To achieve rotation invariant features, an ROI of predefined size is identified and rotated

according to the core point angle. This invariant ROI becomes an input to a Gabor filter

bank of eight orientations and the AADs are computed as the features. To further reduce

the dimensionality of the feature space, whilst obtaining discriminatory representations,

two dimensionality reduction tools are examined and compared. The effectiveness of the

proposed solution is demonstrated on the well known public database of FVC2002 set a, in

both identification and verification scenarios. To further explore the possibility of utilizing

user-specific thresholds for verification, we have studied three different thresholding schemes.

Experimental results demonstrate that the proposed method has improved the recognition

accuracy in both the identification andthe verification scenarios.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The dissertation presents novel filtering methods for image and video processing applications.

The overall objective has been to develop filtering methods for trend removal, intensity

inhomogeneity correction, and feature extraction. One of the contributions of the dissertation

is the development of filtering method for trend removal and data analysis in videos. The

proposed filtering method transforms the non-rigid inter-frame registration problem into low

complexity trend filtering problem, i.e, transforming the motion information from the video

to a 1D signal. In this dissertation, the proposed method has been employed to perform

the heart motion analysis of an embryonic rat from its video recording. In the proposed

method, LEM in conjunction with the correlation coefficient is used to extract the motion

information from the videos whereas the modified EMD is used to suppress the noise and

motion artifacts. Furthermore, the proposed method also helps in the trend removal without

defining any regression model. The effectiveness of the proposed method has been evaluated

on 151 videos. The results show an accuracy and robustness of the proposed method in

counting and localizing different heart states that makes it attractive for the biologists to

analyse the heart motion without any need of parameter tweaking and expensive imaging

equipment.

In multi-dimensional signals, the trend term is often referred to as shading, non-uniform
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illumination, intensity non-uniformity, global intensity inhomogeneity, or bias field [32].

Global intensity inhomogeneity often arises due to the imperfections of data acquisition

device, direction of source light, and properties of the subject under study. It affects the

performance of image segmentation, matching, retrieval and tracking algorithms [32,46,47],

to name a few. In this dissertation, we have presented a filtering method for the global

intensity inhomogeneity correction. The proposed method is based on the observation that

if an image is degraded by the global intensity inhomogeneity, then the magnitude of the

frequency components affected by the global intensity inhomogeneity is much higher than

its counterparts. In the proposed method, GWDT has been used to automatically localise

the affected frequencies in the frequency domain. Moreover, the filter and its parameters are

automatically determined from the affected frequency components of an image.

To check the robustness of the proposed method, we have presented a comparison with

the recent and state-of-the-art methods. The performance has been evaluated both quanti-

tatively and qualitatively. For the qualitative analysis, we have followed the subjective eval-

uation by humans that is reported as the most appropriate criterion for the assessment of the

image quality. Whereas, the quantitative evaluation was performed by measuring segmenta-

tion accuracy, true positive rate, false positive rate, similarity with ground truth measured

in terms of cross correlation, coefficient of contrast, and coefficient of joint variation. Ex-

perimental results demonstrate the superiority of the proposed method in comparison with

some of the existing and state-of-the-art methods.

The same idea has been extended to 3D for the volume images, especially for the brain

MR volumes. The proposed method is based on the GWDT of the magnitude spectrum of

the volume image. Here, a filter is automatically generated based on the content of the MR

volume. To the best of our knowledge, the proposed filtering method is the first of its kind

where the shape of the filter solely depends on the global intensity inhomogeneity present in

the image.

One of the problems closely related to global intensity inhomogeneity is local intensity

inhomogeneity. Global intensity inhomogeneity is considered as a slowly varying compo-
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nent but this assumption does not hold in case of images having shadow artifacts. These

shadow artifacts appear as sharp changes at shadow boundaries [55], making intensity inho-

mogeneity local in nature. To cope with this problem, we have presented a local intensity

inhomogeneity correction method based on gamma transformation and DDFB. In the pro-

posed method, gamma transformation is used to normalize the input images whereas DDFB

is used to suppress the local intensity inhomogeneity and shadow artifacts irrespective of

scale and orientation. In this dissertation, the proposed method has been deployed to sup-

press these artifacts in facial images. Empirically, it is shown that most of the discriminatory

power lies within the horizontal facial features under shadow artifacts. The efficiency of the

proposed method has been evaluated on two public databases: Yale Face Database B, and

the Extended Yale Face Database B. It is clear from the experimental results that proposed

filtering method is superior to the existing methods in performance and robustness, as it

does not require any parameter tweaking.

One of the key applications of image filtering is feature extraction. Feature extraction

has been widely used in extracting discriminatory information from the biometric samples

which can be further used for person identification. In this dissertation, we have presented

a filter-bank based approach to extract the rotation invariant feature codes from the fin-

gerprint images. The proposed method generates the rotation invariant feature codes based

on the output of the complex filters and the Gabor filter bank. After generating the ro-

tation invariant feature codes, each fingerprint is represented by a feature vector of length

640. To further reduce the dimensionality of the feature space, we have applied subspace

techniques for dimensionality reduction. Specifically, we have compared the performance of

two representative techniques, namely PCA and LDA. User-specific thresholding schemes

are also investigated to improve the performance of the system. We have evaluated the per-

formance of the proposed method on FVC2002 set a public database, in both identification

and verification scenarios.

This dissertation demonstrates the importance of filtering methods that are independent

of parameter tweaking and user interaction for image and video processing applications.
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Such filtering methods will help to eliminate user biases.

7.2 Future Work

As an extension of this dissertation, we propose the following possible directions for future

research.

• The methodology proposed for the key frame selection can be used in surveillance

applications. Especially, in motion detection, selection of a key frame plays a vital

role.

• Development of an iterative method for global intensity inhomogeneity correction in

color images and videos. Such method can have the wide range of applications in image

and video processing.

• The proposed method for global intensity inhomogeneity correction can also help to

improve the performance of different descriptors like the scale invariant feature trans-

form (SIFT) [157]. The classical framework of SIFT is not illumination invariant and

its performance degrades in the presence of non-uniform illumination.

• Extension of the proposed global intensity inhomogeneity correction method to sup-

press atmospheric haze in color images. Generally, atmospheric haze is created by

small water particles, dirt, and/or soot, and also by the air molecules.

• The proposed global intensity inhomogeneity correction method can also help to im-

prove the segmentation accuracy if used in conjunction with state-of-the-art segmen-

tation methods.

• GWDT in the frequency domain can be used to detect dominant frequency regions in

directional images.

• To concentrate more on the filter design aspect for 2D and 3D global intensity inhomo-

geneity correction methods. State-of-the-art methods can be used for the conversion
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of the ideal filter to non-ideal.

• Development of a method that can keep the facial features intact while removing the

local intensity inhomogeneity in images and videos.

• Integrating the local histogram with the proposed rotation invariant feature codes to

form an image descriptor. Such kind of descriptor can have a wide range of applications

in image classification and retrieval.
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