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ABSTRACT 

 

Modular and reconfigurable robot has been one of the main areas of robotics 

research in recent years due to its wide range of applications, especially in aerospace 

sector. Dynamic control of manipulators can be performed using joint torque sensing 

with little information of the link dynamics. From the modular robot perspective, this 

advantage offered by the torque sensor can be taken to enhance the modularity of the 

control system. Known modular robots though boast novel and diverse mechanical 

design on joint modules in one way or another, they still require the whole robot 

dynamic model for motion control, and modularity offered in the mechanical side does 

not offer any advantage in the control design.  

In this work, a modular distributed control technique is formulated for modular 

and reconfigurable robots that can instantly adapt to robot reconfigurations. Under this 

control methodology, a modular and reconfigurable robot is stabilized joint by joint, and 

modules can be added or removed without the need of re-tuning the controller. Model 

uncertainties associated with load and links are compensated by the use of joint torque 

sensors. Other model uncertainties at each joint module are compensated by a 

decomposition based robust controller for each module. The proposed distributed control 
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technique offers a ‘modular’ approach, featuring a unique joint-by-joint control synthesis 

of the joint modules. 

Fault tolerance and fault detection are formulated as a decentralized control problem 

for modular and reconfigurable robots in this thesis work. The modularity of the system 

is exploited to derive a strategy dependent only on a single joint module, while 

eliminating the need for the motion states of other joint modules. While the traditional 

fault tolerant and detection schemes are suitable for robots with the whole dynamic 

model, this proposed technique is ideal for modular and reconfigurable robots because of 

its modular nature. The proposed methods have been investigated with simulations and 

experimentally tested using a 3-DOF modular and reconfigurable robot. 
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Chapter 1  

 

Introduction 

 

Many robotic manipulators have been developed for different practical 

applications, but most of them are not designed to provide the capability of 

reconfiguration and are difficult to adapt to various tasks and environments. This 

motivated the design of a reconfigurable robot system (Yim, 1994). The term modular 

and reconfigurable robot (MRR) is referred to a robot manipulator assembled from 

discrete mechanical joints and links into one of many possible manipulator structures. 

Modular and reconfigurable robots are characterised by interchangeable links and joint 

modules of various sizes. Using standard mechanical and electrical interfaces, the 

recombination of modules is carried out to create various robot configurations that meet 

a wide range of different task requirements. 

Such a modular and reconfigurable robot system has several advantages over 

conventional manipulators: 

• Cost effectiveness: lowers manufacturing cost, and ease of replacement brings 

about a reduction in cost. 

• Modularity: introduces flexibility to robots by making them reconfigurable. 

• Manufacturability: reduces the number of operations for an individual part 

and thus simplifies manufacturing; making them easier and cheaper to build. 

• Redundancy: implies highly redundant systems since many modules are 

available due to the ease of manufacture, thus enhances diagnosability. 

• Repairability: if a module fails, it is easy to replace the module since there 

are others which can take up the same job. 

• Durability: against system malfunctions due to replaceable standardized 

units. 



 

     2

Some of the mechanical designs of MRR discussed in the literature, based on the 

prototype systems built in various research institutes, can be found in (Fukuda and 

Nakagawa, 1988, Matsumaru, 1995, Castano and Will, 2000, Xi, et al., 2006). 

“Can a modular control technique be designed for any modular and reconfigurable 

robot?” is the main question posed. Is the modularity achieved in the mechanical design 

achievable in the control design too? Can the control law be made independent of each 

new configuration of the robot? Can faults at each joint module be detected and tolerated 

with minimum or no information from the other modules? To answer these, two 

different cases are considered. 

This thesis is presented in two sections, each of which addresses a different control 

problem and the ensuing control strategy. One section presents the distributed control 

strategy for a modular and reconfigurable robot. The other section presents a 

decentralized fault tolerant and fault detection scheme for the modular robot. Both the 

schemes are based on joint torque sensing and hence allow a joint-by-joint control 

strategy, i.e., the control of one joint module does not require the motion states of the 

other modules and is independent of the other modules. This improves the modularity 

and repairability of the robots and makes the control procedure ideal for modular and 

reconfigurable robots. 

1.1 Modular and Reconfigurable Robots 

With substantial application potential, especially in the aerospace sector, the 

development of modular and reconfigurable robot (MRR) is one of the most promising 

research areas in robotics (Yim, et al., 2007). Three types of MRRs have been reported 

in the literature: self-assembly, self-configuring and manual-configuring. Self-assembly 

robots possess the highest level of reconfigurability because they can detach from and 

attach into a robotic system automatically (Fukuda and Nakagawa, 1988, Chirikjian, 

1994, Tomita, et al., 1996, Yim, et al., 2000). Self-configuring robots cannot perform 

self-assembly, but they can perform reconfiguration after a robotic system is assembled 

with some form of manual assistance. Manual-configuring robots are in fact modular 

robots that can be reconfigured with some form of manual assistance (Hui, et al., 1993). 
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A survey of MRR systems is discussed in the publication compiled by Setchi and Lagos 

(2004). 

So far, reconfigurable systems are developed based on an ad hoc approach due to 

lack of general-purpose simulation and control techniques. Though such tools are not 

available, some groundwork has been done and archived in the literature. The main 

concept of developing reconfigurable robots is based on the use of modular components 

as building blocks. For this reason, various modules have been proposed for 

reconfigurable robots. However, these proposed modules are the traditional mechanical 

components, i.e., joints and links. While the reported reconfigurable robots may 

represent excellent mechanical design concepts, the modules of known MRRs are not 

“modular” from control systems point of view because of the existence of dynamic 

coupling among the modules, which is left to be dealt with by the controller. 

Conventional robot control methods are based on a known robot configuration and its 

associated dynamic model, with limited allowable model uncertainties such as unknown 

payloads (Liu and Goldenberg, 1996a, 1996b, 1997). Even though in theory robust 

control schemes can handle large model uncertainties caused by robot reconfigurations, 

they are not practical because of the large uncertainty that leads to extremely high 

feedback gains that cannot implemented due to limited structure rigidity, computer 

sampling rate, actuator bandwidth and saturation, etc. Innovative design and control 

methods are in need in order to develop truly modular and reconfigurable robots. Melek 

and Goldenberg (2003) recently proposed a neurofuzzy control approach for MRRs, 

which uses learning control to compensate unmodelled system dynamics due to 

reconfiguration. The controller parameters are updated using a skill module that is a part 

of the higher level of the control system hierarchy. While the effectiveness of this 

approach has been experimentally demonstrated, a difficulty may limit its practical 

application, which is associated with the initial stage right after a reconfiguration and 

before the learning controller has learnt the unmodelled system dynamics. At this stage, 

the behaviour of the robot is not predictable. 

Recent development in MRR control includes a position control scheme of MRR 

discussed by Melek and Najjaran (2005), with consideration of external disturbance. 
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Varying payload at the end-effector is treated as external disturbance, and a 

mathematical formulation connecting end-effector tracking error and payload is derived. 

The dynamic control of MRR using a virtual decomposition based control approach is 

discussed by Zhu and Lamarche (2007). 

1.2 Fault Tolerant Control of MRR 

Dynamic control of manipulators can be performed using joint torque sensing 

(Hashimoto, 1989, Kosuge et al., 1990, Imura, et al., 1991), without the need for 

modeling of link dynamics. The effectiveness of these approaches depends on accurate 

joint-torque sensing. Since joint torque sensor gains and offsets are susceptible to 

changes due to varying temperature and other factors and onboard calibration of joint 

torque sensors is difficult, it is desirable to estimate torque sensor parameters. In (Aghili 

and Namvar, 2006) the dynamical equation is parameterized such that torque sensor 

parameters are included in the overall system parameters to be estimated. This approach 

in other words would accept uncalibrated torque sensor signals for the controller. In 

(Liu, et al., 2008), a distributed control technique for modular and reconfigurable robots 

is developed based on joint torque sensing, enabling the joint by joint stabilization of the 

modular robot and allowing instant adaptation to robot reconfigurations. As there is no 

coupling effect left on the base joint after the feedback of torque sensor signal, this joint 

can be stabilized using any control design technique for a single joint, such as 

decomposition based control scheme (Liu and Goldenberg, 1996a, 1996b). Once the 

base joint is stabilized independently, the acceleration and velocity of this joint must be 

bounded and can only cause bounded uncertainty to upper joints. The bounded 

uncertainty is then compensated at upper modules to achieve stabilization of the 

succeeding joint. Proceeding similarly, the upper modules are stabilized. 

Based on the above mentioned approach, this strategy is aimed to achieve fault 

detection and fault tolerance at individual MRR modules, so that potential faults are 

dealt with at the module level and a faulty module can be repaired or replaced 

independent of the rest modules. Most approaches of fault tolerant control in robot 

manipulators are centered on the addition of some form of redundancy like those based 

on actuators (Wu, et al., 1993, Sreevijayan, et al., 1994), joints (Ting, et al., 1993, Shin 
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and Lee, 1999), sensors (Visinsky, et al., 1995), to name a few. An alternate way of 

achieving redundancy is by means of analytical relationships among system variables. 

This form of redundancy termed as analytical redundancy has received significant 

attention in the past (Gertler, 1998, Frank, 1990, Isermann, 1984, Frank, et al., 2000). 

Several such approaches to fault tolerance of robots have been proposed, such as 

observer-based approaches (Caccavale and Walker, 1997, Filaretov, et al., 1999, Vemuri 

and Polycarpou, 1997, Hammouri, et al., 1999, De Persis and Isidori, 2001), parity based 

(Staroswiecki and Comtet-Varga, 2001) and parameter estimation based methods 

(Dixon, et al., 2000, Isermann, 1993, Zhang, et al., 1998). In (Caccavale and Walker, 

1997) residuals are generated by comparing the predicted observer outputs with the 

measured system outputs. However, in these observer-based schemes, the measurement 

or estimation of acceleration signals are necessary. In (Dixon, et al., 2000) a filtered 

torque estimation based technique is used to eliminate the requirement of acceleration 

measurement. All these techniques are designed for robot manipulators with fixed 

configuration, and are not based on distributed control schemes. In (Liu, 2001) an 

adaptive robot control strategy with consideration of actuator faults is proposed, which 

incorporates actuator effectiveness factors in a model parameterization with commanded 

torque as the input. A more recent adaptive fault detection scheme is presented in (De 

Luca and Mattone, 2004) based on the use of generalized momenta (De Luca and 

Mattone, 2003). In (Zhang, et al., 2002) a fault tolerant architecture for nonlinear 

uncertain dynamic systems is proposed based on non-linear adaptive estimators. This 

approach depends on adaptive parameter estimates for fault detection. 

Some recent results based on adaptive and robust observers can be found in (Jiang, 

et al., 2002, 2004). Methods using learning approaches are presented in (Vemuri, 2001, 

Zhang, et al., 2002). A fault detection scheme with online estimators is investigated in 

(Vemuri, 2001) to estimate the unknown constant sensor bias for diagnosis of sensor 

faults. Research on fault detection and fault identification of robot manipulators using 

discrete-time observers are reported in (Caccavale and Walker, 1997, Caccavale, 1998), 

non-linear adaptive state estimation in (Dixon, et al., 2000,), nonlinear observers in 

(McIntyre, et al., 2005) and parity relation based approach in (Filaretov, et al., 2003) .  
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However, the above approaches all require the link dynamics for the detection algorithm 

and are based on the whole robot dynamics. 

1.3 Motivation and Objectives of Research 

Various modules of MRRs have been developed recently in research institutions 

and industry worldwide. However, the developed modules are traditional in terms of 

electro-mechanical components, i.e., joints and links. While the reported reconfigurable 

robots may represent excellent electro-mechanical design concepts, the modules of 

known MRRs are not “modular” in terms of software and control because of the 

existence of dynamic coupling among the modules. This phenomenon is left to be dealt 

with by the control system, and very limited work has been reported in this domain. 

Conventional robot control methods are designed for robots with fixed configurations, 

based on known kinematics and dynamics models, and they are not suitable to handle the 

large model uncertainties associated with reconfigurations of MRRs. To a large extent, 

the realization of the application potential of MRRs is limited by the lagging in the 

development of synergetic control systems. 

The key motivating factors for this research are as noted: 

• In (Imura, et al., 1991), it is pointed out that the use of torque sensor can 

reduce the robot dynamic equations to purely a mathematical problem of 

motor control with link dynamics taken care using the torque sensor 

readings. This motivates the joint torque sensing based control of  MRRs, 

with the uncertainties caused by reconfiguration.  

• Many publications can be found on fault tolerance of robot manipulators 

and others on possibilities of MRRs being used for better fault tolerant 

capabilities. However, there is very minimal reference on the actual 

applications of fault tolerance control on MRRs. Therefore, one of the 

objectives of this research will be to apply the fault tolerant techniques to 

a practical MRR system. 

In this thesis, MRR system control techniques to realize the application potential 

of MRRs are developed. The objectives are:  
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• to develop a modular control architecture based on joint torque sensing 

and decoupled modular control techniques for MRRs to achieve 

automatic control system adaptation to MRR reconfigurations, and 

• to synthesize modular actuator fault detection and fault tolerant control 

methods. 

1.4 Contributions 

The following contributions were made from this research: 

 

• Stabilization and control of modular robots using distributed control law 

A distributive approach with a unique joint-by-joint control technique 

of joint modules was designed. This approach uses a joint torque sensor 

to compensate for the uncertainties associated with load and link, and 

hence a control law independent of link dynamics. 

 

• Torque sensor based fault tolerant control of modular robots. 

A fault tolerant control was devised based on joint torque sensor that 

offers a strategy dependent on single joint module. The fault tolerance at 

each joint module will not require motion states of other joint modules 

and made independent of other joint module controllers. 

 

• Decentralized fault detection strategy for modular robots. 

Since the use of joint torque sensors offers modularity for system, this 

is used in the design of fault detection technique. The detection scheme 

uses a velocity estimation error to detect the occurrence of faults. 

 

• Modular fault tolerant control law under actuator degradation. 

The devised actuator fault tolerant control is devised as decentralized 

control technique, such that actuator degradation at each joint module is 
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compensated at module level. The control law at each module will not 

require the motion states of other joint modules. 

1.5 Outline of Thesis 

In the present study, a tracking control for modular and reconfigurable robots are 

developed. To investigate this, two different cases are considered. In the first case a n-

DOF modular robot, with torque sensor at each joint module, is considered. A 

distributed control law that can achieve overall stability of the robot by a joint-by-joint 

control approach is devised. The second case involves a modular fault tolerant and fault 

detection technique, ideally suited to improve the repairability of a modular robot 

system. Here fault at each joints are detected and corrective actions taken at module 

level. 

In Chapter 2 the dynamic model of the modular robot is discussed. The control 

design and formulation of the distributed control strategy for the n-DOF modular and 

reconfigurable robot is presented in Chapter 3. The chapter also includes the simulation 

results for a 3-DOF robot stabilization case. Chapter 4 discusses the fault tolerant control 

and a design of decentralized fault tolerant and fault detection of modular and 

reconfigurable robots. The simulation results for the fault tolerant and fault detection 

schemes are also discussed in this chapter. In Chapter 5, the experimental setup and 

experimental results for the control schemes are presented. The conclusions are given in 

Chapter 6. 
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Chapter 2  

 

Dynamic Modeling 

 

2.1 Model of Modular and Reconfigurable Robot 

In this section a dynamic model of a robot, employing a joint torque feedback, is 

derived. Most existing robot arms with N  degrees of freedom are modeled as serial link 

mechanisms consisting of N  rigid links and N  single axis joints. Each link of such an 

arm is considered to be driven directly or indirectly by an actuator. 

  

Figure 2-1. Schematic diagram of a joint module 
 

 We consider modular and reconfigurable robots constructed with n modules, and 

each module is integrated with a rotary joint with a speed reducer and a torque sensor as 

illustrated in Figure 2-1. The dynamics of each module is divided into two, namely the 

motor system and the link system, with the joint torque sensor as the separator. The 

motor system includes a rotor and a speed reducer and the link system is composed of 

Torque 
sensors 

qi 

joint i 

Rotor 

link i-1 

Speed  
reducer 

τJi 

link i 

zmi 

zi

τi
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the link. The thi  motor which drives the thi  joint is fixed to the ( )1
th

i −  link. The 

coupling force at the joint is measured using joint torque sensor on the thi  joint. 

For each module, we assume 

A1. The rotor is symmetric with respect to the axis of rotation.  

A2. The joint flexibility is negligible. 

A3. The torque transmission does not fail at the speed reducer, and the inertia 

between the torque sensor and the speed reducer is negligible. 

For a modular and reconfigurable articulated robot with modules installed in 

series, each module provides a rotary joint. The base module is denoted the first module. 

Modules close to the first module are named lower modules, and modules close to the 

end-effector are called upper modules.  

For the ith module, we use the following notations:  

miI : rotor moment of inertia about the axis of rotation; 

iγ : reduction ratio of the speed reducer ( )1iγ ≥ ; 

iq  : joint angle; 

( , )i i if q q� : joint friction; 

Jiτ : coupling torque at the torque sensor location; 

iτ : output torque of the rotor; 

miz : unit vector along the axis of rotation of  the ith rotor; 

iz : unit vector along the axis of rotation of joint i. 

Based on the dynamic equations of rigid robot manipulators with n rotary joints 

and joint torque sensing derived in (Imura, et al., 1991), we formulate the dynamic 

equation of each module as follows (given in Appendix A): 

For the base module, 1i = , 

                                                                  
 ( )1 1 1 1 1 1 1( , )m i i JI q f q qγ τ γ τ+ + =�� �  (2.1) 
 

For the second module from the base, 2i = , 



 

     11

 ( )2 2 2 2 2 2 1 1 2 2 2( , ) T
m i i m m JI q f q q I z z qγ τ γ τ+ + + =�� � ��  (2.2) 

 

                                                
For 3i ≥  

 
( )

1

1

11

2 1

( , )

( )

i T
mi i i i i i mi mi j j

j

ji T
mi mi k j k j Ji i i

j k

I q f q q I z z q

I z z z q q

γ

τ γ τ

−

=

−−

= =

+ + ∑

+ × + =∑ ∑

�� � ��

� �
 (2.3) 

                                   
The joint friction, ( , )i i if q q� , is modeled as in (Liu, 2002, Liu, et al., 2004)  

 ( )2( , ) ( , ) exp( ) ( )i i i i i q i i ci si i i if q q B q F q q F F F q sat qτ= + + + −� � � � �  (2.4) 

 

where ciF  denotes the Coulomb friction related parameter, iB  denotes the viscous 

friction coefficient, siF  denotes the static friction related parameter, iFτ  is a positive 

parameter related to the Stribeck effect. The saturation function is defined as 

 

 
01

( ) 0  0
1 0

i
i i

i

for q
sat q for q

for q

>⎧⎪= =⎨
− <⎪⎩

�
� �

�
 (2.5) 

 

and ( , )q i iF q q�  denotes the position dependent friction and other friction modeling errors. 

2.2 Representation of Faults 

 

 

Figure 2-2. A typical feedback control system 
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A typical control system, as shown in Figure 2-2, consists of sensors, actuators, 

controllers and the physical plant being controlled. Any abnormal operations among 

these components are referred to as faults. Faults may be categorized based on their 

physical locations in control systems as either sensor faults, actuator faults, plant faults 

or controller faults or based on system characteristics as additive faults or multiplicative 

faults. Fault classifications based on physical locations have been adopted in this thesis. 

2.2.1 Actuator Fault 

Actuator faults are usually characterized as discrepancies between the expected 

actuator output and its actual output, or complete loss of control capabilities. This may 

result from aging or worn out components in the actuator, an element being stuck at 

some specific value and/or a change in dynamic characteristics. The actuator input is 

usually passed through a digital to analog converter in computer controlled systems. 

Thus, digital to analog converters can also be considered as a part of the actuator block. 

The actuator output ( )u t  of the system is often not directly accessible, and is the 

actuator response to an actuator command ( )cu t  from the controller. When an actuator 

fault occurs, any change in the actuator input will not result in the desired response at the 

actuator output. Typically an actuator fault can be represented as shown in Figure 2-3. 

The actuator fault vector is represented by ( )af t . 

( ) ( ) ( )c au t u t f t= −      (2.6) 

 

 

Figure 2-3. Actuator Fault 
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Alternatively the fault at the actuators can be described by an actuator 

effectiveness factor (Liu, 2001) which would represent the transmission rate of the 

commanded actuator signal to the actuator response. 

 ( ) ( )t cu t K u t=  (2.7) 
where tK  is the actuator effectiveness factor. And 1tK =  indicate the fault free 

condition and 0tK =  indicates the complete failure of the actuator i.e., no torque gets 

transmitted to the load side. 

2.2.2 Sensor Fault 

The sensor faults are incorrect readings due to malfunctions in sensory elements or 

transducers, unknown bias at the sensor output or unexpected changes in the dynamic 

characteristics of the transducers. Since the signal from a sensor carries the most 

important information in feedback control systems, the state of sensor determines the 

reliable operation of the system. In a digital computer controlled system, the sensor 

signals will usually pass through analog to digital converters before used by the control 

system. Hence, the analog to digital converters can be considered to be a part of the 

sensor block. 

The actual outputs of the system ( )y t  are measured through sensors. The sensor 

faults are shown in Figure 2-4 and can be described mathematically as an additive term 

 ( ) ( ) ( )m sy t y t f t= −  (2.8) 
where ( )sf t  is the sensor fault vector. 

 

Figure 2-4. Sensor Fault 

2.2.3 Process Fault 

The plant or system faults are caused by changes in the plant parameters or the 

plant dynamics. System performances are affected by these changes. 
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2.3 Redundancy in Fault Control Systems 

Redundancy refers to the additional system resources, such as actuators, sensors or 

controllers which are more than what are required to achieve the control objective during 

a normal operation. The existing literature on the research in robot fault tolerance is 

concentrated in the following fields: 

2.3.1 Structural Redundancy based Fault Tolerance 

2.3.1.1 Actuator Redundancy 

In a practical system actuators are used to manipulate control signals to operate a 

process. The type and power levels of the actuators generally depend on the specific 

applications. For motion control applications, the actuators used typically includes 

stepper motors, DC servo motors, linear motors, pneumatic or hydraulic motors. The 

mechanical motions of the actuator can result in wearing and aging of the actuator 

components. This can result in degradation of the actuator and deterioration of actuator 

effectiveness. 

Most of the early works on fault tolerance of mechanical failures in robots has 

concentrated on algorithms which relied on duplicated parts for their fault tolerant 

capabilities. In (Tesar, 1990; Wu, et al., 1993) investigations into the methods of 

duplicating motors in a joint have been discussed. The two motors in a joint work 

together to provide single output velocity to the joint, and when one of the motor fails, 

the other takes over the functions of the faulty motor. The fault tolerant advantages of 

redundancy have also led to adding extra structures like backup arm (Tesar, 1990; Ting, 

et al., 1993), allowing reconfiguration possibilities in the event of failures. But in 

robotics, the amount of physical redundancy is often limited by cost, size and power 

considerations. This limitation in structural redundancy is complemented to a certain 

extent by the kinematic and analytical redundancy techniques. The structural redundancy 

can be broadly classified into actuator and sensor redundancies. 
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2.3.1.2 Sensor Redundancy 

Sensors are physical devices that measure various physical variables, such as 

position, pressure, torque, temperature etc., with the associated circuits. Generally the 

signal level at a sensor output is relatively low and hence addition signal conditioning 

and amplification are necessary. Faults in the sensor or its associated circuitry are often 

classified as sensor faults. The physical quantities act as the input to the sensor and the 

sensor outputs are conditioned to provide the outputs. 

One of the widely used redundant sensor scheme is the triple modular redundancy 

(TMR) which consists of three identical sensors employed to measure the same physical 

quantity. The outputs of the three sensors are compared using a voting circuit. If one 

sensor output differs significantly from the other two, then it is considered to be a faulty 

signal. But the use of identical sensors can pose a disadvantage that an identical fault can 

result because of manufacturing defect or design error. To avoid this scenario, dissimilar 

sensors are often used with additional circuitry to process the signals before they are sent 

to the voting circuit. 

2.3.2 Kinematic Redundancy 

Many of the present day robots have the advantage of being kinematically 

redundant, i.e., the robot has more degrees of motion or freedom than is required to 

position its end effector along working trajectories. This property is usually exploited in 

designing fault tolerant algorithms which use alternate configurations to recover the 

robot in the presence of joint failures. These algorithms (Maciejewski, 1990) would use 

the existing structure rather than the use of extra motor, sensors or other hardware 

components. In (Ting, et al., 1994; Chen, et al., 1998; Park, et al., 2003) a torque 

redistribution technique is discussed while joint velocity redistribution technique is used 

in (Chen, et al., 1999). 

2.3.3 Functional Redundancy 

If an accurate mathematical model of the physical system is available, the output 

of system can be computed, and the difference between the system output and computed 

system output should be small. This difference termed residual signal, will show a 
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change in value with the occurrence of fault. In cases where the robots have no 

redundant hardware or kinematic redundancy, functional redundancy techniques are 

used which will exploit the existing structure for fault tolerance using functionally 

equivalent data from dissimilar components (Visinsky, et al., 1993). An observer based 

fault diagnosis technique is discussed in (Filaretov, et al., 1999), which uses nonlinear 

observers for residual generation.  
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Chapter 3  

 

Torque Sensor based Control 

 

Model based robot control schemes have been proposed in the past for achieving 

tracking control, like resolved acceleration control (Luh, et al., 1980) or the computed 

torque control techniques (Craig, 1989, Slotine and Li, 1991, Spong and Vidyasagar, 

1989). These approaches depend on the precise knowledge of the robot parameters and 

of the possibly varying load; they may perform poorly when the model is not accurate. 

Adaptive control of manipulators was proposed (Middleton and Goodwin, 1988) to deal 

with parametric uncertainties. However, the large number of parameters associated with 

the link dynamics and over-parameterization makes it difficult to meet the persistency 

excitation condition necessary for parametric convergence and achieving high 

performance (Ioannou and Sun, 1996). In addition, model-based approaches tend to 

increase the computational burden (Craig, 1989). 

Alternatively, the dynamic control of manipulators can be performed using joint 

torque feedback without the need for modeling link dynamics. This reduces the 

computational burden by dramatically reducing the number of parameters for adaptive 

schemes. The benefits of using torque sensory feedback to improve the performance of 

robotic systems have been recognized in the robotics community (Stokic and 

Vukobratovic, 1993). One of the earlier works related to torque sensor based position 

control of robots is discussed in (Kosuge, 1987, Hashimoto, 1989). (Vischer and Khatib, 

1995) discusses the design of high performance torque controller joints, based on 

contactless inductive transducers as compared to strain gauge sensors. Design of 

harmonic drive gears with built-in torque sensing is dealt in (Godler and Hashimoto, 

1998, Hashimoto, et al., 1993). Joint torque feedback can be used to compensate the 

nonlinearities and modeling uncertainties of manipulator dynamics (Hashimoto 1989) or 

simply those of actuators (Zhang and Furusho, 1998). (Hashimoto, et al., 1993)used the 



 

     18

elasticity of the flexspline in a harmonic drive to measure the joint torque. This 

technique has the advantage of using the existing structural flexibility of the robots. 

Joint torque feedback can, in theory be used to eliminate completely the effect of 

external torque disturbances and load torques. This requires the system be equipped with 

built-in torque sensing to measure the load torque (Hashimoto, 1989, Kosuge, et al., 

1990). 

(Kosuge, et al., 1990) demonstrated experimentally the effectiveness of joint 

torque feedback to compensate the entire link dynamics of a SCARA type direct-drive 

robot. The actuator dynamics was ignored and a simple control law with good robustness 

against varying loads was proposed. Hashimoto (1989) applied this technique to an 

actuator geared with a harmonic drive. The dynamic coupling terms in the robot 

dynamics are claimed to be small at higher gear ratios and hence treated as small 

disturbances. A survey of joint torque feedback can be found in (Stokic and 

Vukobratovic, 1993). 

In general, joint torque feedback cannot achieve dynamic decoupling between 

joints unless the manipulator has joints with high gear ratios (Hashimoto, 1989). 

However, the effect of link dynamics is especially at lower gear ratios (Stokic and 

Vukobratovic, 1993) and this is where the joint torque feedback is particularly useful. 

Furthermore, the effectiveness of the joint torque feedback in suppressing the effect of 

linkage torque dynamics on the motion critically relies on accurate joint-torque sensing. 

Different techniques have been used for joint torque measurement such equipping 

manipulators joints with joint torque sensor device (Aghili, et al., 2001) or mounting 

strain gauges on flexspline of harmonic drives (Hashimoto, et al., 1993). 

In this thesis, a control system architecture is developed for modular and 

reconfigurable articulated robots that can instantly adapt to robot reconfigurations and 

can control the reconfigured robot without having to adjust controller parameters. A joint 

torque sensor is embedded within each module, and the torque sensor measurement is 

utilized to automatically compensate for coupling effect. This concept is built upon 

published research results on robust control of conventional robot manipulators using 

joint torque sensors (Kosuge, et al., 1990, Imura, et al., 1991). However, the known 
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torque sensor based approaches use centralized control techniques and are inadequate for 

control of modular robots, which calls for distributed control for each stand alone 

module. The proposed method stabilizes an MRR joint by joint, rather than controlling 

the robot as a whole (Liu, et al., 2006, 2008). 

3.1 Distributed Control of Modular and Reconfigurable Robots 

The dynamic equation (2.3) can be rewritten as 

 ( )( , )mi i i i i i i Ji i iI q f q qγ δ τ γ τ+ + + =�� �  (3.1) 
 

The term iδ  is constituted of the coupling effects of lower joints on the ith joint, given by  

 
11 1

1 2 1
( )

ji iT T
i mi mi j j mi mi k j k j

j j k
I z z q I z z z q qδ

−− −

= = =
= + ×∑ ∑ ∑�� � �  (3.2) 

 

This term is a source of model uncertainty, which depends on the accelerations and 

velocities of all the lower 1i −  joints, and it needs to be compensated using a robust 

controller at the thi  joint. 

The following properties are used in the subsequent analysis and design of the 

control law: 

Property 1: The accelerations and velocities of the stabilized joints are bounded. Hence 

the following upper bounds exist: 

 i Diδ ρ≤  (3.3) 
 

Property 2: Since the term ( , )q i iF q q�  is bounded the following upper bounds exist 

 ( , )q i i fF q q ρ≤�  (3.4) 

 

From (3.3) - (3.4), the following upper bounds can be defined: 

( , )i q i i FiF q qδ ρ+ ≤�  

 

Define the overall control of each joint as  
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  1, 2, ,Ji
i i

i
u i nττ

γ
= + = …  (3.5) 

 

where iu  is a new control input to be determined for the ith  joint.  

For the first (base) joint, i = 1, combining (2.1) with (3.5) yields 

1 1 1 1 1 1 1( , )mI q f q q uγ + =�� �  

As there does not exist any coupling effect on the base joint, the control input 1τ  

can be obtained using control design techniques for a single joint, such as the 

decomposition-based robust control scheme (Liu, 2002). 

For the second joint, i = 2, combining (2.2) with (3.5) yields 

2 2 2 2 2 2 2 2 1 1 2( , ) T
m m mI q f q q I z z q uγ + + =�� � ��  

The inertial force associated with acceleration of the first joint is involved in the 

above equation, and model uncertainty exists in 2 1
T
mz z  as a result of reconfiguration. 

However, as the first joint has been stabilized independently, the acceleration of the first 

joint must be bounded. Hence, the uncertainty in the term 2 2 1 1
T

m mI z z q��  is also bounded, 

and such bounded model uncertainty can be compensated with a robust control scheme. 

For 3i ≥ , substituting (2.3) into (3.5) yields 

 

1

1

11

2 1

( , )   3, 4, ,  

( )

i T
mi i i i i i mi mi j j

j

ji T
mi mi k j k j i

j k

I q f q q I z z q i n

I z z z q q u

γ
−

=

−−

= =

+ + =∑

+ × =∑ ∑

�� � �� …

� �
 (3.6) 

 

Substituting, (3.2) in (3.6) yields,  

( , )mi i i i i i i iI q f q q uγ δ+ + =�� �  
Examining (3.6), one can find that the motion of upper joints does not affect the 

lower joints, which has been compensated using the torque measurement in (3.5). 

However, the motion of the lower joints still affects upper joints through inertial and 

Coriolis coupling forces. This can be readily understood by analyzing the dynamic 

equation of the third joint, i = 3, 
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( )

3 3 3 3 3 1 1 3 2 2

3 3 1 2 1 2 3 3 3 3( , )

T T
m m m m

T
m m

I q I z z q z z q

I z z z q q f q q u

γ ⎡ ⎤+ +⎣ ⎦

+ × + =

�� �� ��

� � �
 (3.7) 

 

Inertial and Coriolis forces associated with the motion of the first and second 

joints are involved in (3.7), and reconfiguration can result in model uncertainties in the 

terms 3 1 3 2, T T
m mz z z z  and ( )3 1 2

T
mz z z× . However, as the first and second joints have been 

stabilized, the accelerations and velocities of the first and second joints must be 

bounded. Hence, the uncertainties in 3 3 1 1 3 2 2
T T

m m mI z z q z z q⎡ ⎤+⎣ ⎦�� ��  and ( )3 3 1 2 1 2
T

m mI z z z q q× � �  are 

also bounded and could be compensated with robust control schemes. Expanding the 

observation to the general case (3.6), for the ith joint, the model uncertainties in the terms 
1

1

i T
mi mi j j

j
I z z q

−

=
∑ ��  and 

11

2 1
( )

ji T
mi mi k j k j

j k
I z z z q q

−−

= =
×∑ ∑ � �  are bounded and could be compensated with 

robust control schemes.  

Based on the above observation, it can be concluded that the control input ui can 

be designed joint by joint, with the consideration of the bounded model uncertainty due 

to the motion of the lower joints. This conclusion forms the basis of the proposed control 

design in this paper. 

In theory, a saturation-based robust controller can compensate for bounded model 

uncertainty. However, high feedback gain is required in order to achieve high accuracy, 

which is always limited by hardware issues including unmodeled high order plant 

dynamics and sensor measurement noise. The key in practical robust control design is to 

achieve desired performance with minimum feedback gains. To this end, a 

decomposition based control design approach is developed in (Liu and Goldenberg, 

1996a, 1996b). The fundamental strategy of the decomposition based system modeling 

and control approach is to distinguish between uncertain parameters and variables of 

different physical types, and to design a separate compensator for each of them, while 

taking into account each specific physical feature. This approach advocates treating each 

type of model uncertainty with the most suitable and efficient means, including PID, 

robust, adaptive, and sensor based control methods. Robust compensators are used only 
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to compensate for uncertainties that cannot be estimated or measured in real time. The 

overall controller is generated by a synergetic integration of these compensators.  

The decomposition based control approach is applied to design a robust control 

scheme for the system under consideration. Examining the equation (3.6), if we assume 

the joint velocities and accelerations are available, the model uncertainties in the above 

two terms are all due to the unknown misalignment between the joint and motor axes. 

However, while it is reasonable to assume the joint velocities are measurable, it is not 

practical to assume the measurement of joint accelerations, which is avoided in the 

proposed control method. 

The following are defined first for the control design 
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,

2

i i di

ri i i i

ai di i i i i

q q q

q q q

q q q q

λ

λ λ

= −

= +

= − −

�
�� �
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 (3.8) 

 

where iλ  is a positive constant. 

It is assumed that some of the system parameters are unknown but the inertia of 

motor miI  is known. It is also assumed that the reference trajectory, its first and second 

derivatives are bounded. 

The friction of the ith joint is compensated using the scheme developed in (Liu, 

2002), where ( )iY q�  and iF� are defined as  

 

2ˆ ˆ ˆ( ) sgn( ) sgn( ) exp( ) sgn( ) exp( )

ˆ ˆ ˆ ˆ

i i i i i i si i i i i

Ti
i i ci ci si si i i

Y q q q q F q F q q F q

F B B F F F F F F

τ τ

τ τ

⎡ ⎤= − − −⎣ ⎦

⎡ ⎤= − − − −⎣ ⎦

� � � � � � � �

�
 (3.9) 

 

If the parametric uncertainty iF�  is considered unknown but constant, this 

uncertainty can be compensated using an integrator type compensator. However, in 

practice, the parametric model uncertainty may not always be constant, due to 

temperature and lubrication changes. 

To incorporate variable parametric model uncertainty compensation, iF�  is 

decomposed as  
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 i i i
c vF F F= +� � �  (3.10) 

 

where i
cF�  is a constant unknown vector, and i

vF�  is variable and bounded as follows: 

 1, 2,3, 4.i i
vn nF nρ< =�  (3.11) 

 

Applying the approach of decomposition based control design in (Liu, 2002) an 

adaptive compensator is designed to compensate the constant parametric uncertainty i
cF� , 

and a robust compensator for i
vF� . 

For stabilizing the first joint, the following control torque is determined: 

 
( )2

1 1 1 1 1 1 1 1 1 1 1
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( )( )

m a c s
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u pc pv

I q  B q F F F q q

u Y q u u

ττ γ

τ
γ
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+ + + +
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�
 (3.12) 

 

where 1mI  is the motor inertia for the first joint, 1Jτ  is the coupling torque at the torque 

sensor location, 1 1 1 1
ˆ ˆ ˆ ˆ, , ,c sB F F Fτ  are the nominal friction parameters, 1

uu  is the term 

designed to compensate for the non-parametric  uncertainty ( , )qiF q q�  and the 

term iδ constituted by the lower modules. The terms 1 1  and pc pvu u  are designed to 

compensate for the parametric uncertainty i
cF�  and i

vF� , respectively. The friction 

compensation is of the same form for all the joints, and hence for the ith joint the 

compensators ,i i
pc pvu u  and i

uu  are defined by 
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 (3.14) 

 

where ( )i T
n i riY q qζ = � ,  and iε , i

pnε  are positive control parameters. 

The stabilization of the first joint, using control law given by (3.12) , results in the 

uniformly ultimately boundedness of tracking error and thus the boundedness of the 

magnitudes of 1 1 and q q� �� . Since 1q��  is bounded, a compensator designed using saturation 

based robust control could be used to compensate for the effects of 1q�� . Thus the control 

torque 2τ  for the second joint would be given by the control law discussed in (Liu, 

2002) with an additional term 2
uu  to compensate for the effects of 1q�� and ( , )qiF q q� . 
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Similarly for the ith joint, we have control torque iτ  given by 
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 (3.16) 

 

Substituting  (3.16) into  (3.6) yields the closed loop expression for the ith joint as 

 
( )( ) ( )( )

( , )

i i
i ri i i ri i c pc i v pv

i
u qi i i i

M q M q Y q F u Y q F u

u F q q

λ

δ

+ = + + +

+ − −

� �� � �

�
 (3.17) 

 

where i mi iM I γ= . 
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Theorem 3.1: Given an n-DOF modular robot, with joint dynamics as given in (2.1) – 

(2.3) and the uncertainty defined by  (3.2) and  (3.4), the tracking error of each joint is 

uniformly ultimately bounded under the control law defined by  (3.16). The ultimate 

bound of the tracking error is determined by the non-parametric uncertainty and control 

parameters only, and it is not affected by the parametric uncertainty. 

Proof: 

A Lyapunov function candidate is defined as 

 21 1
2 2

T
i ri i iV M q k= + Ψ Ψ  (3.18) 

 

where 
0

1 ( )
t

T
i c i riF Y q q d

k
τΨ = − ∫� � , 

Since k and cF�  are constants, iΨ�  are given by ( )T
i i riY q qΨ = −� � . Differentiating  

(3.18) yields 

( , )
( )

( )( ) ( )( )

T
ri ri i i

i
i i ri u qi i i i T T

ri i i rii i
i c pc i v pv

V Mq q k

M q u F q q
q k Y q q

Y q F u Y q F u

λ δ

= + Ψ Ψ

⎛ ⎞− + − − +
⎜ ⎟= − Ψ
⎜ ⎟+ + +⎝ ⎠

� ��

�
� �� �

2

0

2

( )( ) ( )( )

( ( , ) ) ( ) ( )

( )( ) ( ( , ) )

i i
i i ri ri i v pv ri i c pc

t
i T

ri u qi i i i ri i c i ri

i i
i i ri ri i v pv ri u qi i i i

M q q Y q F u q Y q F u

q u F q q q Y q F k Y q q d

M q q Y q F u q u F q q

λ

δ τ

λ δ

= − + + + +

⎛ ⎞
+ − − − − ∫⎜ ⎟

⎝ ⎠

= − + + + − −

� �� �

�� � �

�� �

 

 

If i
riq ε≥  then, ( )( ( , ) ) ( , )

0

i ri
ri u qi i i i ri Fi qi i i i

ri

qq u F q q q F q q
q

δ ρ δ
⎛ ⎞
⎜ ⎟− − = − − +
⎜ ⎟
⎝ ⎠

<

� �
 

If i
riq ε<  then, 
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( )

( )
2

2

( , )

( , )

( , )

i
ri u qi i i i

ri
ri Fi qi i i ii

ri
Fi qi i i i rii

ri
Fi Fi rii

q u F q q

qq F q q

q F q q q

q q

δ

ρ δ
ε

ρ δ
ε

ρ ρ
ε

− −

⎛ ⎞
= − + +⎜ ⎟

⎝ ⎠

= − − +

≤ − +

�

�

�
 (3.19) 

 
4

1
4

1

( )( ) ( )

( )

i i
ri i v pv ri n vn pvn

n

i i
n vn pvn

n

q Y q F u q Y F u

F uζ

=

=

+ = +∑

= +∑

� ��

�
 

For ith joint, and 1, 2,3, 4n = , if i i
n pnζ ε> , 

 ( ) 0
i

i i i i n
n vn pvn n vn n i

n

F u F ζζ ζ ρ
ζ

⎛ ⎞
⎜ ⎟+ = − <⎜ ⎟⎜ ⎟
⎝ ⎠

� �  (3.20) 

If i i
n pnζ ε≤  

 

( )
i

i i i i n
n vn pvn n vn n i

n

i i
i i in n
n n n ii

pnn

F u F ζζ ζ ρ
ζ

ζ ζζ ρ ρ
εζ

⎛ ⎞
⎜ ⎟+ = −⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟≤ −⎜ ⎟⎜ ⎟
⎝ ⎠

�

 (3.21) 

 

Since the last term of  (3.19) and  (3.21) achieves a maximum value at 2i
riq ε≤  and 

2i i
jn pnζ ε≤  respectively, we have 

 
42

14 4

i ii
n pnFi

i i ri
n

V M q
ρ ερ ελ

=
≤ − + + ∑�  (3.22) 

 

From  (3.22), it can be concluded that a Lyapunov function can be found if only 
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4

1

4

i i i
Fi n pn

n
i

i i
r

M

ρ ε ρ ε

λ
=

⎛ ⎞+ ∑⎜ ⎟
⎝ ⎠> . 

Define 

( )
41 2

1
2i i i

ri ri Fi n pn i i
n

S q R q Mρ ε ρ ε λ
=

⎧ ⎫⎛ ⎞⎪ ⎪= ∈ ≤ + ∑⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

Then on the surface of S, S∂ , we have 

4

1
4i i i

Fi n pn
n

V ρ ε ρ ε
=

⎛ ⎞≤ − + ∑⎜ ⎟
⎝ ⎠

� . 

Denote T as the time for the solution trajectory to intersect the surface S∂ , then 

4

1
( ( )) ( (0)) 4i i i

ri ri Fi n pn
n

V q T V q Tρ ε ρ ε
=

⎛ ⎞⎛ ⎞− ≤ − + ∑⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

Hence 

( )
4

1

4 ( ( )) ( (0))ri ri

i i i
Fi n pn

n

V q T V q
T

ρ ε ρ ε
=

−
≤

⎛ ⎞+ ∑⎜ ⎟
⎝ ⎠

 

The boundedness of riq implies the boundedness of iq� and iq��  (Slotine and Li, 1991). 

 

Table 3-1. Parameters of the simulated system 

 Link 1 Link 2 Link 3 

Mass of link (kg) 8 5 4 

Length of link (m) 1 1 1 

Link inertia (kg-m2) 1.0 0.8 0.6 

Dist. to centre of mass (m) 0.5 0.5 0.5 

Rotor inertia (kg-m2) 0.4 0.2 0.1 

Gear reduction ratio  10 10 10 
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3.2 Simulation Results 

To study the effectiveness of the proposed distributed control law, fault detection 

and fault tolerant control methods, a 3-DOF serial robot manipulator, working on a 

horizontal plane with the following parameters, is used for the simulations: 

 

 
2 2

6 6

100 / , 1.5 / , 3.5 , 1 ,

100, 0.1, 0, 100, 1 , 0.1, 2, 1
i i ci si

Di i i i F

F s rad B N ms rad F Nm F Nm

K l I
τ

κ λ ε ρ ρ×

= = = =

= = = = Γ = = = =
 (3.23) 

 
The dynamic equations of the model are as given in Appendix B. The nominal 

parameters of the friction model are assumed as 
2 2ˆ ˆ ˆ1.2 / , 1 , 80 / ,i ci iB Nms rad F Nm F s radτ= = =  ˆˆ ˆ0.8 , 0.2, 0.5si i iF Nm lκ= = = . For 

simplicity, the same friction model and parameters were considered for all the three 

joints. For the simulations, the parameters of the manipulator are chosen as given in 

Table 3-1.  

The desired trajectories for the three joints are selected as 

sin( ) 0.5sin(2 )dq t t= − for 0 18s.t≤ ≤  The following controller parameters are used for 

the simulations 
2 2

1 2 3 4

2 2
1 2 3 4

1 2 3

100 / , 1.5 / , 3.5 , 1 ,

1, 80, 0.1, 2,

0.01, 0.01, 0.01, 0.01,

0.3 / , 1 , 0.7 , 20 / ,
0.5, 1.1, 1.5

i i ci si
i

i i
i i i i

p p p p

i i i i

F F F

F s rad B N ms rad F Nm F Nm

K

Nm s rad Nm Nm s rad

τ

λ ε ρ

ε ε ε ε

ρ ρ ρ ρ
ρ ρ ρ

= = = =

= = = =

= = = =

= = = =

= = =

 

The plots in Figure 3-1  shows the tracking error for each joints under the control 

law defined in  (3.16). 
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Figure 3-1. Position tracking errors of three joints 

 

 

Figure 3-2. Position error of the third joint with torque sensor ripples 
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Figure 3-3. Position tracking error of the first joint with torque sensor nonlinearity 
 

To study the tracking error variations sensor dynamics, simulations are carried out 

for different values of linearity and ripple factors of the torque sensor. The effect of 

ripple on tracking errors is studied, with the resulting error plot for third joint, as shown 

in Figure 3-2. The effect of nonlinearity on tracking error of the first joint is as shown in 

Figure 3-3. Since practical torque sensors have a delay in signal transmission, 

simulations were also carried with torque sensor delays. The tracking performance on 

first joint in the presence of delay in torque sensor is shown in Figure 3-4. The tracking 

errors for the other joints showed similar trends under the different values of ripple, 

nonlinearity and torque sensor delays. The controller was observed to be able to 

compensate for the errors introduced by the sensor dynamics. For larger time delays, it is 

seen that the tracking errors are higher due to the additional time lags introduced by the 

sensor delay. During simulations, it was observed that with higher gear ratio, the effects 

of torque sensor nonlinearities were minimal as expected. 
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Figure 3-4. Position error on first joint with torque sensor delay 
 

The obtained results prove the effectiveness of the joint-by-joint stabilization 

scheme for control of modular and reconfigurable robot. The model uncertainties 

associated with link and payload masses are compensated using joint torque 

measurement, and the remaining uncertainties including the dynamic coupling effects 

and joint friction are compensated by the decomposition based robust controller. The 

simulation results also demonstrate the robustness of the controller against dynamic 

effects of the torque sensor. 
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Chapter 4  

 

Fault Tolerant Control of Modular and Reconfigurable Robot 

 

Fault detection, isolation and fault tolerant control have recently been generating 

considerable interest in the control engineering community, in various fields of 

application. Aerospace and computer based systems are the two key areas where fault 

tolerance has shown its ever increasing importance. In robotics, its implementation in the 

field of space applications has attracted more research interests. A four level canonical 

architecture for fault tolerance is developed in (Chladek, 1990; Tesar, et al., 1990) and 

these levels are listed as  

• Dual joint actuators 

• Parallel structured modules 

• Redundant manipulators 

• Multiple cooperating arms 

In each of these levels, redundancy is incorporated to meet the demanding 

objectives of fault tolerance. 

Fault tolerant robots are needed which can effectively detect and adapt to software 

and hardware failures to avoid catastrophic failures at the higher system level, like 

aerospace or nuclear applications. Though, in general the mechanical structure of robots 

comprising of links and joints typically has the capability to move around one axis, 

physical redundancy can offer some fault tolerance capability. But this increases the size 

of the robot and the associated manufacturing cost. Hence, instead of redundant motors 

for a single joint, the robots have redundancy in degrees of freedom which allows 

multiple joint configurations for every end effector position. This would allow the robot 

manipulator to withstand joint failures without the complete loss of working range. A 

typical framework for robot fault detection is as shown in Figure 4-1.  
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Figure 4-1. Fault detection and fault tolerance framework 
For designing a fault tolerant control strategy for a robot manipulator, it is 

essential that detection or estimation of the fault signal is guaranteed. The fault signal 

might be due to an abrupt or incipient fault, or it might be a degradation or saturation of 

the actuators (Ting, et al., 1993). The control strategies are devised based on this 

information of the faults. Dynamic fault tolerance and fault detection systems that can 

monitor the robot and compensate the faults in real-time can contribute significantly to 

system reliability and safety. 

In this work, a decentralized fault tolerant control and fault detection schemes of 

modular robots are developed based on a joint-by-joint approach (Abdul and Liu, 2008a, 

2007). In the proposed fault tolerant control of MRRs, actuator degradation at each joint 

module is tolerated independently of the other modules and fault detection schemes. For 

the proposed fault detection that is run in parallel with the fault tolerant control 

algorithm, a threshold based comparison on joint velocity estimation error is used to 

indicate the occurrence of a fault at each module. The threshold is determined based on 

the estimation error bounds obtained during fault free operation of the robot system. A 

fault is declared when the estimation error exceeds this threshold. Since the proposed 

scheme is a joint by joint scheme, rather than a scheme taking into account the whole 

robot dynamics, it is ideal for fault detection in modular robots. Faults are detected and 
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corrective measures can be taken at the module level (Abdul and Liu, 2008a, 2008b). 

The addition or removal of a module will not affect the control of other modules, 

enhancing the modularity and repairability of the overall MRR system. The paper 

presents a robust adaptive control scheme that can maintain the required performance in 

the presence of actuator degradation at joints and can detect faulty joint modules so that 

they can be replaced.  This technique is different from most approaches which detect 

faults first and then use the information of detected faults in the operation of fault 

tolerant control. This can cause unknown transients due to the delay in the detection 

algorithm. The fault tolerant scheme proposed here is independent of the fault detection 

and does not rely on the fault detection information for the operation of fault tolerant 

control. This effectively avoids the chances of delay in fault tolerant control due to the 

delays caused by the detection algorithm. In the proposed fault tolerant control scheme, 

an adaptation law is used to friction parameters and the torque sensor related parameters. 

Each of the joint controllers does not require the motion states of other joints or link 

dynamics, and each joint is controlled independently from other joint modules, making it 

suitable for control of modular robots. 

4.1 Fault Tolerant Control Design 

In the fault tolerant control design, we consider the actuation fault represented by 

change in the actuator effectiveness factor and assume that both the position and torque 

sensors are fault free and that delays in sensors are negligible. 

The actual joint torques measured using torque sensors are given by 

 Ji i si iτ η τ μ= +  (4.1) 
 

where iη  and iμ  are sensor gain and offset, respectively, and siτ  denotes the torque 

sensor output signal. The dynamic equation (3.1) can then be rewritten as 

 

( , )mi i i i i i i i si i ti ciI q f q q l Kγ δ κ τ τ+ + + + =�� �                                   (4.2) 
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where i i iκ η γ= , i i il μ γ= , and tiK , ciτ  are the actuator effectiveness factor and 

commanded torque of the ith motor. If 1tiK = , the actuator is fault free, and 0tiK =  

indicates complete failure of the actuator. The aim of the controller is to tolerate the 

faults before the actuator effectiveness factor reduces to zero, i.e., before the complete 

failure of actuator.  

The model (4.2) can be rewritten in a more compact form 

( , , , ) ( , )i i i i si i i q i i ti ciY q q q P F q q Kτ δ τ+ + =�� � �                                           (4.3) 

where 

2( , , , ) ( ) exp( ) ( ) 1i i i i si i i i i i i si

T
i i i ci si i i

Y q q q q q sat q F q sat q

P M B F F l

ττ τ

κ

⎡ ⎤= −⎣ ⎦

⎡ ⎤= ⎣ ⎦

�� � �� � � � �
                       (4.4) 

where mIi i iM γ= . 

From (4.3) we have for the ith module 

( )
( )

1 1

1

( , , , ) ( , )

( , , , ) ( , )

ci ti i i i i si i ti i q i i

i i i i si i ti i q i i

K Y q q q P K F q q

Y q q q K F q q

τ τ δ

τ θ δ

− −

−

= + +

= + +

�� � �

�� � �
                             (4.5) 

with  

1 1 1 1 1 1 T

i ti i ti i ti ci ti si ti i ti iK M K B K F K F K K lθ κ− − − − − −⎡ ⎤= ⎣ ⎦  . 

Denote îθ  as the estimate of the parameter vector iθ . Then the uncertainties in joint 

parameters and actuator effectiveness factors are contained in the parameter estimation 

error iθ� , which is given by 

ˆ
i i iθ θ θ= −�                                                       (4.6) 

The joint-by-joint stabilization of the modular robot has been achieved using the 

distributed control approach based on joint torque sensing (Liu, et al., 2008). 

From (3.3) – (3.4) and definition of 1
tiK − , the following upper bounds can be defined: 

1
ti i DfiK δ ρ− ≤                                                              (4.7) 

1 ( , )ti q i i fqK F q q ρ− ≤�                                                       (4.8) 
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1 1 ( , )ti i ti q i iK K F q qδ ρ− −+ ≤�                                                    (4.9) 

The following signals are defined 

2

,

, 2
i i di vi di i i

ri i i i ai di i i i i

q q q q q q

q q q q q q q

λ

λ λ λ

= − = −

= + = − −

� � �
� �� � �� � �

                                    (4.10) 

where iλ  is a positive constant. 

The control law is defined as  

ˆ( , , , )ci i ai vi i si i Di ri fY q q q K q Uτ τ θ= − +                                       (4.11) 

and the adaptation law is defined as 

1ˆ ( , , , )T
i i i ai vi i si riY q q q qθ τ−= −Γ�                                        (4.12) 

where 

   2( , , , ) ( ) exp( ) ( ) 1i ai vi i si ai vi i i i i siY q q q q q sat q F q sat qττ τ⎡ ⎤= −⎣ ⎦� � �  

and iΓ  is a positive definite matrix and 0DiK > . The control term fU  is used to 

compensate for the term iδ  constituted of coupling effects from the lower modules and 

friction term ( , )q i iF q q� (Liu and Goldenberg, 1996a, Liu, et al., 2004). 

( )
( )

ri ri ri
f

ri ri

q q q
U

q q
ρ ε
ρ ε ε

⎧− >⎪= ⎨
− ≤⎪⎩

                                           (4.13) 

where ε  is a positive control parameter. 

From (4.11) and (4.6),  

( )
1

2

( , , , )

( ) ( , )

exp( ) ( )

( , , , )

ci i ai vi i si i i Di ri f

i ai i vi ci i q i i
ti

si i i i i si i i

i ai vi i si i Di ri f

Y q q q K q U

M q B q F sat q F q q
K

F F q sat q l

Y q q q K q U
τ

τ τ θ θ

κ τ δ

τ θ

−

= + − +

⎛ ⎞+ + + +
⎜ ⎟=
⎜ ⎟− + + +⎝ ⎠

+ − +

�

� �

� �
�

                         (4.14) 

Combining (3.1), (4.5) and (4.14), we have the closed loop equation as 

( )
( )

1

1( , , , ) ( , )

ti i ri i i ri i ri

i ai vi i si i Di ri f ti q i i i

K M q M q B q

Y q q q K q U K F q q

λ

τ θ δ

−

−

+ +

= − + + +

�

� �
                             (4.15) 
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Theorem 4.1: Given an n-DOF modular robot, with joint dynamics as given in (2.1) – 

(2.3), actuator fault defined by variations of tiK  in (4.3) and the uncertainty defined in 

(4.6) and (4.9)  the tracking error of each joint is uniformly ultimately bounded under 

the control law defined by (4.11). 

Proof:  

A Lyapunov function candidate is defined as 

1 21 1
2 2

T
ti i ri i i iV K M q θ θ−= + Γ� �                                              (4.16) 

Differentiating the above expression yields 

1 T
ti i ri ri i i iV K M q q θ θ−= + Γ�� �� �                                              (4.17) 

Since the unknown parameters iθ  is constant, we have 

ˆ
i iθ θ= ���                                                                   (4.18) 

Substituting (4.15) and (4.18) into (4.17) gives 

1

1 1 1

1

( , , , )

( , )

( , , , )

i ai vi i si i Di ri ti i ri
ri

ti i i ri f ti q i i ti i

ri i ai vi i si i i i

Y q q q K q K B q
V q

K M q U K F q q K

q Y q q q

τ θ

λ δ

τ θ

−

− − −

−

⎡ ⎤− − −
⎢ ⎥=
⎢ ⎥+ + +⎣ ⎦

− Γ Γ

�
�

�

�

                          (4.19) 

                       
2 1 2 1 2

1 1( , )
Di ri ti i ri ti i i ri ri f

ri ti q i i ri ti i

K q K B q K M q q U

q K F q q q K

λ

δ

− −

− −

= − − − +

+ +�
 

If riq ε≥ , combining (4.13) and (4.19) yields 

( )

2 1 2 1 2

1 1( , )

Di ri ti i ri ti i i ri

ri
ri ti q i i ti i

ri

V K q K B q K M q

qq K F q q K
q

λ

ρ δ

− −

− −

= − − −

⎛ ⎞
⎜ ⎟− − +
⎜ ⎟
⎝ ⎠

�

�
                           (4.20) 

2 1 2 1 2 0.Di ri ti i ri ti i i riK q K B q K M qλ− −< − − − <    

If riq ε< , 
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2 1 2 1 2

1 1

2 1 2 1 2 2

( , )

Di ri ti i ri ti i i ri

ri
ri ti q i i ti i

Di ri ti i ri ti i i ri ri ri

V K q K B q K M q

qq K F q q K

K q K B q K M q q q

λ

ρ δ
ε

ρλ ρ
ε

− −

− −

− −

= − − −

⎛ ⎞
+ − − −⎜ ⎟

⎝ ⎠

≤ − − − − +

�

�                    (4.21) 

Since the last two terms of  (4.21) achieves a maximum value at / 2r iq ε= , we have 

( )2 1 2 1 2 4Di ri ti i ri ti i i riV K q K B q K M qλ ρε− −≤ − − − +�                          (4.22) 

From (4.22), it can be concluded that a Lyapunov function can be found if only 

( )( )1 14ri Di ti i ti i iq K K B K Mρε λ− −> + + . 

Define ( ) ( )( ){ }1 2 1 12ri ri Di ti i ti i iS q R q K K B K Mρε λ− −= ∈ ≤ + +  

Then on the surface of S, S∂ , we have 4V ρε≤ −� . 

Denote T as the time for the solution trajectory to intersect the surface S∂ , then  

( )( ( )) ( (0)) 4ri riV q T V q Tρε− ≤ − , and 

( )4 ( ( )) ( (0))ri riT V q T V q ρε≤ −  

The boundedness of  T is thus proved.  And hence the uniform ultimate boundedness of 

riq  is proven. 

The boundedness of riq  implies the boundedness of iq� and iq�� , since the definition 

of  riq  can be viewed as a stable first order differential equation in iq� , with riq  as the 

input. Thus the boundedness of riq  implies the boundedness of  iq�  and iq��  and therefore, 

of  iq  and iq�  (Slotine and Li, 1991). 

Since the controller guarantees the uniform ultimate boundedness, and the 

capability of the controller in handling faults that introduce larger errors are guaranteed. 

For any initial condition the tracking error is uniformly ultimately bounded.  The 

tracking error approaches and stays within the bound in a finite time. 
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4.2 Fault Detection 

In recent decades, the model based analytical redundancy method has received 

significant attention (survey papers by Frank 1990, Gertler 1988, Isermann 1984 and 

books by Patton et al. 1989, Gertler 1998 and Chen et al. 1999). The advantage of the 

analytical redundancy technique lies in the fact that the required redundancy is generated 

by powerful information processing approaches instead of additional physical hardware 

in the plant. The comparison between the system’s actual measurement and its 

estimation generated by a mathematical model will generate the residual signal. These 

residual signals are normally zero or with in threshold and become non-zero or exceed 

the threshold limits as a result of faults. The fault detection scheme based on analytical 

redundancy is as illustrated in Figure 4-2, where u(t) and y(t) are the system input and 

output respectively. The decision making process usually involves the selection of 

thresholds for the generated residuals. The threshold selection problem has been 

investigated in (Walker, 1989, Walker and Gai, 1979) and by calculating the minimum 

detectable fault in the frequency domain (Ding and Guo, 1998). The advantages of 

adaptive threshold over fixed thresholds have also been researched upon (Emami-Naeini 

et al., 1988, Frank, 1997). 

 

 

Figure 4-2. The model-based analytical redundancy approach 
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4.2.1 Fault Detection Scheme 

In the design of a fault detection method, it is assumed that no two faults occur at 

the same instant, which is a reasonable assumption normally made in reliability 

engineering. In this work it is assumed that only one fault occurs at each joint at a 

specific time instant. Then an actuator fault occurring at each joint can be found using an 

observer based scheme where actual joint velocity of each joint is compared against the 

estimated joint velocity.  

The dynamical equation of the thi  joint module of a modular robot is given by 

( )
( )

2
mI exp( ) ( )

( , )

i i i i c s i i

q i i i i Ji i

q F F F q sat q

F q q Bq

ττ γ

δ τ γ

= + + −

+ + + +

�� � �

� �
                           (4.23) 

The nominal values of friction model parameters can be estimated through offline 

techniques. The bound of velocity estimation error can be found during fault free 

operation of the system. 

The velocity estimation error is defined as 

i i ie v q= − �                                                               (4.24) 

where iv  denotes the velocity estimate.  

The velocity estimate can be obtained from the dynamical equation of the thi  joint 

given by (4.23) and the nonlinear observer proposed in (Xian, et al., 2004) to guarantee 

error convergence in the presence of uncertainties. The following velocity estimate is 

obtained by integrating the acceleration term from expression (4.23): 
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with the observer iL  given by 
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( )1 2 m
0 0 0

( ) ( ( )) I
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1 20, 0K K> >  and  0ε  is a positive parameter. The term iU  is used to compensate for 

the term iδ  constituted by the effects of lower 1i −  joint modules. From (4.25) it is 

evident that to estimate velocity of each joint module, no information on other joints are 

required other than the bounds defined in (3.3) – (3.4). The term iL  is used to reduce the 

error between the estimated and measured velocity signals, and iL  by itself cannot be 

interpreted as a velocity observer.  

Estimation error ie  obtained from estimated and measured velocities is used as the 

residue for fault detection with a threshold ifε , which is a positive value obtained from 

fault free operation of the system.  

A fault is declared if i ife ε> , i.e., the estimation error exceeds the selected 

threshold. The threshold can be set based on the various trials conducted in absence of 

faults. The time derivative of (4.24) is given by 

i i ie v q= −� � ��                                                                   (4.29) 
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Theorem 4.2: Given an n-DOF modular robot, with joint dynamics as given in (4.23) 

and an observer defined in (4.27),  then for each joint, the velocity estimation error 

given by (4.24) is uniformly ultimately bounded during the fault free operation of the 

modular robot.  

Proof: 

For stability analysis the Lyapunov function candidate is defined as 

21
2 iV e=                                                               (4.31) 



 

     43

Differentiating (4.31) yields 

i iV e e=� �                                                                  (4.32) 

Substituting (4.30) into (4.32) yields 
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Thus if 0ie ε≥ , then using (4.28), the expression V�  in (4.33) becomes 
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If 0ie ε< , then using (4.28), the expression V�  in  (4.33)becomes 
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The expression 
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( ) ( )( )22
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From the above expression it can be concluded that a Lyapunov function can be found if 

only  
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Then on the surface of  S , S∂ , we have  

( ) ( )( )2
2 m 0 mI 4 IFi i i Fi i iV Kρ γ ε ρ γ≤ − −� . 

Denote T  as the time for the solution trajectory to intersect the surface S∂ , then 
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Thus the boundedness of the 

velocity estimation error ie  is proved. 

4.3 Simulation Results 

To study the effectiveness of the proposed fault control and fault detection 

scheme, a 3-DOF serial robot manipulator, working on a horizontal plane with the 

following parameters, is used for the simulations: 
2 2

6 6

100 / , 1.5 / , 3.5 , 1 ,

100, 0.1, 0, 100, 1 , 0.1, 2, 1
i i ci si

Di i i i F

F s rad B N ms rad F Nm F Nm

K l I
τ

κ λ ε ρ ρ×

= = = =

= = = = Γ = = = =
                        (4.34) 

Table 4-1. Parameters of the simulated system 

 Link 1 Link 2 Link 3

Mass of link (kg) 8 5 4 

Length of link (m) 1 1 1 

Link inertia (kg-m2) 1.0 0.8 0.6 

Dist. to centre of mass (m) 0.5 0.5 0.5 

Rotor inertia (kg-m2) 0.4 0.2 0.1 

Gear reduction ratio  10 10 10 

 

The dynamic equations of the model are as given in Appendix B. The nominal 

parameters of the friction model are assumed as 
2 2ˆ ˆ ˆ1.2 / , 1 , 80 / ,i ci iB Nms rad F Nm F s radτ= = =  ˆˆ ˆ0.8 , 0.2, 0.5si i iF Nm lκ= = = . For 
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simplicity, the same friction model and parameters were considered for all the three 

joints. For the simulations, the parameters of the manipulator are chosen as given in 

Table 4-1.  

 
Figure 4-3. Tracking errors under actuator faults(at t = 7 s on first joint and t =15 s 

on third joint) 
 

4.3.1 Fault Tolerant Control 

The desired trajectories for the three joints are selected as 

sin( ) 0.5sin(2 )dq t t= − for 0 60s.t≤ ≤  The following controller parameters are used for 

the simulations 
2 2

6 6

100 / , 1.5 / , 3.5 , 1 ,

100, 0.1, 0, 100, 1 , 0.1, 2
i i ci si

Di i i i

F s rad B N ms rad F Nm F Nm

K l I
τ

κ λ ε ρ×

= = = =

= = = = Γ = = =
 

 

The actuator effectiveness factor for first joint module was changed from unity to 

0.7 at 7st =  and the corresponding value for third module was changed from unity to 

0.4 at 15st = . The occurrence of fault is detected by the fault detection algorithm and 

the fault is tolerated by the control algorithm. The fault tolerant control scheme ensures 
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that the tracking error does not diverge even under a change in actuator effectiveness 

factor.  This is depicted in Figure 4-3. 

 
Figure 4-4. Changes in parameter 1

iθ  under fault occurrence 

 

Figure 4-3 shows the tracking errors for all the three joints, under the above 

mentioned actuator faults. The variations in actuator effectiveness factors are evident in 

the appreciable tracking error changes for the first and third joint. But along time the 

tracking error reduces despite the deviation in actuator effectiveness factor. 

The presence of actuator faults causes variations in the parameter vector iθ . The 

changes in parameter 1
iθ , the first parameter of vector iθ , with the decrease in actuator 

effectiveness factor on the first and third joints, are shown in Figure 4-4. There are 

substantial changes in tracking error and parameter estimates as a result of the actuator 

degradation occurring at those specific time instants. The control torque on first joint 

during a fault-free and faulty operation is shown in Figure 4-5.  
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Figure 4-5. Commanded torque at first joint 

 

4.3.2 Fault Detection 

For the 3-DOF modular robot, simulations were carried out to study the 

effectiveness of the fault detection technique. After various trials under absence of 

faults, the threshold values ifε  were chosen as 0.004, 0.008 and 0.01 for the first, second 

and third joints, respectively. The observer gains for all three joints were chosen as 

1 20K =  and 2 10K = . 

The obtained results are as shown in Figure 4-6 and Figure 4-7, showing the 

velocity estimation errors of the first and third joint modules, respectively. As expected 

the velocity estimation error exceeds the pre-defined threshold values at 7st =  for the 

first joint and 15st =  for the third joint, as a result of the introduced change in their 

actuator effectiveness factors. 
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Figure 4-6. Velocity estimation error on the first joint with actuator fault at t = 7 s 

 

 
Figure 4-7. Velocity estimation error on third joint, with actuator fault at t = 15 s 
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Though the effect of sensor dynamics does not adversely affect the proposed fault 

tolerant and fault detection scheme, it is worth noting the effects caused by sensor 

dynamics, namely, sensor delay and sensor ripples. At this juncture it must be pointed 

out that the effects of sensor delay would cause a delay in the fault detection scheme, 

i.e., the velocity estimation error exceeds the threshold at a later time instant than the 

case with zero sensor delay. The overall velocity estimation error plot with time delay in 

torque sensor is similar to that in Figure 4-6, except that the presence of sensor delay 

would cause a delay in the detection scheme.  

Depending on the priority of the task under execution and severity of the fault, a 

decision can be made to immediately abort the process without causing further damage 

or to finish the task in progress. To give an indication of the severity of fault at each 

joint, ‘health’ of each joint needs to be monitored continuously. The velocity estimation 

error indicates the severity of the deviation of actuator effectiveness factor. With larger 

deviations of effectiveness factor from unity, the velocity estimation error would 

correspondingly increase. The information could be used for the maintenance of the 

system. 
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Chapter 5  

 

Experiments 

 

The simulations have demonstrated the effectiveness of the proposed control 

schemes, and experiments were done to further substantiate the claims as presented in 

this chapter. The experiments have also demonstrated how applicable these control 

schemes were to practical applications. 

5.1  Experimental Setup 

The experimental setup involves a 3-DOF modular and reconfigurable robot, and 

associated hardware and software, that have been developed in our laboratory. The 

mechanical components include three reconfigurable joints and mechanical links. The 

joint has several major components that will be outlined.  The components will be 

divided into two major categories, the joint hardware and the joint software and 

communication.  The following sections will give a brief description of each component. 

Robotic manipulators require actuators with high torque capability at low 

velocities, and hence many electrically actuated robots use a gear transmission to 

increase the torque and decrease the drive speed. Among gear transmissions, harmonic 

drives have the advantage of being compact and light-weight, together with high gear 

ratio and minimal backlash.  

Developed in 1955 primarily for aerospace applications, harmonic drives are high-

ratio and compact torque transmission systems that have enjoyed wide industrial 

applications. This mechanical transmission employs a continuous deflection wave along 

a non-rigid gear to allow for gradual engagement of gear teeth. Because of this gear-

tooth meshing action, harmonic drives can deliver high reduction ratios in a very small 

package. 
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Every harmonic drive consists of three components as illustrated in Figure 5-1. 

The wave generator is a ball bearing assembly with a rigid, elliptical inner race and a 

flexible outer race. The flexspline is a thin walled flexible cup with small, external gear 

teeth around its rim. The circular spline is a rigid ring with internal teeth machined along 

a slightly larger diameter than those of the flexspline. When assembled, the wave 

generator is nested inside the flexspline, causing the flexible part to adopt the elliptical 

profile of the wave generator, and the external teeth of the flexspline to mesh with the 

internal teeth of the circular spline. 

 

 

Figure 5-1. The components of harmonic drive transmission 
 

Since the harmonic drive has three rotational ports, by using different 

combinations of rotations on these parts, numerous differential gearing functions and 

reduction ratios can be achieved. In this configuration, the circular spline is fixed and a 

low-torque, high-speed motor is used to drive the wave generator to produce a high-

torque, low-speed rotation on the flexspline. 

The harmonic drive displays superior performance features as compared to 

conventional gear transmissions (Taghirad, 1997). These performances are as noted: 

• High torque capacity 

• Light weight and compact 

• Zero backlash 

• High efficiency 

• Nonlinearity 
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5.1.1 Control System Architecture 
 

Modular Joint 1 Modular Joint 2 Modular Joint 4 

Supervisor Controller 

CAN Bus 

Modular Joint 3

Torque sensor 

Motor & 

Gearhead 

Brake 

Encoder 

Driver 

Module Controller 

Torque sensor 

Motor & 

Gearhead 

Brake 

Encoder
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Brake 

Encoder 
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Brake 

Encoder

Driver 
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Figure 5-2. Control system architecture for modular robot system 
The implemented control system architecture is shown in Figure 5-2. The 

CANOpen protocol is adopted on the supervisor, communication and module level. Each 

of the modular joints is comprised of DSP motion controller, motor drive, torque sensor, 

harmonic drive, position encoder, electric motor and associated circuitry. 

5.1.2 Hardware 
 

• Motor: Moog brushless DC motor model BN-42-33EU-03.  The motor has a 

peak torque of 8.82 Nm, a rated speed of 4710 RPM, a rated torque of 1.42 

Nm and consumes a rated power of 697W.   

• Gear: HD Systems harmonic drive CFS-32-100-2A-GR-IV-SP-A1228.  The 

gear has a ratio of 101:1, a rated torque of 137 Nm a max momentary torque 

of 647 Nm and a maximum input speed of 4800 RPM. 

• Encoder: Torque Systems HS15-05/05-2000-0-04-T5-01.  The encoder has a 

resolution of   up to 5000 counts per revolution.  The input voltage is 5 to 26 

volts DC with a frequency of 500 KHz. 
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• Power Supply: Sorenson model DCS 80-37E.  The power supply is capable 

of a voltage of 0-80, and amperage of 0-37.  The input: 190-250 VAC, three 

phase, 14A typical, 47-63 Hz. 

• Joint Torque Sensor: The strain gauges are from Kyowa Electronic 

Instruments model KFG-1-120-D16-11.  The gauges are 1mm long with a 

resistance of 120Ω.  The gauges have an excitation of +/- 5V and can 

produces up to 20mV output. 

• Amplifier: Phoenix Systems, model PN5603007. Strain Gage amplifier 

supports strain gages/load cells with resistances from 120 to 20,000 ohms. It 

includes 1000 V, 3-way galvanic isolation between power supply, input, and 

output circuits. Module filters and conditions signals to eliminate unwanted 

signal noise with DIP switch selectable cutoff frequencies of 30 or 5000 Hz. 

Outputs are provided for voltage (0 to 10, +/-10, 0 to 5, or +/-5 V), and 

current loop (4 to 20 mA) operation. 

• Link: The links are 34 cm long  and designed to carry a payload or the 

electronics of the succeeding joints in order to create a torque signal to 

feedback to the controller to test to see if the control law is effective. 

5.1.3 Electrical System Architecture 

The overall electrical system architecture is shown in Figure 5-3.  The personal 

computer (PC) is used to program the digital signal processor (DSP) board, which is a 

distributed controller.  Once the program is downloaded into the DSP board, it is capable 

of controlling the driver, which drives the motor.  The motor turns the gear head and 

produces two feedbacks, an encoder for position as well as the torque sensor.  The 

encoder is a digital signal and is sent to the driver.  The driver uses the position signal to 

calculate the velocity.  These two pieces of information are fed back to the DSP board 

via a CAN bus which is a high speed communication network device.  The DSP also 

receives the analog signal from the amplifier which is necessary to boost the weak 

torque signal into the +/-3V range that the DSP board needs to do the analog to digital 
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conversion.  The DSP board now has the torque signal, the position and velocity signals 

and is able to calculate how much torque to send to the driver. 

5.1.3.1 Driver 
The driver selected for this experimental setup is from Elmo Motion Control.  The 

drive is a Cello digital servo drive.  The driver is capable of doing position, velocity and 

current control.  This unit was selected because the current loop is open, so it is possible 

to program a current control law and implement it with this driver.  The drive has a 

standard serial port, RS232 and a Controller Area Network (CAN) communication port 

available.  For the purposes of the MRR project, only the CAN communications are 

necessary. 

5.1.3.2 DSP Board 
The DSP board serves as a distributed controller.  For the MRR project, there 

would be a DSP board on each joint, which would be capable of controlling each joint in 

a distributed manner.  The DSP is responsible for controlling the joint in real-time.  The 

communication from the PC to the DSP board is carried out through the RS232 COM 

port.  Technosoft provides software that is capable of programming the control law 

which is desired onto the DSP board.  The software programming language is C. 

5.1.3.3 CANopen Protocol 

In order to ensure timely control, it is necessary to have high speed communication 

between the DSP board and the driver.  This is accomplished by using the CAN bus and 

a CANopen protocol.  The CANopen protocol has one master, in this case the DSP 

board, and any number of slave nodes.  For the purposes of this experiment, the only 

slave node needed is the motor drive.  The overall communication architecture is shown 

in Figure 5-3.  The CANopen bus speed can be set as high as 1 Mbps, for a single joint 

this speed is not necessary.  The speed that was used was 500 kbps.  The limiting factor 

in determining the speed at which the joint is commanded was determined by the driver.  

The driver is designed to be a position control but had an option to keep the torque loop 

open.  This allows for a control law to be executed outside of the driver, which is 

desirable for the research on the MRR.  The drawback of this feature is that the drive 
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only reads the CAN bus torque commands in its processor idle loop.  The processor idle 

loop is statistically read every 1.5 ms.  While it is possible to broadcast torque 

commands more frequently, based on the bus speed, the DSP speed, it will not ensure 

that the drive will execute this command.  Therefore the control law is set to send a 

command to the drive every 2 ms.  This is the shortest amount of time which guarantees 

a consistent execution.   

 

Figure 5-3. Electrical communication 
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5.1.3.4 Sensors 

Two sensors are used in the experiment.  There is the joint torque sensor, and the 

position sensor, i.e., the incremental encoder.  The incremental encoder is used for two 

purposes.  The first is to measure the position.  This procedure is fairly straightforward.  

The encoder is electrically wired to the DSP and there is a subroutine on the Technosoft 

DSP board that increments (or decrements depending on the direction of rotation) a 

register as the motor shaft rotates.   The torque sensor is an analog signal.  In order for it 

to be used in the control algorithm, it must be converted to a digital signal.  The 

conversion from analog to digital is also a subroutine supplied by the Technosoft DSP 

board.  The board is capable of converting sixteen different channels.  Since this 

application requires only one channel, the other 15 channels are used to over sample the 

signal.  Over sampling the signal and averaging the result dramatically reduces the 

analog to digital conversion (ADC) noise as seen in Figure 5-4 and Figure 5-5. 

 

Figure 5-4. Unfiltered ADC signal 

 

Figure 5-5. Filtered ADC signal 

 

5.1.3.5 Velocity Estimation 

The control law requires the velocity of the joint to be known.  A tachometer can 

be used to directly measure the velocity, but there is not one available in this 

experimental setup.  In order to determine the velocity the signal from the position 

encoder is differentiated at each time step.  At very low speeds this method can be 
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inaccurate.  The definition of very low speed depends on the resolution of the encoder.  

When only a few pulses are being measured in each time step, then partial increments of 

the encoder are lost and the result is a loss of accuracy in velocity measurement. 

Liu et al. (2004) proposed a method to estimate the velocity to overcome this 

problem.  In the proposed method, if the encoder does not increment by a set number of 

pulses, or the time does not change by a pre-determined amount, then the velocity will 

remain the same.  The resulting velocity is experimentally demonstrated to be more 

accurate then by directly computing the velocity at each time step.  The method also 

allows the tuning of the estimation parameters in order to trade off the accuracy vs. the 

time delay.   

5.1.4 Mechanical Setup 

The 3-DOF modular robot is shown in Figure 5-6.  Each joint is designed such that 

it can be rotated by 90 degrees.  This is part of the reconfigurable characteristics of the 

joint.  The link was designed to be able to be easily removed and reconfigured to two 

positions; the position shown in Figure 5-6 as well as a configuration shown in Figure 

5-7.  In the second position the weight at the end because of other joints and payload will 

give the maximum amount of torque on the base joint.  In all of the experiments 

conducted for this work, the joint was configured exactly as seen in Figure 5-6 or Figure 

5-7. 

5.1.5 Software 

The software components include the interfacing programs, DSP programs, 

controller implementation, communication software, etc. 

For transfer of data from motion controller to the supervisory computer, a logger 

module working on CAN was implemented. The logged data can be retrieved at the end 

of each experiment. The flow charts of the software modules can be found in Appendix 

C. 
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Figure 5-6. A modular and reconfigurable robot system – configuration 1 
 

 

Figure 5-7. Modular and reconfigurable robot - configuration 2 
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Table 5-1. Parameters of the system 

 Link 1 Link 2 Link 3 

miI  2.5e-4 3.46e-5 3.46e-5

iλ  85 85 70 

Fiρ   0.01 0.02 0.02 

iε  0.05 0.1 0.1 

ik  0.0005 0.0001 0.001 

iB  0.006 0.00124 0.00124

ciF  0.2558 0.025 0.025 

iFτ  15 15 15 

siF  0.34 0.027 0.027 

    

 

5.2 Results for Torque Sensor based Control 

The 3-DOF modular robot is configured as shown in the Figure 5-6. The 

distributed control law given in (3.16) is applied to this system represented by (2.1)-

(2.3). The reference trajectory for the first joint was chosen as  

   ( )1 sin(4 / 2 ) 0.5sin(8 / 2 )dq A t tπ π= −  for 0 20s.t≤ ≤   

The amplitude of the reference trajectory was 92A radπ= . And for second and 

third joints the trajectories were chosen as 

2 1
2 40

1 cosd
tAq π

⎛ ⎞⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
= −  for 0 20s.t≤ ≤  

Amplitude of reference trajectories for second and third joints were chosen to as 

125A radπ= . The reference trajectories are as shown in Figure 5-8. 

The controller parameters were chosen as in Table 5-1. 
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Figure 5-8. Trajectories for the three joints 
 

The output plots for the robot configured, as in Figure 5-6, are as shown in Figure 

5-9 to Figure 5-12. The tracking errors at the three joints are as shown in Figure 5-9 - 

Figure 5-11. Three different cases are studied: with no payload, with payload of 10N 

from beginning of the trial, and payload added at 7t s=  (approx). 
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Figure 5-9. Position tracking error at three joints with MRR in Configuration 1 (No 
payload) 
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Figure 5-10. Position tracking error at three joints (MRR in Configuration 1, 
payload added at t =7s) 
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Figure 5-11. Position tracking error at three joints with MRR in Configuration 1 
(payload at t = 0 s) 

 

From the above plots it is evident that addition of payloads does not cause 

deterioration in tracking errors. Hence the effectiveness of controllers in quickly 

adapting to payload changes is proved. 

The commanded torque at the three joints, for the case with no payload, is as 

shown in Figure 5-12. 
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Figure 5-12. Commanded torque at three joints of MRR system (Configuration 1) 
 

The same controller was used for tracking control of MRR, configured as in Figure 

5-7. The output plots for the three cases considered are as in Figure 5-13 - Figure 5-15. 
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Figure 5-13. Position tracking error at three joints, with no payload (MRR in 
configuration 2) 
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Figure 5-14.  Position tracking error at three joints with payload at t = 0 s (MRR in 
configuration 2) 
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Figure 5-15. Position tracking error at three joints with payload added at t = 7 s 
(MRR in configuration 2) 

 

From Figure 5-9 - Figure 5-15, it can be seen that the tracking performance are quite 

similar for MRR working in either configurations, with or without payload. The 

controller is adaptive to various configurations of MRR, and controller re-tuning was not 

necessary to achieve the tracking performance. 
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5.3 Results for Decentralized Fault Tolerant Control 

The desired trajectory of the joints are selected as 

   ( )sin(8 / 2 ) 0.5sin(16 / 2 )dq A t tπ π= − for 0 20s.t≤ ≤   

The amplitude of the reference trajectory 0.2A rad= . The nominal parameters 

are chosen as ˆ 0.9iκ = , ˆ 0.2ciF Nm= , ˆ 0.002 /iB Nms rad= , 2 2ˆ 0.05 /iF s radτ = , 

2 2ˆ 0.1 /siF s rad=  and ˆ 0.1il = . The motor rotor inertia is obtained from the data sheets as 

20.00025 Kg m and the gear ratio of the harmonic drive is 101γ = . The controller 

parameters are chosen as 0.05DiK = , 40iλ = , 6 6200I ×Γ = , 0.4ρ = , 0.4ε = , 0 0.1ε =  and 

0.1Fiρ = . The observer gains were chosen as 1 30K =  and 2 20K = . 

The experiments for fault tolerant control are conducted for two different cases: 

fault free operation and a fault occurring at 4st =  and 6st = . From the fault free 

operations the threshold value for velocity estimation error was fixed to be 0.09 rad/s 

and 0.02 rad/s for first and third joints respectively. The tracking error obtained under 

the fault free operation for both the MRR configurations are as shown in Figure 5-16 - 

Figure 5-17. The actuator fault is introduced by changing the actuator effectiveness 

factor from unity to 0.5 at 4st =  for first joint and from unity to 0.3 at 6st =  for third 

joint. The experiments are conducted for MRR in both configuration 1 and configuration 

2. The obtained results are as shown in Figure 5-18 – Figure 5-23.  



 

     70

 

Figure 5-16. Joint position error at three joints (fault free operation, MRR in 
Configuration 1) 
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Figure 5-17. Joint position error at three joints (fault free operation, MRR in 
Configuration2) 
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Figure 5-18. Joint position error at three joints (fault occurrence at t = 4 s and t = 6 
s, MRR in Configuration 1) 
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Figure 5-19. Joint position error at three joints (fault occurrence at t = 4 s and t = 6 
s, MRR in Configuration 2) 

 

In Figure 5-18 and Figure 5-19, the tracking errors occurring due to change in 

actuator effectiveness factor is shown. The tracking error shows a change at the instance 

of fault occurrence. It is seen that despite the change in actuator effectiveness factor, the 
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action of the fault tolerant control law ensures the position tracking error does not 

diverge. This guarantees the performance of the system does not deteriorate due to the 

changes in actuator effectiveness factor. 

 

 

Figure 5-20. Commanded torque for three joints (MRR in Configuration 1) 
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Figure 5-21. Changes in parameter 1
iθ  under fault occurrence 

 

In Figure 5-20 and Figure 5-21, the commanded torque signal for all the three 

joints are shown, with MRR in configuration 1, and changes in the first parameter 1
iθ  in 

vector iθ  . The variations in the parameter vector with decrease in actuator effectiveness 

factor can be seen in the above plot. 

Though both the changes in payload and actuator effectiveness factor can result in 

parameter deviations and changes in tracking error, the payload changes are clearly 

distinguishable when used along with the torque sensor readings. The payload changes 

are recorded by the changes in torque sensor readings. Thus actuator faults can be easily 

differentiated from the payload changes. 

5.4 Results for Fault Detection Scheme 

In Figure 5-22 and Figure 5-23, the velocity estimation errors occurring at first and 

third joints due to change in actuator effectiveness factor is shown. The velocity 
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estimation error shows a significant change at the instance of fault occurrence. The 

actuator fault occurrence at 4st =  and 6st =  causes the velocity estimation error to 

exceed the chosen threshold value. The data are collected for MRR in configuration 1. 

 

 
Figure 5-22. Velocity estimation error with actuator fault at first joint (fault 

occurrence at t = 4 s) 
 

The tracking error plots obtained using the two controllers can be compared, the 

distributed controller given by (3.16) and the fault tolerant controller given by (4.11) 

working under a fault free state. The error plots seen in Figure 5-9 and Figure 5-13 are 

seen to be quite comparable to the results in Figure 5-16 and Figure 5-17 obtained from 

the fault tolerant controller. The essential difference between the two controllers would 

be the robust approach used in controller (3.16) compared to the fault tolerant controller 

in (4.11) which uses an adaptive law. 
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Figure 5-23. Velocity estimation error with actuator fault at third joint (fault 

occurrence at t = 6 s) 
 

5.5 Discussions 

A distributed control technique based on joint torque sensing is used for the 

control of modular and reconfigurable robot. The use of joint torque sensors offers a 

much quicker adaptation to payload changes, and hence better performance during such 

scenarios. The controller tracking errors were found to be within acceptable limits under 

payload variations. The tracking performance was studied for different configurations of 

the modular robot. The modularity offered by the control technique allowed 

reconfiguration of the 3-DOF robot, without controller re-tuning to achieve good 

tracking performance. The tracking performance of the modular robots under 

reconfigurations and payload variations, demonstrated the effectiveness of the 

distributed control strategy for the control modular and reconfigurable robots. 

An actuator fault tolerant control method and a fault detection scheme for modular 

and reconfigurable robot with joint torque sensing have been implemented. Fault 
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tolerance and fault detection at each joint module are carried out independently of the 

other joints, i.e., the controller at each joint does not require motion states of the other 

modules. This modular approach enables fault tolerant control and fault detection at 

individual modules, without affecting the control of other joints. Since the fault tolerant 

control is independent of the fault detection scheme, any delay caused in detection 

scheme does not affect the fault tolerant control action. The actuator effectiveness 

factors, torque sensor gains and offsets are incorporated into a parametric dynamical 

model formulation for each joint module of the robot. Based on this model formulation, 

a control scheme is designed for compensating the parametric uncertainties including the 

actuator effectiveness factors, torque sensor gains and offsets. Experimental results have 

confirmed the effectiveness of the proposed fault tolerant control and fault detection 

schemes. 
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Chapter 6  

 

Conclusions and Future Work 

 

6.1 Conclusions 

The purpose of this thesis was to design and implement modular control algorithm, 

ideally suited for the control of modular and reconfigurable robots. The thesis also 

covered under its preview, a modular fault tolerant and fault detection strategy that can 

detect and compensate faults at module level. The effectiveness of the techniques was 

demonstrated on a 3-DOF modular and reconfigurable robot system. 

A joint torque sensor based robot control avoids the requirement of link dynamics 

in the design of control law, and hence lessens the complexity of the control 

methodology. In addition the control law did not require the motion states of other joints. 

The distributed control law was ideal for a modular robot setup due to its joint-by-joint 

control nature. Simulations verified the robustness of the controller against torque sensor 

dynamics. 

A modular fault tolerant control method was designed based on the joint-by-joint 

control technique. This enabled the fault tolerance to be achievable at each module, 

independent of the other modules. The use of joint torque sensor in the design 

methodology eliminated the requirement of link dynamics for the control, and hence 

made the control law computationally simpler.  Since the torque sensor gains and offsets 

can change with temperature and other factors, uncalibrated torque sensor signals are 

used in the control law. A fault detection scheme was devised based on an error signal 

obtained from measured velocity and an estimated velocity signal. A threshold based 

procedure was used to determine the occurrence of faults. Though the velocity signal 

was sensitive to noise, the fault detection scheme still gave good results. 

A comparison of the two control approaches showed that a comparable tracking 

performance is obtained under both techniques. The performance of the distributed 
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control law was compared to the fault tolerant controller under a fault free operating 

condition. While both controllers are operating under a distributed control strategy, one 

controller uses a decomposition based controller to achieve tracking performance; the 

other controller incorporates an added fault tolerant capability using a parameterization 

based on actuator effectiveness factor.  

The experimental result shows the presence of high frequency signals in the output 

waveforms. This is mainly due to the vibration setting in from the base joint of the 

robot. But the good tracking performance obtained confirms the effectiveness of the 

proposed control laws, even under the effect of vibrations at the base joint. 

The following conclusions could be drawn based on this work: 

• Employing a joint torque sensor provides a new solution to the 

distributed control of modular and reconfigurable robots 

• Joint by joint stabilization allows addition and removal of modules 

without the need for controller retuning 

• In the discussed control law, the dynamic coupling and unmodeled 

dynamics of the system are compensated using decomposition-based 

robust controller 

• The joint-by-joint control mentioned above enables a new modular 

approach for fault tolerance of modular and reconfigurable robots. 

• The fault tolerant control law discussed allows fault tolerance at each 

module to be achieved independent of other modules. 

• Since the fault tolerance and fault detection scheme is based on the 

above mentioned joint-by-joint control approach, the schemes do not 

require computation of link dynamics. 

• The parameterization of torque sensor signals based on gain and offset 

allows the use of uncalibrated torque sensor signals in the control law. 

6.2 Future Work 

A more complete model of the joint can be used in design of controllers. The 

model of harmonic drive and study on its flexibility will improve the performance of the 
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joint. The assumption on the rigidity of the joint can be removed to obtain a more precise 

mathematical model of the joint. This would involve the use of flexible joint robot model 

and study on vibrations at the joints too. Tracking control can be improved with a better 

system model, comprising of the above mentioned parameters.  

The proposed fault tolerant control law guarantees the error convergence but not 

the parameter convergence. An adaptive scheme that can guarantee parameter 

convergence would give a better indication of the system during a faulty state. The 

variations in parameter could indicate fault occurrence and can be used for fault 

detection if parameter convergence can be achieved. In particular, an accurately 

estimated actuator effectiveness factor will indicate the health of the actuator.  

The proposed fault detection scheme in Chapter 4 could be expanded to include 

detection of position and torque sensor faults. The present work only takes into 

consideration the actuator faults and not sensor faults. 
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Appendix A 

 

The dynamics of each link is divided into two dynamic systems, namely the motor 

system and the link system. Then the following coordinate are defined: the origin of the 

coordinate frame iΣ  of the thi  link is set on the thi  joint axis. The Z axis of iΣ  is 

selected such that it aligns with the thi  joint axis, and the unit vector in the direction of 

the Z axis of iΣ  is denoted by iz . The thi  motor which drives the thi  joint is fixed to the 

( 1)thi −  link, and the origin of coordinate frame miΣ  of the thi  motor is set on the axis of 

rotation of the rotor in the thi  motor, called the thi  rotor. The Z axis of miΣ  is selected in 

such a way that it aligns with the axis of rotation of the thi  rotor, and the unit vector in 

the direction of the Z axis of miΣ  is denoted by miz . Let the moment of inertia of the thi  

rotor about the axis of rotation be miI . The output torque of the thi  rotor is denoted by iτ  

and Jiτ  denoted the coupling forces by the other motor systems and link systems. min  

denotes the moment vector exerted on the thi  rotor by the ( 1)thi −  link. sin  denotes the 

moment vector exerted on the thi  through the torque sensor by the thi  link, which is 

expressed in the reference frame. miI� , expressed in reference frame, is the inertia tensor 

of the thi  rotor. iω  and miω , expressed in reference frame, represent the angular velocity 

vectors of the thi  link and thi  rotor respectively. miq  is an angle about the axis of 

rotation of the thi  rotor. 

Then from Euler’s equation,  

 ( )mi mi mi mi mi mi sin I I nω ω ω= + × +� ��  (A.1) 

Using the assumption A2, in Chapter 2, 
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 ( )
1

1 1

mi i i

mi i mi mi

mi i i i mi i i i mi

Ji mi
si

i

q q
q z

q z q z

z
n

γ
ω ω

ω ω γ ω γ

τ
γ

−

− −

=
= +

= + + ×

=

� �
�

� � �� �  (A.2) 

Substituting these relations into (A.1), the following equations are obtained: 

 
( )

( ) ( )
1

1

T
i mi mi

T T
mi mi i mi mi mi i i

T T
mi mi i i i mi mi mi mi mi

Ji
i

z n

z I z I z q

z I q z z I

τ

ω γ

ω γ ω ω

τ
γ

−

−

=

= +

⎡ ⎤+ × + ×⎢ ⎥⎣ ⎦

+

� �� ��

� ��
 (A.3) 

Using the assumption A1, it is seen that the third and fourth terms of the right hand 

of (A.3) is equal to zero. And since 

 

( )
1 1 1

11 1

1 2 1

0 1
2

3

i
ji i

j j k j k j
j j k

if i
z q if i

z q z z q q if i

ω −
−− −

= = =

⎧
⎪ =⎪⎪Δ =⎨
⎪
⎪ + × ≥∑ ∑ ∑
⎪⎩

� ��

�� � �

 (A.4) 

And T T
mi mi mi miz I I z=� , therefore from (A.3),  

 ( )11 1

1 2 1

ji iT T Ji
i mi i i mi mi j j mi mi k j k j

ij j k
I q I z z q I z z z q q ττ γ γ

−− −

= = =
= + + × +∑ ∑ ∑�� �� � �  (A.5) 

where the second and third terms is equal to zero when 1i = , and the third term is equal 

to zero when 2i = . 
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Appendix B 

 

B.1 Dynamic Model of 3-DOF planar manipulator 

The dynamic equations of motion for a three joint modular robot operating in a 

horizontal plane are given by 

( ) ( , ) ( , )D q q C q q q f q q τ+ + =�� � � �  

where ( )D q  is the 3 3×  inertia matrix, ( , )C q q q� �  is the 3 1×  vector of centrifugal and 

Coriolis torques, ( , )f q q�  is the 3 1×  vector of frictional torques and τ  is the 3 1×  vector 

of joint torques. The matrices are given as 

11 12 13
21 22 23
31 32 33

D D D
D D D D

D D D

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

 
11 12 13
21 22 23
31 32 33

C C C
C C C C

C C C

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

  1 2 3
T

τ τ τ τ⎡ ⎤= ⎣ ⎦  

1 1 1 2 2 2 3 3 3( , ) ( , ) ( , ) ( , )
T

F q q f q q f q q f q q⎡ ⎤= ⎣ ⎦� � � �  

where, 
2

13 31 3 3 3 3 2 3 3 3 1 3 23,c c cD D I m l m l l c m l l c= = + + +  
2 2 2 2 2 2

11 1 2 3 1 1 2 1 2 2 3 1 3 2 3 3

2 1 2 2 3 1 2 2 3 2 3 3 3 1 3 232 2 2 2
c c c

c c c

D I I I m l m l m l m l m l m l
m l l c m l l c m l l c m l l c

= + + + + + + + +

+ + + +  
2 2 2

21 12 2 3 2 2 3 2 3 3 2 1 2 2

3 1 2 2 3 2 3 3 3 1 3 232
c c c

c c

D D I I m l m l m l m l l c
m l l c m l l c m l l c

= = + + + + +

+ + +
 

2 2 2
22 2 3 2 2 3 2 3 3 3 2 3 32c c cD I I m l m l m l m l l c= + + + + +  

2
23 32 3 3 3 3 2 3 3c cD D I m l m l l c= = + +   

2
33 3 3 3cD I m l= +  

and 2 2cos( )c q= , 3 3cos( )c q= , 23 2 3cos( )c q q= + , 2 2sin( )s q= , 23 2 3sin( )s q q= + , im  is 

the mass of thi  link, il  is the length of thi  link, cil  is the distance from joint to the centre 

of mass of thi  link, iI  is the inertia of thi  link. The link masses and inertias include both 
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the actuator masses and actuator inertias. The joint friction for the thi   joint is modeled 

as 
2( , ) ( exp( )) sgn( ) ( , )i i i ci si i i i i i qi i if q q f f f q q b q f q qτ= + − + +� � � � �  

The Coriolis matrix elements are given by 

11 111 1 112 2 113 3 12 121 1 122 2 123 3

13 131 1 132 2 133 3 21 211 1 212 2 213 3

22 221 1 222 2 223 3 23 231 1 232 2 233 3

,
,
,

C c q c q c q C c q c q c q
C c q c q c q C c q c q c q
C c q c q c q C c q c q c q

= + + = + +

= + + = + +

= + + = + +

� � � � � �
� � � � � �
� � � � � �

 

31 311 1 312 2 313 3, 32 321 1 322 2 323 3

33 331 1 332 2 333 3

C c q c q c q C c q c q c q

C c q c q c q

= + + = + +

= + +

� � � � � �
� � �

 

where 

133 3 2 3 3 3 1 3 23 312 3 2 3 3

211 3 1 2 2 2 1 2 2 3 1 3 23 213 3 2 3 3

311 3 2 3 3 3 1 3 23 321 312 131 113

233 3 2 3 3 322 3 2 3 3 223 3 2 3 3

- - , ,
, - ,

, , ,
- , , - ,

c c c

c c c

c c

c c c

c m l l s m l l s c m l l s
c m l l s m l l s m l l s c m l l s
c m l l s m l l s c c c c
c m l l s c m l l s c m l l s

= =

= + + =

= + = =

= = =

 

112 2 1 2 2 3 1 2 2 3 1 3 23

113 3 2 3 3 3 1 3 23 123 3 2 3 3 3 1 3 23

122 2 1 2 2 3 1 2 2 3 1 3 23

- - - ,
- - , - - ,
- - - ,

c c

c c c c

c c

c m l l s m l l s m l l s
c m l l s m l l s c m l l s m l l s
c m l l s m l l s m l l s

=
= =
=

 

132 123 232 223

231 213 121 112

, ,
, ,

c c c c
c c c c

= =
= =

 

111 212 221 222

331 313 323 332 333

0,
0

c c c c
c c c c c

= = = =
= = = = =
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Appendix C 

 

C.1 Controller Architecture and Flow Diagrams 

 

 

Figure C-1. Control system architecture of modular and reconfigurable robot 
 

 

Figure C-2. Host PC - DSP controller communication over CAN 
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Figure C-3. Architecture of MRR control system 
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Figure C-4. Flow chart for the initialization of MRR module (Level 1) 
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Figure C-5. Flow chart of the MRR module operation (Level 2) 
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Figure C-6. Message interpreter and execution at DSP from communication layer 
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Figure C-7. Flow chart of sequence of tasks on DSP controller, at each sample 
period 
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Figure C-8. Flow chart for the operation of 3DOF MRR system. 




