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ABSTRACT

Precise point positioning (PPP) allows for centimeter- to decimeter-level positioning accuracy
using a single global navigation satellite system (GNSS) receiver. However, the use of PPP is
presently limited due to the time required for the solution to converge or re-converge to the
expected accuracy, which typically requires about 30 minutes. This relatively long convergence
time is essentially caused by the existing un-modeled GNSS residual errors. Additionally, in
urban areas, the number of visible satellites is usually limited when a single satellite constellation
is used, which in turn slows down the PPP solution convergence. This, however, can be
overcome by combining the observations of two constellations, namely the GPS and Galileo

systems.

Unfortunately, combining the GPS and Galileo constellations, although enhances the satellite
geometry, introduces additional biases that must be considered in the observation mathematical
models. These include the GPS-to-Galileo time offset, and Galileo satellite and receiver
hardware delays. In addition, the stochastic characteristics of the new Galileo E1 and E5a signals
must be determined to a high degree of precision. This can be done by analyzing various sets of

GPS and Galileo measurements collected at two stations with short separation.

Several PPP models are developed in this dissertation, which combine GPS and Galileo
observations in the un-differenced and between-satellite single-difference (BSSD) modes. These
include the traditional un-differenced model, the decoupled clock model, the semi-decoupled

clock model, and the between-satellite single-difference model. It is shown that the traditional

iii



un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and semi-decoupled
clock GPS/Galileo PPP model improve the convergence time by about 25% in comparison with
the un-differenced GPS-only PPP model. In addition, the semi-decoupled GPS/Galileo PPP
model improves the solution precision by about 25% compared to the traditional un-differenced
GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP model improves the solution
convergence time by about 50%, in comparison with the un-differenced GPS PPP model,
regardless of the type of BSSD combination used. As well, the BSSD model improves the
solution precision by about 50% and 25% when the BSSD loose and tight combinations are used,

respectively, in comparison with the un-differenced GPS-only model.
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CHAPTER 1

INTRODUCTION

This chapter provides necessary background information on the status of precise point
positioning (PPP) techniques at the time when this research project was initiated. From this
introduction emerge the motivations supporting the work conducted for this dissertation. The
objectives of the research, the methodology utilized and the main contributions are also

presented.

1.1. BACKGROUND

Presently, there exist four operational global navigation satellite systems (GNSS). These include
the US global positioning system (GPS), the Russian global navigation satellite system
(GLONASS), the European Galileo system, and the Chinese BeiDou system. Both GPS and
GLONASS systems are fully operational however; Galileo and BeiDou systems are still under
development. Combing the measurements of multiple systems can significantly improve the

availability of a navigation solution, especially in urban areas.

GPS satellites transmit signals on three different frequencies, which are controlled by the GPS
time frame (GPST). Currently, the GPS users can receive the modernized civil L2C and L5
signals. On the other hand, the GLONASS constellation has been fully recovered since October
2011. Presently, GLONASS operates at its full capability with 24 satellites in orbits, which
enables a full global coverage. GLONASS transmits three signals on different main frequencies.
However, unlike the other GNSS systems, each satellite transmits different frequencies based on
the frequency division multiple access (FDMA). GLONASS transmits its signals using the
GLONASS Time system (GLONASST). Galileo satellite constellation foresees 27 operational

and three spare satellites positioned in three nearly circular medium earth orbits (MEO). Galileo



system transmits six signals on different frequencies using the Galileo time system (GST).
Unlike GLONASS satellite system, Galileo and GPS have partial frequency overlaps, which
simplify the dual-system integration. In addition, GPS and Galileo operators have agreed to
measure and broadcast a GPS to Galileo time offset (GGTO) parameter, in order to facilitate the
interchangeable mode (Melgard et al., 2013). The BeiDou navigation satellite system, being
developed independently by China, is moving steadily forward towards completing the
constellation. China has indicated a plan to complete the second generation of Beidou satellite
system by expanding the regional service into global coverage. Beidou system transmits three
signals on different frequencies using the BeiDou time frame (BDT). The BeiDou-2 system is
proposed to consist of 30 medium Earth orbiting satellites and five geostationary satellites

(Hofmann-Wellenhof et al., 2008; IAC, 2015; ESA, 2015; BeiDou, 2015).

Traditionally, differential GNSS techniques have been used in positioning applications requiring
high accuracy. These techniques inherit their high accuracy from the fact that GNSS receivers in
close proximity share the same errors and biases. The shorter the receiver separation is, the more
similar are the errors and biases. As such, a major part of the GNSS error budget can be removed
by differencing between the GNSS observables from these receivers. The major disadvantage of
differential techniques, however, is the dependency on the measurements or corrections from a
reference receiver or network. As such, differential techniques may not be a practical solution for
some application scenarios due to the high cost or the lack of infrastructure (El-Rabbany, 2006).
In addition, as the baseline length increases, the correlation between the errors at the receiver
decreases and the errors would not cancel out sufficiently by differencing. As a result, the

ambiguity parameters will not be fixed successfully and the positioning accuracy will deteriorate.

Over the past decade, a technique referred to as PPP, which employs a single GPS receiver,
becomes more attractive to the users (Zumberge et al., 1997; Kouba and Héroux, 2001). Unlike
classical GPS point positioning, which uses the pseudorange observations from four or more
visible satellites and the broadcast ephemeris to obtain the user’s instantaneous position, PPP
attempts to account for all the GPS errors and biases (El-Rabbany, 2006). After deactivation of
the selective availability (SA) in May 2000 and the production of precise satellite orbit and clock

corrections, centimeter to decimeter positioning accuracy became possible with standalone GPS



receivers. In addition to being cost effective, the PPP method provides accuracy level

comparable to that of differential positioning.

Unfortunately, the use of a single constellation limits the number of visible satellites, especially
in urban areas, which affects the PPP solution. Recently, a number of researchers showed that
combining GPS and Galileo observations in PPP solution enhances the positioning convergence
and precision in comparison with the GPS-only PPP solution (Afifi and El-Rabbany, 2013;
Melgard et al., 2013). At present, the IGS-MEGX network provides the GNSS users with precise
clock and orbit products to all currently available satellite systems (Montenbruck et al., 2014).
This makes it possible to obtain a PPP solution by combining the observations of two or more
GNSS constellations. This research focuses on combining the GPS and Galileo observations in a

PPP model.

1.1.1. GPS PRECISE POINT POSITIONING

PPP was first introduced by researchers at the Jet Propulsion Laboratory (Zumberge et al., 1997).
Since the introduction of the PPP technique, many studies have been performed on the accuracy
and convergence time of the un-differenced GPS PPP model (see for example, Kouba and
Héroux, 2001; Colombo et al., 2004; Ge at el., 2008; Collins at al., 2010). Generally, the
accuracy of PPP depends on the ability to mitigate all errors and biases. These errors can be
categorized as satellite-related errors, signal propagation-related errors and receiver/antenna-
related errors (El-Rabbany, 2006). GNSS errors attributed to the satellites include satellite clock
errors, orbital errors, satellite hardware delay, satellite antenna phase center variation, and
satellite initial phase bias. Errors attributed to signal propagation include the delays of the GNSS
signal as it passes through the ionospheric and tropospheric layers. Errors attributed to
receiver/antenna configuration include, among others, the receiver clock errors, multipath error,
receiver noise, receiver hardware delay, receiver initial phase bias, and receiver antenna phase
center variations. Other biases have to be considered such as the effects of ocean loading (Bos
and Scherneck, 2014; IERS, 2010), Earth tide (Kouba, 2009), carrier-phase windup (Leick, 2004;
Wu et al., 1993), Sagnac (Kaplan and Hegarty, 2006), relativity (Hofmann-Wellenhof et al.,

2008), and satellite and receiver antenna phase-center variations (Dow et al. 2009).



Kouba and Heroux (2001) introduced a PPP model, which employs the traditional un-differenced
dual-frequency pseudorange and carrier-phase measurements to form first-order ionosphere-free
linear combinations. Their model, which obtains the ambiguity parameters as real-valued
numbers, requires about 30 minutes for the solution to convergence to a submeter level accuracy.
This relatively long convergence time is caused by the presence of un-calibrated hardware
delays, which destroy the integer nature of the ambiguity parameters (Collins at al., 2010; Ge et
al. 2008; Mercier and Laurichesse 2008; Kouba and Héroux, 2001). However, recent research
has demonstrated that the correct integer values for the ambiguity parameter can be recovered if
the satellites hardware delays can be calibrated (Collins at al., 2010; Ge et al. 2008; Laurichesse
et al. 2009).

Between-satellite single difference (BSSD) GPS PPP models have also been developed a number
of researchers (Elsobeiey and El-Rabbany, 2014; Colombo et al., 2004). BSSD GPS PPP model
cancels out all receiver-related errors, including the receiver un-calibrated hardware delays,
which significantly improves the convergence time as shown in Elsobeiey and El-Rabbany
(2014) and Colombo et al. (2004). By cancelling out the receiver related error, both convergence
time and precision of the PPP are improved as the case of the BSSD PPP model (Afifi and El-
Rabbany, 2015; Elsobeiey and El-Rabbany, 2014). In addition, using the BSSD model with the
GPS decoupled clock corrections applied improves the precision of the estimated parameters by

about 10% compared with the GPS BSSD model (Elsobeiey and El-Rabbany, 2014).

1.1.2. STOCHASTIC MODELING OF THE GNSS SIGNALS

Generally, the mathematical model for GNSS PPP consists of two parts, namely functional and
stochastic models. The functional part describes the geometrical relationship of the parameters of
the PPP model, while the stochastic part describes the statistical (or stochastic) properties of the
residual component in the functional model. The stochastic model is represented by the
covariance matrix of the observations in the estimation model. The functional models related to
PPP have been extensively studied by a number of researchers. This, however, is not the case

with the more complex stochastic models, especially for the Galileo signals. Often, a simplified



empirical stochastic model is used in GNSS positioning, which assumes that all the GNSS
observables are statistically independent and of the same quality. This, in turn, leads to an
overestimation of the estimated parameters (El-Rabbany, 1994). On the other hand, using the
proper stochastic modelling of the GNSS signals improves the PPP solution precision and
convergence time as shown in Afifi and El-Rabbany (2013). Most existing GNSS stochastic
models use empirical functions such as the sine, cosine, exponential and polynomial functions.
Typically, these stochastic models are functions of the satellite elevation angles (Elsobeiey and
El-Rabbany, 2010). Unfortunately, existing empirical stochastic models may not be valid for all
receiver types and GNSS signal frequencies. As such, it is essential that new stochastic models

are developed for the new GNSS signal such as Galileo signals.

In order to determine the stochastic characteristics of the residual errors, two tests are usually
carried out, namely the zero and short baselines tests. The zero baseline test uses one antenna
connected by a signal splitter that feeds two or more GNSS receivers. Several receiver problems
can be investigated by using the zero baseline test such as inter-channel biases and cycle slips.
The use of a single antenna cancels out all systematic errors such as multipath and the
preamplifier’s noise. On the other hand, the short baseline test uses two receivers of a few meters
apart and is usually carried out over two consecutive days when a single GNSS constellation is
used. In this case, the double difference residuals of one day would contain the system noise and
the multipath effect. As the multipath effect repeats almost every day for the GPS system,
differencing the double difference residuals over two consecutive days cancels out the multipath
effect and leaves a scaled system noise (El-Rabbany, 2006). However, multipath effect is not
repeatable for the Galileo satellite system as the satellites take about 14 hours 4 minutes 41

seconds to orbit the Earth (Hofmann-Wellenhof et al., 2008).

In this research, a receiver system noise test is performed to determine the stochastic
characteristics of Galileo E1 and E5a. As a by-product, the stochastic characteristics of the
legacy GPS P1 code were obtained. To develop the stochastic model for Galileo signals, the
pseudorange and carrier phase measurements of each receiver are first differenced, which
cancels out the geometric term, satellite and receiver clock error, and tropospheric delay, This

operation leaves the satellite and receiver hardware delays, ionosphere delay, the ambiguity



parameter and the system noise. The noise parameters in the differenced data series are
essentially those of the pseudorange observations. The phase measurement noise is usually
neglected due to its small size compared to that of the pseudorange measurements (Elsobeiey and
El-Rabbany, 2010). The receiver hardware delay is assumed to be stable over the observation
period (i.e., usually within several hours), while the ambiguity parameter and initial phase bias
are constants for a continuous session of measurements (Hofmann-Wellenhof et al., 2008). As
such, they can be removed from the model through differencing with respect to the first value in
the data series. The data series developed are divided into a certain number of bins depending on
the satellite elevation angle. The standard deviation of the differenced system noise each bin is
estimated. A least squares regression analysis is performed to obtain the best-fit model of the

estimated standard deviations.

1.1.3. GPS/GALILEO PRECISE POINT POSITIONING

As indicated earlier, combining two satellite constellations offers more visible satellites to users,
which in turn enhances the satellite geometry and is expected to improve the overall positioning
solution (Hofmann-Wellenhof et al., 2008). However, combining the GPS and Galileo
observations comes at the expense of introducing additional biases to the observation
mathematical models such as GGTO due to the fact that each system uses a different time frame.
GPS system uses the GPS time system, which is referenced to coordinated universal time (UTC)
as maintained by the US Naval Observatory (USNO). On the other hand, Galileo satellite system
the Galileo system time (GST), which is a continuous atomic time scale with a nominal constant
offset with respect to the international atomic time (TAI) (Hofmann-Wellenhof et al., 2008).
Recently, the European Space Agency (ESA) estimated the GGTO, which was found to be
approximately 50 ns, or equivalently 15 m range error (ESA, 2013). As well, the IGS estimated
the inter-system bias (ISB) of the GPS/Galileo systems, which represents the difference between
the ionosphere free linear combination of the receiver differential code biases (DCB) of both
GPS and Galileo systems, at different stations with different receiver types. The published IGS-
MGEX daily results for the ISB indicate that value of the ISB is receiver type dependent, with a

magnitude ranging from -30 to 60 nanoseconds.



A combined GPS/Galileo PPP model can be formed using either of the un-differenced or BSSD
modes. Afifi and El-Rabbany (2013) showed that combining GPS L1 and Galileo El
observations in an un-differenced single-frequency PPP solution enhances the positioning
solution convergence and precision in comparison with GPS-only PPP solution. Melgard et al.
(2013) showed that combining multi-constellation in an un-differenced PPP solution improves
the positioning accuracy, especially when the system biases are calibrated. In addition, Afifi and
El-Rabbany (2014) showed that combining Galileo signals E1/E5a with the GPS L1/L2 signals
in un-differenced dual-frequency ionosphere-free linear combinations improves the convergence
time by 25% with a sub-decimeter accuracy level in comparison with the GPS-only PPP results.
In addition, they showed that the inter-system bias is largely constant over a one-hour
observation time span, which they used in their analysis, with a magnitude ranging from 30 to 60

nanoseconds depending on the GNSS receiver type.

Two scenarios are considered when forming the BSSD linear combination for the combined
GPS/Galileo model, namely a tight and a loose combination. In the first scenario, either a GPS or
a Galileo satellite is selected as a reference for both GPS and Galileo observables. The second
scenario, which is commonly referred to as per-constellation combination, considers two
reference satellites: a GPS reference satellite for the GPS observables and a Galileo satellite for
the Galileo observables (Odijk and Teunissen, 2013). Afifi and El-Rabbany (2015) showed that
combining GPS and Galileo observations in BSSD PPP model improves the precision of the
estimated parameters by about 50% and 25%, in comparison with the un-differenced GPS-only
model, when the BSSD loose and the tight combinations are used, respectively. In addition, the
solution convergence time is reduced to 10 minutes for both BSSD scenarios, which represents

about 50% improvement in comparison with the GPS-only PPP solution.



1.2. OBJECTIVES

The main objective of this Ph.D. research is to develop a PPP model that combines GPS and
Galileo observations in order to improve both the precision and the convergence time of the PPP

solution. This will be fulfilled through a number of tasks, which can be summarized as follows:

1. To develop a stochastic model for the Galileo E1 and E5a signals.

2. To estimate the GPS and Galileo ISB for both single and dual frequency PPP model.

3. To develop a combined single frequency GPS and Galileo PPP algorithm for both un-
differenced and between satellite single difference.

4. To develop a combined dual frequency GPS and Galileo PPP algorithm for both un-
differenced and between satellite single difference.

5. To develop a combined GPS and Galileo PPP model, which considers the effect of

the un-calibrated hardware delays effect on the ambiguity parameters.



1.3. RESEARCH CONTRIBUTIONS

The main contributions made in this research can be summarized as follows:

1.

Developed a stochastic model for the Galileo E1 and E5a signals, which improved the
convergence time of GPS/Galileo L1/E1 PPP by up to 30%.

Estimating the inter-system bias for both single and dual frequency GPS and Galileo
PPP model.

Developed a combined un-differenced single frequency GPS and Galileo PPP model.
Developed a combined single frequency GPS and Galileo between satellite single
difference PPP model. The results of the developed model show convergence time
improvement of the single-frequency GPS/Galileo PPP solution by 35% and 15%
when BSSD with tight and loose combinations are used, respectively.

Developed a combined dual frequency GPS/Galileo PPP model using un-differenced
L1/L2 and E1/ES a of GPS and Galileo signals, respectively. The results of the
developed model show convergence time improvement by about 25% in comparison
with the GPS-only PPP.

Developed a combined dual-frequency BSSD GPS/Galileo PPP model. The results of
the developed model show that the precision of the estimated parameters improved by
about 50% and 25%, in comparison with the un-differenced GPS-only model, when
the loose and the tight combinations are used, respectively.

Developed semi-decoupled clock GPS/Galileo PPP model that improves the
convergence time by about 25% in comparison with the un-differenced GPS-only
model. In addition, the semi-decoupled GPS/Galileo PPP model improves the
solution precision by about 25% compared to the traditional un-differenced

GPS/Galileo PPP model.



1.4. DISSERTATION OUTLINE

This dissertation follows a manuscript style approach.

Chapter 2 defines the basis of the stochastic modeling for Galileo E1 and E5a signals. In this
chapter, the stochastic characteristics of Galileo E1 and E5a and GPS L1 signals are determined
using short baseline tests. The accuracy of the developed stochastic model is verified through
single-frequency GPS/Galileo PPP tests in both un-differenced and BSSD modes. This chapter

was published as:

Afifi, A., El-Rabbany, A. (2014). Single frequency GPS/Galileo precise point positioning using
un-differenced and between-satellite single difference measurements. Geomatica, 68(3),

195-205. doi: 10.5623/cig2014-304

This paper is based on three conference proceedings:

Afifi, A., El-Rabbany, A. (2014). Precise point positioning using combined GPS and Galileo
observations. The XXV International FIG Congress, June 16-21, 2014, Kuala Lumpur,
Malaysia.

Afifi, A., El-Rabbany, A. (2013). Integrating GPS/Galileo systems in single frequency precise
point positioning. Joint conference of the Canadian institute of Geomatics annual
conference and the international conference on Earth observation for global changes.

June 5-7, 2013 Toronto, Ontario

Afifi, A., El-Rabbany, A. (2013). A New Stochastic Model for Galileo E1 Signal. Joint
conference of the Canadian institute of Geomatics annual conference and the
international conference on Earth observation for global changes. June 5-7, 2013

Toronto, Ontario
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Chapter 3 develops a single-frequency PPP model using GPS and Galileo observations in BSSD
mode. In this chapter, two scenarios are considered when forming the GPS and Galileo BSSD
linear combination, namely a tight and a loose combination. In the first scenario, either a GPS or
a Galileo satellite is selected as a reference for both GPS and Galileo observables. The second
scenario considers two reference satellites: a GPS reference satellite for the GPS observables and

a Galileo satellite for the Galileo observables. This chapter was published as:

Afifi, A., El-Rabbany, A. (2015). An improved model for single frequency GPS/Galileo precise
point positioning. Positioning Journal, 6(2), 7-21, doi: 10.4236/p0s.2015.62002.

This paper is based on one conference proceedings:

Afifi, A., El-Rabbany, A. (2013). A combined precise point positioning solution using GPS and
Galileo measurements. International symposium on global navigation satellite systems

ISGNSS. October 22-25, 2013 Istanbul, Turkey

Chapter 4 develops a dual-frequency GPS/Galileo PPP model, which uses un-differenced and
BSSD (with both loose and tight combinations) models. It is originally published as:

Afifi, A., El-Rabbany, A. (2015). An improved between-satellite single-difference precise point
positioning model for combined GPS/Galileo observations. Journal of Applied Geodesy,

9(2), 101-111, doi: 10.1515/jag-2014-0030.

This paper is based on one conference proceedings:

Afifi, A., El-Rabbany, A. (2014). Improved model for precise point positioning with dual
frequency GPS/Galileo observables. The International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences, Volume XL-2, 2014 ISPRS Technical

Commission II Symposium, 6 — 8 October 2014, Toronto, Canada
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Chapter 5 examines the performance of several precise point positioning (PPP) models, which
combine dual-frequency GPS/Galileo observations in the un-differenced and between-satellite
single-difference (BSSD) modes. These include the traditional un-differenced model, the
decoupled clock model, the semi-decoupled clock model, and between-satellite single-difference

model. The results were published as:

Afifi, A., El-Rabbany, A. (2015). Performance analysis of several GPS/Galileo precise point
positioning models, Sensors, 15(6), 14701-14726; doi:10.3390/s150614701

Chapter 6 presents the conclusions of the dissertation findings and suggests further paths to

explore.

Note that changes to the notation of each paper were made to assure uniformity within this

dissertation.
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CHAPTER 2

SINGLE FREQUENCY GPS/GALILEO PRECISE POINT POSITIONING USING UN-
DIFFERENCED AND BETWEEN SATELLITE SINGLE DIFFERENCE
MEASUREMENTS

This chapter defines the basis of the stochastic modeling for Galileo E1 and ES5a signals. In this
chapter, the stochastic characteristics of Galileo E1 and E5a and GPS L1 signals are determined
using short baseline tests. The accuracy of the developed stochastic model is verified through
single-frequency GPS/Galileo PPP tests in both un-differenced and BSSD modes. This chapter

was published as:

Afifi, A., El-Rabbany, A. (2014). Single frequency GPS/Galileo precise point positioning using
un-differenced and between-satellite single difference measurements. Geomatica, 68(3),

195-205. doi: 10.5623/c1g2014-304

Modifications to the original manuscript were made only for proper identification of sections,
figures and tables, as well as to assure the uniformity of symbol and equation notation

throughout this dissertation.
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ABSTRACT

We develop a new precise point positioning (PPP) model for combined GPS/Galileo single-
frequency observations. Both un-differenced and between-satellite single-difference (BSSD)
modes are considered. Although it improves the solution availability and accuracy, combining
GPS and Galileo observables introduces additional biases that must be modelled. These include
the GPS-to-Galileo time offset and the inter-system bias. Additionally, to take full advantage of
the Galileo E1 signal, it is essential that its stochastic characteristics are rigorously modelled. In
this paper, various sets of GPS and Galileo measurements collected at two stations with short
separation were used to investigate the stochastic characteristics of Galileo E1 signal. As a by-
product, the stochastic characteristics of the legacy GPS P1 code was obtained and then used to
verify the developed stochastic model of the Galileo signal. It is shown that sub-decimeter level
accuracy is possible through our single-frequency GPS/Galileo PPP model. As well, the addition
of Galileo improves the PPP solution convergence by about 30% in comparison with GPS-only

solution.

2.1. INTRODUCTION

Traditionally, ionosphere-free linear combinations of GPS carrier-phase and pseudorange
measurements were used for precise point positioning (PPP). Both un-differenced and between-
satellite single difference measurements have been used (see for example, Kouba and Héroux,
2001; Colombo et al., 2004; Ge at el., 2008; Collins at al., 2010, Zumberge et al, 1997). PPP has
been proven to be capable of providing positioning solution at the sub-decimeter level in static
mode. More recently, Elsobeiey and El-Rabbany (2013) showed that about 50% improvement in
the PPP solution convergence time can be achieved with GPS dual frequency ionosphere-free

BSSD.

A drawback of a single satellite constellation such as GPS is the availability of sufficient number
of visible satellites in urban areas. Galileo satellite system offers additional visible satellites to
the user, which is expected to enhance the satellite geometry and the overall PPP solution when
combined with GPS (Hofmann-Wellenhof et al., 2008). As shown in Afifi and El-Rabbany

(2013), combining GPS and Galileo observations in a PPP solution enhances the positioning
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solution convergence and precision in comparison with GPS-only PPP solution. This, however,

requires rigorous modelling of all errors and biases.

Generally, the mathematical model for GNSS PPP consists of two parts, namely functional and
stochastic models. The functional part describes the physical or geometrical characteristics of the
parameters of the PPP model, while the stochastic part describes the statistical (or stochastic)
properties of the un-modelled residual components in the functional part. Often, a simplified
empirical stochastic model is used in GNSS positioning, which assumes that all GNSS
observables are statistically independent and of the same quality. This, in turn, leads to an
overestimation of the estimated parameters (El-Rabbany, 1994). As shown in Afifi and El-
Rabbany (2013), using the proper stochastic modelling of the GNSS signals leads to improving

the PPP solution precision and convergence time.

This paper develops a PPP model, which combines GPS and Galileo single-frequency
observables using both un-differenced and BSSD modes. All errors and biases are rigorously
accounted for. Un-modelled residual components are accounted for using stochastic models. A
new stochastic model for the Galileo signal is also developed, which does not exist at present. It
is shown that sub-decimeter level accuracy is possible through our single-frequency GPS/Galileo
PPP model. As well, the addition of Galileo improves the PPP solution convergence by about

30% in comparison with GPS-only solution.

2.2. UN-DIFFERENCED GPS/GALILEO MODEL

GNSS observations are affected by errors and biases, which can be categorized as satellite-
related errors, signal propagation-related errors and receiver/antenna-related errors (EI-Rabbany,
2006; Hofmann-Wellenhof et al., 2008; Leick, 1995). GNSS errors attributed to the satellites
include satellite clock errors, orbital errors, satellite hardware delay, satellite antenna phase
centre variation, and satellite initial phase bias. Errors attributed to signal propagation include the
delays of the GNSS signal as it passes through the ionospheric and tropospheric layers. Errors
attributed to receiver/antenna configuration include, among others, the receiver clock errors,
multipath error, receiver noise, receiver hardware delay, receiver initial phase bias, and receiver

antenna phase center variations.
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In addition to the above errors and biases, combining GPS and Galileo observation in a PPP
model introduces additional errors such as GPS to Galileo time offset (GGTO) due to the fact
that each system uses a different time frame. GPS system uses the GPS time system, which is
referenced to coordinated universal time (UTC) as maintained by the US Naval Observatory
(USNO). On the other hand, Galileo satellite system the Galileo system time (GST), which is a
continuous atomic time scale with a nominal constant offset with respect to the international
atomic time (TAI) (Hofmann-Wellenhof et al., 2008). As well, GPS and Galileo use different
reference frames, which should be considered in the combined PPP solution. The mathematical

models of GPS and Galileo observables, code and carrier phase, can be written respectively as:

Po = pgte,(t—7)g) +e[dt, (15) -t (t —7) ]+ T + 1 +cld, (1) +d* (1 —7)] +d,, +epg (2.1)
Py =pp(ty,(t=1) ) +cldt (1) —dt" (t —7) 1+ T, + 1, +c[d, (t;)+d"(t—1) ;] +d,, +e,, (2.2)

O, =pstg,(t—1)g)+eldt (t,)—dt*(t—7) 1+ T — 1 +

o, (t;)+0°(t—7)s 1+ AN, +¢r(t0)_¢s(t0)]+5mp T €6
O, =p,(t;,(t—1) ) +c[dt (¢,)—dt’(t—7) ]+T, -1, +

[0, (1) +6°(t—7) 1+ AN +9,(8) — " (1)1 + 6, + &,

where the subscript G refers to the GPS satellite system and the subscript E refers to the Galileo

(2.3)

(2.4)

satellite system; P and Pk are pseudoranges for the GPS and Galileo systems, respectively; ®a
and @k are the carrier phase measurements of the GPS and Galileo systems, respectively; dt(t),
dt’(t-t) are the clock error for receiver at reception time t and satellite at transmitting time t-t,
respectively; di(t), d*(t-t) are frequency dependent code hardware delay for receiver at reception
time t and satellite at transmitting time t-t, respectively; or(t), 0°(t-t) are frequency-dependent
carrier phase hardware delay for receiver at reception time t and satellite at transmitting time t-t,
respectively; T is the tropospheric delay; 7 is ionospheric delay; dmp is code multipath effect; omp
is the carrier phase multipath effect; 4 is the wavelengths of carrier frequencies, respectively;
@i(to), D(to) are frequency-dependent initial fractional phases in the receiver and satellite
channels; N is the integer number of cycles for the carrier phase measurements, respectively; c is
the speed of light in vacuum; and p is the true geometric range from receiver at reception time to

satellite at transmission time; ep, €o are the relevant noise and un-modelled errors.
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Several organizations such as the International GNSS Service (IGS) and the Cooperative
Network for GIOVE Observations (CONGO) network provide the user with precise products,
including precise satellite orbit and clock corrections. IGS precise satellite orbit and clock
corrections contain the satellite hardware delay of the ionosphere-free linear combination of GPS
L1 and L2 signals (Kouba, 2009). On the other hand, CONGO satellite precise orbital and clock
corrections include the satellite hardware delay of the ionosphere-free linear combination of
Galileo E1 and E5a signals (Montenbruck at al., 2009). In this research, the precise orbit and
satellite clock corrections from the CONGO network are used for both GPS and Galileo
satellites. In addition, the GPS receiver hardware delay is lumped to the receiver clock error.
This, in turn introduces a new term in the Galileo observation equations, which represents the
difference between the satellite hardware delays of GPS and Galileo signals. A new unknown
(ISB) is considered in our model to account for the system time offset as well as the new satellite
hardware difference term as shown in equations 2.7 and 2.8. The receiver and satellite hardware
delays can be lumped to the receiver clock error and to the GGTO as all of these errors are

timing errors. Equations 2.5 to 2.8 show the final combined GPS and Galileo PPP model.

P, =p, +cldt, —dti |+ T, + 1, +ep (2.5)
D, = p, +cl[dt, —dt; ]+ T —IG+}JVG+5¢G (2.6)
P.o=p,+cldt, —dt o ]+ ISB+T, +1, +ep (2.7)
(DE:pE+c[dtr—dt20N]+ISB+TE—IE+/1ﬁE+g¢E (2.8)

where N is the ambiguity parameter including frequency-dependent initial fractional phases in

the receiver and satellite channels; ISB is the newly introduced unknown parameter.

2.3. BSSD GPS/GALILEO MODE

Differencing the observations between satellites cancels out most receiver-related errors,
including receiver clock error, receiver hardware delays, and non-zero initial phase bias (EI-
Rabbany, 2006; Hofmann-Wellenhof et al., 2008; Leick, 1995). In this research a GPS satellite is
used to be a reference satellite for both GPS and Galileo satellites. As a result, all differenced

observations will be mathematically correlated. A simple way of accounting for the
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mathematical correlation could be done through the covariance matrix which, in our case will be
a fully populated matrix. The weight matrix, which is needed in the least-squares estimation, can
be obtained by scaling the inverse of the covariance matrix. Assuming a unit scale factor and ns

visible satellites, the weight matrix for one epoch P(f) can be written as:

(n, — 1) 1 -1 -1 -1
-1 (ns—1) -1 -1 -
_ 1
P(t) — ZB.Sl‘SD — _ns -2 -1 -1 (ns - 1) -1 -1 (2.9)
-1 —1 -1 (ns - 1) -1
_1 1 -1 -1 (ns—1) (ns—1Dx(ng—1)

As can be seen in Equation 2.9, the relative weight matrix of the observations in the proposed
BSSD mathematical model is no longer diagonal matrix. When a GPS satellite is used as a
reference in the BSSD mode, the design matrix A and the vector of unknown parameters x take

the following forms:

rxo—X'  xo—X2 yo—Y' y,-Y2 z,—-Z' z,-Z?

0 0 o - 0
I 05 I I I 03 - Ax 1
Xo—X'  x0-X? yo-Y'  yo-Y? zy-Z' z,-Z? 12
PO 2 PO 2 T 2 0 N 0 0 Ay
Po Po Po Po Po Po A
Xo—X'  xo—X3  yo-Y'  yo-Y3 o zy-2Z'  zy-Z3 Z
1 3 1 3 1 3 0 0 0 0 ISB
Po Po Po Po Po Po
A = xy-x1 _ x=X® yo-¥'  y-¥3  zp-z'  2p-7° 0 0 N3 . 0 x = | N12 (2 10)
I 03 I I I 03 N13
Xo—X1  xo—X"  yo-Y1  y,-Y"  zy-Z'  zy—ZM 1 0 0 0
1 - n 1 - n 1 - n o
Po Po Po Po Po Po in
Xo=X'  xo=X"  yo=Y' yo-Y" zo-2' 2z,-2Z" 1 0 0 .. NIn LN 3
1 n 1 n 1 n
L Po Po Po Po Po Po “2(n-1) x (n+3)

The additional system bias term appears in the Galileo observations equations only. Obviously,
the related receiver errors are canceled out from the unknown vector. Consequently, the
unknowns are the three coordinates of the receiver, Ax, Ay and Az, the additional system bias

term, and differenced ambiguities parameters N

2.4. SEQUENTIAL LEAST SQUARES ESTIMATION

Sequential least-squares estimation technique is used in this research to get the best estimates in
the least-squares sense. Equations 2.5 to 2.8 can be re-arranged for pseudorange and carrier

phase observations after applying the ionospheric and tropospheric corrections as follows:

Jo, =ptcdt, +ep; —F;=0 (2.11)
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Jo, =p+cdt, +ISB+e,, —F; =0 (2.12)
fo.=p+cdt, + AN, +e, —D; =0 (2.13)

fo, =p+edt, + AN, +ISB+e,, — D, =0 (2.14)

The linearized form of Equations 2.11 to 2.14 around the initial parameter x° and observables [ in

matrix form can be written as:

f(x,))=AAx—w—-r=0 (2.15)

The sequential least square estimation technique can then be written as:

Ax, =Ax,_ + NJATT [P+ ATN AT 17 [w) — A7 Ax, ] (2.16)
N =NZ -NA' B+ ANJATT AN (2.17)
Ai* = Av - Ci,i—lcjijil—lli—l (2.18)
w=w,—=C, Gy (2.19)

where A is the design matrix, which includes the partial derivatives of the observation equations
with respect to the unknown parameters X; Ax is the vector of corrections to the unknown
parameters (Ax=x—x"); w is the misclosure vector; r is the residuals victor; C is the observations
covariance matrix; P is the observations weight matrix; N is the matrix of the normal equations; i

is the epoch index.

To combine the GPS and Galileo observations in a PPP solution, it is essential that the statistical
characteristics of the noise terms in the above equations are described using the proper stochastic

model.

2.5. STOCHASTIC MODEL DEVELOPMENT
The receiver measurement noise results from the limitations of the receiver’s electronics and can
be determined through receiver calibration or test. Two tests are usually carried out to determine
the system noise level, namely the zero and short baselines tests. The zero baseline test employs

one antenna followed by a signal splitter that feeds two or more GPS receivers. Using the zero
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baseline test, several receiver problems can be investigated, such as inter-channel biases and
cycle slips. The single antenna cancels out the real world systematic problems such as multipath
in addition to the preamplifier’s noise. The short baseline test, on the other hand, uses two

receivers a few meters apart and is usually carried out over two consecutive days.

In this case, the double difference residuals of one day would contain the system noise and the
multipath effect. As the multipath effect repeats every sidereal day for GPS system, differencing
the double difference residuals of the two consecutive days cancels out the multipath effect and
leaves the scaled system noise (El-Rabbany, 2006). However, multipath effect is not repeatable
every sidereal day for the Galileo satellite system as the satellites take about 14 hours 4 minutes
41 seconds to orbit the Earth (Hofmann-Wellenhof et al., 2008).In this research, a short baseline
test is used to determine the stochastic characteristics of the E1 signal, assuming that multipath
does not exist. Usually, this test is performed using the same type of receivers. Unfortunately, in
this research, two different receivers were available (Septentrio POLARX4TR and Trimple
NETRY) for the test, which can observe the Galileo measurements. This, however, were
considered when processing the data. The pseudorange and carrier phase equations can be re-

written as, assuming no multipath and dropping the time argument:

P.=p +c[dt,—dt’]. +c[d, +d’].+T +1, +e, (2.20)

@, =p +c[dt, —dt*] +c[5. +5°] +T -+ AN +e,, (2.21)

Differencing the pseudorange and carrier phase equations of each receiver cancels out the
geometric term, satellite and receiver clock error, and tropospheric delays, as shown in Equations
(2.22) and (2.23). The remaining terms include the satellite and receiver hardware delays,

ionosphere delay, the ambiguity parameter and the system noise.

AR =P, —®,, =c[d. —d*], +[5, = 5], + AAN, + 21 +e, (2.22)
AR, =Py, — @y, =c[d, —d°], +[5, - 5'], + AAN, + 21 +e, (2.23)

It should be pointed out that the noise parameters in Equations 2.22 and 2.23 are essentially those

of the pseudorange measurements. The phase measurement noise has been neglected due to its
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small size compared to that of the pseudorange measurements (Elsobeiey and El-Rabbany,
2010). The receiver hardware delay is assumed to be stable over the observation period (four
hours in this research). Data series representing the values of AR; and AR: over the entire
observation session are generated. As the ambiguity parameter and initial phase bias remain
constant as long as no signal loss occurred, they can be removed from the model through
differencing with respect to the first value of the series. Using this approach, only the differenced

system noise remains in the model.

In PPP, most of existing observation stochastic models are empirical functions such as sine,
cosine, exponential and polynomial functions. Most of these stochastic models are functions of
the satellite elevation angles (Leandro and Santos 2007). Unfortunately, existing stochastic
models may not be valid for all receiver types and GNSS signal frequencies. As such, it is
essential that new stochastic models are developed for the Galileo signal. The data series
developed are divided into nine bins depending on the satellite elevation angle, starting from 0°
to 90° with increments of 10°. The standard deviation of the differenced system noise for each
bin is estimated (Elsobeiey and El-Rabbany, 2010). A least squares regression analysis is
performed to obtain the best-fit model of the estimated standard deviations. Three empirical
functions were tested for this purpose, namely an exponential, a polynomial and a rational model
as shown in Table 2.1. The best-fit model is selected based on the goodness of fit test, i.e., the

one with the largest R? (R-squared) statistic (Draper, 2002).

Table 2.1 Summary results of regression fitting functions with 95% confidence level

Exponential function Polynomial function Rational function
STD = a x -bxELE) 4 o | 21D = 72X ELf;ZEb:dELEZ " stp= (ax“f;;ﬁ”;w“)
Signals El ESa L1 El ESa L1 El ESa L1
a 0.6383 | 0.3692 | 0.6830 | 1.835e-6 | 5.892e-6 | 1.473e-6 | 3.5¢-3 | 4.315¢-3 | 6.087e-3
b 0.0763 | 0.0753 | 0.0730 | 3.688e-4 | 1.445e-4 | 3.195¢-4 | 0.2703 | 0.5155 0.6533
C 0.2150 | 0.0974 | 0.1751 | 0.02443 | 0.01556 0.0228 22.93 28.36 36.57
d - - - 0.7557 0.4014 0.7156 28.35 69.29 49.69
R? 0.9995 | 0.9993 | 0.9994 | 0.9988 0.9977 0.9990 | 0.9990 | 0.9977 0.9984
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where ELE is the satellite elevation angle in degrees; STD is the observation standard deviation

Table 2.1 summarizes the results of all three tested functions. As shown, the exponential function
was found to be the best-fitting model in the least-squares sense, which was selected in this

research.

2.6. RESULTS AND DISCUSSION
To test our PPP model and to verify the determined stochastic models of the Galileo E1 signal,
Natural Resources Canada (NRCan) GPSPace PPP software was modified to handle the Galileo
observations in addition to the newly developed stochastic models. The GPS/Galileo PPP
solution is also obtained using an existing empirical function, namely the sine function, which is
compared with the PPP solution obtained with newly developed stochastic model. Four stations

were used to verify our PPP model, two stations in North America (UNB and USN) and two in

Europe (DIft and GOPE) as shown in Figure 2.1.
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Figure 2.1 Analysis stations

The IGS global ionospheric maps (GIM) product is used to correct for the ionospheric delay
(Schaer et al. 1998). In addition, The Hopfield tropospheric correction model along with the
Vienna mapping function are used to account for the hydrostatic component of the tropospheric

delay (Hopfield, 1972; Boehm and Schuh, 2004). CONGO network precise satellite orbit and
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clock corrections are used for both GPS and Galileo satellites. Only the results of stations DLFT
(Europe) and UNB (North America) are presented in this paper. Similar results were obtained for

other stations.

2.6.1. UN-DIFFERENCED POSITIONING RESULTS

The results of the un-differenced single frequency GPS PPP solution and the single-frequency
GPS/Galileo PPP solution are obtained using two stochastic models, namely the sine function
and the newly developed exponential function. Figure 2.2 shows the positioning results of the
GPS-only PPP solution using the sine function as a representation of the observations stochastic

model.
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Figure 2.2 GPS PPP results using sine function stochastic model

As shown in Figure 2.2, the accuracy of the PPP solution with the GPS L1 signal is at the meter
level. In contrast, when the newly developed exponential function is used, the single-frequency

GPS PPP accuracy is improved to decimetre level (Figure 2.3).
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Figure 2.3 GPS PPP results using the newly developed stochastic model
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Figures 2.4 and 2.5 show the PPP results of the combined GPS/Galileo observations with the

sine and exponential functions, respectively.
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Figure 2.4 GPS/Galileo PPP results using empirical stochastic model

As can be seen in Figure 2.4, the results of the GPS/Galileo PPP with the sine function show
decimetre-level accuracy; however the solution convergences to this accuracy level after about
three hours. Figure 2.5 shows that, when the exponential function is used, the solution converges
to decimetre-level after 100 minutes or less. This is considered significant improvement,

especially with single-frequency observations.
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Figure 2.5 GPS/Galileo PPP results using the newly developed stochastic model

2.6.2. BSSD POSITIONING RESULTS
Similar to the un-differenced case, BSSD is considered for both GPS-only and GPS/Galileo with

both the sine function and newly developed stochastic exponential function. A GPS satellite is

considered as a reference when forming BSSD, as Afifi and El-Rabbany (2013) showed that
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better accuracy is obtained through this scenario. Figures 2.6 and 2.7 show the results of BSSD
GPS PPP using both the sine and the exponential functions, respectively.
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Figure 2.6 BSSD GPS PPP results using empirical sine function stochastic model

As shown in Figure 2.6, single-frequency GPS BSSD results with the sine function is converged
to decimetre-level after about 90 minutes. The convergence time is reduced to 65 minutes or less

when the exponential function is used (Figure 2.7).
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Figure 2.7 BSSD GPS PPP results using the newly developed stochastic model

Figures 2.8 and 2.9 show the PPP results of the combined BSSD GPS/Galileo observations with
the sine and exponential functions, respectively. As can be seen, only slight improvement in the
positioning accuracy and convergence time in comparison with the un-difference GPS/Galileo
scenario. This suggests that both the un-differenced and BSSD GPS/Galileo PPP solutions are

comparable.
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Figure 2.8 BSSD GPS/Galileo PPP results using empirical sine function stochastic model
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Figure 2.9 BSSD GPS/Galileo using the newly developed stochastic model

2.7. CONCLUSIONS
A new PPP model has been introduced in this paper, which combines GPS and Galileo system
observations. The model considers both the un-differenced and BSSD modes. As well, a new
stochastic model for Galileo E1 signal has been developed in this research. Three empirical
functions have been considered, namely exponential, polynomial and rational functions. It has
been found that the exponential function gives the best fit, based on regression analysis. It has
been shown that a sub-decimetre positioning accuracy is attainable with single-frequency
GPS/Galileo PPP when the newly developed exponential model is used. As well, the addition of

Galileo improves the PPP solution convergence by about 30% in comparison with GPS-only

solution.
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CHAPTER 3

AN IMPROVED MODEL FOR SINGLE FREQUENCY GPS/GALILEO PRECISE
POINT POSITIONING

This chapter provides a single-frequency PPP model using GPS and Galileo observations in
BSSD mode. In this chapter, two scenarios are considered when forming the GPS and Galileo
BSSD linear combination, namely a tight and a loose combination. In the first scenario, either a
GPS or a Galileo satellite is selected as a reference for both GPS and Galileo observables. The
second scenario considers two reference satellites: a GPS reference satellite for the GPS

observables and a Galileo satellite for the Galileo observables. This chapter was published as:

Afifi, A., El-Rabbany, A. (2015). An improved model for single frequency GPS/Galileo precise
point positioning. Positioning Journal, 6(2), 7-21, doi: 10.4236/p0s.2015.62002.

Modifications to the original manuscript were made only for proper identification of sections,
figures and tables, as well as to assure the uniformity of symbol and equation notation

throughout this dissertation.
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ABSTRACT

This paper introduces a new precise point positioning (PPP) model, which combines single-
frequency GPS/Galileo observations in between-satellite single-difference (BSSD) mode. In the
absence of multipath, all receiver-related errors and biases are cancelled out when forming BSSD
for a specific constellation. This leaves the satellite originating errors and atmospheric delays un-
modelled. Combining GPS and Galileo observables introduces additional biases that have to be
modelled, including the GPS to Galileo time offset (GGTO) and the inter-system bias. This paper
models all PPP errors rigorously to improve the single-frequency GPS/Galileo PPP solution.
GPSPace PPP software of Natural Resources Canada (NRCan) is modified to enable a
GPS/Galileo PPP solution and to handle the newly introduced biases. A total of 12 data sets
representing the GPS/Galileo measurements of six IGS-MEGX stations are processed to verify
the newly developed PPP model. Precise satellite orbit and clock corrections from IGS-MEGX
networks are used for both GPS and Galileo measurements. It is shown that sub-decimeter level
accuracy is possible with single-frequency GPS/Galileo PPP. In addition, the PPP solution
convergence time is improved from approximately 100 minutes for the un-differenced single-
frequency GPS/Galileo solution to approximately 65 minutes for the BSSD counterpart when a
single reference satellite is used. Moreover, an improvement in the PPP solution convergence

time of 35% and 15% is obtained when one and two reference satellites are used, respectively.

3.1. INTRODUCTION

The concept of precise point positioning (PPP) was first introduced by Zumberge et al. in 1997.
Dual-frequency GPS PPP technique has been proven to be capable of providing positioning
solution at the sub-decimeter level in static mode. This is achieved through rigorous modeling or
estimation of all errors and biases. Both un-differenced and between-satellite single difference
(BSSD) ionosphere-free linear combinations of carrier-phase and pseudorange measurements
have been used (Kouba and Héroux, 2001; Colombo et al., 2004). More recently, Elsobeiey and
El-Rabbany (2014) showed that a 50% improvement in the PPP convergence time is possible
with BSSD dual frequency ionosphere-free GPS, in comparison with the un-differenced
counterpart. Unfortunately, dual-frequency GPS receivers may not provide a cost effective
solution to many users. In addition, a drawback of a single GNSS system such as GPS is the

availability of a sufficient number of visible satellites in urban areas.
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The Galileo satellite system offers additional visible satellites to the user, which is expected to
enhance the satellite geometry and the overall PPP solution when combined with GPS
(Hofmann-Wellenhof et al., 2008). As shown in Afifi and El-Rabbany (2013), combining GPS
and Galileo observations in a PPP solution reduces the convergence time by up to 30% in
comparison with the GPS-only PPP solution. Combining GPS and Galileo, however, comes at
the expense of introducing additional biases to the observation mathematical models. These
include the GPS to Galileo time offset, and Galileo satellite hardware delay. Recently, the
European Space Agency (ESA) estimated the GPS to Galileo time offset (GGTO), which was
found to be approximately 50 ns, or equivalently 15 m range error (ESA, 2013).

Generally, combining multi-constellation observations in a PPP solution improves the
positioning accuracy, especially when the system biases are calibrated, as shown in Melgard et
al. (2013). Odijk and Teunissen (2013) showed that prior correction of the differential
GPS/Galileo (GIOVE) inter-system biases significantly increases the success rate of
instantaneous ambiguity resolution for short baselines. Likewise, Paziewski and Wielgosz (2013)
showed that combining GPS/Galileo observables in a double-differenced carrier-phase and
pseudorange technique improves the success rate of instantaneous ambiguity resolution in
comparison with GPS-only solution. Unfortunately, however, their work was limited to

differential positioning mode.

This paper introduces a new PPP model, which combines single frequency GPS and Galileo
observables in BSSD mode. Precise corrections from the International GNSS Service multi-
GNSS experiment (IGS-MEGX) network are used to account for GPS and Galileo satellite orbit
and clock errors (Montenbruck et al., 2014). As these products are presently referenced to the
GPS time and since we use mixed GNSS receivers that also use GPS time as a reference, the
GGTO is cancelled out in our model. The inter-system bias is either cancelled out through
differencing the observations or is treated as an additional unknown parameter as detailed below.
The ionospheric delay is largely corrected through the global ionosphere maps (GIM) model
(Schaer et al. 1998). The hydrostatic component of the tropospheric zenith path delay is

modelled through the Hopfield model, while the wet component is considered as an additional
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unknown parameter (Hofmann-Wellenhof et al., 2008). All remaining errors and biases are
accounted for using existing models as shown in Kouba (2009). When forming BSSD, we
consider three scenarios in the selection of the reference satellite. Either a GPS or a Galileo
satellite is selected as a reference for both GPS and Galileo observables. Alternatively, two
reference satellites are selected: a GPS reference satellite for the GPS observables and a Galileo
satellite for the Galileo observables. The first approach is sometimes referred to as tight
combination, while the latter is sometimes referred to as per constellation or loose combination
(Paziewski and Wielgosz, 2014; Odijk and Teunissen, 2013). It is shown that the use of a single
reference satellite provides a sub-decimeter level positioning accuracy and 35% improvement in
the convergence time, in comparison with the un-differenced single frequency GPS/Galileo
solution. The use of two reference satellites, although provides comparable positioning accuracy,

improves the solution convergence time by15% only.

3.2. UN-DIFFERENCED GPS/GALILEO MODEL

GNSS observations are affected by random and systematic errors, which must be accounted for
to ensure that precise positioning solution is obtained. The positioning accuracy of a PPP model
depends on the ability to mitigate errors and biases. These errors can be categorized into three
classes, namely satellite related errors, signal propagation related errors, and receiver/antenna
associated errors. The main GNSS errors include the satellite/receiver clock errors,
satellite/receiver hardware delays, ionospheric and tropospheric delays, and multipath (EI-

Rabbany, 2006).

In addition to the above errors and biases, combining GPS and Galileo observations in a PPP
model introduces additional errors such as GGTO due to the fact that each system uses a
different time frame. The GPS system uses the GPS time system, which is referenced to
coordinated universal time (UTC) as maintained by the US Naval Observatory (USNO). On the
other hand, the Galileo satellite system has its own time frame, namely the Galileo system time
(GST), which is a continuous atomic time scale with a nominal constant offset with respect to the
international atomic time (TAI) (Hofmann-Wellenhof et al., 2008). Taking the above errors and

biases into consideration and assuming that the observations are taking simultaneously from a
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mixed GNSS receiver, which uses GPS time as a reference, the GPS and Galileo observation

equations can be written as:

Fits )= psligts _TG)+c[er(tG)+d;(tG —75)] +C[dtrG(tG)_dtg(tG 2 I P P (3.1
By(tg) = Pulto lo -7, ) Fcld pty )+ dpt; —7, )] +cldt o (t; )~ GGTO~dty(ty - 1 )] + T + 1, + &, (3.2)
D (1, )= Pultots -To) Ve[S o(ty )+ 0oty -1, )] +cldt (t,)—dto(t, -7, )] +

TG -IG +1G[N+¢r(lo)' ¢S(t())]G +£CDG

D (t, )= pulto,te-Tp)Fc[O(t; )+ Op(t, -7, )] +cldt  (t,)— GGTO —dt)(t, -7, )] +
TE 'IE +AE[N+¢r(t0)_¢S(t0)]E +S®E

where, the subscript G refers to the GPS satellite system and the subscript E refers to the Galileo

(3.3)

(3.4)

satellite system; t¢ is the true signal reception time; ¢ and 7z are signal propagation times for
both GPS and Galileo, respectively; Pc and Pr are the GPS and Galileo pseudorange
measurements, respectively; @¢ and @ are the GPS and Galileo carrier-phase measurements,
respectively; pa(tG, t6-t6) and pe(ts, te-te) are the GPS and Galileo geometric ranges from the
receiver at reception time ¢ to the satellite at transmission times (t¢-7¢) and (t6-7), respectively;
dtrc(tc) 1s the receiver clock error at reception time tc; dtc*(t6-t6) and dte’(tc-te) are the GPS and
Galileo satellite clock errors at transmission times (f6-76) and (fG-7£), respectively; drc(fG) and
dri(tc) are frequency-dependent code hardware delays in the receiver at reception time ¢¢ for
GPS and Galileo, respectively; d¢*(tc-76) and de*(tc-tk) are frequency-dependent code hardware
delays in the satellites at transmission time (¢6-7¢) and (t¢-7£) for GPS and Galileo, respectively;
or6(te) and J0c'(tG-16) are frequency-dependent carrier phase hardware delays in the receiver at
reception time t¢ for GPS and Galileo, respectively; d-e(t¢) and O£'(tG-t) are frequency-
dependent carrier phase hardware delays in the satellites at transmission time (¢6-7¢) and (¢¢-7k)
for GPS and Galileo, respectively; T is the tropospheric delay; / is the ionospheric delay; A¢ and
Ae are the wavelengths of carrier frequencies for GPS and Galileo signals, respectively; @(10),
@*(t0) are frequency-dependent initial fractional phases in the receiver and satellite channels,
respectively; # is the receiver (or satellite) initial time; N¢ and Ng are the integer numbers of
cycles for GPS and Galileo carrier phase measurements, respectively; GGTO is the GPS to
Galileo time offset; c is the speed of light in vacuum; and ep, €» are the relevant noise and

unmodeled errors.

31



As indicated earlier, precise orbit and satellite clock corrections of IGS-MGEX network are used
for both GPS and Galileo observations. Clock corrections from the two networks are referred to
the GPS time. In addition, they include the ionosphere-free linear combination of the satellite
hardware delays of L1/L2 P(Y) code for GPS and the ionosphere-free linear combination of the
satellite hardware delays of E1/E5a pilot code for Galileo (Steigenberger et al., 2014). As such,
using Equations 3.1-3.4 and dropping the time arguments, the L1/E1 single frequency code and

carrier phase observation equations take the form:

Py = pg +dt,g—c [, g+ BDCBy, oy ] + Ty + 1y + &5 (3.5)
P =pg +dt,g—c [df, .+ B DCBy, p, + DCBy, o ]+ T, +1,+ &4 (3.6)
Py =py+dtg—cldt), ..+ By DCB}, ;o ] +T, +1,+ISB+¢,, (3.7)
D, =pg+dt,g—c[dt, o+ By DCB . ] +Ts —1,+ N, + &4, (3.8)
D, =p,+dt—cldt), .+ Py DCBl o ]+ T, —1,+ISB+ N, + 64, (3.9)

where dt'precc) and dt*precie) are the precise satellites clock corrections for both GPS and Galileo
satellites, respectively, which are obtained from IGS-MGEX; DCB®pi1-p2, DCB®t1-E5a and DCB?®p1-
c1 are the satellite differential code biases for GPS P1/P2, P1/C1 and Galileo E1/E5a signals,

respectively, which are obtained from IGS; ¢ and Sk are the ionosphere-free linear combination

coefficients, which equal 1.546 and 1.261 for GPS and Galileo, respectively; dt,. represents the
combined effect of the receiver clock error and the GPS receiver code hardware delay, i.e.,
dt. =c[d,,, +dt,] when P-code is used and dt,, = c/d ., + dt,, ] when C/A-code is used;
ISB is the inter-system bias, which equals c/d , -d | when P-code is used and equals

cld

Iz

o -d.z ] when C/A-code is used; N is the ambiguity parameter lumped to the satellite and

receiver hardware delays, i.e.,

NL[ = /’L[N+¢r _¢S]G +c[5rL1 +§le] _c[drPl +d;’1] (3'10)
NEI =A[N +o, ’(DS]E te[ 6.y T 0] -cldy tdg ] (3.11)

It should be pointed out that in both of our GPS-only and GPS/Galileo PPP models, the GPS

receiver hardware delay is lumped to the receiver clock error as explained above. This strategy
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maintains the consistency of the estimated receiver clock error for both of the GPS-only and the
GPS/Galileo PPP solutions (Afifi and El-Rabbany, 2014). It should also be mentioned that some
of our data sets contain the C/A-code pseudorange rather than the P-code pseudorange. In this
case, Equation 3.6 should replace Equation 3.5 for the GPS code measurements. In addition, the
receiver clock error would be lumped to the receiver hardware delay of the C/A code.
Furthermore, the ISB would equal the difference in the receiver hardware delays of the C/A code
and E1 code, scaled by the speed of light.

Equations 3.5 to 3.9 can be simplified for the pseudorange and carrier phase observables after
applying the corrections for the satellite clock errors, the hydrostatic component of the
tropospheric zenith path delay, the correction to the ionospheric delay, the satellite differential
code biases, and the other remaining biases. As stated earlier, the global ionosphere maps (GIM)
are used to account for the ionospheric delay (Schaer et al. 1998). Generally, GIM ionospheric
model was found superior to other global models such as the Klobuchar model (Chen and Gao,
2005; Abd El-Rahman and El-Rabbany, 2013). The Hopfield tropospheric correction model is
used, along with Vienna mapping function, to account for the hydrostatic component of the
tropospheric delay (Hopfield, 1972; Boehm and Schuh, 2004). All other remaining biases are
modeled using existing models, including the effects of ocean loading (Bos and Scherneck,
2014; IERS, 2010), Earth tide (Kouba, 2009), carrier-phase windup (Leick, 2004; Wu et al.,
1993), Sagnac (Kaplan and Hegarty, 2006), relativity (Hofmann-Wellenhof et al., 2008), and
satellite and receiver antenna phase-center variations (Dow et al. 2009). Applying these

corrections and considering P-code observations only lead to:

pg t+dt + m,zpd, + &,5 — P, =0 (3.12)
py +dt,+ m zpd, +ISB+ &, — P, =0 (3.13)
pG+a7trG+mfzpdw+]\7“+§®u—(f)u=0 (3.14)
py+dt+mzpd +ISB+ N, + &y, —®, =0 (3.15)

where Pand @ are the corrected carrier phase and pseudorange observables; zpdw is the wet

component of the tropospheric zenith path; myis the troposphere mapping function, respectively;

Epc> Epp» Egand &gy, are the noise terms.
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3.3. BSSD GPS/GALILEO COMBINATION MODEL

Differencing the observations between satellites cancels out most receiver-related errors,
including receiver clock error, receiver hardware delay for the same constellation, and non-zero
initial phase bias (El-Rabbany, 2006). As the L1 and E1 frequencies are the same, we can select
a single satellite, either a GPS or a Galileo as a reference when forming the BSSD. This means
that the observations of all other GPS and Galileo satellites are differenced with respect to the
observations of that satellite. As indicated earlier, this approach is sometimes referred to as tight
combination. Alternatively, two reference satellites can be used, i.e., per constellation BSSD.
The former approach produces two additional BSSD equations in comparison with the second
approach, one for code and another for carrier-phase observables. However, the ISB is cancelled
out when the per-constellation approach is used. When a GPS satellite is used as a reference in a

tight combination, we obtain:

Vol +mizpd, + V&L, —VPI =0 (3.16)
Vpggtmizpd, +1ISB+ V&, VB, =0 (3.17)
Vple+mizpd + NI +VE -Vd! =0 (3.18)
Vi o +mizpd, +ISB+ Ny, + Vg, -V =0 (3.19)

where Vrefers to the BSSD operator; N 7 and N / are the BSSD non-integer the ambiguity

parameters lumped to the receiver and satellite hardware delays as shown in Equations 3.20 and

3.21.

szl = ﬂ[NG/ —NIG] —ﬂ[(Dé —¢7é] +C[5le _521] _C[d1£1 _d1i31] (3.20)

N?l :/1/7\’2 _NG] —ﬂ[(dé _¢§]+C[é;fl +5§1]_0[é;~u +521]_C A +d};1i1] +c[d +d1i>1] (3.21)
If, however, a Galileo satellite is used as a reference in a tight combination, we obtain the

following set of BSSD equations:

Vol +mizpd —ISB+V &), —VPi, =0 (3.22)
Vo, +mlzpd + Ve, —VPi=0 (3.23)
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Vol +mizpd, —ISB+ N}, + V&), —V®) =0 (3.24)
Vpip+mizpd, + Nj +Vig, —VOL =0 (3.25)

where, Né’l and N i are the BSSD non-integer ambiguity parameters lumped to the receiver and

satellite hardware delays as shown in Equations 3.26 and 3.27.

Nijl =/1[Né _NIE] _/1[¢]E _%] +C[§ru +5le] _c[é;E] +621] —C drPI +d}/;1] +C[dr51 +d1151] (3.26)
Ny =A[Ng—Ny]-A[ @y — @] +c[Sr, Sy, ] —cldy,—d,, ] (3.27)

Finally, the per-constellation BSSD equations take the form:

Vol +mizpd, + V&L, VP =0 (3.28)
Vpgp+ m_lfzpdw +Vey -VPh=0 (3.29)
Vol +mizpd, + NI +VE), -V = ' (3.30)
Vpip+mizpd, + Nj + Vg, —VOYE =0 (3.31)

where, N and N are the BSSD non-integer ambiguity parameters lumped to the receiver and

satellite hardware delays as shown in Equations 3.32 and 3.33.

Ni = A[NL=Ni] = A[@h -5 ] +c[S], -6, ] —c[d}, —d}, ] (3.32)
Ny =A[Nf =Ny ] -A[ @} —@, ] +c[S5, Sy, ] —cldy, —dy, ] (3.33)

It should be noticed from the above equations that the modified receiver clock error (i.e., the
common term dt ) and the initial phase bias cancel out when forming BSSD with one satellite
selected as a reference (i.e., tight combination). However, when forming per constellation BSSD,

the modified receiver clock error, the inter-system bias, and the initial phase bias are all

cancelled out.

3.4. SEQUENTIAL LEAST SQUARES ESTIMATION

The sequential least-squares estimation technique is used to obtain the best estimates, in the least
squares sense, of the unknown parameters. The noise terms in the above observations equations

are modeled stochastically using an exponential function, as described in Afifi and El-Rabbany
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(2013). They showed that, in comparison with existing stochastic models such as the general sine
function, the use of the exponential model improves the PPP solution precision and convergence
time. The general linearized form for the above observations equations around the initial

(approximate) vector #° and observables I can be written in a compact form as:

f(u,)=Adu—w—-r=0 (3.34)
where u is the vector of unknown parameters; 4 is the design matrix, which includes the partial
derivatives of the observation equations with respect to the unknown parameters u; Adu is the

O ie., u=u’+ Au; w is the

unknown vector of corrections to the approximate parameters u
misclosure vector and r is the vector of residuals. The sequential least-squares solution for the

unknown parameters Au; at an epoch i can be obtained from (Vanicek and Krakiwsky, 1986):

— -1 -1 -1
Au,=Au + M AT(C, + A MATY' W, - A4 Au, ] (3.35)
M =M, -M A (C +AM A AM, (3.36)
Cp, =M =M -M A (C + AM A AM, (3.37)

where Aui; is the least-squares solution for the estimated parameters at epoch i-7; M is the
matrix of the normal equations; Cr and Ca are the covariance matrices of the observations and
unknown parameters, respectively. It should be pointed out that the usual batch least-squares
adjustment should be used in the first epoch, i.e., for i = 1. The batch solution for the estimated
parameters and the inverse of the normal equation matrix are given respectively by (Vanicek and

Krakiwsky, 1986):

Au, =[C, + A/ C/AT AClw, (338)

M =[C,+A4/C'A] (3.39)

where C\’ is a priori covariance matrix for the approximate values of the unknown parameters.

Under the assumption that the observations are uncorrelated and the errors are normally
distributed with zero mean, the covariance matrix of the un-differenced observations takes the

form of a diagonal matrix. The elements along the diagonal line represent the variances of the
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code and carrier phase measurements. In our solution, we consider that the ration between the
standard deviation of the code and carrier-phase measurements to be 100. When forming BSSD,
however, the differenced observations become mathematically correlated. This leads to a fully

populated covariance matrix at a particular epoch.

Considering the un-differenced mode, the matrix A and the vector Au at a particular epoch are

given by:
_(XO;;: G) (yop—f; G) (zoglza G) M 0 0 w0 0 o
o 0
—x1 _yl _71
(xo 1);6) (yo 1’; G) (zo 1ZGG) 1 mfla 01 - 00 - 0 C Ax
P? Py p? Ay
. . . ' . - . Az
_X"G _yne _gng )
(xop(,)la ) (yopga ) (Zop;la ) 1 mfnc O0 - 0 0 - 0 dtTG
) () (S zpd,,
( OpnG ) ( Opnc ) ( OpnG ) 1 m" 0 0 - 1 0 - 0 fi
4= e i s Au=| §y1 (3.40)
(xong ) (yoplE ) (ZoplE ) mfls 10 - 0 0 - 0 ;
0 0 o
N G
xo_XiE) (3/0—}’15) (zo—ziE) 1p e
m 10 - 01 - 0 Vi
( P’ po" Po” 4 N
(Xo;gns) (yo;oz’ﬂE) (Zo;);niz‘) 1 man 10 - 0 0 - 0 | Nglg I e
(xo;i;nzs) (yOp—L"E) (ZO;nZEnE) 1 man 10 - 0 0 - 1
) ’ ’ ° “2n x (n+6)

where n¢ refers to the number of visible GPS satellites; nz refers to the number of visible Galileo
satellites; n = net+ne is the total number of the observed satellites for both GPS and Galileo
systems; xo, yo and zo are the approximate receiver coordinates; X Je,YJe, 7Jc, j=1,2,..,n; are
the known GPS satellite coordinates; X*E,YkE ZKE |k = 1,2,..,ng are the known Galileo
satellite coordinates; p, is the approximate receiver-satellite range. The unknown parameters in
the above system are the corrections to the receiver coordinates, Ax, Ay, and Az, the biased

receiver clock error dt, ., the wet component of the tropospheric zenith path delay zpdw, the

TG
inter-system bias ISB, and the non-integer ambiguity parameters N. It should be pointed out that
the number of unknown parameters in the above system equals ng+ne+6, while the number of
equations equals 2ng+2ne. This means that the redundancy equals ng+ne-6. In other words, at
least 6 mixed satellites are needed for the solution to exist. In comparison with the GPS-only un-

differenced scenario, which requires a minimum of 5 satellites for the solution to exist, the
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addition of Galileo satellites increases the redundancy by ng-1. In other words, we need a

minimum of two Galileo satellites in order to contribute to the solution.

When a GPS satellite is selected as a reference to form the BSSD for both GPS and Galileo

observations, the design matrix A4 and the vector of corrections Au take the form:
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where /¢ refers to the GPS reference satellite. All other parameters are as defined above. The
advantage of the above system (3.41) is that the number of unknown parameters is reduced by
two (i.e., becomes ngtngt+4), in comparison with the un-differenced scenario. This, however,
comes at the expense of reducing the number of BSSD observation equations to 2(ngtne-1). As
such, the redundancy remains unchanged and equals ng+ne-6. Similarly, we need a minimum of

two Galileo satellites in order to contribute to the solution. By analogy, the use of a Galileo

satellite as a reference to form the BSSD for both GPS and Galileo observations leads to:
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where [ refers to the Galileo reference satellite. All other parameters are as defined above.

Similar to the above BSSD scenario, the redundancy remains unchanged and equals ng+ne-6.

When two reference satellites are selected to form the BSSD, i.e., per-constellation BSSD, the

design matrix A4 and the vector of corrections Au take the form:
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The major advantage of the above per-constellation (or loose combination) system is that the
modified receiver clock error and the inter-system bias are cancelled out. In addition, the total
number of unknown parameters is reduced by 4 to become n¢+ng+2, in comparison with the un-
differenced scenario. This, however, comes at the expense of reducing the number of BSSD
observation equations to 2(nct+ne-2). This means that the redundancy remains unchanged and
equals ng+ne-6. Similar to the previous scenarios, the redundancy for the GPS-only scenario is
still ng-5 and the addition of Galileo satellites increased the overall redundancy to nz-1. As such,
we still need a minimum of two Galileo satellites in order to contribute to the solution. However,
as indicated by Paziewski and Wielgosz (2014), the adjustment model is stronger through the

tight combination, i.e., when a single satellite is used as a reference.

3.5. RESULTS AND DISCUSSION

To verify the developed GPS/Galileo PPP model, GPS and Galileo measurements at six well-
distributed stations (Figure 3.1) were selected from the IGS tracking network (Dow et al. 2009).

Those stations are occupied by GNSS receivers, which are capable of simultaneously tracking
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the GPS and Galileo constellations. The analysis is performed on two different days January 1,

2014 and July 8, 2014 for all stations shown in Figure 3.1.
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Figure 3.1 Analysis stations

The sampling interval for all data sets is 30 seconds, while the time span used in the analysis is
three hours, which is selected at different times of the day to ensure that the four Galileo
satellites are visible at each station. GPSPace PPP software of Natural Resources Canada
(NRCan) was modified to enable a GPS/Galileo PPP solution as described above. The
positioning results for stations CONZ, and CUTO (January 1, 2014) and stations DLF1, and
UNB3 (July 8, 2014) are presented below. Similar results are obtained from the other stations.

However, a summary of the convergence times is presented below for all stations.

The single-frequency GPS/Galileo PPP solution is implemented through combining the GPS L1
signal with the Galileo E1 signal. As mentioned earlier, three different scenarios are considered
when processing the data sets with the BSSD model, namely (1) a GPS satellite is selected as a
reference satellite for both GPS and Galileo observables; (2) a Galileo satellite is selected as a
reference satellite for both GPS and Galileo observables; and (3) two reference satellites are
selected: a GPS reference satellite for the GPS observables and a Galileo satellite for the Galileo
observables. To assess the PPP solution accuracy of the developed single frequency model, un-

differenced dual-frequency ionosphere-free linear combination of GPS/Galileo PPP is used as a
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reference. Figure 3.2 shows the reference solution for July 8, 2014, as an example. As can be
seen, the dual-frequency GPS/Galileo PPP solution has a sub-decimeter positioning accuracy
with approximately 15 minutes convergence time (i.e., the time that the solution takes to

converge to a decimetre-level positioning accuracy).
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Figure 3.2 Un-differenced ionosphere-free GPS/Galileo PPP solution

Figure 3.3 shows the PPP results for the un-differenced single frequency GPS/Galileo model. As
can be seen, the single frequency GPS/Galileo PPP solution shows a decimetre level accuracy
and approximately 100 minutes convergence time. It should be emphasized that the exponential
function is used to model the stochastic part of the mathematical model. As shown in Afifi and
El-Rabbany (2013), the use of the exponential function improves the precision of the PPP

solution by about 30%, in comparison with the sine function.
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Figure 3.3 Un-differenced single frequency GPS/Galileo PPP solution

Figure 3.4 shows the results of the single-frequency BSSD GPS/Galileo PPP model, when a GPS

satellite is selected as a reference for both GPS and Galileo observables. As can be seen, similar
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to the un-differenced counterpart, a sub-decimeter level positioning accuracy is obtained.
However, a reduction of about 35% in the convergence time is obtained through the BSSD

model, in comparison with the un-differenced single frequency GPS/Galileo solution.
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Figure 3.4 BSSD GPS/Galileo PPP solution using a GPS reference satellite

Figure 3.5 shows the results of the BSSD GPS/Galileo PPP solution when a Galileo satellite is
selected as a reference for both GPS and Galileo observables. As expected, similar results to the
previous scenario are obtained. This similarity is due mainly to the fact that both BSSD models

use tight combination with similar relative satellite geometry and same redundancy number.
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Figure 3.5 BSSD GPS/Galileo PPP solution using a Galileo reference satellite

The results of the third BSSD model scenario, i.e., when a GPS satellite and a Galileo satellite
are selected as references for the GPS and Galileo observables, respectively, are shown in Figure
3.6. As can be seen, similar to the previous two scenarios, a sub-decimeter level positioning
accuracy is obtained. However, only a 15% reduction in the convergence time is obtained, in
comparison with the un-differenced model solution. This moderate improvement in the
convergence time is likely attributed to the fact that the loose combination is weaker than the
tight combination, as indicated above. In addition, as the ionospheric delay would not be
modelled sufficiently through the GIM, a residual component remains, which would be mapped

differently into the unknown parameters of the BSSD models.
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Figure 3.6 BSSD GPS/Galileo PPP solution using two reference satellites

Figure 3.7 shows a summary of the standard deviations (STD) for the obtained station
coordinates, which are extracted from the solution every 20 minutes. The results of the STD
show that the un-differenced GPS/Galileo solution takes approximately 100 minutes to reach the
decimetre level accuracy. However, this is reduced to about 65 minutes when BSSD with one
reference satellite is used. On the other hand, when BSSD with two reference satellites is used,
the solution takes 85 minutes to reach the decimetre level accuracy. As discussed above, this is

likely attributed to the relatively weaker adjustment model of the loose combination.
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Figure 3.7 Summary of standard deviations of obtained station coordinates
Figure 3.8 summarizes the convergence times of all 24 cases considered in our analysis. As

shown in Figure 3.9, as far as the solution convergence time is concerned, the best results are

obtained when the BSSD model with one reference satellite (i.e., a tight combination) is used.

44



-
=]
=

Jan. 1st, 2014

u - = = CUTO
_ . _ = UNB3
i it [ H il = DLF1
5.: 3= | i = REUN

| ] " CONZ
H {i ‘ i 5 ULAB
1 2 4

3

g

Convergence time (min)
&= 2
= =

b
[

Analysis Case

Figure 3.8 Summary of convergence times for all data sets analysed. (1) un-differenced model;
(2) BSSD model with a GPS satellite as a reference; (3) BSSD model with a Galileo satellite as a
reference; (4) BSSD model with both a GPS and a Galileo as reference satellite

The inter-system bias for the various receivers is obtained as a by-product of the PPP solution of
the un-differenced and tight combination scenarios. Figure 3.9 summarises the results of the ISB
for all stations, based on the BSSD single-frequency GPS/Galileo PPP model. The results are
almost identical to those obtained the through the un-differenced single-frequency GPS/Galileo
PPP model.
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Figure 3.9 Summary of ISB results
As shown in Figure 3.9, the values of the ISB are stable over the observation time spans.

Differences of up to 3 m can be observed, which indicate that the ISB is receiver/firmware

dependent.
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3.6. CONCLUSIONS

A new PPP model, which combines single frequency GPS and Galileo system observations in
BSSD mode, has been introduced in this paper. Three scenarios have been considered when
forming BSSD, namely a GPS satellite is selected as a reference, a Galileo satellite is selected as
a reference, and two satellites, one GPS and one Galileo, are selected as references. It has been
shown that a sub-decimetre level positioning accuracy can be obtained with both of the un-
differenced and BSSD single-frequency GPS/Galileo PPP models. However, the PPP solution of
the un-differenced model takes about 100 minutes to converge to a decimetre level positioning
accuracy. The convergence time of the single-frequency GPS/Galileo PPP solution is improved
by 35% and 15% when BSSD with tight and loose combinations are used, respectively. The
moderate improvement in the solution convergence time obtained with the loose combination is
likely attributed to its relatively weaker adjustment model in comparison with the tight

combination.

The values of the ISB have been obtained for various days and receiver types. Almost identical
results have been obtained with both of the un-differenced and BSSD (tight combination) modes.
It has been found that the values of the ISB are largely stable over the observation time spans.
However, differences of up to 3 m have been observed, which suggest that the ISB is

receiver/firmware dependent.
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CHAPTER 4

AN IMPROVED BETWEEN-SATELLITE SINGLE-DIFFERENCE PRECISE POINT
POSITIONING MODEL FOR COMBINED GPS/GALILEO OBSERVATIONS

This chapter describes a dual-frequency GPS/Galileo PPP model, which uses un-differenced and
BSSD (with both loose and tight combinations) models. It is originally published as:

Afifi, A., El-Rabbany, A. 2015. An improved between-satellite single-difference precise point
positioning model for combined GPS/Galileo observations. Journal of Applied Geodesy,

9(2), 101-111, doi: 10.1515/jag-2014-0030.

Modifications to the original manuscript were made only for proper identification of sections,
figures and tables, as well as to assure the uniformity of symbol and equation notation

throughout this dissertation.
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ABSTRACT

This paper introduces a new model for precise point positioning (PPP), which combines dual-
frequency GPS and Galileo observations. Our model is based on the between-satellite single-
difference (BSSD) linear combination, which cancels out some receiver-related biases, including
receiver clock error and non-zero initial phase bias of the receiver’s oscillator. Two different
scenarios are considered when forming BSSD linear combinations. In the first scenario, either a
GPS or a Galileo satellite is selected as a reference for both GPS and Galileo observables. The
second scenario, on the other hand, selects two reference satellites: a GPS reference satellite for
the GPS observables and a Galileo satellite for the Galileo observables. Natural Resources
Canada’s GPSPace PPP software is modified to enable a combined GPS/Galileo PPP solution
and to handle the newly introduced biases. A total of 12 data sets representing two-day
GPS/Galileo measurements at six IGS stations are processed to verify the developed PPP model.
Precise satellite orbit and clock products from the IGS-MGEX network are used to correct both
of the GPS and Galileo measurements. It is shown that using one reference satellite to form the
BSSD linear combinations improves the precision of the estimated parameters by about 25%
compared with the GPS-only PPP solution. When two reference satellites are used, however, the
precision of the estimated parameters improves by about 50% compared with the GPS-only PPP
solution. Additionally, the solution convergence time is reduced to 10 minutes for both BSSD
scenarios, which represents about 50% improvement in comparison with the GPS-only PPP

solution.

4.1. INTRODUCTION

Precise point positioning (PPP) technique proved to be capable of providing positioning
solutions at the sub-decimeter- and decimeter-level accuracy in static and kinematic modes,
respectively. PPP accuracy and convergence time are controlled by the ability to mitigate all
potential errors and biases. A number of un-differenced and between-satellite single-difference
(BSSD) GPS PPP models have been developed since early 2000 (see for example, Kouba and
Héroux, 2001; Colombo et al., 2004; Ge at el., 2008; Collins at al., 2010). For a single global
navigation satellite system (GNSS) constellation, BSSD linear combination cancels out all

receiver-related biases, assuming that multipath does not exist. Elsobeiey and El-Rabbany (2014)
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showed that, as a result of eliminating the receiver-related biases, a faster PPP convergence time

is obtained through the BSSD GPS PPP model.

More recently, Afifi and El-Rabbany (2015) showed that combining the un-differenced GPS and
Galileo observations in a PPP model improves the solution convergence time by about 25%, in
comparison with the GPS-only counterpart. In addition, they showed that the inter-system bias is
largely constant over a one-hour observation time span, which they used in their analysis, with a
magnitude ranging from 30 to 60 nanoseconds depending on the GNSS receiver type. Building
on earlier research related to the GPS PPP ambiguity resolution, Tegedor et al. (2014) estimated
the uncalibrated hardware delays (UHDs) for Galileo satellites through the adjustment of a
network of GNSS reference stations, for the purpose of fixing the Galileo PPP ambiguity
parameters. Using a common set of precise orbits, clock corrections and UHDs, they processed
data from a number of stations occupied by different receiver types, both with fixed and float
ambiguity parameters. However, the improvement in the PPP positioning accuracy was marginal,
which is mainly attributed to the limited number of Galileo satellites presently in the

constellation.

This paper develops a PPP model, which combines GPS and Galileo dual-frequency observables
using BSSD mode. We consider two scenarios when forming the BSSD linear combination,
namely a tight and a loose combination. In the first scenario, either a GPS or a Galileo satellite is
selected as a reference for both GPS and Galileo observables. The second scenario, which is also
referred to as per constellation combination, considers two reference satellites: a GPS reference
satellite for the GPS observables and a Galileo satellite for the Galileo observables (Odijk and
Teunissen, 2013). Precise orbits and clock corrections from the International GNSS Service
multi-GNSS experiment (IGS-MEGX) network are used to account for GPS and Galileo satellite
orbit and clock errors (Montenbruck et al., 2014). As these products are presently referenced to
the GPS time and since we use mixed GNSS receivers that also use GPS time as a reference, the
GGTO 1is cancelled out in our model. The inter-system bias is either cancelled out through
differencing the observations or is treated as an additional unknown parameter. The hydrostatic
component of the tropospheric zenith path delay is modelled through the Hopfield model, while

the wet component is considered as an additional unknown parameter (Hopfield, 1972;
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Hofmann-Wellenhof et al., 2008). All remaining errors and biases are accounted for using
existing models as shown in Kouba (2009). It is shown that the newly developed GPS/Galileo
PPP model improves the precision of the estimated parameters by about 50% and 25%, in
comparison with the un-differenced GPS-only model, when the loose and the tight combinations
are used, respectively. In addition, the solution convergence time is reduced to 10 minutes for
both BSSD scenarios, which represents about 50% improvement in comparison with the GPS-

only PPP solution.

4.2. GPS/GALILEO PPP MATHEMATICAL MODEL
Following Hofmann-Wellenhof et al., (2008) and Afifi and El-Rabbany (2015), the basic

mathematical model underlying dual-frequency PPP is defined by the ionosphere-free linear

combinations as shown in Equations 4.1-4.5.

PG,F =P tcldig-dr’ ] +c[agdy, - Bdp, |, +cl gdy - Bodp, [+ 15+ Epg,, 4.1)

PG,F(CI/P2 )~ Ps +c[ dtrG - dts] +C[ aGdCI - ﬂcdm] r +c[ aGdCI - :Bde] ’ +TG + g(Cl/P2)GIF (4.2)

PE,F =ppt C[dtrc - GGTO - dtS] + c[aEdEl - ﬂEdESa]r + c[aEdEl - ﬂEdESa]X + TE + SE,F (43)
CDG,F =P +C[dtrG - df] +C[ aGé‘LI 'ﬁcé‘u] r +C[ O’Gé‘u 'ﬂcgu] ’ +-’Z;; +NG,F +¢rOG,F +¢SG,F +8<1>G1p (4.4)

(DE,,. P +C[C#1G —GGI0- af] +d/ 0%51‘51 -ﬂEé;:"Sa] r +df %é;;"l _ﬂEéESa] ) +];? +NE,F +¢rOEIF +¢gEIF +5c1>E,F (4.5)
where the subscripts G and E refer to the GPS and Galileo satellite systems, respectively; P,
and P, are the ionosphere-free pseudoranges in meters for GPS and Galileo systems,
respectively; D, and &, are the 1onosphere-free carrier phase measurements in meters for GPS

and Galileo systems, respectively; p is the true geometric range from receiver at reception time to

satellite at transmission time in meters; dt,, dt* are the clock errors in seconds for the receiver at

signal reception time and the satellite at signal transmission time, respectively; d,,, , dp,., d., ,

d.,, d.s, are frequency-dependent code hardware delays for the receiver at reception time in
seconds; d,°, d,,*, d.*, d,*, d,,,° are frequency-dependent code hardware delays for the

P12 cr 2

satellite at transmission time in seconds; o;,, 0,,, 0., Oy, are frequency-dependent carrier-
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phase hardware delays for the receiver at reception time in seconds; s, 5, §,.%, 5. %, &§,.. 5 are

L1 L2 ? E1 ? E5a
frequency-dependent carrier-phase hardware delays for the satellite at transmission time in

seconds; 7 is the tropospheric delay in meter; N

N, are the ionosphere-free linear
G[I" ? E[I"

combinations of the ambiguity parameters for both GPS and Galileo carrier-phase measurements

in meters, respectively (Equations 6 and 7); ¢"001F , ¢OSG s P, ¢OSE _are ionosphere-free linear

OEIF ’
combinations of frequency-dependent initial fractional phase biases in the receiver and satellite

channels for both GPS and Galileo in meters, respectively; c is the speed of light in vacuum in

meter per second; &,
1

)
¥

EUPGy €5, » €wc, » Eor, ar¢ the ionosphere-free linear combinations

of the relevant noise and un-modeled errors in meter; ¢, B;, a,, B, are the ionosphere-free

linear combination coefficients for both GPS and Galileo, which are given, respectively, by:

2 2 2 2
#a fz S o, = fEl fESu .
-2 ) 2 2 E 2 ) -2 2
fl _fz f] _fz fE]_-/ESa fEl_fESa

ag = 2By =

Bs =

where /1 and f> are the GPS L1 and L2 signal frequencies; fz; and fzsq are the Galileo E1 and Esa
signal frequencies. The ionosphere-free linear combinations of the ambiguity parameters for both

GPS and Galileo carrier-phase measurements are defined by:

NG,F = ﬁ“G,F [fiN, = ,N, ] (4.6)

NE,F = /1E,F [fElNEl _fESaNESa] (4-7)

where Acir and Aer are the ionosphere-free linear combinations of the wavelengths in meters,

VAR S fh— T
ambiguity parameters of GPS signals L1 and L2, respectively; Nei, Nesa are the integer

which are given, respectively, by ;, ___ ¢ and ; c ; N1, N2 are the integer

ambiguity parameters of Galileo signals E1 and ES5a, respectively.

As indicated earlier, precise orbit and satellite clock corrections from the IGS-MGEX network
are used to correct both of the GPS and Galileo measurements. It should be pointed out that such
products are presently referenced to the GPS time frame (Montenbruck et al., 2014). As well, the
IGS-MGEX precise GPS satellite clock corrections include the effect of the ionosphere-free
linear combination of the satellite hardware delays of L1/L2 P(Y) code, while the Galileo

counterpart include the effect of the ionosphere-free linear combination of the satellite hardware
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delays of the Galileo E1/E5a pilot code (Montenbruck et al., 2014). Applying the precise clock

corrections to Equations 4.1 to 4.5, we obtain:

PG,F = pg Tcldt,; - dt;rec] telad, - Bd,, ], +T; + €pG,, (4.8)
PG,,,(C//PZ) =p; tcldt,; - dt;)rec] tc/ad,, - pd,, ], +aDCBgI/PI +1; + Epa, 4.9)
P, =pptcldt,-dt,,, ] tclad, -pdy, ], +T,+ &, (4.10)

O, =pgt+edt,g-cldt,, . +[ody, - fdy, | ]+ ady, - PO, ], +e[ by, - B, | T +N;, +¢r0G,F +¢go,F o, (4.11)
(I)E,F =P +Cdt,G _C[dt;rec +[adE] _MESa]S] +C[0651 _wESa]r +C[a§E] 'wESa]S +T, +NE,,,— +¢r0E,F +¢g£,p +$®@r (4' 12)

where DCB*cip1 1s the GPS C1/P1 differential code bias. To simplify Equations 4.8 to 4.12, the

receiver and satellite hardware delays are written as:

b =c[ody—[dy,], by = clad, - pd,,]’

b, = c[ody—fd,,], b.=clady, - fd,, ]’

b, =clady—fdy,], by=clad, - pd,,]

b, = clad,~Ba] 4, bio = clady = o] 4,
b, = cl o0y —[oy,], +¢rOElF by = €[00 = PBys, I +¢;E,F

To avoid a rank-defect system, the GPS receiver clock error is conventionally lumped with the
GPS ionosphere-free linear combination of the receiver differential code biases. As well, to
maintain consistency in the estimation of a common receiver clock offset, we follow this
convention when combining the ionosphere-free linear combination of GPS L1/L2 and Galileo
E1/E5a observations. This, however, introduces an additional bias in the Galileo ionosphere-free
PPP mathematical model, which represents the difference in the ionosphere-free linear
combination of the receiver differential code biases of both systems. Such an additional bias is
commonly known as the inter-system bias, which is referred to as ISB in this paper. With the
above consideration, the GPS and Galileo ionosphere-free linear combinations of both

pseudorange and carrier-phase measurements can be written in a compact form as:
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Py =pgtdig-dt, +T,+ & (4.13)

G[F

%F(CI/PZ) =P +‘:]trc - Cﬁ;rec +aDCB 1+ €pG, (4.14)
P, =p,tdig-dt, +ISB+T, + &, (4.15)
D, =pgtdtg-dt,, +T,+N, +&4 (4.16)
@, =p, tdtg-dt, AT, +N, +ISB+e,, (4.17)

where a?trc represents the sum of the receiver clock error and hardware delay, i.e.,

dt,; = cdt,; + b, ; ISB is the inter-system bias, ISB=b, —b, ; N G, and N r,, represent the

rG

ambiguity parameters lumped to the receiver and satellite hardware delays, i.e.,

Ny, =Ng, +b,, —b, +bi,~b; (4.18)
Ny, =Ny, +b, —b, +by,~b; (4.19)

In our PPP mode, the Hopfield tropospheric correction model along with the Vienna mapping
function are used to account for the hydrostatic component of the tropospheric delay (Hopfield,
1972; Boehm and Schuh, 2004). Other corrections are also applied, including the effect of ocean
loading (Bos and Scherneck, 2014; IERS, 2010), Earth tide (Kouba, 2009), carrier-phase windup
(Leick, 2004; Wu et al., 1993), Sagnac (Kaplan and Heagarty, 2006), relativity (Hofmann-
Wellenhof et al., 2008), and satellite and receiver antenna phase-center variations (Dow et al.
2009). The noise terms are modeled stochastically using an exponential model, as described in
Afifi and El-Rabbany (2013). Applying the above corrections and accounting for the differential

code biases, we can re-write Equations 4.13 to 4.17 as:

Ps +d~trG tmoxzpd, +Epg —F, =0 (4.20)
Pg Tt g+m, xzpd, + €pG,. _INDGIF(CI/PI) =0 (4.21)
Py +dt . +m xzpd, +1SB+ & — PE,F =0 (4.22)

pstatg+tm xzpd, + N, +&,, ~®; =0 (4.23)
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pytdt+m xzpd + N, +ISB+é,, —®, =0 (4.24)

where, P PG]F(CI,PI),P v, ’CDG,F and P _are the ionosphere-free linear combinations of the

pseudorange and carrier-phase observables after applying the above corrections; zpdw is the wet

component of the tropospheric zenith path delay; mytroposphere mapping functions.

As indicated earlier, two scenarios are considered when forming the BSSD linear combination,
namely a tight and a loose combination. In the first scenario, either a GPS or a Galileo satellite is
selected as a reference for both GPS and Galileo observables (Odijk and Teunissen, 2013).

Taking a GPS satellite as a reference and using Equations 4.20 to 4.24, we obtain:

Pl +m)zpd, + & P‘JIF =0 (4.25)
P+l zpd, +Eh. QIF(C[/P,) =0 (4.26)
Pr Ty zpd, +ISB+ &, B =0 (4.27)
Poc+mizpd, +N’ +8” (Dlé,r =0 (4.28)
P+t zpd +ISB+Ny, +&y, —D, =0 (4.29)

where, the superscript i refers to the GPS reference satellite; the superscripts j and k refer the

GPS and Galileo satellites respectively; N, gm and N Z‘Gm are given by:

N =N -N +i},~Y, (4.30)
Ny, =N. =N +b, b+, ~t, +H},~t] (4.31)
Similarly, when a Galileo satellite is selected as a reference, using Equations 4.20 to 4.24 leads
to:

£y +mzpd, —ISB+ &), —F, =0 (4.32)
Py +mlzpd —ISB+Eh, B, ) =0 (4.33)
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petmizpd, + &y — P =0 (4.34)

p+rzpd, ISB+N§E +&5, — @, =0 (4.35)
pE o +m Zpd ]\72; +§§E —CDZ; =0 (4.36)

where, the superscript / refers to the Galileo reference satellite, Ng’EW and N Z‘” are the BSSD

non-integer ambiguity parameters lumped to the receiver and satellite hardware delays, which

are given by:

N, =Ny, =N, +b, =b, +by, b, +b,~b) (4.37)
Ny, =Np, =Ny, b —b; (4.38)

In the loose BSSD combination, two reference satellites are considered: a GPS reference satellite
for the GPS observables and a Galileo satellite for the Galileo observables. Using Equations 4.20
to 4.24, we obtain:

pZ’G +mifzpdw + g;ﬂGF —]%F =0 (4.39)
,02’},(; +m’;zpdw +§gqF _IBG,F(CI/PZ) =0 (4.40)
P tmyzpd, +&p, —F; =0 (4.41)
phg+niizpd, + Ny +&. —df =0 (4.42)
pEE+m ‘zpd  + N”‘ & —CDiEkIF =0 (4.43)

where, N gm and N ;"W are the BSSD non-integer ambiguity parameters lumped to the receiver

and satellite hardware delays as shown in Equations 4.44 and 4.45.

N =N_-N -+t~ (4.44)
NE ' =N, —N, +ty,—l (4.45)
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4.3. LEAST SQUARES ESTIMATION TECHNIQUE

Under the assumption that the observations are uncorrelated and the errors are normally
distributed with zero mean, the covariance matrix of the un-differenced observations takes the
form of a diagonal matrix. The elements along the diagonal line represent the variances of the
code and carrier phase measurements. In our solution, we consider that the ratio between the
standard deviation of the code and carrier-phase measurements to be 100. When forming BSSD,
however, the differenced observations become mathematically correlated. This leads to a fully

populated covariance matrix at a particular epoch.

The general linearized form for the above observation equations around the initial (approximate)

vector u#° and observables I can be written in a compact form as:

fw))=AMu—w—-r=0 (4.46)
where u is the vector of unknown parameters; A4 is the design matrix, which includes the partial
derivatives of the observation equations with respect to the unknown parameters u; du is the
unknown vector of corrections to the approximate parameters u°, i.e., u = u® + Au; w is the
misclosure vector and r is the vector of residuals. The sequential least-squares solution for the

unknown parameters Au; at an epoch i can be obtained from (Vanicek and Krakiwsky, 1986):

Au,=Au, + M AT(C + A M AT [w, - A Au, ] (4.47)
M'=M'-M'A (C, + AM' A AM! (4.48)
C, = M'=M"- M;’IAiT(CI[ +AM' A" AM! (4.49)

where Aui.1 is the least-squares solution for the estimated parameters at epoch i-7; M is the
matrix of the normal equations; C; and Cuy are the covariance matrices of the observations and
unknown parameters, respectively. It should be pointed out that the usual batch least-squares
adjustment should be used in the first epoch, i.e., for i = 1. The batch solution for the estimated

parameters and the inverse of the normal equation matrix are given, respectively, by (Vanicek

and Krakiwsky, 1986):
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Au,=[C,+A/C/AT 4] C'w, (4.50)
M =[C+A]C/AT (1

where C\’ is a priori covariance matrix for the approximate values of the unknown parameters. It
should be pointed out that, as the IGS-MEGX precise orbits refer to the IGSO0S8, the resulting

station coordinates will be referenced to the IGS0S.

When a GPS satellite is selected as a reference to form the BSSD for both GPS and Galileo

observations, the design matrix 4 and the vector of corrections Au take the form:

0—-X2G xo-X1G Yo-Y2G Yo-Y1G 29-2%G\ _ (20-2'G 201 1
(559) - (55) (59 - (255) () - (=59) mee 00 - 0 0 - 0
Xo —xzc xo-X1G yo-Y1G Yyo-¥1G 20-22G _ (2026 201
(pa) (pa) (p ) (p ) (plz)s) (p;G) mg2ete 0 1 00 0 Ax |
: H : H : H : Ay
(59) () (o) () () () e 0 0 - 0 0 o p
p Po Py Po zpd,,
(X° ) (x"_x G) (y" re ) (y - G) (er:G) - (Z"_lzala) mrs 0 0 < 1 0 o 0 ISB
_ Po Po Po Po Po _| N°le
A= ro—x1E XD_X 16 Yoo yIE Yo-¥1G 20-21E 20-71G T Au = Lzl (452)
( gt ) p PIG P;E - P;G my 0 = 00 0 Nnala
L1
X0—X E) xo—X G) (yo ylE) (yu yla) (zo—zls) _ (20—216) e 1 0 o 0 1 - 0 ~11g
( P PR P Py poE P my NE:1
Xo—X"E xn—x 1 yo—YME 1 20—Z"E . 20-21G nglg .N:flafnﬂ
(po") (pg) (,,g)‘ =) ™ 10 « 00 « 0
— _yl _ 1 — —71
(xl) X"E) (xn X 5) (yo Y"E) (;Vn Y 5) (ZOP"Z;E) _ (zoplza 5) mmEle 1 0 - 0 0 - 1
o o

by vy
where ‘1’ refers to the GPS reference satellite; ng refers to the number of visible GPS satellites;
ne refers to the number of visible Galileo satellites; n = ngtne is the total number of the observed
satellites for both GPS and Galileo systems; xo, yo and zo are the approximate receiver
coordinates; X6, YjG,ZjG,j =1,2,..,n; are the known GPS satellite coordinates;
Xke Yk, 7KE |k = 1,2, ...,ng are the known Galileo satellite coordinates; p, is the approximate
receiver-satellite range. The unknown parameters in the above system are the corrections to the
receiver coordinates, Ax, Ay, and Az, the wet component of the tropospheric zenith path delay

zpdy, the inter-system bias ISB, and the non-integer ambiguity parameters N.

The advantage of the above system (4.52) is that the number of unknown parameters is reduced
by two (i.e., becomes ngtnet4), in comparison with the un-differenced PPP counterpart. This,
however, comes at the expense of reducing the number of BSSD observation equations to

2(nctne-1). As such, the redundancy remains unchanged and equals nc+ne-6. Similarly, we need
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a minimum of two Galileo satellites in order to contribute to the solution. By analogy, the use of

a Galileo satellite as a reference to form the BSSD for both GPS and Galileo observations leads

to:
[(x0-X1G xo—-X1E Yo-YiG yo-Y1E 20-2%G 20-Z1E 101 1
( o1G )_( T c )~ g i )~ 1E mg e 1.0 - 0 0 - 0
0 Po Po Po Po Po
xo-X1G xo-X1E yo-Y1G yo-Y1E 20-21G 20—Z'E 101
( i )_( g ic |~ i ic )~ iE mgGE 1100 - 0
Po Po Po Po Po Po
H H H H H H . H H . H [ AX 1
xo—X"G) (xg—xlE) (yn_ync) yo-Y1E (zo_zns) (zn_zlE) ez 1 0 0 o 0 Ay
T, - 1 7 - i 7, - T m
PoG puE pDG l?]oE ”OG puE ! Zsé
w
2 X6\ (xo-X1E Yo-Y"G) _ (yo-¥1E 22"\ _ (20-Z'E) o mgig 1 g . 1 0 e 0O ISB
£6° Po” Po° o po° Po” ! jiie
A= o Au = NL1 (4.53)
xD—XZE) (xo—XlE) (yD—YZE) Yyo-Y1E (zo—ZZE) (zo—zls) 2p1 H
z - T T - i 2 - T mg% 0 0 - 0 0 - 0 ~ngl
( p2E oo poE p(l)E piE oo f NL"lG E
~21
x0=X%E\ _ (x0-X'E yo-Y?E\ _ J’o—}’lf 20-2%E\ _ (20-2'E ma2EE 0 Q0 - 0 1 - 0 Ng,®
p2E pIE 02E ig 2g 1 ! :
o o o Po Po Po i
: : TnELE
H : : -NEl “n+4
xo—X"E xXo-X1E yo-YTE yo-Y1E 2o—-Z"E 20—-Z1E 1
Po Po Po Po Po Po
x9—X"E xXo-X1E yo-Y"E yo-Y1E 20-Z"E 20—-Z'E
L\ po Po Po Py Po Po

“2(n-1) x (n+4)
where /g refers to the Galileo reference satellite. All other parameters are as defined above.

Similar to the above BSSD scenario, the redundancy remains unchanged and equals ng+ne-6.

When two reference satellites are selected to form the BSSD, i.e., per-constellation BSSD, the

design matrix A4 and the vector of corrections Au take the form:

[(x0-X26 xXo-X1G -2 -6 29-2%G 20-2'6 |
0 _[*o Yo _ (> 0 _ (% m26i 0 . 0 0 - 0
26 ic 26 1G 26 i f
Po Po Po Po Po Po
x0—-X?G x0—X'G yo-Y2G yo-Y'G 0-226 0-2'6 261
( zg )T G 2z ) G G ) G mgeet¢ 1 - 0 0 - 0
Po Po Po Po Po Po
: : : : r Ax
x0-X"G\ _ (x0-x1G yo-¥"G\ _ (yo-v1G 0-2"G\ _ (20-2%6 NGl 9 . 0 0 - 0 Ay
nG 1c G 1c G 1g ms A
Po Po Po Po Po Po Z
(xrxnc)_(wla) (yrv"c)_(yrvla) (zrznc)_(zolea) M 0 e 1 0 - 0 2Pl
n, 1 m, 1 n, 1 ~
po° po° poC po° poC po€ f NLZIIG 4.54
A= Au=| ( . )
x0-X2E\ _ (xo-X1E yo—Y?E\ _ (yo-Y'E 0-2%E\ _ (20-2'E %E Qe 0 0 - 0 :
2 g 2 g 2 ip my Nmele
Po Po Po Po Po P
o L1
~21
Xo-X2E _ xXo-X1E Yo-Y2E _ Yyo-Y1E 0—22E _ 0—2ZE 21 0 1 0 NElE
o2E plE o2E plE o2E plE ms s
0 0 0 0 0 0 :
H H 'y 1
H H NnE E
LiVE1
-X"E —-X1E —Y"E -YlE -Z"E -Z'E 2
o . ] Yo — |2 2 — (% nElE ) .. Q0 0 - O
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xo—X"E Xo—X1E yo-Y"E yo-Y1E zo—-Z"E z9—2Z1E 1
( e )T g g )T g g ) T g mEE 0 e 000 e
L\ pg Po Po Py Po Py

“2(n-2) x (n+2)

The major advantage of the above per-constellation (or loose combination) system is that the
modified receiver clock error and the inter-system bias are cancelled out. In addition, the total
number of unknown parameters is reduced by 4 to become n¢+ngt+2, in comparison with the un-

differenced scenario. This, however, comes at the expense of reducing the number of BSSD
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observation equations to 2(ng+ne-2). This means that the redundancy remains unchanged and
equals ng+ne-6. Similar to the previous scenarios, the redundancy for the GPS-only scenario is
still ng-5 and the addition of Galileo satellites increased the overall redundancy to ne-1. As such,

we still need a minimum of two Galileo satellites in order to contribute to the solution.

4.4. RESULTS AND DISCUSSIONS
To verify the developed GPS/Galileo PPP model, GPS and Galileo measurements at six well-
distributed stations (Figure 4.1) were selected from the IGS tracking network (Dow et al. 2009).
Those stations are occupied by GNSS receivers, which are capable of simultaneously tracking
the GPS and Galileo constellations. A total of 12 data sets representing the GPS/Galileo
measurements over two different days, namely January 1, 2014 and July 8, 2014, are processed.
Only one hour of each day with four Galileo satellites of each data set is considered in our

analysis. All data sets have a sampling rate of 30 seconds.
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Figure 4.1 Analysis stations

The positioning results for stations CONZ, and CUTO (January 1, 2014) and stations DLF1, and
UNB3 (July 8, 2014) are presented below. Similar results are obtained for the other stations.
However, a summary of the convergence times and the three-dimensional PPP solution standard

deviations are presented below for all stations.
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Natural Resources Canada’s GPSPace PPP software was modified to handle data from both GPS
and Galileo systems, which enables a combined GPS/Galileo PPP solution as detailed above. In
addition to our PPP GPS/Galileo BSSD model, we also obtained the solutions of the traditional
un-differenced ionosphere-free GPS-only and GPS/Galileo PPP models. The latter results were
used to assess the performance of our newly developed PPP model. Figures 2 to 4 summarize the
positioning results in the East, North, and Up directions, respectively, for all analysis modes. As
can be seen, the un-differenced GPS-only PPP solution indicates that the model is capable of
obtaining a sub-decimetre level accuracy. However the solution takes about 20 minutes to
converge to decimetre level accuracy. On the other hand, the addition of Galileo observations

reduces the convergence of the un-differenced PPP solution to about 15 minutes.

Considering the first scenario (i.e., tight combination) of the newly developed ionosphere-free
BSSD GPS/Galileo PPP model, we processed all data sets twice: the first considers a GPS
satellite as a reference for both GPS and Galileo observables, while the second considers a
Galileo satellite as a reference. As can be seen in Figures 4.2 to 4.4, almost identical positioning
results are obtained with an average convergence time equals 10 minutes. We also processed the
data sets through the loose combination PPP model and obtained a comparable convergence time
to the first scenario. However, the performance of the loose combination model was better than
that of the tight combination model within the convergence interval. In comparison with the
GPS-only PPP model, the newly developed BSSD model improved the PPP solution
convergence by about 50%. Figures 4.5 and 4.6 summarize the convergence times for all

analysis cases, which confirm the PPP solution consistency at all stations.
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Figure 4.5 Summary of convergence times of all stations and analysis cases. (1) Un-differenced
GPS model; (2) Un-differenced GPS/Galileo model; (3) BSSD model with a GPS satellite as a
reference; (4) BSSD model with a Galileo satellite as a reference; (5) BSSD model with both a

GPS and a Galileo satellite as reference satellites

To further assess the performance of the various PPP models, the solution output is sampled

every 10 minutes and the standard deviation of the computed station coordinates is calculated for

each sample. Figure 4.6 shows the position standard deviations in the East, North, and Up

directions, respectively. Examining the standard deviations after 10 minutes, it can be seen that

the newly developed GPS/Galileo PPP model improves the precision of the estimated parameters

by about 50% and 25%, in comparison with the un-differenced GPS-only model, when the loose

and the tight combinations are used, respectively. As the number of epochs, and consequently the

number of measurements, increases the performance of the various models tends to be

comparable. An exception, however, is the loose combination model, which is found superior to

all other PPP models.
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Figure 4.6 Positioning standard deviations in East, North, and Up directions

4.5. CONCLUSIONS
This paper presented a PPP model, which combines GPS and Galileo observations in BSSD

mode. Two scenarios have been considered when forming BSSD, namely loose and tight
combinations. It has been shown that the newly developed PPP model improves the solution
convergence time by about 50%, in comparison with the un-differenced GPS PPP model,
regardless of the type of BSSD combination used. In addition, the newly developed model
improves the precision of the estimated parameters by about 50% and 25%, in comparison with
the un-differenced GPS-only model, when the loose and the tight combinations are used,
respectively. As the number of epochs increases, the performance of the various models tends to
be comparable. An exception, however, is the loose combination model, which is found superior
to all other PPP models. Almost identical results are obtained through the tight combination

when either a GPS or a Galileo satellite is selected as a reference.
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CHAPTER S

PERFORMANCE ANALYSIS OF SEVERAL GPS/GALILEO PRECISE POINT
POSITIONING MODELS

This chapter examines the performance of several precise point positioning (PPP) models, which
combine dual-frequency GPS/Galileo observations in the un-differenced and between-satellite
single-difference (BSSD) modes. These include the traditional un-differenced model, the
decoupled clock model, the semi-decoupled clock model, and between-satellite single-difference

model. The results were published as:

Afifi, A., El-Rabbany, A. (2015). Performance analysis of several GPS/Galileo precise point
positioning models, Sensors, 15(6), 14701-14726; doi:10.3390/s150614701

Modifications to the original manuscript were made only for proper identification of sections,
figures and tables, as well as to assure the uniformity of symbol and equation notation

throughout this dissertation.
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ABSTRACT

This paper examines the performance of several precise point positioning (PPP) models, which
combine dual-frequency GPS/Galileo observations in the un-differenced and between-satellite
single-difference (BSSD) modes. These include the traditional un-differenced model, the
decoupled clock model, the semi-decoupled clock model, and the between-satellite single-
difference model. We take advantage of the IGS-MGEX network products to correct for the
satellite differential code biases and the orbital and satellite clock errors. Natural Resources
Canada’s GPSPace PPP software is modified to handle the various GPS/Galileo PPP models. A
total of six data sets of GPS and Galileo observations at six IGS stations are processed to
examine the performance of the various PPP models. It is shown that the traditional un-
differenced GPS/Galileo PPP model, the GPS decoupled clock model, and the semi-decoupled
clock GPS/Galileo PPP model improve the convergence time by about 25% in comparison with
the un-differenced GPS-only model. In addition, the semi-decoupled GPS/Galileo PPP model
improves the solution precision by about 25% compared to the traditional un-differenced
GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP model improves the solution
convergence time by about 50%, in comparison with the un-differenced GPS PPP model,
regardless of the type of BSSD combination used. As well, the BSSD model improves the
precision of the estimated parameters by about 50% and 25% when the loose and the tight
combinations are used, respectively, in comparison with the un-differenced GPS-only model.
Comparable results are obtained through the tight combination when either a GPS or a Galileo

satellite is selected as a reference.

5.1. INTRODUCTION
GNSS precise point positioning (PPP) has proven to be capable of providing positioning

accuracy at the sub-decimeter and decimeter levels in static and kinematic modes, respectively.
PPP accuracy and convergence time are controlled by the ability to mitigate all potential error
biases in the system. Several comprehensive studies have been published on the accuracy and
convergence time of un-differenced GPS and GPS/Galileo PPP models (see for example,
Zumberge et al, 1997; Kouba and Héroux, 2001; Colombo et al., 2004; Ge at el., 2008; Collins at
al., 2010; Afifi and El-Rabbany, 2015). In the traditional un-differenced GPS PPP model,

because of the presence of the un-calibrated hardware delays, the ambiguity parameters are
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typically obtained as real-valued numbers (Collins at al., 2010; Ge et al., 2008; Mercier and
Laurichesse, 2008; Geng et al., 2010a). This in turn affects the GPS PPP solution convergence
and accuracy (Geng et. al., 2010b). However, recent research has demonstrated that the correct
integer values for the ambiguity parameters can be recovered if the satellite hardware delays can
be calibrated. Figures 5.1 and 5.2 show the IGS average estimated values of the receiver and
satellite differential code biases, respectively, for 2014 (IGS, 2015). As can be seen in Figure
5.2, Galileo satellite differential code biases of E1/ESa signals are relatively smaller than the

GPS L1/L2 counterpart.

Average 1GS 2014 Receiver DCB of 1112 Average 1G5 2014 Recciver DCB of EI-ESa

T |
A

iTi'ﬁ Jc i{i{'ﬁlilé\?i it
Figure 5. 1 Average 2014 IGS receiver DCB for GPS and Galileo signals
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Figure 5. 2 Average IGS 2014 satellite DCB for both GPS/Galileo signals

For a single GNSS constellation, between-satellite single-difference (BSSD) linear combination
cancels out all receiver-related errors, including the receiver hardware delays, which
significantly improves the convergence time (Afifi and El-Rabbany, 2014; Elsobeiey and El-
Rabbany, 2014; Ge et al., 2008; Colombo et al., 2004). This, however, is not the case when the

measurements of two or more constellations are combined. When forming BSSD for GPS and
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Galileo measurements, three scenarios can be considered on the selection of the reference
satellite. Either a GPS or a Galileo satellite is selected as a reference for both GPS and Galileo
observables. Alternatively, two reference satellites are selected: a GPS reference satellite for the
GPS observables and a Galileo satellite for the Galileo observables. The first approach is
commonly referred to as tight combination, while the latter is commonly referred to as per-

constellation or loose combination (Afifi and El-Rabbany, 2015).

This paper examines the performance of several PPP models, which combine the dual-frequency
GPS/Galileo observables in both un-differenced and BSSD mode. The IGS-MGEX network
products used to correct for the satellite differential code biases, the orbital and satellite clock
errors (Montenbruck et al., 2014a). As the IGS-MGEX products are presently referenced to the
GPS time and since we use mixed GNSS receivers that also use the GPS time as a reference, the
GPS to Galileo time offset (GGTO) is cancelled out in our models. The inter-system bias is
either cancelled out through differencing the observations or is treated as an additional unknown
parameter. The Hopfield tropospheric correction model is used, along with the Vienna mapping
function, to account for the hydrostatic component of the tropospheric delay (Hopfield, 1972;
Boehm and Schuh, 2004). The wet component is treated as an additional unknown parameter in
the estimation model. Other corrections are also applied, including the effect of ocean loading
(Bos and Scherneck, 2014; IERS, 2010), Earth tide (Kouba, 2009), carrier-phase windup (Leick,
2004; Wu et al., 1993), Sagnac (Kaplan and Heagarty, 2006), relativity (Hofmann-Wellenhof et
al., 2008), and satellite and receiver antenna phase-center variations (Dow et al. 2009). Natural
Resources Canada’s GPSPace PPP software is modified to handle the various GPS/Galileo PPP
models. A total of 6 data sets of GPS and Galileo observations at six IGS stations are processed
to examine the performance of the various PPP models. It is shown that the traditional un-
differenced GPS/Galileo PPP model, the GPS decoupled clock model, and semi-decoupled clock
GPS/Galileo PPP model improve the convergence time by about 25% in comparison with the un-
differenced GPS-only model. In addition, the semi-decoupled GPS/Galileo PPP model improves
the solution precision by about 25% compared to the traditional un-differenced GPS/Galileo PPP
model. Moreover, the BSSD GPS/Galileo PPP model improves the solution convergence time by
about 50%, in comparison with the un-differenced GPS PPP model, regardless of the type of

BSSD combination used. As well, the BSSD model improves the precision of the estimated
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parameters by about 50% and 25% when the loose and the tight combinations are used,
respectively, in comparison with the un-differenced GPS-only model. Comparable results are
obtained through the tight combination when either a GPS or a Galileo satellite is selected as a

reference.
5.2. UN-DIFFERENCED GPS/GALILEO PPP MODELS

5.2.1. TRADITIONAL GPS/GALILEO PPP MODEL

PPP has traditionally been carried out using dual-frequency ionosphere-free linear combinations
of carrier-phase and pseudorange GPS measurements. Equations 5.1 to 5.4 show the ionosphere

free linear combination of both GPS/Galileo observations (Afifi and El-Rabbany, 2015).

B, =pgtcldg-dt' | +c[ady, - fdp, ], +c[adp - fdp, " +1+ &5, (5.1)
B, =pp Tcldt,; —GGTO-df’ ] +c[ ady, - fdys, ], +c[ody, - Py, | T+ & (5.2)
O, =p;Tcldt;- dt’ ] +c[ao,, - B5,,] +c[aod,, - po,,]" +T, +NG, +¢r°cm +¢SGIF + &G, (5.3)
W, =P, +fdh,~GGTO-db' ] +c[ 05, Py, ], +e[ 0By~ oy, T +T, Ny +hy +, o, (5.4)
where the subscripts G and E refer to the GPS and Galileo satellite systems, respectively; PG,F
and Bgm are the ionosphere-free pseudorange in meters for GPS and Galileo systems,

respectively; @GIF and @EIF are the ionosphere-free carrier phase measurements in meters for GPS

and Galileo systems, respectively; p is the true geometric range from receiver at reception time to
satellite at transmission time in meter; dt-, d* are the clock errors in seconds for the receiver at

signal reception time and the satellite at signal transmission time, respectively; d,,,. , dp,, , dg,,,
d.s, are frequency-dependent code hardware delays for the receiver at reception time in

seconds; d,°, d,,*,d,’, d

ol s el * are frequency-dependent code hardware delays for the satellite

ES5a

at transmission time in seconds; J,,, J,,, O, O, are frequency-dependent carrier-phase

. . . . . S S S S
hardware delays for the receiver at reception time in seconds; &,,°, 0,,”, 0, , O, are
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frequency-dependent carrier-phase hardware delays for the satellite at transmission time in

seconds; 7 is the tropospheric delay in meter; N, , N are the ionosphere-free linear
IF IF

combinations of the ambiguity parameters for both GPS and Galileo carrier-phase measurements

in meters, respectively (Equations 5.5 and 5.6); ¢,OG , ¢OSG , ¢"0E , ¢<i~ are ionosphere-free
IF IF IF IF

linear combinations of frequency-dependent initial fractional phase biases in the receiver and

satellite channels for both GPS and Galileo in meters, respectively; c¢ is the speed of light in

vacuum in meter per second; &p, &g, &og,, Eop, are the ionosphere-free linear

combinations of the relevant noise and un-modeled errors in meter; «, fB., ., P are the

ionosphere-free linear combination coefficients for both GPS and Galileo, which are given,

2
— f‘ESa .

- 2 2
fEl - fESa

respectively, by: o« - 1 5, = A 8,

- ap = 2 2
flz - fzz flz - fzz fEI - -fESa

where f7 and /> are GPS Li and L2 signals frequencies; fe; and fzs« are Galileo E1 and Esa signals

frequencies.
NG,F - Gﬂ1N1 _ﬂGﬂzNz (5.5)
NE,F - EﬂEINEl _ﬂEﬂESaNEsa (5.6)

where A/ and A2 are the GPS L1 and L2 signals wavelengths in meters; Az and Aesa. are the
Galileo E1 and ES5a signals wavelengths in meters; N1, N2 are the integer ambiguity parameters
of GPS signals L1 and L2, respectively; Nei, Nesq are the integer ambiguity parameters of Galileo
signals E1 and E5a, respectively.

As indicated earlier, precise orbit and satellite clock corrections from the IGS-MGEX network
are used to correct both of the GPS and Galileo measurements. It should be pointed out that such
products are presently referenced to the GPS time frame (Montenbruck et al., 2014b). As well,
the IGS-MGEX precise GPS satellite clock corrections include the effect of the ionosphere-free
linear combination of the satellite hardware delays of L1/L2 P(Y) code, while the Galileo
counterpart include the effect of the ionosphere-free linear combination of the satellite hardware
delays of the Galileo E1/E5a pilot code (Montenbruck et al., 2014b). Applying the precise clock

corrections to Equations 5.1-5.4, we obtain:
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PG,F :pG +C[dtrG - dt;rec] +C[adP1 - IBdPZJV +Té} + gPG[F

%IF = pE +C[dtrG - dt;rec] +C[adE1 - /BdESa]r +71E + gEIF
CDQF s +a#'G _C[ dfm +[ OdPI 'wm] S] +C[ 0@1 'wu] r _C[ 0@1 ’wu] " +7é +M7,F +¢rOG,F +¢gc,p +8<DGF

CDEF % +Cd‘,c _c[dspa: +[ OdEI -ﬂiESa] S] +C[ 06;21 'ml‘fscz] r —C[Ot%] '@Sa] ' +];5: —H\QIF +¢'OEIF +@EIF +ch5”

For simplicity, the receiver and satellite hardware delays will take the following forms:

b, = c[ady—[dy,], by=clad, —pd,, ]’

b, =c/[ody, — [y, ], by = c[ady, - pdys, I

b, = clas, o], +4, by a0, ol +4,
b, = clad, 5], +4, by = ¢[00~ ]+,

(5.7)
(5.8)
(5.9)

(5.10)

In the traditional GPS/Galileo un-differenced PPP model, the GPS receiver clock error is lumped

to the GPS receiver differential code biases. In order to maintain consistency in the estimation of

a common receiver clock offset, this convention is used when combining the ionosphere-free

linear combination of GPS L1/L2 and Galileo E1/E5a observations. This, however, introduces an

additional bias in the Galileo ionosphere-free PPP mathematical model, which represents the

difference in the receiver differential code biases of both systems. Such an additional bias is

commonly known as the inter-system bias (ISB). With the above consideration, the GPS/Galileo

ionosphere-free linear combinations of the pseudorange and carrier-phase observations can be

written as:

B, =pgtdtg-dt, +T5+ &,
PE,F = pE +dtrG - dt;rec + ]SB +T’E + gE,F
(DG,F =p;tdt-dt,  +T, +NG,F t &G,

prec

O, =p,tdtg-dt, +T,+N, +ISB+s,,

prec
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(5.14)



where dt represents the sum of the receiver clock error and receiver hardware delay

c?trG =cdt,; +b, ; dt,,, is the precise satellite clock correction; ISB is the inter system bias,

ISB=b, —b, ; N ¢, and N £, are given by:
Ny, =N, +b, +b, b, ~0; (5.15)
NE,F =N, +brm +brP —bp, = b (5.16)

When using the traditional un-differenced GPS/Galileo PPP model, the ambiguity parameters

lose its integer nature as they are contaminated by the receiver and satellite hardware delays.

5.2.2. DECOUPLED CLOCK MODEL

The decoupled clock model assigns two different receiver and satellite clocks for the
pseudorange and carrier-phase measurements (Collins et al., 2008). Applying the concept of the

decoupled clock on the combined GPS and Galileo measurements and using Equations 5.1-5.4,

we obtain:
P, = p;tcldt-dtg] ~c[ady, - Bdy, ], +c[ ady - fdy | T+ &g, (5.17)
B =ps +cfdt,, —GGTO-dt} | +c[ad,, - fd,., ], +c[ad,, - Bd s, ] +T, + &, (5.18)

CDG,F = P Hcldt, g, 'dtch] te[ady, - o, ], +c[ad,, - P, I +1;; +NG,F +¢rocm +4, *&aq, (5.19)

CDEIF P +c[dtrEcD —CGI0- dgm] +df aé;ﬂ 'ﬂé;ssa] r +df aé;ﬂ 'ﬂé;ssa] ) +7; —H\%F +¢rOEIF +¢gEF +g<IE,F (5.20)

To simplify Equations 5.17-5.20, the receiver and satellite clock errors can be written as:

di, =cdt, +b, di} = cdt), + b,
i, =cd,, +brE di; = cdt, +b,
df o = Cdt o+ b di’, =cdt., +b,
dlt, o, = cdlt o, + bfm d?I;IJ = cdly, +b§®
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where d;., di,, di;,,and di,, are the decoupled satellite clock errors for the pseudorange and

carrier phase measurements of both GPS and Galileo systems, respectively. @7, , d7, , df .., and

df ., are the receiver clock errors for the pseudorange and carrier phase measurements of both

GPS and Galileo systems, respectively.

In the decoupled clock PPP model, the initial phase bias is lumped to the receiver hardware

delays. As such, Equations 5.17-5.20 can be re-written as follows:

P, =p;+dio—dig T+ &, (5.21)
B, =py+di,—di; +T,+ &, (5.22)
O, =p; +di, g, _df(ib I+ NG, + 64, (5.23)
D, =Py gy~ VT, +N, +&y, (5.24)

As shown in Equations 5.21-5.24, the assumption of having a separate receiver clock error for
the pseudorange and the carrier phase observables is more complex in the case of GPS/Galileo
PPP model. As all the observables are collected through a single receiver, which uses one time
scale, it is uncommon to have a receiver clock error for each constellation and for each
observable. As such, only the GPS receiver clock error for both of the pseudorange and carrier
phase measurements is considered, assuming that the receiver uses the GPS time as a reference.
Therefore, an inter-system bias term appears in the Galileo pseudorange and carrier phase
equations to represent the difference between the GPS and Galileo receiver hardware delays.

This leads to:

_ s
PGIF = Fs +d?rG _d?G I+ €pG,.

(5.25)
By =Pe i —di; +ISB,+T; + g, (5.26)
D, ::OG+‘EchD_dfc§cb I+ NG, + 64, (5.27)
D, =0 g, ~dl gy, +1SB 4T, tNg, Fey, (5.28)
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where the ISBp and ISBc are the pseudorange and carrier-phase inter-system biases, respectively,

which are given by: ISB, =b, -b, and ISB. =b, —b, .

Equations 5.25-5.28 can be re-arranged by considering the satellite clock corrections and the dry

tropospheric correction as follows:

Pg Tt tm,zpd, + & -k, =0

(5.29)
o +dt;G+mfzpdw+ISBP+8EIF _ISE,FDC =0 (5.30)
Po+digy +mzpd, + Ny +&,, ~Dg =0 (531)
Pyt gy +m zpd, + N, +ISB.+&, +<i>EIFDC =0 (532)
where_ IBGIFDC , ﬁEIFDC , Ci)GIFDC and Ci)E[FDC are the ionosphere-free linear combinations of the

pseudorange and carrier-phase observables after applying the above corrections; zpdw is the wet
component of the tropospheric zenith path delay; my troposphere mapping functions; The

ambiguity parameters of the decoupled clock PPP model are given by:

NG[F - XIG[F ﬁl‘A’l _'f;sz (5'33)
NE,F - /?“E,F [feiNy = S5 N> T (5.34)

Figures 5.3-5.5 show the decoupled precise satellite clock corrections for the pseudorange and
carrier-phase observations for different days, namely August 26 and 27 of 2012, and April 5, 2013.
As indicated earlier, the difference between the decoupled satellite clock corrections is the satellite
hardware delay for pseudorange and carrier phase observations as shown in Figures 5.3-5.5. Only
the GPS decoupled clock products are presented in this paper because of the unavailability of the

Galileo decoupled clock products at present.
As shown in Figures 5.3 and 5.4, the difference between the IGS (pseudorange) and decoupled

(carrier phase) clock corrections is essentially constant. However, in Figure 5.5, which the data

used represent around 7 months after the data used for Figures 5.3 and 5.4, the difference
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between the IGS and decoupled clock corrections is different than the ones in Figures 5.3 and 5.4

as shown in Table 5.1.
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Figure 5. 5 IGS and decoupled clock corrections 5 April 2013

As shown in Table 1, the difference between the IGS and decoupled precise clock correction can

be

assumed to be constant for the short period of time extent to days; however, for long term

cases the difference will not be constant. As a result, it can be concluded that either satellite

clock corrections or un-calibrated satellite hardware delays drift over time or even both change

over time.

Table 5. 1 Satellite clock correction difference between decoupled and IGS products

Satellite Clock Correction Difference (Decoupled-1GS) (s)

Date
G04 G13 G17
26 August 2012 —6.91E—09 —1.20E-08 —5.60E—09
27 August 2012 —6.91E-09 —1.20E-08 —5.60E—09
05 April 2013 8.19E-08 7.99E-08 7.83E-08

As shown in Table 1, the difference between the IGS and decoupled precise clock correction can

be assumed to be constant for the short period of time extent to days; however, for long term

cases the difference will not be constant. As a result, it can be concluded that either satellite
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clock corrections or un-calibrated satellite hardware delays drift over time or even both change

over time.

5.2.3. SEMI-DECOUPLED CLOCK GPS/GALILEO PPP MODEL
In this model, the IGS-MGEX network precise clock corrections and the daily DCB for both
GPS/Galileo satellites are used (IGS, 2015; Montenbruck, et al., 2014a). Considering the carrier-
phase DCB, Equations 5.29-5.31 can be rewritten as:

pg Tdt .+ mfzpdw + Epg, — PG,F =0

(5.35)
py+dg+mzpd, +ISB, +&, ~Fy =0 (5.36)
pgtdiy,+mzpd + N, +&,, —D; =0 (5.37)
py+dl o +mzpd, + N, +ISB, +&,, +®, =0 (5.38)

The carrier phase satellite hardware delays will be lumped to the ambiguity parameters as shown

in Equations 5.39 and 5.40.

Ny, =g, [N, = LN, ] +b; (5.39)
NE”, = AE,,, [fE]Nl - fESaN2] +b§® (5.40)

5.3. BSSD GPS/GALILEO MODELS

5.3.1. TRADITIONAL BSSD GPS/GALILEO PPP MODEL
As indicated earlier, two scenarios are considered when forming the BSSD linear combination,
namely a tight and a loose combination. In the first scenario, either a GPS or a Galileo satellite is
selected as a reference for both GPS and Galileo observables (Afifi and El-Rabbany, 2015).

Taking a GPS satellite as a reference and using Equations 5.11 to 5.14, we obtain:

phg +mlzpd, + &, —F =0 (5.41)

GIF
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pigtmyzpd, +ISB+ &, — By =0 (5.42)
Piog+myzpd, +Ng +éqq —Df =0 (5.43)

P +mizpd +ISB+ Ny, +&y. —®f, =0 (5.44)

OEy: EGp

where, the superscript i refers to the GPS reference satellite; the superscripts j and k refer the

GPS and Galileo satellites respectively; N, gm and N Z‘GIF are given by:

N'f =N -N_+b,~b, (5.45)
Ny, =N, =N +b_ b +tf, 4, +8,~1f (5.46)

As shown in Equation 5.45, the GPS ambiguity parameters include only the GPS satellite
hardware delays. However, for Galileo system, the ambiguity parameters include both of the
receiver and satellite hardware delays. Similarly, when a Galileo satellite is selected as a

reference, using Equations 5.11 to 5.14 leads to:

o +mizpd, —ISB+ &), —F) =0 (5.47)
pg"E + mjf pd, + éllfjgm - PE”[‘F =0 (5.48)
Py +nlzpd,—ISB+ Ny, +2h. @, =0 (5.49)
P?,E + mjfzpdw + Né’; + EéfE[F - QNDZ‘IF =0 (5.50)

where, the superscript / refers to the Galileo reference satellite, ]VgEIF and N j;; are the BSSD

non-integer ambiguity parameters lumped to the receiver and satellite hardware delays, which

are given by:

NZEIF - N‘{EIF _Né[F +b”c® _b”Ew +bé‘b _bqu, +bé _bfj’ (551)
Ng, =Ny, =N, +bg —b; (5.52)

In the loose BSSD combination, two reference satellites are considered: a GPS reference satellite
for the GPS observables and a Galileo satellite for the Galileo observables. Using Equations 5.11

to 5.14, we obtain:

77



i i i 5
Pa,c +mprdW + gPGm _PGIF N

(5.53)
pretmyzpd, +&p — P =0 (5.54)
pZ’G + mjf.zpdw +Ngm +§gG[F - Cf)iém =0 (5.55)
pZ(’E + m;kzpdw + NlEk[F + g(gCE[F - élEITIF == O (5_56)

where, N ;f and N are the BSSD non-integer ambiguity parameters lumped to the receiver

Elp

and satellite hardware delays as shown in Equations 5.57 and 5.58.

N =N -N +H,-b

G G GIF (5 . 5 7)
N, =Ny, =N, +b —b; (5.58)

In this case, all receiver hardware delays are canceled out for both systems. The major advantage
of the above per-constellation system is that both of the receiver clock error and the inter-system

bias are cancelled out.

5.3.2. BSSD DECOUPLED CLOCK GPS/GALILEO PPP MODEL

The BSSD decoupled clock model can be formed by using a GPS satellite as a reference. Using
Equations 5.29 to 5.32, we obtain:

i i i i —
Peg tmypzpd, + & —F; =0

Gir (5.59)
Pigtmyzpd, +ISB, + &y = Fi, =0 (5.60)
Pl +mizpd, + N +&5, —®7 =0 (5.61)
P +mizpd, +ISB, + Ny, +&y, —®. =0 (5.62)

where, N ¢ and N gm are given respectively by:
N, =N, —-N,, (5.63)
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Ny, =N, =N, (5.64)
When a Galileo satellite is selected as a reference, the BSSD equations take the form:

Jj j ~li D _
Pop+ m}zpdw —ISB, + 81]’G,F _PGZJE,F =0 (5.65)

Ik lk ~lk Dk
pE,E +mprdW+8PE1F —PE[F =0 (566)

P,z +mzpd, ~ISB. +NgE,F +‘§<I£G,F _&)!éE,F =0 (5.67)

Ik Ik Ya/3 ~lk Ik
Prptmypzpd, + Ny +&p; —@p =0 (5.68)

where, N7 and N} are given by Equations 5.69 and 5.70, respectively.

N, =N, -N. (5.69)
Ni =N, -N. (5.70)

In the per-constellation BSSD model, two reference satellites are selected are references, a GPS

and a Galileo. Using Equations 5.29-5.32, we obtain:

pag +mizpd, + & —F =0 (5.71)

Ik Ik ~lk Bl _
PppTm; zpd,, + Epg, PE,F =0

(5.72)
Poc+myzpd, + NG, +&ug, —® =0 (5.73)
prk,E + mjfzpdw + N]l,;km + EéfElF - Ci)g‘m =0 (5.74)

As can be seen in Equations 5.75-5.78, the ISB terms are cancelled. The differenced ambiguity

parameters N g”_v and N gm can still be obtained from Equations 5.75 and 5.76, respectively.

N, =N, -N,. (5.75)
Ni =N, -N, (5.76)
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5.3.3. BSSD SEMI-DECOUPLED CLOCK GPS/GALILEO PPP
MODEL

The BSSD semi-decoupled clock model can be formed by using a GPS satellite as a reference.

Using Equations 5.35 to 5.38, we obtain:

i i ~ij D _
Pog +m; zpd , + Erg,y -P =

o (5.77)
pigtmyzpd, +ISB, + & P =0 (5.78)
pg’G + m;{zpdw + Ngm + ggG[F N d)iém =0 (579)
pi,G + m;]prdw +ISB.. + NZG,F + 5cilZE,F - (i)ZCG,F =0 (5.80)

where, N/ and N gm are given respectively by:

N, =N, -N,, +4,-, (5.81)
Ny, =N, —N. +H,~t, (5.82)

When a Galileo satellite is selected as a reference, the BSSD equations take the form:

Pl +mzpd, —ISB, + EgG,F _})GOE,F =0 (5.83)

Ik Ik ~lk Dk
Pextmyzpd, +&p; — Py =0 (5.84)

plé,E +le{'Zde _]SBC +NgEIF +g(l£'G[F _&)!éEIF =0 (5 85)

Ik lk Y23 ~lk 1 lk
pE,E + mf Zde + NE1F + E‘I)Eur B q)EIF =0 (586)

where, N ¢ and N 7, are given by Equations 87 and 88, respectively.

N, =Ny, —Ni, +H,—b, (5.87)
N, =N, =N+~ (5.88)
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In the per-constellation BSSD model, two reference satellites are selected are references, a GPS

and a Galileo. Using Equations 5.35-5.38, we obtain:

i i ~ij B
P +mfzpa’W + &g, _PGIF =0

(5.89)
pigtmizpd, + &y — Py =0 (5.90)
phg+mizpd, + Ny +&), —®) =0 (5.91)
pi+mizpd, + Ni +&y, —®F =0 (5.92)

As can be seen in Equations 5.89-5.92, the ISB terms are cancelled out. The differenced

ambiguity parameters N gm and N g’m can still be obtained through Equations 5.93 and 5.94,

respectively.
KéF =]\/21F _NéIF +bch _b‘/‘; (593)
N, =N, =Ny, +~t, (5.94)

5.4. LEAST SQUARES ESTIMATION TECHNIQUE

Under the assumption that the observations are uncorrelated and the errors are normally
distributed with zero mean, the covariance matrix of the un-differenced observations takes the
form of a diagonal matrix. The elements along the diagonal line represent the variances of the
code and carrier phase measurements. Following the common practice, the ratio between the
standard deviations of the code and the carrier-phase measurements is taken as 100. When
forming BSSD, however, the differenced observations become mathematically correlated. This

leads to a fully populated covariance matrix at a particular epoch.

The general linearized form for the above observation equations around the initial

(approximate) vector #° and observables [ can be written in a compact form as:

fw)=Au—w—-r=0 (5.95)
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where u is the vector of unknown parameters; A4 is the design matrix, which includes the partial
derivatives of the observation equations with respect to the unknown parameters u; Au is the

0 ie., u =u’+ Au; w is the

unknown vector of corrections to the approximate parameters u
misclosure vector and r is the vector of residuals. The sequential least-squares solution for the

unknown parameters Au; at an epoch i can be obtained from (Vanicek and Krakiwsky, 1986):

Au,=Au,+M A (C, +A M A)'[w, -4 Au, ] (5.96)
M'=M"- Mi'_’IAiT(Cli +AM' A" AM (5.97)
C, =M =M -M AT (C + AM AT AM (5.98)

where Aui s is the least-squares solution for the estimated parameters at epoch i-/; M is the
matrix of the normal equations; C; and Ca are the covariance matrices of the observations and
unknown parameters, respectively. It should be pointed out that the usual batch least-squares
adjustment should be used in the first epoch, i.e., for i = 1. The batch solution for the estimated
parameters and the inverse of the normal equation matrix are given, respectively, by (Vanicek

and Krakiwsky, 1986):

Au, =[C,+A/C/AT A C}'w, (5.99)
M =[C,+4/C'A]' (5.100)

where C. is a priori covariance matrix for the approximate values of the unknown parameters.

In case of the traditional GPS/Galileo PPP model, the design matrix 4 and the vector of

corrections to the unknown parameters Au take the following forms:
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where n¢ refers to the number of visible GPS satellites; ne refers to the number of visible Galileo
satellites; n = ng + ne is the total number of the observed satellites for both GPS/Galileo systems;
xo, yo and zo are the approximate receiver coordinates; X/6,YJ¢,7Z/6,j =1,2,..,n; are the
known GPS satellite coordinates; X*&,Y*E, ZKE |k = 1,2, ..., ny are the known Galileo satellite
coordinates; p, is the approximate receiver-satellite range. The unknown parameters in the above
system are the corrections to the receiver coordinates, Ax, Ay, and Az, the wet component of the
tropospheric zenith path delay zpdw, the inter-system bias /SB, and the non-integer ambiguity

parametersN.

For the decoupled clock model, the design matrix 4 and the vector of corrections to the unknown

parameters Au take the following forms:

[(xo—-X'G (yo—yla) (zo—zlc) 16 Al
(=) e ) 10 mie 000 0 0 0 e
<) () () 0 0w :
01 mi 0 0 1 00 0 Y

( po’ PoS po’ s Az

: : : P ; T
Xo—X"G Yo-Y"'G 20-2"G 1ng e

oG e G 1 0 mg 0 0 0 0 0 0 dtrG(p
"“‘X"G) (y“‘Y"“) (Z"‘Z"G) 01 mic 0 0 0 10 0 zpd,

A= ( PoC P P f Au = | [SBp (5102)

xo—X1E yo-Y1E 20-Z1E 1 ISB,
() () (5 0w 0000 T
xo—X1E Yo—Y1E zo—Z1E :
(OpéE ) (oﬂéf ) (OpéE ) 0 1 mi 010~ 010 NZe

: : ; P ; T1
() () (22 1 i

X ’ ) 1 0 mMe 1.0 0 0 0 0 0 :

Po Po Po IV"E
(=) (=) (=57) o 1 om0 10 0 0 0 - 1 TE e
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where @rg and @trm are the pseudorange and carrier phase receiver clock errors, respectively;

ISB,and ISB,. are the pseudorange and carrier phase inter-system bias, respectively.
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For the un-differenced semi-decoupled clock GPS/Galileo PPP model, the design matrix 4 and the

vector of corrections to the unknown parameters Ax take the same form as the decoupled clock

GPS/Galileo model given in Equation (5.102). When a GPS satellite is selected as a reference to

form the BSSD for GPS/Galileo observations, the design matrix A4 and the vector of corrections Au

take the form:

(%
S

G

X2
x0-X2G
G

©

)- ) -(5) (57~

)5 (59 -5 (59
(xopoxnc) (xu—XlG) (y()poyna) (yOP yla) (zop—onz:G) _ (zop—;ZGlG
xopoxnc) (xu -x a) (yopDY"c;) (yo yla) (20;5:0) 3 (zo—zla
- () (- (09 () (e
(xD;Dxls) xD;DX K (yop ylE) (y ~ G) (zop—;ZElE) _ (ZO;;Z;G
(xo x"E) (xo -X G) (yop:ng) ( ylc) (zo;zns) _ (ZO;;GIG

) (xg—xls) ( ynE) z ) (z

ms%l 0 0 00 0
mg2ele 0 1 00 0 A
[ X
msiele 0 0 00 0 Aazl
Zp w
mels 0 0 10 0 ISB
su=| 20| (5.103)
m/Ee 1 0 00 0 i
NLl
mEle 10 01 0 i
; : e
moEG 10 00 0 FL Tt
mmEG 10 00 1

“2(n-1) x (n+4)

where “16” refers to the GPS reference satellite.

By analogy, the use of a Galileo satellite as a reference to form the BSSD for both of the GPS

and Galileo observations leads to:
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where [r refers to the Galileo reference satellite.

84



When two reference satellites are selected to form the BSSD, i.e., per-constellation BSSD, the

design matrix 4 and the vector of corrections Au take the form:
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The major advantage of the above per-constellation (or loose combination) system is that the
modified receiver clock error and the inter-system bias are cancelled out. Similarly, the design
matrix 4 and the vector of corrections Au for the BSSD decoupled clock model, with a GPS

satellite selected as a reference, take the form:
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where “16” refers to the GPS reference satellite.

If, however, a Galileo satellite is selected as a reference, the design matrix 4 and the vector of

corrections Au for the BSSD decoupled clock model take the form:
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where /g refers to the Galileo reference satellite. For the per-constellation BSSD decoupled
clock model, the design matrix A4 and the vector of corrections Au will take the same form as
those of the traditional BSSD GPS/Galileo PPP model. For the BSSD semi-decoupled clock
GPS/Galileo PPP model, the design matrix 4 and the vector of corrections to the unknown

parameters Au will be the same as those of the BSSD decoupled clock model.

5.5. RESULTS AND DISCUSSION
To verify the introduced GPS/Galileo PPP models, GPS/Galileo measurements at six well-
distributed stations (Figure 6) were selected from the IGS tracking network [23]. Those stations are
occupied by GNSS receivers, which are capable of simultaneously tracking the GPS/Galileo
constellations. The positioning results for station DLF1 are presented below. Similar results are
obtained from the other stations. However, a summary of the convergence times and precision are
presented below for all stations. Natural Resources Canada (NRCan) GPSPace PPP software was
modified to enable a GPS/Galileo PPP solution as described above. The sampling interval for all
data sets is 30 s of 5 April 2013, while the time span used in the analysis is one hour, which is

selected to ensure that the four Galileo satellites are visible at each station.
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Figure 5. 6 Analysis stations

Figures 5.7 and 5.8 show the positioning results and the estimated ambiguity parameters of the

traditional PPP model using GPS/Galileo observations.
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Figure 5. 7 Positioning results of the traditional GPS/Galileo PPP model
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Figure 5. 8 Ambiguity parameters the traditional GPS/Galileo PPP model
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As shown in Figure 5.7, the positioning results of the combined GPS/Galileo traditional PPP
model have a convergence time of 15 min to reach decimeter-level precision. The ambiguity
parameters results in Figure 5.8 shows that the un-calibrated hardware delayed that lumped to the

ambiguity parameter affects the ambiguity parameters convergence. Figures 5.9-5.11 show the

results of the GPS decoupled clock model.
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Figure 5. 9 Positioning results of the GPS decoupled clock model

Figure 5.9 shows the positioning results of the decoupled clock model. The results show a
decimeter level of precision with about 15 min. Generally the precision of the decoupled clock
model positioning results are about 25% more than the traditional PPP model. Figure 10 shows

the receiver clock errors for both pseudorange (CLK P) and carrier phase (CLK C) observation.
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Figure 5. 10 Receiver clock errors of the GPS decoupled clock model

Figure 5.11 shows the results of the ambiguity parameters of the GPS decoupled clock model.
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Figure 5. 11 Ambiguity parameters of the GPS decoupled clock model

Figures 5.12-5.15 show the results of the semi-decoupled clock GPS/Galileo PPP model. The
positioning results in Figure 5.16 show that the semi-decoupled clock GPS/Galileo PPP model
has a decimeter level of precision with about 15 min. In addition, the positioning precision of the

semi-decoupled clock GPS/Galileo PPP model are improved by about 25% comparing to the
traditional GPS/Galileo PPP model.
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Figure 5. 12 Positioning results of the semi-decoupled clock PPP model

Figure 5.13 shows the receiver clock errors for both pseudorange (CLK P) and carrier phase

(CLK _C) observation.
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Figure 5. 13 Receiver clock errors of the semi-decoupled clock GPS/Galileo PPP model

Figure 5.14 shows the ambiguity parameters results of the semi-decoupled clock GPS/Galileo PPP

model.
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Figure 5. 14 Ambiguity parameters of the semi-decoupled clock GPS/Galileo PPP model

As shown in Figure 5.14 the ambiguity parameters results show a similar convergence time to
the positioning results. Figure 5.15 shows the results of the inter-system bias parameters for both

pseudorange (ISB_P) and carrier phase (ISB_C) observations.
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Figure 5. 15 Inter-system bias of the semi-decoupled clock GPS/Galileo PPP model
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Figures 5.16 and 5.17 show the BSSD PPP tight combination model positioning results and the

estimated ambiguity parameters.
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Figure 5. 16 Positioning results of the BSSD PPP tight combination model using (a) GPS

reference satellite; and (b) Galileo reference satellite

As shown in Figure 5.16, the positioning results of the BSSD tight combination model have

convergence time of 10 min and decimeter level of precision.
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Figure 5. 17 Ambiguity parameters the BSSD PPP tight combination model using (a) GPS

reference satellite; and (b) Galileo reference satellite

As shown in Figure 5.17, the results convergence of the ambiguity parameters are affected by the

lumped DCB. Figures 5.18 and 5.19 show the results of the BSSD PPP loose combination model

for both positioning results and ambiguity parameters.
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Figure 5. 18 Positioning results of the BSSD PPP loose combination model
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Figure 5. 19 Ambiguity parameters the BSSD PPP loose combination model

As shown in Figure 5.18, the positioning results show decimeter-level precision with about 11
min convergence time. Figure 5.19 shows that the ambiguity parameters of the BSSD loose
combination model are affected by the lumped DCB. Figures 5.20 and 5.21 show the positioning
results and the estimated ambiguity parameters for the BSSD semi-decoupled GPS/Galileo PPP

model, when a tight combination is used. As can be seen, the PPP solution convergences to a

decimeter-level precision after about 10 min.

92



3 ________J________I________J_____———I————————JI ________ 3 s Tt e e
2 [eee=ee== qmmmmme—- Femmm———- qesmmmm=-- o qemmmm—— 2 pe=====- G EETEETL LS J: ———————— s ‘: ————————
SR (NS (N U S SR S PN U T S S S F. R
E | E ‘ : : |
o >0 [ ; '
IS T T T TN T NV = S N N S
: : H ' ' ! H : : —AE
2 foeeee fomeees s R beoees —AE o 2 freeeeodeeeoeee T R pooeeees .
[P RS TS SN SN SO —AN 3 beeeae S N S I —AN |
H . H . AU 4 ~——AU
- Time (min) ' ) Time (min)
(a) (b)

Figure 5. 20 Positioning results for BSSD semi-decoupled GPS/Galileo PPP model. (a) GPS

reference satellite; and (b) Galileo reference satellite
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Figure 5. 21 Ambiguity parameters the semi-decoupled GPS/Galileo PPP model (a) GPS

reference satellite; and (b) Galileo reference satellite
Figures 5.22 and 5.23 show the results of the semi-decoupled per-constellation GPS/Galileo

BSSD PPP model for both of the positioning and ambiguity parameters. As can be seen, the

positioning results show decimeter-level precision with about 11 min convergence time.
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Figure 5. 22 Positioning results of the semi-decoupled per-constellation GPS/Galileo BSSD PPP

model
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Figure 5. 23 Ambiguity parameters the semi-decoupled per-constellation GPS/Galileo BSSD
PPP model

As shown in Figure 5.23, the ambiguity parameters results for both GPS and Galileo satellites
are affected by the lumped DCB. Figure 5.24 summarizes the convergence times for all analysis

cases, which confirm the PPP solution consistency at all stations.

To further assess the performance of the various PPP models, the solution output is sampled
every 10 min and the standard deviation of the computed station coordinates is calculated for
each sample. Figure 5.25 shows the position standard deviations in the East, North, and Up
directions, respectively. Examining the standard deviations after 10 min, it can be seen that the
semi-decoupled clock GPS/Galileo PPP model improves the precision of the estimated
parameters by about 25% in comparison with the un-differenced GPS-only model. As the

number of epochs, and consequently the number of measurements, increases the performance of
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the various models tends to be comparable. An exception, however, is the loose

model, which is found superior to all other PPP models.
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Figure 5. 24 Summary of convergence times of all stations and analysis cases (1) Un-differenced
GPS model; (2) Un-differenced GPS/Galileo model; (3) Decoupled clock model using GPS
observations only; (4) Semi-decoupled clock GPS/Galileo PPP model; (5) BSSD model with a
GPS satellite as a reference; (6) BSSD model with a Galileo satellite as a reference; (7) BSSD

model with both a GPS and a Galileo satellite as reference satellites; (8) BSSD semi-decoupled

clock GPS/Galileo model with a GPS satellite as a reference; (9) BSSD semi-decoupled clock

GPS/Galileo model with a Galileo satellite as a reference; (10) BSSD semi-decoupled clock
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Figure 5. 25 Summary of positioning standard deviations in East, North, and Up directions of all
stations and analysis cases. (1) Un-differenced GPS model; (2) Un-differenced GPS/Galileo
model; (3) Decoupled clock model using GPS observations only; (4) semi-decouple clock
GPS/Galileo PPP model; (5) BSSD model with a GPS satellite as a reference; (6) BSSD model
with a Galileo satellite as a reference; (7) BSSD model with both a GPS and a Galileo satellite as
reference satellites; (8) BSSD semi-decoupled clock GPS/Galileo model with a GPS satellite as a
reference; (9) BSSD semi-decoupled clock GPS/Galileo model with a Galileo satellite as a
reference; (10) BSSD semi-decoupled clock GPS/Galileo model with both a GPS and a Galileo

satellite as reference satellites

5.6. CONCLUSIONS

This paper examined the performance of several PPP models, including the traditional
un-differenced model, the decoupled clock model, the semi-decoupled clock model, and BSSD
model. It has been shown that the traditional un-differenced GPS/Galileo PPP model, the GPS
decoupled clock model, and the semi-decoupled clock GPS/Galileo PPP model improve the
convergence time by about 25% in comparison with the traditional un-differenced GPS-only
model. In addition, the semi-decoupled GPS/Galileo PPP model improves the solution precision by
about 25% compared to the traditional un-differenced GPS/Galileo PPP model. Moreover, the
BSSD GPS/Galileo PPP model improves the solution convergence time by about 50%, in
comparison with the un-differenced GPS PPP model, regardless of the type of BSSD combination
used. As well, the BSSD GPS/Galileo model improves the precision of the estimated parameters
by about 50% and 25% when the loose and the tight combinations are used, respectively, in
comparison with the traditional un-differenced GPS-only model. Comparable results are obtained
through the tight combination when either a GPS or a Galileo satellite is selected as

a reference.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

This chapter presents the conclusions of this research. In addition, future recommendations are

presented in this chapter for future research.

6.1. CONCLUSIONS

New stochastic models for the Galileo E1 and E5a signals have been developed in this research.
Three functions have been considered, namely exponential, polynomial and rational. It has been
found that the exponential function gives the best fit, based on a regression analysis. To test the
newly developed stochastic model, GPS/Galileo PPP solutions have been obtained with both of
the traditional empirical sine function and the newly developed stochastic models implemented.
It has been shown that that a sub-decimeter positioning accuracy is attainable when the
developed stochastic model is used. In addition, the convergence time has been improved by
about 30%, in comparison with the PPP solution obtained with the empirical sine function

implemented.

A single frequency PPP model has been developed, which combines GPS and Galileo
observations in the BSSD mode. Two scenarios have been considered when forming the BSSD
linear combination, namely a tight and a loose combination. It has been shown that a sub-
decimeter level positioning accuracy can be obtained with both of the un-differenced and BSSD
single-frequency GPS/Galileo PPP models. However, the PPP solution of the un-differenced
model takes about 100 minutes to converge to a decimeter level positioning accuracy. In
addition, the convergence time of the single-frequency GPS/Galileo PPP solution is improved by

35% and 15% when BSSD with tight and loose combinations are used, respectively. The
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moderate improvement in the solution convergence time obtained with the loose combination is
likely attributed to its relatively weaker adjustment model in comparison with the tight
combination. The ISB is obtained as a by-product of the GPS/Galileo PPP solution for various
days and receiver types. Almost identical results have been obtained with both of the un-
differenced and BSSD (tight combination) modes. It has been found that the values of the ISB
are largely stable over the observation time spans. However, differences of up to 3 m have been

observed, which suggest that the ISB is receiver/firmware dependent.

A dual frequency PPP model, which combines GPS L1/L2 and /Galileo E1/E5a observables has
also been developed. It has been shown that the un-differenced PPP positioning results of the
GPS-only and GPS/Galileo are at the sub-decimeter level accuracy. However, the convergence
time of the combined GPS/Galileo PPP has improved by about 25% in comparison with the
GPS-only PPP. The use of BSSD linear combination improved the convergence time of the
GPS/Galileo PPP solution by about 50%, in comparison with the un-differenced GPS-only PPP
model, regardless of the type of BSSD combination used. In addition, the BSSD model improved
the precision of the estimated parameters by about 50% and 25%, in comparison with the un-
differenced GPS-only model, when the loose and the tight combinations are used, respectively.
As the number of epochs increases, the performance of the various models tends to be
comparable. An exception, however, is the loose combination model, which is found superior to
all other PPP models. Almost identical results are obtained through the tight combination when
either a GPS or a Galileo satellite is selected as a reference. Similar to the single frequency PPP
model, the ISB is obtained as a by-product of the GPS/Galileo PPP solution for various days and
receiver types. It has been shown that ISB is essentially constant over the observation time span

with a magnitude ranging from 30 to 60 nanoseconds, depending on the GNSS receiver type.

The performance of several PPP models, which combine dual-frequency GPS/Galileo
observations in the un-differenced and BSSD modes, has been examined. These models include
the traditional un-differenced model, the decoupled clock model, the semi-decoupled clock
model, and the BSSD model. The IGS-MGEX network products have been considered to correct
for the satellite differential code biases, the orbital and satellite clock errors. It has been shown

that the traditional un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and
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semi-decoupled clock GPS/Galileo PPP model improve the convergence time by about 25% in
comparison with the un-differenced GPS-only model. In addition, the semi-decoupled
GPS/Galileo PPP model improves the solution precision by about 25% compared to the
traditional un-differenced GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP
model improves the solution convergence time by about 50%, in comparison with the un-
differenced GPS PPP model, regardless of the type of BSSD combination used. As well, the
BSSD model improves the precision of the estimated parameters by about 50% and 25% when
the loose and the tight combinations are used, respectively, in comparison with the un-
differenced GPS-only model. Comparable results are obtained through the tight combination

when either a GPS or a Galileo satellite is selected as a reference.

6.2. RECOMMENDATIONS

To further improve the findings of this dissertation, further research is needed in the following

arcas:

1. To improve the PPP solution precision and convergence time, additional GNSS precise
products are required, including the differential carrier-phase bias, and the decoupled
clock products for Galileo systems.

2. A new model for instantaneous PPP ambiguity resolution is needed, which leads to real-
time PPP at the centimeter-level.

3. The developed GPS/Galileo PPP models should be extended to include multi-
constellation GNSS PPP.

4. The data sets used in this research are static. The developed GPS/Galileo PPP models
should be tested using kinematic data sets.

5. Precise real-time orbit and clock corrections, as well as differential code and carrier-

phase biases, for all four constellations are needed to test the PPP model in real time.
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