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ABSTRACT

Rearrangement Algorithm in Risk Aggregation

Alex Thomas, Master of Science, Applied Mathematics, 2017, Ryerson

University

Sometimes there’s no closed-form analytical solutions for the risk measure

of aggregate losses representing, say, a company’s losses in each country or

city it operates in, a portfolio of losses subdivided by investment, or claims

made by clients to an insurance company. Assuming there’s enough data to

assign a distribution to those losses, we examine the Rearrangement Algo-

rithm’s ability to numerically compute the Expected Shortfall and Exponen-

tial Premium Principle/Entropic Risk Measure of aggregate losses. A more

efficient discretization scheme is introduced and the algorithm is extended

to the Entropic Risk Measure which turns out to have a smaller uncertainty

spread than the Expected Shortfall at least for the cases that we examined.
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Introduction

Often in practice we wish to calculate the risk measure ρ(L+) of an aggre-

gate sum of losses, L+ = L1+...+Ld, representing, say, a company’s losses sub-

divided by geography or portfolio losses subdivided by different investments.

By using historical data from each loss, Li, one can assign a distribution Fi

to each Li. Then the class of aggregate losses is described as follows.

A(F1, ..., Fd) = {L+ = L1 + ... +Ld ∣ Li ∼ Fi}

Given only this information, it’s not possible to calculate ρ(L+) as we

are uncertain about the dependence between the Li’s. The following are the

extreme values of ρ(L+):

ρ(L+) = inf{ρ(L+)∣L+ ∈ A(F1, ..., Fd)}

ρ(L+) = sup{ρ(L+)∣L+ ∈ A(F1, ..., Fd)}

The interval [ρ(L+), ρ(L+)] is called the uncertainty spread of ρ. So when

we are uncertain about the dependence of L′is one would like to use a risk

measure ρ that has the smallest possible uncertainty spread.

It turns out that the calculation of ρ(L+), ρ(L+) is a deep mathematical

problem and analytical solutions are known only for some special cases. The

Rearrangement Algorithm is a probabilistic numerical method that estimates

these values. This method has been extensively used to calculate the uncer-

tainty spread of the Value at Risk and the Expected Shortfall for various

scenarios (see e.g. [1, 7, 5, 2]).
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The aim of this thesis is to give modified versions of the Rearrangement

Algorithm that can be used for the calculation of ESα(L+) and ρ
ent

(L+),
where ρent is the Entropic Risk Measure. In Chapter 1, we give the definition

and the main properties of ES and ρent. In Chapter 2, we give analytical

solutions for the upper bounds, ESα(L+) and ρent(L+), and for the lower

bounds in some special cases. In chapter 3, we present the Rearrangement

Algorithm and numerical results for different choices of Fi. From our results

it follows that the uncertainty spread of ρent is smaller than ES0.99 at least

for the particular cases we analysed and that the new discretization scheme

we introduced here for the calculation of ESα(L+) is much more efficient

than the one introduced in [5] when we work with heavy tailed distributions,

large α, and a large number of losses. In chapter 4, we outline our main

MATLAB codes.
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Chapter 1

RISK MEASURES

1.1 Coherent and Convex Risk Measures

In this section we will present an axiomatic theory of risk measures. The

premise of this approach is to identify the essential properties that a reliable

risk measure should possess.

For the following we will fix a linear subspace M of the space L0(Ω,F)
of all random variables on (Ω,F). The space M is our model of all the

possible portfolio losses L in the market. We assume here that M contains

constants, which represent portfolios with predictable profits (e.g. backing

capital). The risk measure ρ is defined as a map ρ ∶ M → R.

Axiom I(Monotonicity): For L1, L2 ∈ M such that L1 ≤ L2 (i.e.

L1(ω) ≤ L2(ω) for each ω ∈ Ω), we have ρ(L1) ≤ ρ(L2)).

From an economic point of view this axiom is obvious: positions that lead

to higher losses in every state of the world require more risk capital.

Axiom II(Translation invariance): For all L ∈ M and l ∈ R we have

that ρ(L + l) = ρ(L) + l.
The translation invariance axiom states that by adding or subtracting

a deterministic quantity l to a position leading to the loss L, we alter our

capital requirement by exactly that amount.

Axiom III(Subadditivity): For all L1, L2 ∈ M we have ρ(L1 + L2) ≤
ρ(L1) + ρ(L2)

3



Subadditivity reflects the idea that risk can be reduced by diversification,

a time-honoured principle in finance and economics.

Axiom IV(Positive homogeneity): For all L ∈ M and λ ≥ 0 we have

ρ(λL) = λρ(L)
Positive homogeneity is the requirement that equality should hold in

Axiom III if there is no diversification between losses in the portfolio (e.g.

ρ(L +L) = 2ρ(L)).
Axiom V(Convexity): For all L1, L2 ∈ M and λ ∈ (0,1) we have

ρ(λL1 + (1 − λ)L2) ≤ λρ(L1) + (1 − λ)ρ(L2)
Convexity can be regarded as a relaxation of assumptions III and IV.

Definition 1.1. A risk measure ρ ∶ M → (−∞,∞] is called coherent if it

satisfies Axioms I-IV and convex if it satisfies Axioms I,II and V.

1.2 Value-at-Risk and Expected Shortfall

Two of the most widely used risk measures by financial institutions include

Value-at-Risk and its average over some confidence level α called the Ex-

pected Shortfall. It is well-known that the Expected Shortfall is a coherent

risk measure and Value-at-Risk fails axioms III and V. To set up our frame-

work, consider the portfolio loss L at the end of some fixed time horizon

∆t.

Definition 1.2. Given some confidence level α ∈ (0,1), the VaR of a portfolio

at the confidence level α is given by the smallest number l such that the

probability that the loss L exceeds l is no larger than 1 − α. Mathematically,
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VaRα(L) = inf{l ∈ R ∣P (L > l) ≤ 1 − α} = F −1(α)

Proposition 1.3. Suppose that L ∼ N(µ,σ2) then

VaRα(L) = µ + σΦ−1(α)

Proof. Let F be the cdf of L, we will show that F (µ+σΦ−1(α)) = α. Indeed,

P (L ≤ µ + σΦ−1(α)) = P (L − µ
σ

≤ Φ−1(α)) = Φ(Φ−1(α)) = α

In particular for N(0,1) the VaR0.95 = 1.645, this means that there is 95%

chance that we will lose at most this amount.

Definition 1.4. Let L be a loss distribution with E(∣L∣) < ∞. The expected

shortfall at confidence level α ∈ (0,1) is defined as

ESα(L) =
1

1 − α ∫
1

α
VaRu(L)du

In the case where L follows a continuous distribution, the Expected Short-

fall can be calculated by the following formula

ESα(L) = E(L ∣ L ≥ VaRα(L))

5



Proposition 1.5. Suppose that L ∼ N(µ,σ2). Then

ESα(L) = µ + σ
φ(Φ−1(α))

1 − α ,

where φ is the density function of the standard normal distribution.

Proof. Let L̃ = L−µ
σ , then L̃ ∼ N(0,1) and by Proposition 1.3 and the above

conditional expectation formula we have that

ESα(L̃) =
1

1 − α ∫
∞

Φ−1(α)
lφ(l)dl = 1

1 − α[ − φ(l)]
∞

Φ−1(α)
= φ(Φ

−1(α))
1 − α

Now we have that ESα(L) = ESα(σL̃ + µ) and since ESα is a coherent risk

measure by axiom II we get that

ESα(L) = σESα(L̃) + µ = µ + σφ(Φ
−1(α))

1 − α

We recall here that a random vector L = (L1, ..., Ld)′ is comonotonic,

whenever there exists a random variable X and increasing functions fi such

that Li = fi(X). It turns out that both Value at Risk and Expected Shortfall

are additive on comonotonic vectors. This is an important observation that

will be used later.

Theorem 1.6. ([4]) Let α ∈ (0,1) and L = (L1, ..., Ld)′ be a comonotonic

random vector. Then

VaRα(L1 + ... +Ld) = VaRα(L1) + ... +VaRα(Ld)

Theorem 1.7. Let α ∈ (0,1) and L = (L1, ..., Ld)′ be a comonotonic random

vector. Then

ESα(L1 + ... +Ld) = ESα(L1) + ... +ESα(Ld)

6



Proof. By applying the prior theorem we get that

ESα(L1 + ... +Ld) =
1

1 − α ∫
1

α
VaRu(L1 + ... +Ld)du =

1

1 − α(∫
1

α
VaRu(L1)du + ... + ∫

1

α
VaRu(Ld)du) = ESα(L1) + ... +ESα(Ld)

To estimate VaR(L),ES(L) for a loss L with unknown distribution we

will use a data set {l̃1 ≥ ... ≥ l̃N} with large N drawn from L and use the

following estimators. More details on the derivation of these formulas can be

found in [4].

V̂aRα = l̃j, where j = ⌊N(1 − α)⌋ + 1

ÊSα =
1

N(1 − α)(
⌊N(1−α)⌋

∑
i=1

l̃i)

1.3 Entropic Risk measure

Also known as the Exponential Premium Principle, this risk measure is used

in the insurance industry to calculate premiums.

Definition 1.8. (Entropic Risk Measure) Given the exponential utility

function given by u(x) = 1 − exp(−x) the loss function is defined as l(x) =
−u(−x) = −(1−exp(x)). Assume moreover thatM contains random variables

L with E(exp(L)) < +∞. The acceptance set is defined to be the following

set

A = {L ∈ M∣E(l(L)) ≤ l(0)} = {L ∈ M∣E(exp(L)) ≤ 1}

7



The derived risk measure ρent is called the Entropic Risk Measure or

the Exponential Premium Principle. The value of ρent(L) corresponds to the

minimum capital required to make our position acceptable.

ρent(L) = inf{m ∈ R∣E(exp(L −m)) ≤ 1} =

inf{m ∈ R∣E(exp(L)) ≤ exp(m)} = log(E(exp(L)))

Proposition 1.9. Suppose that L ∼ N(µ,σ2) then

ρent(L) = µ +
1

2
σ2

Proof.

L ∼ N(µ,σ2) ⇒ exp(L) ∼ LogNormal(µ,σ2) ⇒

⇒ E(exp(L)) = exp(µ + 1

2
σ2) ⇒ log(E(exp(L))) = µ + 1

2
σ2

.

Theorem 1.10. The Entropic Risk Measure is convex, but not coherent.

Proof. To show that it’s convex we have to show that it satisfies axioms I,

II, and V.

I: Pick any L1, L2 ∈ M such that L1 ≤ L2. Since the exponential, expec-

tation, and natural logarithms are all monotonically increasing we have that

⇒ exp(L1) ≤ exp(L2) ⇒ E(exp(L1)) ≤ E(exp(L2)) ⇒

log(E(exp(L1))) ≤ log(E(exp(L2)))

8



II: Pick any L ∈ M and l ∈ R. Then

ρent(L + l) = log(E(exp(L + l))) = log(E(exp(L))exp(l)) =

log(E(exp(L))) + l = ρent(L) + l

V: Show that for any L1, L2 ∈ M and λ ∈ (0,1), ρent(λL1 + (1 − λ)L2) ≤
λρent(L1) + (1 − λ)ρent(L2). By definition

ρent(λL1 + (1 − λ)L2) =min{m ∈ R∣E(exp(λL1 + (1 − λ)L2 −m)) ≤ 1}

≤ λρent(L1) + (1 − λ)ρent(L2)

Indeed, note that

E(exp(λL1 + (1 − λ)L2 − λρent(L1) − (1 − λ)ρent(L2)))

= E(exp(λ(L1 − ρent(L1)) + (1 − λ)(L2 − ρent(L2))))

Since the exponential is a convex function and the expectation is additive

then,

≤ λE(exp(L1 − ρent(L1))) + (1 − λ)E(exp(L2 − ρent(L2))) ≤ λ + (1 − λ) = 1

Where the last inequality follows by definition of the Entropic Risk Measure.

The Entropic Risk Measure fails axiom IV preventing it from being co-

herent. For instance, if L ∼ N(0, 1
2) and L̃ = 3L ∼ N(0, 9

2) we have that

exp(L) follows a lognormal distribution and thus by the previous proposi-

tion 3ρ(L) = 3 log(E(exp(L))) = 3(0 + 1
4) = 0.75. On the other hand we have

that ρ(L̃) = log(E(exp(L̃)) = 0 + 9
4 = 2.25 ≠ 3ρ(L).

9



Chapter 2

RISK AGGREGATION

2.1 Convex Order

Definition 2.1. Let X and Y be two random variables with finite mean. X

is smaller than Y in convex order, X ⪯CX Y, if for every convex function

φ, E[φ(X)] ≤ E[φ(Y )] whenever they are well-defined.

Definition 2.2. Given a set of losses Li ∼ Fi, the class

A(F1, ..., Fd) = {L+ = L1 + ... +Ld∣Li ∼ Fi for all i = 1, ..., d}

is called the class of aggregate losses.

Remark 2.3. If X ⪯CX Y , then E(X) = E(Y ) and E(X2) ≤ E(Y 2). The

inequality is achieved by choosing φ to be x2 in the above definition and

the equality is achieved by choosing φ to be x and −x. Indeed, by choosing

φ(x) = x, we have that E(X) ≤ E(Y ) and by choosing φ̃(x) = −x, we have

that E(−X) ≤ E(−Y ) ⇒ −E(X) ≤ −E(Y ) ⇒ E(X) ≥ E(Y ).

Proposition 2.4. (Levy and Kroll, p.553-574, 1978 [3])

X ⪯CX Y if and only if ESα(X) ≤ ESα(Y ) and E(X) = E(Y ) for all α ∈
(0,1).

Given the set of aggregate sums,

A(F1, ..., Fd) = {
d

∑
i=1

Li∣Li ∼ Fi},

10



we wish to find max{A(F1, ..., Fd)} and min{A(F1, ..., Fd)} with respect to

⪯CX .

Proposition 2.5. (p.96 [1]) max{A(F1, ..., Fd)} = F −1
1 (U)+...+F −1

d (U) where

U ∼ Unif(0,1).

Proof. Since F −1
i (U) ∼ Fi for each i, ∑di=1F

−1
i (U) ∈ A(F1, ..., Fd). Let∑di=1Li ∈

A(F1, ..., Fd). We will show that ∑di=1Li ⪯CX ∑di=1F
−1
i (U). Indeed, by the

sub-additivity of ESα we have that

ESα(
d

∑
i=1

Li) ≤
d

∑
i=1

ESα(Li) =
d

∑
i=1

ESα(F −1
i (U)) = ESα(

d

∑
i=1

F −1
i (U)),

where the last equality follows by the additivity of ESα on the comonotonic

vector (F −1
1 (U), ..., F −1

d (U))′ (see Theorem 1.7).

Proposition 2.6. (Ruschendorf, 1983 [6])

min{A(F1, F2)} = F −1
1 (U) + F −1

2 (1 −U)

The following example shows that if d > 2, min{A(F1, F2)} may not exist.

Example 2.7. (Example 3.1 [1]) Let F1 be a discrete distribution on {0,3,8}
with equal probability, F2 be a discrete distribution on {0,6,16} with equal

probability, and F3 be a discrete distribution on {0,7,13} with equal proba-

bility. In our example, the sample space is divided into three disjoint subsets

A1,A2,A3 with equal probability 1
3 . Let ωi ∈ Ai, i = 1,2,3. We verify two

scenarios:

11



(a) First, consider the following dependence structure:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1(ω1) L2(ω1) L3(ω1)
L1(ω2) L2(ω2) L3(ω2)
L1(ω3) L2(ω3) L3(ω3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 16 0

0 6 13

8 0 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
It is easy to verify that the distribution of Li is Fi, i = 1,2,3. The dis-

tribution of L1 + L2 + L3 is on {19,19,15} with equal probability. Thus,

E[(L1 +L2 +L3 − 19)+] = 0;

(b) Consider another dependence structure:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1(ω1) L2(ω1) L3(ω1)
L1(ω2) L2(ω2) L3(ω2)
L1(ω3) L2(ω3) L3(ω3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 16 0

3 0 13

8 6 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
It is easy to verify that the distribution of Li is Fi, i = 1,2,3. The distribution

of L1 +L2 +L3 is on {16,16,21} with equal probability. Thus, E[(16 − (L1 +
L2 +L3))+] = 0.

Note that both g(x) = (x−19)+ and g(x) = (16−x)+ are convex functions.

Hence, if there exists a convex ordering minimal element S in A(F1, F2, F3),

it must satisfy E[(S − 19)+] = 0 and E[(16−S)+] = 0. However, we can see

that when L1 = 8, no matter what values L2 and L3 take, S will be either

> 19 or < 16. That means that E[(S−19)+] = 0 and E[(16−S)+] = 0 cannot

be satisfied simultaneously by the same S ∈ A(F1, F2, F3). This shows that

the minimal element with respect to convex order does not exist.

Proposition 2.8. E(∑di=1Li) ⪯CX L for all L ∈ A(F1, ..., Fd).

12



Proof. This follows by Jensen’s Inequality:

φ(E(L)) ≤ E(φ(L)) for any convex funtion φ.

Indeed, let L = ∑di=1Li, Li ∼ Fi and φ a convex function, then we have that

E(φ(E(
d

∑
i=1

Li))) = φ(E(
d

∑
i=1

Li)) ≤ E(φ(
d

∑
i=1

Li)).

Therefore E(∑di=1Li) ⪯CX ∑di=1Li since φ is arbitrary.

2.2 Aggregate Losses

As a practical real-world problem, let’s say that we wish to forecast the ag-

gregate sum of a company’s potential losses for d store locations in different

cities or a portfolio of d stocks assuming that we have enough data to as-

sign a distribution to each loss represented by Li. Knowing each marginal

distribution does not allow us to know the joint distribution of their aggre-

gate sum, L+, with certainty as there’s an infinitude of ways that the losses

could interact with one another based on their dependencies meaning that

we cannot compute ρ(L+), where L+ ∈ A. So, we consider the set of possi-

ble joint distributions given each marginal distribution, A(F1, ..., Fd) or the

class of aggregate losses, and we calculate its maximum value, ρ(L+), the

most that we could lose, and its minimum value, ρ(L+), the least that we

could lose. Analytical solutions always exist for the former value, but not

the latter value. Of course, there are a plethora of possible risk measures

we could use, but convex ones like the Expected Shortfall and Entropic Risk

Measure work quite well here.

Definition 2.9. Let ρ be a risk measure, then

13



(i) ρ(L+) = inf{ρ(L+)∣L+ ∈ A(F1, ..., Fd)} is the least that we could lose.

(ii) ρ(L+) = sup{ρ(L+)∣L+ ∈ A(F1, ..., Fd)} is the most that we could lose.

(iii) The interval [ρ(L+), ρ(L+)] is called the uncertainty spread of ρ.

Moreover, risk and insurance experts are always looking for the ’best’

measure of risk. Here, we’ll consider the risk measure with the smallest

uncertainty spread as the ’best’. That is, the measure with the smallest

distance between the most and least that we could lose on an aggregate

portfolio is the ’best’ risk measure. The following example illustrates the

role of dependence of risk factors in risk measurement.

Example 2.10. Suppose that the aggregate loss of our portfolio is L+ = L1+L2

and it is estimated that the risk factor changes L1, L2 follow N(0,1) and

N(0,4) respectively. With this information alone, we cannot calculate the

VaR of L+, we also need to determine the dependence of L1 and L2. As

the following calculations show our estimation for VaR change dramatically

when we assume different dependence structures.

(a) L1, L2 are independent.

Then L1 +L2 follows N(0,5), therefore

VaR0.99(L+) =
√

5 ⋅Φ−1(0.99) = 5.2019

(b) L = (L1, L2)′ is a comonotonic vector.

VaR0.99(L+) = VaR0.99(L1) +VaR0.99(L2) = Φ−1(0.99) + 2 ⋅Φ−1(0.99) =

= 6.9790
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(c) Take L1 = Z,L2 = −2Z, then L+ = −Z and we have that

VaR0.99(L+) = VaR0.99(−Z) = Φ−1(0.99) = 2.3263

(d) L = (L1, L2)′ ∼ N2(
⎡⎢⎢⎢⎢⎢⎣

0

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1 −1
2

−1
2 4

⎤⎥⎥⎥⎥⎥⎦
). Then we have that L+ ∼ N(0,4)

and thus VaR0.99(L+) = 2 ⋅Φ−1(0.99) = 4.6527.

Dependence (a) (b) (c) (d)

VaR0.99(L+) 5.20 6.98 2.33 4.65

2.3 Analytical Solutions for the Homogeneous case

In this section we will calculate the analytical solutions for the bounds,

ESα(L+),ESα(L+), ρent(L+), ρent(L
+),

of the class A(F, ..., F
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

d

), where F is a distribution function. This is the so-

called homogeneous risk aggregation problem. The results will be used later

on in the Numerical Results section of Chapter 3 to compare our outputted

solutions with. In the general case of non-homogeneous distributions (i.e.

Fi ≠ Fj) the problem of finding analytical solutions for ESα(L+), ρent(L
+)

turns out to be extremely difficult. In the next chapter we will present

numerical solutions via the Rearrangement Algorithm for some special cases.

For ESα(L+), ρent(L+) the calculations can be carried out by applying

Proposition 2.5. In the table below we calculate the values for different

choices of F .
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F ESα(L+) ρent(L+)

Exp(λ) d
1−α ∫

1

α − 1
λ log(1 − u)du log(∫

1

0 ((1 − u)− dλ )du)

N(µ,σ2) d
1−α ∫

1

α (
√

2σ2erf−1(2u − 1) + µ)du log(∫
1

0 exp(d
√

2σ2erf−1(2u − 1) + d ⋅ µ)du)

Pareto(θ) d
1−α ∫

1

α ( 1

(1−u)
1
θ
− 1)du -

where erf−1 denotes the inverse of the error function given by erf(x) =
2
π ∫

x

0 exp(−t2)dt which requires computational software to compute.

Theorem 2.11. ([4] See Prop 8.34 on p.307)

ESα(L+) =
1

β ∫
β

0
(d − 1)F −1((d − 1)t) + F −1(1 − t)dt

where β = 1−α
d and Li ∼ Fi for all i.

Corollary 2.12. (i) If F is the cdf of Exp(λ), then we have that

ESα(L+) =
1

β ∫
β

0
−(d − 1)

λ
log(1 − (d − 1)t) − 1

λ
log(t)dt

(ii) If F is the cdf of Pareto(θ) then we have that

ESα(L+) =
1

β ∫
β

0
(d − 1)( 1

(1 − (d − 1)t) 1
θ

− 1) + 1

t
1
θ

− 1dt
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Proof.

(i) Using the previous theorem and the inverse CDF of the exponential dis-

tribution we get that

ESα(L+) =
1

β ∫
β

0
(d − 1)F −1((d − 1)t) + F −1(1 − t)dt (2.1)

= 1

β ∫
β

0
−(d − 1)

λ
log(1 − (d − 1)t) − 1

λ
log(t)dt (2.2)

(ii) Using the previous theorem and the inverse CDF of the one-parameter

variant of the Pareto distribution, namely F (x) = 1 − (1 + x)−θ for x > 0, we

get that

ESα(L+) =
1

β ∫
β

0
(d − 1)F −1((d − 1)t) + F −1(1 − t)dt (2.3)

= 1

β ∫
β

0
(d − 1)( 1

(1 − (d − 1)t) 1
θ

− 1) + 1

t
1
θ

− 1dt (2.4)

Theorem 2.13. ([1] See section 3.3 on p.97) If F is defined on R+, then we

have that

Ta =H(U
d
)1U∈[0,da] +D(a)1U∈(da,1] ⪯CX L+ for each L+ ∈ A(F, ..., F

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
d

),

where U ∼ Unif(0,1), and a ∈ [0, 1
d] such that H(x) is non-increasing on

[0,a], and limx→a−H(x) ≥D(a) where

17



H(x) = (d − 1)F −1((d − 1)x) + F −1(1 − x)

D(a) = d ∫
1−a

(d−1)a
F−1(y)
1−da dy

In most practical cases, Ta as defined above turns out to be an element

of A(F, ..., F
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

d

) and thus Ta = min{A(F, ..., F
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

d

)}. For more details on this see

[1].

Proposition 2.14. If F is the cdf of Exponential(λ) and Ta is as in the

previous theorem, then

ρent(Ta) = log(∫
da

0
(1 − (d − 1)

d
u)

−(d−1)
λ (u

d
)−1λ du

+(1 − da)exp(d
λ
)a

da
λ(1−da) (1 − (d − 1)a)

−d(1−(d−1)a)
λ(1−da) )

Proof. Recall that ρent(Ta) = log(E(exp(Ta))).

H(U
d
) = (d − 1)F −1((d − 1)

d
U) + F −1(1 − U

d
) (2.5)

= −1

λ
(d − 1)log(1 − (d − 1)

d
U) − 1

λ
log(1 − (1 − U

d
)) (2.6)

= log(1 − (d − 1)
d

U)−
(d−1)
λ + log(U

d
)− 1

λ (2.7)
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D(a) = d∫
1−a

(d−1)a

F −1(y)
1 − da dy (2.8)

= d

1 − da ∫
1−a

(d−1)a

−1

λ
log(1 − y)dy (2.9)

= d

1 − da[
y

λ
+ 1

λ
(1 − y)log(1 − y)]1−a

(d−1)a (2.10)

= d

1 − da[
1 − a
λ

+ alog(a)
λ

− (d − 1)a
λ

− 1

λ
(1 − (d − 1)a)log(1 − (d − 1)a)]

(2.11)

= d
λ
+ log(a)

da
λ(1−da) + log(1 − (d − 1)a)

−d(1−(d−1)a)
λ(1−da) (2.12)

ρ
ent

(Ta) = log(E((1 − (d − 1)
d

U
−(d−1)
λ

1U∈[0,da](U
d
)
−1U∈[0,da]

λ exp(
d1U∈(da,1]

λ
)

(2.13)

×a
da

λ(1−da)
1U∈(da,1](1 − (d − 1)a)

−d(1−(d−1)a)
λ(1−da)

1U∈(da,1]))
(2.14)

Let A = [0, da] andB = (da,1] then A ∪B = [0,1] and A ∩B = ∅.

= log(∫
1

0
(1−(d − 1)u

d
)
−(d−1)1A

λ (u
d
)
−1A
λ exp(d1B

λ
)a

da1B
λ(1−da) (1−(d−1)a)

−d(1−(d−1)a)1B
λ(1−da) du)

= log(∫
da

0
(1 − (d − 1)

d
u)

−(d−1)
λ (u

d
)−1λ )du

+∫
1

da
exp(d

λ
)a

da
λ(1−da) (1 − (d − 1)a)

−d(1−(d−1)a)
λ(1−da) du)

= log(∫
da

0
(1 − (d − 1)

d
u)

−(d−1)
λ (u

d
)−1λ du

+(1 − da)exp(d
λ
)a

da
λ(1−da) (1 − (d − 1)a)

−d(1−(d−1)a)
λ(1−da) )
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Recall that a ∈ [0, 1
d] such that H(x) is non-increasing on [0,a], and

limx→a−H(x) ≥D(a)(∗)

In order for a to satisfy (∗):

lim
x→a−

(d − 1)F −1((d − 1)x) + F −1(1 − x) ≥ d

1 − da ∫
1−a

(d−1)a
F −1(y)dy

lim
x→a−

−(d − 1)
λ

log(1 − (d − 1)x) − log(x)
λ

≥ d

1 − da ∫
1−a

(d−1)a
−1

λ
log(1 − y)dy

The arguments of the natural logarithms are always positive since 0 ≤ a ≤
1
d , however, choosing a = 0 yields log(0) for the Entropic Risk Measure which

diverges so we could just ignore a = 0 as a solution. Indeed, 0 < a ≤ 1
n ⇒ 0 >

−a ≥ −1
n ⇒ 0 > −(n − 1)a ≥ −(n−1)

n ⇒ 1 > 1 − (n − 1)a ≥ 1 − 1 + 1
n = 1

n > 0. So we

could just plug in x = a on the left-hand side.

−(d − 1)
λ

log(1 − (d − 1)a) − 1

λ
log(a) ≥ d

λ
+ da

λ(1 − da) log(a)

−d(1 − (d − 1)a)
λ(1 − da) log(1 − (d − 1)a)

(−(1 − da)(d − 1) + d(1 − (d − 1)a))
1 − da log(1−(d−1)a)+(−(1 − da) − da)

1 − da log(a) ≥ d

1

a
− (d − 1) ≥ exp(d − d2a)

Ostensibly, a = 1
d may seem like a good choice, however, since 1−da occurs

in the denominator in the above equations, a = 1
d is in fact a restriction. For

some fixed d, we must use computational software that can solve inequalities
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in order to find some a ∈ (0, 1
d) and then plug it into the following equation

to obtain the analytical solutions:

ρent(Ta) = log(∫
da

0
(1 − (d − 1)

d
u)

−(d−1)
λ (u

d
)−1λ du

+(1 − da)exp(d
λ
)a

da
λ(1−da) (1 − (d − 1)a)

−d(1−(d−1)a)
λ(1−da) )

It is worth mentioning here that in that our numerical findings (see Tables

7-9 in the following chapter) show that ρent(Ta) agrees with ρ
ent

(L+).

Proposition 2.15. If d is even and F = Φ, then ρ
ent

(L+) = ESα(L+) = 0

Proof. Note that in this case we have that 0 = Z + (−Z) + Z + (−Z) + ... ∈
A(Φ, ...,Φ) and thus by Proposition 2.8 we get that 0 is the minimum of

A(Φ, ...,Φ) with respect to convex order.

21



Chapter 3

REARRANGEMENT ALGORITHM

3.1 Description

The Rearrangement Algorithm (RA for short) is a probabilistic algorithm

used to approximate ρ(L+) and ρ(L+). In this chapter we will use it to find

the lower bound of the Expected Shortfall, ESα and Entropic Risk Measure,

ρ
ent

. Given a class of distributions Fi, i = 1, ..., d, the algorithm searches

for minimal elements in A(F1, ..., Fd) with respect to convex order. As we

will illustrate in Example 3.5 when A(F1, ..., Fd) has no minimum element,

the algorithm fails to converge to ρ(L+). The convergence of this algorithm

is still an open problem. Nonetheless, in situations where the losses follow

non-homogeneous distributions and analytical solutions cannot be found, the

RA is of significant use for estimation purposes. Please see https://sites.

google.com/site/rearrangementalgorithm/ for more information. The

following example gives a simple illustration of the algorithm.

Example 3.1. Suppose that we’re dealing with the variance risk measure,

d = 2 and F1 = F2 = U{1,2,3,4} (i.e. the discrete uniform distribution on

{1,2,3,4}). The following matrix describes the dependence of two random

variables L1 and L2 that follow U{1,2,3,4}. The first and second column

represent the possible L1, L2 values respectively and the third column repre-

sents the possible values of the aggregate sum.
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L1, L2 ∼ Discrete Uniform{1,2,3,4}

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 ∣ 2

2 2 ∣ 4

3 3 ∣ 6

4 4 ∣ 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(a) First, randomly permute the first two columns. This is where the

probabilistic aspect of the algorithm comes from. And, as we can see, their

row sums change.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 ∣ 3

1 3 ∣ 4

4 2 ∣ 6

3 4 ∣ 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Definition 3.2. Two vectors x = (x1,...,xn) and y = (y1,...,yn) are oppo-

sitely ordered if and only if

(xj − xk)(yj − yk) ≤ 0

for all i = 1,...,n.

(b) Making L1 and L2 oppositely ordered to one another equilibrates

the spread of their aggregate or sum. Call them L̃1 and L̃2 respectively.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 3 ∣ 5

1 4 ∣ 5

4 1 ∣ 5

3 2 ∣ 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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(c) Calculate the variance of what you started off with and the variance

after applying the Rearrangement Algorithm.

V (L1 +L2) = 5 and V (L̃1 + L̃2) = 0

V (L1 +L2) is greater than V (L̃1 + L̃2) meaning that we’ve minimized the

variance of what we started with. The value V (L̃1 + L̃2) = 0 is indeed the

value V (L+) that we were looking for.

The first step of the RA is to discretize the given distribution F . This is

done by considering an empirical distribution function of the following form

Fn(x) =
1

n

n

∑
i=1

1[F−1(si),+∞)](x),

where s1 < ... < sn are sample point in [0,1]. In our numerical results, we

will use the following discretizations schemes

a) si = i−1
n , i = 1, ..., n. This is the discretization used in [5] which we will call

’PUC’ in our code.

b) si = i+0.7
n+1 , i = 1, ..., n. This is a different discretization we propose here. In

our code we call this ’SIM’.

We then define the dependence matrix X as follows

xi,j = F −1
j (si) where 1 ≤ i ≤ n and 1 ≤ j ≤ d

[Xi,j] =
⎛
⎜⎜⎜⎜
⎝

F −1
1 (s1) ⋯ F −1

d (s1)
⋮ ⋱ ⋮

F −1
1 (sn) ⋯ F −1

d (sn)

⎞
⎟⎟⎟⎟
⎠
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Figure 3.1: ’PUC’ discretization (left) versus ’SIM’ discretization (right) em-

pirical distribution approximations of a Pareto(2) CDF for n=8.

Figure 3.2: ’PUC’ discretization (left) versus ’SIM’ discretization (right) em-

pirical distribution approximations of a Pareto(2) CDF for n=24.
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The vector that corresponds to the row sum of the d columns is denoted

by (+X).
The RA algorithm is then described by the following steps

(1) Each column of the matrix X is randomly permuted.

(2) Iteratively rearrange the jth column of the matrix X so that it becomes

oppositely ordered to the row sum of everything but the jth column.

A new dependence matrix Y is found.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F −1
j (s1)
F −1
j (s2)
⋮

F −1
j (sn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
k≠j

F −1
k (s1)

∑
k≠j

F −1
k (s2)

⋮

∑
k≠j

F −1
k (sn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3) Repeat step (2) until ∣ρ((+Y )) − ρ((+X))∣ < ε, where ε > 0 is a fixed

threshold.

Items (1),(3) are introduced to decrease the number of loops needed to

reach ρ(L+). Item (2) is the essence of the RA. In the following we demon-

strate why making the vectors in a matrix oppositely ordered to one an-

other reduces the convex order of the row sum. Let a ∈ Rn, then we denote

a↑ = (a[n], ..., a[2], a[1]) which is the vector a with its elements in ascend-

ing order and a↓ = (a[1], ..., a[n]) which is the vector a with its elements in

descending order. We also introduce the following order

a ≤ b if and only if∑ji=1 a[i] ≤ ∑
j
i=1 b[i] for all 1 ≤ j ≤ n and ∑ni=1 ai = ∑ni=1 bi.
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Proposition 3.3. (Day, 1972)

a↑ + b↓ ≤ a + b

Proof. Let S = a↑ + b↓, r = a + b. For simplicity, we assume that a = a↑

Case 1 (n = 2):

Since a↑ = a, we have that a1 ≤ a2. If b1 ≥ b2, then b = b↓ so s = r.

If b1 < b2, then s = (a1 + b2, a2 + b1) and r = (a1 + b1, a2 + b2). Let s1 = a1 + b2,

s2 = a2 + b1, r1 = a1 + b1, r2 = a2 + b2. Note that s1 + s2 = r1 + r2.

r[1] = a2 + b2 ≥max{a2 + b1, b2 + a1} = s[1]

For the general case, if b1 ≥ b2 ≥ ... ≥ bn then s = r. Suppose that there exists

some 1 ≤ j < k ≤ n such that bj < bk. Then put s∗i = ri for i ≠ j,k.

s∗j = aj + bk and s∗k = ak + bj. By case 1, we have that s∗ ≤ r.
(aj + bk, ak + bj) ≤ (aj + bj, ak + bk)
If s∗ = s we’re done, otherwise repeat the previous step for r = s∗.

Corollary 3.4. For any L1, L2 discrete uniformly distributed random vari-

ables we have that L1 + L̃2 ⪯CX L1 + L2 where L̃2 is a rearrangement of L2

made oppositely ordered to L1.

Proof. By Day, we have that s = a↑ + b↓ ≤ a + b = r for any a,b ∈ Rn.
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L1 + L̃2 ∼ L↑1 +L↓2 ⪯CX L1 +L2

ESα(L1 + L̃2) =
1

n(1 − α)
⌊n(1−α)⌋

∑
i=1

s[i] ≤
1

n(1 − α)
⌊n(1−α)⌋

∑
i=1

r[i] = ESα(L1 +L2)

Below we give an example where A(F1, ..., Fd) has no minimum element

and the RA fails to converge to ES0.99(L+).

Example 3.5. Let’s say we’re using the Rearrangement Algorithm to find

the ES0.99(L+) of the following matrix used in Example 2.1.8.

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 16 0

0 6 13

8 0 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

After finding the Expected Shortfall measure of all (3!)3 different column

permutations of our matrix and taking the smallest one, we find that the ’true

value’ is 19. Now let’s apply the RA to this matrix 100 times, average the

values, and perform a hypothesis test to determine if the average produced

by the RA is close enough to the true value using a two-sided t-test with

unknown mean and variance.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

H0 ∶ average of 100 values = 19

HA ∶ average of 100 values ≠ 19

T = x−µ0
s

√
n

= 22.82−19
2.8898
√

100

= 13.2189

p-value = 2P(t99 ≥ 13.2189) ≈ 0

28



Very strong evidence against the H0 causing us to reject it in favour of

the HA at any level of significance. In particular, the RA fails to find the

true smallest Expected Shortfall for this particular case.

3.2 Numerical Results

In this section we present our numerical results from the application of the

Rearrangement Algorithm to several risk aggregation problems. For our nu-

merical computation we used n = 100,000 and ε = 0.0001. Each value taking

MATLAB about 15 seconds to compute when d = 4 and about 300 seconds

when d = 56 using a personal computer with a 3.30 GHz processor and about

6.00 GB of RAM. The definite integrals that appeared in section 2.3 were

solved via Wolfram Integrator.

3.2.1 Homogeneous Risk Aggregation

For a small number of homogeneously distributed losses, both the ’PUC’ and

’SIM’ discretizations work well in calculating the ESα, however, it seems that

the ’SIM’ discretization is more accurate for values of α very close to 1 (see

Tables 3.1-3.4). Moreover, for large d the new scheme appears to be more

efficient for heavy-tailed distributions like the Pareto distribution (see Table

3.5). For homogeneously distributed losses, both discretization schemes work

well in calculating the ρ
ent

(see Tables 3.7-3.9).
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Table 3.1: Sharp lower bounds on the ES for the sum of d = 3 random

variables all being Exp(λ = 2).

λ = 2 ESα(′PUC ′) ESα(′SIM ′) Analytical

α = 0.5 1.6113 1.6115 1.5850

α = 0.6 1.6666 1.6669 1.6545

α = 0.7 1.7590 1.7594 1.7587

α = 0.8 1.9234 1.9240 1.9239

α = 0.9 2.2338 2.2348 2.2347

α = 0.99 3.3495 3.3573 3.3552

α = 0.999 4.4633 4.5167 4.5036

Table 3.2: Sharp lower bounds on the ES for the sum of d = 3 random

variables all being Exp(λ = 4).

λ = 4 ESα(′PUC ′) ESα(′SIM ′) Analytical

α = 0.5 0.8056 0.8058 0.7925

α = 0.6 0.8334 0.8336 1.6545

α = 0.7 0.8796 0.8798 0.8794

α = 0.8 0.9617 0.9620 0.9620

α = 0.9 1.1169 1.1174 1.1172

α = 0.99 1.6748 1.6786 1.6776

α = 0.999 2.2317 2.2583 2.2518

30



Table 3.3: Sharp lower bounds on the ES for the sum of d = 3 random

variables all being Pareto(θ = 2).

θ = 2 ESα(′PUC ′) ESα(′SIM ′) Analytical

α = 0.5 4.0736 4.1015 4.1010

α = 0.6 4.5975 4.6323 4.6320

α = 0.7 5.3900 5.4364 5.4360

α = 0.8 6.7484 6.8178 6.8175

α = 0.9 9.8508 9.9893 9.9889

α = 0.99 32.2849 33.6447 33.6444

α = 0.999 95.5076 108.3204 108.5449

Table 3.4: Sharp lower bounds on the ES for the sum of d = 3 random

variables all being Pareto(θ = 4).

θ = 4 ESα(′PUC ′) ESα(′SIM ′) Analytical

α = 0.5 1.1874 1.1884 1.1845

α = 0.6 1.2810 1.2822 1.2819

α = 0.7 1.4244 1.4261 1.4258

α = 0.8 1.6573 1.6598 1.6593

α = 0.9 2.1336 2.1386 2.1376

α = 0.99 4.5136 4.5595 4.5507

α = 0.999 8.5448 8.9359 8.8679
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Table 3.5: Sharp lower bounds on the ES for the sum of d = 56 random

variables all being Pareto(θ = 2). We can see that ’SIM’ scheme provides

a much closer approximation than the ’PUC’ scheme in all cases. Here RE

stands for relative error.

θ = 2 ESα(′PUC ′) ESα(′SIM ′) Analytical RE(’PUC’) RE(’SIM’)

α = 0.99 125.0195 148.1578 148.8020 15.98% 0.42%

α = 0.995 164.8556 208.7450 210.7278 21.77% 0.94%

α = 0.999 274.4890 444.3673 472.3000 41.88% 5.91%

Table 3.6: Sharp lower bounds on the ES for the sum of d = 4 random

variables all being N(0,1).

Risk Measure ’PUC’ ’SIM’ Analytical

Expected Shortfall −4.21 × 10−4 3.2596 × 10−4 0
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Table 3.7: Sharp lower bounds on the Entropic Risk Measure for the sum of

d = 3 random variables all being Exp(λ).

d = 3 ρ
ent

(′PUC ′) ρ
ent

(′SIM ′) Analytical

λ = 2 1.5760 1.5789 1.5817

λ = 3 1.0273 1.0279 1.0290

λ = 4 0.7640 0.7642 0.7649

λ = 5 0.6085 0.6086 0.6091

λ = 6 0.5057 0.5058 0.5061

λ = 7 0.4327 0.4327 0.4330

λ = 8 0.3781 0.3781 0.3783

Table 3.8: Sharp lower bounds on the Entropic Risk Measure for the sum of

d = 4 random variables all being Exp(λ).

d = 4 ρ
ent

(′PUC ′) ρ
ent

(′SIM ′) Analytical

λ = 2 2.0355 2.0380 2.0794

λ = 3 1.3459 1.3464 1.3649

λ = 4 1.0063 1.0066 1.0169

λ = 5 0.8038 0.8040 0.8105

λ = 6 0.6692 0.6694 0.6739

λ = 7 0.5733 0.5734 0.5767

λ = 8 0.5014 0.5015 0.5040
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Table 3.9: Sharp lower bounds on the Entropic Risk Measure for the sum of

d = 5 random variables all being Exp(λ).

d = 5 ρ
ent

(′PUC ′) ρ
ent

(′SIM ′) Analytical

λ = 2 2.5153 2.5173 2.6939

λ = 3 1.6721 1.6726 1.7484

λ = 4 1.2527 1.2530 1.2947

λ = 5 1.0017 1.0018 1.0281

λ = 6 0.8344 0.8346 0.8526

λ = 7 0.7151 0.7152 0.7283

λ = 8 0.6256 0.6257 0.6357

Table 3.10: Sharp lower bounds on the EN for the sum of d = 4 random

variables all being N(0,1).

Risk Measure ’PUC’ ’SIM’ Analytical

Entropic −5.0611 × 10−4 2.7918 × 10−4 0
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3.3 Uncertainty Spread for the Expected Shortfall

Here we consider plotting the difference between ESα(L+) and ESα(L+) as

we vary α from 0.01 to 0.99 for the Exponential and Pareto distributions.

The former is calculated analytically and the latter is calculated via the

Rearrangement Algorithm. It’s worth noting that for Exp(λ) the uncertainty

spread increases as α increases to 1. Please see the next couple of pages for

their plots.
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Figure 3.3: Uncertainty spread of the Expected Shortfall for 3 losses all

Exponential(2) distributed as α is varied.
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Figure 3.4: Uncertainty spread of the Expected Shortfall for 3 losses all

Pareto(2) distributed as α is varied.
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3.4 Non-Homogeneous Cases

Now let’s suppose that each loss follows a different distribution with different

parameters. The analytical solutions for the lower bounds of the aggregate

losses are not known so we depend solely on the Rearrangement Algorithm.

From our results, it follows that the Entropic Risk Measure has a smaller

uncertainty spread than the Expected Shortfall for non-homogeneously dis-

tributed Exponential random variables (see Table 3.12). Please see the next

page for these next tables.
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Table 3.11: ES dependence range for the sum of d = 7 random variables

having distributions L1 ∼ Pareto(5), L2 ∼ Pareto(7), L3 ∼ Exp(2), L4 ∼
Exp(4), L5 ∼ N(1,3), L6 ∼ N(1,4), L7 ∼ N(2,5) when α = 0.99.

d = 7 ES0.99(′PUC ′) ES0.99(′SIM ′) ES0.99

α = 0.9 5.1654 5.1670 18.5531

α = 0.95 5.1659 5.1675 21.3728

α = 0.99 5.1659 5.1675 27.5025

Table 3.12: EN and ES dependence range for the sum of d = 5 random

variables having distributions L1 ∼ Exp(3), L2 ∼ Exp(5), L3 ∼ Exp(7),
L4 ∼ Exp(8), L5 ∼ Exp(9) when α = 0.99.

ρ
ent

(′PUC ′) ρ
ent

(′SIM ′) ρent ES0.99(′PUC ′) ES0.99(′SIM ′) ES0.99

0.9241 0.9244 2.3955 1.8782 1.8812 5.1136
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3.5 Project

Suppose we have a portfolio of 5 non-dividend stocks belonging Yahoo In-

corporated, Jacobs Engineering, Adobe Systems Incorporated, E*TRADE

Financial Corporation, and Mohawk Industries Incorporated. We view here

the total loss L+ of the portfolio as the sum of the losses Li from each individ-

ual stock i 1. Our assumption is that each Li follows a normal distribution,

this is a typical assumption in risk measurement that is employed when we

use the variance covariance method to estimate the risk of a portfolio. The

parameters of the distributions will be estimated by taking the average of

the difference between the opening prices and the closing prices on each day

over the course of 1 year. The variance is calculated similarly. We then

shift that window of size 1 year over day by day for 3 years from about 250

business days after August 04, 2012 to 1000 business days after that date,

and calculate each of the aforementioned loss metrics. Our task is to cal-

culate ES0.99(L+) and ρ
ent

(L+) at each day and compare their uncertainty

spread. We’ll also calculate ES0.99(L+) and ρent(L+) by assuming Gaussian

dependence among Li. In this case, it is know that L+ follows a normal

distribution, where the mean is the sum of the means and the variance is

calculated from the estimated covariance matrix.

Generally, it seems that the Entropic Risk Measure has a smaller uncer-

tainty spread than the Expected Shortfall for these stocks when α = 0.99

making it a better measure of risk (See Figure 3.10). Also, we can see that

both of their lower bounds seem to converge towards the same value.

1We choose this rather non-standard approach to view the calculation of the risk of the

portfolio loss as a risk aggregation problem
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Figure 3.5: Uncertainty spread and Gaussian of the Expected Shortfall for

the 5 stocks using the ’SIM’ discretization. ES0.99(L+) is in blue, Gaussian

is in green, and ES0.99(L+) is in red.
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Figure 3.6: Uncertainty spread of the Entropic Risk Measure for the 5 stocks

using the ’SIM’ discretization. ρent(L+) is in blue, Gaussian is in green, and

ρ
ent

(L+) is in red.
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Figure 3.7: Amalgamation of both uncertainty spreads and the Gaussians

for visual comparison all using the ’SIM’ discretization. Expected Shortfall

related loss metrics are in red and Entropic Risk Measure related loss metrics

are in blue.
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Figure 3.8: Adjusted closing price of each stock for each day.
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Figure 3.9: Plot of the sum of all losses for each day.
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Figure 3.10: Plot of the uncertainty spreads for both risk measures. Entropic

in blue and ES in red.
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Appendix A

MATLAB CODE

Here we present the main MATLAB functions used in this thesis. Rear-

rangementAlgorithm.m is the main function that calculates the lower bound

of both the Expected Shortfall and the Entropic Risk Measure. It requires

specifying the risk measure, n, ε > 0, the homogeneous distributions and their

parameters, the number of losses, the discretization scheme, and α for the

Expected Shortfall. The other two functions serve as auxiliary functions aid-

ing the main function in its computation. For the non-homogeneous cases,

the ’starting’ matrix in RearrangementAlgorithm.m was manually modified,

but everything else remained the same.

1 f unc t i on RearrangementAlgorithm = RearrangementAlgorithm (measure

, d i s t r i bu t i o n , parameter1 , parameter2 , d i s c r e t i z a t i o n , n , d ,

ep s i l on , alpha )

2 %takes as input the r i s k measure

, the

3 %p r o b i l i t y d i s t r i b u t i o n used ,

the

4 %d i s c r e t i z a t i o n scheme , n , the

number o f

5 %l o s s e s d , ep s i l on , and alpha in

the case

6 %of ES

7 h = [ ] ;

8 f o r i = 1 : n ;
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9 h( i ) = rand (1 ) ;

10 end ;

11

12 i f measure == ’ES ’ %i f you use the Expected

S h o r t f a l l measure , i t

13 i ha t = f l o o r ( alpha *n) ; %goes through t h i s c l au s e

14

15 i f d i s t r i b u t i o n == ’PAR’

16 f o r i = 1 : n ; %c r ea t e the permutation

matrix ” s t a r t i n g ”

17 f o r j = 1 : d ; %f o r the Pareto

d i s t r i b u t i o n

18 i f d i s c r e t i z a t i o n == ’PUC’

19 s t a r t i n g ( i , j ) = (1/(1 −(( i − 1) /n) ) ) ˆ ( 1 . /

parameter1 ) − 1 ;

20 e l s e i f d i s c r e t i z a t i o n == ’SIM ’

21 s t a r t i n g ( i , j ) = (1/(1 −(( i +0.7) /(n+1) ) ) ) ˆ ( 1 . /

parameter1 ) − 1 ;

22 e l s e i f d i s c r e t i z a t i o n == ’OTH’

23 s t a r t i n g ( i , j ) = (1/(1 −( i +0.99995) /(n+1) ) )

ˆ ( 1 . / parameter1 ) − 1 ;

24 e l s e i f d i s c r e t i z a t i o n == ’RAN’

25 s t a r t i n g ( i , j ) = (1/(1 −(h( i ) ) ) ) ˆ ( 1 . /

parameter1 ) − 1 ;

26 end

27 end ;

28 end ;

29 e l s e i f d i s t r i b u t i o n == ’EXP’

30 f o r i = 1 : n ; %c r ea t e the permutation

matrix ” s t a r t i n g ”
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31 f o r j = 1 : d ; %f o r the exponent i a l

d i s t r i b u t i o n

32 i f d i s c r e t i z a t i o n == ’PUC’

33 s t a r t i n g ( i , j ) = ( −1./ parameter1 ) * l og (1 −(( i −

1) /n) ) ;

34 e l s e i f d i s c r e t i z a t i o n == ’SIM ’

35 s t a r t i n g ( i , j ) = ( −1./ parameter1 ) * l og (1 −(( i

+0.7) /(n+1) ) ) ;

36 e l s e i f d i s c r e t i z a t i o n == ’OTH’

37 s t a r t i n g ( i , j ) = ( −1./ parameter1 ) * l og (1−( i

+0.99995) /(n+1) ) ;

38 e l s e i f d i s c r e t i z a t i o n == ’RAN’

39 s t a r t i n g ( i , j ) = ( −1./ parameter1 ) * l og (1−(h( i )

) ) ;

40 end

41 end ;

42 end ;

43 e l s e i f d i s t r i b u t i o n == ’NOR’

44 f o r i = 1 : n ; %c r ea t e the permutation

matrix ” s t a r t i n g ”

45 f o r j = 1 : d ; %f o r the standard normal

d i s t r i b u t i o n s

46 i f d i s c r e t i z a t i o n == ’PUC’

47 s t a r t i n g ( i , j ) = sq r t ( parameter2 ) * s q r t (2 ) *

e r f i n v (2* ( i − 1) /n−1)+parameter1 ;

%d i f f e r e n t matrix f o r each

d i s c r e t i z a t i o n scheme

48 e l s e i f d i s c r e t i z a t i o n == ’SIM ’

49 s t a r t i n g ( i , j ) = sq r t ( parameter2 ) * s q r t (2 ) *

e r f i n v (2* ( i +0.7) /(n+1)−1)+parameter1 ;
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50 e l s e i f d i s c r e t i z a t i o n == ’OTH’

51 s t a r t i n g ( i , j ) = sq r t ( parameter2 ) * s q r t (2 ) *

e r f i n v (2* ( i +0.99995) /(n+1)−1)+parameter1 ;

52 e l s e i f d i s c r e t i z a t i o n == ’RAN’

53 s t a r t i n g ( i , j ) = sq r t ( parameter2 ) * s q r t (2 ) *

e r f i n v (2*h( i ) −1)+parameter1 ;

54 end

55 end ;

56 end ;

57 end

58 new = ze ro s ( s i z e ( s t a r t i n g ) ) ;

59 o ld = s t a r t i n g ;

60

61 f o r c = 1 : d ; %randomly permute

the columns

62 s t a r t i n g ( randperm (n) , c ) = s t a r t i n g ( : , c ) ;

63 end

64

65 whi le A l t e rnat iveDi s c r e t eES ( old , alpha ) − Alte rnat iveDi s c r e t eES (

new , alpha ) >= ep s i l o n

66

67

68 f o r j = 1 : s i z e ( s t a r t i ng , 2 ) %keep going through the RA

un t i l the

69 o ld = s t a r t i n g ; %ES o f the next matrix i s

with in the

70 %thre sho ld o f the ES o f the

prev ious one

71 x = 1 ;

72 f o r i = 1 : s i z e ( s t a r t i ng , 1 )
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73 C(x ) = sum( s t a r t i n g ( i , : ) ) − sum( s t a r t i n g ( i , j ) ) ;

74 x = x + 1 ; %f o r each column make the

j th column

75 end %oppo s i t e l y ordered to the

sum of the

76 %l e f t o v e r e lements

77 D = horzcat ( s t a r t i n g ( : , j ) ,C’ ) ;

78

79 [ ˜ , i x ]= so r t (D( : , 2 ) ) ;

80 i n v e r s e=ze ro s ( s i z e ( i x ) ) ;

81 i n v e r s e ( i x ) = numel ( i x ) : −1 : 1 ;

82 E = so r t (D( : , 1 ) ) ;

83 D( : , 1 )=E( i nv e r s e ) ;

84

85 s t a r t i n g ( : , j ) = D( : , 1 ) ; %put the new oppo s i t e l y

ordered column

86 new = s t a r t i n g ; %vecto r back in to the matrix

87 s t a r t i n g = new ;

88 i f A l t e rnat iveDi s c r e t eES ( old , alpha ) −

Alte rnat iveDi s c r e t eES (new , alpha ) < ep s i l o n

89 break

90 end %check to see i f the ES o f

the d i f f e r e n c e

91 end %between the new matrix and

the o ld

92 end %matrix i s with in the

th r e sho ld ; i f i t ’ s

93 %not , r epeat the whi l e loop ,

o therw i se

94 RearrangementAlgorithm = Alte rnat iveDi s c r e t eES (new , alpha ) ;
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%output the value

95

96

97 e l s e i f measure == ’EN’ %i f you use the Entropic measure

, i t

98 %goes through t h i s c l au s e

99

100 i f d i s t r i b u t i o n == ’PAR’

101 f o r i = 1 : n ; %c r ea t e the permutation

matrix ” s t a r t i n g ”

102 f o r j = 1 : d ; %f o r the Pareto

d i s t r i b u t i o n

103 i f d i s c r e t i z a t i o n == ’PUC’

104 s t a r t i n g ( i , j ) = (1/(1 −(( i − 1) /n) ) ) ˆ ( 1 . /

parameter1 ) − 1 ;

105 e l s e i f d i s c r e t i z a t i o n == ’SIM ’

106 s t a r t i n g ( i , j ) = (1/(1 −(( i +0.7) /(n+1) ) ) ) ˆ ( 1 . /

parameter1 ) − 1 ;

107 e l s e i f d i s c r e t i z a t i o n == ’OTH’

108 s t a r t i n g ( i , j ) = (1/(1 −( i +0.99995) /(n+1) ) )

ˆ ( 1 . / parameter1 ) − 1 ;

109 e l s e i f d i s c r e t i z a t i o n == ’RAN’

110 s t a r t i n g ( i , j ) = (1/(1 −(h( i ) ) ) ) ˆ ( 1 . /

parameter1 ) − 1 ;

111 end

112 end ;

113 end ;

114 e l s e i f d i s t r i b u t i o n == ’EXP’

115 f o r i = 1 : n ; %c r ea t e the permutation

matrix ” s t a r t i n g ”
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116 f o r j = 1 : d ; %f o r the exponent i a l

d i s t r i b u t i o n

117 i f d i s c r e t i z a t i o n == ’PUC’

118 s t a r t i n g ( i , j ) = ( −1./ parameter1 ) * l og (1 −(( i −

1) /n) ) ;

119 e l s e i f d i s c r e t i z a t i o n == ’SIM ’

120 s t a r t i n g ( i , j ) = ( −1./ parameter1 ) * l og (1−( i

+0.7) /(n+1) ) ;

121 e l s e i f d i s c r e t i z a t i o n == ’OTH’

122 s t a r t i n g ( i , j ) = ( −1./ parameter1 ) * l og (1−( i

+0.99995) /(n+1) ) ;

123 e l s e i f d i s c r e t i z a t i o n == ’RAN’

124 s t a r t i n g ( i , j ) = ( −1./ parameter1 ) * l og (1−h( i ) )

;

125 end

126 end ;

127 end ;

128 e l s e i f d i s t r i b u t i o n == ’NOR’

129 f o r i = 1 : n ; %c r ea t e the permutation

matrix ” s t a r t i n g ”

130 f o r j = 1 : d ; %f o r the standard normal

d i s t r i b u t i o n s

131 i f d i s c r e t i z a t i o n == ’PUC’

132 s t a r t i n g ( i , j ) = sq r t ( parameter2 ) * s q r t (2 ) *

e r f i n v (2* ( i − 1) /n−1)+parameter1 ;

%d i f f e r e n t matrix f o r each

d i s c r e t i z a t i o n scheme

133 e l s e i f d i s c r e t i z a t i o n == ’SIM ’

134 s t a r t i n g ( i , j ) = sq r t ( parameter2 ) * s q r t (2 ) *

e r f i n v (2* ( i +0.7) /(n+1)−1)+parameter1 ;
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135 e l s e i f d i s c r e t i z a t i o n == ’OTH’

136 s t a r t i n g ( i , j ) = sq r t ( parameter2 ) * s q r t (2 ) *

e r f i n v (2* ( i +0.99995) /(n+1)−1)+parameter1 ;

137 e l s e i f d i s c r e t i z a t i o n == ’RAN’

138 s t a r t i n g ( i , j ) = sq r t ( parameter2 ) * s q r t (2 ) *

e r f i n v (2*h( i ) −1)+parameter1 ;

139 end

140 end ;

141 end ;

142 end

143

144 new = ze ro s ( s i z e ( s t a r t i n g ) ) ;

145 o ld = s t a r t i n g ;

146

147 f o r c = 1 : d ; %randomly permute

the columns

148 s t a r t i n g ( randperm (n) , c ) = s t a r t i n g ( : , c ) ;

149 end

150

151 whi le abs (LNofEXPofE( o ld ) − LNofEXPofE(new) ) >= ep s i l o n

152

153 f o r j = 1 : s i z e ( s t a r t i ng , 2 ) %keep going through the

RA un t i l the

154 o ld = s t a r t i n g ; %EN of the next matrix

i s with in the

155 %thre sho ld o f the EN of

the prev ious one

156 x = 1 ;

157 f o r i = 1 : s i z e ( s t a r t i ng , 1 )

158 C(x ) = sum( s t a r t i n g ( i , : ) ) − sum( s t a r t i n g ( i , j ) ) ;
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159 x = x + 1 ; %f o r each column make

the j th column

160 end %oppo s i t e l y ordered to

the sum of the

161 %l e f t o v e r e lements

162 D = horzcat ( s t a r t i n g ( : , j ) ,C’ ) ;

163

164 [ ˜ , i x ]= so r t (D( : , 2 ) ) ;

165 i n v e r s e=ze ro s ( s i z e ( i x ) ) ;

166 i n v e r s e ( i x ) = numel ( i x ) : −1 : 1 ;

167 E = so r t (D( : , 1 ) ) ;

168 D( : , 1 )=E( i nv e r s e ) ;

169

170 s t a r t i n g ( : , j ) = D( : , 1 ) ; %put the new oppo s i t e l y

ordered column

171 new = s t a r t i n g ;

172 s t a r t i n g = new ;

173 i f abs (LNofEXPofE( o ld ) − LNofEXPofE(new) ) < ep s i l o n

174 break %check to see i f the ES

o f the d i f f e r e n c e

175 end %between the new matrix

and the o ld

176 end %matrix i s with in the

th r e sho ld ; i f i t ’ s

177 end %not , r epeat the whi l e

loop , o therw i se

178 %output the value

179 RearrangementAlgorithm = LNofEXPofE(new) ;

180

181 end
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182 end

183

1 f unc t i on Al t e rnat iveDi s c r e t eES = Alte rnat iveDi s c r e t eES (A, alpha )

2

3 x = 1 ; %takes as input a matrix , A, and

a s i g n i f i c a n c e l e v e l , alpha

4

5 m = s i z e (A, 1 ) ;

6

7 f o r y = 1 : s i z e (A, 1 )

8 C(x ) = sum(A(y , 1 : s i z e (A, 2 ) ) ) ; %f o r each row , f i nd the

column sums

9 x = x + 1 ;

10 end

11 C = so r t (C, ’ descend ’ ) ; %so r t from l a r g e s t to

sma l l e s t and put in a vec to r

12

13 Z = 0 ; %cond i t i on s o f the ES

14 i f f l o o r (m*(1− alpha ) ) ˜= 0 ;

15 f o r i = 1 : f l o o r (m*(1− alpha ) ) ;

16 Z = Z + C( i ) ;

17 end

18 Alte rnat iveDi s c r e t eES = Z/((1− alpha ) *m) ;

19 e l s e ;

20 Z = C(1) ;

21 Alte rnat iveDi s c r e t eES = Z ;

22

23 end

1 f unc t i on LNofEXPofE = LNofEXPofE(A) %input a matrix , A
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2 format long ;

3 x = 1 ;

4

5 m = s i z e (A, 1 ) ; %m i s equal to the n you chose in the

Entropic func t i on

6

7 s t a r t = 1 ; %we always s t a r t the summation from 1 in

the case

8 %of the Entropic r i s k measure

9 f o r y = 1 : s i z e (A, 1 )

10 C(x ) = sum(A(y , 1 : s i z e (A, 2 ) ) ) ; %add the va lue s o f the

columns o f A

11 x = x + 1 ; %f o r each row and s t o r e

them in a

12 end %vector c a l l e d C

13

14 C;

15

16 Z = 0 ; %add up the exponent i a l o f the

va lue s in C;

17 f o r i = s t a r t : s i z e (A, 1 ) %there ’ s no need to s o r t i t s i n c e we

’ re tak ing

18 Z = Z+exp (C( i ) ) ; %a l l o f C’ s va lue s and add i t i on i s

commutative

19 end

20

21 LNofEXPofE = log ( (Z/m) ) ; %d iv id e that sum of exponent i a l

va lue s by the

22 %number o f rows o f A and take the

log then

57



23 %output

24

25 end
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