
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2008

Network-On-Chip Topology Generation and
Analysis For Transaction-Based Systems-on-Chip
Victor. Dumitriu
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Dumitriu, Victor., "Network-On-Chip Topology Generation and Analysis For Transaction-Based Systems-on-Chip" (2008). Theses
and dissertations. Paper 1087.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1087&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1087&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1087&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1087&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/1087?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1087&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

NETWORK-ON-CHIP TOPOLOGY
GENERATION AND ANALYSIS

FOR TRANSACTION-BASED
SYSTEMS-ON-CHIP

by

Victor Dumitriu

Bachelor of Engineering

Ryerson University, 2006

A thesis
presented to Ryerson University

in part ial fulfilment of the
requirements for the degree of

Masters of Applied Science
in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada

@Victor Dumitriu 2008

PROPERTY OF
RYERSON UNIVERSITY LIBRARY

I hereby declare that I am the sole author of this thesis or dissertation.

I authorize Ryerson University to lend this thesis or dissertation to other institutions or
individuals for the purpose of scholarly research.

Victor Dumitriu

I further authorize Ryerson University to reproduce this thesis or dissertation by photocopy­
ing or by other means, in total or in part, at the request of other institutions or individuals
for the purpose of scholarly research.

Victor Dumitriu

111

Network-on-Chip Topology Generation and Analysis
for Transaction-Based Systems-on-Chip

Victor Dumitriu
Masters of Applied Science, 2008

Program of Electrical and Computer Engineering
Ryerson University

Abstract

The Network ... on-Chip concept is en1erging as a promising new method of addressing the com-

munication requirements of complex Systems-on-Chip. However, network design at this level

must take into consideration the specific communication protocols of on-chip components.

This thesis presents a topology analysis and design method for networks-on-chip based on the

transaction-oriented protocols common to on-chip systems. The generated topologies target

the latency of critical links in the system, while the analysis method can predict the degree

of contention in a system prior to the simulation phase. The proposed topologies are tested

using various applications, including an MPEG4 Decoder, and are found to perform the

same or better than regular topologies , while using less network resources. The contention

prediction method is found to be accurate to within 27% in the worst case scenario.

v

Acknowledgment

I would like to thank my supervisor, Dr. G. N. Khan, for his guidance and support through­
out my 1nasters studies. I also wish to acknowledge the financial support provided by the
National Science and Engineering Research Council of Canada (NSERC), the Canadian Mi­
crosystems Corporation (CMC), and Ryerson University.

Vll

Contents

1 Thesis Introduction
1.1 Introduction . . .

1
1

1.2 Motivation and Contribution . 2
1.3 Thesis Organization. 3

2 Systems-on-.Chip: Characteristics and Methodologies 5
2.1 The .Rise of the Systems-on-Chip Concept 5
2.2 Plug-and-Play System Design and Standard Interfaces 8
2.3 Characteristics of On-Chip Communication . . . 9

2.3.1 On-Chip Protocols 9
2.3.2 On-Chip Com1nunication Characteristics 12

2.4 Conclusion . 14

3 Networks-on-Chip 15
3.1 Networks on Chip: An Introduction . 15

3.1.1 The XPipes NoC 17
3.1.2 The Aethereal NoC 18
3.1.3 Regular Topology NoCs . . . 19
3.1.4 The Asynchronous NoC: The MANGO Clock-less Network 21
3.1.5 Commercial NoC Solutions: The Arteris Danube NoC Library 21

3.2 NoC Design Research 22
3.2.1 XPipes-Related Design Methods 22
3.2.2 Tile-Oriented Design Methods 25
3.2.3 Irregular Topologies Based on Optimization Methods 27
3.2.4 Additional Research Projects 30

3.3 Conclusion 35

4 Transaction-Oriented NoC Design 37
4.1 Method Objectives 37

4.1.1 Supported Network Type . 38
4.1.2 Method Input and Output 40

4.2 General Program Structure . 42
4.3 Topology Generation 44

lX

Ill

4.3.1 Algorithm 1: Point-to-Point Oriented Topologies.
4.3.2 Algorithm 2: Partitioned Crossbar Topologies
4.3.3 Topology Comparison
4.3.4 Complexity of the Algorithms
4.3.5 Route Generation
4.3.6 Deadlock-Free Characteristic .

4.4 Topology Analysis
4.4.1 Theory
4.4.2 Implementation

4.5 Method Limitations .
4.6 Conclusion

5 NoC Simulation Environment
5.1 Supported NoC System .
5.2 Parametrization Options ...
5.3 Simulator Models

5.3.1 Traffic Generators and Sinks
5.3.2 Network Interfaces
5.3.3 Interfacing Between the Core and Nl: the AXI Protocol .
5.3.4 Switches

5.4 Conclusion

4

5
5
5
5
5
5.
5 ~

6
6:
6~

7:
7
71
7!
7!
8:
81
8~

9(

6 Simulations and Results 9J
6.1 Test Applications . . . 9~

6.2 Topology Comparisons 9~

6.3 Predictor Accuracy . . 10~

6.3.1 Poisson Transaction Patterns 10L
6.3.2 Specified Transaction Patterns . 10~

6.4 Program Execution Time 10~

6.5 Topology Comparison. 11(
6.6 Message Passing Communication Model in Transaction Based Environments 11~

6.7 Conclusion. 11 ~

7 Thesis Conclusion 115

8 Appendix 117

X

List of Figures

2.1 Example of a Current-Generation SoC 7
2.2 AXI Read Transaction 10

4.1 Main Program Flow 44
4.2 Main Program Structure 45
4.3 Point-to-Point Oriented Algorithm 48
4.4 Example of a Switch Merger 49
4.5 Example of the Switch Partitioning Process 52
4.6 Channel Dependence Graph Example 57
4.7 Partitioning Effect on Channel Dependence . 58
4.8 Simplified Model Generation . 64
4.9 Output Contention Example . 66

5.1 Structure of Intended Systems 73
5.2 Example of a 2-Hop Route .. 75
5.3 Example Temporal Pattern 78
5.4 Transaction Generator States 80
5.5 Adjusted Transaction Generation 83
5.6 Master Network Interface ... 85
5.7 AXI Channel Arrangement . . 87
5.8 AXI Implen1entation Example 88
5.9 4-Port Switch Diagram 89
5.10 Output Block State Diagram . 90

6.1 MEG4 Decoder Core Graph [19] 93
6.2 MWD Application Core Graph 94
6.3 AV Benchmark Core Graph .. 95
6.4 Layer-3 Switch Core Graph .. 96
6.5 MPEG4 Decoder Custom 1 Topology 97
6.6 MPEG4 Decoder Custom 2 Topology 97
6.7 MWD Application Custom 1 Topology 97
6.8 MWD Application Custom 2 Topology 97
6.9 AV Benchmark Custo1n 1 Topology 98
6.10 AV Benchmark Custom 2 Topology .. 98

XI

Ill•

6.11 MPEG4 Decoder Mesh Topology . .
6.12 MPEG4 Decoder Fat Tree Topology.
6.13 MWD Application Mesh Topology . ~

6.14 MWD Application Fat Tree Topology . ~

6.15 AV Benchmark Mesh Topology 1(
6.16 MPEG4 Decoder Transaction Results . 1(
6.17 MWD Application Transaction Results 1(
6.18 AV Benchmark Transaction Results . . 1(
6.19 MPEG4 Decoder Burst Test 1- Transactions. 1(
6.20 MPEG4 Decoder Burst Test 1- Latency . . . 1(
6.21 MPEG4 Decoder Burst Test 2 - Transactions . 1C
6.22 MPEG4 Decoder Burst Test 2- Latency . 10
6.23 MPEG4 Decoder Analysis Accuracy Test . 10
6.24 MWD Application Analysis Accuracy Test 10
6.25 AV Benchmark Analysis Accuracy Test 10
6.26 Layer-3 Switch Custom Topology . 10
6.27 Layer-3 Switch Transaction Pattern . . 10
6.28 Layer-3 Switch Accuracy Test 10
6.29 Topology Comparison: (a) Partitioned Crossbar Topology; (b) Topology Gen-

erated by Srinivasan et al. Method [36] . . . 11
6.30 MPEG4 Decoder Traditional Design Results 11

Xll

List of Tables

4.1 Algorithm Complexity .. 54

6.1 Application Resource Use 102
6.2 Program Execution Time . 110

8.1 MPEG4 Decoder Transaction Results - Topology Comparison - 1 G Hz 117
8.2 MWD Application Transaction Results - Topology Comparison - 500MHz . 118
8.3 AV J?enchmark Transaction Results- Topology Comparison- 1GHz 118
8.4 MPEG4 Decoder Transaction Results- Accuracy Test- 3.437GHz 118
8.5 MWD Application Transaction Results- Accuracy Test- 573MHz 119
8.6 AV Benchmark Transaction Results- Accuracy Test- 2.31GHz . 119
8.7 Layer-3 Switch Transaction Results - Accuracy Test - 229MHz 119
8.8 MPEG4 Decoder Burst Test- Transactions ... 120
8.9 MPEG4 Decoder Burst Test - Latency (cycles) 120

Xlll

Chapter 1

Thesis Introduction

1.1 Introduction

The constant strearn of advances rnade in the field of IC 1nanufacturing, coupled with the ever

increasing demand for high-performance embedded systems has led to the adoption of the

System-on-Chip (SoC) design process. At the high end of the SoC scale are to be found the

Multi-Processor Systems-on-Chip (MPSoC), which integrate multiple processing elen1ents,

such as Digital Signal Processors (DSP) and general purpose processors as well as dedicated

hardware units. Such systems are primarily used in the communications and multimedia

fields , where large information volumes are handled. To address communication performance

and efficiency on the chip, the Network-on-Chip (NoC) concept has been proposed as a new

approach to communication infrastructure, replacing traditional systems such as shared buses

or cross bars [1] .

The NoC concept has its roots in the field of parallel computing. However, the migration

to on-chip communications handling requires a different comn1unication performance model

than that found in the field of parallel computing. The difference in complexity between

a processing node in a parallel computer and a processor in an embedded systen1s requires

1

that NoC design be tackled at a lower abstraction level. In addition, MPSoCs often hav

different requirements than high-performance parallel computers; the easy addition of addi

tional processing elements is not as important as the area and power characteristics of th

system. In fact, the majority of current on-chip systems cannot change their internal struc

ture once implemented in silicon. Regular topologies are not always as desirable as irregula1

application-specific topologies, since they 1nay include circuitry that remain unused.

The current work presents a topology generation and analysis method for N oC desig1

based on the transaction-oriented communication methods of on-chip systems. The topolog:

generation process creates dedicated topology descriptions based on application requirement

and network structural parameters. The aim is to provide the required communicatim

infrastructure for an application using a minimum of resources, so that efficient application

specific systems are generated. In addition, to accelerate the design process of such syste1ns

the proposed method incorporates a performance prediction process referred to as Contentioi

Analysis. The process attempts to predict interference effects in the system, and based 01

this makes a recommendation as to the needed operating frequency of the network. ThE

method minimizes complex computation by considering network components in isolation

and uses a simplified form of simulation rather than queue analysis. This approach can bt

less accurate than complete modelling of the whole system, but it reduces the complexit~

and execution time of the analysis method.

1.2 Motivation and Contribution

The main motivation for the proposed work is to address a perceived gap in the field of N oC

automated design and analysis. This gap refers to the current trend of modelling on-chii=

communication behavior at a high level of abstraction similar to that used for wide-area

computer networks or parallel super computers. Such approximations rarely match on-chip

2

system behavior, in particular in cases where component interfacing is accomplished using

transaction-based protocols, thus making them inappropriate models. The work presented

in this thesis represents an attempt to address the topic of network-on-chip design while

keeping in mind the behavioral aspects of current on-chip components.

For this reason, the main focus of the work will be the analysis of performance require­

ments.

The main contribution of the proposed work is three-fold. First and foremost , the thesis

formally establishes the conditions that must be met in order to meet performance require­

ments in transaction based on-chip systems (which represent the majority of such systems).

The second main ·contribution is the development of two algorithms aimed at the generation

of irregular NoC topologies. Both algorithms are aware of the limitations of transaction­

based systems and incorporate this information into their structure. Finally, the thesis

presents an analysis method for the estimation of packet behavior in an active network, and

incorporates this method into the topology generation process. The analysis method uses

Petri Net representation of the system and a partitioned approach to system analysis which

allows it to execute faster than in-depth analysis methods such as those based on queue

theory.

1.3 Thesis Organization

Before examining networks-on-chip, and their design, it is important to establish what types

of systems will use such communication infrastructure, and what their characteristics are.

Chapter 2 will briefly discuss the field of on-chip systems, and in particular the topic of Multi­

Processor Systems-on-Chip (MPSoC). The chapter will conclude with an analysis of the

communication protocols generally used by such systems, and their characteristics. Chapter 3

will fully introduce the Network-on-Chip concept, and present some examples of existing NoC

3

designs. It will also survey the available research in the field of NoC design and optimization

since this is the main discussion topic of the Thesis.

Once the NoC concept has been described, along with the fundamental characteristics o

on-chip systems, the main topic of the Thesis is presented. Chapter 4 describes the topolog:

generation and analysis processes being proposed. Because the primary aim of the topolog~

generator is to achieve a desired level of performance, a method is needed to determine if;

particular network with given characteristics can achieve said level of performance. Chapte

5 introduces a simulation environment designed specifically to model N oC communication

and describes the characteristics and implementation of the simulation models. Chapter t

presents tests and results used to verify the proposed methods. The results section can bE

broadly divided into two sections: a comparative section, where the generated topologies an

compared with regular ones to determine their benefits and short-comings; and an analysi!

section which examines the accuracy of the proposed analysis methods, by verifying whethe1

the recommended N oC operating frequency allows the generated topology to meet applica­

tion communication requirements. Finally, Chapter 7 concludes the Thesis report, and i~

followed by the Appendix and Bibliography sections.

4

Chapter 2

Systems-on-Chip: Characteristics and

Methodologies

Before delving into the subject of Network-on-Chip and their design, digital Systems-on­

Chip (Soc) should be explored, as they are the reason for the e1nergence of the NoC concept.

This section briefly presents the emergence and rise in popularity of the SoC concept, culmi­

nating with the Multi-Processor System-on-Chip (MPSoC). The section also discusses the

progress made in design methods , and the emergence of standardized interfacing in on-chip

components. Finally, once the details of on-chip protocols are established, it is possible to

derive some characteristics of on-chip communication, particularly as it relates to achievable

performance. This last portion of the chapter also analyzes the main differences between

on-chip systems and larger networks, from the communication point of view.

2.1 The Rise of the Systems-on-Chip Concept

The improvements made in the field of integrated circuit manufacturing have led to a constant

increase in the nun1ber of transistors that can be integrated into a single chip. This fact,

5

coupled with new requirements for embedded systems, such as reduced power and area, have

led designers to integrate various types of components into one chip [2]. Systems that would

have consisted of multiple ICs can now be implemented as Systems-on-Chip (SoC). Such

systems could incorporate a processor, memory and interfaces to other components, as well

as an on-chip interconnect. This approach yields savings not just in terms of area (since only

one chip is now used) but also power, since chip boundaries are no longer crossed as often,

and special drivers are no longer needed. Finally, having most system components on-chip

allows a designer more freedom in certain instances; for example, pin-count limitations are

largely eliminated in the case of on-chip connections, meaning that serialization is not always

necessary when C?nnecting components.

As the demand for increased performance in such systems continued to increase, design­

ers began to adopt more complex SoC structures. The operating frequency could not be

increased indefinitely to provide adequate perfonnance, due to physical constraints as well

as power consumption considerations. As a solution, multiple processing elements were in­

troduced on the chip. Such a solution yields added performance, but the power requirement

is not as large as in multi-chip systems, since chip boundaries are not crossed as often, re­

ducing the need for added drivers off-chip. Such processing ele1nents include instruction-set

processors, Digital Signal Processors (DSPs) and dedicated logic circuits. Such systems are

currently known as Multi-Processor Systems-on-Chip (MPSoCs), and are being adopted for

use in the multimedia and communications fields, where large data volumes are processed.

An example of such a system is shown in Figure 2.1, where the Samsung S3C6400 platform is

shown [3]. This SoC is aimed at the mobile telephone market, as well as media players, and

incorporates special dedicated processing elements in the form of video and audio encoders

and decoders. It is important to note that, unlike chip multi-processors or multi-core pro­

cessors, the components that make up an MPSoC are heterogeneous, both in their structure

and their behavior. Exarnples of co1nponents one rnight find in such SoCs include general

6

purpose processors, digital signal processors, direct 1nemory access (DMA) units, memory

or Ethernet controllers; such components have different behaviors, and can lead to different

communication patterns.

IIC

UART x4

GPIO

lrDAv1 .1

SPI (Full Duplex)

HSI (Modem FF)

USSOTG2.0

HS·MMC:'SO

AC97 / PGM Audio IIF

!-Cache 16KB
D-Cach,;. 16KB

1-TCM 16KB
D·TCM 16KB

1
X64l3.2 Multi · Layer AHB.iAXI Bus

Normal
Idle

Stop
Sleep

1 I

NTSC, PAL TV out
Image Enhancer111mt

SHAM/ROM/NOH/
Ont~NAND'"

Mobile SDRAM

Mobile ODR SORAM

NAND flash
(SLC/MLC)

Figure 2.1: Example of a Current-Generation SoC

Unfortunately, the increased number of on-chip components, and the increased volume of

information that has to be handled are bringing to light a new problem area within complex

SoCs: the on-chip interconnect. Early on-chip systems worked quite well using only a shared

bus, primarily because the bus was used by one component (the processor), while the remain-

der of on-chip systems were passive. Unfortunately, increasing the number of components

that can actively use the communication medium leads to congestion; in such instances, the

shared bus quickly becomes a bottleneck of system performance [4, 5). As a solution to this

problem, the fabric switch has been adopted as the on-chip interconnect for complex SoCs;

examples include the AMBA Multi-Layer Protocol [6) and the Avalon interface [7). The

fabric switch can be thought of as a collection of shared busses with associated arbitration

7

units, each of which is associated with one of the system slave interfaces. Because of this:

the fabric switch is the ideal interconnect, minimizing latency and maximizing throughput

for multiple communicating components. However, as the number of communicating compo­

nents increase, the size of the interconnect quickly explodes, not just in terms of silicon area,

but also in the use of metal layers for interconnection [4, 5]. Networks-on-chip are emerging

as a new solution to on-chip communication, and attempt to provide similar performance

with less associated area overhead and complexity, when compared to fabric switches.

2.2 Plug-,and-Play System Design and Standard Inter­

faces

The design of a complex embedded application is a formidable task, involving both hardware

and software components that must interact with each other. Traditionally, such a design

would take considerable work, both in the design of the various components as well as

their interfacing. In situations where the available time-to-market is short, it is not always

possible to design all system components specifically for the current design. The solution

being proposed and used with increasing regularity is to re-use earlier component designs,

and allow them to be easily interconnected in various configurations [8]. A new industry

section is emerging whose only role is to design Intellectual Property (IP) digital components

for use in on-chip systems, often referred to as cores. Such IP cores can be licensed for a

particular design, and can be customized to a varying extent. This allows system designers to

concentrate on the design of the application, and on the efficient interfacing of components,

rather than on the design of each circuit. This approach has become very wide-spread, with

available cores ranging form processors (ARM [9] and NIOS II [10]) to dedicated processing

elements and I/0 controllers.

8

To be truly useful, the concept of re-useable design must allow designers to build systems

quickly and efficiently. The interfacing of components in particular is an important aspect

of re-usable design [11]. Standard protocols and interfaces have emerged in conjunction with

embedded cores to allow efficient interconnection. Examples include the AMBA Bus [12],

as well as the A val on Interface [7]. More recently, the move has been towards specialized,

point-to-point oriented protocols , which hide all characteristics of the interconnect from the

cores themselves. The Open Core Protocol (OCP) [13] and AMBA AXI protocol [14] both

take this approach; neither protocol includes any signals that are related to the underlying

interconnect structure (such as arbitration request signals).

2.3 Characteristics of On-Chip Communication

Any discussion regarding on-chip communication must take into consideration the character­

istics that such communication has. Since most on-chip components rely on specific on-chip

protocols for communication, examining these protocols is mandatory for fonning a model

of communication that can then be used for design purposes (as this Thesis attempts to do).

This final section will present some of the characteristics common to a number of on-chip

protocols, as well as some advanced features that have been introduced for high-perfonnance

designs. Based on this behavior, a set of observations and specifications will be derived for

on-chip components. Finally, on-chip communication will be briefly compared with commu­

nication methods found in larger systems such as parallel con1puters.

2.3.1 On-Chip Protocols

All on-chip protocols emerged as a result of the need to allow logic circuits to communicate

with each other. At their core, most protocols are built around information transactions ,

which are themselves divided into request and response phases [7, 12, 13, 14]. In all cases,

9

the transaction occurs between a master device that can initiate transactions, and a slav,

device that is passive and responds to transactions. Components with both master and slav'

characteristics incorporate both master and slave interface logic (an example is a DMA unit)

During the request phase, master components assert signals to indicate that a transaction i;

required , and drive transaction information on dedicated ports (address, data, transactio!

type, etc). In the case of older protocols, such as the AMBA AHB protocol, the master woulc

also assert dedicated request signals used by the interconnect controller for arbitration. Th(

slave component responds to the transaction when it is ready, using a number of handshak(

signals, in the response stage. During the time of the transaction both interfaces are engagec

and cannot undertake other tasks. Figure 2.2 shows a transaction in the AXI protocol. ThE

master components initiates the read transfer by asserting the ARVALID signal, and write~

address and transaction information on the address channel [14]. The slave latches thi~

information and asserts the ARREADY signal; the slave then responds when it is ready b)

asserting the RVALID signal, and the transaction completes (and read data is transferred:

when the master component asserts the RREADY signal.

!"0 T1 T2 T:3 T4 Tf) T6 Tl T8 19 T10 T11 T12 IT~

f,CLK

Figure 2.2: AXI Read Transaction

A number of features were added to on-chip protocols to increase performance. One of

the first, and certainly the most wide-spread feature is the burst transfer , which was born

in shared bus systems, where multiple transactions could be grouped under one arbitration

10

session, increasing throughput. The burst transfer is now a common feature of all on-chip

interconnects, including fabric switches [7]. In addition, more advanced features have been

implemented in an attempt to increase the achievable performance. A number of protocols

support the concept of split transfers, where a slave device can suspend the transfer while

it prepares for the transfer. This allows other master devices to use the interconnect while

a slow slave processes a transaction. Once the slave completes processing, it can signal the

interconnect to inform it that it is ready to complete a transaction.

The latest generation of on-chip protocols include the support for multiple outstanding

transaction to difFerent slave components, and the con1pletion of transactions out of order

[13, 14]. In these cases, transactions can complete in or out of order, depending on the

configuration and capabilities of the master and slave devices. This feature guards against

the case of components being stuck waiting for one slow slave device, and can drastically

increase the over-all performance of the system. However, it should be noted that only

complex components, such as large embedded processors (ARM 11J series, for example) can

take advantage of such features. Simpler, or dedicated component do not have the behavioral

support to issue transaction requests to multiple slave devices, and often do not need to do

so. However, regardless of how they are grouped or arranged, each transaction still consists

of the request and response stage, which must be completed.

Some exceptions exist to the above rules, which are used 1n certain situations. One

example used in processing streaming information is a serial arrangement of components,

connected using special , simplified, one-way interfaces. One such exmnple is the Avalon

Streaming Interface, which is built around source and sink interfaces [7]. In this case, the

processed data is flowing in one direction, and is passed from one component to the next. In

such cases, data transfers occur without the complex hand-shaking seen in the protocols de­

scribed above. The Avalon Streaming interfaces supports ftow control through pack-pressure,

where sinks can temporarily stop incoming data, if they beco1ne saturated. Such interfaces,

11

however, are used primarily for dedicated applications.

2.3.2 On-Chip Communication Characteristics

The aim of the above discussion and this entire chapter is to establish some characteristics

and formal requirements for on-chip communications. As the previous section shows, most

on-chip protocols are transaction-based and go through specific stages, which makes it pos­

sible to establish a relationship between the latency of a transaction (the time taken for

a transaction to complete) and the achievable throughput of an interface such as [15, 16].

The following paragraphs will describe this relationship and how it is derived. Since most

existing on-c"Qip protocols specify that both interfaces are engaged during a transaction, this

means that latency becomes the dominating factor affecting throughput [16]. In particular,

because the interface blocks during a transfer, latency and throughput become inverses of

one another. This statement holds in all cases except streaming interfaces and advanced

components that support multiple outstanding transfers to separate slaves. However, in the

case of advanced components, the analysis presented here can be considered a worst-case

scenano.

Based on the blocking nature of on-chip protocols and interfaces, the following definitions

can be made. First, the latency of a transaction can be defined as the time that a master

interface is engaged during a transfer. In situations where any transaction (read or write)

has a request and response phase, this delay is composed of the transport delay (due to

the interconnect) and the processing delay of the slave involved. Equation 2.1 defines this

relationship:

Lait = Latint + Latslave (2.1)

Secondly, because the interface blocks during the transaction and cannot be used for alterna­

tive transfers, transactions occur serially, and the achievable throughput becomes the inverse

12

of the transaction latency Latt. In this case, if a specific throughput Treq, in transactions

per unit time, is required, then the following condition must hold:

1
Latt <­

- Treq
(2.2)

Note that the above requirement does not take into account the processing time of the master

interface itself. The latency per transaction can be computed in various ways, to account

for burst transfers and encoding options, but the condition specified by Equation 2.2 must

ultimately hold, in situations where interface blocking occurs.

The above equations contrast heavily with the behavior of large networks, such as those

found in parallel computers and general computer networks , where latency and throughput

are unrelated. It is not the networks themselves that cause this difference, but rather the

behavior of the communicating components that access said networks. In both these cases,

the elements accessing the network are complex entities, consisting of at least a processing

element, memory and some sort of network interface. An example of such a system is the

BlueGene L computing node, which is itself an SoC [17]. The node consists of two processing

cores, a dedicated memory hierarchy including multiple levels of cache and external memory

and an integrated router. What this means is that the node itself is capable of operating

autonomously while sending messages. In addition, many such systems rely on message-

passing rather than transactions for communication, meaning that response stages are not

required and the node can continue with other work after the message is sent. In such cases,

the communication requirement can be abstracted to an information stream being sent in

one direction from the source to the destination (the messages, essentially). Such a stream

is often represented as a number of bits per second, and communication constraints are met

if the following inequality holds:

(2.3)

13

Above, Dataij represents the information volume (bits per second) that must be sent between

nodes i and j, and BWij represents the available bandwidth of the network between nodes

i and j. Note that the bandwidth does not refer only to the links in the system, but also to

any interim elements such as routers or switches, which must process and forward the data

being transported by the network. The above equation can only be used in on-chip systems

in specific situations. Specifically, it holds in the case of write transfers, provided that the

protocol supports posted write transfers, meaning that a response phase is not required for

write transactions. The AXI interface, for example, is not accurately modelled by the above

inequality.

2.4 Conclusion

The chapter covers a relatively wide range of topics in very short form, primarily for the

purpose of introducing the concept of MPSoCs, re-usable designs and standard interfaces

and protocols. Given that these are the characteristics of current embedded systems, it is

important to establish the underlying ground work before moving specifically to the area

of networks-on-chip. Essentially the chapter presents the environment that NoCs are used

in, as well as the specific characteristics of the cornrnunication protocols used by on-chip

components.

Arguably the most important section of the chapter is the last, which formally specifies

certain criteria for meeting throughput requirements when components with standard inter­

faces (such as AMBA AXI or OCP) are used. These criteria have to be considered when

designing any interconnect for a specific application, irrespective of the actual interconnect

structure. This information is presented first primarily because of chronological considera­

tions. The standard interfaces used on-chip pre-date the Network-on-Chip concept, and their

associated behavior and requiren1ents exist independent of the actual interconnect used.

14

Chapter 3

Networks-on-Chip

Having established the behavior and requirements of on-chip systems in the area of com­

munication, it is now time to fully introduce the subject of Networks-on-Chip (NoC), as

well as the field of N oC design automation. The chapter starts with a brief introduction to

the concepts of NoCs, and their roots in parallel computing communication infrastructure.

Exarnples of proposed N oC architectures are presented to est ablish what direction the field

is taking, and to establish the types of features one would reasonably expect to find in such

systems. Finally, a review of automated NoC design is presented, which analyzes many of the

works proposed in this field , and identifies some underlying areas requiring further refining

and development.

3.1 Networks on Chip: An Introduction

As already specified in the introduction, the N oC concept has its roots in the field of parallel

computing communications. Dedicated communication elements are used to manage the

passing of messages such as data transfers of process synchronization flags between various

processing elements. In rnost such systen1s, each processing element consists of at least one

15

processor, dedicated memory and communication interface (router), and the messages are

addressed to other, similar components.

The core component of all such communication systems is the router, a dedicated com­

ponent that manages the communication aspects of the system. Many parallel systems,

especially when using distributed memory architectures, deploy one router per processing

node. Such a node has one dedicated interface to its own processing element, as well as

additional interfaces used to communicate with neighboring routers [18). In contrast to this,

other systems allow multiple processing elements to connect to a single router. In these sys­

teins, the router does not differentiate between connection to other routers and connections

to processing elements. To accommodate such designs , each processing element has its own

dedicated Network Interface (NI), which converts messages to a format appropriate for the

communication network [18).

Networks further distinguish themselves by the method in which information is transmit­

ted. Sent messages are converted into packets for transmission across the network. Circuit

switched networks then reserve a connection between the source and destination nodes , and

transmit the message packets once a path is set [18). On the contrary, packet switched net­

works send packets out as soon as they are formed, and rely on individual routers to direct

them to their destination [18). In addition, the way each packet is transferred through a

router can vary. Store-and-forward networks buffer an entire packet before sending it one,

while wormhole networks subdivide packets into smaller flow control units (flits) and deal

individually with these [18).

Finally, two other important parameters of a network are the topology of the network and

the routing strategy used by individual routers. These two aspects are presented together

because they are strongly dependant on each other. A network with a regular topology, where

the position of each node is exactly specified by its network ID , can use dedicated hardware

to determine the route of a component (see dimension ordered routing in two-dimensional

16

meshes). On the other hand, irregular networks often 1nake use of look-up tables to determine

how to forward a packet or a flit. So1ne networks rely on the source NI or router to determine

the path sequence and append it to the packets or flits being transmitted (know as source

routing), while other networks store look-up tables locally within each router, in the form of

memories. Finally, some networks implement adaptive routing strategies which monitor the

status of the network, and make routing decisions based on this as well as the destination of

a packet.

As the above discussion shows, many aspects characterize a given network design. Al­

though NoC systems are intra-chip infrastructures rather than inter-chip, they nonetheless

exhibit son1e of the characteristics listed above [5]. The following reviews will briefly de­

scribe some existing NoC designs, paying particular attention to their topology, switching

and routing method and intended structure. This will identify the potential design aspects

that have to be tackled by the design flows which will be reviewed in Section 3.

3.1.1 The XPipes NoC

The XPipes NoC system is presented by Bertozi and Benini as a collection of macros which

can be used to specify the communication infrastructure of a given SoC system [19]. The

XPipes NoC is a best-effort (BE) network, and uses wormhole switching to transfer data

across the system. Because of this, each router output has to buffer only a few flits, rather

than the entire packet (the XPipes system uses output buffering). To further reduce the size

of individual routers, the network uses source routing; each packet has routing information

appended to its header flit. The routing infonnation consists si1nply of a nurnerical indicator

of which output port the flit should be forwarded to (referred to as street sign routing).

To allow communication between various cores, the XPipes libraries contain Network

Interfaces and Link components in addition to switches. The Network Interface is responsible

17

for converting the transactions issued by the system cores into flits to be transferred by the

network. Most notably, the Nls contain look-up tables with the routes to various destinations.

The links themselves are designed to allow the network to be insensitive to wire latency. This

is accomplished by designing the links as a series of interconnected registers rather than

simple wires. This pipelining of the links allows fast clocks to be used in the network, at

the cost of increased cycle delay. The proposed network implements error control at the link

level, and allows the use of various error correcting or detecting codes. The error detection

in this case is used to determine if transmission errors occurred during the transfer process,

and if a flit has to be re-transmitted. A go-back-N retransmission policy is used in the case

where an error is detected, to allow for the fact that multiple flits may have been sent by

the time a transmission was detected.

Because the network components are specified as macros, they can be instantiated in

multiple ways, to suit a given application. The network is built to accommodate both regular

and irregular topologies, which allows a system designer more freedom. This is primarily

accomplished through each core's NI which stores the routes of transaction targets, and the

fact that the routing is look-up table based rather than being hard-wired in the switches.

3.1.2 The Aethereal NoC

Similar to XPipes, the AEthereal NoC is built to accommodate various topologies and con­

figurations [20]. However, unlike the XPipes network, the AEthereal syste1n combines both

best effort and Guaranteed Service (GS) support. The BE service assumes the form of a

wormhole-switched, input-buffered network using source routing, similar to that used by

XPipes. Guaranteed Service operation is provided via time-division multiplexing of virtual

circuits over the same physical link. This guarantees that no contention can occur in the

system, although bandwidth can be wasted in this way, if a given time-slot is reserved but no

18

data is available to forward. To alleviate this problem, each router combines capabilities for

both GS and BE operation. Best effort packets are forwarded in time-slots that are unused

by any of the GS connections.

The A ethereal N oC provides a programming model for programming the GS connections

into the slot-tables of each router. Such programming occurs when the nature of the ap­

plication changes, leading to new communication requirements that must be met. At this

time, different time-slot reservations would be made, based on the new communication re­

quirements between components. Two models are proposed by Goossens et al.: a distributed

programming model, as well as a centralized model. In the distributed model, GS circuits are

established using · set-up and t ear-down packets to reserve specific tirne-slots in each switch

in the path. This way, the cores themselves could control the existence of various circuits.

The centralized programming model makes use of a central control unit to program the slot

tables of all routers in the network; such a solution would primarily be used in small systems.

3.1.3 Regular Topology NoCs

While the above designs allow complete freedom in the selection of a network topology,

other works have been presented which target a specific topology for the network structure.

The CLICHE system, proposed by Kumar et al. targets two-dimensional mesh architectures

[21]. The proposed network is aimed primarily at distributed memory systems, where each

component consists of a processing element, local memory and a network interface to handle

packetization of the sent messages.

The SoCBUS interconnect also presents a mesh based topology, but the system employs a

hybrid of circuit and packet switching for its operation (22]. The system uses control packets

to reserve system resources and establish a connection; however , once the connection exists ,

circuit switching is used, which reduces the latency inherent in packet switched systems.

19

As with most other NoCs, a wrapper component is used to interface between the cores in

the system and the network itself. The wrapper also handles the circuit set-up phase of

the transaction process. Finally, routing is only required in the set-up phase, and simple

shortest-path routing is used.

The SPIN network on chip makes use of fat-tree topologies, targeting 4-child trees (23).

The network is worrnhole-switched, and rnakes use of 32 bit flits for cornrnunication. Messages

have no pre-set size, and can be any arbitrary length, terminated by a tail flit. Hardware

routing is used, with each router capable of implementing adaptive routing to alleviate

congestion in the system. The system makes use of wrapper components (acting as network

interfaces) which conform to the Virtual Component Interface (23) protocol to allow cores

to be connected to the network.

Finally, the Octagon N oC presented by Karim et al. proposes the use of a specialized

network based on ring networks with bisecting links [24). The Octagon is based on 8 nodes

arranged in a ring, but with the addition of diagonal links connecting each diametrically

opposite pair of nodes. This approach ensures that any pair of nodes in such a structure can

reach each other in a minimum of two hops. In the case of more than 8 nodes being present,

the system can be expanded by connecting multiple octagons topologies together. The

network supports either best effort, store and forward packet-switching, or circuit switching

operation. Routing in the packet switched mode of operation is based on network addresses,

and is hardwired into each router. Circuit switched operation relies on a central arbiter

to establish connections between components, and permits multiple connections to exist

provided they do not over lap.

20

3.1.4 The Asynchronous NoC: The MANGO Clock-less Network

As a response to the ever increasing problem of clock distribution in deep sub-micron envi­

ronments, the MANGO NoC is presented as an example of asynchronous design (25]. The

MANGO NoC employs clock-less operation, and relies on the Network Adapter compo­

nent to act as a boundary between the synchronous region where the core resides and the

asynchronous network. The Network Adapter conforms to the OCP protocol (13], and can

support any OCP compliant core. This approach allows various components in the system

to have different clock domains, and alleviates the problems of clock distribution networks.

The MANGO router supports both GS and BE operation, similar to the AEthereal

design. The best effort service is provided by means of wormhole switching, and source

routing is used. The guaranteed service is based on virtual circuits between source and

destination. The virtual connections are established through the use of a centralized System

Programming Unit, which uses the best effort router components to program the circuits in

the system. Both the BE and GS operation modes e1nploy virtual channels, allowing them

to multiplex connections onto one physical channel.

3.1.5 Commercial NoC Solutions: The Arteris Danube NoC Li­

brary

Finally, an example of a commercial NoC solution is presented to complete the list of po­

tential N oc systems. The system in question is the Danube component library offered by

Arteris Inc (26]. The Danube NoC library incorporates a number of parameterizable network

components, divided into two large categories: Network Interface Units (NIUs) and Packet

Transport Units (PTUs). As with all other networks, the interface units convert various

socket formats to a network-specific format. The Danube NIU can interface AHB [12], AXI

[14] and OCP [13] components to the underlying network.

21

The Library also contains network transport units of various types, which transmit in­

formation through the network. These transport units include switches which are used to

multiplex packets over physical links, various types of buffers for congestion alleviation, as

well as clock conversion units. These components allow a wide range of variation in gen­

erated networks. It is interesting to note that this proposed system incorporates request

and response networks for the connected components, both constructed from the available

NT Us.

3.2 NoC Design Research

The previous, section gives an overview of some of the design aspects that have to be consid­

ered when an NoC is selected for a given application. This section examines various proposed

methods for automatically, or semi-automatically generating NoC systems for given appli­

cations. Some of the research works analyzed were developed by the same research group,

and for this reason are presented here together.

3.2.1 XPipes-Related Design Methods

A series of design methodologies were developed in conjunction with the XPipes NoC. The

SUN MAP system, presented by M urali and DeMicheli has the aim of mapping a given

application onto various regular topologies [27). The application is represented by its core

graph [28), a data structure showing all the physical cores that compose an application and

their communication requirement, and it is mapped onto a topology graph [28). Topologies

are analyzed based on area, bandwidth, power consumption and average delay, and the best

topology is selected. Similarly, various routing strategies, including shortest path and split

path routing are analyzed to determine which yield the best throughput. Once a topology

is selected, the XPipes Compiler [29) is used to instantiate SystemC models of the given

22

network.

The SUNMAP method supports various topologies , including mesh, torus, clos and but­

terfly topologies ; as well , the topology library can be expanded to support other topologies.

The mapping process goes through three phases for any given topology. In the first phase, a

greedy algorithm is used to associate core graph vertices with topology graph vertices. The

core with the largest communication requirement is placed at the node with the most avail­

able links, and subsequent cores are placed according to their communication requirements

with the cores already selected. In the second phase, routes are generated for the various

communication requirements in the system. During this phase the bandwidth requirements

in the system are verified, by ensuring that the bandwidth of mapped communications on a

given link does not exceed that link 's maximum capacity. As well , power and area estimates

are obtained using power 1nodcls of the NoC cmnponents , and a built-in floor-planner. The

power models are based on the architecture of NoC components, and is obtained using the

ORION power modelling tool (27]. The final phase attempts to improve the results of the

first phase by swapping pairs of cores in the topology graph, and evaluating the new topology

as described in phase two.

To handle irregular topology generation, Murali et al. present a method for generating

irregular topology networks based on floor-plan information of the application (30]. The

proposed method has two primary design objectives, minimizing power, hop count or a

combination of the two. As well, it considers constraints such as wire-length, hop count,

power consumption and area. Once again, the core graph is used, although the edges of

the graph now consist of the information flow multiplied by their criticality. The proposed

method generates a topology graph for a given application, as well as setting the link width

and frequency of operation of the generated network. The algorithm itself iteratively selects

discreet frequency and link widths, and proceeds to build topologies based on the selected

parameters. Topologies vary between one which has all cores connected to a single switch,

23

and one where all cores are connected to separate switches. Cores are placed relative to each

other based on their bandwidth requirements, as specified by the core graph. All topologies

in the range are then rated according to power consumption, area, wire-length, and hop delay

(as with the SUNMAP method, device models are used to obtain area and power estimates).

Bandwidth constraints are treated the same as in the SUNMAP system; however, the link

capacity here is defined as: frequency_of _operation x link_width.

Although both proposed methods target aspects of embedded system design, by analyzing

power consumption and area of potential NoC designs, neither dedicates enough attention

to the information throughput requirements of on-chip systems. Both methods propose to

meet a core's throughput by ensuring that links on a communication path have an equal or

larger capacity. However, this analysis method does not take into account the transaction­

based communication methods of on-chip components, or the overhead present in converting

data for transmission through a network. The irregular topology methodology determines

link bandwidth based on link width and frequency, as described above; such an approach

ignores the delay present in the switch due to arbitration and forwarding, and is valid

only in situations with no contention. Neither method accounts for the fact that during a

transaction, as much as half of the information sent is not actual data but rather additional

information (address and side-band information [13]), which means that some of the available

bandwidth will be dedicated to information other than the core data in any transmission.

Both methods can attempt to minimize hop delay, but neither method sets hard constraints

on the actual time delay of a transaction. Finally, neither method explicitly considers the

effect of network interfaces, either on power, area or delay during topology generation.

24

3.2.2 Tile-Oriented Design Methods

Hu and Marculescu present a method of mapping applications to regular network topologies

based on their power consumption in [31]. The proposed method targets tile-based systems,

where each tile consists of a processing element and a router used for communication. The

authors make use of an energy-per-bit power model to determine the energy costs of the

various communication requirements, and propose a mapping algorithm to the underlying

topology which minimizes the over-all power in the system, while meeting the communica­

tion requirements of the on-chip cores. The bandwidth constraint is enforced by ensuring

that the volume of communications mapped to a given link does not exceed the link's max­

imum capabi'lity. The potential solution space of core to tile mappings is represented as

a tree structure, and a branch and bound algorithm is used to explore the solution space

intelligently.

The authors further expand their energy-aware mapping process in [32] by incorporating

scheduling into the mapping process, both of the tasks of a given application as well as the

communication of the application. Once again, a tile-based platform is targeted, consisting

of a processing element and a network router to manage communication. In addition, the

authors assume that support exists for the execution of multiple tasks per processing element,

and that communications can be initiated at specific times; these assumptions are based on

the existence of an operating system at each processing element. The proposed scheduling

method assigns tasks and communication slots to specific processing elements based on the

variance of a tasks execution time and power consumption for various elements. Once all

tasks are assigned, a repair process attempts to move tasks in the system so that the number

of missed deadlines is minimized.

Ogras and Marculescu present a method for generating hybrid network topologies, neither

totally irregular nor totally regular, in [33). The method adjusts 2D mesh topologies by

25

introducing long-range links into the system, in order to generate "small world" effects in

the system (a reduction in overall latency especially amongst far-off components). The

algorithm implementation takes as input a description of the application in the form of

communicating cores mapped to a mesh topology. Based on the frequency of communication

between components, switches in the system are selected as recipients of an additional long­

range link. The aim of the algorithm is to 1naximize the critical network load, defined as the

load at which the network enters a congested state. To determine this value, the algorithm

uses an analytical approximation method based on the communication frequency of cores

and the latency of contention-free packets. As well, because the addition of links changes

the topology of the system, the method also generates new routes for various packets so that

the system remains deadlock-free. The new route is based on x-y mesh routing and makes

use of the available long-range links when they do not generate cyclical dependencies in the

network.

Finally, Hu et al. propose a technique for sizing local buffers in on-chip routers with

the aim of improving performance under a given area budget [34]. The proposed approach

is, once again, aimed at tile-based system, assuming that all nodes consist of a processing

element and a dedicated router; as well, the work assumes that some local storage exists in

each processing node, in the form of a local memory, which is used to store packets before they

enter the network. A packed-switched system is assumed, rather than wormhole-switched;

this allows each packet to be treated as an atomic, independent entity during analysis. The

method works by starting with each channel having buffering space for one packet, then

proceeds to identify congested channels (which become potential bottle-necks) and increases

the available buffer space on these channels, until all available buffering space has been used.

To identify which buffers become bottle-necks, the entire system is modeled as a queue-based

model. Queue Theory is then used to determine those input buffers which become full, based

on the injection rate of packets specified by the application. The proposed Inethod is found

26

to yield the best results when non-uniform access patterns are present in an application.

All three 1nethods examined above target very specific tile-based architectures, similar

to those found in high-performance parallel computing. All three works seem to assume

a distributed memory architecture, although only the last work examined explicitly states

this to be the case. These assumptions limit the use of the proposed methods for on-chip

applications, since such architectures are rarely implemented due to cost and performance

constraints. In addition, none of the three works take into consideration the heterogenous

nature of on-chip components, except in the form of varying packet injection rates and

target destinations. This is particularly problematic in the case of [32), where the authors

assume all nodes in the system contain some form of operating system. Such an assumption

is acceptable for general processors or DSPs, but not for dedicated hardware units, DMA

units, I/0 controllers or memories. The diff'erent behaviors of possible embedded components

is not considered, and a message-passing application model seems to be assumed. Similar

to other analyzed works, the methods do not take into consideration the specific behavior

on on-chip systems, in particular the use of transaction-based communications. Finally, the

power models presented in [31, 32] are based on a power-per-bit analysis method. However,

the authors do not explicitly take into consideration the data overhead due to transactions

and the network itself.

3.2.3 Irregular Topologies Based on Optimization Methods

Sirnivasan et al. propose to solve the problem of NoC generation by treating it as a pure

optimization problem, and propose a design methodology based on Integer Linear Program­

ming [35]. The authors use a Communication Trace Graph to characterize their application

prior to the generation of a network on chip [36]; this data structure is similar to the core

graph mentioned in [27]. The proposed method has the primary aim of minimizing power

27

consumption, area and hop count between on-chip cores. These three parameters are in­

corporated into an objective function to be minimized. As with any optimization problem,

certain constraints are placed on the solution space, as dictated by the problem at hand. In

this case, the constraints consist of the bandwidth capabilities of input and output ports,

the total area of a proposed solution and the aspect ratio of a given solution. The NoC

generation engine incorporates power and area models of switches and links, and makes use

of a floor-planner to generate early area and power consurnption infonnation.

The proposed method works by arranging cores in a layout in such a way as to minimized

area, and places potential network switches on the boundaries of various components; each

component is the.n uniquely mapped to a specific router. From this first step, redundant

routers are el!minated. The remaining routers are connected amongst each other and to IP

cores such that the objective function is minimized and the constraints are met. Routes

are generated during the connection process, and the bandwidth constraints are verified by

ensuring that the sum of required bandwidths present on at a given port is less than or equal

to its bandwidth capability (a similar process was used in (27, 30]). Deadlock is avoided by

the introduction of Virtual Channels at a later stage in the design process. By using the

floor-planner, the proposed method can determine area estimates, as well as the length of

various links, and therefore, the power consumed in said links.

The authors also present an updated topology generation method which uses approxima­

tion methods to generate topologies (37]. As with the original method, the process consists

of two steps: a mapping stage and a connection stage. During the mapping stage routers

are placed at the four corners of a given core, and the core is mapped to one of the routers

on it's boundary. The aim of this stage is to minimize power consumption in routers, and

the connection between two routers is abstracted as a point-to-point link. The authors treat

the problem as a min-cut max-flow problem, and solve it by sub-division (the x-coordinate

location of routers is found first , then the y-location). The connection stage, during which

28

the topology is generated, is solved using Integer Linear Programming methods with integer

relaxation, which allows the authors to generate results which use, at most, twice as many

routers as the optimal solution. The authors show that the proposed method generates

close-to-optimal solutions in far less time than an exhaustive method [35].

Finally, Srinivasan and Chatha propose a method for generating topologies for guaranteed

throughput NoC Architectures referred to as SAGA [38]. Unlike their previous work, this

method makes use of a genetic algorithm to generate topologies, with each solution being

represented by a three-level hierarchy. The highest level in the hierarchy stores the number

of routers in a solution, the second level stores potential mapping of router ports to cores,

and the third level stores various communication traces for the cores in the system. In
I

addition, since the proposed method targets guaranteed throughput networks (such as those

seen in [20, 25]), a schedule of packets at each port in the system is generated; the Earliest

Deadline First method is used to create these schedules. Each communication requirement

between components is characterized by the number of flits sent, the period requirement in

clock cycles and the deadline in clock cycles. The NoC topology generator attempts to 1neet

these requirements through scheduling and topology selection.

Similar to [27, 30], the work presented here targets area and power consumption. How­

ever, once again, the throughput requirement is reduced to a bandwidth inequality which

ignores the overhead present in transaction-based communication and packetization prior to

transmission over the network, as well as the time overhead of multi-hop communication. As

well, the role of network interfaces is ignored (in terms of delay, area or power consumption);

the process of mapping cores to specific switches in [37] implies the assumption that switches

have special, dedicated ports for connections to cores, but this is never explicitly stated. In

addition, the authors make certain assumptions regarding regular topology networks, such

as the fact that mesh topologies must conform to grid placement during layout, which are

not necessarily true; a mesh topology is primarily characterized by its connectivity, and an

29

example of a mesh floor-plan that does not follow grid alignment is shown in [19]. Finally,

in the case of SAGA [38], communications between components are characterized by the

number of flits, their period and their deadline, in a manner similar to the description of

tasks requirements in a data flow graph. However, this approach does not address the fact

that the flits are associated with transactions; the deadline and period of transactions is

not considered in the presented work. As well, the authors do not discuss the effect that

scheduling has on the over-all transaction throughput of the connected cores.

3.2.4 Additional Research Projects

ASNoC

Xu et al. propose a design method for application-specific NoCs based on hierarchical net­

works of cornmunicating cornponents [39]. As opposed to design flows presented thus far ,

this system takes as input a behavioral specification of the target application (presented in

some high-level language such as SystemC or C), and an architectural description of the

computation nodes available in the system. The design flow then distributes the application

behavior onto the available computational units, and generates a distributed memory model,

which will then be converted to a distributed shared memory model. The design process

then goes through five stages. In the first, communication traces of the application are ob­

tained, either through simulation or from statistical models. Secondly, the NoC topology is

generated for the given communication pattern. Third, area estimates are obtained based

on library models of the NoC components (switches, network interfaces and links). In the

fourth step, a network simulator (OPNET) is used to simulate the proposed system and

obtain performance results of the given application (both network performance and appli­

cation performance). In the fifth and final step, power estimates are obtained based on a

library of power models of the components and the activity measurements obtained from the

30

simulator.

The topology generation process (stage two) takes as input the communication infor-

mation obtained from the first stage, in the form of a communication graph; the vertices

represent computation nodes, while the weighted edges represent communications of a given

volume between nodes (similar to a Core Graph [27]). The topology is generated using a

recursive process, which subdivides the graph into smaller graphs using k-way partitioning;

each sub-graph has an associated cost, based on the volume of local communication (where

both source and sink are in the same sub-graph) as well as inter-network communication (the

source and sink are in separate sub-graphs); the two types of communications are weighted by

their cost in cycles. The set of sub-graphs with the smallest associated cost is selected as the

final topology. At the same time, the individual memories used during the communication

trace extraction are merged into a dist~d shared memory.

Unlike previous works, the process proposed here does not use the bandwidth inequality

method discussed above in the design process. A topology is judged based on relative

improvement compared to others, but no hard requiren1ent is enforced during the generation

process. Having said that, the proposed method does attempt to minimize over-all latency

in the system by grouping components with large communication in the same sub-network.

In addition, the proposed design method models a given application in terms of con1putation

units with distributed memories; even after the memory space is merged, the architecture

is still distributed. As such, the design flow does not take into consideration low-level

interactions, such as a processor updating its cache from a memory unit somewhere in

the system. Finally, a macro-network simulator is used to estimate the performance of

a given solution; the simulator is augmented to permit it to more accurately handle on­

chip communication aspects. However, no mention is made of wether the simulator models

communication as being transaction-based (a low-level view of the communication process,

but appropriate for on-chip systems), or message based (a higher-level view of communication

31

often encountered in parallel computing systems, which are generally based on distributed

memory architectures).

Minimum-Contention NoCs

Ho and Pinkston propose a design method similar to that presented by Xu et al., in that

a given application is first analyzed to determine its access patterns, and a network is then

generated around these patterns [40]. The design flow assu1nes that all resources in the

system are processors communicating with each other, and that each processor is executing

one process only. Each processor has its own network interface, but multiple such interfaces

can connect to each switch. The authors present models for time and path conflicts of

messages present in the system. Time conflicts occur when messages content for the same

resource at the same point in time, while path conflicts occur when a message may use the

same resource as other messages. By ensuring that any potential conflict is either temporal

or path-based due to routing, but not both, contention-free communication can be achieved.

By keeping the number of messages that fall in both sets to a 1ninimum, minimum contention

in the system is achieved, with the absolute minimum being no contention.

The proposed design method begins with the analysis of a given application to determine

the sets of contention messages and the contention periods of such messages. The system

then proceeds to generate the network topology which includes the connection of processors

to switches and the number of links between various switches. The topology generation

process is iterative in nature, and begins by connecting all components to a central switch

(a cross-bar). The switch is then partitioned sequentially until design constraints (such

as maximum switch size) are met. At each stage in the process, the minimum number

of links between switches is found using a graph-coloring process combined with simulated

annealing for the placement of processors in the system. At all times, the aim of the system

is to arrange matters so that no contention occurs between messages. The proposed method

32

was compared to a fully-connected cross-bar, as well as mesh and torus topologies , using a

collection of scientific applications, and was found to perform better than almost all, thanks

to the elimination of most contention in the system.

The primary shortcoming of the proposed method is that it is applicable only to a small

set of systems consisting only of processing elements (such as chip multi-processors). As well,

message passing is assumed to be the fundamental method of communication, even when

shared memories are used; this eliminates some of the complexity present when transaction­

based communication takes place, and ignores the additional over-head of such methods.

Finally, the rnethod is t ested using scientific applications, cornrnonly encountered in the field

of parallel computing; however, such applications generally do not have hard requirements

placed on their completion time (and therefore on the performance of the network). In

contrast, many embedded on-chip applications, in particular in the field of multimedia and

networking, have strict throughput requirements of one sort or another (such as the number

of frames decoded and displayed per second, or the number of packets processed per second).

Binary Tree Hybrid NoC Designs

Jeang et al. present both a potential NoC platform as well as a design approach for said

platform in [41). The proposed NoC architecture is a hybrid design, incorporating both local

interconnects in the form of buses, cross-bars or multi-layer interconnects, as well as NoC

switches for communication amongst local networks. A binary tree is used as the NoC topol­

ogy, with each internal node being a switch and each leaf node being a local network. The

NoC implements a wormhole-switched architecture, using asynchronous messaging between

routers to transmit information. The switches themselves use a priority-based arbitration

method in the case of contention over an output channel.

The design method for the proposed interconnect starts by grouping cores together into

local networks; cores are grouped into such a network if their communications can be ar-

33

ranged to be temporally disjoint. Once this initial grouping is performed, a graph can

be constructed where each node represents a bus system and each edge represents a com­

munication requirement. The edge weights represent the communication ratio (similar to

volume requirements in a core graph) between two local networks, and are specified by the

user. Based on this graph structure, switches are generated and connected appropriately by

grouping the local networks with the largest communication ratios together.

The proposed method is novel in its attempts to leverage communication locality, but

does not enforce any hard requirements on achievable throughput or latency; as such, it may

not be well suited for applications with hard performance requirements. In addition, while

the authors presept detailed information on the implementation of the switch architecture,

they do not tiescribe the interfacing mechanism that converts bus data (or cross-bar) to

the format required by the network. More importantly, they do not describe the transition

process between the synchronous domain of the local network and the asynchronous domain

of the switches.

Other Approaches

Ascia et al. present a mapping procedure based on genetic algorithms, which can be used

to map the cores of an application onto a mesh architecture (42]. The proposed method

distinguishes itself from others in that the obtained results contain all mapping solutions

present in the pareto set (42] of a given application's solution space. In this way, the process

attempts to present the solutions that best balance various design goals (in the current

case power consumption and latency). The authors use a simulation engine to determine

the performance and power metrics of various mapping solutions. The genetic operations of

cross-over and mutation are altered for the given process, so that both operations attempt to

reduce latency and alleviate congestion in the system, while maintaining the random aspect

of these operations. The proposed methodology is compared to methods based on those

34

proposed in [28, 31], but adjusted to find pareto-optimal solutions.

Zhou et al. also propose a procedure for mapping application cores onto mesh topologies

using a genetic algorithm [43). However, unlike the previous method, in this case only average

latency is considered as a fitness function in the system. The authors use queue theory to

analytically compute the average delay of a given solution, based on the packet injection

rate at various nodes. The solutions themselves are represented as strings, and employ a

relational form, determining the relationship of cores in the topology.

Papadopoulos et al. present a method for the generation of optimum NoC systems which

operates on both the application being deployed and the NoC structure itself [44). The

method relies on the optimization of dynamic data types in the application, in an attempt

to tailor parameters such as memory accesses in the system. Once the optimization process

completes a set of pareto-optimal points are used to simulate the application in various

NoC implementations. The authors make use of an updated form of the NOSTRUM NoC

simulator [45), and consider various parameters such as topology, routing method and packet

length. The application is distributed in the form of threads onto the NoC topology, where

each node in the topology is a processing element with an associated switch.

As with previous methods examined here, however, the work proposed does not take into

consideration the specific communication method used by on-chip systems. In addition, the

method does not explicitly set any hard constraint on the perforn1ance aspects of a generated

mapping; the generated solutions attempt to balance performance with power consumption,

but in so doing may not meet the communication requirements of the targeted application.

3.3 Conclusion

The past chapter has introduced the NoC concept and some examples of its possible imple­

rnentation. These exarnples include regular and irregular topologies, best effort and guar·an-

35

teed bandwidth methods, and various forms of routing procedures. The chapter also includes

a review of automated design methods proposed for the field of NoC design. These methods

generally target topology generation or mapping of an application to a regular topology.

Many incorporate detailed models of power consumption and area, in an attempt to opti­

mize these parameters. However, an underlying feature of most design methods having been

proposed is the use of high-level communication models, as described in Section 2.3.2. Such

rnodels are adequate in the field of parallel cornputing and wide-area-networks, but are not

always appropriate in on-chip situations.

36

Chapter 4

Transaction-Oriented NoC Design

This chapter presents the actual design and analysis n1ethod being proposed, and its imple­

mentation. The chapter is divided into four sections, dealing with the actual objective of

the method being proposed, the over-all structure of the implemented program, the topol­

ogy generation process and the topology analysis process. The reason for so many sections

is that the system incorporates the topology analysis method into the topology generation

method, depending on the topology generation algorithm being used. This permits iterative

improvement of topologies based on predicted performance, but also makes the program

structure more complex.

4.1 Method Objectives

The main aim of the design and analysis methods being proposed is to generate application­

specific network topologies for N oC interconnects, and to determine at what operating fre­

quency the interconnect must run to actually meet the comn1unication requirements of the

application. Network analysis is included because no interconnect design can be complete

without it. A shared bus could be used in many cases to meet com1nunication require-

37

ments if it could operate at very high speeds compared to the cores it connects. Because

of this, the method described here attempts to generate a topology which will minimize the

recommended operating frequency of the interconnect. This generally leads to a reduction

in the power consumed by the circuit, as switching power is proportional to the switching

frequency. By attempting to reduce the recommended frequency, the method will also help

conform to physical limitations present in current on-chip manufacturing technologies.

In the current case, the term application-specific refers to the generated topology, rather

than other parameters that can be altered for specific applications, such as the link width of

the network, flow control or buffering methods. For a more detailed list of such parameters

one can consult a. number of other works [4, 5]. The proposed algorithm generates two types

of irregular topologies, both of which have the aim of minimizing latency between components

and utilizing a minimum number of network resources. The remainder of this sections covers

two important preliminary aspects which must be addressed before describing the actual

design and analysis method. Section 4.1.1 describes the supported network model; this is

the underlying structure that the topology generator assumes of the network. Therefore, the

proposed method should only be used for these types of networks. Secondly, Section 4.1.2

formally defines the input and output data structures of the method being implemented.

4.1.1 Supported Network Type

Given that many NoC systems have been proposed [4], it is important to establish what NoC

type the generator targets; the behavioral characteristics and permissible structures of the

topology will be dictated by the NoC type. The topology generator being proposed targets

best effort, packet switched NoC systems, using wormhole switching [4, 5]. Static, look­

up table based routing is assumed, with route tables embedded in the header flits of each

packet (source routing) [19, 20]. No virtual channel support is assumed, and deadlock-free

38

operation is ensured through the topology and route selection. These features are selected

as they reduce the complexity of the NoC component parts, as well as the area requirement

of components; in particular, wormhole switching and source-based routing ensure that the

switches in the system do not require large buffers or look-up tables. Selecting designs that

minimize complexity and area favors on-chip implementations [4, 19, 20].

On-chip components access the network using Network Interfaces (NI), which perform

transaction conversion into a format supported by the network (packetization). Separate

NI types exists for master and slave interfaces, and it is assumed that a component with

both master and slave capabilities will make use of two network interfaces. This makes the

network interfaces less complex, and can increase performance. Point-to-point connections

can be established between the Nis and switches, as well as two Nis of opposite type (master

and slave). This allows simple point-to-point links to be created even if the core interface

does not natively support this feature. A transaction is converted into a packet composed

of a fixed number of flits; currently, in the case of burst transfers, it is assumed that each

burst beat is converted to a separate packet.

The switches have the sole role of transferring data through the network. Each switch is

composed of a fixed number of ports, where each port consists of an input port and corre­

sponding output port. The point-to-point links between NoC components (switch-to-switch

as well as switch-to-NI) are composed of two unidirectional channels, which together make

up a link. Stop-Go flow control [5] is assumed on the links, as it is the simplest form of flow

control. Switches are assumed to be capable of perforn1ing arbitration and forwarding data

independently for every output port, meaning that each output port has its own dedicated

arbitration and forwarding unit. Round-robin arbitration is currently supported by the sys­

tem performance analyzer. The arbitration method impacts the perceived performance of

each core in the system. It is assumed that the implemented network will have one global

clock, although the cores connected to it need not share the sarne clock [14]. This specifica-

39

tion is important, as the analysis method will assume that only one clock is used throughput

all network devices, allowing for their synchronization.

4.1.2 Method Input and Output

Application-specific NoCs must be tailored to the characteristics of a particular application,

meaning that the application must be characterized in some way for the topology generator.

At the same time, not all aspects of an application are as important from the communica-

tion infrastructure point of view; only the communication characteristics of the application

matter. There are multiple ways of describing such communication characteristics, starting

with high level descriptions of a given application (such as a task graph). However, the
I

generated N oC must meet the communication characteristics of the actual components in

the system, as opposed to behavioral requirements of the algorithm. For this reason, the

Core Graph was introduced and used in NoC topology generation [27, 28]. The core graph is

a representation of all communicating components present in a given application, including

processors, dedicated hardware, memories, 1/0 controllers and others. The core graph is

formally defined as a graph structure C where:

• Each vertex vi E V represents an on-chip component interface (either master or slave).

Components with both master and slave interfaces are represented using two vertices.

• Each edge ei,j E E represents a communication requirement between interfaces i and

j (one of the interfaces is a master, while the other is a slave). The weight of each

edge, w(ei,j) represents the volume of information transferred between i and j, in bits

per millisecond. As well, each edge is characterized by the information payload per

transaction, information flow (read or write) and burst support.

The core graph represents each core by its communication interface. If a core can both

initiate and receive information, then it is assumed that it will have separate master and

40

slave interfaces. This process is common in most embedded systems, as most standard on­

chip interface protocols distinguish between master and slave interfaces [7, 13, 14]. The core

graph C of an application is provided to the topology generation and analysis program in

the form of an input file, and is then used by the program to generate a topology.

A second input file is used to specify the additional parameters of the network structure

being developed. Section 4.1.1 described the basic network parameters that are assumed

by the method; however, there are additional parameters that can be specified for such

networks:

• Number of flits per transaction.

• Arbitration delay of a switch.

• Forwarding delay of a switch.

• Packetization and de-packetization delay of a Nl.

• Maximum possible number of ports per switch.

These are implementation based parameters, and can vary from network to network, or even

from implementation to implementation of the same network [29].

Given a description of an application and specific details about the target network, the

desired output consists of a topology description and a specific clock frequency of operation

that allows the network to meet the application requirements. The network topology is

represented (both inside the program and as output) using a graph structure referred to as

a Topology Graph T, and formally defined as:

• Each vertex rk E R represents a resource item; the vertices are sub-divided into two

categories as follows:

41

- The set of network interfaces ik E I represent the network interfaces present in

the network. There is a one-to-one mapping between every interface in the core

graph and the set I.

- The set of switches sk E S used to connect the various network interfaces.

• Each edge lk 1,k2 E L represents a pair of unidirectional channels which form bidirec­

tional links between the network resources.

The topology graph distinguishes between switches and network interfaces. This allows a

topology to be represented more accurately, both in terms of its structure as well as its

performance. In dedicated, low-latency topologies the packetization and de-packetization

processes of network interfaces can account for a considerable fraction of the over-all delay,

and must therefore be taken into consideration.

Associated with every topology is a route record, which describes how data will move from

one component to another through the network. The record consists of a series of entries for

every master interface in the system, describing routes for all possible transaction targets of

the interface in question. Each entry consists of an enumeration of vertices from the topology

graph, starting with the switch directly connected to the current NI (corresponding to master

interface in the system) and ending with the NI of the destination core (or interface, if the

destination core has both master and slave interfaces).

4.2 General Program Structure

The proposed NoC design method creates a custom topology for a given application based

on performance parameters for that application. The analysis method being proposed is

incorporated into the topology generation process to provide feedback. This makes the

prograrn structure rnore cornplex than a sirnple two-stage irnplernentation where the first

42

stage generates the topology and the second analyzes it. In addition, two topology generation

algorithms are proposed. Both algorithms are heuristic in nature, and either one, in isolation,

may not always be effective for all encountered applications. For this reason, both methods

are available, and the user can select which type of topology to generate at the start of the

program. The differences in generated topologies , and the criteria for algorithm selection

will be discussed in more detail in Section 4.3.3.

Figure 4.1 shows a high-level flow diagram of the design and analysis process, which starts

with the user selecting the type of topology to be generated. The two topology types will be

described in further detail later. Once the topology type is selected the program proceeds

to its main processing stage, where the topologies are designed and analyzed. The design

process is based around two component steps: generation of a topology graph and analysis

of the graph. Depending on the topology type, this process may be repeated iteratively,

meaning that the topology graph can be generated based on an earlier version of that graph.

The same analysis method is used for both topology types, which is why it is discussed

separately. In fact, the analysis engine can be used in isolation to simply analyze any

proposed system, by supplying it with a core graph, associated topology graph and route

table. Once a topology is generated and analyzed, the resulting topology graph, operating

frequency and route tables are output to the user.

Figure 4.2 shows the structural implementation of the proposed method. The main com­

ponent of the program is the generator object, which incorporates core and topology graphs

which it operates on. The program also incorporates a set of requirement data structures,

which are constructed based on the core graph and used during topology generation. The

analysis engine is incorporated into the generator object as part of its method set, and oper­

ates on the topology graph and requirement data structures. As long as topology and route

information exists, along with a set of requirement structures (derived fro1n the core graph),

the analysis engine can bypass the topology generation algorithms and be used by itself.

43

Point-to-Point

I
I

User Selected I
I
I .---------'..___-----,
I
I
I

: L--.------l

I
I .---------'..___-----,

I
I
I
I L-----,----l
I
I
I

Figure 4.1: Main Program Flow

This allows the engine to be used either as a system analyzer or as a topology generator and

analyzer.

4.3 Topology Generation

The topology generation algorithms are designed to meet two goals: to create a physical

connection for all required communication paths, and to reduce the required frequency of

operation of the interconnect. The first requirement is simple to meet , while the second

requires some analysis , based on the information presented in Section 2.3.2. Equation 2.2

specifies a latency requiren1ent for all communications in a system, and Equation 2.1 specifies

its component parts. If a communication path has a high required throughput, it will have

a low associated latency requirement. The slave processing speed cannot be changed at this

point, so the only remaining improvement area is the transport latency of the interconnect

44

~ ¢ 1--+-+------lS D Req

Core Graph

~ Requirement
Structures

Topology Generation
and
Analysis

~
Topology Graph

it
:.::{}::::::::)

Topology
Route
Operating Frequency

Figure 4.2: Main Program Structure

itself. The passage of a transaction packet through the interconnect has an associated latency

in cycles, based on the implementation of the network and its topology. Topology plays a

part because each hop in the network will add additional latency to a packet. Based on the

architectural design of the network components, each transaction will have an associated

clock cycle latency, meaning that the forwarding of information in the network will take a

set number of clock cycles to complete. Given a latency in clock cycles, the associated time

unit latency is computed as follows:

1
Lattime = Latcyc · F

op
(4.1)

Above, Fop represents the interconnect operating frequency, Latcyc represents the clock cycle

latency of a transaction, and Lattime represents the time latency of a transaction, in seconds.

45

Given that Lattime has a fixed maximum above which communication requirements are no

longer met, the aim is to minimize this value. This can be done either by increasing Fop,

which cannot be done indefinitely (because of physical limitations such as delay and noise,

as well as added power consumption), or by reducing Latcyc·

The ideal situation would be to have minimum hops between all components; this is

the fully-connected crossbar. Reducing the number of hops is important because in an

on-chip network each hop has an associated processing delay, even in wormhole systems

that operate in a pipelined fashion. In such cases we are assured that all communication

paths have minimum latency, by introducing only 2 hops between source and destination.

However, such solutions can be come prohibitive in terms of area [4, 5]. A second approach

is, then, to identify the communicating components with the largest required throughput

and the smallest associated latency requirement, and attempt to minimize the Latcyc they

encounter. This allows the operating frequency of the interconnect to be reduced despite the

fact that some communication paths experience high latency, because the paths in question

do not have large throughput requirements and can operate with such latencies.

The two algorithms presented below attempt to do this in two different ways, by generat­

ing and operating on topology graphs. Both algorithms start by creating an initial topology

which is then adjusted to meet various requirements. However, as shall be seen, the initial

topology and adjust1nent methods differ for the two algorith1ns. Two algorithms are pro­

posed to account for variations in the application core graph. While it has been found that

in most instances the two generated topologies offer similar performance, there exist cases

where one approach is superior to the other.

Both algorithms start by simply providing physical connections for the required com­

munication paths, and then adjust the generated topology to improve selected connections

or meet specified requirements. Since both algorithms start with minimal topologies that

only provide a communication path they reduce the required number of network compo-

46

nents being used. While in a parallel computing environment such an approach would not

be beneficial , due to the communication characteristics of the components and the nature

of the applications, it is convenient for on-chip systems. Because of how communication

occurs in transaction-based on-chip systems (see Chapter 2.3.2), aggregated bandwidth is

not necessarily useful, as transactions are generally centralized to the slave interfaces in the

system. In such cases, having multiple paths to a destination will not really improve matters,

as transactions will still interfere with each other at the destination network interface (more

on this in Chapter 6).

4.3.1 Algor.ithm 1: Point-to-Point Oriented Topologies

The main steps of the point-to-point oriented algorithm are shown in Figure 4.3, and consist

of an initial topology generation phase followed by iterative steps which aim to improve

the system topology. At each iteration, the system is analyzed, and the required operating

frequency is derived; thus, the analysis process is invoked multiple times for this algorithm.

The algorithm is referred to as Point-to-Point Oriented because the initial topology resem­

bles a point-to-point communication infrastructure, with network components being used to

implement the underlying signaling and multiplexing of paths.

The initial topology is generated by closely following the structure of the core graph. A

three step process is followed, as described below:

1. For every master or slave interface in the core graph, insert one network interface in

the topology graph.

2. Add one switch for every vertex Vj in the core graph with more than one incident edge,

and connect the switch to the network interface ij corresponding to Vj·

3. Finally, connect the network interfaces amongst themselves or to various switches so

that the required communication paths are created.

47

Figure 4.3: Point-to-Point Oriented Algorithm

The above process implements point-to-point links amongst communicating interfaces using

NoC components. Switches are used to multiplex amongst multiple incoming links (hence

step two). The above process results in a topology consisting of network interfaces, with

switches present only where required for multiplexing; sources and destinations are separated

at most by three hops in the network. Each switch added in the initial steps has an associated

correspondence with a master or slave core in the core graph, which is stored in the topology

graph vertex object.

Once the initial topology is created, the iterative process attempts to reduce the cycle

latency of high throughput paths. This is done by merging switches in the system, so that

the hop count can be reduced. The switch pair to be merged is selected using the following

algorithm:

1. For every switch vertex in the topology graph compute the total aggregate traffic pass­

ing through it, in transactions per millisecond. Omit from this computation vertices

48

added during a partitioning process.

2. Select the switch with the highest aggregated traffic that corresponds to a master

vertex in the core graph. This will be the first merger target.

3. Find the switch that has the largest transaction traffic to the first merger pair. This

will be the second merger target.

4. Merge the two target switches.

The above process is shown in Figure 4.4 below, where two switches are merged to reduce

delay in the shown paths.

Figure 4.4: Example of a Switch Merger

Once the two switches are merged, a second structural change must be n1ade: if the re-

sulting switch exceeds the port limit, it will have to be partitioned into two smaller switches.

A possible way of avoiding this problem would be to merge only switches that are small.

However, by merging two switches and then partitioning the resulting switch again, it is pos-

sible to generate an improved topology, from a latency point of view, as will be described.

During the partitioning process, a new switch vertex is added to the topology graph, con­

nected to the switch that must be partitioned. Then, edges are transferred from the original

switch to the new switch until the port count requirernent is satisfied. If the original switch

49 PROPERTY OF
RYERSON UNIVERSITY LIBRARY

was extremely large, it will have to be partitioned into more than two switches. In this

case, more vertices are added to the topology graph, and edges are moved until the port

requirement is met. The selection of edges to move is important; moving the wrong edge

will invalidate the merger process. In addition, it isn't enough to select the edges with the

smallest traffic flowing through them, since this traffic , though small, may originate from a

core with large traffic requirements on other links. If a core has a high throughput require-

ment, it must experience small delays for all its transfers. Large delays to one transaction

destination, even if such transactions are rare, can lead to that master device not meeting

its throughput requirement. To avoid this situation, edges to move during partitioning are

selected as follow~:

1. For every link i connected to the switch to be partitioned, build a list Lnii of all

network interfaces directly or indirectly connected to it.

2. Find the biggest transaction requirement for every network interface in Lnii. Let the

largest of these values be Tworsti, associated with port i.

3. Select the port with the smallest value Tworsti and move this link to the new switch.

When the merger and partitioning processes are performed together, the result is to reduce

latency of select paths (those with high throughput requirements) at the expense of other

paths.

After the merger and partitioning steps are complete, the topology is analyzed, and the

new frequency of operation is determined. If the recommended operating frequency has

improved (i.e. is lower than previously) or remains the same after the above operations, the

changes are made permanent, and the new topology once again undergoes the process. By

allowing mergers that neither reduce nor increase the frequency of operation, the algorithm

can reduce the number of resources used by a topology. The cycle stops once a topology

50

change results in an increase in the frequency of operation, or when no more merger targets

can be found.

4.3.2 Algorithm 2: Partitioned Crossbar Topologies

The second algorithm is simpler in nature and operation than the first, and is based on the

observation that the fully-connected crossbar is an ideal interconnect from the point of view

of connection latency and connectivity, on-chip. However, as was stated previously, sys­

tems with multiple connected elements can require very large such topologies. The solution

adopted by this algorithm is to subdivide such crossbars, thus maintaining the beneficial

aspects for some of the connected cores. Given that the internal structure of NoC switches

often consists of a crossbar interconnect in addition to buffering and arbitration [4 , 5], a type

of cross-bar can be implemented using a network switch.

Unlike the previous algorithm, this one is not iterative. It consists of three stages, the

generation of an initial topology, the adjustment of said topology and its analysis. The initial

topology is generated by creating a network interface for every vertex in the core graph and

then connecting all interfaces to a central switch, thus achieving a fully connected cross-bar.

To meet the port number requirements, the partitioning procedure described for the point­

to-point algorithm is used to move certain connections to secondary switches, hence the name

partitioned crossbar. An example of the partitioning process is shown in Figure 4.5 below.

Finally, when the port number requirement is met, the resulting topology is analyzed, and

the results are presented to the user.

4.3.3 Topology Comparison

The partitioned crossbar algorithm may be considered less effective than the point-to-point

oriented algorithm, given that it does not rely on feed-back from the analysis engine to

51

Figure 4.5: Example of the Switch Partitioning Process

iteratively improve the topology. However, since the algorithm starts from the ideal case

and works its way backwards it can mitigate this problem, provided that the partitioning

algorithm works well. It will be shown that in most instances the topology generated this

way yields similar performance when compared to the point-to-point algorithm. One of the

main differences, apart from general structure, between the two algorithms is that the second

will generally use less switches than the first, but each switch will be larger. If more than

one switch is in use, all but one of the switches will have the maximum allowable number

of ports, since the algorithm only moves links that are in excess of the maximum permitted

port count.

The partitioned-crossbar algorithm is more suited to applications that exhibit highly

centralized communication patterns (a small number of components are transaction desti­

nations). In such situations, additional components are un-necessary, and the topologies

generated by this algorithm are ideal. As well, this algorithm is guaranteed to generate two­

dimensional topologies (in that links never overlap). In contrast, point-to-point topologies

are more suited to applications that contain large numbers of components, and distributed

communication patterns. applications that contain components with single connections (for

exarnple a pipeline with cornponents connected sequentially) will also benefit frorn point-to-

52

point topologies, because in these cases Nis can be connected directly without the use of

switches.

4.3.4 Complexity of the Algorithms

Having described the actual steps of the two topology generation algorithms, it is possible

to determine their complexity in relation to the system input. This section analyzes only

the steps described above, however; the complexity associated with the topology analysis

procedure is difficult to accurately derive, as it is based on a number of separate parameters

such as the core graph, topology graph and network requirements. The complexity analysis

presented here is, itself, based on multiple parameters. The two primary input parameters

are the number of vertices in the core graph, nv and the nu1nber of edges in the core graph,

ne. The third input parameter that must be considered is the maximum permissible port

count, nport·

Since the partitioned crossbar algorithm is the simpler of the two, it will be the first to

be analyzed. The algorithm is divided into two parts, the initial topology generation and

the adjustment process. During the topology generation process, one NI is added and one

link is made for every vertex in the core graph, which yields a complexity of O(nv)· The

partitioning stage consists of sequentially moving links from the central switch to added

switches. To select which link to remove, the partitioning algorithm described above must

be used. In the case of a central switch, this means parsing all Nis in the topology graph,

and yields an 0(n) complexity (this situation is a special case where all Nis are directly

connected to the central switch). This partitioning process will be executed nv- Npart times,

to account for the amount of links connected to the central switch in excess of the n1inimum

port requirement. Therefore, the final complexity is O((nv- nport) · nv)·

The Point-to-Point algorithm is more co1nplex in its structure. In addition, it relies on the

53

analysis engine for feedback. In the following analysis the analysis complexity is neglected, as

it would make any complexity estimation difficult, given that the complexity of the analysis

method is based both on the core graph as well as the topology graph and the communication

requirements of the original application (the actual weights of all edges in C). Taking the same

approach as before, the algorithm is divided into an initial topology generation phase and an

iterative improvement phase. The complexity of generating the initial topology is 0(2nv+ne),

based on the fact that a set of Nis and switches is created for every core (the worst-case

scenario), and a number of links equal to ne is generated. In the worst case situation, the

iterative merging and partitioning process occurs nv - 1 times, as all switches undergo the

merger procedurE;. The merger process itself has 0(3nv) complexity as all switches in the

topology are parsed at most three times during the process. Finally, the partitioning process

occurs, but this time the worst-case complexity of the process is O((nv- nport) · n2
), as each

connection to the current switch has to be expanded fully to determine the interface with

the largest communication requirement. The complete complexity of the iterative process

is, then, 0(3nv · (nv- 1) · (n; · (nv- nport))).

Table 4.1 below summarizes the complexities of the two algorithms. Because of the heuris­

tic nature of the proposed method, both algorithms should have polynomial time complexity.

However, the analysis method changes this to some extent. The partitioned crossbar method

does not directly rely on the analysis method and can be said to have polynomial complex-

ity in all situations. The point-to-point algorithm trades this characteristic for improved

topology generation.

Table 4.1: Algorithm Complexity
Algorithm I Initial Topology I Iterative Process

Point-to-Point 0(2nv + ne) 0(3nv · (nv - 1) · (n; · (nv - nport)))
Partitioned Crossbar O(nv) 0 ((nv - nport) . nv)

54

4.3.5 Route Generation

Because of the relative simplicity of the topologies generated by the two algorithms, route

generation is currently handled using a shortest path search algorithm through the topology

tree. The routes are built based on the links found in the core graph, which specifies what

communication paths exist in the system. The search process begins and ends with the

source and destination network interfaces of the two cores involved. The search expands out

from the source network interface, with all immediate neighbors added to a search list. Each

tirne a vertex in the topology graph is added to the search list, that vertex is flagged, so that

it cannot be added multiple times. The process continues to add vertices to the search list

until the destination vertex is found. Then a back-trace process is used to build the route

itself.

The primary limitation of the above method is that, if the topologies become complex,

the search process may not always find the minimum path. In addition , the route generator

does not explicitly verify that deadlock is avoided in the system. The only feature which it

incorporates to help against this situation is the fact that it does not allow vertices to be

added to the search table more than once. Rather, it relies on the underlying structure of the

generated networks to avoid deadlock situations (more on this in the next section). For this

reason, this form of route generation is tightly coupled to the topology generation algorithm,

and would not be appropriate in other situations. This is why, for regular topologies that

incorporate the potential for deadlock, more complex generation methods are used [27].

4.3.6 Deadlock-Free Characteristic

As with any network implementation, NoC systems can suffer from deadlock, livelock and

starvation. The proposed topology generation method is built to avoid such situations;

livelock is avoided by using only minimum-length paths, and starvation is elin1inated through

55

the use of round-robin arbitration on switch outputs [18]. This leaves deadlock as the

only risk that must be handled. The topology generation algorithms incorporate deadlock

avoidance in the structure of the generated topologies. The remainder of this section discusses

this feature.

The method used to analyze deadlock situations is through the use of the channel de­

pendency graph [18]. A sufficient condition for deadlock avoidance is to eliminate any cycles

in a network's channel dependency graph. Because it is simpler in nature, the partitioned

crossbar topology will be analyzed first, followed by the point-to-point topology. Since the

partitioned crossbar starts by connecting all component Nls to a central switch, this situation

should be analyzed first. All connections in a network are composed of two uni-directional
I

channels. It is assumed that a channel is composed of the output port driving it as well

as the actual connection wires. Figure 4.6 A shows a network consisting of 4 components

connected through a central switch. As can be seen, 8 channels exist in the network, be-

cause of the existence of two uni-directional channels in each link. Figure 4.6 B shows the

corresponding channel dependency graph of the system. As the figure shows, no cycles exist

in this graph, because half the channels are sources and the other half are sinks, and sink

channels cannot directly access any other channels (they can only insert data to the input

port they are connected to). Because send and receive channels are separated thus, the only

way to generate cycles in the channel dependency graph is to create cycles in the topology

graph.

The second stage of the algorithm partitions the central switch, if necessary, by moving

links from the central switch to a secondary switch connected to the central switch (as

described previously). This process is shown in Figure 4.7 A, where a 4-port switch is

partitioned. Figure 4. 7 B shows the resulting change in the dependency graph; the move

simply introduces an additional, intermediate channel between the source and destination

channel of any links that were moved to the adjacent switch. If the partitioning process is

56

A)

B)

Figure 4.6: Channel Dependence Graph Example

repeated further, then additional channels will be introduced, but the dependency relation

will not change. Another way of looking at this situation is to consider if the partitioning

process can introduce cycles in the topology graph; currently, it cannot.

Point-to-point topologies are more complex in structure. The initial topology is gener­

ated by following the structure of the core graph. If no cycles are present in the core graph,

by observation of the algorithm described in Section 4.3.1 it can be seen that the resulting

network topology will have no cycles. The iterative operations performed by the algorithn1

are mergers and partitions. The above section shows why partitions cannot introduce cycles

in the channel dependency graph. The merger process is essentially the revers of the parti­

tioning method, and does not lead to the creation of any cycles in the topology graph either,

which means it does not create cycles in the channel dependency graph.

There are situations, however, when core graphs can contain cycles. This happens when

a number of master components communicate with the same subset of slave components. In

such cases, the initial topology generated by the point-to-point algorithm can contain cycles,

which will not be eliminated by the merger or partitioning procedures. In this case, deadlock

57

A)

S2

B)

Figure 4. 7: Partitioning Effect on Channel Dependence

avoidance is provided by the route generation process, which ensures that, during a search,

each vertex in the topology graph can be added to the search list only once. This feature

eliminates the possibility of cycles emerging.

4.4 Topology Analysis

Depending on the algorithm used, the network must be analyzed a number of times to

determine its behavior. Because of this, the analysis method must strike a balance between

how accurate the used network models are and the time required to analyze a given system,

so that the overall process can complete in a reasonable time frame. In addition, because

multiple components can actively communicate in the network, the analysis method must

somehow incorporate this behavior. To address this problems, this section is divided into

two parts, one covering the theoretical aspects of analyzing and predicting the behavior of a

system, and the other describing the actual implementation of the proposed algorithm.

58

4.4.1 Theory

The topology generator creates a topology for a given application, which is itself described by

a core graph. The application can be thought of as a collection of components communicating

with each other. The communication patterns of the components are known at the outset,

and will not change during the lifetime of the application, a situation referred to as well­

behaved communication. The aim of the analysis method is to recommend an operating

frequency that will allow the network to meet communication requirements of the application.

In situations where only one master component generates transactions, such an analysis is

easy to perform, based on equation 4.1. It consists simply of finding the communication path

with the longest cycle latency, and ensuring that the associated time latency is less than the

maximum time latency, as specified by equation 2.2. The operating frequency can then be

computed based on equation 4.1 to yield a time latency small enough to meet the throughput

requirement , as specified by equation 2.2 (generally the actual time latency should be less

than the maximum permissible latency, to allow for processing delay in the slave).

The situation changes when more than one master interface exists in the system. Now

more than one device is injecting transactions into the network, which can interfere with each

other, through contention. The effect of contention will be to add latency to transactions ,

as they will have to share resources. Because purely digital networks are being considered,

modulation of two information streams on the same link is not possible in such cases. Two

types of contention areas exist in the over-all application: network contention and exit-point

contention. Network contention occurs inside network switches, as multiple transactions

attempt to use the same output port; hence the need for arbitration in the output ports.

End-point contention occurs when multiple transactions are aimed to the same target. At this

point, transactions will have to wait for one another to con1plete. Both this situations add

cycle delay to each transaction, from the point of view of a master component. To determine

59

• n represents the total number of entries in the current path.

The above cycle delay corresponds to the delay experienced for a one-way traversal of a

path. Equation 4.2 is based on the pipe-lined way in which flits traverse the network. Es­

sentially, the header flit will experience a set delay, based on the number of stages (switches)

in the path, and the arbitration delay at each stage. The rernaining flit s are forwarded au­

tomaticallyj and will arrive at the destination once per cycle after the first header. A single

write transaction would experience a delay of Llcyc + DP , where DP represents the slave pro­

cessing delay. In the case of a burst, each burst beat would experience the same delay and an

n-beat burst transfer would accomplish n payload transfers, so the per-transaction latency

remains the same. This assumption holds if burst beats are encoded into single packets.

In the case of read transfers and read bursts, the latency formula changes. During read

transactions, a request packet is first sent by the master device, and some time later a stream

of response packets is sent by the slave device back to the master, who is waiting for the

response [46]. For this instance, a per-transfer cycle latency (LRlcyc) is computed using the

following equation:

(Llcyc + (Dp + L2cyc) + (n- 1) ·Dint) LRlcyc = _ ____;:. __ ____;;_ __ __:._ ______ _
n

(4.3)

Where

• L2cyc represents the one-way cycle latency from the slave back to the master device.

• Dint represents the inter-transmission delay for burst response packets.

• n represents the number of burst beats.

In the above equation, the latencies of the request packet and all the response packets

are summed and the obtained lump latency is divided by the number of burst beats, to

obtain the per transfer latency. As the equation shows, bursts will yield smaller per-transfer

62

latencies. The above formula is composed of two components: the forward traversal time of

the request fiit, and the time taken for all responses to arrive. Since response packets travel

in a pipe-lined fashion, the first response packet will experience a return delay similar to

Tlcyc, (Tlcyc2 in the formula), and the remaining responses will arrive at set intervals after

the first , based on the network characteristics.

As mentioned previously, contention can degrade performance in two places in the net-

work: switch output ports and slave network interfaces. Specifically, contention in the system

will increase the values of Ds, the arbitration delay of a header flit, and Dp, the processing

delay of a target slave. To determine by how much, on average, these values will increase for

a given traffic pattern, one must determine the average number of transactions that can be
I

encountered at these two points in the system. Once that information is available, increased

latencies can be computed based on the behaviors of the network components.

To determine the extent that transactions would overlap, and therefore interfere with

one another during regular operation, the topology graph is converted into a collection of

simplified models that are then using for simulation. Each model consists of a list of token

generators and a token consumer. The token consumer corresponds to a switch output port,

while the token generators correspond to the input ports that access the output port, as

shown in Figure 4.8. The tokens represent transaction packets passing through the system.

Each token generator has an associated number of tokens that it must produce per unit

time (1 ms), which is based on the aggregated traffic volume that arrives at the input and

targets the current output port. Because of this, the same input port can appear in more

than one simplified model, as it may forward information to more than one output port. The

number of transactions per unit time, and therefore the number of tokens being generated,

is computed by dividing a required volume of information in a path per unit time by the

transaction data width. Because multiple transaction streams with different transaction

data-widths may pass through the same input and target the same output, the streams are

63

Input 1 X

Input 2 X

Input 3

Input 4

Output Time Slots - Out 1

t
Worst-Case
Overlap

X X

X X

Figure 4.9: Output Contention Example

• n represents the total number of input ports targeting the current output port, and

therefore the maximum number of potential overlapping transactions.

• Ntk represents the total number of time slots where k transactions overlapped.

• Slott represents the total number of slots.

• Latnom represents the nominal arbitration latency in cycles.

• Latt represents the traversal latency of a packet passing through a switch (arbitration

and forwarding delay).

The above equation specifies that the delay experienced by each transaction increases

proportionally with the number of transactions overlapping, and is the same for all transac-

tions. This is true in situations where round robin arbitration is used, since all transactions

will experience the same amount of delay in overlap situations. If some form of priority-based

arbitration were used, a set of equations would be used, one for each priority level. Finally, in

first-come-first-serve situations, the individual delay seen by each port would depend heavily

on its relative transaction throughput compared with the other contenting ports.

End-point contention at the network interfaces of slaves can be computed by observing

the number of overlapping transactions on the output ports immediately up-stream of the

66

network interface input. This equates to finding the contention level on switch output

ports connected directly to network interfaces. Given that a number x of transactions will

overlap at the last switch output before the interface, it is reasonable to assume that these

transactions will also interfere at the network interface, since they are all being forwarded

there. The processing delay DP experienced by any one transaction will be augmented by a

value Dcont, computed as follows:

(4.6)

Above, Ci represents the contention level at output i which is directly connected to the cur­

rent network ,interface, Lburst represents the worst case burst length of transactions arriving

at this destination and Dppk represents the processing and packing delay of a slave. This

value is used because in worst-case situations a transaction will have to wait for a burst

read transaction that has just started. The value of Ci is reduced by one to account for the

fact that the above analysis is conducted from the point of view of one of the overlapping

transactions, and the added delay should, therefore, be caused by the remaining transactions.

In the simplified models specified above, the nu1nber of distinct time-slots available at the

output port is based on the frequency of operation of the network. Subsequently, contention

in the system is based, partially, on the frequency of operation. However, contention analysis

is being used to determine a valid minimum frequency of operation for the proposed system.

This cyclical relationship between the frequency of operation and the contention in the system

means that it is not possible to start from one parameter and derive the other, especially if

the minimum frequency is desired.

Because of this, the analysis method follows the following approach: it selects a frequency

of operation which it fixes, and then determines the contention in the system. This process,

however, is repeated for a large number of frequency points, until the minin1um valid fre-

67

quency is found. A valid frequency is one where none of the latency requirements in any of

the paths are violated. The algorith1n starts from a fixed starting point and first finds a valid

frequency of operation. It then finds an invalid frequency of operation. Then, on the interval

defined by these two values, it performs an interval halving process, until the minimum valid

frequency is found. At each frequency point being considered, the contention analysis is

performed and the path latencies are verified for all connection paths in the syste1n.

4.5 Method Limitations

Having described the characteristics of the proposed topology generation and analysis method,

it is important to also establish the limitations of said method. Some of the above para­

graphs have hinted at certain limitations or areas of improvement, but this section aims to

formally list them. The first limitation, obvious from the title of the paper, is the fact that

the proposed method targets systems using transaction-based component interfaces. Both

the topology generation and analysis method are built with this underlying assumption

in mind, and would not be appropriate for stream-based architectures, for example. The

decision to target transaction-based components and protocols was made because a large

number of on-chip systems take this approach to their design. The second obvious limita­

tion comes from the supported network parameters. The current system supports best-effort

wormhole switched networks, which are being pursued for on-chip applications. However,

circuit-switched or time multiplexed networks also exist. The analysis method would have

to be altered before it could support such networks. As well, the method is not equipped to

handle adaptive systems, in particular adaptive routing procedures.

The third set of limitations are related specifically to the proposed topology generation

and analysis procedures. Currently, both topology generation algorithms support only sin­

gle links between network components, be they switches or Nls. Multiple links between

68

switches are not currently supported, although they could be useful in minimizing con­

tention, as shown in [40]. As well , the route generation method currently used , based on the

shortest path algorithm, would have to be updated to incorporate cycle prevention proce­

dures. Finally, only one of the proposed topology generation methods is guaranteed to be

two-dimensional in nature, that being the Partitioned Crossbar method. The Point-to-Point

algorithm follows the application core graph and can, in certain situations , have overlapping

links. This would make actual layout of such systems more complex, depending on the ap­

plication. As well , component performance is affected by the final layout of the proposed

topology, on-chip; the proposed method does not address lin1itations that can emerge due

to physical considerations. For example, the need for intermediate buffering on long links

to allow for high-speed network clocks, and the effect this can have on perfonnance is not

currently addressed.

4.6 Conclusion

The preceding chapter presents the actual structure of the topology generation algorithms, as

well as an analysis of their complexity and limitations. The algorithms are latency oriented,

and incorporate partitioning and n1erging procedures designed to benefit cornponents with

high transaction throughput requirements. The chapter then presents a method of analyzing

a generated topology that can incorporate the contention expected in a real system. A

specialized form of simulation is used, based on Petri Net representation of the switches

in the network. Individual models are analyzed in isolation and the computed contention

effects are , then , computed for complete paths in the system. This approach helps reduce

the analysis computation time.

69

Chapter 5

NoC Simulation Environment

The topology generation and analysis method being proposed in this document concerns

itself primarily with the attainable performance of a proposed network. Because of this,

some method of performance evaluation is needed. This chapter introduces a simulation

environment based on the SystemC transaction-level modelling language. The simulation

models are built to support a certain type of network and to allow parametrization of trans­

action generation and encoding. The chapter's three main sections will describe in detail

the supported network model, the parametrization options available in all models, and the

implementation of the models themselves, from a behavioral point of view.

5.1 Supported NoC System

As with large area networks, NoCs can have a wide range of characteristics. Before describing

how the simulation models were implemented, the targeted NoC model must be defined.

This section describes the supported features of the simulation models, including the packet

fonnat, switching methods employed and routing procedure used. These models were built

for simulation purposes, which means that some of their characteristics can be parameterized

71

from one simulation run to the next. The simulation environment supports a packet-based

best effort system using source routing and wormhole switching. The following subsections

will elaborate these aspects further.

The general structure of the supported NoCs has been presented in past works [19, 20] and

consists of on-chip components communicating with each other using the NoC infrastructure.

These components access the NoC system using Network Interfaces, which are dedicated logic

circuits meant to convert information from the format used by the on-chip components to a

format used by the network as shown in Figure 5.1. This process will be discussed in more

detail in the section discussing packet format. The presented models support the AMBA

AXI protocol [14} for on-chip component communication. This protocol was selected as it is
I

the latest iteration of the popular AMBA line of protocols, and unlike previous iterations it is

a dedicated point-to-point protocol, which hides infrastructure details from communicating

components. This features allows on-chip components to be simpler, and usable in different

designs as no pre-built support for a particular communication system (shared bus, cross-bar)

is required.

Packet Format

Amba AXI information is transferred in parallel, using information words of 8-1024 bytes.

Multiple such transfers can be grouped together in a burst transfer for more efficient com-

munication, but the atomic transfer size remains the same. One of the features of Networks-

on-Chip is the use of relatively narrow buses between individual components. This makes

actual routing of a chip layout easier and permits the components themselves to operate at

higher frequencies in some instances. Because of this, the primary aim of a network interface

is to serialize incoming information for transmission through the network. In addition, the

network interface n1ust take the support information associated with a transfer (address and

72

Transaction Source

SRC

SRci 14===~
i

SINK

Transaction Sink

I
I

,~---- ... ,

,f/1'- __
I ' I \

: SINK :
' .
' I ' ,

Figure 5.1: Structure of Intended Systems

side-band information) and transmit it along with the data itself.

Each packet is built around an information transfer, meaning that a single transactions

will result in a packet. Burst transfers of multiple beats will generate a packet for every

transfer generated. Write transactions are converted to information packets which are then

sent from the master interface to the slave interface through the network. Read transfers

consist of a request packet sent by the master interface, and a nun1ber of response packets

sent by the slave interface. The number of data packets and response packets for read and

write transfers corresponds to the number of burst beats for the transaction. Each packet

sent across the network contains the following information regarding the transaction being

performed:

• Transaction address.

73

• Transaction type.

• Additional sideband information.

Write packets and read response packets will also contain actual data.

Because wormhole routing is used, each packet is broken into smaller flow-control units

(flits) which are processed by the network. Flits are either of header type or body type.

Header flits encode the routing information needed to transfer information through the

network, while body flits contain the actual transaction information (address, data and

sideband information). Each flit has an associated ID number encoded into the flit's most

significant bits. Apart from this value, all other data encoding is variable, and can be

specified for a given system, along with the number of header and body flits.

Routing Method

The model implements static routing based on look-up tables, and assumes source routing [5].

This means that route information is encoded into packets and sent through the network.

This eliminates the need for storing route tables at each switch and reduces switch area.

However, this does increase the size of packets in the system, as well as the data overhead

per transaction. The route tables are stored within the network interfaces, as dedicated

read-only memories. Routes are selected based on the base address of the targeted devices.

The routing method used is referred to as "Street-Sign Routing" [19], as it essentially

consists of a series of directions. A route consists of a series of bit fields, each of which

identifies the output port in a switch to which the packet should be forwarded. The route

for each packet is encoded into the packet's header flit(s), along with a counter variable

which gets incremented at each switch. Figure 5.2 shows a 2-hop route, with the packet

being forwarded to port 2 at the first switch, and port 0 at the second switch. In each

switch, the output port to which the packet must be forwarded is decoded based on the

74

value of the counter field and the route table. As it passes through the switch, the counter

field is incremented, so that it points to the next bit field.

Hop 2: Port 0

Figure 5.2: Example of a 2-Hop Route

Switching Method

Wonnhole switching was first proposed in the field of parallel con1puting, as it could reduce

the buffering requirement at individual switches, and speed up throughput through the sys­

tem, by transferring flits in a pipelined fashion [18). These characteristics make wormhole

switching attractive for on-chip systems where area is at a premium [19, 20). As was men­

tioned above , packets are divided into flits, with son1e flits (the header) containing the route

information. This means that a switch can start arbitrating and forwarding part of a packet

as soon as the header flits have been received and the output port was decoded.

In the proposed si1nulation models, switches begin arbitration as soon as all header flits

have been received. Once arbitration completes, flits are forwarded to the output port and

out of the switch. At the same time, the path between the input port and output port is

locked until all flits of a packet have been forwarded. When this happens, the path is opened

and arbitration can begin again. To ensure that starvation does not occur in the system,

the switch models implement round-robin arbitration amongst the petitioning input ports.

75

5.2 Parametrization Options

To permit the implementation of a wide range of systems, the developed simulation models

were designed so that most aspects of packet design could be specified at run-time. The

behavior of the transaction generators (master interfaces) can, also, be controlled to cre­

ate various types of traffic. The following sections will give a detailed description of the

parametrization infrastructure present in the system models.

Access Patterns

The component i,nterface models are the traffic generators for the proposed system. They

generate transactions that are then transported to various destination interfaces. To allow for

the simulation of various systems, the traffic generators must be programmable so that they

generate transactions of various types (length, flow-type) to specific interfaces (identified

by their base address). This pairing of transaction type and transaction destination will

be referred to as a spatial access pattern form now on. In addition, the distribution of

transactions in time must also be controllable. The distribution of transactions in time will

be referred to as a temporal access pattern.

Both types of access patterns are specified to the master interface in the form of con­

figuration files. Spatial access patterns are presented as series of entries, with each entry

containing the following information:

• Transaction destination, in the form of a base address and NoC identifier.

• Transaction burst length.

• Transaction type (read, write or both).

• The distribution of read and write access, in the form of a percentage value.

76

• The over-all access rate to the current destination.

The over-all access rate refers to the fraction of all accesses generated by the interface that

should go to the current destination. The total access rates for all spatial access patterns

must add up to unity; if an interface generates transactions for only one destination, then

that destination will have an over-all access rate of 1.0.

Temporal access patterns are built on top of spatial access patterns. The complete list of

te1nporal access patterns specifies a pool of available transaction destinations that can then

be arranged in time. Two types of temporal arrangements are available: random Poisson

process transaction generation [47) and fully specified temporal patterns. Poisson temporal

patterns take the form of Poisson events, meaning that the inter-event time is a random

variable with a decaying exponential probability density function of the form:

Pr(T) = o:e-aT (5.1)

The inverse of the o: parameter specifies the generation rate, in transactions per cycle,

and a transaction destination is selected based on the over-all access rate defined above.

This process will be described in more detail in later sections.

Fully specified temporal patterns eliminate the random aspect of transaction generation.

Instead, the temporal arrangement of transactions is specified by the user. The patterns are

specified as a sequence of entries, as with spatial patterns. Each entry contains the following

information:

• Target spatial destination.

• Number of transactions to the current destination.

• Number of wait cycles before the next temporal pattern.

77

If a transaction generator is configured to generate temporal patterns, it will continuously

loop through all the entries in its list of t emporal patterns. Each entry specifies the desti-

nation and a number of transactions that are to go to that destination, followed by a wait

period, in cycles, before the next temporal pattern is invoked. Figure 5.3 shows a possible

arrangement of temporal patterns.

I
I I
I I ..----..

Target 1 - Target 2 Target 2 - Target 3
Wait Time Wait Time

Figure 5.3: Example Temporal Pattern

'fransaction Encoding and Route Tables

The second parametrization aspect of the models is the encoding of the transaction infor-

mation into packets. For any system, the number of header and body flits per packet can

be specified. Once this is done , information encoding structures specify to the system how

the route tables and transaction infonnation are encoded into the flits.

Encoding specifications are provided to the system using a set of data structures. Each

such structure specifies a flit location, a shift amount, and a bit-mask, and there is one such

structure for every piece of data to be encoded (such as address , flit ID , route information,

etc.). The flit location specifies which flit the data will be encoded into. The shift a1nount

specifies the actual bit location of the start of the data, and the bit-mask can be used to

isolate the current data. The following transaction information is encoded into every packet

sent through the network:

• Transaction source.

78

• Transaction destination.

• Transaction data.

• Transaction address.

• Transaction side-band information.

The route tables for each packet are encoded into the header flits of the packet. As described

earlier, the routes consist of a count variable and the actual port indicators for each hop in

a route. The count variable, as well as each port indicator entry have dedicated encoding

structures th{lt specify where each piece of data should go.

5.3 Simulator Models

Having described the supported network model, as well as the parametrization options that

are available within the environment, this section describes the actual implementation of the

traffic generators and sinks, network interfaces and switches. The main focus of the section

is in describing the operational behavior of these components, and how the parametrization

options described above are incorporated.

5.3.1 Traffic Generators and Sinks

The traffic generators (master components) periodically generate a transaction which is

passed to the network interface and transported to a slave component (traffic sink). The slave

components will either consume the incoming transactions (in the case of write transfers)

or generate a series of response packets (during read transactions). The traffic generator

behavior will be described first, followed by the sink behavior, which is less cornplex. Both

79

master and slave components incorporate AXI interfaces. Master components incorporate

AXI Master Interfaces, and slave components incorporate AXI Slave Interfaces.

All simulation models can be thought of as finite-state machines, each of which performs

some actions in each state. The state diagram of the traffic generators is shown in Figure

5.4. After the de-assertion of the reset signal, the master component goes into its main

generation state, where a read or write transaction is generated. The selection of the trans­

action parameters will be discussed in more detail later. The transaction is sent to the AXI

interface, and the master component goes into a wait state, until the AXI interface finishes

the transaction in question. At this point, depending on the type of temporal access patterns

that were selected, as well as the length of the last transaction, the master component will

either proceed to the generation state, or it will go into a second, self imposed wait state.

The wait period for the second wait state is specified by the a parameter discussed above.

Figure 5.4: Transaction Generator States

During the transaction generation state, the master component must specify a transaction

80

target, a transaction type (read or write), the burst length of the transaction and transaction

data in the case of write transfers. Because the simulation models are concerned with the

flow of transactions through the network rather than the actual content of the information,

random data is currently used as payload. The transaction target is selected based on the

list of spatial access patterns provided to the generator. The parameters of the transaction

are selected in the following order:

1. Transaction destination.

11. Transaction type.

111. Burst length.

In the case of Poisson process transactions, a uniform randon1 number generator is used to

create a random pointer value in the range of 0.0-1.0. This pointer value determines which

target is selected by observing what range it falls in. The ranges are constructed using

the over-all access-rate to each destination. In a situation where two possible targets exist

and are equally likely, the range (1.0, 0.5] will correspond to the first target, and the range

(0.5, 0.0] will correspond to the second target. Once the destination is selected, the other

parameters of the transaction (burst length, and type) are selected in a silnilar fashion,

from the parameters specified for the current access target. In the case of fully specified

temporal patterns, the destination selection process is eliminated by the specified pattern of

accesses. An index is used to sequentially target each destination specified by the temporal

patterns. In-between accesses to a particular target, the master component waits in the

generation state, but does not generate transactions until the wait tin1e between each target

is complete.

Contention in the network can lead to variations in the time a transaction takes to com­

plete. This, coupled with the fact that each generator blocks until a transaction con1pletes

81

before continuing its operation can alter the characteristics of Poisson process temporal pat­

terns. The over-all generation rate is based on the inter-transaction wait time as discussed

earlier. However, the wait time now fluctuates, due both to the random nature of the pro­

cess, and to the contention in the system. This means that the over-all generation rate of

master interface fluctuates. If the original rate is extremely high, an under-run situation will

occur, where less transactions are generated, since the inter-transaction time is increased.

The degree of the under-run effect is dictated by the arnount of traffic in the system, and the

resulting transaction delays. Conversely, master components with small over-all generation

rates can generate more transactions than originally specified (because of the variation in

the random inter-;-transaction wait time).

The traffic generator models attempt to minimize this variation in the effective over-all

generation rate, by continually keeping track of the time spent in the blocked mode (state

2 in the diagrams). In cases where the wait time is less than the average inter-transaction

time for a given over-all rate, the master component will generate an adjusted wait time,

based on the transaction rate and the time already spent blocked. In situations where the

blocking time exceeded the specified average wait time, the master component by-passes

the second wait state shown in Figure 5.4 and proceeds directly to the generation state,

in an attempt to "catch up" with the required generation rate. At the same time, each

traffic generator keeps a record of the number of transactions completed over a period of

time, and can compute the average generation rate over a time segment. This information is

used by the master components to ensure that the average generation rate is not exceeded;

if the measured generation rate exceeds the specified rate, transaction generation stops for

the remainder of the current time period. Figure 5.5 shows an example of how cores deal

with blocking delay. Core 1 has exceeded its inter-transaction time simply waiting for the

previous transaction to complete, so it immediately generates a new transaction. Core 2, on

the other hand, generates a wait time based on its over-all rate and the time spent waiting

82

in the blocked mode.

D Transaction

- WaiiState

core 11 I (rA~)
:· 1 • :

Inter· Transaction Time

! I II

Core 21 i Ii-i i~.-1 __ __J

I I .. •'
I t I

Inter-Transaction Time

Time

Figure 5.5: Adjusted Transaction Generation

Traffic sinks (slave devices) have a simpler role to play, as they must deal with already

existing transactions. When a transaction is received by a slave, it enters a busy state for a

period of cycles, which represents the processing delay of the slave; the delay parameter itself

can be specified for every slave before the beginning of simulation. When the processing delay

is finished, the slave has two options. In the case of write transactions, the slave returns to the

ready state, and waits for further transfers. During read transfers, the slave enters a response

stage, and generates response packets for the transaction; once this process completes, the

slave returns to the ready state.

5.3.2 Network Interfaces

Once transactions are generated by the master components, they must be converted to the

appropriate format before they can be transmitted over the network. This task is fulfilled

by the network interface modules in the system. Two types of interfaces exist: master and

slave network interfaces. They differ in their over-all behavior, as well as in the components

they incorporate. Master network interfaces incorporate an AXI slave interface, allowing

83

them to communicate with master components. The slave network interfaces incorporate

AXI master interfaces, which allow them to interface with system slave components.

The structure of a Master Network Interface is shown in Figure 5.6. The AXI Slave

interface is used to interface to the master component, the output block is used to construct

and send packets, and the input block receives response packets. Finally, the control unit

updates the state and control signals of all other components based on the current state of

the interface. Master network interfaces, in their quiescent mode, wait for transactions from

their AXI interfaces. When such a transaction is received, the network interface proceeds

to construct a network packet for every beat in the transaction. Data is encoded into each

flit using the method and data structures described in Section 5.2. The network interface

stores route records for all potential transaction targets for the current component. When

a transaction is received, the appropriate record is selected using the transaction address.

As soon as a flit is constructed, it is sent over the network so long as there is enough bufFer

space available in the downstream input port. Once a packet has been completed and sent,

the network interface either returns to its quiescent mode, or goes to a wait state, depending

on the transaction type. In the case of write transactions, the master network interface will

return to its quiescent mode and wait for the next beat in the transfer (if there is one). In

the case of read transactions, the network interface enters a wait state, until such time as its

input port signals it that a complete response packet has been received. This packet is then

forwarded to the AXI slave interface and further to the master component.

The structure of the slave network interface is similar to that of the master network

interface, but backwards, as it were. In its quiescent mode, the slave network interface waits

for packets to arrive from the network. Once a packet is received, the network interface will

decode it , and forward the transaction to its AXI master interface and further to the system

slave. If the received packet was a write transfer, the interface will then return to its quiescent

mode and wait for further packets from the network. In the case of a read transaction, the

84

To the AXI master AXI
Slave
Interface Output Generator

Network Interface
Input FIFO

To the network : :

Figure 5.6: Master Network Interface

network interface will forward the transaction information to the slave component, and will

then move to a transmission state. In this state, the interface can transmit the slave read

response as response packets. Write packets are forwarded to the component as soon as they

are received, even if they are part of a burst. This is done so that the network interface is

not blocked more than necessary for any one transfer. As well, this allows the network to

interleave multiple writes to the same slave component in time.

5.3.3 Interfacing Between the Core and NI: the AXI Protocol

The above subsections describe the traffic generator and sink models, as well as the network

interfaces used to access the network. The current subsection examines how the genera-

tors and sinks (essentially the actual components that make up the SoC) communicate with

the network interfaces. Any number of protocols could be used to interface on-chip com-

ponents, starting with dedicated protocols, designed specifically for one set of components.

However, such an approach reduces re-usability, which is why most computing systems use

standardized interfaces between components. In the area of on-chip systems, a number of

such standard protocols exist and were discussed in section 2. The latest implementation

of the AMBA protocols target point-to-point interconnects similar to the OCP, in the form

85

of the AMBA AXI interface [14]. This protocol was selected as the interface mechanism

between generators, sinks and network interfaces.

This section will not describe in-depth the operation of the AXI protocol; for such pur­

poses , there is ample documentation available [14]. Rather, this section describes how the

protocol was implemented for the current simulation environment. The AXI protocol speci­

fies the communication method between two entities, one of which is considered the master

or initiator, and the other the slave or responder. To transfer data, five channels are spec­

ified and used. Two address channels are used to transfer address infonnation as well as

transaction information between the master and slave. The two channels are the Read Ad­

dress Channel and The Write Address Channel. Each one carries the address for read or

write transactions, respectively, along with additional data such as the length of the burst,

caching description of the data and others. This information is referred to as the side-band

information. The AXI protocol specifies that the Read and Write Address channels can be

merged in certain circumstances; however, the simulation environment uses separate address

channels. The data on the address channels is written by the master interface, while the

slave uses only one signal for hand-shaking purposes. The master also controls the Write

Data channel , where data for a write transfer is written. The slave, on the other hand, writes

data to the Read Data channel, and to the Write Response channel. The channels, and their

drivers, are shown in Figure 5.7.

In the simulation environment, the Read and Write Data channels carry place-holder

variables, since the operation of the components is not modelled beyond their role as gener­

ators or sinks. The address information is obtained from the configuration files specified to

the traffic generators, and is used to specify which component is being targeted. However , no

offset values are added, again because of the high-level of the component models. In the case

of the side-band information, only the transaction type and burst length are encoded, while

the other fields are left blank. Finally, the AXI protocol specifies that write transfers rnust

86

AXI
Master
Interface

Channels

AXI
Slave
Interface

Figure 5.7: AXI Channel Arrangement

also contain a response stage, where the slave components acknowledges receiving the write

information correctly. However, in the interest of performance, the simulation environment

transfers responsibility for the response stage to the network interface rather than to the

slave device being targeted. This means that as soon as all the write information has been

received, the network interface drives the appropriate signals in the Write Response channel,

completing the transfer, from the traffic generator's point of view. The network essentially

assumes responsibility for the safe delivery of the write data to the destination. This allows

the traffic generators to proceed to a new transaction if needed, rather than wait for the

write response to travel back from the slave device across the network. Figure 5.8 shows

which fields are actually used inside the simulation environment during an AXI transfer.

Because currently the simulation environment encodes burst beats as single packets, it

is important to distinguish between the arrangement of a transfer at the source and at the

destination. In the case of write transfers, a transaction that has 4 burst beats at the source

will become a set of four 1-beat bursts at the destination, because the slave network interface

generates a write transfer as soon as a write packet is received. This approach is used to

allow multiple write transactions targeting the same device to be interleaved, even during

87

Time
< :. k IIUUUUlfUUlflllJlMfli\IliUUlfliUUU-lfUUUlflllHILIUUUli!JlHIUlfiJUUUU1JlflJUUUliUlllflfU1JlJU1111UlWUlMJUlfUUUlilfUlilfUUUlfl!UliliU1JlllflJUlilfUU1!11UUllUUlilllflflllflfUUU1J11U1JlJUlil!1Jlf\JlflJUU1JUlfl/lfUUll1J-UUUUlJlJlllJIJl
itYlf\ I Ji ;J~ f !·;.:~: O i ::;:;:1 : : :;:;:::;:;:::;;:;:=:;;::::;:;:::;:::;:;::;::;::::;:======================================
:t~ .~~ -EN .1:_ :~ ~: :. 0_1
\·:;.v~'l}l I t~ :i : ~!]

b.h'tzr.:F>.DY

'------' c_ ___ __, L_ __________ __..J '-------------' '----===---'-IL_

L--------~ ----~
l .. ·-···- ·············-·····-······- ... Jl :--! ································-·-·······-- .. fl
L __ __ n. __ - n. -.. ······-·-···············-·······---- ····--·-·-····n .. _n n n -................... n. ______ .. J
'--------'~~L-------'

:~~;~~:~6 3: 0 j ~~ ~- ;:;;:;::::::::::::;:;:;::===y;:;;;;:;:;::::::::;:::;::::::::====~:::'...::::::::'...'::::=-~==-~============~===

BR E!',DY

Figure 5.8: AXI Implementation Example

burst operation. Note that this approach would have to be further expanded in situations

where shared memory is used for information passing, to ensure that race conditions or out

of order information storage situations do not occur. A read transaction starts as a single

packet sent by the traffic generator, and the response consists of a number of packets equal to

the burst length of the transfer, generated by the slave network interface. The read response

packets look similar to write packets, but travel from slave back towards the master device.

5.3.4 Switches

The network switches are perhaps the simplest components, behaviorally; a high-level di-

agram of a 4-port switch is shown in Figure 5.9. Every switch consists of essentially two

component types, replicated and connected as many times as necessary to achieve the desired

number of ports. The two components are an input First-In-First-Out unit, with some de-

coding capabilities, and an output forwarding unit, with integrated arbitration. A complete

switch port is composed of an input FIFO and an associated output unit, as the figure shows.

Each output unit can receive information from three input units, excluding the input unit

associated with the current port. This means that a switch cannot, alone, return information

to a sender.

88

Figure 5.9: 4-Port Switch Diagram

The FIFO COJ?ponent of each port accepts incoming packet flits , and buffers them until

such time as they are forwarded by one of the output units. Each FIFO performs a decoding

operation on the flits that are at the front of the queue, to determine which output port

the current packet has to be forwarded to. Before run-time, each FIFO is configured with

details about the flit format. In particular, the number of header flits and the location of all

routing entries is specified. In this way, the FIFO can start polling the required output port

as soon as enough flits have been received to permit route decoding. A FIFO's depth can be

specified individually for each switch in a system, to determine how performance varies with

the buflering capacity of input ports. Each FIFO incorporates a counter which tracks the

number of flits currently buffered. Once a FIFO's capacity is reached, the FIFO control unit

will indicate to the up-stream output port that it is full, implementing a form of "stop-go"

flow control in each inter-switch link.

Each output unit must forward flits from the input FIFOs of the switch to the input

down-stream. The output block selects an input port from the pool of input ports actively

petitioning it by using a round-robin arbitration scheme. This ensures against starvation of

any one input, while at the same time keeping the block complexity down to a minimum.

Once an input is selected, the output block will forward the flits corning h·orn that input

89

for the duration of a packet. Once the final flit passes through the output block, the block

returns to its quiescent state, waiting for and arbitrating amongst input petitions. The state

diagram of the Output block is shown in Figure 5.10. To deal with the possibility of a

downstream FIFO being full, each output unit must be able to buffer one flit until such time

as the downstream FIFO circuit can accept it.

Check for petitioners
on every falling edge
of the clock. Last packet flit

has been forwarded .

Figure 5.10: Output Block State Diagram

5.4 Conclusion

The preceding section has presented the simulation environment developed and used for

the evaluation of the proposed design and analysis method. The simulation environment,

implemented as a collection of SystemC models, allows the specification of any topology

and a wide variety of encoding options for a given network structure. The traffic generators

developed for the environment are based on on-chip component behavior, and incorporate

actual signal-level implementations of the AMBA AXI protocol.

90

Chapter 6

Simulations and Results

In this section, a number of applications are used as tests for the proposed topology generator

and analyzer, in conjunction with the simulation environment. The aim of this section is to

examine how proposed topologies behave when compared with traditional regular topologies,

as well as determining the accuracy of the prediction algorithm that is being proposed.

Additional features will also be discussed where appropriate. The chapter begins with a

description of the applications that will be used for comparison purposes. The following

section presents simulation results aimed at comparing the generated topologies with regular

topologies. The section will begin with a description of the tests performed, followed by the

results obtained. A second results section analyzes the accuracy of the topology analysis

engine and the recommended operating frequency. The third results section lists execution

times for the topology generation and analysis procedure. A fourth section compares one

of the proposed topologies with an irregular topology proposed in past literature. Finally,

the last section examines the effect of using message-passing models with transaction-based

components. In the following section, all results are listed in the form of graphs. The same

information is available in tabular form in the Appendix.

91

6.1 Test Applications

This section presents the four applications used to test the proposed method. Each sub­

section presents the component structure and communication requirements of the applica­

tion, in the form of its core graph C. In addition, the communication characteristics of each

edge in the graph, such as the data-width and burst support are presented here, with reasons

for the selected parameters, where necessary.

MPEG4 Decoder

The first application is an MPEG4 decoder, first proposed by van der Tal and Jaspers [48].

This multimedia application exhibits large on-chip communication requirements, and makes

for an interesting test application for NoC systems. For this reason, it has been used in the

past as a potential application in NoC design examples [27]. The application core graph is

shown in Figure 6.1 [19]. The communication volumes shown are in MB/s, meaning that the

application has very large communication requirements (the Up Sampler, Core 6, exceeds

1500 MB/s). Because of this, it is assumed that cores 4 and 6 (rast and up-sampler units)

have data interfaces of 128 bits, and communicate using 16-beat bursts. All other master

components are assumed to have 32-bit data interfaces and communicate in 4-beat bursts,

except for the RISC processor, which uses 16-beat bursts. The memories are assumed to

have 128-bit interfaces, to achieve greater data throughput.

Multi-Window Display Application

The multi-window display (MWD) application is based on a companion chip designed for

high-performance television applications, and initially presented by Jaspers and de With [49].

As with the MPEG decoder, it has been used for NoC testing in the past [27]. The original

chip was designed to accornplish various operations rnore efficiently by using dedicated pro-

92

Figure 6.1: MEG4 Decoder Core Graph [19]

cessing elements; here the processing elements are connected using an NoC infrastructure.

The core graph for the MWD application is shown in Figure 6.2; as before, the information

volumes are in MB/s. Since all the application cores are dedicated to multimedia process­

ing, it is assumed that all cores have large, 128-bit data interfaces, and all communicate

using 4-beat burst transfers. Finally, most of the on-chip components have both master and

slave interfaces to permit the implementation of information pipelines. For this reason, the

core graph shows both master and slave interfaces for these cores, connected using a dotted

line. The application core graph was presented in [27], and has been updated to incorporate

master and slave interfaces.

Audio-Video Benchmark Application

The third test application is an audio-video benchmark presented by Hu et al. [34]. A core

graph was constructed based on the task flow presented, and is shown in Figure 6.3. All

information volumes are MB/s. Three additional memories were added to the application, to

permit communication between the DSP and processor components (components CMEM1,

CMEM2 and CMEM3). It is assumed that the ASIC components have dedicated 1naster

93

.... ~ ~
~~

Figure 6.2: MWD Application Core Graph

and slave interfaces (with the exception of ASICl, which needs no master interface). Given

that the application is multimedia-oriented, large data-widths are assumed for more efficient

communication. All master cores with the exception of the CPU and ASIC4 master interface

have 128-bit data-widths, and communicate using either 4 or 8 beat bursts. Because the

CPU and the ASIC4 master interface have the largest information volume requirements in

the core graph, they use 256-bit data-widths, and transmit data using 16-beat bursts.

Layer-3 Switch

The final application is theoretical in nature, designed specifically for testing the current

method. The application is a Layer-3 Switch, used specifically for backup operation of

multiple servers. The switch has 6 ports, each of which operates at 100 Mbit speeds. The

core graph of the application is shown in Figure 6.4, and consists of a general purpose

processor used for routing, six ethernet controllers used to connect to the physical interfaces,

94

Figure 6.3: AV Benchmark Core Graph

two Direct Memory Addressing (DMA) units to transfer infonnation between the various

ports, and one shared memory being used for storage. The DMA units have both master and

slave interfaces, allowing them both to be controlled by the processor and to independently

transfer data. The processor, memory, DMA master interfaces and ethernet controllers all

have 128 bit wide data ports, and support 16 beat bursts, because of the large data transfer

requirements. The DMA slave interfaces are 32 bits wide, given that they only accept control

data; for the same reason, the communication occurs in 1-beat bursts.

6.2 Topology Comparisons

The first set of tests was performed to compare the topologies generated by the proposed

rnethod with traditional topologies. The first three applications listed above were used for

95

Figure 6.4: Layer-3 Switch Core Graph

these tests. The core graph of each application was used to generate two types of topologies,

on based on each algorithm type. The following parameters were used for the supported

NoC systems:

• Packets are 8 flits long, with 2 header flits.

• Arbitration delay of 8 cycles.

• Packing delay of 8 cycles.

• Un-packing delay of 15 cycles.

• Maximum port count limited to 10 ports.

The latencies are based on RTL models of switches and Network Interfaces. The flit length

was selected to permit data widths of up to 256 bits to be encoded into one packet. Finally,

the maximum port count limit was based on limiting switch complexity. Because the focus of

96

the research in this case is on interconnect performance, the latencies of the slave components

were set to very low delays so that they do not affect the obtained results. It should be noted

that a real application would not always have such reduced delays in all its slave components.

Figures 6.5 and 6.6 show the obtained topologies for the MPEG4 Decoder, Figures 6. 7 and 6.8

show the MWD irregular topologies , and finally Figures 6.9 and 6.10 show the Audio-Video

Benchmark topologies. In the remainder of the results section Point-to-Point topologies will

be referred to as Custom 1 topologies, while Partitioned Crossbar topologies will be referred

to as Custom 2 topologies.

Figure 6.5: MPEG4 Decoder Custom
1 Topology

Figure 6.7: MWD Application Cus­
tom 1 Topology

97

Figure 6.6: MPEG4 Decoder Custom
2 Topology

Figure 6.8: MWD Application Cus­
tom 2 Topology

Figure 6.9: AV Benchmark Custom
1 Topology

Figure 6.10: AV Benchmark Custom
2 Topology

The comparison was performed with two traditional topologies: the mesh and fat tree.

The mesh was used for all three application, as it is has been proposed as a solution for

on-chip systems [50]. The fat tree topology was used for the MPEG4 Decoder and the

MWD Application, as an example of a performance-oriented regular topology; the topology

provides increased performance due to it's redundant links [23]. The existence of multiple

possible paths between sources and destination leads to reduced congestion in the system.

Figures 6.11 and 6.12 show the regular topologies for the MPEG4 Decoder, Figures 6.13 and

6.14 show the regular topologies for the MWD Application and finally Figure 6.15 shows the

AV Benchmark mesh topology. To map vertices in the core graph to locations in the regular

topologies, a method similar to that presented in [27] was used.

98

Figure 6.11: MPEG4 Decoder Mesh
Topology

Figure 6.13: MWD Application
Mesh Topology

Figure 6.12: MPEG4 Decoder Fat
Tree Topology

Figure 6.14: MWD Application Fat
Tree Topology

The simulation runs were performed over periods of 40 000 cycles. Different theoretical

frequencies of operation were assumed for the three applications used: the MPEG4 decoder

and AV Benchmark used a frequency of 1GHz, while the MWD Application used a 500MHz

frequency. These frequencies were selected based on the relative difference in communication

volumes between the three applications. The parametrization options of the simulation

models match the specifications listed above. In addition, the buffering capacity of each

switch input port was set to 8 flits , and the buffering capacity of each NI input was set to

20 flits.

99

Figure 6.15: AV Benchmark Mesh Topology

The main figure of interest in the comparison is the achieved performance, which, given

the characteristics of the communication protocols, is measured in total completed transac­

tions over the duration of the simulation. Figures 6.16, 6.17 and 6.18 all show the obtained

results for the sets of simulation runs. Each figure lists the initiating core on the x-axis,

and the number of transactions achieved on the y-axis. The figures show interesting results,

in that both the regular and irregular topologies demonstrate similar performance. There

is some variation between completed transactions at different cores, but never more than a

20% difference between the best and the worst performing topology. On the face of it, it

would seem there is no true difference between the two topology types.

To obtain a more complete picture, one has to look at the resource requirements of each

topology. Two resources are primarily used in each network, interfaces and switches. Given

that the number of cores in the system stays the same, the number of Nis in each topology

will remain the same. The switch number and size, however, varies from one system to the

next. Switches can be abstracted to two component types, the input FIFO and output block

(this abstraction is of a high level nature, as the review chapter shows that a large number

of support features can exist in the switch). Given that in the assumed network model

a complete port consists of an input and output sub-port, each connected to a FIFO and

100

MPEG4 Decoder Topology Comparison - 1 GHz MWD Application Topolog y Comparison - 500MHz
1400 r----.---.-.-----r-----r--,.------r-;:~~=::::;-]

- Mesh
1400 r-----,---.----,-----;-~--r--r---;:~~=::::;-J

i~f;~~;f 1200

1 1~

~ Ern
a;

lsoo
'-'

~ 400

z

200

0 '---- _M:lJ._ __..ll[fi_

3 4 5
Initiating Core

-Fat Tree
mEillillCustom 1
c=]Custom 2

1200

c:

~ mu

~ ffJJ
a;

!600
'-'
'o

~ 400

z

200

0- '--
3 4

Initiating Core

Figure 6.16: MPEG4 Decoder Trans­
action Results

Figure 6.17: MWD Application
Transaction Results

1ffJJ

. ~ 1600

~ 1400

~ 1200

~ 1~

~
'-' 800

~ 600

z 400

200

AV Benchmark Topology Comparison - 1 GHz

ll
0 1 2 3 4 5 6 7 8 9 10 11

Initiating Core

Figure 6.18: AV Benchmark Transaction Results

output block, respectively, a high level view of the resources of a topology can be obtained

by simply counting the number of switch ports in the system. Such an approach to area

estimation does not take into account the wiring complexity present in large switches, but

it does provide an indication of the relative resource use. Table 6.1 shows the total number

of switch ports for every topology and application.

In most cases, the irregular topologies require less than half the resources of the regular

ones. Another way of looking at this situation is that the irregular topologies trade away ag-

gregated bandwidth for increased area efficiency. However , the perfonnance of all topologies

101

Table 6.1: Application Resource Use
Topology I MESH FAT CUSTOM1 CUSTOM2 I

MPEG4 Decoder 46 44 22 14
MWD Application 59 47 13 17

AV Benchmark 87 - 67 25

is similar, which suggests that the increased aggregated bandwidth in the regular topologies

is not truly utilized. The one exception is the AV Benchmark, where the Partitioned Cross-

bar topology clearly performs less well than the Point-to-Point or Mesh topologies, both of

which use more network resources. Here, the added bandwidth associated with more ports

in the system is utilized, because the communication patterns are much less centralized than
I

in the case of the MPEG4 Decoder, for example.

An interesting point worth examining in more detail was the fact that, from a perfor-

mance point of view, the irregular topologies performed similarly to the regular ones, despite

minimizing the latency on their communication paths. A possible reason for this behavior is

the use of burst transactions which, as in traditional interconnects, attempt to distribute and

hide the transaction latency amongst multiple transfers. To determine if this is the case, a

special test was performed. The MPEG4 Decoder transaction patterns were altered so that

only Core 6 (the Up-Sampler) generated any transactions; all other generation rates were

set to zero. Three tests were performed, where the transaction burst length for Core 6 was

set to 1, 4 and 16 beats. The tests were performed using the Partitioned Crossbar topology

and the Mesh; the mesh has a minimum of three hops between any source and destination,

while the custom topology only has two, in the case of Core 6. Finally, to accentuate the

effect of additional hop delay, the arbitration latency was set to 20 cycles. Figure 6.19 shows

the attained number of transaction for the three burst settings, and Figure 6.20 shows the

worst-case latencies. The figure shows a clear performance increase for the custom topology

using 1-beat burst. However, the figure also shows that using longer bursts is beneficial frorn

102

a performance point of view, as the number of obtained transactions almost doubles when

going from 1 to 16 beats. Also, the performance difference drops off at higher burst settings,

showing that, indeed, the use of bursts can hide the latency in a network.

11~

~ BOO

1600
0

~ 400
z

200

Burst Test, 20 Cycles- Transactions

4
Burst Length

16

Figure 6.19: MPEG4 Decoder Burst
Test 1 - Transactions

3 60

0
(;; 40

~

Burst Test, 20 Cycles - Latency

4
Burst Length

16

Figure 6.20: MPEG4 Decoder Burst
Test 1 - Latency

Finally, the above test was repeated again, but this time the arbitration latency was set

to 8 cycles. Figure 6.21 and 6.22 show the obtained transactions and latencies for this case.

This time, the performance difference is less pronounced, even for 1-beat bursts. The reason

for this is that, as the arbitration latency decreases, the packing and de-packing latency

becomes more pronounced, and can dominate the overall latency in certain situations. In

such cases, the performance increase obtained fro1n using the application-specific topologies

will be negligible and the rnain benefit of the custorn topologies will be the decreased resource

use.

6.3 Predictor Accuracy

The analysis method proposed in this document must also be tested, to determine its char­

acteristics and limitations, especially given the fact that the prediction method used trades

some accuracy for performance. This results section determines if the predicted operating

103

2000

1500

HXXJ

500

Burst Test, 8 Cycles- Transactions

4
Burst Length

Figure 6.21: MPEG4 Decoder Burst
Test 2 - Transactions

Burst Test, 8 Cycles- Latenc y
70 r-----.--------.------;::::;::::::::::::;====il

4
Burst Length

16

Figure 6.22: MPEG4 Decoder Burst
Test 2- Latency

frequencies for the four applications allow the generated topologies to meet the specified
I

communication requirements. The first set of tests are performed using Poisson Transac-

tion generation, to determine the predictor accuracy in such situations; for these tests, the

MPEG4 Decoder, MWD Application and AV Benchmark are used. The second test is per-

forrned using the Layer-3 Switch, and fully specified t emporal patterns are used. This second

test is performed to determine how badly specific access patterns deviate from the uniform

injection model assumed in the analysis engine.

6.3.1 Poisson Transaction Patterns

The MPEG4 Decoder, MWD Application and AV Benchmark were used to test the accuracy

of the topology analyzer in the presence of Poisson traffic. For each application, the analysis

engine computed a specific recommended frequency of operation, based on the information

flow in the application and the specific network characteristics (such as arbitration, packing

and de-packing delays). The average generation rate of each core, 1/a was set so that

each core tries to generate a number of transactions over the length of the simulation run.

The total number of transactions is derived from the core graph, and the simulation time is

104

computed based on the number of simulation cycles and the specified frequency of operation.

Before actually examining the simulations a note must be made regarding the analysis

engine. The engine computes a theoretical frequency of operation recommended for proper

operation; this frequency may not be realistically feasible currently (due to technological

considerations). In such instances, an alternative solution would have to be found, which

would reduce the transaction latency further, or pursue much wider communication links, to

allow more information to be transmitted at the same time. The primary aim of this section is

to determine if the prediction method is accurate, rather than to make comments regarding

implementation feasibility. The situation described here only occurs in cases where very

large information. requirements (in excess of 1GByte/s) occurs in the specified application

core graph.

For the topologies presented in Section 6.2, the following NoC clock frequencies were

computed: 3438 MHz for the MPEG4 Decoder, 5 73.4MHz for the MWD Application and

2310 MHz for the AV Benchmark. Figures 6.23, 6.24 and 6.25 show the obtained number of

transactions over the duration of the simulation (40000 cycles, as before). In these figures,

however, the first data set corresponds to the required number of transactions. A core meets

its transaction requirement is it can complete this number of transactions.

MPEG4 Transacti on Resutts. 3.43 GHz
1600 r---,--,------,--.-----.---.------.--;::::::::::::~:::r==;-]

1

- Requ1red f
mBliil Custom 1

c
0

1400

1200

E 1000

~
~ 800

* l 600
(.)

400

200

c::J Custom 2

3 4
tnitiaMg Core

Figure 6.23: MPEG4 Decoder Anal­
ysis Accuracy Test

105

MWD Transaction Results. 573.4MHz
1400 r---,-----,----,-----,--,-----,-~:::;;::::::c::::::::;-]

- ReqUired

1200

g 1000

~
~ 800
~
1-
'0 * 600
~
8 400

200

3 4
lnitiatmg Core

~Custom1
c::J Custom 2

Figure 6.24: MWD Application
Analysis Accuracy Test

AVTransaction Resu~s . 2.31GHz
1400

,-Required ~
~Custom1
c:=J Custom 2 1200

1000

800

600

400

; ~ I -mill .41

200

0 1 2 3 4 5 6 7 8 9 10 11
Initiating Core

Figure 6.25: AV Benchmark Analysis Accuracy Test

In the above results, the worst case deviation is observed for Core 0 in the MPEG4

Decoder, where the achieved number of transactions is missed by 27%. In the remainder

of results, the requirements are met fully, or deviate by less than 20%. Only Cores 0, 6

and 8 of the MPEG4 Decoder and Core 3 of the MWD Application actually miss their

transaction requirements at all, out of a total of 29 cores. There a multiple possible reasons

for the observed deviation. One reason is the fact that transaction packets are modelled as

single units during analysis, while in reality each is a collection of flits. As well, the analysis

method analyzes switches in isolation and then sums the effects across a path, which may

neglect some of the more subtle effects present in the system, in particular where contention

is concerned. Finally, for each switch output, it is assumed that transactions are equally

likely to target any one of its time-slots, which may not be the case at all times (burst

transfers group packets temporally and can cause increased contention at certain points).

Nonetheless, these results show that the proposed analysis method can predict the behavior

of an application with some accuracy, and without an over-large expenditure of resources.

A worst-case deviation of 27% might be considered un-acceptable, were it not for two

facts. The fist is that this deviation is encountered in only one out of 29 cores. More

importantly, however, is the fact that the proposed method is a high-level system synthesis

106

tool. As such, any generated systems will have to be further refined before and during

actual implementation (layout). The frequency of operation of a component is affected by a

number of issues in the implementation stage, including the complexity of the implemented

logic circuitry (number of delay stages) as well as the length of wires in the system. Because

of all this, the analysis method proposed here is meant primarily as a first approximation

process which will then be further refined during physical implementation. Having said that,

it is, of course, beneficial to be as accurate as possible even at this stage, which is why these

tests were performed.

6.3.2 Specified Transaction Patterns

A second accuracy test was performed using the Layer-3 switch application. In this case,

the transaction ternporal patterns in the systern were fully specified, to rni1nic the behavior

that would occur in real systems. The same parameters were used when generating the

Layer-3 Switch topology as were used for the other three applications. Figure 6.26 shows

the generated topology. Only one topology is shown because, interestingly, both algorithms

generated the same final network; such situations can occur, depending on the application

core graph.

Figure 6.26: Layer-3 Switch Custom Topology

In this test, the patterns were specified completely. Figure 6.27 shows the patterns for

107

the three traffic generators, Cores 0, 1 and 2 (the CPU, DMA1 master interface and DMA2

Master interface, respectively). Note that the figure is not drawn to scale, but rather is

meant to give a graphical representation of the patterns. For each transaction generator,

the pattern shown is repeated continuously for the duration of the simulation run, with the

specified wait interval between each activity phase. Each rectangular segment specifies an

acces; the first nu1nber specifies the destination core, the second the burst length, and the

letter specifies (r)ead or (w)rite transactions. The patterns shown are rneant to represent a

specific type of operation in the switch, a backup process over the network. Five of the six

ports in the system are receiving 100 MBit/s streams of information headed for the sixth

port. Periodical~y, the Processor sends control information to the DMA slave interfaces.

As well, the processor perforrns 1nonitoring operations, which generate traffic to the syst ern

memory.

2700
CPU I 4:1w II s :1w 113:16rtw I ·•~---------~••

2000
DMA1_M I 6:16r II 3:16w II 7:16r II 3:16w II s :16r II 3:16w 1•----------•

,..--.., r-----. ---..... -------.... -------......... - ---......... - 200 DMA2_M I 9:16r II 3:16w II 1o:16r II 3:16w II 3:16r ll11 :16w II 3:16r ll11 :16w II 3:16r ll11:16w 1 ...

Time

Figure 6.27: Layer-3 Switch Transaction Pattern

The simulation was, once again, performed over 40000 cycles. The predicted frequency

of operation for this system was 229 MHz. Figure 6.28 shows the obtained results. As

before, the first data set corresponds with the required number of operations, and the second

corresponds to the actual obtained results. The figure shows that even when using specific

injection patterns, rather than Poisson Event modelling, the predicted frequency of operation

is still valid. The worst-case deviation observed is less than 5% in Core 3. Once again,

the sarne reasons listed for the first set of accuracy t est s can account for the discrepancy

108

between the required and actually completed numbers of transactions. These results show

that specific patterns of traffic injection tend to be distorted by the network, to the point

that they approach a more uniform temporal distribution. This eflect can be attributed to

the delay present in the various network components, as well as the interference from other

transactions.

~2000

~
;:_ 1500

Layer-3 Switch Test , 229 MHz

1
Initiating Core

Figure 6.28: Layer-3 Switch Accuracy Test

6.4 Program Execution Time

Section 4.3.4 discusses the complexity of the two topology generation algorithms. However,

the complexity of the topology analysis process was not analyzed, as it depends on a large

number of parameters, both in the system input as well as derived data structures (most

specifically the topology graph). This section attempts to mitigate this omission by pre-

senting the execution time of the topology generation and analysis process. The program

was run on a computer with a 2.4 GHz dual-core processor and 2GB or RAM , running the

RedHat Fedora operating system. Table 6.2 below lists the execution times of generating

and analyzing topologies for all applications described above.

The first thing worth noting is that none of the topologies took rnore than a rninute

109

Table 6.2: Program Execution Time
Application I Custom 1 I Custom 2 I

MPEG4 Decoder 22.817s 7.066s
MWD Application 12.089s 2.016s

AV Benchmark 35.606s 8.165s
Layer-3 Switch 4.484s 0.932s

to be generated and analyzed. In addition, and not unexpectedly, the partitioned crossbar

topologies are generated quicker than the point-to-point topologies. The values are consis-

tent, in that the applications with small communication requirements take less time to be

analyzed than those with high requirements; this result is due in large part to the token-

based simulation method employed in the analysis method. The point-to-point topologies

further support the supposition that the complexity of the analysis method is based in part

on the communication requirement of an application. However, these execution times also

incorporate the iterative nature of the point-to-point algorithm. Nonetheless, the worst-case

analysis and generation time was less than 40s, meaning that for a given application both

topology types can be obtained in a very short time.

6.5 Topology Comparison

This section very briefly compares a topology generated by the proposed method with a

topology generated in a method similar to that of [35]. The topology in question is listed

in [36] and is for the MPEG4 Decoder already described above. Figure 6.29 lists the two

topologies: a) represents the topology proposed here, based on the partitioned-crossbar

method, and b) represents the topology presented in [36].

Before any analysis, it should be noted that the above diagram simply lists the connec-

tions mnong devices. It does not take into consideration their physical layout of the final

110

(a)

(b)

Figure 6.29: Topology Comparison: (a) Partitioned Crossbar Topology; (b) Topology Gen­
erated by Srinivasan et al. Method [36]

design. The first thing to note is t he fact that the topologies are quite similar in structure,

but that topology of Fig. 6.29(b) has three additional, 2-port switches. This is due to the

fact that the method proposed by Srinivasan et al. begins with an approximation of the

physical layout of the components, and adds switches to all corners of the component [36].

A subset of these switches is then used to connect the components, according to the applica-

tion core graph. While these switches add latency to those communication paths, they also

allow for higher operating clock frequencies in the NoC by eli1ninating long lines.

The second thing worth noting is the arrangement of the various components around the

two large switches. For our partitioned crossbar topology of Fig. 6.29(a), cores 6, 9 and 11

are grouped around the same switch, since core 6 has the highest communication requirement

in the system, with cores 9 and 11. Similarly, core 7 communicate only with cores 9 and

11 and is therefore also connected to the same switch. Finally, cores 0 and 8 have a large

communication requirement to core 11, which is why it is connected to the same switch. It

should be noted that none of the traffic originating at any of these master cores (0 , 6, 7

and 8) has to travel more than two hops. The remaining cores are connected to the second

111

network switch, as they all have reduced communication needs compared to the above cores.

In contrast , in Fig. 6.29(b) the cores are grouped based on layout first , meaning that their

relative size and arrangement will dictate the topology. In this case, transactions from core

6 will have to undergo increased clock latencies when addressed to core 11 , which can lead to

decreased performance. In addition, the topology of Fig. 6.29(a) incorporates considerations

of the data width and burst behavior of the cores, which is why core 0 is connected to switch

0, rather than core 4. Core 4 has larger requirements to core 9, but also uses larger data

transfers (data-width), meaning that fewer transactions are issued over-all. In contrast, the

method presented in [36] can lead to better performance at the fabrication phase, by allowing

higher network clock frequencies to be achieved. Nonetheless , the transaction-based nature

of the cornponents in question , as well as the data flow characteristics will still have to be

addressed. This discussion demonstrates the difficulty in making such design decisions. Both

topology generation methods have strengths and weaknesses , in that the topologies proposed

in this paper do not consider the final layout of the system, while the method proposed in

[36] does not take into full consideration the communication characteristics of the cores

and concentrates primarily on power and area issues. A fully integrated top-down design

approach would first address performance requirements at a higher design level (component

level) and then follow-up with further refinements at the final , physical level.

6.6 Message Passing Communication Model in Trans­

action Based Environments

This final section examines some of the problems that can occur when communication ab­

stractions are used inappropriately. Specifically, this final test looks at the effects of using

message passing communication models in situations where transaction-based protocols are

112

used (many embedded systems fall in this category). The MPEG4 Decoder was used as the

basis for this test, mapped to the partitioned crossbar topology. The experiment consist of

using the exact same simulation setup as that seen in Section 6.2, but using an operating

frequency computed based on traditional methods used in parallel computing and large area

networks. Specifically, the network must operate at such a speed that each component is

capable of transmitting the worst case information volume in the application. In the case

of the MPEG4 Decoder, using the partitioned crossbar topology, the worst case situation

occurs at the output connected to the SDRAM unit (Core 9). This output must be able

to accommodate an information volume of 1800 MB/s. The majority of this volume (1500

MB/s) is transmitted using 128-bit transfers, so this flow is converted to a number of 128-bit

transfers, where each transfer is assumed to take 20 cycles to process; the simulation models

used actually takes only 16 cycles per transaction, but the network will be over-designed in

this case.

Figure 6.30 shows the obtained simulation results at the required operating frequency,

2360 MHz. This Frequency was obtained by multiplying the number of transfers that each

output port must be able to forward by the latency of each such transfer. The results show

that this frequency of operation is inadequate for the largest transaction generators, because

the employed model is appropriate for write operations only. The added latency of read

operations is neglected when computing a frequency of operation this way. In total, 5 out

of the 9 traffic generators miss their communication requirement. Interestingly, the opposite

may also happen, where this method of analysis will yield an operating frequency higher

than what is actually required. In the case of the MWD Application, the described analysis

method would yield an operating frequency of 630 MHz. However, Section 6.3 shows that,

using 573 MHz, the obtained performance is within 3% of the requirement. In such situations,

the fact that transactions do not necessarily overlap in time means that the frequency of

operation can be reduced and the system requirements will still be met.

113

2500

1500

HDJ

500

~

MPEG4 Decoder, 2360MHz

4
Initiating Core

~-Required I
c=:::J Custom 2

Figure 6.30: MPEG4 Decoder Traditional Design Results

6. 7 Conclusion

The simulation and results chapter of a thesis is perhaps the most important part of any such

document as it validates the methods being proposed therein. The results presented here

address both the comparative performance of the proposed method in relation to traditional

regular topologies, as well as the accuracy of the analysis method being used to determine

the maximum operating frequency. The presented results show that the proposed method

can provide equal or better performance when compared with regular topologies, depending

on the communication specifications, while at the same time utilizing less resources. As well,

the analysis method is capable of predicting the required frequency of operation to within

27% (in the worst case) despite requiring little computation time.

114

Chapter 7

Thesis Conclusion

I

The preceding document has addressed the issue of Network-on-Chip topology generation

and analysis in transaction-oriented environments. The main motivation and contribution of

the document is the analysis of on-chip communication protocols, and the generation of viable

NoC topologies for such systems. The thesis defines formal criteria for meeting throughput

requirements in transaction-oriented systems, and presents two methods of topology gener-

ation that cater specifically to transaction-oriented systems. In addition, a predictive form

of network analysis is presented, aimed at estimating the required clock frequency of a given

network. Such an estimation is required, since the operating frequency of the interconnect

is one of its main operational characteristics, and determines what performance the network

can provide.

The experiments conducted to test the method show that the generated topologies can

provide equal or better performance when compared with traditional regular topologies, while

using, on average, half the network resources of their regular counterparts. Additionally, the

predictive analysis method was able to predict the required frequency of operation with

a fair degree of accuracy, with performance deviations in individual cores not exceeding

27% in the worst case, and staying below 5% in rnost cases. Used as a first approxirnation

115

method for initial frequency estimation, the obtained accuracy is considered adequate. This

is particularly true when one considers that the topology generation and analysis results are

obtained in less than one minute of processing time.

The proposed methods are primarily high-level synthesis solutions, meaning that before

they can be used, more work needs to be done at the physical implementation level. This

includes the generation of physical layouts (generally based on standard-cell synthesis), anal­

ysis of layout constraints and verification of physical parasitical effects. Tools already exist

to address these problems, and, in the future, can be further integrated with high-level anal­

ysis and synthesis methods, like those proposed here. For this reason, the primary areas

of expansion for the proposed method would be integration with logic design tool-chains to

allow automated generation of chip layouts. In addition, the topology generation process

could be further expanded with the incorporation of more elaborate heuristic methods, or

the augmentation of the current design process with some random search procedures which

may further improve the generated results.

Publications

The work presented here has been accepted for publication as a Regular Paper in the IEEE

Transactions on VLSI Systems, 2008.

116

Chapter 8

Appendix

This section lists all the data presented in Chapter 6 in tabular format. All listed values

represent Completed transactions except where stated otherwise.

Table 8.1: MPEG4 Decoder Transaction Results- Topology Comparison- 1GHz
I Core I Mesh I Fat Tree I Custom 1 I Custom 2 I

0 1168 1344 1200 1136
1 680 728 836 744
2 648 556 704 640
3 32 32 32 32
4 1040 1100 1028 956
5 32 32 32 32
6 944 976 832 1040
7 632 676 744 748
8 928 544 824 776

117

Table 8.2: MWD Application Transaction Results- Topology Comparison- 500MHz
I Core I Mesh I Fat Tree I Custom 1 I Custom 2 I

0 1040 1040 1040 1040
1 680 680 680 680
2 1040 1040 1040 1040
3 1368 1340 1352 1316
4 1036 972 1024 1040
5 360 360 360 360
6 360 360 360 360
7 360 360 360 360

Table 8.3: AV Benchmark Transaction Results- Topology Comparison- 1GHz
I Core I Mesh I Custom 1 I Custom 2 I

0 1416 1424 1496
1 1768 1832 1864
2 1296 1320 552
3 160 160 160
4 864 872 552
5 1488 1536 928
6 960 960 960
7 800 800 512
8 1440 1392 912
9 40 40 40
10 200 200 200
11 1584 1568 1200

Table 8.4: MPEG4 Decoder Transaction Results- Accuracy Test- 3.437GHz
I Core I Required I Custom 1 I Custom 2 I

0 1525 1233 1120
1 305 320 320
2 580 600 596
3 2 4 4
4 488 628 616
5 2 4 4
6 1205 992 1056
7 625 636 632
8 763 752 752

118

Table 8.5: MWD Application Transaction Results- Accuracy Test- 573MHz
I Core I Required I Custom 1 I Custom 2 I

0 878 880 880
1 585 600 600
2 878 880 880
3 1317 1284 1296
4 878 880 880
5 293 320 320
6 293 320 320
7 293 320 320

Table 8.6: AV Benchmark Transaction Results- Accuracy Test- 2.31GHz
I Core I Required I Custom 1 I Custom 2 I

0 1243 1280 1264
1 976 1040 1040
2 578 640 608
3 45 80 80
4 378 400 400
5 690 720 720
6 392 400 400
7 322 400 400
8 953 960 960
9 17 40 40
10 86 120 120
11 648 800 800

Table 8.7: Layer-3 Switch Transaction Results- Accuracy Test- 229MHz
I Core I Required I Custom 1 & 2 I

0 232 234
1 860 944
2 2005 1920

119

Table 8.8: MPEG4 Decoder Burst Test- Transactions
I Burst Length I Mesh - 8cyc I Custom 2 - 8cyc I Mesh - 20cyc I Custom 2 - 20cyc I

1 745 998 485 703
4 1692 1912 1044 1188
16 2256 2336 1296 1360

Table 8.9: MPEG4 Decoder Burst Test- Latency (cycles)
I Burst Length I Mesh- 8cyc I Custom 2- 8cyc I Mesh- 20cyc I Custom 2- 20cyc I

1 61.38 45.43 103.3 68.16
4 25.57 21.58 38.58 33.74
16 17.47 17.06 30.67 29.58

120

Bibliography

[1] L. Benini and G. De Micheli, "Networks on chips: A new soc paradigm," IEEE Com­
puter, vol. 35, pp. 70-78, Jan. 2002.

[2] A. Allan, D. Edenfeld, J. Joyner, W.H., A. Kahng, M. Rodgers, andY. Zorian, "2001
technology roadmap for semiconductors," IEEE Computer, vol. 35, pp. 42-53, Jan.
2002.

[3] "http:/ /www.samsung.com."

[4] T. Bjerregaard and S. Mahadevan, "A survey of research and practices of network-on­
chip," ACM Computing Surveys, vol. 38, pp. 71-121, March 2006.

[5] G. D. Micheli and L. Benini, Networks on Chips: Technology and Tools. Morgan Kauf­
mann Publishers, 2006.

[6] ARM-Limited, "Multi-layer ahb overview," May 2004.

[7] ALTERA-Corporation, "Avalon interface specification," April 2005.

[8] W. Cesario, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, A. Jerraya, L. Gauthier, and
M. Diaz-Nava, "Multiprocessor soc platforms: A component-based design approach,"
IEEE Design 8 Test of Computers, vol. 19, pp. 52-63, Nov.-Dec. 2002.

[9] ARM-Limited, "Arm1136jf-s and arm1136j-s- technical reference manual," July 2007.

[10] ALTE~A-Corporation, "Nios ii processor reference handbook," October 2005.

[11] A. Jerraya and W. Wolf, "Hardware/software interface codesign for embedded systems,"
IEEE Computer, vol. 38, pp. 63- 69, Feb. 2005.

[12] ARM-Limited, "Amba 3 ahb-lite protocol," June 2006.

[13] "http:/ /www.ocpip.org."

[14] ARM-Limited, "Amba axi protocol," March 2004.

121

[15] S. Schliecker, M. Ivers, and R. Ernst, "Memory access patterns for the analysis of mp­
socs," IEEE North-East Workshop on Circuits and Systems, Gatineau, Qubec, Canada,
pp. 249 - 252, 2006.

[16] F. Angiolini, P. Meloni, S. Carta, L. Raffo, and L. Benini, "A layout-aware analysis
of networks-on-chip and traditional interconnects for mpsocs," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 26, pp. 421-434, March
2007.

[17] A. Gara, M.A. Blumrich, D. Chen, G. 1.-T. Chiu, P. Coteus, M. E. Giampapa, R. A.
Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay, T. A. Liebsch, M. Ohmacht,
B. D. Steinmacher-Burow, T. Takken, and P. Vranas, "Overview of the blue gene/1
system architecture," IBM Journal of Research and Development, vol. 49, pp. 195-212,
March/May 2005.

[18] J. Duato, S. Yalamanchili, and L. M. Ni, Interconnection Networks - An Engineering
Approach. Morgan Kaufmann Publishers, 2003.

[19] D. Bertozzi and L. Benini, "Xpipes: a network-on-chip architecture for gigascale
systems-on-chip," IEEE Circuits and Systems Magazine, vol. 4, pp. 18-31, Second Quar­
ter 2004.

[20] K. Goossens, J. Dielissen, and A. Radulescu, "Aethereal network on chip: Concepts,
architectures, and implementations," IEEE Design and Test of Computers, vol. 22,
pp. 414-421, Sept.-Oct. 2005.

[21] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja,
and A. Hemani, "A network on chip architecture and design methodology," Proceed­
ings of the IEEE Computer Society Annual Symposium on VLSI, Pittsburg, PA, USA,
pp. 117-124, 2002.

[22] D. Wiklund and D. Liu, "Socbus: Switched network on chip for hard real time em­
bedded systems," Proceedings of the International Parallel and Distributed Processing
Symposium, Nice, France, p. 8, 2003.

[23] P. Guerrier and A. Greiner, "A generic architecture for on-chip packet-switched inter­
connections," Proceedings of the Design, Automation and Test in Europe Conference
and Exhibition, Paris, France, pp. 250-256, 2000.

[24] F. Karim, A. Nguyen, and S. Dey, "An interconnect architecture for networking systems
on chips," IEEE Micro, vol. 22, pp. 36-45, Sept.-Oct. 2002.

[25] T. Bjerregaard and J. Sparso, "Implementation of guaranteed services in the
mango clockless network-on-chip," lEE Proceedings-Computers and Digital Techniques,
vol. 153, pp. 217-229, July 2006.

122

[26] "http:/ /www.arteris.com/index.htm."

[27] S. Murali and G. De Micheli , "Sunmap: A tool for automatic topology selection and
generation for noes ," Proceedings of the Design Automation Conference, San Diego, CA ,
USA, pp. 914- 919, 2004.

[28] S. Murali and G. De Micheli, "Bandwidth-constrained mapping of cores onto noc archi­
tectures ," Proceedings of the Design, Automation and Test in Europe Conference and
Exhibition, Paris, France, pp. 896-901, 2004.

[29] A. Jalabert, S. Murali , L. Benini, and G. De Micheli, "Xpipescompiler: A tool for instan­
tiating application specific networks on chip," Proceedings of the Design, Automation
and Test in Europe Conference and Exhibition, Paris, France, pp. 884- 889, 2004.

[30] S. Murali, P. Meloni, F. Angiolini, D. Atienza, S. Carta, L. Benini, G. De Micheli , and
L. Raffo , "Designing application-specific networks on chips with fioorplan infonnation,"
Proceedings of the IEEE/ ACM International Conference on Computer Aided Design,
San Jose , CA , USA, pp. 355- 362, 2006.

[31] J. Hu and R. Marculescu, "Energy-aware mapping for tile-based noc architectures under
performance constraints," Proceedings of the Asia and South Pacific Design Automation
Conference, Kitakyushu, Japan, pp. 233- 239, 2003.

[32] J. Hu and R. Marculescu, "Communication and task scheduling of application-specific
networks-on-chip," lEE Proceedings-Computers and Digital Techniques, vol. 152,
pp. 643- 651, Sept. 2005.

[33] U. Ogras and R. Marculescu, "It 's a small world after all: Noc performance optinliza­
tion via long-range link insertion," IEEE Transactions on Very Large Scale Integration
{VLSI) Systems, vol. 14, pp. 693- 706, July 2006.

[34] J. Hu, U. Ogras, and R. Marculescu, "System-level buffer allocation for application­
specific networks-on-chip router design ," IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 25, pp. 2919- 2933, Dec. 2006.

[35] K. Srinivasan, K. Chatha, and G. Konjevod, "Linear-programming-based techniques
for synthesis of network-on-chip architectures," IEEE Transactions on Very Large Scale
Integration {VLSI) Systems, vol. 14, pp. 407-420, April 2006.

[36] K. Srinivasan, K. S. Chatha, and G. Konjevod, "An automated technique for topology
and route generation of application specific on-chip interconnection networks," Proceed­
ings of the IEEE/ A CM International Conference on Computer-Aided Design, San Jose,
CA , USA, pp. 231-237, 2005.

[37] K. Srinivasan, K. Chatha, and G. Konjevod, "Application specific network-on-chip de­
sign with guaranteed quality approximation algorithms," Proceedings of the Asia and
South Pacifi c Design Autonw.tion Conference, Yokoha:rna, Japan, pp. 184- 190, 2007.

123

[38] K. Srinivasan and K. Chatha, "Saga: Synthesis technique for guaranteed throughput
noc architectures," Procr:edings of the Asia and South Pac~fic Design Automation Con­
ference, Shanghai, China, vol. 1, pp. 489- 494, 2005.

[39] J. Xu, W. Wolf, J. Henkel, and S. Chakradhar, "A design methodology for application­
specific networks-on-chip," ACM Transactions on Embedded Computing Systems, vol. 5,
pp. 263-280, May 2006.

[40] W. N. Ho and T. M. Pinkston, "A design methodology for efficient application-specific
on-chip interconnects," IEEE Transactions on Parallel and Distributed Systems, vol. 17,
pp. 17 4-189, Feb. 2006.

[41] Y.-1. Jeang, J.-M. Jou, and W.-H. Huang, "A binary tree based methodology for design­
ing an application specific network-on-chip (asnoc) ," IEICE Transactions on Fundamen­
tals of Electronics, Communications and Computer Sciences, vol. E88-A, pp. 3531-3538,
Dec. 2005.

[42] G. Ascia, V. Catania, and M. Palesi, "An evolutionary approach to network-on-chip
mapping problem," Proceedings of the 2005 IEEE Congress on Evolutionary Computa­
tion, Edinbourgh, Scotland, vol. 1, pp. 112-119, 2005.

[43] W. Zhou, Y. Zhang, and Z. Mao, "An aapplication specific noc mapping for optimized
delay," Proceedings of the 2006 International Conference on Design and Test of Inte­
grated Systems in Nanoscale Technology, Tunis, Tunisia, pp. 184-188, 2006.

[44] L. Papadopoulos, S. Mamagkakis, F. Catthoor, and D. Soudris, "Application - spe­
cific noc platform design based on system level optimization," Proceedings of the IEEE
Computer Society Annual Symposium on VLSI, Porto Alegre, Brazil, pp. 311-316, 2007.

[45] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch, "The nostrum backbone-a
communication protocol stack for networks on chip," Proceedings of the International
Conference on VLSI Design, Mysore, India, pp. 693-696, 2004.

[46] T. Ye, L. Benini, and G. De Micheli, "Packetized on-chip interconnect communica­
tion analysis for mpsoc," Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition, Munich, Germany, pp. 344-349, 2003.

[4 7] U. Y. Ogras and R. Marculescu, "Analytical router modeling for networks-on-chip per­
formance analysis," Proceedings of the Design, Automation and Test in Europe Confer­
ence and Exhibition, Nice, France, pp. 1096-1101, 2007.

[48] E. van der Tol and E. Jaspers, "Mapping of mpeg-4 decoding on a flexible architecture
platform," Proceedings of the SP IE - The International Society for Optical Engineering,
vol. 467 4, pp. 1-13, 2002.

124

[49] E. Jaspers and P. de With, "Chip-set for video display of multimedia information,"
IEEE Transactions on Consumer Electronics, vol. 45, pp. 706- 715, Aug. 1999.

[50] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, "Performance evaluation and
design trade-offs for network-on-chip interconnect architectures ," IEEE Transactions on
Computers, vol. 54, pp. 1025-1040, Aug. 2005.

125

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2008

	Network-On-Chip Topology Generation and Analysis For Transaction-Based Systems-on-Chip
	Victor. Dumitriu
	Recommended Citation

