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for Transaction-Based Systems-on-Chip 

Victor Dumitriu 
Masters of Applied Science, 2008 

Program of Electrical and Computer Engineering 
Ryerson University 

Abstract 

The Network ... on-Chip concept is en1erging as a promising new method of addressing the com-

munication requirements of complex Systems-on-Chip. However, network design at this level 

must take into consideration the specific communication protocols of on-chip components. 

This thesis presents a topology analysis and design method for networks-on-chip based on the 

transaction-oriented protocols common to on-chip systems. The generated topologies target 

the latency of critical links in the system, while the analysis method can predict the degree 

of contention in a system prior to the simulation phase. The proposed topologies are tested 

using various applications, including an MPEG4 Decoder, and are found to perform the 

same or better than regular topologies , while using less network resources. The contention 

prediction method is found to be accurate to within 27% in the worst case scenario. 
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Chapter 1 

Thesis Introduction 

1.1 Introduction 

The constant strearn of advances rnade in the field of IC 1nanufacturing, coupled with the ever 

increasing demand for high-performance embedded systems has led to the adoption of the 

System-on-Chip (SoC) design process. At the high end of the SoC scale are to be found the 

Multi-Processor Systems-on-Chip (MPSoC), which integrate multiple processing elen1ents, 

such as Digital Signal Processors (DSP) and general purpose processors as well as dedicated 

hardware units. Such systems are primarily used in the communications and multimedia 

fields , where large information volumes are handled. To address communication performance 

and efficiency on the chip, the Network-on-Chip (NoC) concept has been proposed as a new 

approach to communication infrastructure, replacing traditional systems such as shared buses 

or cross bars [ 1] . 

The NoC concept has its roots in the field of parallel computing. However, the migration 

to on-chip communications handling requires a different comn1unication performance model 

than that found in the field of parallel computing. The difference in complexity between 

a processing node in a parallel computer and a processor in an embedded systen1s requires 
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that NoC design be tackled at a lower abstraction level. In addition, MPSoCs often hav 

different requirements than high-performance parallel computers; the easy addition of addi 

tional processing elements is not as important as the area and power characteristics of th 

system. In fact, the majority of current on-chip systems cannot change their internal struc 

ture once implemented in silicon. Regular topologies are not always as desirable as irregula1 

application-specific topologies, since they 1nay include circuitry that remain unused. 

The current work presents a topology generation and analysis method for N oC desig1 

based on the transaction-oriented communication methods of on-chip systems. The topolog: 

generation process creates dedicated topology descriptions based on application requirement 

and network structural parameters. The aim is to provide the required communicatim 

infrastructure for an application using a minimum of resources, so that efficient application 

specific systems are generated. In addition, to accelerate the design process of such syste1ns 

the proposed method incorporates a performance prediction process referred to as Contentioi 

Analysis. The process attempts to predict interference effects in the system, and based 01 

this makes a recommendation as to the needed operating frequency of the network. ThE 

method minimizes complex computation by considering network components in isolation 

and uses a simplified form of simulation rather than queue analysis. This approach can bt 

less accurate than complete modelling of the whole system, but it reduces the complexit~ 

and execution time of the analysis method. 

1.2 Motivation and Contribution 

The main motivation for the proposed work is to address a perceived gap in the field of N oC 

automated design and analysis. This gap refers to the current trend of modelling on-chii= 

communication behavior at a high level of abstraction similar to that used for wide-area 

computer networks or parallel super computers. Such approximations rarely match on-chip 
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system behavior, in particular in cases where component interfacing is accomplished using 

transaction-based protocols, thus making them inappropriate models. The work presented 

in this thesis represents an attempt to address the topic of network-on-chip design while 

keeping in mind the behavioral aspects of current on-chip components. 

For this reason, the main focus of the work will be the analysis of performance require­

ments. 

The main contribution of the proposed work is three-fold. First and foremost , the thesis 

formally establishes the conditions that must be met in order to meet performance require­

ments in transaction based on-chip systems (which represent the majority of such systems). 

The second main ·contribution is the development of two algorithms aimed at the generation 

of irregular NoC topologies. Both algorithms are aware of the limitations of transaction­

based systems and incorporate this information into their structure. Finally, the thesis 

presents an analysis method for the estimation of packet behavior in an active network, and 

incorporates this method into the topology generation process. The analysis method uses 

Petri Net representation of the system and a partitioned approach to system analysis which 

allows it to execute faster than in-depth analysis methods such as those based on queue 

theory. 

1.3 Thesis Organization 

Before examining networks-on-chip, and their design, it is important to establish what types 

of systems will use such communication infrastructure, and what their characteristics are. 

Chapter 2 will briefly discuss the field of on-chip systems, and in particular the topic of Multi­

Processor Systems-on-Chip (MPSoC). The chapter will conclude with an analysis of the 

communication protocols generally used by such systems, and their characteristics. Chapter 3 

will fully introduce the Network-on-Chip concept, and present some examples of existing NoC 
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designs. It will also survey the available research in the field of NoC design and optimization 

since this is the main discussion topic of the Thesis. 

Once the NoC concept has been described, along with the fundamental characteristics o 

on-chip systems, the main topic of the Thesis is presented. Chapter 4 describes the topolog: 

generation and analysis processes being proposed. Because the primary aim of the topolog~ 

generator is to achieve a desired level of performance, a method is needed to determine if; 

particular network with given characteristics can achieve said level of performance. Chapte 

5 introduces a simulation environment designed specifically to model N oC communication 

and describes the characteristics and implementation of the simulation models. Chapter t 

presents tests and results used to verify the proposed methods. The results section can bE 

broadly divided into two sections: a comparative section, where the generated topologies an 

compared with regular ones to determine their benefits and short-comings; and an analysi! 

section which examines the accuracy of the proposed analysis methods, by verifying whethe1 

the recommended N oC operating frequency allows the generated topology to meet applica­

tion communication requirements. Finally, Chapter 7 concludes the Thesis report, and i~ 

followed by the Appendix and Bibliography sections. 
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Chapter 2 

Systems-on-Chip: Characteristics and 

Methodologies 

Before delving into the subject of Network-on-Chip and their design, digital Systems-on­

Chip (Soc) should be explored, as they are the reason for the e1nergence of the NoC concept. 

This section briefly presents the emergence and rise in popularity of the SoC concept, culmi­

nating with the Multi-Processor System-on-Chip (MPSoC). The section also discusses the 

progress made in design methods , and the emergence of standardized interfacing in on-chip 

components. Finally, once the details of on-chip protocols are established, it is possible to 

derive some characteristics of on-chip communication, particularly as it relates to achievable 

performance. This last portion of the chapter also analyzes the main differences between 

on-chip systems and larger networks, from the communication point of view. 

2.1 The Rise of the Systems-on-Chip Concept 

The improvements made in the field of integrated circuit manufacturing have led to a constant 

increase in the nun1ber of transistors that can be integrated into a single chip. This fact, 
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coupled with new requirements for embedded systems, such as reduced power and area, have 

led designers to integrate various types of components into one chip [2]. Systems that would 

have consisted of multiple ICs can now be implemented as Systems-on-Chip (SoC). Such 

systems could incorporate a processor, memory and interfaces to other components, as well 

as an on-chip interconnect. This approach yields savings not just in terms of area (since only 

one chip is now used) but also power, since chip boundaries are no longer crossed as often, 

and special drivers are no longer needed. Finally, having most system components on-chip 

allows a designer more freedom in certain instances; for example, pin-count limitations are 

largely eliminated in the case of on-chip connections, meaning that serialization is not always 

necessary when C?nnecting components. 

As the demand for increased performance in such systems continued to increase, design­

ers began to adopt more complex SoC structures. The operating frequency could not be 

increased indefinitely to provide adequate perfonnance, due to physical constraints as well 

as power consumption considerations. As a solution, multiple processing elements were in­

troduced on the chip. Such a solution yields added performance, but the power requirement 

is not as large as in multi-chip systems, since chip boundaries are not crossed as often, re­

ducing the need for added drivers off-chip. Such processing ele1nents include instruction-set 

processors, Digital Signal Processors (DSPs) and dedicated logic circuits. Such systems are 

currently known as Multi-Processor Systems-on-Chip (MPSoCs), and are being adopted for 

use in the multimedia and communications fields, where large data volumes are processed. 

An example of such a system is shown in Figure 2.1, where the Samsung S3C6400 platform is 

shown [3]. This SoC is aimed at the mobile telephone market, as well as media players, and 

incorporates special dedicated processing elements in the form of video and audio encoders 

and decoders. It is important to note that, unlike chip multi-processors or multi-core pro­

cessors, the components that make up an MPSoC are heterogeneous, both in their structure 

and their behavior. Exarnples of co1nponents one rnight find in such SoCs include general 
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purpose processors, digital signal processors, direct 1nemory access (DMA) units, memory 

or Ethernet controllers; such components have different behaviors, and can lead to different 

communication patterns. 

IIC 

UART x4 

GPIO 

lrDAv1 .1 

SPI (Full Duplex) 

HSI (Modem FF) 

USSOTG2.0 

HS·MMC:'SO 

AC97 / PGM Audio IIF 

!-Cache 16KB 
D-Cach,;. 16KB 

1-TCM 16KB 
D·TCM 16KB 

1 
X64l3.2 Multi · Layer AHB.iAXI Bus 

Normal 
Idle 

Stop 
Sleep 

1 I 

NTSC, PAL TV out 
Image Enhancer111mt 

SHAM/ROM/NOH/ 
Ont~NAND'" 

Mobile SDRAM 

Mobile ODR SORAM 

NAND flash 
(SLC/MLC) 

Figure 2.1: Example of a Current-Generation SoC 

Unfortunately, the increased number of on-chip components, and the increased volume of 

information that has to be handled are bringing to light a new problem area within complex 

SoCs: the on-chip interconnect. Early on-chip systems worked quite well using only a shared 

bus, primarily because the bus was used by one component (the processor), while the remain-

der of on-chip systems were passive. Unfortunately, increasing the number of components 

that can actively use the communication medium leads to congestion; in such instances, the 

shared bus quickly becomes a bottleneck of system performance [4, 5). As a solution to this 

problem, the fabric switch has been adopted as the on-chip interconnect for complex SoCs; 

examples include the AMBA Multi-Layer Protocol [6) and the Avalon interface [7). The 

fabric switch can be thought of as a collection of shared busses with associated arbitration 
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units, each of which is associated with one of the system slave interfaces. Because of this: 

the fabric switch is the ideal interconnect, minimizing latency and maximizing throughput 

for multiple communicating components. However, as the number of communicating compo­

nents increase, the size of the interconnect quickly explodes, not just in terms of silicon area, 

but also in the use of metal layers for interconnection [4, 5]. Networks-on-chip are emerging 

as a new solution to on-chip communication, and attempt to provide similar performance 

with less associated area overhead and complexity, when compared to fabric switches. 

2.2 Plug-,and-Play System Design and Standard Inter­

faces 

The design of a complex embedded application is a formidable task, involving both hardware 

and software components that must interact with each other. Traditionally, such a design 

would take considerable work, both in the design of the various components as well as 

their interfacing. In situations where the available time-to-market is short, it is not always 

possible to design all system components specifically for the current design. The solution 

being proposed and used with increasing regularity is to re-use earlier component designs, 

and allow them to be easily interconnected in various configurations [8]. A new industry 

section is emerging whose only role is to design Intellectual Property (IP) digital components 

for use in on-chip systems, often referred to as cores. Such IP cores can be licensed for a 

particular design, and can be customized to a varying extent. This allows system designers to 

concentrate on the design of the application, and on the efficient interfacing of components, 

rather than on the design of each circuit. This approach has become very wide-spread, with 

available cores ranging form processors (ARM [9] and NIOS II [10]) to dedicated processing 

elements and I/0 controllers. 
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To be truly useful, the concept of re-useable design must allow designers to build systems 

quickly and efficiently. The interfacing of components in particular is an important aspect 

of re-usable design [11]. Standard protocols and interfaces have emerged in conjunction with 

embedded cores to allow efficient interconnection. Examples include the AMBA Bus [12], 

as well as the A val on Interface [7]. More recently, the move has been towards specialized, 

point-to-point oriented protocols , which hide all characteristics of the interconnect from the 

cores themselves. The Open Core Protocol (OCP) [13] and AMBA AXI protocol [14] both 

take this approach; neither protocol includes any signals that are related to the underlying 

interconnect structure (such as arbitration request signals). 

2.3 Characteristics of On-Chip Communication 

Any discussion regarding on-chip communication must take into consideration the character­

istics that such communication has. Since most on-chip components rely on specific on-chip 

protocols for communication, examining these protocols is mandatory for fonning a model 

of communication that can then be used for design purposes (as this Thesis attempts to do). 

This final section will present some of the characteristics common to a number of on-chip 

protocols, as well as some advanced features that have been introduced for high-perfonnance 

designs. Based on this behavior, a set of observations and specifications will be derived for 

on-chip components. Finally, on-chip communication will be briefly compared with commu­

nication methods found in larger systems such as parallel con1puters. 

2.3.1 On-Chip Protocols 

All on-chip protocols emerged as a result of the need to allow logic circuits to communicate 

with each other. At their core, most protocols are built around information transactions , 

which are themselves divided into request and response phases [7, 12, 13, 14]. In all cases, 
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the transaction occurs between a master device that can initiate transactions, and a slav, 

device that is passive and responds to transactions. Components with both master and slav' 

characteristics incorporate both master and slave interface logic (an example is a DMA unit) 

During the request phase, master components assert signals to indicate that a transaction i; 

required , and drive transaction information on dedicated ports (address, data, transactio! 

type, etc). In the case of older protocols, such as the AMBA AHB protocol, the master woulc 

also assert dedicated request signals used by the interconnect controller for arbitration. Th( 

slave component responds to the transaction when it is ready, using a number of handshak( 

signals, in the response stage. During the time of the transaction both interfaces are engagec 

and cannot undertake other tasks. Figure 2.2 shows a transaction in the AXI protocol. ThE 

master components initiates the read transfer by asserting the ARVALID signal, and write~ 

address and transaction information on the address channel [14]. The slave latches thi~ 

information and asserts the ARREADY signal; the slave then responds when it is ready b) 

asserting the RVALID signal, and the transaction completes (and read data is transferred: 

when the master component asserts the RREADY signal. 

!"0 T1 T2 T:3 T4 Tf) T6 Tl T8 19 T10 T11 T12 IT~ 

f,CLK 

Figure 2.2: AXI Read Transaction 

A number of features were added to on-chip protocols to increase performance. One of 

the first, and certainly the most wide-spread feature is the burst transfer , which was born 

in shared bus systems, where multiple transactions could be grouped under one arbitration 
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session, increasing throughput. The burst transfer is now a common feature of all on-chip 

interconnects, including fabric switches [7]. In addition, more advanced features have been 

implemented in an attempt to increase the achievable performance. A number of protocols 

support the concept of split transfers, where a slave device can suspend the transfer while 

it prepares for the transfer. This allows other master devices to use the interconnect while 

a slow slave processes a transaction. Once the slave completes processing, it can signal the 

interconnect to inform it that it is ready to complete a transaction. 

The latest generation of on-chip protocols include the support for multiple outstanding 

transaction to difFerent slave components, and the con1pletion of transactions out of order 

[13, 14]. In these cases, transactions can complete in or out of order, depending on the 

configuration and capabilities of the master and slave devices. This feature guards against 

the case of components being stuck waiting for one slow slave device, and can drastically 

increase the over-all performance of the system. However, it should be noted that only 

complex components, such as large embedded processors (ARM 11J series, for example) can 

take advantage of such features. Simpler, or dedicated component do not have the behavioral 

support to issue transaction requests to multiple slave devices, and often do not need to do 

so. However, regardless of how they are grouped or arranged, each transaction still consists 

of the request and response stage, which must be completed. 

Some exceptions exist to the above rules, which are used 1n certain situations. One 

example used in processing streaming information is a serial arrangement of components, 

connected using special , simplified, one-way interfaces. One such exmnple is the Avalon 

Streaming Interface, which is built around source and sink interfaces [7]. In this case, the 

processed data is flowing in one direction, and is passed from one component to the next. In 

such cases, data transfers occur without the complex hand-shaking seen in the protocols de­

scribed above. The Avalon Streaming interfaces supports ftow control through pack-pressure, 

where sinks can temporarily stop incoming data, if they beco1ne saturated. Such interfaces, 
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however, are used primarily for dedicated applications. 

2.3.2 On-Chip Communication Characteristics 

The aim of the above discussion and this entire chapter is to establish some characteristics 

and formal requirements for on-chip communications. As the previous section shows, most 

on-chip protocols are transaction-based and go through specific stages, which makes it pos­

sible to establish a relationship between the latency of a transaction (the time taken for 

a transaction to complete) and the achievable throughput of an interface such as [15, 16]. 

The following paragraphs will describe this relationship and how it is derived. Since most 

existing on-c"Qip protocols specify that both interfaces are engaged during a transaction, this 

means that latency becomes the dominating factor affecting throughput [16]. In particular, 

because the interface blocks during a transfer, latency and throughput become inverses of 

one another. This statement holds in all cases except streaming interfaces and advanced 

components that support multiple outstanding transfers to separate slaves. However, in the 

case of advanced components, the analysis presented here can be considered a worst-case 

scenano. 

Based on the blocking nature of on-chip protocols and interfaces, the following definitions 

can be made. First, the latency of a transaction can be defined as the time that a master 

interface is engaged during a transfer. In situations where any transaction (read or write) 

has a request and response phase, this delay is composed of the transport delay (due to 

the interconnect) and the processing delay of the slave involved. Equation 2.1 defines this 

relationship: 

Lait = Latint + Latslave (2.1) 

Secondly, because the interface blocks during the transaction and cannot be used for alterna­

tive transfers, transactions occur serially, and the achievable throughput becomes the inverse 
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of the transaction latency Latt. In this case, if a specific throughput Treq, in transactions 

per unit time, is required, then the following condition must hold: 

1 
Latt <­

- Treq 
(2.2) 

Note that the above requirement does not take into account the processing time of the master 

interface itself. The latency per transaction can be computed in various ways, to account 

for burst transfers and encoding options, but the condition specified by Equation 2.2 must 

ultimately hold, in situations where interface blocking occurs. 

The above equations contrast heavily with the behavior of large networks, such as those 

found in parallel computers and general computer networks , where latency and throughput 

are unrelated. It is not the networks themselves that cause this difference, but rather the 

behavior of the communicating components that access said networks. In both these cases, 

the elements accessing the network are complex entities, consisting of at least a processing 

element, memory and some sort of network interface. An example of such a system is the 

BlueGene L computing node, which is itself an SoC [17]. The node consists of two processing 

cores, a dedicated memory hierarchy including multiple levels of cache and external memory 

and an integrated router. What this means is that the node itself is capable of operating 

autonomously while sending messages. In addition, many such systems rely on message-

passing rather than transactions for communication, meaning that response stages are not 

required and the node can continue with other work after the message is sent. In such cases, 

the communication requirement can be abstracted to an information stream being sent in 

one direction from the source to the destination (the messages, essentially). Such a stream 

is often represented as a number of bits per second, and communication constraints are met 

if the following inequality holds: 

(2.3) 
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Above, Dataij represents the information volume (bits per second) that must be sent between 

nodes i and j, and BWij represents the available bandwidth of the network between nodes 

i and j. Note that the bandwidth does not refer only to the links in the system, but also to 

any interim elements such as routers or switches, which must process and forward the data 

being transported by the network. The above equation can only be used in on-chip systems 

in specific situations. Specifically, it holds in the case of write transfers, provided that the 

protocol supports posted write transfers, meaning that a response phase is not required for 

write transactions. The AXI interface, for example, is not accurately modelled by the above 

inequality. 

2.4 Conclusion 

The chapter covers a relatively wide range of topics in very short form, primarily for the 

purpose of introducing the concept of MPSoCs, re-usable designs and standard interfaces 

and protocols. Given that these are the characteristics of current embedded systems, it is 

important to establish the underlying ground work before moving specifically to the area 

of networks-on-chip. Essentially the chapter presents the environment that NoCs are used 

in, as well as the specific characteristics of the cornrnunication protocols used by on-chip 

components. 

Arguably the most important section of the chapter is the last, which formally specifies 

certain criteria for meeting throughput requirements when components with standard inter­

faces (such as AMBA AXI or OCP) are used. These criteria have to be considered when 

designing any interconnect for a specific application, irrespective of the actual interconnect 

structure. This information is presented first primarily because of chronological considera­

tions. The standard interfaces used on-chip pre-date the Network-on-Chip concept, and their 

associated behavior and requiren1ents exist independent of the actual interconnect used. 
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Chapter 3 

Networks-on-Chip 

Having established the behavior and requirements of on-chip systems in the area of com­

munication, it is now time to fully introduce the subject of Networks-on-Chip (NoC), as 

well as the field of N oC design automation. The chapter starts with a brief introduction to 

the concepts of NoCs, and their roots in parallel computing communication infrastructure. 

Exarnples of proposed N oC architectures are presented to est ablish what direction the field 

is taking, and to establish the types of features one would reasonably expect to find in such 

systems. Finally, a review of automated NoC design is presented, which analyzes many of the 

works proposed in this field , and identifies some underlying areas requiring further refining 

and development. 

3.1 Networks on Chip: An Introduction 

As already specified in the introduction, the N oC concept has its roots in the field of parallel 

computing communications. Dedicated communication elements are used to manage the 

passing of messages such as data transfers of process synchronization flags between various 

processing elements. In rnost such systen1s, each processing element consists of at least one 
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processor, dedicated memory and communication interface (router), and the messages are 

addressed to other, similar components. 

The core component of all such communication systems is the router, a dedicated com­

ponent that manages the communication aspects of the system. Many parallel systems, 

especially when using distributed memory architectures, deploy one router per processing 

node. Such a node has one dedicated interface to its own processing element, as well as 

additional interfaces used to communicate with neighboring routers [18). In contrast to this, 

other systems allow multiple processing elements to connect to a single router. In these sys­

teins, the router does not differentiate between connection to other routers and connections 

to processing elements. To accommodate such designs , each processing element has its own 

dedicated Network Interface (NI), which converts messages to a format appropriate for the 

communication network [18). 

Networks further distinguish themselves by the method in which information is transmit­

ted. Sent messages are converted into packets for transmission across the network. Circuit 

switched networks then reserve a connection between the source and destination nodes , and 

transmit the message packets once a path is set [18). On the contrary, packet switched net­

works send packets out as soon as they are formed, and rely on individual routers to direct 

them to their destination [18). In addition, the way each packet is transferred through a 

router can vary. Store-and-forward networks buffer an entire packet before sending it one, 

while wormhole networks subdivide packets into smaller flow control units (flits) and deal 

individually with these [18). 

Finally, two other important parameters of a network are the topology of the network and 

the routing strategy used by individual routers. These two aspects are presented together 

because they are strongly dependant on each other. A network with a regular topology, where 

the position of each node is exactly specified by its network ID , can use dedicated hardware 

to determine the route of a component (see dimension ordered routing in two-dimensional 
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meshes). On the other hand, irregular networks often 1nake use of look-up tables to determine 

how to forward a packet or a flit. So1ne networks rely on the source NI or router to determine 

the path sequence and append it to the packets or flits being transmitted (know as source 

routing), while other networks store look-up tables locally within each router, in the form of 

memories. Finally, some networks implement adaptive routing strategies which monitor the 

status of the network, and make routing decisions based on this as well as the destination of 

a packet. 

As the above discussion shows, many aspects characterize a given network design. Al­

though NoC systems are intra-chip infrastructures rather than inter-chip, they nonetheless 

exhibit son1e of the characteristics listed above [5]. The following reviews will briefly de­

scribe some existing NoC designs, paying particular attention to their topology, switching 

and routing method and intended structure. This will identify the potential design aspects 

that have to be tackled by the design flows which will be reviewed in Section 3. 

3.1.1 The XPipes NoC 

The XPipes NoC system is presented by Bertozi and Benini as a collection of macros which 

can be used to specify the communication infrastructure of a given SoC system [19]. The 

XPipes NoC is a best-effort (BE) network, and uses wormhole switching to transfer data 

across the system. Because of this, each router output has to buffer only a few flits, rather 

than the entire packet (the XPipes system uses output buffering). To further reduce the size 

of individual routers, the network uses source routing; each packet has routing information 

appended to its header flit. The routing infonnation consists si1nply of a nurnerical indicator 

of which output port the flit should be forwarded to (referred to as street sign routing). 

To allow communication between various cores, the XPipes libraries contain Network 

Interfaces and Link components in addition to switches. The Network Interface is responsible 
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for converting the transactions issued by the system cores into flits to be transferred by the 

network. Most notably, the Nls contain look-up tables with the routes to various destinations. 

The links themselves are designed to allow the network to be insensitive to wire latency. This 

is accomplished by designing the links as a series of interconnected registers rather than 

simple wires. This pipelining of the links allows fast clocks to be used in the network, at 

the cost of increased cycle delay. The proposed network implements error control at the link 

level, and allows the use of various error correcting or detecting codes. The error detection 

in this case is used to determine if transmission errors occurred during the transfer process, 

and if a flit has to be re-transmitted. A go-back-N retransmission policy is used in the case 

where an error is detected, to allow for the fact that multiple flits may have been sent by 

the time a transmission was detected. 

Because the network components are specified as macros, they can be instantiated in 

multiple ways, to suit a given application. The network is built to accommodate both regular 

and irregular topologies, which allows a system designer more freedom. This is primarily 

accomplished through each core's NI which stores the routes of transaction targets, and the 

fact that the routing is look-up table based rather than being hard-wired in the switches. 

3.1.2 The Aethereal NoC 

Similar to XPipes, the AEthereal NoC is built to accommodate various topologies and con­

figurations [20]. However, unlike the XPipes network, the AEthereal syste1n combines both 

best effort and Guaranteed Service (GS) support. The BE service assumes the form of a 

wormhole-switched, input-buffered network using source routing, similar to that used by 

XPipes. Guaranteed Service operation is provided via time-division multiplexing of virtual 

circuits over the same physical link. This guarantees that no contention can occur in the 

system, although bandwidth can be wasted in this way, if a given time-slot is reserved but no 
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data is available to forward. To alleviate this problem, each router combines capabilities for 

both GS and BE operation. Best effort packets are forwarded in time-slots that are unused 

by any of the GS connections. 

The A ethereal N oC provides a programming model for programming the GS connections 

into the slot-tables of each router. Such programming occurs when the nature of the ap­

plication changes, leading to new communication requirements that must be met. At this 

time, different time-slot reservations would be made, based on the new communication re­

quirements between components. Two models are proposed by Goossens et al.: a distributed 

programming model, as well as a centralized model. In the distributed model, GS circuits are 

established using · set-up and t ear-down packets to reserve specific tirne-slots in each switch 

in the path. This way, the cores themselves could control the existence of various circuits. 

The centralized programming model makes use of a central control unit to program the slot 

tables of all routers in the network; such a solution would primarily be used in small systems. 

3.1.3 Regular Topology NoCs 

While the above designs allow complete freedom in the selection of a network topology, 

other works have been presented which target a specific topology for the network structure. 

The CLICHE system, proposed by Kumar et al. targets two-dimensional mesh architectures 

[21]. The proposed network is aimed primarily at distributed memory systems, where each 

component consists of a processing element, local memory and a network interface to handle 

packetization of the sent messages. 

The SoCBUS interconnect also presents a mesh based topology, but the system employs a 

hybrid of circuit and packet switching for its operation (22]. The system uses control packets 

to reserve system resources and establish a connection; however , once the connection exists , 

circuit switching is used, which reduces the latency inherent in packet switched systems. 
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As with most other NoCs, a wrapper component is used to interface between the cores in 

the system and the network itself. The wrapper also handles the circuit set-up phase of 

the transaction process. Finally, routing is only required in the set-up phase, and simple 

shortest-path routing is used. 

The SPIN network on chip makes use of fat-tree topologies, targeting 4-child trees (23). 

The network is worrnhole-switched, and rnakes use of 32 bit flits for cornrnunication. Messages 

have no pre-set size, and can be any arbitrary length, terminated by a tail flit. Hardware 

routing is used, with each router capable of implementing adaptive routing to alleviate 

congestion in the system. The system makes use of wrapper components (acting as network 

interfaces) which conform to the Virtual Component Interface (23) protocol to allow cores 

to be connected to the network. 

Finally, the Octagon N oC presented by Karim et al. proposes the use of a specialized 

network based on ring networks with bisecting links [24). The Octagon is based on 8 nodes 

arranged in a ring, but with the addition of diagonal links connecting each diametrically 

opposite pair of nodes. This approach ensures that any pair of nodes in such a structure can 

reach each other in a minimum of two hops. In the case of more than 8 nodes being present, 

the system can be expanded by connecting multiple octagons topologies together. The 

network supports either best effort, store and forward packet-switching, or circuit switching 

operation. Routing in the packet switched mode of operation is based on network addresses, 

and is hardwired into each router. Circuit switched operation relies on a central arbiter 

to establish connections between components, and permits multiple connections to exist 

provided they do not over lap. 
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3.1.4 The Asynchronous NoC: The MANGO Clock-less Network 

As a response to the ever increasing problem of clock distribution in deep sub-micron envi­

ronments, the MANGO NoC is presented as an example of asynchronous design (25]. The 

MANGO NoC employs clock-less operation, and relies on the Network Adapter compo­

nent to act as a boundary between the synchronous region where the core resides and the 

asynchronous network. The Network Adapter conforms to the OCP protocol (13], and can 

support any OCP compliant core. This approach allows various components in the system 

to have different clock domains, and alleviates the problems of clock distribution networks. 

The MANGO router supports both GS and BE operation, similar to the AEthereal 

design. The best effort service is provided by means of wormhole switching, and source 

routing is used. The guaranteed service is based on virtual circuits between source and 

destination. The virtual connections are established through the use of a centralized System 

Programming Unit, which uses the best effort router components to program the circuits in 

the system. Both the BE and GS operation modes e1nploy virtual channels, allowing them 

to multiplex connections onto one physical channel. 

3.1.5 Commercial NoC Solutions: The Arteris Danube NoC Li­

brary 

Finally, an example of a commercial NoC solution is presented to complete the list of po­

tential N oc systems. The system in question is the Danube component library offered by 

Arteris Inc (26]. The Danube NoC library incorporates a number of parameterizable network 

components, divided into two large categories: Network Interface Units (NIUs) and Packet 

Transport Units (PTUs). As with all other networks, the interface units convert various 

socket formats to a network-specific format. The Danube NIU can interface AHB [12], AXI 

[14] and OCP [13] components to the underlying network. 
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The Library also contains network transport units of various types, which transmit in­

formation through the network. These transport units include switches which are used to 

multiplex packets over physical links, various types of buffers for congestion alleviation, as 

well as clock conversion units. These components allow a wide range of variation in gen­

erated networks. It is interesting to note that this proposed system incorporates request 

and response networks for the connected components, both constructed from the available 

NT Us. 

3.2 NoC Design Research 

The previous, section gives an overview of some of the design aspects that have to be consid­

ered when an NoC is selected for a given application. This section examines various proposed 

methods for automatically, or semi-automatically generating NoC systems for given appli­

cations. Some of the research works analyzed were developed by the same research group, 

and for this reason are presented here together. 

3.2.1 XPipes-Related Design Methods 

A series of design methodologies were developed in conjunction with the XPipes NoC. The 

SUN MAP system, presented by M urali and DeMicheli has the aim of mapping a given 

application onto various regular topologies [27). The application is represented by its core 

graph [28), a data structure showing all the physical cores that compose an application and 

their communication requirement, and it is mapped onto a topology graph [28). Topologies 

are analyzed based on area, bandwidth, power consumption and average delay, and the best 

topology is selected. Similarly, various routing strategies, including shortest path and split 

path routing are analyzed to determine which yield the best throughput. Once a topology 

is selected, the XPipes Compiler [29) is used to instantiate SystemC models of the given 
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network. 

The SUNMAP method supports various topologies , including mesh, torus, clos and but­

terfly topologies ; as well , the topology library can be expanded to support other topologies. 

The mapping process goes through three phases for any given topology. In the first phase, a 

greedy algorithm is used to associate core graph vertices with topology graph vertices. The 

core with the largest communication requirement is placed at the node with the most avail­

able links, and subsequent cores are placed according to their communication requirements 

with the cores already selected. In the second phase, routes are generated for the various 

communication requirements in the system. During this phase the bandwidth requirements 

in the system are verified, by ensuring that the bandwidth of mapped communications on a 

given link does not exceed that link 's maximum capacity. As well , power and area estimates 

are obtained using power 1nodcls of the NoC cmnponents , and a built-in floor-planner. The 

power models are based on the architecture of NoC components, and is obtained using the 

ORION power modelling tool (27]. The final phase attempts to improve the results of the 

first phase by swapping pairs of cores in the topology graph, and evaluating the new topology 

as described in phase two. 

To handle irregular topology generation, Murali et al. present a method for generating 

irregular topology networks based on floor-plan information of the application (30]. The 

proposed method has two primary design objectives, minimizing power, hop count or a 

combination of the two. As well, it considers constraints such as wire-length, hop count, 

power consumption and area. Once again, the core graph is used, although the edges of 

the graph now consist of the information flow multiplied by their criticality. The proposed 

method generates a topology graph for a given application, as well as setting the link width 

and frequency of operation of the generated network. The algorithm itself iteratively selects 

discreet frequency and link widths, and proceeds to build topologies based on the selected 

parameters. Topologies vary between one which has all cores connected to a single switch, 
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and one where all cores are connected to separate switches. Cores are placed relative to each 

other based on their bandwidth requirements, as specified by the core graph. All topologies 

in the range are then rated according to power consumption, area, wire-length, and hop delay 

(as with the SUNMAP method, device models are used to obtain area and power estimates). 

Bandwidth constraints are treated the same as in the SUNMAP system; however, the link 

capacity here is defined as: frequency_of _operation x link_width. 

Although both proposed methods target aspects of embedded system design, by analyzing 

power consumption and area of potential NoC designs, neither dedicates enough attention 

to the information throughput requirements of on-chip systems. Both methods propose to 

meet a core's throughput by ensuring that links on a communication path have an equal or 

larger capacity. However, this analysis method does not take into account the transaction­

based communication methods of on-chip components, or the overhead present in converting 

data for transmission through a network. The irregular topology methodology determines 

link bandwidth based on link width and frequency, as described above; such an approach 

ignores the delay present in the switch due to arbitration and forwarding, and is valid 

only in situations with no contention. Neither method accounts for the fact that during a 

transaction, as much as half of the information sent is not actual data but rather additional 

information (address and side-band information [13]), which means that some of the available 

bandwidth will be dedicated to information other than the core data in any transmission. 

Both methods can attempt to minimize hop delay, but neither method sets hard constraints 

on the actual time delay of a transaction. Finally, neither method explicitly considers the 

effect of network interfaces, either on power, area or delay during topology generation. 
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3.2.2 Tile-Oriented Design Methods 

Hu and Marculescu present a method of mapping applications to regular network topologies 

based on their power consumption in [31]. The proposed method targets tile-based systems, 

where each tile consists of a processing element and a router used for communication. The 

authors make use of an energy-per-bit power model to determine the energy costs of the 

various communication requirements, and propose a mapping algorithm to the underlying 

topology which minimizes the over-all power in the system, while meeting the communica­

tion requirements of the on-chip cores. The bandwidth constraint is enforced by ensuring 

that the volume of communications mapped to a given link does not exceed the link's max­

imum capabi'lity. The potential solution space of core to tile mappings is represented as 

a tree structure, and a branch and bound algorithm is used to explore the solution space 

intelligently. 

The authors further expand their energy-aware mapping process in [32] by incorporating 

scheduling into the mapping process, both of the tasks of a given application as well as the 

communication of the application. Once again, a tile-based platform is targeted, consisting 

of a processing element and a network router to manage communication. In addition, the 

authors assume that support exists for the execution of multiple tasks per processing element, 

and that communications can be initiated at specific times; these assumptions are based on 

the existence of an operating system at each processing element. The proposed scheduling 

method assigns tasks and communication slots to specific processing elements based on the 

variance of a tasks execution time and power consumption for various elements. Once all 

tasks are assigned, a repair process attempts to move tasks in the system so that the number 

of missed deadlines is minimized. 

Ogras and Marculescu present a method for generating hybrid network topologies, neither 

totally irregular nor totally regular, in [33). The method adjusts 2D mesh topologies by 
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introducing long-range links into the system, in order to generate "small world" effects in 

the system (a reduction in overall latency especially amongst far-off components). The 

algorithm implementation takes as input a description of the application in the form of 

communicating cores mapped to a mesh topology. Based on the frequency of communication 

between components, switches in the system are selected as recipients of an additional long­

range link. The aim of the algorithm is to 1naximize the critical network load, defined as the 

load at which the network enters a congested state. To determine this value, the algorithm 

uses an analytical approximation method based on the communication frequency of cores 

and the latency of contention-free packets. As well, because the addition of links changes 

the topology of the system, the method also generates new routes for various packets so that 

the system remains deadlock-free. The new route is based on x-y mesh routing and makes 

use of the available long-range links when they do not generate cyclical dependencies in the 

network. 

Finally, Hu et al. propose a technique for sizing local buffers in on-chip routers with 

the aim of improving performance under a given area budget [34]. The proposed approach 

is, once again, aimed at tile-based system, assuming that all nodes consist of a processing 

element and a dedicated router; as well, the work assumes that some local storage exists in 

each processing node, in the form of a local memory, which is used to store packets before they 

enter the network. A packed-switched system is assumed, rather than wormhole-switched; 

this allows each packet to be treated as an atomic, independent entity during analysis. The 

method works by starting with each channel having buffering space for one packet, then 

proceeds to identify congested channels (which become potential bottle-necks) and increases 

the available buffer space on these channels, until all available buffering space has been used. 

To identify which buffers become bottle-necks, the entire system is modeled as a queue-based 

model. Queue Theory is then used to determine those input buffers which become full, based 

on the injection rate of packets specified by the application. The proposed Inethod is found 
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to yield the best results when non-uniform access patterns are present in an application. 

All three 1nethods examined above target very specific tile-based architectures, similar 

to those found in high-performance parallel computing. All three works seem to assume 

a distributed memory architecture, although only the last work examined explicitly states 

this to be the case. These assumptions limit the use of the proposed methods for on-chip 

applications, since such architectures are rarely implemented due to cost and performance 

constraints. In addition, none of the three works take into consideration the heterogenous 

nature of on-chip components, except in the form of varying packet injection rates and 

target destinations. This is particularly problematic in the case of [32), where the authors 

assume all nodes in the system contain some form of operating system. Such an assumption 

is acceptable for general processors or DSPs, but not for dedicated hardware units, DMA 

units, I/0 controllers or memories. The diff'erent behaviors of possible embedded components 

is not considered, and a message-passing application model seems to be assumed. Similar 

to other analyzed works, the methods do not take into consideration the specific behavior 

on on-chip systems, in particular the use of transaction-based communications. Finally, the 

power models presented in [31, 32] are based on a power-per-bit analysis method. However, 

the authors do not explicitly take into consideration the data overhead due to transactions 

and the network itself. 

3.2.3 Irregular Topologies Based on Optimization Methods 

Sirnivasan et al. propose to solve the problem of NoC generation by treating it as a pure 

optimization problem, and propose a design methodology based on Integer Linear Program­

ming [35]. The authors use a Communication Trace Graph to characterize their application 

prior to the generation of a network on chip [36]; this data structure is similar to the core 

graph mentioned in [27]. The proposed method has the primary aim of minimizing power 
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consumption, area and hop count between on-chip cores. These three parameters are in­

corporated into an objective function to be minimized. As with any optimization problem, 

certain constraints are placed on the solution space, as dictated by the problem at hand. In 

this case, the constraints consist of the bandwidth capabilities of input and output ports, 

the total area of a proposed solution and the aspect ratio of a given solution. The NoC 

generation engine incorporates power and area models of switches and links, and makes use 

of a floor-planner to generate early area and power consurnption infonnation. 

The proposed method works by arranging cores in a layout in such a way as to minimized 

area, and places potential network switches on the boundaries of various components; each 

component is the.n uniquely mapped to a specific router. From this first step, redundant 

routers are el!minated. The remaining routers are connected amongst each other and to IP 

cores such that the objective function is minimized and the constraints are met. Routes 

are generated during the connection process, and the bandwidth constraints are verified by 

ensuring that the sum of required bandwidths present on at a given port is less than or equal 

to its bandwidth capability (a similar process was used in (27, 30]). Deadlock is avoided by 

the introduction of Virtual Channels at a later stage in the design process. By using the 

floor-planner, the proposed method can determine area estimates, as well as the length of 

various links, and therefore, the power consumed in said links. 

The authors also present an updated topology generation method which uses approxima­

tion methods to generate topologies (37]. As with the original method, the process consists 

of two steps: a mapping stage and a connection stage. During the mapping stage routers 

are placed at the four corners of a given core, and the core is mapped to one of the routers 

on it's boundary. The aim of this stage is to minimize power consumption in routers, and 

the connection between two routers is abstracted as a point-to-point link. The authors treat 

the problem as a min-cut max-flow problem, and solve it by sub-division (the x-coordinate 

location of routers is found first , then the y-location). The connection stage, during which 

28 



the topology is generated, is solved using Integer Linear Programming methods with integer 

relaxation, which allows the authors to generate results which use, at most, twice as many 

routers as the optimal solution. The authors show that the proposed method generates 

close-to-optimal solutions in far less time than an exhaustive method [35]. 

Finally, Srinivasan and Chatha propose a method for generating topologies for guaranteed 

throughput NoC Architectures referred to as SAGA [38]. Unlike their previous work, this 

method makes use of a genetic algorithm to generate topologies, with each solution being 

represented by a three-level hierarchy. The highest level in the hierarchy stores the number 

of routers in a solution, the second level stores potential mapping of router ports to cores, 

and the third level stores various communication traces for the cores in the system. In 
I 

addition, since the proposed method targets guaranteed throughput networks (such as those 

seen in [20, 25]), a schedule of packets at each port in the system is generated; the Earliest 

Deadline First method is used to create these schedules. Each communication requirement 

between components is characterized by the number of flits sent, the period requirement in 

clock cycles and the deadline in clock cycles. The NoC topology generator attempts to 1neet 

these requirements through scheduling and topology selection. 

Similar to [27, 30], the work presented here targets area and power consumption. How­

ever, once again, the throughput requirement is reduced to a bandwidth inequality which 

ignores the overhead present in transaction-based communication and packetization prior to 

transmission over the network, as well as the time overhead of multi-hop communication. As 

well, the role of network interfaces is ignored (in terms of delay, area or power consumption); 

the process of mapping cores to specific switches in [37] implies the assumption that switches 

have special, dedicated ports for connections to cores, but this is never explicitly stated. In 

addition, the authors make certain assumptions regarding regular topology networks, such 

as the fact that mesh topologies must conform to grid placement during layout, which are 

not necessarily true; a mesh topology is primarily characterized by its connectivity, and an 
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example of a mesh floor-plan that does not follow grid alignment is shown in [19]. Finally, 

in the case of SAGA [38], communications between components are characterized by the 

number of flits, their period and their deadline, in a manner similar to the description of 

tasks requirements in a data flow graph. However, this approach does not address the fact 

that the flits are associated with transactions; the deadline and period of transactions is 

not considered in the presented work. As well, the authors do not discuss the effect that 

scheduling has on the over-all transaction throughput of the connected cores. 

3.2.4 Additional Research Projects 

ASNoC 

Xu et al. propose a design method for application-specific NoCs based on hierarchical net­

works of cornmunicating cornponents [39]. As opposed to design flows presented thus far , 

this system takes as input a behavioral specification of the target application (presented in 

some high-level language such as SystemC or C), and an architectural description of the 

computation nodes available in the system. The design flow then distributes the application 

behavior onto the available computational units, and generates a distributed memory model, 

which will then be converted to a distributed shared memory model. The design process 

then goes through five stages. In the first, communication traces of the application are ob­

tained, either through simulation or from statistical models. Secondly, the NoC topology is 

generated for the given communication pattern. Third, area estimates are obtained based 

on library models of the NoC components (switches, network interfaces and links). In the 

fourth step, a network simulator ( OPNET) is used to simulate the proposed system and 

obtain performance results of the given application (both network performance and appli­

cation performance). In the fifth and final step, power estimates are obtained based on a 

library of power models of the components and the activity measurements obtained from the 
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simulator. 

The topology generation process (stage two) takes as input the communication infor-

mation obtained from the first stage, in the form of a communication graph; the vertices 

represent computation nodes, while the weighted edges represent communications of a given 

volume between nodes (similar to a Core Graph [27]). The topology is generated using a 

recursive process, which subdivides the graph into smaller graphs using k-way partitioning; 

each sub-graph has an associated cost, based on the volume of local communication (where 

both source and sink are in the same sub-graph) as well as inter-network communication (the 

source and sink are in separate sub-graphs); the two types of communications are weighted by 

their cost in cycles. The set of sub-graphs with the smallest associated cost is selected as the 

final topology. At the same time, the individual memories used during the communication 

trace extraction are merged into a dist~d shared memory. 

Unlike previous works, the process proposed here does not use the bandwidth inequality 

method discussed above in the design process. A topology is judged based on relative 

improvement compared to others, but no hard requiren1ent is enforced during the generation 

process. Having said that, the proposed method does attempt to minimize over-all latency 

in the system by grouping components with large communication in the same sub-network. 

In addition, the proposed design method models a given application in terms of con1putation 

units with distributed memories; even after the memory space is merged, the architecture 

is still distributed. As such, the design flow does not take into consideration low-level 

interactions, such as a processor updating its cache from a memory unit somewhere in 

the system. Finally, a macro-network simulator is used to estimate the performance of 

a given solution; the simulator is augmented to permit it to more accurately handle on­

chip communication aspects. However, no mention is made of wether the simulator models 

communication as being transaction-based (a low-level view of the communication process, 

but appropriate for on-chip systems), or message based (a higher-level view of communication 
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often encountered in parallel computing systems, which are generally based on distributed 

memory architectures). 

Minimum-Contention NoCs 

Ho and Pinkston propose a design method similar to that presented by Xu et al., in that 

a given application is first analyzed to determine its access patterns, and a network is then 

generated around these patterns [40]. The design flow assu1nes that all resources in the 

system are processors communicating with each other, and that each processor is executing 

one process only. Each processor has its own network interface, but multiple such interfaces 

can connect to each switch. The authors present models for time and path conflicts of 

messages present in the system. Time conflicts occur when messages content for the same 

resource at the same point in time, while path conflicts occur when a message may use the 

same resource as other messages. By ensuring that any potential conflict is either temporal 

or path-based due to routing, but not both, contention-free communication can be achieved. 

By keeping the number of messages that fall in both sets to a 1ninimum, minimum contention 

in the system is achieved, with the absolute minimum being no contention. 

The proposed design method begins with the analysis of a given application to determine 

the sets of contention messages and the contention periods of such messages. The system 

then proceeds to generate the network topology which includes the connection of processors 

to switches and the number of links between various switches. The topology generation 

process is iterative in nature, and begins by connecting all components to a central switch 

(a cross-bar). The switch is then partitioned sequentially until design constraints (such 

as maximum switch size) are met. At each stage in the process, the minimum number 

of links between switches is found using a graph-coloring process combined with simulated 

annealing for the placement of processors in the system. At all times, the aim of the system 

is to arrange matters so that no contention occurs between messages. The proposed method 
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was compared to a fully-connected cross-bar, as well as mesh and torus topologies , using a 

collection of scientific applications, and was found to perform better than almost all, thanks 

to the elimination of most contention in the system. 

The primary shortcoming of the proposed method is that it is applicable only to a small 

set of systems consisting only of processing elements (such as chip multi-processors). As well, 

message passing is assumed to be the fundamental method of communication, even when 

shared memories are used; this eliminates some of the complexity present when transaction­

based communication takes place, and ignores the additional over-head of such methods. 

Finally, the rnethod is t ested using scientific applications, cornrnonly encountered in the field 

of parallel computing; however, such applications generally do not have hard requirements 

placed on their completion time (and therefore on the performance of the network). In 

contrast, many embedded on-chip applications, in particular in the field of multimedia and 

networking, have strict throughput requirements of one sort or another (such as the number 

of frames decoded and displayed per second, or the number of packets processed per second). 

Binary Tree Hybrid NoC Designs 

Jeang et al. present both a potential NoC platform as well as a design approach for said 

platform in [41). The proposed NoC architecture is a hybrid design, incorporating both local 

interconnects in the form of buses, cross-bars or multi-layer interconnects, as well as NoC 

switches for communication amongst local networks. A binary tree is used as the NoC topol­

ogy, with each internal node being a switch and each leaf node being a local network. The 

NoC implements a wormhole-switched architecture, using asynchronous messaging between 

routers to transmit information. The switches themselves use a priority-based arbitration 

method in the case of contention over an output channel. 

The design method for the proposed interconnect starts by grouping cores together into 

local networks; cores are grouped into such a network if their communications can be ar-
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ranged to be temporally disjoint. Once this initial grouping is performed, a graph can 

be constructed where each node represents a bus system and each edge represents a com­

munication requirement. The edge weights represent the communication ratio (similar to 

volume requirements in a core graph) between two local networks, and are specified by the 

user. Based on this graph structure, switches are generated and connected appropriately by 

grouping the local networks with the largest communication ratios together. 

The proposed method is novel in its attempts to leverage communication locality, but 

does not enforce any hard requirements on achievable throughput or latency; as such, it may 

not be well suited for applications with hard performance requirements. In addition, while 

the authors presept detailed information on the implementation of the switch architecture, 

they do not tiescribe the interfacing mechanism that converts bus data (or cross-bar) to 

the format required by the network. More importantly, they do not describe the transition 

process between the synchronous domain of the local network and the asynchronous domain 

of the switches. 

Other Approaches 

Ascia et al. present a mapping procedure based on genetic algorithms, which can be used 

to map the cores of an application onto a mesh architecture (42]. The proposed method 

distinguishes itself from others in that the obtained results contain all mapping solutions 

present in the pareto set (42] of a given application's solution space. In this way, the process 

attempts to present the solutions that best balance various design goals (in the current 

case power consumption and latency). The authors use a simulation engine to determine 

the performance and power metrics of various mapping solutions. The genetic operations of 

cross-over and mutation are altered for the given process, so that both operations attempt to 

reduce latency and alleviate congestion in the system, while maintaining the random aspect 

of these operations. The proposed methodology is compared to methods based on those 
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proposed in [28, 31], but adjusted to find pareto-optimal solutions. 

Zhou et al. also propose a procedure for mapping application cores onto mesh topologies 

using a genetic algorithm [43). However, unlike the previous method, in this case only average 

latency is considered as a fitness function in the system. The authors use queue theory to 

analytically compute the average delay of a given solution, based on the packet injection 

rate at various nodes. The solutions themselves are represented as strings, and employ a 

relational form, determining the relationship of cores in the topology. 

Papadopoulos et al. present a method for the generation of optimum NoC systems which 

operates on both the application being deployed and the NoC structure itself [44). The 

method relies on the optimization of dynamic data types in the application, in an attempt 

to tailor parameters such as memory accesses in the system. Once the optimization process 

completes a set of pareto-optimal points are used to simulate the application in various 

NoC implementations. The authors make use of an updated form of the NOSTRUM NoC 

simulator [45), and consider various parameters such as topology, routing method and packet 

length. The application is distributed in the form of threads onto the NoC topology, where 

each node in the topology is a processing element with an associated switch. 

As with previous methods examined here, however, the work proposed does not take into 

consideration the specific communication method used by on-chip systems. In addition, the 

method does not explicitly set any hard constraint on the perforn1ance aspects of a generated 

mapping; the generated solutions attempt to balance performance with power consumption, 

but in so doing may not meet the communication requirements of the targeted application. 

3.3 Conclusion 

The past chapter has introduced the NoC concept and some examples of its possible imple­

rnentation. These exarnples include regular and irregular topologies, best effort and guar·an-
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teed bandwidth methods, and various forms of routing procedures. The chapter also includes 

a review of automated design methods proposed for the field of NoC design. These methods 

generally target topology generation or mapping of an application to a regular topology. 

Many incorporate detailed models of power consumption and area, in an attempt to opti­

mize these parameters. However, an underlying feature of most design methods having been 

proposed is the use of high-level communication models, as described in Section 2.3.2. Such 

rnodels are adequate in the field of parallel cornputing and wide-area-networks, but are not 

always appropriate in on-chip situations. 
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Chapter 4 

Transaction-Oriented NoC Design 

This chapter presents the actual design and analysis n1ethod being proposed, and its imple­

mentation. The chapter is divided into four sections, dealing with the actual objective of 

the method being proposed, the over-all structure of the implemented program, the topol­

ogy generation process and the topology analysis process. The reason for so many sections 

is that the system incorporates the topology analysis method into the topology generation 

method, depending on the topology generation algorithm being used. This permits iterative 

improvement of topologies based on predicted performance, but also makes the program 

structure more complex. 

4.1 Method Objectives 

The main aim of the design and analysis methods being proposed is to generate application­

specific network topologies for N oC interconnects, and to determine at what operating fre­

quency the interconnect must run to actually meet the comn1unication requirements of the 

application. Network analysis is included because no interconnect design can be complete 

without it. A shared bus could be used in many cases to meet com1nunication require-
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ments if it could operate at very high speeds compared to the cores it connects. Because 

of this, the method described here attempts to generate a topology which will minimize the 

recommended operating frequency of the interconnect. This generally leads to a reduction 

in the power consumed by the circuit, as switching power is proportional to the switching 

frequency. By attempting to reduce the recommended frequency, the method will also help 

conform to physical limitations present in current on-chip manufacturing technologies. 

In the current case, the term application-specific refers to the generated topology, rather 

than other parameters that can be altered for specific applications, such as the link width of 

the network, flow control or buffering methods. For a more detailed list of such parameters 

one can consult a. number of other works [4, 5]. The proposed algorithm generates two types 

of irregular topologies, both of which have the aim of minimizing latency between components 

and utilizing a minimum number of network resources. The remainder of this sections covers 

two important preliminary aspects which must be addressed before describing the actual 

design and analysis method. Section 4.1.1 describes the supported network model; this is 

the underlying structure that the topology generator assumes of the network. Therefore, the 

proposed method should only be used for these types of networks. Secondly, Section 4.1.2 

formally defines the input and output data structures of the method being implemented. 

4.1.1 Supported Network Type 

Given that many NoC systems have been proposed [4], it is important to establish what NoC 

type the generator targets; the behavioral characteristics and permissible structures of the 

topology will be dictated by the NoC type. The topology generator being proposed targets 

best effort, packet switched NoC systems, using wormhole switching [4, 5]. Static, look­

up table based routing is assumed, with route tables embedded in the header flits of each 

packet (source routing) [19, 20]. No virtual channel support is assumed, and deadlock-free 
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operation is ensured through the topology and route selection. These features are selected 

as they reduce the complexity of the NoC component parts, as well as the area requirement 

of components; in particular, wormhole switching and source-based routing ensure that the 

switches in the system do not require large buffers or look-up tables. Selecting designs that 

minimize complexity and area favors on-chip implementations [4, 19, 20]. 

On-chip components access the network using Network Interfaces (NI), which perform 

transaction conversion into a format supported by the network (packetization). Separate 

NI types exists for master and slave interfaces, and it is assumed that a component with 

both master and slave capabilities will make use of two network interfaces. This makes the 

network interfaces less complex, and can increase performance. Point-to-point connections 

can be established between the Nis and switches, as well as two Nis of opposite type (master 

and slave). This allows simple point-to-point links to be created even if the core interface 

does not natively support this feature. A transaction is converted into a packet composed 

of a fixed number of flits; currently, in the case of burst transfers, it is assumed that each 

burst beat is converted to a separate packet. 

The switches have the sole role of transferring data through the network. Each switch is 

composed of a fixed number of ports, where each port consists of an input port and corre­

sponding output port. The point-to-point links between NoC components (switch-to-switch 

as well as switch-to-NI) are composed of two unidirectional channels, which together make 

up a link. Stop-Go flow control [5] is assumed on the links, as it is the simplest form of flow 

control. Switches are assumed to be capable of perforn1ing arbitration and forwarding data 

independently for every output port, meaning that each output port has its own dedicated 

arbitration and forwarding unit. Round-robin arbitration is currently supported by the sys­

tem performance analyzer. The arbitration method impacts the perceived performance of 

each core in the system. It is assumed that the implemented network will have one global 

clock, although the cores connected to it need not share the sarne clock [14]. This specifica-
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tion is important, as the analysis method will assume that only one clock is used throughput 

all network devices, allowing for their synchronization. 

4.1.2 Method Input and Output 

Application-specific NoCs must be tailored to the characteristics of a particular application, 

meaning that the application must be characterized in some way for the topology generator. 

At the same time, not all aspects of an application are as important from the communica-

tion infrastructure point of view; only the communication characteristics of the application 

matter. There are multiple ways of describing such communication characteristics, starting 

with high level descriptions of a given application (such as a task graph). However, the 
I 

generated N oC must meet the communication characteristics of the actual components in 

the system, as opposed to behavioral requirements of the algorithm. For this reason, the 

Core Graph was introduced and used in NoC topology generation [27, 28]. The core graph is 

a representation of all communicating components present in a given application, including 

processors, dedicated hardware, memories, 1/0 controllers and others. The core graph is 

formally defined as a graph structure C where: 

• Each vertex vi E V represents an on-chip component interface (either master or slave). 

Components with both master and slave interfaces are represented using two vertices. 

• Each edge ei,j E E represents a communication requirement between interfaces i and 

j (one of the interfaces is a master, while the other is a slave). The weight of each 

edge, w(ei,j) represents the volume of information transferred between i and j, in bits 

per millisecond. As well, each edge is characterized by the information payload per 

transaction, information flow (read or write) and burst support. 

The core graph represents each core by its communication interface. If a core can both 

initiate and receive information, then it is assumed that it will have separate master and 
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slave interfaces. This process is common in most embedded systems, as most standard on­

chip interface protocols distinguish between master and slave interfaces [7, 13, 14]. The core 

graph C of an application is provided to the topology generation and analysis program in 

the form of an input file, and is then used by the program to generate a topology. 

A second input file is used to specify the additional parameters of the network structure 

being developed. Section 4.1.1 described the basic network parameters that are assumed 

by the method; however, there are additional parameters that can be specified for such 

networks: 

• Number of flits per transaction. 

• Arbitration delay of a switch. 

• Forwarding delay of a switch. 

• Packetization and de-packetization delay of a Nl. 

• Maximum possible number of ports per switch. 

These are implementation based parameters, and can vary from network to network, or even 

from implementation to implementation of the same network [29]. 

Given a description of an application and specific details about the target network, the 

desired output consists of a topology description and a specific clock frequency of operation 

that allows the network to meet the application requirements. The network topology is 

represented (both inside the program and as output) using a graph structure referred to as 

a Topology Graph T, and formally defined as: 

• Each vertex rk E R represents a resource item; the vertices are sub-divided into two 

categories as follows: 
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- The set of network interfaces ik E I represent the network interfaces present in 

the network. There is a one-to-one mapping between every interface in the core 

graph and the set I. 

- The set of switches sk E S used to connect the various network interfaces. 

• Each edge lk 1,k2 E L represents a pair of unidirectional channels which form bidirec­

tional links between the network resources. 

The topology graph distinguishes between switches and network interfaces. This allows a 

topology to be represented more accurately, both in terms of its structure as well as its 

performance. In dedicated, low-latency topologies the packetization and de-packetization 

processes of network interfaces can account for a considerable fraction of the over-all delay, 

and must therefore be taken into consideration. 

Associated with every topology is a route record, which describes how data will move from 

one component to another through the network. The record consists of a series of entries for 

every master interface in the system, describing routes for all possible transaction targets of 

the interface in question. Each entry consists of an enumeration of vertices from the topology 

graph, starting with the switch directly connected to the current NI (corresponding to master 

interface in the system) and ending with the NI of the destination core (or interface, if the 

destination core has both master and slave interfaces). 

4.2 General Program Structure 

The proposed NoC design method creates a custom topology for a given application based 

on performance parameters for that application. The analysis method being proposed is 

incorporated into the topology generation process to provide feedback. This makes the 

prograrn structure rnore cornplex than a sirnple two-stage irnplernentation where the first 
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stage generates the topology and the second analyzes it. In addition, two topology generation 

algorithms are proposed. Both algorithms are heuristic in nature, and either one, in isolation, 

may not always be effective for all encountered applications. For this reason, both methods 

are available, and the user can select which type of topology to generate at the start of the 

program. The differences in generated topologies , and the criteria for algorithm selection 

will be discussed in more detail in Section 4.3.3. 

Figure 4.1 shows a high-level flow diagram of the design and analysis process, which starts 

with the user selecting the type of topology to be generated. The two topology types will be 

described in further detail later. Once the topology type is selected the program proceeds 

to its main processing stage, where the topologies are designed and analyzed. The design 

process is based around two component steps: generation of a topology graph and analysis 

of the graph. Depending on the topology type, this process may be repeated iteratively, 

meaning that the topology graph can be generated based on an earlier version of that graph. 

The same analysis method is used for both topology types, which is why it is discussed 

separately. In fact, the analysis engine can be used in isolation to simply analyze any 

proposed system, by supplying it with a core graph, associated topology graph and route 

table. Once a topology is generated and analyzed, the resulting topology graph, operating 

frequency and route tables are output to the user. 

Figure 4.2 shows the structural implementation of the proposed method. The main com­

ponent of the program is the generator object, which incorporates core and topology graphs 

which it operates on. The program also incorporates a set of requirement data structures, 

which are constructed based on the core graph and used during topology generation. The 

analysis engine is incorporated into the generator object as part of its method set, and oper­

ates on the topology graph and requirement data structures. As long as topology and route 

information exists, along with a set of requirement structures (derived fro1n the core graph), 

the analysis engine can bypass the topology generation algorithms and be used by itself. 
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Figure 4.1: Main Program Flow 

This allows the engine to be used either as a system analyzer or as a topology generator and 

analyzer. 

4.3 Topology Generation 

The topology generation algorithms are designed to meet two goals: to create a physical 

connection for all required communication paths, and to reduce the required frequency of 

operation of the interconnect. The first requirement is simple to meet , while the second 

requires some analysis , based on the information presented in Section 2.3.2. Equation 2.2 

specifies a latency requiren1ent for all communications in a system, and Equation 2.1 specifies 

its component parts. If a communication path has a high required throughput, it will have 

a low associated latency requirement. The slave processing speed cannot be changed at this 

point, so the only remaining improvement area is the transport latency of the interconnect 
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Figure 4.2: Main Program Structure 

itself. The passage of a transaction packet through the interconnect has an associated latency 

in cycles, based on the implementation of the network and its topology. Topology plays a 

part because each hop in the network will add additional latency to a packet. Based on the 

architectural design of the network components, each transaction will have an associated 

clock cycle latency, meaning that the forwarding of information in the network will take a 

set number of clock cycles to complete. Given a latency in clock cycles, the associated time 

unit latency is computed as follows: 

1 
Lattime = Latcyc · F 

op 
( 4.1) 

Above, Fop represents the interconnect operating frequency, Latcyc represents the clock cycle 

latency of a transaction, and Lattime represents the time latency of a transaction, in seconds. 
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Given that Lattime has a fixed maximum above which communication requirements are no 

longer met, the aim is to minimize this value. This can be done either by increasing Fop, 

which cannot be done indefinitely (because of physical limitations such as delay and noise, 

as well as added power consumption), or by reducing Latcyc· 

The ideal situation would be to have minimum hops between all components; this is 

the fully-connected crossbar. Reducing the number of hops is important because in an 

on-chip network each hop has an associated processing delay, even in wormhole systems 

that operate in a pipelined fashion. In such cases we are assured that all communication 

paths have minimum latency, by introducing only 2 hops between source and destination. 

However, such solutions can be come prohibitive in terms of area [4, 5]. A second approach 

is, then, to identify the communicating components with the largest required throughput 

and the smallest associated latency requirement, and attempt to minimize the Latcyc they 

encounter. This allows the operating frequency of the interconnect to be reduced despite the 

fact that some communication paths experience high latency, because the paths in question 

do not have large throughput requirements and can operate with such latencies. 

The two algorithms presented below attempt to do this in two different ways, by generat­

ing and operating on topology graphs. Both algorithms start by creating an initial topology 

which is then adjusted to meet various requirements. However, as shall be seen, the initial 

topology and adjust1nent methods differ for the two algorith1ns. Two algorithms are pro­

posed to account for variations in the application core graph. While it has been found that 

in most instances the two generated topologies offer similar performance, there exist cases 

where one approach is superior to the other. 

Both algorithms start by simply providing physical connections for the required com­

munication paths, and then adjust the generated topology to improve selected connections 

or meet specified requirements. Since both algorithms start with minimal topologies that 

only provide a communication path they reduce the required number of network compo-

46 



nents being used. While in a parallel computing environment such an approach would not 

be beneficial , due to the communication characteristics of the components and the nature 

of the applications, it is convenient for on-chip systems. Because of how communication 

occurs in transaction-based on-chip systems (see Chapter 2.3.2), aggregated bandwidth is 

not necessarily useful, as transactions are generally centralized to the slave interfaces in the 

system. In such cases, having multiple paths to a destination will not really improve matters, 

as transactions will still interfere with each other at the destination network interface (more 

on this in Chapter 6). 

4.3.1 Algor.ithm 1: Point-to-Point Oriented Topologies 

The main steps of the point-to-point oriented algorithm are shown in Figure 4.3, and consist 

of an initial topology generation phase followed by iterative steps which aim to improve 

the system topology. At each iteration, the system is analyzed, and the required operating 

frequency is derived; thus, the analysis process is invoked multiple times for this algorithm. 

The algorithm is referred to as Point-to-Point Oriented because the initial topology resem­

bles a point-to-point communication infrastructure, with network components being used to 

implement the underlying signaling and multiplexing of paths. 

The initial topology is generated by closely following the structure of the core graph. A 

three step process is followed, as described below: 

1. For every master or slave interface in the core graph, insert one network interface in 

the topology graph. 

2. Add one switch for every vertex Vj in the core graph with more than one incident edge, 

and connect the switch to the network interface ij corresponding to Vj· 

3. Finally, connect the network interfaces amongst themselves or to various switches so 

that the required communication paths are created. 
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Figure 4.3: Point-to-Point Oriented Algorithm 

The above process implements point-to-point links amongst communicating interfaces using 

NoC components. Switches are used to multiplex amongst multiple incoming links (hence 

step two). The above process results in a topology consisting of network interfaces, with 

switches present only where required for multiplexing; sources and destinations are separated 

at most by three hops in the network. Each switch added in the initial steps has an associated 

correspondence with a master or slave core in the core graph, which is stored in the topology 

graph vertex object. 

Once the initial topology is created, the iterative process attempts to reduce the cycle 

latency of high throughput paths. This is done by merging switches in the system, so that 

the hop count can be reduced. The switch pair to be merged is selected using the following 

algorithm: 

1. For every switch vertex in the topology graph compute the total aggregate traffic pass­

ing through it, in transactions per millisecond. Omit from this computation vertices 
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added during a partitioning process. 

2. Select the switch with the highest aggregated traffic that corresponds to a master 

vertex in the core graph. This will be the first merger target. 

3. Find the switch that has the largest transaction traffic to the first merger pair. This 

will be the second merger target. 

4. Merge the two target switches. 

The above process is shown in Figure 4.4 below, where two switches are merged to reduce 

delay in the shown paths. 

Figure 4.4: Example of a Switch Merger 

Once the two switches are merged, a second structural change must be n1ade: if the re-

sulting switch exceeds the port limit, it will have to be partitioned into two smaller switches. 

A possible way of avoiding this problem would be to merge only switches that are small. 

However, by merging two switches and then partitioning the resulting switch again, it is pos-

sible to generate an improved topology, from a latency point of view, as will be described. 

During the partitioning process, a new switch vertex is added to the topology graph, con­

nected to the switch that must be partitioned. Then, edges are transferred from the original 

switch to the new switch until the port count requirernent is satisfied. If the original switch 
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was extremely large, it will have to be partitioned into more than two switches. In this 

case, more vertices are added to the topology graph, and edges are moved until the port 

requirement is met. The selection of edges to move is important; moving the wrong edge 

will invalidate the merger process. In addition, it isn't enough to select the edges with the 

smallest traffic flowing through them, since this traffic , though small, may originate from a 

core with large traffic requirements on other links. If a core has a high throughput require-

ment, it must experience small delays for all its transfers. Large delays to one transaction 

destination, even if such transactions are rare, can lead to that master device not meeting 

its throughput requirement. To avoid this situation, edges to move during partitioning are 

selected as follow~: 

1. For every link i connected to the switch to be partitioned, build a list Lnii of all 

network interfaces directly or indirectly connected to it. 

2. Find the biggest transaction requirement for every network interface in Lnii. Let the 

largest of these values be Tworsti, associated with port i. 

3. Select the port with the smallest value Tworsti and move this link to the new switch. 

When the merger and partitioning processes are performed together, the result is to reduce 

latency of select paths (those with high throughput requirements) at the expense of other 

paths. 

After the merger and partitioning steps are complete, the topology is analyzed, and the 

new frequency of operation is determined. If the recommended operating frequency has 

improved (i.e. is lower than previously) or remains the same after the above operations, the 

changes are made permanent, and the new topology once again undergoes the process. By 

allowing mergers that neither reduce nor increase the frequency of operation, the algorithm 

can reduce the number of resources used by a topology. The cycle stops once a topology 
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change results in an increase in the frequency of operation, or when no more merger targets 

can be found. 

4.3.2 Algorithm 2: Partitioned Crossbar Topologies 

The second algorithm is simpler in nature and operation than the first, and is based on the 

observation that the fully-connected crossbar is an ideal interconnect from the point of view 

of connection latency and connectivity, on-chip. However, as was stated previously, sys­

tems with multiple connected elements can require very large such topologies. The solution 

adopted by this algorithm is to subdivide such crossbars, thus maintaining the beneficial 

aspects for some of the connected cores. Given that the internal structure of NoC switches 

often consists of a crossbar interconnect in addition to buffering and arbitration [4 , 5], a type 

of cross-bar can be implemented using a network switch. 

Unlike the previous algorithm, this one is not iterative. It consists of three stages, the 

generation of an initial topology, the adjustment of said topology and its analysis. The initial 

topology is generated by creating a network interface for every vertex in the core graph and 

then connecting all interfaces to a central switch, thus achieving a fully connected cross-bar. 

To meet the port number requirements, the partitioning procedure described for the point­

to-point algorithm is used to move certain connections to secondary switches, hence the name 

partitioned crossbar. An example of the partitioning process is shown in Figure 4.5 below. 

Finally, when the port number requirement is met, the resulting topology is analyzed, and 

the results are presented to the user. 

4.3.3 Topology Comparison 

The partitioned crossbar algorithm may be considered less effective than the point-to-point 

oriented algorithm, given that it does not rely on feed-back from the analysis engine to 
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Figure 4.5: Example of the Switch Partitioning Process 

iteratively improve the topology. However, since the algorithm starts from the ideal case 

and works its way backwards it can mitigate this problem, provided that the partitioning 

algorithm works well. It will be shown that in most instances the topology generated this 

way yields similar performance when compared to the point-to-point algorithm. One of the 

main differences, apart from general structure, between the two algorithms is that the second 

will generally use less switches than the first, but each switch will be larger. If more than 

one switch is in use, all but one of the switches will have the maximum allowable number 

of ports, since the algorithm only moves links that are in excess of the maximum permitted 

port count. 

The partitioned-crossbar algorithm is more suited to applications that exhibit highly 

centralized communication patterns (a small number of components are transaction desti­

nations). In such situations, additional components are un-necessary, and the topologies 

generated by this algorithm are ideal. As well, this algorithm is guaranteed to generate two­

dimensional topologies (in that links never overlap). In contrast, point-to-point topologies 

are more suited to applications that contain large numbers of components, and distributed 

communication patterns. applications that contain components with single connections (for 

exarnple a pipeline with cornponents connected sequentially) will also benefit frorn point-to-
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point topologies, because in these cases Nis can be connected directly without the use of 

switches. 

4.3.4 Complexity of the Algorithms 

Having described the actual steps of the two topology generation algorithms, it is possible 

to determine their complexity in relation to the system input. This section analyzes only 

the steps described above, however; the complexity associated with the topology analysis 

procedure is difficult to accurately derive, as it is based on a number of separate parameters 

such as the core graph, topology graph and network requirements. The complexity analysis 

presented here is, itself, based on multiple parameters. The two primary input parameters 

are the number of vertices in the core graph, nv and the nu1nber of edges in the core graph, 

ne. The third input parameter that must be considered is the maximum permissible port 

count, nport· 

Since the partitioned crossbar algorithm is the simpler of the two, it will be the first to 

be analyzed. The algorithm is divided into two parts, the initial topology generation and 

the adjustment process. During the topology generation process, one NI is added and one 

link is made for every vertex in the core graph, which yields a complexity of O(nv)· The 

partitioning stage consists of sequentially moving links from the central switch to added 

switches. To select which link to remove, the partitioning algorithm described above must 

be used. In the case of a central switch, this means parsing all Nis in the topology graph, 

and yields an 0( n) complexity (this situation is a special case where all Nis are directly 

connected to the central switch). This partitioning process will be executed nv- Npart times, 

to account for the amount of links connected to the central switch in excess of the n1inimum 

port requirement. Therefore, the final complexity is O((nv- nport) · nv)· 

The Point-to-Point algorithm is more co1nplex in its structure. In addition, it relies on the 
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analysis engine for feedback. In the following analysis the analysis complexity is neglected, as 

it would make any complexity estimation difficult, given that the complexity of the analysis 

method is based both on the core graph as well as the topology graph and the communication 

requirements of the original application (the actual weights of all edges in C). Taking the same 

approach as before, the algorithm is divided into an initial topology generation phase and an 

iterative improvement phase. The complexity of generating the initial topology is 0(2nv+ne), 

based on the fact that a set of Nis and switches is created for every core (the worst-case 

scenario), and a number of links equal to ne is generated. In the worst case situation, the 

iterative merging and partitioning process occurs nv - 1 times, as all switches undergo the 

merger procedurE;. The merger process itself has 0(3nv) complexity as all switches in the 

topology are parsed at most three times during the process. Finally, the partitioning process 

occurs, but this time the worst-case complexity of the process is O((nv- nport) · n2
), as each 

connection to the current switch has to be expanded fully to determine the interface with 

the largest communication requirement. The complete complexity of the iterative process 

is, then, 0(3nv · (nv- 1) · (n; · (nv- nport))). 

Table 4.1 below summarizes the complexities of the two algorithms. Because of the heuris­

tic nature of the proposed method, both algorithms should have polynomial time complexity. 

However, the analysis method changes this to some extent. The partitioned crossbar method 

does not directly rely on the analysis method and can be said to have polynomial complex-

ity in all situations. The point-to-point algorithm trades this characteristic for improved 

topology generation. 

Table 4.1: Algorithm Complexity 
Algorithm I Initial Topology I Iterative Process 

Point-to-Point 0(2nv + ne) 0(3nv · (nv - 1) · (n; · (nv - nport))) 
Partitioned Crossbar O(nv) 0 ( ( nv - nport) . nv) 
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4.3.5 Route Generation 

Because of the relative simplicity of the topologies generated by the two algorithms, route 

generation is currently handled using a shortest path search algorithm through the topology 

tree. The routes are built based on the links found in the core graph, which specifies what 

communication paths exist in the system. The search process begins and ends with the 

source and destination network interfaces of the two cores involved. The search expands out 

from the source network interface, with all immediate neighbors added to a search list. Each 

tirne a vertex in the topology graph is added to the search list, that vertex is flagged, so that 

it cannot be added multiple times. The process continues to add vertices to the search list 

until the destination vertex is found. Then a back-trace process is used to build the route 

itself. 

The primary limitation of the above method is that, if the topologies become complex, 

the search process may not always find the minimum path. In addition , the route generator 

does not explicitly verify that deadlock is avoided in the system. The only feature which it 

incorporates to help against this situation is the fact that it does not allow vertices to be 

added to the search table more than once. Rather, it relies on the underlying structure of the 

generated networks to avoid deadlock situations (more on this in the next section). For this 

reason, this form of route generation is tightly coupled to the topology generation algorithm, 

and would not be appropriate in other situations. This is why, for regular topologies that 

incorporate the potential for deadlock, more complex generation methods are used [27]. 

4.3.6 Deadlock-Free Characteristic 

As with any network implementation, NoC systems can suffer from deadlock, livelock and 

starvation. The proposed topology generation method is built to avoid such situations; 

livelock is avoided by using only minimum-length paths, and starvation is elin1inated through 
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the use of round-robin arbitration on switch outputs [18]. This leaves deadlock as the 

only risk that must be handled. The topology generation algorithms incorporate deadlock 

avoidance in the structure of the generated topologies. The remainder of this section discusses 

this feature. 

The method used to analyze deadlock situations is through the use of the channel de­

pendency graph [18]. A sufficient condition for deadlock avoidance is to eliminate any cycles 

in a network's channel dependency graph. Because it is simpler in nature, the partitioned 

crossbar topology will be analyzed first, followed by the point-to-point topology. Since the 

partitioned crossbar starts by connecting all component Nls to a central switch, this situation 

should be analyzed first. All connections in a network are composed of two uni-directional 
I 

channels. It is assumed that a channel is composed of the output port driving it as well 

as the actual connection wires. Figure 4.6 A shows a network consisting of 4 components 

connected through a central switch. As can be seen, 8 channels exist in the network, be-

cause of the existence of two uni-directional channels in each link. Figure 4.6 B shows the 

corresponding channel dependency graph of the system. As the figure shows, no cycles exist 

in this graph, because half the channels are sources and the other half are sinks, and sink 

channels cannot directly access any other channels (they can only insert data to the input 

port they are connected to). Because send and receive channels are separated thus, the only 

way to generate cycles in the channel dependency graph is to create cycles in the topology 

graph. 

The second stage of the algorithm partitions the central switch, if necessary, by moving 

links from the central switch to a secondary switch connected to the central switch (as 

described previously). This process is shown in Figure 4.7 A, where a 4-port switch is 

partitioned. Figure 4. 7 B shows the resulting change in the dependency graph; the move 

simply introduces an additional, intermediate channel between the source and destination 

channel of any links that were moved to the adjacent switch. If the partitioning process is 
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Figure 4.6: Channel Dependence Graph Example 

repeated further, then additional channels will be introduced, but the dependency relation 

will not change. Another way of looking at this situation is to consider if the partitioning 

process can introduce cycles in the topology graph; currently, it cannot. 

Point-to-point topologies are more complex in structure. The initial topology is gener­

ated by following the structure of the core graph. If no cycles are present in the core graph, 

by observation of the algorithm described in Section 4.3.1 it can be seen that the resulting 

network topology will have no cycles. The iterative operations performed by the algorithn1 

are mergers and partitions. The above section shows why partitions cannot introduce cycles 

in the channel dependency graph. The merger process is essentially the revers of the parti­

tioning method, and does not lead to the creation of any cycles in the topology graph either, 

which means it does not create cycles in the channel dependency graph. 

There are situations, however, when core graphs can contain cycles. This happens when 

a number of master components communicate with the same subset of slave components. In 

such cases, the initial topology generated by the point-to-point algorithm can contain cycles, 

which will not be eliminated by the merger or partitioning procedures. In this case, deadlock 
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Figure 4. 7: Partitioning Effect on Channel Dependence 

avoidance is provided by the route generation process, which ensures that, during a search, 

each vertex in the topology graph can be added to the search list only once. This feature 

eliminates the possibility of cycles emerging. 

4.4 Topology Analysis 

Depending on the algorithm used, the network must be analyzed a number of times to 

determine its behavior. Because of this, the analysis method must strike a balance between 

how accurate the used network models are and the time required to analyze a given system, 

so that the overall process can complete in a reasonable time frame. In addition, because 

multiple components can actively communicate in the network, the analysis method must 

somehow incorporate this behavior. To address this problems, this section is divided into 

two parts, one covering the theoretical aspects of analyzing and predicting the behavior of a 

system, and the other describing the actual implementation of the proposed algorithm. 
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4.4.1 Theory 

The topology generator creates a topology for a given application, which is itself described by 

a core graph. The application can be thought of as a collection of components communicating 

with each other. The communication patterns of the components are known at the outset, 

and will not change during the lifetime of the application, a situation referred to as well­

behaved communication. The aim of the analysis method is to recommend an operating 

frequency that will allow the network to meet communication requirements of the application. 

In situations where only one master component generates transactions, such an analysis is 

easy to perform, based on equation 4.1. It consists simply of finding the communication path 

with the longest cycle latency, and ensuring that the associated time latency is less than the 

maximum time latency, as specified by equation 2.2. The operating frequency can then be 

computed based on equation 4.1 to yield a time latency small enough to meet the throughput 

requirement , as specified by equation 2.2 (generally the actual time latency should be less 

than the maximum permissible latency, to allow for processing delay in the slave). 

The situation changes when more than one master interface exists in the system. Now 

more than one device is injecting transactions into the network, which can interfere with each 

other, through contention. The effect of contention will be to add latency to transactions , 

as they will have to share resources. Because purely digital networks are being considered, 

modulation of two information streams on the same link is not possible in such cases. Two 

types of contention areas exist in the over-all application: network contention and exit-point 

contention. Network contention occurs inside network switches, as multiple transactions 

attempt to use the same output port; hence the need for arbitration in the output ports. 

End-point contention occurs when multiple transactions are aimed to the same target. At this 

point, transactions will have to wait for one another to con1plete. Both this situations add 

cycle delay to each transaction, from the point of view of a master component. To determine 
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• n represents the total number of entries in the current path. 

The above cycle delay corresponds to the delay experienced for a one-way traversal of a 

path. Equation 4.2 is based on the pipe-lined way in which flits traverse the network. Es­

sentially, the header flit will experience a set delay, based on the number of stages (switches) 

in the path, and the arbitration delay at each stage. The rernaining flit s are forwarded au­

tomaticallyj and will arrive at the destination once per cycle after the first header. A single 

write transaction would experience a delay of Llcyc + DP , where DP represents the slave pro­

cessing delay. In the case of a burst, each burst beat would experience the same delay and an 

n-beat burst transfer would accomplish n payload transfers, so the per-transaction latency 

remains the same. This assumption holds if burst beats are encoded into single packets. 

In the case of read transfers and read bursts, the latency formula changes. During read 

transactions, a request packet is first sent by the master device, and some time later a stream 

of response packets is sent by the slave device back to the master, who is waiting for the 

response [46]. For this instance, a per-transfer cycle latency (LRlcyc) is computed using the 

following equation: 

(Llcyc + (Dp + L2cyc) + (n- 1) ·Dint) LRlcyc = _ ____;:. __ ____;;_ __ __:._ ______ _ 
n 

(4.3) 

Where 

• L2cyc represents the one-way cycle latency from the slave back to the master device. 

• Dint represents the inter-transmission delay for burst response packets. 

• n represents the number of burst beats. 

In the above equation, the latencies of the request packet and all the response packets 

are summed and the obtained lump latency is divided by the number of burst beats, to 

obtain the per transfer latency. As the equation shows, bursts will yield smaller per-transfer 
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latencies. The above formula is composed of two components: the forward traversal time of 

the request fiit, and the time taken for all responses to arrive. Since response packets travel 

in a pipe-lined fashion, the first response packet will experience a return delay similar to 

Tlcyc, (Tlcyc2 in the formula), and the remaining responses will arrive at set intervals after 

the first , based on the network characteristics. 

As mentioned previously, contention can degrade performance in two places in the net-

work: switch output ports and slave network interfaces. Specifically, contention in the system 

will increase the values of Ds, the arbitration delay of a header flit, and Dp, the processing 

delay of a target slave. To determine by how much, on average, these values will increase for 

a given traffic pattern, one must determine the average number of transactions that can be 
I 

encountered at these two points in the system. Once that information is available, increased 

latencies can be computed based on the behaviors of the network components. 

To determine the extent that transactions would overlap, and therefore interfere with 

one another during regular operation, the topology graph is converted into a collection of 

simplified models that are then using for simulation. Each model consists of a list of token 

generators and a token consumer. The token consumer corresponds to a switch output port, 

while the token generators correspond to the input ports that access the output port, as 

shown in Figure 4.8. The tokens represent transaction packets passing through the system. 

Each token generator has an associated number of tokens that it must produce per unit 

time (1 ms), which is based on the aggregated traffic volume that arrives at the input and 

targets the current output port. Because of this, the same input port can appear in more 

than one simplified model, as it may forward information to more than one output port. The 

number of transactions per unit time, and therefore the number of tokens being generated, 

is computed by dividing a required volume of information in a path per unit time by the 

transaction data width. Because multiple transaction streams with different transaction 

data-widths may pass through the same input and target the same output, the streams are 
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Figure 4.9: Output Contention Example 

• n represents the total number of input ports targeting the current output port, and 

therefore the maximum number of potential overlapping transactions. 

• Ntk represents the total number of time slots where k transactions overlapped. 

• Slott represents the total number of slots. 

• Latnom represents the nominal arbitration latency in cycles. 

• Latt represents the traversal latency of a packet passing through a switch (arbitration 

and forwarding delay). 

The above equation specifies that the delay experienced by each transaction increases 

proportionally with the number of transactions overlapping, and is the same for all transac-

tions. This is true in situations where round robin arbitration is used, since all transactions 

will experience the same amount of delay in overlap situations. If some form of priority-based 

arbitration were used, a set of equations would be used, one for each priority level. Finally, in 

first-come-first-serve situations, the individual delay seen by each port would depend heavily 

on its relative transaction throughput compared with the other contenting ports. 

End-point contention at the network interfaces of slaves can be computed by observing 

the number of overlapping transactions on the output ports immediately up-stream of the 
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network interface input. This equates to finding the contention level on switch output 

ports connected directly to network interfaces. Given that a number x of transactions will 

overlap at the last switch output before the interface, it is reasonable to assume that these 

transactions will also interfere at the network interface, since they are all being forwarded 

there. The processing delay DP experienced by any one transaction will be augmented by a 

value Dcont, computed as follows: 

(4.6) 

Above, Ci represents the contention level at output i which is directly connected to the cur­

rent network ,interface, Lburst represents the worst case burst length of transactions arriving 

at this destination and Dppk represents the processing and packing delay of a slave. This 

value is used because in worst-case situations a transaction will have to wait for a burst 

read transaction that has just started. The value of Ci is reduced by one to account for the 

fact that the above analysis is conducted from the point of view of one of the overlapping 

transactions, and the added delay should, therefore, be caused by the remaining transactions. 

In the simplified models specified above, the nu1nber of distinct time-slots available at the 

output port is based on the frequency of operation of the network. Subsequently, contention 

in the system is based, partially, on the frequency of operation. However, contention analysis 

is being used to determine a valid minimum frequency of operation for the proposed system. 

This cyclical relationship between the frequency of operation and the contention in the system 

means that it is not possible to start from one parameter and derive the other, especially if 

the minimum frequency is desired. 

Because of this, the analysis method follows the following approach: it selects a frequency 

of operation which it fixes, and then determines the contention in the system. This process, 

however, is repeated for a large number of frequency points, until the minin1um valid fre-
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quency is found. A valid frequency is one where none of the latency requirements in any of 

the paths are violated. The algorith1n starts from a fixed starting point and first finds a valid 

frequency of operation. It then finds an invalid frequency of operation. Then, on the interval 

defined by these two values, it performs an interval halving process, until the minimum valid 

frequency is found. At each frequency point being considered, the contention analysis is 

performed and the path latencies are verified for all connection paths in the syste1n. 

4.5 Method Limitations 

Having described the characteristics of the proposed topology generation and analysis method, 

it is important to also establish the limitations of said method. Some of the above para­

graphs have hinted at certain limitations or areas of improvement, but this section aims to 

formally list them. The first limitation, obvious from the title of the paper, is the fact that 

the proposed method targets systems using transaction-based component interfaces. Both 

the topology generation and analysis method are built with this underlying assumption 

in mind, and would not be appropriate for stream-based architectures, for example. The 

decision to target transaction-based components and protocols was made because a large 

number of on-chip systems take this approach to their design. The second obvious limita­

tion comes from the supported network parameters. The current system supports best-effort 

wormhole switched networks, which are being pursued for on-chip applications. However, 

circuit-switched or time multiplexed networks also exist. The analysis method would have 

to be altered before it could support such networks. As well, the method is not equipped to 

handle adaptive systems, in particular adaptive routing procedures. 

The third set of limitations are related specifically to the proposed topology generation 

and analysis procedures. Currently, both topology generation algorithms support only sin­

gle links between network components, be they switches or Nls. Multiple links between 
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switches are not currently supported, although they could be useful in minimizing con­

tention, as shown in [40]. As well , the route generation method currently used , based on the 

shortest path algorithm, would have to be updated to incorporate cycle prevention proce­

dures. Finally, only one of the proposed topology generation methods is guaranteed to be 

two-dimensional in nature, that being the Partitioned Crossbar method. The Point-to-Point 

algorithm follows the application core graph and can, in certain situations , have overlapping 

links. This would make actual layout of such systems more complex, depending on the ap­

plication. As well , component performance is affected by the final layout of the proposed 

topology, on-chip; the proposed method does not address lin1itations that can emerge due 

to physical considerations. For example, the need for intermediate buffering on long links 

to allow for high-speed network clocks, and the effect this can have on perfonnance is not 

currently addressed. 

4.6 Conclusion 

The preceding chapter presents the actual structure of the topology generation algorithms, as 

well as an analysis of their complexity and limitations. The algorithms are latency oriented, 

and incorporate partitioning and n1erging procedures designed to benefit cornponents with 

high transaction throughput requirements. The chapter then presents a method of analyzing 

a generated topology that can incorporate the contention expected in a real system. A 

specialized form of simulation is used, based on Petri Net representation of the switches 

in the network. Individual models are analyzed in isolation and the computed contention 

effects are , then , computed for complete paths in the system. This approach helps reduce 

the analysis computation time. 
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Chapter 5 

NoC Simulation Environment 

The topology generation and analysis method being proposed in this document concerns 

itself primarily with the attainable performance of a proposed network. Because of this, 

some method of performance evaluation is needed. This chapter introduces a simulation 

environment based on the SystemC transaction-level modelling language. The simulation 

models are built to support a certain type of network and to allow parametrization of trans­

action generation and encoding. The chapter's three main sections will describe in detail 

the supported network model, the parametrization options available in all models, and the 

implementation of the models themselves, from a behavioral point of view. 

5.1 Supported NoC System 

As with large area networks, NoCs can have a wide range of characteristics. Before describing 

how the simulation models were implemented, the targeted NoC model must be defined. 

This section describes the supported features of the simulation models, including the packet 

fonnat, switching methods employed and routing procedure used. These models were built 

for simulation purposes, which means that some of their characteristics can be parameterized 
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from one simulation run to the next. The simulation environment supports a packet-based 

best effort system using source routing and wormhole switching. The following subsections 

will elaborate these aspects further. 

The general structure of the supported NoCs has been presented in past works [19, 20] and 

consists of on-chip components communicating with each other using the NoC infrastructure. 

These components access the NoC system using Network Interfaces, which are dedicated logic 

circuits meant to convert information from the format used by the on-chip components to a 

format used by the network as shown in Figure 5.1. This process will be discussed in more 

detail in the section discussing packet format. The presented models support the AMBA 

AXI protocol [14} for on-chip component communication. This protocol was selected as it is 
I 

the latest iteration of the popular AMBA line of protocols, and unlike previous iterations it is 

a dedicated point-to-point protocol, which hides infrastructure details from communicating 

components. This features allows on-chip components to be simpler, and usable in different 

designs as no pre-built support for a particular communication system (shared bus, cross-bar) 

is required. 

Packet Format 

Amba AXI information is transferred in parallel, using information words of 8-1024 bytes. 

Multiple such transfers can be grouped together in a burst transfer for more efficient com-

munication, but the atomic transfer size remains the same. One of the features of Networks-

on-Chip is the use of relatively narrow buses between individual components. This makes 

actual routing of a chip layout easier and permits the components themselves to operate at 

higher frequencies in some instances. Because of this, the primary aim of a network interface 

is to serialize incoming information for transmission through the network. In addition, the 

network interface n1ust take the support information associated with a transfer (address and 
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Figure 5.1: Structure of Intended Systems 

side-band information) and transmit it along with the data itself. 

Each packet is built around an information transfer, meaning that a single transactions 

will result in a packet. Burst transfers of multiple beats will generate a packet for every 

transfer generated. Write transactions are converted to information packets which are then 

sent from the master interface to the slave interface through the network. Read transfers 

consist of a request packet sent by the master interface, and a nun1ber of response packets 

sent by the slave interface. The number of data packets and response packets for read and 

write transfers corresponds to the number of burst beats for the transaction. Each packet 

sent across the network contains the following information regarding the transaction being 

performed: 

• Transaction address. 
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• Transaction type. 

• Additional sideband information. 

Write packets and read response packets will also contain actual data. 

Because wormhole routing is used, each packet is broken into smaller flow-control units 

(flits) which are processed by the network. Flits are either of header type or body type. 

Header flits encode the routing information needed to transfer information through the 

network, while body flits contain the actual transaction information (address, data and 

sideband information). Each flit has an associated ID number encoded into the flit's most 

significant bits. Apart from this value, all other data encoding is variable, and can be 

specified for a given system, along with the number of header and body flits. 

Routing Method 

The model implements static routing based on look-up tables, and assumes source routing [5]. 

This means that route information is encoded into packets and sent through the network. 

This eliminates the need for storing route tables at each switch and reduces switch area. 

However, this does increase the size of packets in the system, as well as the data overhead 

per transaction. The route tables are stored within the network interfaces, as dedicated 

read-only memories. Routes are selected based on the base address of the targeted devices. 

The routing method used is referred to as "Street-Sign Routing" [19], as it essentially 

consists of a series of directions. A route consists of a series of bit fields, each of which 

identifies the output port in a switch to which the packet should be forwarded. The route 

for each packet is encoded into the packet's header flit(s), along with a counter variable 

which gets incremented at each switch. Figure 5.2 shows a 2-hop route, with the packet 

being forwarded to port 2 at the first switch, and port 0 at the second switch. In each 

switch, the output port to which the packet must be forwarded is decoded based on the 
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value of the counter field and the route table. As it passes through the switch, the counter 

field is incremented, so that it points to the next bit field. 

Hop 2: Port 0 

Figure 5.2: Example of a 2-Hop Route 

Switching Method 

Wonnhole switching was first proposed in the field of parallel con1puting, as it could reduce 

the buffering requirement at individual switches, and speed up throughput through the sys­

tem, by transferring flits in a pipelined fashion [18). These characteristics make wormhole 

switching attractive for on-chip systems where area is at a premium [19, 20). As was men­

tioned above , packets are divided into flits, with son1e flits (the header) containing the route 

information. This means that a switch can start arbitrating and forwarding part of a packet 

as soon as the header flits have been received and the output port was decoded. 

In the proposed si1nulation models, switches begin arbitration as soon as all header flits 

have been received. Once arbitration completes, flits are forwarded to the output port and 

out of the switch. At the same time, the path between the input port and output port is 

locked until all flits of a packet have been forwarded. When this happens, the path is opened 

and arbitration can begin again. To ensure that starvation does not occur in the system, 

the switch models implement round-robin arbitration amongst the petitioning input ports. 
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5.2 Parametrization Options 

To permit the implementation of a wide range of systems, the developed simulation models 

were designed so that most aspects of packet design could be specified at run-time. The 

behavior of the transaction generators (master interfaces) can, also, be controlled to cre­

ate various types of traffic. The following sections will give a detailed description of the 

parametrization infrastructure present in the system models. 

Access Patterns 

The component i,nterface models are the traffic generators for the proposed system. They 

generate transactions that are then transported to various destination interfaces. To allow for 

the simulation of various systems, the traffic generators must be programmable so that they 

generate transactions of various types (length, flow-type) to specific interfaces (identified 

by their base address). This pairing of transaction type and transaction destination will 

be referred to as a spatial access pattern form now on. In addition, the distribution of 

transactions in time must also be controllable. The distribution of transactions in time will 

be referred to as a temporal access pattern. 

Both types of access patterns are specified to the master interface in the form of con­

figuration files. Spatial access patterns are presented as series of entries, with each entry 

containing the following information: 

• Transaction destination, in the form of a base address and NoC identifier. 

• Transaction burst length. 

• Transaction type (read, write or both). 

• The distribution of read and write access, in the form of a percentage value. 
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• The over-all access rate to the current destination. 

The over-all access rate refers to the fraction of all accesses generated by the interface that 

should go to the current destination. The total access rates for all spatial access patterns 

must add up to unity; if an interface generates transactions for only one destination, then 

that destination will have an over-all access rate of 1.0. 

Temporal access patterns are built on top of spatial access patterns. The complete list of 

te1nporal access patterns specifies a pool of available transaction destinations that can then 

be arranged in time. Two types of temporal arrangements are available: random Poisson 

process transaction generation [47) and fully specified temporal patterns. Poisson temporal 

patterns take the form of Poisson events, meaning that the inter-event time is a random 

variable with a decaying exponential probability density function of the form: 

Pr(T) = o:e-aT (5.1) 

The inverse of the o: parameter specifies the generation rate, in transactions per cycle, 

and a transaction destination is selected based on the over-all access rate defined above. 

This process will be described in more detail in later sections. 

Fully specified temporal patterns eliminate the random aspect of transaction generation. 

Instead, the temporal arrangement of transactions is specified by the user. The patterns are 

specified as a sequence of entries, as with spatial patterns. Each entry contains the following 

information: 

• Target spatial destination. 

• Number of transactions to the current destination. 

• Number of wait cycles before the next temporal pattern. 
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If a transaction generator is configured to generate temporal patterns, it will continuously 

loop through all the entries in its list of t emporal patterns. Each entry specifies the desti-

nation and a number of transactions that are to go to that destination, followed by a wait 

period, in cycles, before the next temporal pattern is invoked. Figure 5.3 shows a possible 

arrangement of temporal patterns. 

I 
I I 
I I ..----.. 

Target 1 - Target 2 Target 2 - Target 3 
Wait Time Wait Time 

Figure 5.3: Example Temporal Pattern 

'fransaction Encoding and Route Tables 

The second parametrization aspect of the models is the encoding of the transaction infor-

mation into packets. For any system, the number of header and body flits per packet can 

be specified. Once this is done , information encoding structures specify to the system how 

the route tables and transaction infonnation are encoded into the flits. 

Encoding specifications are provided to the system using a set of data structures. Each 

such structure specifies a flit location, a shift amount, and a bit-mask, and there is one such 

structure for every piece of data to be encoded (such as address , flit ID , route information, 

etc.). The flit location specifies which flit the data will be encoded into. The shift a1nount 

specifies the actual bit location of the start of the data, and the bit-mask can be used to 

isolate the current data. The following transaction information is encoded into every packet 

sent through the network: 

• Transaction source. 
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• Transaction destination. 

• Transaction data. 

• Transaction address. 

• Transaction side-band information. 

The route tables for each packet are encoded into the header flits of the packet. As described 

earlier, the routes consist of a count variable and the actual port indicators for each hop in 

a route. The count variable, as well as each port indicator entry have dedicated encoding 

structures th{lt specify where each piece of data should go. 

5.3 Simulator Models 

Having described the supported network model, as well as the parametrization options that 

are available within the environment, this section describes the actual implementation of the 

traffic generators and sinks, network interfaces and switches. The main focus of the section 

is in describing the operational behavior of these components, and how the parametrization 

options described above are incorporated. 

5.3.1 Traffic Generators and Sinks 

The traffic generators (master components) periodically generate a transaction which is 

passed to the network interface and transported to a slave component (traffic sink). The slave 

components will either consume the incoming transactions (in the case of write transfers) 

or generate a series of response packets (during read transactions). The traffic generator 

behavior will be described first, followed by the sink behavior, which is less cornplex. Both 
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master and slave components incorporate AXI interfaces. Master components incorporate 

AXI Master Interfaces, and slave components incorporate AXI Slave Interfaces. 

All simulation models can be thought of as finite-state machines, each of which performs 

some actions in each state. The state diagram of the traffic generators is shown in Figure 

5.4. After the de-assertion of the reset signal, the master component goes into its main 

generation state, where a read or write transaction is generated. The selection of the trans­

action parameters will be discussed in more detail later. The transaction is sent to the AXI 

interface, and the master component goes into a wait state, until the AXI interface finishes 

the transaction in question. At this point, depending on the type of temporal access patterns 

that were selected, as well as the length of the last transaction, the master component will 

either proceed to the generation state, or it will go into a second, self imposed wait state. 

The wait period for the second wait state is specified by the a parameter discussed above. 

Figure 5.4: Transaction Generator States 

During the transaction generation state, the master component must specify a transaction 
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target, a transaction type (read or write), the burst length of the transaction and transaction 

data in the case of write transfers. Because the simulation models are concerned with the 

flow of transactions through the network rather than the actual content of the information, 

random data is currently used as payload. The transaction target is selected based on the 

list of spatial access patterns provided to the generator. The parameters of the transaction 

are selected in the following order: 

1. Transaction destination. 

11. Transaction type. 

111. Burst length. 

In the case of Poisson process transactions, a uniform randon1 number generator is used to 

create a random pointer value in the range of 0.0-1.0. This pointer value determines which 

target is selected by observing what range it falls in. The ranges are constructed using 

the over-all access-rate to each destination. In a situation where two possible targets exist 

and are equally likely, the range (1.0, 0.5] will correspond to the first target, and the range 

(0.5, 0.0] will correspond to the second target. Once the destination is selected, the other 

parameters of the transaction (burst length, and type) are selected in a silnilar fashion, 

from the parameters specified for the current access target. In the case of fully specified 

temporal patterns, the destination selection process is eliminated by the specified pattern of 

accesses. An index is used to sequentially target each destination specified by the temporal 

patterns. In-between accesses to a particular target, the master component waits in the 

generation state, but does not generate transactions until the wait tin1e between each target 

is complete. 

Contention in the network can lead to variations in the time a transaction takes to com­

plete. This, coupled with the fact that each generator blocks until a transaction con1pletes 
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before continuing its operation can alter the characteristics of Poisson process temporal pat­

terns. The over-all generation rate is based on the inter-transaction wait time as discussed 

earlier. However, the wait time now fluctuates, due both to the random nature of the pro­

cess, and to the contention in the system. This means that the over-all generation rate of 

master interface fluctuates. If the original rate is extremely high, an under-run situation will 

occur, where less transactions are generated, since the inter-transaction time is increased. 

The degree of the under-run effect is dictated by the arnount of traffic in the system, and the 

resulting transaction delays. Conversely, master components with small over-all generation 

rates can generate more transactions than originally specified (because of the variation in 

the random inter-;-transaction wait time). 

The traffic generator models attempt to minimize this variation in the effective over-all 

generation rate, by continually keeping track of the time spent in the blocked mode (state 

2 in the diagrams). In cases where the wait time is less than the average inter-transaction 

time for a given over-all rate, the master component will generate an adjusted wait time, 

based on the transaction rate and the time already spent blocked. In situations where the 

blocking time exceeded the specified average wait time, the master component by-passes 

the second wait state shown in Figure 5.4 and proceeds directly to the generation state, 

in an attempt to "catch up" with the required generation rate. At the same time, each 

traffic generator keeps a record of the number of transactions completed over a period of 

time, and can compute the average generation rate over a time segment. This information is 

used by the master components to ensure that the average generation rate is not exceeded; 

if the measured generation rate exceeds the specified rate, transaction generation stops for 

the remainder of the current time period. Figure 5.5 shows an example of how cores deal 

with blocking delay. Core 1 has exceeded its inter-transaction time simply waiting for the 

previous transaction to complete, so it immediately generates a new transaction. Core 2, on 

the other hand, generates a wait time based on its over-all rate and the time spent waiting 
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in the blocked mode. 
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Figure 5.5: Adjusted Transaction Generation 

Traffic sinks (slave devices) have a simpler role to play, as they must deal with already 

existing transactions. When a transaction is received by a slave, it enters a busy state for a 

period of cycles, which represents the processing delay of the slave; the delay parameter itself 

can be specified for every slave before the beginning of simulation. When the processing delay 

is finished, the slave has two options. In the case of write transactions, the slave returns to the 

ready state, and waits for further transfers. During read transfers, the slave enters a response 

stage, and generates response packets for the transaction; once this process completes, the 

slave returns to the ready state. 

5.3.2 Network Interfaces 

Once transactions are generated by the master components, they must be converted to the 

appropriate format before they can be transmitted over the network. This task is fulfilled 

by the network interface modules in the system. Two types of interfaces exist: master and 

slave network interfaces. They differ in their over-all behavior, as well as in the components 

they incorporate. Master network interfaces incorporate an AXI slave interface, allowing 
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them to communicate with master components. The slave network interfaces incorporate 

AXI master interfaces, which allow them to interface with system slave components. 

The structure of a Master Network Interface is shown in Figure 5.6. The AXI Slave 

interface is used to interface to the master component, the output block is used to construct 

and send packets, and the input block receives response packets. Finally, the control unit 

updates the state and control signals of all other components based on the current state of 

the interface. Master network interfaces, in their quiescent mode, wait for transactions from 

their AXI interfaces. When such a transaction is received, the network interface proceeds 

to construct a network packet for every beat in the transaction. Data is encoded into each 

flit using the method and data structures described in Section 5.2. The network interface 

stores route records for all potential transaction targets for the current component. When 

a transaction is received, the appropriate record is selected using the transaction address. 

As soon as a flit is constructed, it is sent over the network so long as there is enough bufFer 

space available in the downstream input port. Once a packet has been completed and sent, 

the network interface either returns to its quiescent mode, or goes to a wait state, depending 

on the transaction type. In the case of write transactions, the master network interface will 

return to its quiescent mode and wait for the next beat in the transfer (if there is one). In 

the case of read transactions, the network interface enters a wait state, until such time as its 

input port signals it that a complete response packet has been received. This packet is then 

forwarded to the AXI slave interface and further to the master component. 

The structure of the slave network interface is similar to that of the master network 

interface, but backwards, as it were. In its quiescent mode, the slave network interface waits 

for packets to arrive from the network. Once a packet is received, the network interface will 

decode it , and forward the transaction to its AXI master interface and further to the system 

slave. If the received packet was a write transfer, the interface will then return to its quiescent 

mode and wait for further packets from the network. In the case of a read transaction, the 
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Figure 5.6: Master Network Interface 

network interface will forward the transaction information to the slave component, and will 

then move to a transmission state. In this state, the interface can transmit the slave read 

response as response packets. Write packets are forwarded to the component as soon as they 

are received, even if they are part of a burst. This is done so that the network interface is 

not blocked more than necessary for any one transfer. As well, this allows the network to 

interleave multiple writes to the same slave component in time. 

5.3.3 Interfacing Between the Core and NI: the AXI Protocol 

The above subsections describe the traffic generator and sink models, as well as the network 

interfaces used to access the network. The current subsection examines how the genera-

tors and sinks (essentially the actual components that make up the SoC) communicate with 

the network interfaces. Any number of protocols could be used to interface on-chip com-

ponents, starting with dedicated protocols, designed specifically for one set of components. 

However, such an approach reduces re-usability, which is why most computing systems use 

standardized interfaces between components. In the area of on-chip systems, a number of 

such standard protocols exist and were discussed in section 2. The latest implementation 

of the AMBA protocols target point-to-point interconnects similar to the OCP, in the form 
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of the AMBA AXI interface [14]. This protocol was selected as the interface mechanism 

between generators, sinks and network interfaces. 

This section will not describe in-depth the operation of the AXI protocol; for such pur­

poses , there is ample documentation available [14]. Rather, this section describes how the 

protocol was implemented for the current simulation environment. The AXI protocol speci­

fies the communication method between two entities, one of which is considered the master 

or initiator, and the other the slave or responder. To transfer data, five channels are spec­

ified and used. Two address channels are used to transfer address infonnation as well as 

transaction information between the master and slave. The two channels are the Read Ad­

dress Channel and The Write Address Channel. Each one carries the address for read or 

write transactions, respectively, along with additional data such as the length of the burst, 

caching description of the data and others. This information is referred to as the side-band 

information. The AXI protocol specifies that the Read and Write Address channels can be 

merged in certain circumstances; however, the simulation environment uses separate address 

channels. The data on the address channels is written by the master interface, while the 

slave uses only one signal for hand-shaking purposes. The master also controls the Write 

Data channel , where data for a write transfer is written. The slave, on the other hand, writes 

data to the Read Data channel, and to the Write Response channel. The channels, and their 

drivers, are shown in Figure 5.7. 

In the simulation environment, the Read and Write Data channels carry place-holder 

variables, since the operation of the components is not modelled beyond their role as gener­

ators or sinks. The address information is obtained from the configuration files specified to 

the traffic generators, and is used to specify which component is being targeted. However , no 

offset values are added, again because of the high-level of the component models. In the case 

of the side-band information, only the transaction type and burst length are encoded, while 

the other fields are left blank. Finally, the AXI protocol specifies that write transfers rnust 
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Figure 5.7: AXI Channel Arrangement 

also contain a response stage, where the slave components acknowledges receiving the write 

information correctly. However, in the interest of performance, the simulation environment 

transfers responsibility for the response stage to the network interface rather than to the 

slave device being targeted. This means that as soon as all the write information has been 

received, the network interface drives the appropriate signals in the Write Response channel, 

completing the transfer, from the traffic generator's point of view. The network essentially 

assumes responsibility for the safe delivery of the write data to the destination. This allows 

the traffic generators to proceed to a new transaction if needed, rather than wait for the 

write response to travel back from the slave device across the network. Figure 5.8 shows 

which fields are actually used inside the simulation environment during an AXI transfer. 

Because currently the simulation environment encodes burst beats as single packets, it 

is important to distinguish between the arrangement of a transfer at the source and at the 

destination. In the case of write transfers, a transaction that has 4 burst beats at the source 

will become a set of four 1-beat bursts at the destination, because the slave network interface 

generates a write transfer as soon as a write packet is received. This approach is used to 

allow multiple write transactions targeting the same device to be interleaved, even during 
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Figure 5.8: AXI Implementation Example 

burst operation. Note that this approach would have to be further expanded in situations 

where shared memory is used for information passing, to ensure that race conditions or out 

of order information storage situations do not occur. A read transaction starts as a single 

packet sent by the traffic generator, and the response consists of a number of packets equal to 

the burst length of the transfer, generated by the slave network interface. The read response 

packets look similar to write packets, but travel from slave back towards the master device. 

5.3.4 Switches 

The network switches are perhaps the simplest components, behaviorally; a high-level di-

agram of a 4-port switch is shown in Figure 5.9. Every switch consists of essentially two 

component types, replicated and connected as many times as necessary to achieve the desired 

number of ports. The two components are an input First-In-First-Out unit, with some de-

coding capabilities, and an output forwarding unit, with integrated arbitration. A complete 

switch port is composed of an input FIFO and an associated output unit, as the figure shows. 

Each output unit can receive information from three input units, excluding the input unit 

associated with the current port. This means that a switch cannot, alone, return information 

to a sender. 
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Figure 5.9: 4-Port Switch Diagram 

The FIFO COJ?ponent of each port accepts incoming packet flits , and buffers them until 

such time as they are forwarded by one of the output units. Each FIFO performs a decoding 

operation on the flits that are at the front of the queue, to determine which output port 

the current packet has to be forwarded to. Before run-time, each FIFO is configured with 

details about the flit format. In particular, the number of header flits and the location of all 

routing entries is specified. In this way, the FIFO can start polling the required output port 

as soon as enough flits have been received to permit route decoding. A FIFO's depth can be 

specified individually for each switch in a system, to determine how performance varies with 

the buflering capacity of input ports. Each FIFO incorporates a counter which tracks the 

number of flits currently buffered. Once a FIFO's capacity is reached, the FIFO control unit 

will indicate to the up-stream output port that it is full, implementing a form of "stop-go" 

flow control in each inter-switch link. 

Each output unit must forward flits from the input FIFOs of the switch to the input 

down-stream. The output block selects an input port from the pool of input ports actively 

petitioning it by using a round-robin arbitration scheme. This ensures against starvation of 

any one input, while at the same time keeping the block complexity down to a minimum. 

Once an input is selected, the output block will forward the flits corning h·orn that input 
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for the duration of a packet. Once the final flit passes through the output block, the block 

returns to its quiescent state, waiting for and arbitrating amongst input petitions. The state 

diagram of the Output block is shown in Figure 5.10. To deal with the possibility of a 

downstream FIFO being full, each output unit must be able to buffer one flit until such time 

as the downstream FIFO circuit can accept it. 

Check for petitioners 
on every falling edge 
of the clock. Last packet flit 

has been forwarded . 

Figure 5.10: Output Block State Diagram 

5.4 Conclusion 

The preceding section has presented the simulation environment developed and used for 

the evaluation of the proposed design and analysis method. The simulation environment, 

implemented as a collection of SystemC models, allows the specification of any topology 

and a wide variety of encoding options for a given network structure. The traffic generators 

developed for the environment are based on on-chip component behavior, and incorporate 

actual signal-level implementations of the AMBA AXI protocol. 
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Chapter 6 

Simulations and Results 

In this section, a number of applications are used as tests for the proposed topology generator 

and analyzer, in conjunction with the simulation environment. The aim of this section is to 

examine how proposed topologies behave when compared with traditional regular topologies, 

as well as determining the accuracy of the prediction algorithm that is being proposed. 

Additional features will also be discussed where appropriate. The chapter begins with a 

description of the applications that will be used for comparison purposes. The following 

section presents simulation results aimed at comparing the generated topologies with regular 

topologies. The section will begin with a description of the tests performed, followed by the 

results obtained. A second results section analyzes the accuracy of the topology analysis 

engine and the recommended operating frequency. The third results section lists execution 

times for the topology generation and analysis procedure. A fourth section compares one 

of the proposed topologies with an irregular topology proposed in past literature. Finally, 

the last section examines the effect of using message-passing models with transaction-based 

components. In the following section, all results are listed in the form of graphs. The same 

information is available in tabular form in the Appendix. 

91 



6.1 Test Applications 

This section presents the four applications used to test the proposed method. Each sub­

section presents the component structure and communication requirements of the applica­

tion, in the form of its core graph C. In addition, the communication characteristics of each 

edge in the graph, such as the data-width and burst support are presented here, with reasons 

for the selected parameters, where necessary. 

MPEG4 Decoder 

The first application is an MPEG4 decoder, first proposed by van der Tal and Jaspers [48]. 

This multimedia application exhibits large on-chip communication requirements, and makes 

for an interesting test application for NoC systems. For this reason, it has been used in the 

past as a potential application in NoC design examples [27]. The application core graph is 

shown in Figure 6.1 [19]. The communication volumes shown are in MB/s, meaning that the 

application has very large communication requirements (the Up Sampler, Core 6, exceeds 

1500 MB/s). Because of this, it is assumed that cores 4 and 6 (rast and up-sampler units) 

have data interfaces of 128 bits, and communicate using 16-beat bursts. All other master 

components are assumed to have 32-bit data interfaces and communicate in 4-beat bursts, 

except for the RISC processor, which uses 16-beat bursts. The memories are assumed to 

have 128-bit interfaces, to achieve greater data throughput. 

Multi-Window Display Application 

The multi-window display (MWD) application is based on a companion chip designed for 

high-performance television applications, and initially presented by Jaspers and de With [49]. 

As with the MPEG decoder, it has been used for NoC testing in the past [27]. The original 

chip was designed to accornplish various operations rnore efficiently by using dedicated pro-
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Figure 6.1: MEG4 Decoder Core Graph [19] 

cessing elements; here the processing elements are connected using an NoC infrastructure. 

The core graph for the MWD application is shown in Figure 6.2; as before, the information 

volumes are in MB/s. Since all the application cores are dedicated to multimedia process­

ing, it is assumed that all cores have large, 128-bit data interfaces, and all communicate 

using 4-beat burst transfers. Finally, most of the on-chip components have both master and 

slave interfaces to permit the implementation of information pipelines. For this reason, the 

core graph shows both master and slave interfaces for these cores, connected using a dotted 

line. The application core graph was presented in [27], and has been updated to incorporate 

master and slave interfaces. 

Audio-Video Benchmark Application 

The third test application is an audio-video benchmark presented by Hu et al. [34]. A core 

graph was constructed based on the task flow presented, and is shown in Figure 6.3. All 

information volumes are MB/s. Three additional memories were added to the application, to 

permit communication between the DSP and processor components (components CMEM1, 

CMEM2 and CMEM3). It is assumed that the ASIC components have dedicated 1naster 
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Figure 6.2: MWD Application Core Graph 

and slave interfaces (with the exception of ASICl, which needs no master interface). Given 

that the application is multimedia-oriented, large data-widths are assumed for more efficient 

communication. All master cores with the exception of the CPU and ASIC4 master interface 

have 128-bit data-widths, and communicate using either 4 or 8 beat bursts. Because the 

CPU and the ASIC4 master interface have the largest information volume requirements in 

the core graph, they use 256-bit data-widths, and transmit data using 16-beat bursts. 

Layer-3 Switch 

The final application is theoretical in nature, designed specifically for testing the current 

method. The application is a Layer-3 Switch, used specifically for backup operation of 

multiple servers. The switch has 6 ports, each of which operates at 100 Mbit speeds. The 

core graph of the application is shown in Figure 6.4, and consists of a general purpose 

processor used for routing, six ethernet controllers used to connect to the physical interfaces, 
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Figure 6.3: AV Benchmark Core Graph 

two Direct Memory Addressing (DMA) units to transfer infonnation between the various 

ports, and one shared memory being used for storage. The DMA units have both master and 

slave interfaces, allowing them both to be controlled by the processor and to independently 

transfer data. The processor, memory, DMA master interfaces and ethernet controllers all 

have 128 bit wide data ports, and support 16 beat bursts, because of the large data transfer 

requirements. The DMA slave interfaces are 32 bits wide, given that they only accept control 

data; for the same reason, the communication occurs in 1-beat bursts. 

6.2 Topology Comparisons 

The first set of tests was performed to compare the topologies generated by the proposed 

rnethod with traditional topologies. The first three applications listed above were used for 
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Figure 6.4: Layer-3 Switch Core Graph 

these tests. The core graph of each application was used to generate two types of topologies, 

on based on each algorithm type. The following parameters were used for the supported 

NoC systems: 

• Packets are 8 flits long, with 2 header flits. 

• Arbitration delay of 8 cycles. 

• Packing delay of 8 cycles. 

• Un-packing delay of 15 cycles. 

• Maximum port count limited to 10 ports. 

The latencies are based on RTL models of switches and Network Interfaces. The flit length 

was selected to permit data widths of up to 256 bits to be encoded into one packet. Finally, 

the maximum port count limit was based on limiting switch complexity. Because the focus of 
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the research in this case is on interconnect performance, the latencies of the slave components 

were set to very low delays so that they do not affect the obtained results. It should be noted 

that a real application would not always have such reduced delays in all its slave components. 

Figures 6.5 and 6.6 show the obtained topologies for the MPEG4 Decoder, Figures 6. 7 and 6.8 

show the MWD irregular topologies , and finally Figures 6.9 and 6.10 show the Audio-Video 

Benchmark topologies. In the remainder of the results section Point-to-Point topologies will 

be referred to as Custom 1 topologies, while Partitioned Crossbar topologies will be referred 

to as Custom 2 topologies. 

Figure 6.5: MPEG4 Decoder Custom 
1 Topology 

Figure 6.7: MWD Application Cus­
tom 1 Topology 
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Figure 6.6: MPEG4 Decoder Custom 
2 Topology 

Figure 6.8: MWD Application Cus­
tom 2 Topology 



Figure 6.9: AV Benchmark Custom 
1 Topology 

Figure 6.10: AV Benchmark Custom 
2 Topology 

The comparison was performed with two traditional topologies: the mesh and fat tree. 

The mesh was used for all three application, as it is has been proposed as a solution for 

on-chip systems [50]. The fat tree topology was used for the MPEG4 Decoder and the 

MWD Application, as an example of a performance-oriented regular topology; the topology 

provides increased performance due to it's redundant links [23]. The existence of multiple 

possible paths between sources and destination leads to reduced congestion in the system. 

Figures 6.11 and 6.12 show the regular topologies for the MPEG4 Decoder, Figures 6.13 and 

6.14 show the regular topologies for the MWD Application and finally Figure 6.15 shows the 

AV Benchmark mesh topology. To map vertices in the core graph to locations in the regular 

topologies, a method similar to that presented in [27] was used. 
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Figure 6.11: MPEG4 Decoder Mesh 
Topology 

Figure 6.13: MWD Application 
Mesh Topology 

Figure 6.12: MPEG4 Decoder Fat 
Tree Topology 

Figure 6.14: MWD Application Fat 
Tree Topology 

The simulation runs were performed over periods of 40 000 cycles. Different theoretical 

frequencies of operation were assumed for the three applications used: the MPEG4 decoder 

and AV Benchmark used a frequency of 1GHz, while the MWD Application used a 500MHz 

frequency. These frequencies were selected based on the relative difference in communication 

volumes between the three applications. The parametrization options of the simulation 

models match the specifications listed above. In addition, the buffering capacity of each 

switch input port was set to 8 flits , and the buffering capacity of each NI input was set to 

20 flits. 
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Figure 6.15: AV Benchmark Mesh Topology 

The main figure of interest in the comparison is the achieved performance, which, given 

the characteristics of the communication protocols, is measured in total completed transac­

tions over the duration of the simulation. Figures 6.16, 6.17 and 6.18 all show the obtained 

results for the sets of simulation runs. Each figure lists the initiating core on the x-axis, 

and the number of transactions achieved on the y-axis. The figures show interesting results, 

in that both the regular and irregular topologies demonstrate similar performance. There 

is some variation between completed transactions at different cores, but never more than a 

20% difference between the best and the worst performing topology. On the face of it, it 

would seem there is no true difference between the two topology types. 

To obtain a more complete picture, one has to look at the resource requirements of each 

topology. Two resources are primarily used in each network, interfaces and switches. Given 

that the number of cores in the system stays the same, the number of Nis in each topology 

will remain the same. The switch number and size, however, varies from one system to the 

next. Switches can be abstracted to two component types, the input FIFO and output block 

(this abstraction is of a high level nature, as the review chapter shows that a large number 

of support features can exist in the switch). Given that in the assumed network model 

a complete port consists of an input and output sub-port, each connected to a FIFO and 
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Figure 6.16: MPEG4 Decoder Trans­
action Results 

Figure 6.17: MWD Application 
Transaction Results 
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Figure 6.18: AV Benchmark Transaction Results 

output block, respectively, a high level view of the resources of a topology can be obtained 

by simply counting the number of switch ports in the system. Such an approach to area 

estimation does not take into account the wiring complexity present in large switches, but 

it does provide an indication of the relative resource use. Table 6.1 shows the total number 

of switch ports for every topology and application. 

In most cases, the irregular topologies require less than half the resources of the regular 

ones. Another way of looking at this situation is that the irregular topologies trade away ag-

gregated bandwidth for increased area efficiency. However , the perfonnance of all topologies 
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Table 6.1: Application Resource Use 
Topology I MESH FAT CUSTOM1 CUSTOM2 I 

MPEG4 Decoder 46 44 22 14 
MWD Application 59 47 13 17 

AV Benchmark 87 - 67 25 

is similar, which suggests that the increased aggregated bandwidth in the regular topologies 

is not truly utilized. The one exception is the AV Benchmark, where the Partitioned Cross-

bar topology clearly performs less well than the Point-to-Point or Mesh topologies, both of 

which use more network resources. Here, the added bandwidth associated with more ports 

in the system is utilized, because the communication patterns are much less centralized than 
I 

in the case of the MPEG4 Decoder, for example. 

An interesting point worth examining in more detail was the fact that, from a perfor-

mance point of view, the irregular topologies performed similarly to the regular ones, despite 

minimizing the latency on their communication paths. A possible reason for this behavior is 

the use of burst transactions which, as in traditional interconnects, attempt to distribute and 

hide the transaction latency amongst multiple transfers. To determine if this is the case, a 

special test was performed. The MPEG4 Decoder transaction patterns were altered so that 

only Core 6 (the Up-Sampler) generated any transactions; all other generation rates were 

set to zero. Three tests were performed, where the transaction burst length for Core 6 was 

set to 1, 4 and 16 beats. The tests were performed using the Partitioned Crossbar topology 

and the Mesh; the mesh has a minimum of three hops between any source and destination, 

while the custom topology only has two, in the case of Core 6. Finally, to accentuate the 

effect of additional hop delay, the arbitration latency was set to 20 cycles. Figure 6.19 shows 

the attained number of transaction for the three burst settings, and Figure 6.20 shows the 

worst-case latencies. The figure shows a clear performance increase for the custom topology 

using 1-beat burst. However, the figure also shows that using longer bursts is beneficial frorn 
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a performance point of view, as the number of obtained transactions almost doubles when 

going from 1 to 16 beats. Also, the performance difference drops off at higher burst settings, 

showing that, indeed, the use of bursts can hide the latency in a network. 
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Figure 6.19: MPEG4 Decoder Burst 
Test 1 - Transactions 
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Figure 6.20: MPEG4 Decoder Burst 
Test 1 - Latency 

Finally, the above test was repeated again, but this time the arbitration latency was set 

to 8 cycles. Figure 6.21 and 6.22 show the obtained transactions and latencies for this case. 

This time, the performance difference is less pronounced, even for 1-beat bursts. The reason 

for this is that, as the arbitration latency decreases, the packing and de-packing latency 

becomes more pronounced, and can dominate the overall latency in certain situations. In 

such cases, the performance increase obtained fro1n using the application-specific topologies 

will be negligible and the rnain benefit of the custorn topologies will be the decreased resource 

use. 

6.3 Predictor Accuracy 

The analysis method proposed in this document must also be tested, to determine its char­

acteristics and limitations, especially given the fact that the prediction method used trades 

some accuracy for performance. This results section determines if the predicted operating 
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frequencies for the four applications allow the generated topologies to meet the specified 
I 

communication requirements. The first set of tests are performed using Poisson Transac-

tion generation, to determine the predictor accuracy in such situations; for these tests, the 

MPEG4 Decoder, MWD Application and AV Benchmark are used. The second test is per-

forrned using the Layer-3 Switch, and fully specified t emporal patterns are used. This second 

test is performed to determine how badly specific access patterns deviate from the uniform 

injection model assumed in the analysis engine. 

6.3.1 Poisson Transaction Patterns 

The MPEG4 Decoder, MWD Application and AV Benchmark were used to test the accuracy 

of the topology analyzer in the presence of Poisson traffic. For each application, the analysis 

engine computed a specific recommended frequency of operation, based on the information 

flow in the application and the specific network characteristics (such as arbitration, packing 

and de-packing delays). The average generation rate of each core, 1/a was set so that 

each core tries to generate a number of transactions over the length of the simulation run. 

The total number of transactions is derived from the core graph, and the simulation time is 
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computed based on the number of simulation cycles and the specified frequency of operation. 

Before actually examining the simulations a note must be made regarding the analysis 

engine. The engine computes a theoretical frequency of operation recommended for proper 

operation; this frequency may not be realistically feasible currently (due to technological 

considerations). In such instances, an alternative solution would have to be found, which 

would reduce the transaction latency further, or pursue much wider communication links, to 

allow more information to be transmitted at the same time. The primary aim of this section is 

to determine if the prediction method is accurate, rather than to make comments regarding 

implementation feasibility. The situation described here only occurs in cases where very 

large information. requirements (in excess of 1GByte/s) occurs in the specified application 

core graph. 

For the topologies presented in Section 6.2, the following NoC clock frequencies were 

computed: 3438 MHz for the MPEG4 Decoder, 5 73.4MHz for the MWD Application and 

2310 MHz for the AV Benchmark. Figures 6.23, 6.24 and 6.25 show the obtained number of 

transactions over the duration of the simulation ( 40000 cycles, as before). In these figures, 

however, the first data set corresponds to the required number of transactions. A core meets 

its transaction requirement is it can complete this number of transactions. 
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Figure 6.23: MPEG4 Decoder Anal­
ysis Accuracy Test 
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Figure 6.25: AV Benchmark Analysis Accuracy Test 

In the above results, the worst case deviation is observed for Core 0 in the MPEG4 

Decoder, where the achieved number of transactions is missed by 27%. In the remainder 

of results, the requirements are met fully, or deviate by less than 20%. Only Cores 0, 6 

and 8 of the MPEG4 Decoder and Core 3 of the MWD Application actually miss their 

transaction requirements at all, out of a total of 29 cores. There a multiple possible reasons 

for the observed deviation. One reason is the fact that transaction packets are modelled as 

single units during analysis, while in reality each is a collection of flits. As well, the analysis 

method analyzes switches in isolation and then sums the effects across a path, which may 

neglect some of the more subtle effects present in the system, in particular where contention 

is concerned. Finally, for each switch output, it is assumed that transactions are equally 

likely to target any one of its time-slots, which may not be the case at all times (burst 

transfers group packets temporally and can cause increased contention at certain points). 

Nonetheless, these results show that the proposed analysis method can predict the behavior 

of an application with some accuracy, and without an over-large expenditure of resources. 

A worst-case deviation of 27% might be considered un-acceptable, were it not for two 

facts. The fist is that this deviation is encountered in only one out of 29 cores. More 

importantly, however, is the fact that the proposed method is a high-level system synthesis 
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tool. As such, any generated systems will have to be further refined before and during 

actual implementation (layout). The frequency of operation of a component is affected by a 

number of issues in the implementation stage, including the complexity of the implemented 

logic circuitry (number of delay stages) as well as the length of wires in the system. Because 

of all this, the analysis method proposed here is meant primarily as a first approximation 

process which will then be further refined during physical implementation. Having said that, 

it is, of course, beneficial to be as accurate as possible even at this stage, which is why these 

tests were performed. 

6.3.2 Specified Transaction Patterns 

A second accuracy test was performed using the Layer-3 switch application. In this case, 

the transaction ternporal patterns in the systern were fully specified, to rni1nic the behavior 

that would occur in real systems. The same parameters were used when generating the 

Layer-3 Switch topology as were used for the other three applications. Figure 6.26 shows 

the generated topology. Only one topology is shown because, interestingly, both algorithms 

generated the same final network; such situations can occur, depending on the application 

core graph. 

Figure 6.26: Layer-3 Switch Custom Topology 

In this test, the patterns were specified completely. Figure 6.27 shows the patterns for 
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the three traffic generators, Cores 0, 1 and 2 (the CPU, DMA1 master interface and DMA2 

Master interface, respectively). Note that the figure is not drawn to scale, but rather is 

meant to give a graphical representation of the patterns. For each transaction generator, 

the pattern shown is repeated continuously for the duration of the simulation run, with the 

specified wait interval between each activity phase. Each rectangular segment specifies an 

acces; the first nu1nber specifies the destination core, the second the burst length, and the 

letter specifies (r)ead or (w)rite transactions. The patterns shown are rneant to represent a 

specific type of operation in the switch, a backup process over the network. Five of the six 

ports in the system are receiving 100 MBit/s streams of information headed for the sixth 

port. Periodical~y, the Processor sends control information to the DMA slave interfaces. 

As well, the processor perforrns 1nonitoring operations, which generate traffic to the syst ern 

memory. 
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CPU I 4:1w II s :1w 113:16rtw I ·•~---------~•• 

2000 
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Figure 6.27: Layer-3 Switch Transaction Pattern 

The simulation was, once again, performed over 40000 cycles. The predicted frequency 

of operation for this system was 229 MHz. Figure 6.28 shows the obtained results. As 

before, the first data set corresponds with the required number of operations, and the second 

corresponds to the actual obtained results. The figure shows that even when using specific 

injection patterns, rather than Poisson Event modelling, the predicted frequency of operation 

is still valid. The worst-case deviation observed is less than 5% in Core 3. Once again, 

the sarne reasons listed for the first set of accuracy t est s can account for the discrepancy 
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between the required and actually completed numbers of transactions. These results show 

that specific patterns of traffic injection tend to be distorted by the network, to the point 

that they approach a more uniform temporal distribution. This eflect can be attributed to 

the delay present in the various network components, as well as the interference from other 

transactions. 
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Figure 6.28: Layer-3 Switch Accuracy Test 

6.4 Program Execution Time 

Section 4.3.4 discusses the complexity of the two topology generation algorithms. However, 

the complexity of the topology analysis process was not analyzed, as it depends on a large 

number of parameters, both in the system input as well as derived data structures (most 

specifically the topology graph). This section attempts to mitigate this omission by pre-

senting the execution time of the topology generation and analysis process. The program 

was run on a computer with a 2.4 GHz dual-core processor and 2GB or RAM , running the 

RedHat Fedora operating system. Table 6.2 below lists the execution times of generating 

and analyzing topologies for all applications described above. 

The first thing worth noting is that none of the topologies took rnore than a rninute 
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Table 6.2: Program Execution Time 
Application I Custom 1 I Custom 2 I 

MPEG4 Decoder 22.817s 7.066s 
MWD Application 12.089s 2.016s 

AV Benchmark 35.606s 8.165s 
Layer-3 Switch 4.484s 0.932s 

to be generated and analyzed. In addition, and not unexpectedly, the partitioned crossbar 

topologies are generated quicker than the point-to-point topologies. The values are consis-

tent, in that the applications with small communication requirements take less time to be 

analyzed than those with high requirements; this result is due in large part to the token-

based simulation method employed in the analysis method. The point-to-point topologies 

further support the supposition that the complexity of the analysis method is based in part 

on the communication requirement of an application. However, these execution times also 

incorporate the iterative nature of the point-to-point algorithm. Nonetheless, the worst-case 

analysis and generation time was less than 40s, meaning that for a given application both 

topology types can be obtained in a very short time. 

6.5 Topology Comparison 

This section very briefly compares a topology generated by the proposed method with a 

topology generated in a method similar to that of [35]. The topology in question is listed 

in [36] and is for the MPEG4 Decoder already described above. Figure 6.29 lists the two 

topologies: a) represents the topology proposed here, based on the partitioned-crossbar 

method, and b) represents the topology presented in [36]. 

Before any analysis, it should be noted that the above diagram simply lists the connec-

tions mnong devices. It does not take into consideration their physical layout of the final 
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(a) 

(b) 

Figure 6.29: Topology Comparison: (a) Partitioned Crossbar Topology; (b) Topology Gen­
erated by Srinivasan et al. Method [36] 

design. The first thing to note is t he fact that the topologies are quite similar in structure, 

but that topology of Fig. 6.29(b) has three additional, 2-port switches. This is due to the 

fact that the method proposed by Srinivasan et al. begins with an approximation of the 

physical layout of the components, and adds switches to all corners of the component [36]. 

A subset of these switches is then used to connect the components, according to the applica-

tion core graph. While these switches add latency to those communication paths, they also 

allow for higher operating clock frequencies in the NoC by eli1ninating long lines. 

The second thing worth noting is the arrangement of the various components around the 

two large switches. For our partitioned crossbar topology of Fig. 6.29(a), cores 6, 9 and 11 

are grouped around the same switch, since core 6 has the highest communication requirement 

in the system, with cores 9 and 11. Similarly, core 7 communicate only with cores 9 and 

11 and is therefore also connected to the same switch. Finally, cores 0 and 8 have a large 

communication requirement to core 11, which is why it is connected to the same switch. It 

should be noted that none of the traffic originating at any of these master cores (0 , 6, 7 

and 8) has to travel more than two hops. The remaining cores are connected to the second 
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network switch, as they all have reduced communication needs compared to the above cores. 

In contrast , in Fig. 6.29(b) the cores are grouped based on layout first , meaning that their 

relative size and arrangement will dictate the topology. In this case, transactions from core 

6 will have to undergo increased clock latencies when addressed to core 11 , which can lead to 

decreased performance. In addition, the topology of Fig. 6.29(a) incorporates considerations 

of the data width and burst behavior of the cores, which is why core 0 is connected to switch 

0, rather than core 4. Core 4 has larger requirements to core 9, but also uses larger data 

transfers (data-width), meaning that fewer transactions are issued over-all. In contrast, the 

method presented in [36] can lead to better performance at the fabrication phase, by allowing 

higher network clock frequencies to be achieved. Nonetheless , the transaction-based nature 

of the cornponents in question , as well as the data flow characteristics will still have to be 

addressed. This discussion demonstrates the difficulty in making such design decisions. Both 

topology generation methods have strengths and weaknesses , in that the topologies proposed 

in this paper do not consider the final layout of the system, while the method proposed in 

[36] does not take into full consideration the communication characteristics of the cores 

and concentrates primarily on power and area issues. A fully integrated top-down design 

approach would first address performance requirements at a higher design level (component 

level) and then follow-up with further refinements at the final , physical level. 

6.6 Message Passing Communication Model in Trans­

action Based Environments 

This final section examines some of the problems that can occur when communication ab­

stractions are used inappropriately. Specifically, this final test looks at the effects of using 

message passing communication models in situations where transaction-based protocols are 
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used (many embedded systems fall in this category). The MPEG4 Decoder was used as the 

basis for this test, mapped to the partitioned crossbar topology. The experiment consist of 

using the exact same simulation setup as that seen in Section 6.2, but using an operating 

frequency computed based on traditional methods used in parallel computing and large area 

networks. Specifically, the network must operate at such a speed that each component is 

capable of transmitting the worst case information volume in the application. In the case 

of the MPEG4 Decoder, using the partitioned crossbar topology, the worst case situation 

occurs at the output connected to the SDRAM unit (Core 9). This output must be able 

to accommodate an information volume of 1800 MB/s. The majority of this volume (1500 

MB/s) is transmitted using 128-bit transfers, so this flow is converted to a number of 128-bit 

transfers, where each transfer is assumed to take 20 cycles to process; the simulation models 

used actually takes only 16 cycles per transaction, but the network will be over-designed in 

this case. 

Figure 6.30 shows the obtained simulation results at the required operating frequency, 

2360 MHz. This Frequency was obtained by multiplying the number of transfers that each 

output port must be able to forward by the latency of each such transfer. The results show 

that this frequency of operation is inadequate for the largest transaction generators, because 

the employed model is appropriate for write operations only. The added latency of read 

operations is neglected when computing a frequency of operation this way. In total, 5 out 

of the 9 traffic generators miss their communication requirement. Interestingly, the opposite 

may also happen, where this method of analysis will yield an operating frequency higher 

than what is actually required. In the case of the MWD Application, the described analysis 

method would yield an operating frequency of 630 MHz. However, Section 6.3 shows that, 

using 573 MHz, the obtained performance is within 3% of the requirement. In such situations, 

the fact that transactions do not necessarily overlap in time means that the frequency of 

operation can be reduced and the system requirements will still be met. 
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Figure 6.30: MPEG4 Decoder Traditional Design Results 

6. 7 Conclusion 

The simulation and results chapter of a thesis is perhaps the most important part of any such 

document as it validates the methods being proposed therein. The results presented here 

address both the comparative performance of the proposed method in relation to traditional 

regular topologies, as well as the accuracy of the analysis method being used to determine 

the maximum operating frequency. The presented results show that the proposed method 

can provide equal or better performance when compared with regular topologies, depending 

on the communication specifications, while at the same time utilizing less resources. As well, 

the analysis method is capable of predicting the required frequency of operation to within 

27% (in the worst case) despite requiring little computation time. 
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Chapter 7 

Thesis Conclusion 

I 

The preceding document has addressed the issue of Network-on-Chip topology generation 

and analysis in transaction-oriented environments. The main motivation and contribution of 

the document is the analysis of on-chip communication protocols, and the generation of viable 

NoC topologies for such systems. The thesis defines formal criteria for meeting throughput 

requirements in transaction-oriented systems, and presents two methods of topology gener-

ation that cater specifically to transaction-oriented systems. In addition, a predictive form 

of network analysis is presented, aimed at estimating the required clock frequency of a given 

network. Such an estimation is required, since the operating frequency of the interconnect 

is one of its main operational characteristics, and determines what performance the network 

can provide. 

The experiments conducted to test the method show that the generated topologies can 

provide equal or better performance when compared with traditional regular topologies, while 

using, on average, half the network resources of their regular counterparts. Additionally, the 

predictive analysis method was able to predict the required frequency of operation with 

a fair degree of accuracy, with performance deviations in individual cores not exceeding 

27% in the worst case, and staying below 5% in rnost cases. Used as a first approxirnation 
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method for initial frequency estimation, the obtained accuracy is considered adequate. This 

is particularly true when one considers that the topology generation and analysis results are 

obtained in less than one minute of processing time. 

The proposed methods are primarily high-level synthesis solutions, meaning that before 

they can be used, more work needs to be done at the physical implementation level. This 

includes the generation of physical layouts (generally based on standard-cell synthesis), anal­

ysis of layout constraints and verification of physical parasitical effects. Tools already exist 

to address these problems, and, in the future, can be further integrated with high-level anal­

ysis and synthesis methods, like those proposed here. For this reason, the primary areas 

of expansion for the proposed method would be integration with logic design tool-chains to 

allow automated generation of chip layouts. In addition, the topology generation process 

could be further expanded with the incorporation of more elaborate heuristic methods, or 

the augmentation of the current design process with some random search procedures which 

may further improve the generated results. 

Publications 

The work presented here has been accepted for publication as a Regular Paper in the IEEE 

Transactions on VLSI Systems, 2008. 
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Chapter 8 

Appendix 

This section lists all the data presented in Chapter 6 in tabular format. All listed values 

represent Completed transactions except where stated otherwise. 

Table 8.1: MPEG4 Decoder Transaction Results- Topology Comparison- 1GHz 
I Core I Mesh I Fat Tree I Custom 1 I Custom 2 I 

0 1168 1344 1200 1136 
1 680 728 836 744 
2 648 556 704 640 
3 32 32 32 32 
4 1040 1100 1028 956 
5 32 32 32 32 
6 944 976 832 1040 
7 632 676 744 748 
8 928 544 824 776 
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Table 8.2: MWD Application Transaction Results- Topology Comparison- 500MHz 
I Core I Mesh I Fat Tree I Custom 1 I Custom 2 I 

0 1040 1040 1040 1040 
1 680 680 680 680 
2 1040 1040 1040 1040 
3 1368 1340 1352 1316 
4 1036 972 1024 1040 
5 360 360 360 360 
6 360 360 360 360 
7 360 360 360 360 

Table 8.3: AV Benchmark Transaction Results- Topology Comparison- 1GHz 
I Core I Mesh I Custom 1 I Custom 2 I 

0 1416 1424 1496 
1 1768 1832 1864 
2 1296 1320 552 
3 160 160 160 
4 864 872 552 
5 1488 1536 928 
6 960 960 960 
7 800 800 512 
8 1440 1392 912 
9 40 40 40 
10 200 200 200 
11 1584 1568 1200 

Table 8.4: MPEG4 Decoder Transaction Results- Accuracy Test- 3.437GHz 
I Core I Required I Custom 1 I Custom 2 I 

0 1525 1233 1120 
1 305 320 320 
2 580 600 596 
3 2 4 4 
4 488 628 616 
5 2 4 4 
6 1205 992 1056 
7 625 636 632 
8 763 752 752 
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Table 8.5: MWD Application Transaction Results- Accuracy Test- 573MHz 
I Core I Required I Custom 1 I Custom 2 I 

0 878 880 880 
1 585 600 600 
2 878 880 880 
3 1317 1284 1296 
4 878 880 880 
5 293 320 320 
6 293 320 320 
7 293 320 320 

Table 8.6: AV Benchmark Transaction Results- Accuracy Test- 2.31GHz 
I Core I Required I Custom 1 I Custom 2 I 

0 1243 1280 1264 
1 976 1040 1040 
2 578 640 608 
3 45 80 80 
4 378 400 400 
5 690 720 720 
6 392 400 400 
7 322 400 400 
8 953 960 960 
9 17 40 40 
10 86 120 120 
11 648 800 800 

Table 8.7: Layer-3 Switch Transaction Results- Accuracy Test- 229MHz 
I Core I Required I Custom 1 & 2 I 

0 232 234 
1 860 944 
2 2005 1920 

119 



Table 8.8: MPEG4 Decoder Burst Test- Transactions 
I Burst Length I Mesh - 8cyc I Custom 2 - 8cyc I Mesh - 20cyc I Custom 2 - 20cyc I 

1 745 998 485 703 
4 1692 1912 1044 1188 
16 2256 2336 1296 1360 

Table 8.9: MPEG4 Decoder Burst Test- Latency (cycles) 
I Burst Length I Mesh- 8cyc I Custom 2- 8cyc I Mesh- 20cyc I Custom 2- 20cyc I 

1 61.38 45.43 103.3 68.16 
4 25.57 21.58 38.58 33.74 
16 17.47 17.06 30.67 29.58 
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