
NON-PERIODIC INSPECTION OPTIMIZATION OF REPAIRABLE SYSTEMS

By

Yassin Hajipour, B.Sc., Ryerson University, 2014

A thesis presented to Ryerson University in partial

fulfillment of the requirements for the degree of

Master of Applied Science

in the program of

Mechanical and Industrial Engineering

Toronto, Ontario, Canada, 2016

© Yassin Hajipour, 2016

ii

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final version, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

I understand that my thesis may be made electronically available to the public.

iii

ABSTARCT

NON-PERIODIC INSPECTION OPTIMIZATION OF REPAIRABLE SYSTEMS

Yassin Hajipour
Master of Applied Science

Mechanical and Industrial Engineering, 2016
Ryerson University, Toronto, ON, M5B 2K3, CANADA

This study proposes models to find the optimal non-periodic inspection interval over a

finite planning horizon for two types of multi-component repairable systems. The first system

consists of hard-type and soft-type components, and the second system is a k-out-of-m system

with m identical components. The failures of components in both systems follow a non-

homogeneous Poisson process. The failure of soft-type components and the failure of

components in a k-out-of-m system when the number of failed components is still less than m-

k+1, are soft failures. Soft failures are revealed only at scheduled inspections or when an event

of opportunistic inspection or a system failure occurs. The failures of hard-type components or

the failure of (m-k+1)th failed component in a k-out-of-m system are hard failures, and cause

the system to stop functioning. Hard failures are revealed immediately and the failed

components are fixed. In this study, a failed component is either replaced or minimally repaired

according to its age at failure time. To find the optimal inspection schedules for the systems, we

minimize the total expected cost of the systems over a finite planning horizon. The total cost

for the first type of system includes the costs of components’ minimal repairs, replacements,

downtimes, and the scheduled inspections. The total cost of a k-out-of-m system has an

additional penalty cost for system failures. We consider a binary variable for a possible

iv

scheduled inspection’s time, in which 1 indicates performing a planned inspection at that time,

and 0 shows no inspection to be performed. Thus, our goal is to find the optimal vector of

binary decision variables which results in the minimum total cost of the system. A recursive

formula is developed to calculate the expected number of minimal repairs, replacements and

downtime of soft-type components. However since obtaining the expected values from the

mathematical formula is cumbersome, we develop a simulation model to obtain the total

expected cost for a given non-periodic inspection scheme. We then integrate the simulation

model with a genetic algorithm to obtain the optimal inspection scheme.

v

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor, Dr. Sharareh Taghipour for her

remarkable support, encouragement and guidance and introducing me to Industrial

Engineering and inspection optimization. Her enthusiasm into my research area has always

inspired me and her willingness to share her expertise has helped me progress in my research.

This thesis would not have been completed without her. Words are inadequate to express my

special appreciation to Dr. Sharareh Taghipour, who helped me patiently with her excellent

knowledge. Her enthusiasm and encouragement made me eager to succeed. I am also grateful

for her critical reviews on this thesis.

I would also like to acknowledge the Ryerson University and the Department of Mechanical and

Industrial Engineering and also graduate program director, Dr. Ahmad Ghasempoor for support

and guidance.

Also, thanks to Natural Sciences and Engineering Research Council of Canada (NSERC) who has

financially supported this research.

I gratefully thank Dr. Mohamad Ismail Wahab and Dr. Cory Searcy from Mechanical and

Industrial Engineering Department of Ryerson University who served as the members of my

research committee, and provided me with valuable comments on and insights into both the

research and the presentation of the thesis.

I would like to offer my sincere gratitude to my lovely parents who have always been a source

of encouragement and support in my life.

vi

PREFACE

Chapters 2, 3 and 4 of this thesis are the extensions of the following journal and conference

papers published/submitted during my Masters studies:

Journal Paper:

Y. Hajipour, S. Taghipour, “Non-Periodic Inspection Optimization of Multi-Component and k-

out-of-n Systems Using Genetic Algorithm,” Reliability Engineering & System Safety, under

second round of review after revision.

Conference Proceedings:

Y. Hajipour, S. Taghipour, “Non-Periodic Inspection Optimization of Multi-Component System

Using Genetic Algorithm,” Proceedings of the IIE Annual Conference and Expo 2015 Nashville,

Tennessee.

vii

Table of Contents

Abstract .. iii

Acknowledgements.. v

Preface ... vi

List of Tables ... viii

List of Figures .. x

Chapter 1 - Introduction and the Literature Review.. 1

Chapter 2 - Problem Description and the Models Assumptions .. 14

Chapter 3 – The System with Soft-Type and Hard-Type Components 19

3.1. Simulation model to obtain

 ………………………………………………………..…………………..….24

3.2. Coupling the simulation model and the genetic algorithm (GA) 27

3.3. Flowcharts of the Simulation model and the GA code .. 29

3.4. Numerical Example .. 33

3.5. Sensitivity Analysis ... 42

Chapter 4 – A k-out-of-m System ... 44

4.1. Simulation algorithm for a k-out-of-m system... 44

4.2. Flowcharts of the Simulation model for a k-out-of-m system ... 46

4.3. Numerical Example .. 49

4.4. Sensitivity analysis .. 54

Chapter 5 – Conclusions and Future Work .. 56

Appendix A .. 58

A.1 Genetic algorithm code for the hard-soft system .. 58

A.2 Genetic algorithm code for the k-out-of-m system .. 71

References .. 84

Glossary .. 93

viii

List of Tables

Chapter 3

Table 3.1. 33

Costs of maintenance and downtime for different components.

Table 3.2. 34

Parameters of the power law intensity function, and the probability function of minimal

repair for all components.

Table 3.3. 35

Simulation results for different cycle lengths T.

Table 3.4. 36

The conditions and criteria for running the genetic algorithm.

Table 3.5. 36

Minimum required population size for different cycle lengths T.

Table 3.6. 38

The GA’s results for different cycle lengths T.

Table 3.7. 38

The results from the integration of the GA and the simulation model, and the simulation

model solely.

Table 3.8. 43

Changes in the parameters of the system of hard-type and soft-type components.

ix

Chapter 4

Table 4.1. 49

Parameters of the power law intensity function, and the probability of minimal repair, and

required costs.

Table 4.2. 50

The results of the simulation model for the k-out-of-m system with cycle length T=12.

Table 4.3. 55

Changes in the parameters of the k-out-of-m system.

x

List of Figures

Chapter 2

Figure 2.1. 16

Sample soft and hard failures, and potential and opportunistic inspections over cycle T.

Figure 2.1. 16

Sample of k-out-of-m system, and potential and opportunistic inspections over cycle T.

Chapter 3

Figure 3.1. 29

Genetic algorithm.

Figure 3.2. 30

Simulation algorithm for the system with hard-type and soft-type components.

Figure 3.3. 31

Algorithm for an opportunistic inspection of the system with hard-type and soft-type

components.

Figure 3.4. 32

Algorithm for a scheduled inspection of the system with hard-type and soft-type

components.

Figure 3.5. 37

Minimum number of required population size vs. the number of possible scheduled

inspections n.

Figure 3.6. 40

xi

The fitness value for the best and the worst inspection schemes at each generation of the

GA.

Figure 3.7. 40

The best and average expected costs obtained by the GA at each generation.

Chapter 4

Figure 4.1. 46

Simulation algorithm for a k-out-of-m system.

Figure 4.2. 47

Algorithm for the inspection at a system failure for the k-out-of-m system.

Figure 4.3. 48

Algorithm for a scheduled inspection of the k-out-of-m system.

Figure 4.4. 52

The fitness value for the best and the worst inspection schemes at each generation of the GA

for the 3-out-of-5 system.

Figure 4.5. 53

The best and average expected costs obtained by the GA at each generation for the 3-out-of-

5 system.

1

Chapter 1 - Introduction and the Literature
Review

There are many multi-component systems in various fields of industry and human life.

The significant part of capital equipment investment is usually represented by multi-component

systems. They are one of the most important and complex categories of assets, in the sense

that the availability and reliability of such equipment could impact the prosperity of business in

different industry zones including manufacturing, services, and healthcare. Maintenance of

multi-component systems is increasingly important, since the failure of a system may result in

catastrophic consequences, incur huge costs and present threat to human life.

The majority of multi-component systems is either designed, or assumed to be repairable,

since it is usually not economical to replace failed components instead of repairing them [1].

Systems inspection is a common maintenance strategy that many organizations implement,

particularly when their equipment is complex and is subject to hidden failures. Up to 40% of

failures in industrial systems are hidden failures [2]. Inspection helps to retain the uptime and

availability of systems as high as possible [3, 4]. For example, computer network servers,

backup power generation systems, and medical devices are required to have a maximum

possible availability and uptime to be able to minimize the excessive costs and undesirable

consequences.

Inspection policy could be categorized into periodic or non-periodic inspections. The

components of multi-component systems are classified by type, or mode of failure. A complex

2

system consists of two types of components, soft-type and hard-type. Failure in these

components are classified as soft (or hidden) and hard failures [5, 6]. A component which is

subject to hard failures is called a hard-type component whereas a soft-type component is the

one subject to soft failure. In certain systems, some components can be subject to both soft

and hard failures, and therefore, they are treated as soft-type and hard-type components,

separately.

The entire system stops functioning in an event of hard failure. Hence, hard failures are

self-announcing and the time of failure is known. An example of a hard-type components is

central processing unit (CPU) in personal computers, since the failure of CPU results in

immediate dysfunction of the computer. The power outage in a computer circuit is another

example of hard-type components.

Soft failures, however, are not self-announcing and are hidden. They can only be detected

and rectified at inspections [1, 7]. Soft failures typically do not result in the failure of the entire

system, but likely cause a decrease in the system’s reliability by eliminating redundancy and

increasing the risk of breakdown or future damage. The time that soft failures occur are often

unknown, since the system may continue to operate even in the presence of a soft failure.

However, the performance and efficiency of the system may be decreased [6, 7]. Flaw in a

computer CD-ROM is an example of a soft failure, as the computer can still operate, despite it is

unable to read or write from the CD. Another example of soft-type components is liquid-level

alarm in infusion pumps.

3

Some sort of dependency exists between the components of multi-component systems,

which differentiates these systems from single-component systems [8]. This dependency could

be a failure, functional, structural, or an economic dependency.

The concept of components dependency is discussed in the literature. Wang and Pham

[9] propose the optimal maintenance for systems consisting of several sub-systems. They

assumed that the components are economically dependent. Dekker et al. [10] surveyed the

economic dependency in multi-component systems. Ozekici [11] also studies the stochastic and

economic dependencies and their influence on periodic replacement policies for a multi-

component system. The series systems with mixed (cold and warm) standby components using

the mean time to failure (MTTF), long-term availability and cost over benefit ratio are

compared by Wang and Kuo [12]. A k-out-of-m system with perfect component and repairable

repair-equipment is studied by Zhang and Wu [13]. In their study, they proposed a model that

minimizes the total expected costs, based on the number the components which are repaired.

This model is the optimal replacement policy. Taghipour and L Kassaei [14, 15], and Taghipour

[16] consider a k-out-of-m load-sharing system with some dependency between their

components. In their model, the failure of each component increases the hazard level of the

remaining operational components. They [14, 15] develop a model to find the optimal

inspection interval minimizing the total expected cost over a finite life cycle.

For optimal maintenance of multicomponent systems several models are proposed, and

each of them is subject to multiple assumptions and structures, such as hidden failures, finite

and infinite planning horizons, hard-component preventive replacements and opportunistic

inspections. Some work is done to summarize research in optimal maintenance of

4

multicomponent systems. For example, Cho and Parlar [17] review the literature of the models

developed over infinite time horizon. Wang [8] provides another review of different inspection

and maintenance policies for both single-unit and multi-component systems; although his focus

is more on single-unit component systems. However, the models in his surveys do not consider

optimization of both inspection and maintenance over a finite time horizon.

 Most of the maintenance optimization models assign different probability for each type

of maintenance strategy. For example, age dependent probabilities for the type of maintenance

such as replacement, minimal repair, or imperfect repair are considered by Sheu and Griffith

[18]. Chien and Sheu [19] consider the system’s age and the number of shocks tolerated since

last replacement to evaluate the probability of replacement. Makis and Jardine [20] propose a

model with both imperfect and perfect repair. The probability of perfect maintenance is

assumed to be dependent on the number and time of imperfect maintenance actions in a cycle.

Most of the available maintenance optimization models are constructed considering the

costs per unit time over infinite planning horizon. Wang and Zhang [21] develop an optimal

mixed bi-variate policy model, based on the critical reliability level and the number of system

failures for a simple system to find the minimum average cost rate. An optimal replacement

policy model, based on the number of failures of each component for a series system with

different components type, under a geometric process is proposed by Zhang and Wang [22].

Their model is able to optimize the system’s costs per unit time. Wu and Zhang [23] consider an

infinite-horizon multi-variable maintenance policy model for a two-component cold-standby

system subject to Poisson shocks. Their maintenance policy model depends on the number of

failures of each component and the interval length between two consecutive preventive

5

replacements. Coria et al. [24] consider an imperfect preventive maintenance policy model over

infinite planning horizon. According to a new hazard function, they provide an analytical

optimization method to optimize the costs of the system per unit time. A preventive

maintenance policy model by considering the improvement factor and infinite planning horizon

is proposed by Pan et al. [25]. Taghipour and Banjevic [7] consider models to optimize the

inspection interval for a multi-component system, which is subject to hidden failures over both

finite and infinite planning horizons.

Some systems contain components that are subject to hidden failures. Protective devices

usually have the highest number of hidden failures. A hidden failure is defined as a failure

which is not discovered during the normal operation of the system, and is rectified only at

inspection [26, 27]. For example, the failures of computer CD-ROMs are only revealed either at

inspection, or whenever the protective unit is required to function, but is unavailable due to

failure. The only difference between soft failures and hidden failures is that the system is still

able to function even with the presence of soft failures.

Hidden failures in single-component systems have been investigated by Sheu et al. [28]

They assume that the number of previous repairs, affects the probability of failure, and the

maintenance policy is based on both the component’s age at failure and its number of previous

repairs.

The optimal inspection period which maximises the profit of a multi-mode system is

determined by Baohe [29]. He considers a combination of hidden and self-announcing failures

in his model, and uses the supplementary variable technique where the inspection period is a

random variable.

6

Another topic receiving an extensive treatment in the literature is opportunistic

maintenance policy. An optimisation model for opportunistic preventive maintenance of a

multi-component system with a series configuration is proposed by Zhou et al. [30]. Their

system is the same as a multi-component system subject to only hard failures, since a series

system fails by the failure of any one of its components. Dagpunar [31] looks into opportunistic

replacement of a component in a multi-component system, if the age of a failed component

surpasses a specified control limit. However, in his model, he does not consider any constraints

for the type of components. Zhu et al. [32] propose an opportunistic maintenance policy model

for a multi-component system with hard-type and soft-type components.

Cui and Li [33] consider opportunistic inspections and stochastic dependency between the

components of a system. Aven and Dekker [34] develop a preventive opportunistic replacement

model for components whose failures follow a Poisson process. Moreover, they consider an

age-based replacement action for their model. One of the models in Taghipour and Banjevic

[35] only considers opportunistic inspections and minimal repairs of hard-type and soft-type

components for a multi-component system over a finite planning horizon. Taghipour and

Banjevic [36] consider optimal periodic inspection interval for complex multi-component

systems with hard and soft failures. Their model considers two types of inspection – periodic

and opportunistic. However, in their model, the maintenance action is chosen based on age

dependency probabilities, and it is not subject to optimisation.

While the literature considers inspection optimization of complex systems; the focus is

generally more on periodic inspections [37-40]. Kapur and Butani [41] develop a model for

optimal periodic inspection of a computer system with hidden and revealed failures. Zequeira

7

and Berenguer [42] propose a model to optimize a preventive maintenance policy for a system

involving periodic inspections. They consider three types of maintenance actions for the

system, including minimal repair, imperfect maintenance, and perfect replacement in their

model. Zhao et al. [43] use cumulative hazard function and asymptotic mean time to failure,

and propose approximate methods for estimating failure times and optimizing maintenance

and inspections policies for a parallel system. Vaurio [44] considers the optimal periodic

inspection interval for a multiple-component system. His optimization model is based on the

system risk and cost.

Taghipour et al. [1] consider a model to optimize the periodic inspection for a complex

repairable system involving hard and soft failures. Their model optimizes the expected total

cost of the system over a finite planning horizon. Taghipour and Banjevic [35, 36] consider the

possibility of both periodic and opportunistic inspections to extend their previous work in this

area. The periodic inspections are scheduled in advance and opportunistic inspections occur at

hard failure times. They also inspect the soft-type components in addition to the failed hard-

type component at the events of the opportunistic inspections. Rezaei and Imani [45] propose a

model to obtain an optimal periodic inspection interval on a finite time horizon for a multi-

component repairable system. Since the components of the selected system assume to be

economically dependent, grouping maintenance is preferred to individual maintenance. Rezaei

and Imani [45] consider a combination of inspection, repair, and downtime penalty costs as the

total expected cost in their model.

8

Wang et al. [46] study a multi-component system, in which they model the failure of each

component separately and formulate a periodic inspection interval model for the entire the

system.

Wang [47] proposes a model for a joint optimization of inspection interval policy and

inventory level of spare parts. He forms his optimization model based on three decision

variables: “the ordering quantity”, “ordering interval” and “inspection interval”. Moreover,

Wang [47] considers the delay time concept and a two-stage failure process to construct the

model.

Golmakani and Moakedi [48] consider a model for a two-component system in which one

of the components is assumed to be a hard-type component, and another is a soft-type

component. They [48] apply the same assumptions for soft-type and hard-type components as

what Taghipour et al. [1] assume in their models to find the optimal interval for periodic

inspections.

Wang [49] considers a system for a production process with two types of failure. The first

type of failure is a product quality shift due to minor process defects which is assumed to be

identified and rectified by routine inspections. The other type of failure is the major defect

caused by a mechanical or electrical problem which should be inspected and repaired

immediately after its emergence. In the current thesis, similarly to Wang [49], we assume two

failure types. Another similarity of this study to Wang [49] is the type of inspections which are

applied to the systems. Wang [47] considers two types of inspection, including routine and

opportunistic inspections, which are similar to scheduled and opportunistic inspections. On the

other hand, one of the main modifications of our work to Wang [47] is that we inspect all

9

components and rectify and repair the failed hard-type component as well as failed soft-type

components at opportunistic inspections. Another difference of our work is that we develop an

optimization model for a system which is subject to non-periodic inspections, while Wang [47]

considers periodic inspection. However, we both assume that the failure times of soft-type

components are unknown.

Wang et al. [50] propose a model for two-level inspection policy of a single component

system based on a three-stage failure process. They [50] jointly optimize the minor and major

inspection intervals, as well as a threshold level for the next planned maintenance by

minimizing the expected cost per unit time. Mendes et al. [51] propose a model to analyze the

reliability of active and standby redundant systems, and determine their optimal periodic

inspection interval using Markov chain and search technique.

Another research area related to inspection optimization of complex multi-component

systems is non-periodic inspections, which have been studied in the literature [52, 53]. A model

for a two-unit system, in which each unit is subject to systematic failure and is inspected by

sequential non-periodic inspections is presented by Castanier et al. [54]. Castanier et al. [54]

consider preventive and corrective replacements. They assume a parametric maintenance

decision to control the inspection and replacement policy. However, minimal repair of the units

is not considered as a possible maintenance option, which can affect the expected system cost

value.

Wang and Christer [55] study three solution algorithms for non-periodic inspection of a

multi-component systems. The first algorithm is assigned to calculate the system replacement

time when arrival process is non-homogeneous. The second algorithm is an extension of the

10

first one, in which non-constant optimal inspection intervals are considered. Finally, the third

algorithm is a numerical algorithm for solving an integral equation to obtain the expected time

of opportunistic inspections at the system failure times.

Golmakani and Moakedi use dynamic programming and branch-and-bound methods [56]

to optimize non-periodic inspections of a multi-component system. The search algorithm,

based on branch-and-bound method, is introduced by them [56]. The challenge of search

algorithm is to generate and evaluate fewer numbers of nodes by branching only the most

capable nodes at each step of the examination. Computing a large number of nodes at each

step is one of the most important weaknesses of search algorithm.

Lam and Banjevic [57] propose a model to decide at an inspection point whether a

deteriorating system should be replaced immediately or the replacement should be postponed

until later. They [57] also decide on when to schedule the next inspection. Barker and Newby

[58] propose a model for a multi-variable stochastic process system. Their [58] model is

designed to obtain non-periodic inspection and maintenance policy for a multi-component

system in which the state of failure is modeled using a Markov stochastic process. Zhao et al.

[59] develop another non-periodic inspection model for a complex multi-component system

which is affected by a dynamic environment. They [59] use covariates process to define

environment effects, and a stochastic univariate process is used to model the system’s failure.

Zhao et al. [59] derive the optimal maintenance threshold to minimize the expected

maintenance cost per time unit and find the optimal non-periodic inspection sequence.

One of the most common types of multi-component complex systems which is used in

industry for the last decade is a k-out-of-m system. A k-out-of-m system is an active redundant

11

system consisting of components, in which a minimum of components must be operational

for the system to function [60-69].

The optimization of inspection policies for a k-out-of-m system is the main focus of many

publications. One of the research papers in this area is Taghipour and Kassaei [15], which offers

a model to optimize the periodic inspection interval for a k-out-of-m system assuming load-

sharing between all identical components. In the current research, we also consider a k-out-of-

m system, but we do not consider the load concept for the components. The main difference of

the current work with the work of Taghipour and Kassaei [15] is that we consider a non-periodic

inspection strategy for the system.

Bjarnason et al. [68 -71] propose a joint optimisation model for a k-out-of-m redundant

system, and minimise the total costs of both maintenance and inventory policies. They consider

hidden failures for the system. In another work, Bjarnason and Taghipour [72] find the optimal

maintenance and (s, S) inventory policies for a k-out-of-m system subject to hidden failures.

They search through a three-dimensional objective function by using genetic algorithm. As all

components of k-out-of-m systems are identical, the analysis is much easier than a system

containing various hard-type and soft-type components, because each component in the latter

may require a special treatment, which makes the analysis much harder.

One of the models of our study is an extension of the models proposed by Taghipour and

Banjevic [35, 36], but we develop an optimization model for non-periodic inspection of a

system subject to soft and hard failures, and opportunistic inspections. Since the failure rates of

the components are increasing as they get older, it is more reasonable to have less frequent

inspections when the components are relatively new, and have more frequent inspections as

12

the probability of failure increases for the components. Our decision variables are binary

variables indicating possible scheduled inspections’ times for the system. Thus, the optimal

non-periodic inspection scheme is the vector of the binary variables which results in the

minimum total expected cost of the system over a finite time. We develop a simulation model

to obtain the total expected cost of the system for a non-periodic inspection scheme, and

combine this model with the genetic algorithm to obtain the optimal scheme more efficiently.

At the next stage, we apply the same model for a k-out of-m system with similar assumptions.

For both models we assume minimal repair and replacement as possible maintenance

actions for both hard-type and soft-type components and components of a k-out-of-m system.

It is not generally possible to obtain an analytical solution for the optimal inspection interval,

even in the simpler case of optimizing system availability regardless of the costs. For this

reason, simulation is used to calculate the required expected values and to exhaustively search

for the optimal solution in the case of a complex system.

Overall, inspection optimization models can be used as valuable tools in providing the

safe and reliable operation of various equipment. Such models can also have strong managerial

implications, since in practice, it is usually important to justify and support managerial decisions

with both qualitative and quantitative analysis in order to make them robust. Simulation

models are particularly useful in this regard, as they can cover a great number of possible

scenarios and provide the results both for a particular and the most general case. Using the

proposed inspection optimization model, the decision-makers gain an opportunity to observe

the outcomes of their managerial decisions and to find the combination of decisions that is

most likely to result in the greatest cost savings without sacrificing the required reliability and

13

availability. For example, based on the model’s output for a given system with particular

component parameters, it may not require as frequent inspection as previously thought

because of the accounted effect of the additional opportunistic inspections. This would result in

cost savings, which would be especially significant, if the costs of inspection were particularly

high.

Thus, the contributions of this thesis is two-fold: developing a model for non-periodic

inspection of multi-component and k-out-of-m systems, and proposing a solution algorithm

using Monte Carol simulation and genetic algorithm which can be efficiently applied in practice

to obtain the optimal non-periodic inspection policy for industrial systems. The remaining

chapters of this thesis are organized as follows: Chapter 2 presents the problem description and

the models’ assumptions. Chapter 3 describes the system with soft-type and hard-type

components. Chapter 4 presents a k-out-of-m system. Finally, Chapter 5 concludes this study

and proposes some possible extensions of the work. In Appendix A, genetic algorithm and

simulation Matlab code for both models are provided.

14

Chapter 2 - Problem Description and the
Models Assumptions

In this study, we consider two models, which there are similarity and differences between

them. For the first model we assume a system consisting of hard-type and soft-type

components. The number of hard-type components and soft-type components are shown by

 and , respectively. A repairable component can be a single part such as battery or line

cord, or a subsystem, such as circuit breaker or charger in an infusion pump. The failures of

both soft-type and hard-type components for the first two models follow a non-homogenous

Poisson process with power law hazard rate

 , ,where

and are the parameters of the power law intensity function. The second model considered is

a k-out-of-m with identical components. The failures of components also follow a non-

homogenous Poisson process with power law hazard rate

.

The lifecycle length of all three systems is shown by . The failure of soft-type

components is revealed by inspecting the system non-periodically. Once a soft-type component

fails, it stays in the same state until it gets fixed at the first approaching inspection, which could

be a non-periodic scheduled inspection, or an opportunistic inspection assumed to be at a hard

failure’s time. Alternatively for the k-out-of-m model, if the number of failed components is less

than , we consider them as soft failures; and if the number of failed components

reaches , we consider the st failure as a hard failure, since the system

15

stops immediately, and the system failure provides an opportunity to inspect all the

components.

The maintenance action applies to failed components; depending on the age of the

component at failure time, the component either requires a minimal repair or replacement. It is

assumed that there is no dependency between the failures of a component to other

components. It is also assumed that soft failures or the combination of soft failures cannot

change to a hard failure and hard components cannot fail at the same time. Both types of

inspection are considered to be perfect inspections with negligible time for inspection,

replacement and minimal repair.

In a k-out-of-m system, we also assume that when a component fails, it stays in the same

condition until it gets fixed either at a system failure time, or at a scheduled inspection. We

consider a penalty cost for the downtime of each component, as well as a penalty cost for each

time the system fails.

The minimum time unit is assumed to be , which means a scheduled inspection can be

only performed at . In this way, the time interval between two uninterrupted

scheduled inspections cannot be less than . Each can be measured as a day, a week, or a

month. The objective of this model is to find the minimum total expected cost of the system

over lifecycle length , which is the result of the optimal non-periodic inspection scheme.

Given , the system potentially can be inspected at times , where

 , if is divisible by and

 , otherwise. In other words, at each scheduled

inspection time , we should decide whether the system should be inspected or not. We also

16

assume that at the time of a hard failure, all the soft-type components and the failed hard-type

component are inspected opportunistically (Figure 2.1).

Figure 2.1. Sample soft and hard failures, and potential and opportunistic inspections over cycle

T.

Similarly, we assume that at the time of the system failure, all the failed components are

inspected opportunistically (Figure 2.2).

Figure 2.2. Sample of the failures of a k-out-of-m system, and potential and opportunistic

inspections over cycle T.

We assume at time the last scheduled inspection is performed to prepare the system

for the next cycle. The preparation could be the renewal of the entire system, or replacement

of some of the components and minimal repairs of the others. In this case, the components will

17

start with different initial ages. Let us define as a binary decision variable,

which is 1 if inspection is performed at scheduled inspection time , and is 0, otherwise. In this

case, construct the vector , which describes a possible

scheduled inspection scheme for the system. Moreover, we define x k

 and

x
y

k
 as follows:

 (2.1)

 . (2.2)

In fact,

 is counting the number of scheduled inspections up to time (including),

and
 is the interval between

 and
 inspections.

For the last inspection at the end of cycle time we have:

 , (2.3)

 . (2.4)

Thus, the total expected cost of the system over can be formulated as follows:

 ,

(2.5)

where at the beginning of cycle , the soft-type component has the initial age . The

initial ages of the hard-type components at the beginning of cycle is given by vector

 . The total number of scheduled inspections by the end of cycle is

provided by
 . The expected number of minimal repairs and replacements, and the

expected downtime of soft-type component over cycle are denoted by

18

 and

 , respectively. The costs of a minimal repair,

replacement, and the downtime penalty per unit time, respectively, for component are

 ,

 and
 . is the cost of a scheduled inspection. Our objective is to find the optimal

scheme which minimizes the total expected cost of the system

The costs of minimal repairs and replacements of hard-type components, and the

opportunistic inspections have no impact on the optimal inspection scheme; thus, these costs

are not included in
 .

The total expected cost of the k-out-of-m system over cycle length for each scheme is

shown by
 and is calculated as follows:

 (2.6)

where and denote the scheduled inspection cost, cost of minimal

repair of a component, cost of replacement of a component, the penalty cost for the downtime

of a components per unit time, and system failure cost, respectively. As shown, we consider the

cost of system failures as being additional.

19

Chapter 3 – The System with Soft-Type and
Hard-Type Components

To calculate the expected cost of the system, we are required to obtain the expected

number of minimal repairs, replacements, and expected downtime of each soft-type

components stated in (2.5). First, we develop a recursive mathematical formula to calculate

these expected values for a single soft-type component. The recursive formula is designed with

a placeholder function to be able to calculate different required expected values. However,

calculating the expected values from the recursive formula is computationally intensive,

because it involves multi-dimensional integrals which must be obtained numerically by

discretization and solving systems of equations.

We assume all hard-type components are considered as a subsystem of the whole system

in a series configuration. The intensity function of hard-type component at time is

 , where is the initial age of the hard-type component.

Thus, the intensity of the hard subsystem at time is

 .

Let us define the densities of the failure of the soft-type component and hard subsystem

as follows:

() (|)

(|) () , (|) (|) .

t x z

t

s ds s ds
X Z

Hf x t t x e f z z e

20

The reliability functions of the soft-type component and the hard subsystems are

(|)XR x t and (|),ZR z respectively. The probability of the failure of the hard-type component

with initial age of at time is equal to:

For the soft-type component, we have three possible events in one scheduled inspection

interval. We use to show all the possible cases.

To derive a formula that can be generally used to obtain the expected value of any

random variable, we consider a placeholder function , in which represents the

failure time of the soft-type component, and represents the failure time of hard–type

component , and represents the failure/survival/maintenance action on the soft-type

component. Therefore, the general formula remains the same for all random variables, and

only the place holder function changes accordingly as follows:

For the number of minimal repairs of the soft-type component:

1, if 0
(, ,) .

0, otherwise

X

X I
x I z

For the number of replacement of the soft-type component:

1, if 1
(, ,) .

0, otherwise

X

X I
x I z

21

For the downtime of the soft-type component:

, if < z
(, ,) .

z, otherwise

X
x x

x I z

The probability of minimal repair of soft-type component with age at failure is ,

and is the probability of replacement. The probability of minimal repair of

hard-type component with age at failure is
Z

jr , and 1Z Z

j jr r is the probability of

replacement.

Let us assume there is only one scheduled inspection interval at the end of cycle length ,

i.e. or . We derive a recursive formula to obtain the expected number of

minimal repairs, replacements and downtime for a soft-type component over the inspection

interval . Let denote the expected value of a random variable of interest at the end of the

inspection interval . Assuming the initial ages of the soft-type component and the hard

subsystem at the beginning of the inspection interval are and , respectively, and by

conditioning on the first failure time of the soft-type component, i.e. and the first hard failure

time, i.e. , can be recursively obtained as follows:

1 1

1 1
10 0

(,) [(,0,) (,)] ()

y z m
X

y y z

j

G t x z G t x z r t x

1

[(,1,) (0,)] () ()X Z

y z j jx z G z r t x r z
1

(0)
[(,0,) (, ()] ()j X

y zx z G t x z r t x

1

(0)
[(,1,) (0, ())] () ()j X Z

y z j jx z G z r t x r z () (| ,) (|)j X Zq z f x t z f z dxdz

22

1 1

1
10

{[(,2,) (,)] ()

y m
Z

y z j j

j

z z G t z z r z

1

(0)
[(,2,) (, ())] ()}j Z

y z j jz z G t z z r z () (|) (|)j X Zq z R z t f z dz

1

1 1 1 1

0

{ (,0,) () (,1,) ()} (| ,) (|)

y

X X X Zx y r t x x y r t x f x t y dxR y

1 1 1 1
(,2,) (|) (|)X Zy y R y t R y , (3.1)

where z shows the addition of scalar to the elements of vector , and (0)
() jz

indicates that the th element of vector is set to zero

 In general, we develop a recursive formula to obtain the expected values for other

inspection intervals 1,..., 2nl x

 :

(,)
lyG t

1

10 0

[(,0,) (,)] ()

y
l

l

z m
X

y z

j

x z G t x z r t x

[(,1,) (0,)] () ()
l

X Z

y z j jx z G z r t x r z (0)
[(,0,) (, ())] ()j

l

X

y zx z G t x z r t x

 (0)
[(,1,) (0, ())] () () () (| ,) (|)j

l

X Z j X Z

y z j jx z G z r t x r z q z f x t z f z dxdz

1

10

{[(,2,) (,)] ()
l

l

y m
Z

y z j j

j

z z G t z z r z

(0)
[(,2,) (, ())] ()}j

l

Z

y z j jz z G t z z r z () (|) (|)j X Zq z R z t f z dz

1

0

{[(,0,) (,)] ()
l

l ll

y

X

yx y G t x y r t x

23

1
[(,1,) (0,)] ()} (| ,) (|)

l l l l l

X X Z

yx y G y r t x f x t y dxR y

1
[(,2,) (,)] (|) (|)

l l l l l l l

X Z

yy y G t y y R y t R y

 . (3.2)

Since calculating the expected values from the recursive formula is computationally

intensive, in the next section, we develop a simulation model to obtain the expected costs in

equation (2.5) and equation (2.6) for a given non-periodic inspection scheme .

24

3.1. Simulation model to obtain

The inputs of the simulation model are an inspection scheme

 and

 where and the initial age of soft-type components , . The

output of the simulation model is
 . We also define the age-dependent function

 , which specifies the probability of minimal repair for a component with age

 . is the probability of replacement of the component. We assume that and are

given. We generate the first failure times for all components , given their

initial ages. The first failure time for component is obtained from

 ,

in which is a random variable from a uniform distribution over (0, 1).

We add an element 1 to the end of vector to include the last scheduled inspection

which is always performed at time to prepare the system for the next cycle. Then, from (1)

and (2), we obtain
 for , which are the time between two consecutive

scheduled inspections. In the next step, we find the minimum of the first hard failure times and

compare it with . From this comparison, we have the following two possible cases:

Case 1: If is more than the minimum hard failure’s time, we experience an

opportunistic inspection within . We then compare the first failure time for each soft-type

component with the minimum hard failure’s time. As a result, the two following cases may

happen:

Case 1-1: If the minimum hard failure’s time is greater than the first failure for soft-type

component , then the soft failure is detected at the opportunistic inspection’s time (i.e. hard

failure’s time). At this time, we minimally repair or replace the soft-type and hard-type

25

components according to , where is the age of the component at the failure time. We

update the variables which are keeping track of the number of minimal repairs, replacements

and downtime of soft-type component We then generate the time to the next failure for

soft-type component .

Case 1-2: If the minimum hard failure’s time is less than the first failure for soft-type

component , then at this time, we minimally repair or replace the hard-type component

according to , where is the age of the component at the repair time.

In both Cases 1-1 and 1-2, we move forward the simulation clock to the minimum hard

failure’s time, and subtract the minimum hard failure’s time from , and the first failure times

of the survived components (soft-type and hard-type). We also generate the time to the next

failure for the failed hard-type component with the minimum hard failure’s time.

 Case 2: If is less than the minimum hard failure’s time, the next inspection time is .

We then compare with the first failure time of each soft-type component . As the result,

two possible cases may happen:

Case 2-1: If is greater than the first failure of soft-type component , the soft failure is

detected at . At this time, we minimally repair or replace soft-type component according to

 , where is the age of the component at the failure time. We update the variables which

are keeping track of the number of minimal repairs, replacements and downtime of soft-type

component . We then generate the time to the next failure for the soft-type component.

Case 2-2: If the first failure for soft-type component is greater than , we just follow

the steps described below.

26

In both Case 2-1 and Case 2-2, we move forward the simulation clock to , and reduce

this time from the first failure times of the survived components (soft-type and hard-type). We

then use as the next scheduled inspection interval.

We follow the steps described above, until the simulation clock reaches .

Each simulation run returns the estimates for the expected number of minimal repairs,

replacements and downtime for each soft-type component . The average of these estimates

from multiple simulation runs is

 and

 We then

obtain
 based on equation (2.5). The simulation model should be run for all possible

inspection schemes , which are cases, starting from and ending to

 . The minimum
 among all possible inspection schemes returns the optimal

inspection scheme .

It should be noted that
 is always , because even when we have the inspection

scheme as the input of the simulation model, we still perform one inspection at

the end of lifecycle . Thus, always

The number of possible inspection schemes is increased significantly by increasing (i.e.

 schemes). In the case of large , checking all possible schemes to find the optimal one is not

efficient. To find the optimal inspection scheme more efficiently, we embed the simulation

model described above in a Genetic Algorithm (GA).

27

3.2. Coupling the simulation model and the genetic algorithm (GA)

The genetic algorithm is a heuristic search method, which is applied to the problems with

large solutions space to find the optimal solution [73, 74]. The algorithm starts with a

population of candidate solutions (called a generation), and iteratively evaluates the fitness of

each solution in the generation. The next generation is constructed based on the solutions with

the best fitness in the previous generation [75, 76].

For the fitness value of the GA, we use the simulation model described previously. The GA

randomly selects the initial generation consisting of multiple inspection schemes and evaluates

each solution’s fitness using the simulation model. Since we need to have multiple simulation

replications (the replication number in our numerical example is 5,000) to obtain
 for

each solution (i.e.), we save the value of
 at the first time it is calculated by the

simulation model. Thus, if a solution is repeated in the next generations, the simulation model

just returns its corresponding
 which had been previously stored. This can save a

significant amount of time.

For our problem, to construct a relationship between (the number of possible

scheduled inspections) and the population size to be used in the GA, we first obtain the optimal

inspection scheme for different values of using only the simulation model (i.e.

all possible inspection schemes were examined for each). We then investigate the

performance of the GA, to observe for which population size it results in the same optimal

scheme which is obtained solely by the simulation model. After this investigation, we

determined that the population size should be approximately , so the GA can

28

obtain the global optimal solution (with the coefficient of determination). The

results of this investigation are shown in Figure 3.5.

To stop the GA, we consider the two following criteria:

1) Fitness tolerance limit and stalls generation number: Fitness tolerance limit should be

as small as possible to be able to distinguish between two possible solutions. If the fitness

tolerance limit appears a certain number of times (equal to the stalls generation number), then

the GA stops automatically.

2) Maximum number of generations: It should be adequately large, but not larger than

the maximum number of possible solutions, which is .

By coupling the genetic algorithm and the simulation model, we can find the optimal

inspection scheme much faster while requiring significantly fewer simulation runs.

29

3.3. Flowcharts of the Simulation model and the GA code

StartInitial population generator

Stop?

End

Estimate the population size Take the cycle-time from user

Candidate = 1

Calculate the expected

cost of the candidate

Candidate population size

Section A

Candidate = Candidate + 1

Evaluate the candidates

with stopping conditions

Select a subset of candidates base on

pervious generations optimal cost
10%Mutation

Apply mutation method

no

yes

no

Return the optimal cost and

optimal candidate

yes

correspond scheme

to candidate captured

yes
no

yes

Save the scheme and correspond

expected cost in memory

Use the saved expected cost

no

Figure 3.1. Genetic algorithm.

30

Start with initial ages ,t ,ѳ,a, b, intensity

parameters, T, Schemes, and all costs.

Current time = 0
Generate first failure times for all soft-

type and hard-type components

Current time < T
Min Hard =minimum of

hard failure times

Min Hard < Next inspection

Add Next inspection to the age of all hard-type

Current time = current time + next inspection

Hard failures time =Hard failures time –next inspection
Opportunistic

inspection

yes

Scheduled

inspection

Identify the first inspection times from the

input scheme and call that as Next inspection

Next inspection = next available inspection on scheme

Replication number =1

Replication number =Replication number +1

Replicaition number 5000

yes

Save the total number of minimal repair,

replacement , and downtime of all soft-type

components under the replication number

no

Find the average number of minimal repair,

replacement , and downtime of all soft-type

components for 5000 replication

no

Find the total expected soft-component cost,

base on the average number of minimal

repair, replacement , and downtime of all

soft-component and input cost variable and

total # of inspection on each scheme.

yes

no

End of simulition

for a scheme

Current time = current time + Min Hard

Figure 3.2. Simulation algorithm for the system with hard-type and soft-type components.

31

Next soft failure

 time<Min Hard

Replacement of

Soft component

#replacement = # replacement +1

Current age of soft component = 0

Uptime = Uptime + next soft failure time

Generate the next soft failure time

Uptime = Uptime + MinHard

Add MinHard to soft-type component current age

next soft failure time =next soft failure time - MinHard

Opportunistic

inspection

Check the Soft-type

component (i)

yes

yes

 i= i+1

i=1

i total # soft-type

components

yes
no

#minimal repairs = # minimal repairs +1

Add next soft failure time to the Current age of soft component

Uptime = Uptime + next soft failure time

Generate the next soft failure time

Current age of Hard component = 0

Uptime = Uptime + next soft failure time

Generate the next hard failure time for failed component

Next inspection = Next inspection –MinHard

Replacement of

Hard component

Add MinHard to the age of the all hard-type component

Hard failures time =Hard failures time –MinHard

Generate the next failure time for the component with MinHard

 Next inspection = Next inspection –MinHard

no

yes

no

no

END

START

Figure 3.3. Algorithm for an opportunistic inspection of the system with hard-type and soft-

type components.

32

#replacement = # replacement +1

Current age of soft component = 0

Uptime = Uptime + next soft failure time

Generate the next soft failure time

#minimal repairs = # minimal repairs +1

Add next soft failure time to the Current age of soft

component

Uptime = Uptime + next soft failure time

Generate the next soft failure time

Uptime = Uptime + Next inspection

Add Next inspection to soft-type component

current age

next soft failure time =next soft failure time—

Next inspection

Next soft failure time

< Next inspection

Replacement of

 Soft component

Scheduled

inspection

Check the Soft-type component (i)

i=1

i total # soft-type components

yes

yes

yes

no

 i= i+1

no

no

END

START

Figure 3.4. Algorithm for a scheduled inspection of the system with hard-type and soft-type

components.

33

3.4. Numerical Example

We consider a multi-component repairable system with the total of eight components.

The system consists of three hard-type components, and five soft-type components with the

failures following a NHPP with power law intensity function.

The probability of minimal repairs for a component of age is obtained from

 . Minimal repair, replacement, and downtime costs for the soft-type and hard-type

components are given in Table 3.1.

Table 3.1. Costs of maintenance and downtime for different components.

Cost Soft type components Hard type components
 1 2 3 4 5 1 2 3

Minimal repair
 $70 $45 $100 $75 $150 $100 $200 $150

Replacement (
 $200 $150 $300 $450 $280 $240 $450 $600

Downtime penalty (
 $300 $350 $400 $250 $300 - - -

The cost of inspection is $200 for each time we inspect the system. The parameters of the

power law intensity function, and and are given in Table 3.2. The data for the numerical

example is taken from Taghipour et al. [1].

34

Table 3.2. Parameters of the power law intensity function, and the probability function of

minimal repair for all components.

 Soft type components Hard type components
 1 2 3 4 5 1 2 3

 1.3 1.1 2.1 1.8 1.7 1.5 1.2 1.7

 (month) 3.5 4.6 6 10 3.6 11 7.2 2.8

 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

 0.2317 0.1763 0.1352 0.0811 0.2253 0.06 0.02 0.28

We are interested in finding the optimal non-periodic inspection scheme resulting in the

minimum total cost incurred over life cycle . We assume that all components are as-good-as

new at the beginning of the cycle, so we set the initial ages for all components to zero. We also

assume that month is the minimum time unit at which a scheduled inspection can take

place.

To obtain the optimal inspection scheme () for different cycle lengths , we calculate

 from the simulation model for different values of . In the simulation model, we

consider 5,000 replications. In Table 3.3, the results of the simulation model are presented, by

which all the possible inspection schemes for different cycle lengths are examined. In

addition, the minimum expected cost, the optimal inspection scheme for each value of and

are presented.

35

Table 3.3. Simulation results for different cycle lengths T.

Cycle

length

 (month)

of possible

scheduled

inspections

of possible

inspection

scheme/s

Time to

examine all

the schemes

(seconds)

($)

Optimal

scheme

5

6

7

8

9

10

11

12

13

4

5

6

7

8

9

10

11

12

16

32

64

128

256

512

1024

2048

4096

379

846

2,017

4,831

10,378

22,222

50,388

95,481

198,774

2,027.43

2,553.35

3,092.53

3,648.99

4,193.31

4,756.09

5,287.61

5,854.56

6,385.02

01001

001001

0010101

00010101

001010101

0010010101

00100010101

001010100101

0001010010101

For example, the optimal scheme for is , which implies

that we should inspect the system at the third, fifth, seventh and tenth months. This is a

reasonable result, since at the beginning of the cycle, the components still are new and do not

fail often, so we need fewer inspections. Similarly, by the middle of the lifecycle, more

components have been replaced rather than minimally repaired. Therefore, we have less

frequent inspections when the components are still new, and have more inspections as the

components get older or they are subject to more minimal repairs.

For different values of and cycle lengths provided in Table 3.3, we use the genetic

algorithm to obtain the optimal schemes in shorter time. As the first step, we find the

population size for the GA which results in the same optimal solutions given in Table 3.3. In

other words, we determine what population size makes the integration of the GA and

36

simulation model valid (i.e. provides the global optimal inspection policy). The conditions and

criteria for running the genetic algorithm are presented in Table 3.4.

Table 3.4. The conditions and criteria for running the genetic algorithm.

Conditions and criteria Numerical value Description

Simulation replication for each

scheme

5000 The simulation runs 5,000 times for

each scheme

Population size Depends on

Maximum generation number 50 The GA stops after 50 generations

Stall generation limit 20 If the tolerance fitness function

appears 20 times in a row, the GA stops

Tolerance of fitness function The difference between two

consecutive fitness values

The results of the GA are shown in Table 3.5.

Table 3.5. Minimum required population size for different cycle lengths T.

Cycle length (month) # of possible Scheduled inspection Population size

5

6

7

 8

9

10

11

12

4

5

6

7

8

9

10

11

6

10

12

20

24

25

32

50

We determine a power relationship between and the population size in the GA (Figure.

3.5).

37

Figure 3.5. Minimum number of required population size vs. the number of possible scheduled

inspections n.

The GA starts with as the initial population size (which depends on),

and generates random inspection schemes in the population and calculates the total expected

cost for each of them using (5) and the simulation model. Then, the GA generates the second

generation of population and obtains the total expected costs for them. Some of the individuals

(schemes) may appear at different generations. In this case, the simulation algorithm uses the

existent results for those individuals instead of obtaining their expected total costs again, which

helps significantly decrease the execution time.

In Table 3.6, the results of the GA for different values of and are presented. For cycle

length , the population size is derived from the power equation that we obtained in

Figure. 3.5. For other cycle lengths, the population sizes are taken from Table 3.5.

y = 0.4193n1.9289
R² = 0.9735

0

10

20

30

40

50

60

4 5 6 7 8 9 10 11

p
o

p
u

la
it

io
n

 s
iz

e

of possible scheduled inspections n

Minimum Required Population Size

38

Table 3.6. The GA’s results for different cycle lengths T.

Cycle length

 (month)

Population

size

Actual #

schemes

checked by

the GA

Total time

of running

the GA

(second)

($)

Optimal scheme

5 6 8 11 2,027.43 01001

6

7

8

9

10

11

12

13

10

12

20

24

25

32

50

51

16

24

35

69

79

107

121

214

244

642

1359

2953

3737

4348

5828

12943

2,553.35

3,092.53

3,648.99

4,193.31

4,756.09

5,287.61

5,854.56

6,385.02

001001

0010101

00010101

001010101

0010010101

00100010101

001010100101

0001010010101

To compare the performance of the GA coupled with the simulation model with the case

of using only the simulation model (i.e. examining all possible inspection schemes), we consider

the case of and and compare the optimal results as well as the total running

time from the simulation model solely with the integration of the GA and simulation model. The

results are presented in Table 3.7.

Table 3.7. The results from the integration of the GA and the simulation model, and the

simulation model solely.

 Simulation model solely Integration of the GA and

simulation model

Total running time

of inspection schemes examined

95,481 sec

2048

6,727 sec

355

39

As it is shown in Table 3.7, the optimal cost, and the optimal scheme obtained from the

simulation model solely, and the integration of the GA and simulation model are identical. The

optimal cost of $5,854.56 is obtained for both methods. It should be noted that identical result

is obtained if the population size in the GA is selected correctly. A too small population size may

not result in the global optimal policy. The population size for our model depends on the

number of possible inspections, which has been previously discussed. The genetic algorithm

uses only 7.05% of the time required to run all the possible schemes. Moreover, instead of

running the simulation for all possible inspection schemes (2,048 possibilities), the genetic

algorithm can obtain the result by only checking 355 different schemes, which is just 17.3 % of

the total possible inspection schemes. It is clearly shown that the GA reduces the number of

inspection schemes that must be evaluated for obtaining the optimal scheme. In both methods,

we should inspect the system at month third, fifth, seventh, and tenth.

Figure 3.6, presents the average tolerance between the individuals. The GA stops when

the average tolerance between the individuals is less than . The distance between the

expected costs of the best and worst inspection schemes in each generations decreases over

time. The GA obtains the optimal solution after 12 generations.

40

Figure 3.6. The fitness value for the best and the worst inspection schemes at each generation

of the GA.

Figure 3.7. The best and average expected costs obtained by the GA at each generation.

41

 Figure 3.7, shows the best and the average

 for each population at each

generation. The GA is getting closer to the optimal solution, and the average expected costs of

a generation is approaching the best fitness value in the generation, as the number of

generation increases.

42

3.5. Sensitivity Analysis

We conduct the sensitivity analysis of our model to investigate how the optimal solution

varies by changing the inputs parameters. For the system of hard-type and soft-type

components, our different cases are considered, in which, some of the input parameters, i.e.

the shape parameter, downtime penalty cost or inspection cost have been changed from the

base parameters given in Table 3.1 and Table 3.2. The four cases (A to D) are presented in

Table 3.8. In Case A, the downtime penalty cost of each component and the system inspection

cost have been increased by $100. After these changes, the optimal inspection scheme

(000010010101) with the expected cost of $7754.52 is obtained. Increasing the inspection cost

results in fewer scheduled inspections as the optimal policy (3 inspections vs. 4 inspections in

the numerical example given in 3.4). Moreover, since the components have now higher

downtime penalty cost, they should be inspected every other month starting from month 8,

when they are more likely to fail. In Case B, the shape parameter and the downtime penalty

cost of each soft-type component have been increased by 1 and $100, respectively, and the

inspection cost has been decreased by $50. This case results in the optimal scheme

(001111111111), which implies that the system needs to be inspected every month starting

from month 3, because the components are failing more frequently with a higher downtime

penalty cost. In addition, the inspection cost is lower which justifies monthly inspection of the

system. In Case C, there is no change in the downtime penalty cost of the components, but the

inspection cost and the shape parameters are increased by 1 and $50, respectively. The optimal

result of (000000100101) is obtained for this case. Comparing to the optimal scheme of the

43

numerical example in 3.4, i.e. (001010100101), the third and fifth inspections are eliminated in

Case C due to higher inspection cost despite an increase in the shape parameters. Case D is

identical to Case C, but the inspection cost is $30 higher in Case D. The optimal scheme

(000000100011) is obtained for this case, which means the second inspection should be

performed in month 11, although the total number of scheduled inspections is identical to Case

C.

Table 3.8. Changes in the parameters of the system of hard-type and soft-type components.

Case Downtime

penalty (

Scheduled Inspection

Cost $

 ($) Optimal scheme

A --- + 100 + 100 7734.52 000010010101

B + 1 + 100 + 100 6613.85 001111111111

C + 1 --- --- 6440.14 000000100101

D + 1 --- --- 6480.46 000000100011

44

Chapter 4 – A k-out-of-m System

4.1. Simulation algorithm for a k-out-of-m system

Assume all components of a k-out-of-m system follow a with a power law

intensity function, and the hazard rate of a component is

, where is the age

of the component. The parameters of the power law scheduled inspection time, and are

all known. We assume the system starts with new components whose initial ages are zero.

Moreover, we define the age-dependent function for the simulation model

which specifies the probability of minimal repair for a component with age , and is

the probability of replacement. We assume that and are given. Thus, the inputs of the

simulation model are and , and for all components,

and the output of the simulation is
 . To obtain the optimal inspection interval, we

execute the simulation model for different inspection schemes and obtain their total expected

costs. The optimal inspection scheme for the system is the one with the minimum total

expected cost for the system.

The simulation model generates the first failure times for all components. We then find

the minimum failure time of all components, and compare it with the next inspection interval. If

the minimum failure time is less than the next inspection interval, the first failure occurs within

the inspection interval. We bring forward the simulation clock to the first failure time, add 1 to

the number of failures in the inspection interval, and deduct the minimum failure time from all

45

the survived components. Once more, the minimum failure time is found and compared with

the next inspection interval. We follow the same steps as described above.

If the total number of failures in a scheduled inspection interval is less than , all

the failed components are rectified at the scheduled inspection time, and their downtimes from

the failure moment to the inspection time are measured and added to the total downtime. The

total number of failures in the next inspection interval is set to zero, and the next failure times

are generated for the rectified components. The period between the last failure time and the

inspection time is then deducted from the failure times of all the survived components, and the

simulation clock is brought forward to the inspection time.

If the total number of failures in a scheduled inspection interval reaches the

system fails and all the failures are detected and rectified. Thus, the total number of minimal

repairs and replacements are updated accordingly, the current number of failures in the

inspection interval is set to zero, and the next failure times are generated for the rectified

components. The failure time is then deducted from the survived components’

failure times, and the simulation clock is brought forward to the failure time.

Until the simulation clock reaches , the same steps as described above are followed.

Similarly to the system discussed in Chapter 3, to find the optimal non-periodic inspection

scheme for a k-out-of-m system more efficiently, we integrate the simulation model proposed

here with the genetic algorithm.

46

4.2. Flowcharts of the Simulation model for a k-out-of-m system

Current time =< T

MinTime < Next inspection

failureNo=m-k+1

failureNo=failureNo+1

Scheduled

inspection

failureNo = 0

Opportunistic

inspection

no

System failure = System failure +1

yes

Current time = Current time + MinTime

Current time = Current time + Next inspection

Current time = 0 Generate first failure times for components
Identify the first inspection times from the

input scheme and call that as Next inspection

Replication number =1

Replication number =Replication number +1

Replicaition number 5000

yes

Save the total number of minimal repair,

replacement , and downtime of all

components under the replication number

Start with initial ages ,t ,ѳ,a, b, intensity

parameters, T, Schemes, k, m, and all costs.

no
MinTime =minimum failure times

of componants
yes

For all components

Uptime = Uptime + MinTime

current ages = current ages + MinTime

Current time = Current time + MinTime

Next inspection = next inspection—MinTime

no

Set temperory large number for the failure

time of component with MinTime

Find the average number of minimal repair,

replacement , and downtime of components

for 5000 replication

Find the total expected cost, base on the

average number of minimal repair,

replacement , and downtime of all

component and input cost variable and total

of inspection on each scheme.

End of simulition

for a scheme

no

yes

Figure 4.1. Simulation algorithm for a k-out-of-m system.

47

Opportunistic

inspection

Check the component (i)

i=1

i total # components yes

Next failure of

component (i)

 <Next inspection

Replacement

#replacement = # replacement +1

Current age of component = 0

Uptime = Uptime + Next inspection

Generate the next failure time

#minimal repairs = # minimal repairs +1

Uptime = Uptime + Next inspection

current ages = current ages + Next inspection

 Generate the next failure time

current ages = current ages + Next inspection

Uptime = Uptime + Next inspection

Next failure time = Next failure time -Next inspection

 i= i+1

no

yes

no

yes

ENDno

Figure 4.2. Algorithm for the inspection at a system failure for the k-out-of-m system.

48

Check the component (i)

i=1

i total # components noyes

Next failure of

component (i)

 <Min Time

Replacement

#replacement = # replacement +1

Current age of component = 0

Uptime = Uptime + MinTime

Generate the next failure time

#minimal repairs = # minimal repairs +1

current ages = current ages + MinTime

Uptime = Uptime + MinTime

Generate the next failure time

current ages = current ages + MinTime

Uptime = Uptime + MinTime

 Next failure time = Next failure time -MinTime

 i= i+1

yes

no

yes

no

END

Scheduled

inspection

Figure 4.3. Algorithm for a scheduled inspection of the k-out-of-m system.

49

4.3. Numerical Example

We consider a k-out-of-m repairable system with the total of five identical components.

We consider the failures of all components on this system also follow a with the

following power law intensity function.

The probability of minimal repairs for all components of age is calculated from

 . The parameters of the power law process and parameters and , minimal

repair, replacement, and downtime costs for the components are given in Table 4.1.

The cost of each scheduled inspection is $300, and the cost of each system failure

including the inspection is $800.

Table 4.1. Parameters of the power law intensity function, and the probability of minimal

repair, and required costs.

Minimal repair

Replacement Downtime
penalty

$70 $210 $200 1.3 3.5 0.9 0.2317

We are interested in finding the optimal non-periodic inspection scheme that results in

the minimum total cost incurred over the lifecycle for the k-out-of-m system. Similarly to the

pervious system, we assume that at the beginning of the cycle all components are as-good-as

new, so we set their initial ages to zero. We also assume that the minimum time unit at which a

scheduled inspection can take place is one month. We assume the k-out-of-m system is 3-out-

of-5, which implies the system is up while at least 3 components are up. The system will fail

when three or more components are failed.

50

To obtain the optimal inspection scheme () for cycle lengths , we calculate

 from the simulation model with 5,000 replications. We examine all possible inspection

schemes for cycle length with simulation model. The minimum expected cost calculated

is $8,539.17, and its corresponding optimal inspection scheme is , which

implies we should inspect the system at the second, forth, sixth, ninth, and eleventh months.

The expected number of minimal repairs, replacements, the expected total uptime of all 5

components, and the expected number of the system failures are given in Table 4.2.

Table 4.2. The results of the simulation model for the k-out-of-m system with cycle length T=12.

Optimal scheme 010101001011 Expected number of minimal repairs 7.5
Optimal cost $8,539.17 Expected number of replacements 8.4
System failure 3.1 Expected total uptime 50.0

Over lifecycle length , we expect to have approximately 3 system failures, and five

scheduled inspections. The system failure more likely will happen around month seven, and this

is the reason why we do not have a scheduled inspection at this time, and instead we will have

an opportunistic inspection. We also expect to have 7.5 minimal repairs, and 8.4 replacements

to be performed for the failed components. This implies that in total we should have 16

component failures. The total expected uptime for this example is 50 months, which shows the

components were up about 83.33% of the time. The optimal scheme (010101001011) results in

the minimum total expected cost of the system.

To obtain the results mentioned above, we have to run the simulation model for all

possible schemes for which is 2,048 different schemes. Similarly to the previous model,

51

we use the genetic algorithm to obtain the optimal inspection scheme in shorter time. First, we

derive the population size for the GA from the power equation obtained in Figure 3.5. In the

case of and , the population size is 50.

The optimal cost and the optimal inspection scheme obtained from the simulation model

solely, and the integration of the GA and simulation model are exactly the same. Instead of

running the simulation model for all possible inspection schemes (i.e. 2,048 possibilities), the

genetic algorithm obtains the result by checking only 280 different schemes, which is just 13.7

% of the total possible inspection schemes. It is clearly shown that the GA reduces the number

of inspection schemes that must be evaluated for obtaining the optimal scheme.

Figure 4.4 shows the average tolerance between the individuals. The GA stops when the

average tolerance between the individuals is less than . The distance between the expected

costs of the best and worst inspection schemes in each generations decreases over time. The

GA obtains the optimal solution after 18 generations.

52

Figure 4.4. The fitness value for the best and the worst inspection schemes at each generation

of the GA for the 3-out-of-5 system.

Figure 4.5 presents the best and the average

 for each population at each

generation. The GA is getting closer to the optimal solution, and the average expected costs of

a generation is approaching the best fitness value in the generation, as the number of

generation increases.

53

Figure 4.5. The best and average expected costs obtained by the GA at each generation for the

3-out-of-5 system.

54

4.4. Sensitivity analysis

For the k-out-of-m system, we also conduct sensitivity analyses on , downtime and

inspection costs to investigate the changes in the optimal inspection scheme. Similarly, four

different cases are considered here (Table 4.3) in Case E, and downtime cost have been

increased by 1 and $100, respectively, which results in (001111111111) as the optimal scheme

due to higher number of failures and the components downtime. In Case F, and downtime

penalty cost have been increased by 1 and $200, respectively, but the inspection cost has been

decreased by $80, which suggests more inspections to be done compared to Case E. In Case G,

an increase of by 2.2 and decrease of downtime penalty cost by $200 are considered. The

optimal inspection scheme for this case is (000110110011), which suggests the inspections

should be done less frequently around the mid-lifecycle of the system. In Case H, an increase of

 and inspection cost by 2.2 and $50 are considered, respectively. The optimal scheme is

(000101101011) in this case, which suggests no inspection in the first 3 months when the

system is still new and inspection is more costly (compared to the inspection cost in the

numerical example given in 4.2), but more inspections in the mid-life of the system when the

components are more likely to be found failed.

55

Table 4.3. Changes in the parameters of the k-out-of-m system.

Case Downtime

penalty (

Scheduled Inspection

Cost $

 ($) Optimal scheme

E + 1 + 100 --- 10400.2 001111111111

F + 1 + 200 - 80 10407.7 011111111111

G + 2.2 - 200 --- 10520.9 000110110011

H + 2.2 --- + 50 10557.5 000101101011

56

Chapter 5 – Conclusions and Future Work

In this research, we first consider a multi-component system with soft-type and hard-type

components and introduce a model to determine the optimal non-periodic inspection scheme

for the system over a finite planning horizon. We then develop a model to find the optimal non-

periodic inspection interval for a k-out-of-m system. We assume that the failures of the

components for both systems follow a non-homogenous Poisson process (NHPP).

In the first system, the failures of hard-type components are detected and fixed

instantaneously; however, the failures of soft-type components are only detected at

opportunistic or at scheduled inspections. An opportunistic inspection occurs at a hard failure’s

time, at which the failed hard-type component and all other soft-type components are

inspected. Soft failures do not stop the functioning of the system, but they may affect the

performance of the system, so for the downtime of the soft-type components a penalty cost is

incurred. Hard-type components do not have downtime, because they are detected and fixed

immediately after a failure.

The proposed model considers minimal repair and replacement of a soft-type and a hard-

type component as repair actions. Moreover, it assumes that at a scheduled inspection only

soft-type components are inspected for possible soft failures. We develop a simulation model

to calculate the total expected cost of each possible inspection scheme, and then combine the

simulation model with the GA to efficiently find the optimal scheme.

For a k-out-of-m system, we assume that the system remains operational if the number of

failed components is less than m − + 1 in an inspection interval, and it fails, otherwise. The

57

system is inspected according to a non-periodic inspection scheme to detect the failed

components. At a system failure, all the failed components are detected and rectified. We

develop and use a simulation model to find the optimal non-periodic inspection scheme for the

system to overcome the mathematical complexities of an analytical solution for the problem.

In summary, less frequent inspections are required when the components are still new,

and the system should be inspected more often as the components get older. Non-periodic

inspection is more efficient and practical when the inspection of a system is challenging or

costly. For examples, underground mining equipment such as scooptrams, scissor lifts, and low

profile trucks are not easily assessable for inspection. For these systems, non-periodic

inspection policy is more practical and cost-effective since it eliminates unnecessary inspections

when the system is relatively new. On the other hand, periodic inspection is more practical for

organizations, such as hospitals, which are dealing with many different devices.

Another conclusion of this research is the integration of the simulation and the GA which

significantly reduces the execution time for this kind of problem. The models proposed in this

thesis can be extended to a more interesting and complicated case, where the combination of

soft failures can be converted to a hard failure, if they left undetected. The optimal

maintenance decisions can also be considered, in which we should also decide which

components should be replaced or repaired if they fail. Our proposed models can also be

extended for a load-sharing system [14, 16]. Another extension of the work is to compare the

performance of other heuristic search algorithms, such as the simulated annealing with the GA.

The joint optimization of a non-periodic inspection and inventory [69, 70] could be also an

extension of this study.

58

Appendix A

A.1 Genetic algorithm code for the hard-soft system

function [Out1,Out2,Out3]=RunGA()

%*****************

function TotalCost =

SimulationNonPeriodic(InspectionScheme,TotalTime,Tau,SoftParams,HardParams,InspectionCo

st)

 function [Out1,Out2]=OneSimulationRun()

 NextFailuresSoft=zeros(1,SoftCompNo);

 CurrentAgesSoft=zeros(1,SoftCompNo);

 NextFailuresHard=zeros(1,HardCompNo);

 CurrentAgesHard=zeros(1,HardCompNo);

 OutSoft=zeros(SoftCompNo,3);

 OutHard=zeros(HardCompNo,2);

 for i=1:SoftCompNo;

 z= random('uniform',0,1);

NextFailuresSoft(i)=SoftParams(i,2)*power(power(CurrentAgesSoft(i)/SoftParams(i,2),SoftPara

ms(i,1))-log(z),1/SoftParams(i,1))-CurrentAgesSoft(i);

 i=i+1;

 end;

 for i=1:HardCompNo;

59

 z= random('uniform',0,1);

NextFailuresHard(i)=HardParams(i,2)*power(power(CurrentAgesHard(i)/HardParams(i,2),HardP

arams(i,1))-log(z),1/HardParams(i,1))-CurrentAgesHard(i);

 i=i+1;

 end;

 CurrentTime=0;

 InspectSchemeTemp=InspectionScheme;

 [NextInspect,NextInspectIdx]=max(InspectSchemeTemp);

 NextInspection=NextInspectIdx*Tau*NextInspect;

 while (CurrentTime < TotalTime) && (NextInspection>0)

 [MinHard,MinIdx]=min(NextFailuresHard);

 while MinHard < NextInspection

 for i=1:SoftCompNo;

 if NextFailuresSoft(i) < MinHard

 OutSoft(i,3)=OutSoft(i,3)+NextFailuresSoft(i);

 CurrentAgesSoft(i)=CurrentAgesSoft(i)+NextFailuresSoft(i);

 rf=SoftParams(i,3)*exp(-SoftParams(i,4)*CurrentAgesSoft(i));

 repairz= random('uniform',0,1);

 if repairz <= rf % minimal repair

60

 OutSoft(i,1)=OutSoft(i,1)+1;

 else % replacement

 OutSoft(i,2)=OutSoft(i,2)+1;

 CurrentAgesSoft(i)=0;

 end

NextFailuresSoft(i)=GenerateNextFailure(SoftParams(i,1),SoftParams(i,2),CurrentAgesSoft(i));

 else

 OutSoft(i,3)=OutSoft(i,3)+MinHard;

 CurrentAgesSoft(i)=CurrentAgesSoft(i)+MinHard;

 NextFailuresSoft(i)=NextFailuresSoft(i)-MinHard;

 end

 end

 CurrentTime=CurrentTime+MinHard;

 CurrentAgesHard=CurrentAgesHard+MinHard;

 rf=HardParams(MinIdx,3)*exp(-HardParams(MinIdx,4)*CurrentAgesHard(MinIdx));

 repairz= random('uniform',0,1);

 if repairz <= rf % minimal repair

61

 OutHard(MinIdx,1)=OutHard(MinIdx,1)+1;

 CurrentAgesHard(MinIdx)=CurrentAgesHard(MinIdx)+MinHard;

 else % replacement

 OutHard(MinIdx,2)=OutHard(MinIdx,2)+1;

 CurrentAgesHard(MinIdx)=0;

 end

NextfailureofHardfailed=GenerateNextFailure(HardParams(MinIdx,1),HardParams(MinIdx,2),Cu

rrentAgesHard(MinIdx));

 NextFailuresHard=NextFailuresHard-MinHard;

 NextFailuresHard(MinIdx)=NextfailureofHardfailed;

 NextInspection=NextInspection-MinHard;

 [MinHard,MinIdx]=min(NextFailuresHard);

 end

 for i=1:SoftCompNo;

 if NextFailuresSoft(i) < NextInspection

 CurrentAgesSoft(i)=CurrentAgesSoft(i)+NextFailuresSoft(i);

 rf=SoftParams(i,3)*exp(-SoftParams(i,4)*CurrentAgesSoft(i));

 repairz= random('uniform',0,1);

62

 OutSoft(i,3)=OutSoft(i,3)+NextFailuresSoft(i);

 if repairz <= rf % minimal repair

 OutSoft(i,1)=OutSoft(i,1)+1;

 CurrentAgesSoft(i)=CurrentAgesSoft(i)+NextFailuresSoft(i);

 else % replacement

 OutSoft(i,2)=OutSoft(i,2)+1;

 CurrentAgesSoft(i)=0;

 end

NextFailuresSoft(i)=GenerateNextFailure(SoftParams(i,1),SoftParams(i,2),CurrentAgesSoft(i));

 else

 OutSoft(i,3)=OutSoft(i,3)+NextInspection;

 CurrentAgesSoft(i)=CurrentAgesSoft(i)+NextInspection;

 NextFailuresSoft(i)=NextFailuresSoft(i)-NextInspection;

 end

 end

 CurrentAgesHard=CurrentAgesHard+NextInspection;

 CurrentTime=CurrentTime+NextInspection;

63

 NextFailuresHard=NextFailuresHard-NextInspection;

 InspectSchemeTemp(NextInspectIdx)=0;

 PrevInspection=NextInspectIdx*Tau;

 [NextInspect,NextInspectIdx]=max(InspectSchemeTemp);

 if NextInspectIdx*Tau*NextInspect > 0

 NextInspection=NextInspectIdx*Tau-PrevInspection;

 ss=length(InspectionScheme);

 if NextInspectIdx==length(InspectionScheme)

 NextInspection=TotalTime-PrevInspection;

 end;

 else

 NextInspection=0;

 end;

 end

 Out1=OutSoft;

 Out2=OutHard;

 end

64

 function nextfailure=GenerateNextFailure(beta,eta,CurrentAge)

 z= random('uniform',0,1);

 nextfailure=eta*power(power(CurrentAge/eta,beta)-log(z),1/beta)-CurrentAge;

 end

 InspectionScheme(length(InspectionScheme)+1)=1;

 InspectionSchemeString='';

 for i=1:length(InspectionScheme);

 InspectionSchemeString=strcat(InspectionSchemeString,num2str(InspectionScheme(i)));

 end;

 FoundInspection=0;

 if ~isempty(SavedCosts > 0)

 FoundInspection=find(ismember(SavedPolicies,InspectionSchemeString));

 end;

 if FoundInspection > 0

 disp(SavedCosts(FoundInspection));

 disp(SavedPolicies(FoundInspection));

 OptPolicy=InspectionScheme;

65

 TotalCost=SavedCosts(FoundInspection);

 else

 SoftCompNo=size(SoftParams,1);

 HardCompNo=size(HardParams,1);

 SimOutSoft=zeros(SoftCompNo,3);

 SimOutHard=zeros(HardCompNo,2);

 SimulationRuns=10;

 MinimalMatrix=zeros(SimulationRuns,SoftCompNo);

 ReplacementMatrix=zeros(SimulationRuns,SoftCompNo);

 UpMatrix=zeros(SimulationRuns,SoftCompNo);

 MinimalMatrixHard=zeros(SimulationRuns,HardCompNo);

 ReplacementMatrixHard=zeros(SimulationRuns,HardCompNo);

 s = RandStream('mt19937ar','Seed',0);

 RandStream.setGlobalStream(s);

 for iteration=1:SimulationRuns;

 [out1,out2]=OneSimulationRun();

 MinimalMatrix(iteration,:)=out1(:,1)';

 ReplacementMatrix(iteration,:)=out1(:,2)';

 UpMatrix(iteration,:)=out1(:,3)';

 SimOutSoft=SimOutSoft+out1;

 MinimalMatrixHard(iteration,:)=out2(:,1)';

 ReplacementMatrixHard(iteration,:)=out2(:,2)';

 SimOutHard=SimOutHard+out2;

 end;

66

 for i=1:SoftCompNo;

 AvgSTDMinimals(i,1)=mean(MinimalMatrix(:,i));

 AvgSTDMinimals(i,2)=std(MinimalMatrix(:,i));

 AvgSTDMinimals(i,3)=std(MinimalMatrix(:,i))/sqrt(SimulationRuns);

 AvgSTDReplacement(i,1)=mean(ReplacementMatrix(:,i));

 AvgSTDReplacement(i,2)=std(ReplacementMatrix(:,i));

 AvgSTDReplacement(i,3)=std(ReplacementMatrix(:,i))/sqrt(SimulationRuns);

 AvgSTDUp(i,1)=mean(UpMatrix(:,i));

 AvgSTDUp(i,2)=std(UpMatrix(:,i));

 AvgSTDUp(i,3)=std(UpMatrix(:,i))/sqrt(SimulationRuns);

 end;

 for i=1:HardCompNo;

 AvgSTDMinimalsHard(i,1)=mean(MinimalMatrixHard(:,i));

 AvgSTDMinimalsHard(i,2)=std(MinimalMatrixHard(:,i));

 AvgSTDMinimalsHard(i,3)=std(MinimalMatrixHard(:,i))/sqrt(SimulationRuns);

 AvgSTDReplacementHard(i,1)=mean(ReplacementMatrixHard(:,i));

 AvgSTDReplacementHard(i,2)=std(ReplacementMatrixHard(:,i));

 AvgSTDReplacementHard(i,3)=std(ReplacementMatrixHard(:,i))/sqrt(SimulationRuns);

 end;

 SimOutSoft=SimOutSoft/SimulationRuns;

 Out1=AvgSTDMinimals;

 Out2=AvgSTDReplacement;

67

 Out3=AvgSTDUp;

 Out4=AvgSTDMinimalsHard;

 Out5=AvgSTDReplacementHard;

 CountInspections = sum(sum(InspectionScheme));

 TotalCost=0;

 for i=1:SoftCompNo;

TotalCost=TotalCost+AvgSTDMinimals(i,1)*SoftParams(i,5)+AvgSTDReplacement(i,1)*SoftPara

ms(i,6)+SoftParams(i,7)*(TotalTime-AvgSTDUp(i,1));

 end;

 TotalCost=TotalCost+InspectionCost*CountInspections+2850;

 OptPolicy=InspectionScheme;

 SavedPoliciesInx=SavedPoliciesInx+1;

 InspectionSchemeString='';

 for i=1:length(InspectionScheme);

 InspectionSchemeString=strcat(InspectionSchemeString,num2str(InspectionScheme(i)));

 end;

 SavedPolicies{SavedPoliciesInx}=InspectionSchemeString;

 SavedCosts(SavedPoliciesInx)=TotalCost;

 end

68

end

%*****************

TotalTime=12;

Tau=1;

CI=280;

Data = xlsread('c:\Data\Yassin\excel\SoftComponents.xls');

RecordsNo=numel(Data(:,2));

rowindx=0;

while (rowindx < RecordsNo)

 rowindx=rowindx+1;

 SoftParams(rowindx,1)=Data(rowindx,1); % beta %

 SoftParams(rowindx,2)=Data(rowindx,2); % eta %

 SoftParams(rowindx,3)=Data(rowindx,3);

 SoftParams(rowindx,4)=Data(rowindx,4);

 SoftParams(rowindx,5)=Data(rowindx,5); % cost of minimal repair%

 SoftParams(rowindx,6)=Data(rowindx,6); % cost of replacement%

 SoftParams(rowindx,7)=Data(rowindx,7);% cost of downtime%

end

SoftCompNo=rowindx;

Data = xlsread('c:\Data\Yassin\excel\HardComponents.xls');

RecordsNo=numel(Data(:,2));

rowindx=0;

69

while (rowindx < RecordsNo)

 rowindx=rowindx+1;

 HardParams(rowindx,1)=Data(rowindx,1);

 HardParams(rowindx,2)=Data(rowindx,2);

 HardParams(rowindx,3)=Data(rowindx,3);

 HardParams(rowindx,4)=Data(rowindx,4);

 HardParams(rowindx,5)=Data(rowindx,5); % cost of minimal repair%

 HardParams(rowindx,6)=Data(rowindx,6); % cost of replacement%

end

HardCompNo=rowindx;

if rem(TotalTime,Tau)==0

 MaxInspections=TotalTime/Tau-1;

else

 MaxInspections=floor(TotalTime/Tau);

end;

global SavedPolicies;

global SavedCosts;

global SavedPoliciesInx;

SavedPoliciesInx=0;

70

Policies=zeros(1,MaxInspections);

LowerBounds=zeros(1,MaxInspections);

UpperBounds=ones(1,MaxInspections);

IntegerVars=cumsum(ones(1,MaxInspections));

FitnessFunction = @(Policies)

SimulationNonPeriodic(Policies,TotalTime,Tau,SoftParams,HardParams,CI);

opts = gaoptimset('PlotFcns',{@gaplotbestf,@gaplotrange});

opts = gaoptimset(opts,'PopulationSize',150);

opts = gaoptimset(opts,'Generations',50,'StallGenLimit', 15);

opts = gaoptimset (opts, 'EliteCount' , 1);

opts = gaoptimset(opts,'TolFun', 1e-5);

global OptPolicy;

[OptimalPolicy,MinCost] =

ga(FitnessFunction,MaxInspections,[],[],[],[],LowerBounds,UpperBounds,[],IntegerVars,opts);

disp(OptPolicy);

disp(OptimalPolicy);

disp(MinCost);

disp(SavedPoliciesInx);

end

71

A.2 Genetic algorithm code for the k-out-of-m system

function [Out1 ,Out2,Out3,out4]=RunknGA()

%*****************

function TotalCost =

SimulationNonPeriodic(k,n,InspectionScheme,TotalTime,Tau,CompParams,InspectionCost)

 function [Out1]=OneSimulationRun()

 NextFailuresSoft=zeros(1,CompNo);

 CurrentAgesSoft=zeros(1,CompNo);

 OutSoft=zeros(CompNo,3);

 for i=1:CompNo;

 z= random('uniform',0,1);

NextFailures(i)=CompParams(i,2)*power(power(CurrentAgesSoft(i)/CompParams(i,2),CompPar

ams(i,1))-log(z),1/CompParams(i,1))-CurrentAgesSoft(i);

 i=i+1;

 end;

 CurrentTime=0;

 InspectSchemeTemp=InspectionScheme;

 [NextInspect,NextInspectIdx]=max(InspectSchemeTemp);

 NextInspection=NextInspectIdx*Tau*NextInspect;

 OpportunisticInspectionNo=0;

 failureNo=0;

72

 while (CurrentTime < TotalTime) && (NextInspection>0)

 [MinCompFailure,MinIdx]=min(NextFailures);

 while (MinCompFailure ~= 10000) && (MinCompFailure < NextInspection)

 failureNo=failureNo+1;

 if failureNo >= n-k+1

 failureNo=0;

 OpportunisticInspectionNo=OpportunisticInspectionNo+1;

 for i=1:CompNo;

 if i== MinIdx

 OutComp(i,3)=OutComp(i,3)+MinCompFailure;

 CurrentAgesSoft(i)=CurrentAgesSoft(i)+MinCompFailure;

 rf=CompParams(i,3)*exp(-CompParams(i,4)*CurrentAgesSoft(i));

 repairz= random('uniform',0,1);

 if repairz <= rf % minimal repair

 OutComp(i,1)=OutComp(i,1)+1;

 else % replacement

 OutComp(i,2)=OutComp(i,2)+1;

 CurrentAgesComp(i)=0;

73

 end

NextFailures(i)=GenerateNextFailure(CompParams(i,1),CompParams(i,2),CurrentAgesComp(i));

 else

 if NextFailures(i) ~= 10000

 OutComp(i,3)=OutComp(i,3)+MinCompFailure;

 CurrentAgesComp(i)=CurrentAgesComp(i)+MinCompFailure;

 NextFailures(i)=NextFailures(i)-MinCompFailure;

 else

 rf=CompParams(i,3)*exp(-CompParams(i,4)*CurrentAgesComp(i));

 repairz= random('uniform',0,1);

 if repairz <= rf % minimal repair

 OutComp(i,1)=OutComp(i,1)+1;

 else % replacement

 OutComp(i,2)=OutComp(i,2)+1;

 CurrentAgesComp(i)=0;

 end

74

NextFailures(i)=GenerateNextFailure(CompParams(i,1),CompParams(i,2),CurrentAgesComp(i));

 end

 end;

 end;

 else

 for i=1:CompNo;

 if i== MinIdx

 OutComp(i,3)=OutComp(i,3)+MinCompFailure;

 CurrentAgesComp(i)=CurrentAgesComp(i)+MinCompFailure;

 NextFailures(i)=10000;

 else

 if NextFailures(i) ~= 10000

 OutComp(i,3)=OutComp(i,3)+MinCompFailure;

 CurrentAgesComp(i)=CurrentAgesComp(i)+MinCompFailure;

 NextFailures(i)=NextFailures(i)-MinCompFailure;

 end

75

 end;

 end;

 end;

 CurrentTime=CurrentTime+MinCompFailure;

 NextInspection=NextInspection-MinCompFailure;

 [MinCompFailure,MinIdx]=min(NextFailures);

 end;

 for i=1:CompNo;

 if NextFailures(i) ~= 10000

 OutComp(i,3)=OutComp(i,3)+NextInspection;

 CurrentAgesComp(i)=CurrentAgesComp(i)+NextInspection;

 NextFailures(i)=NextFailures(i)-NextInspection;

 else

 rf=CompParams(i,3)*exp(-CompParams(i,4)*CurrentAgesComp(i));

 repairz= random('uniform',0,1);

 if repairz <= rf % minimal repair

 OutComp(i,1)=OutComp(i,1)+1;

76

 else % replacement

 OutComp(i,2)=OutComp(i,2)+1;

 CurrentAgesComp(i)=0;

 end

NextFailures(i)=GenerateNextFailure(CompParams(i,1),CompParams(i,2),CurrentAgesComp(i));

 end

 end;

 failureNo=0;

 CurrentTime=CurrentTime+NextInspection;

 InspectSchemeTemp(NextInspectIdx)=0;

 PrevInspection=NextInspectIdx*Tau;

 [NextInspect,NextInspectIdx]=max(InspectSchemeTemp);

 if NextInspectIdx*Tau*NextInspect > 0

 NextInspection=NextInspectIdx*Tau-PrevInspection;

 if NextInspectIdx==length(InspectionScheme)

 NextInspection=TotalTime-PrevInspection;

 end;

77

 else

 NextInspection=0;

 end;

 end;

 Out1=OutComp;

 end

 function nextfailure=GenerateNextFailure(beta,eta,CurrentAge)

 z= random('uniform',0,1);

 nextfailure=eta*power(power(CurrentAge/eta,beta)-log(z),1/beta)-CurrentAge;

 end

 InspectionScheme(length(InspectionScheme)+1)=1;

 InspectionSchemeString='';

 for i=1:length(InspectionScheme);

 InspectionSchemeString=strcat(InspectionSchemeString,num2str(InspectionScheme(i)));

 end;

78

 FoundInspection=0;

 if ~isempty(SavedCosts > 0)

 FoundInspection=find(ismember(SavedPolicies,InspectionSchemeString));

 end;

 if FoundInspection > 0

 disp(SavedCosts(FoundInspection));

 disp(SavedPolicies(FoundInspection));

 OptPolicy=InspectionScheme;

 TotalCost=SavedCosts(FoundInspection);

 else

 CompNo=size(CompParams,1);

 SimOut=zeros(CompNo,3);

 TOpportunisticInspectionNo=0;

 SimulationRuns=10000;

 MinimalMatrix=zeros(SimulationRuns,CompNo);

 ReplacementMatrix=zeros(SimulationRuns,CompNo);

 UpMatrix=zeros(SimulationRuns,CompNo);

 s = RandStream('mt19937ar','Seed',0);

 RandStream.setGlobalStream(s);

 for iteration=1:SimulationRuns;

79

 [out1]=OneSimulationRun();

 MinimalMatrix(iteration,:)=out1(:,1)';

 ReplacementMatrix(iteration,:)=out1(:,2)';

 UpMatrix(iteration,:)=out1(:,3)';

 SimOut=SimOut+out1;

 TOpportunisticInspectionNo=OpportunisticInspectionNo+TOpportunisticInspectionNo;

 end;

 for i=1:CompNo;

 AvgSTDMinimals(i,1)=mean(MinimalMatrix(:,i));

 AvgSTDMinimals(i,2)=std(MinimalMatrix(:,i));

 AvgSTDMinimals(i,3)=std(MinimalMatrix(:,i))/sqrt(SimulationRuns);

 AvgSTDReplacement(i,1)=mean(ReplacementMatrix(:,i));

 AvgSTDReplacement(i,2)=std(ReplacementMatrix(:,i));

 AvgSTDReplacement(i,3)=std(ReplacementMatrix(:,i))/sqrt(SimulationRuns);

 AvgSTDUp(i,1)=mean(UpMatrix(:,i));

 AvgSTDUp(i,2)=std(UpMatrix(:,i));

 AvgSTDUp(i,3)=std(UpMatrix(:,i))/sqrt(SimulationRuns);

 end;

 SimOut=SimOut/SimulationRuns;

 Out1=AvgSTDMinimals;

 Out2=AvgSTDReplacement;

 Out3=AvgSTDUp;

 Minimals=sum(AvgSTDMinimals(:,1));

 Replacement=sum(AvgSTDReplacement(:,1));

80

 Up=sum(AvgSTDUp(:,1));

 TOpportunisticInspectionNo=TOpportunisticInspectionNo/SimulationRuns;

 CountInspections = sum(sum(InspectionScheme));

 TotalCost=0;

 for i=1:CompNo;

TotalCost=TotalCost+AvgSTDMinimals(i,1)*CompParams(i,5)+AvgSTDReplacement(i,1)*CompPa

rams(i,6)+CompParams(i,7)*(TotalTime-AvgSTDUp(i,1));

 end;

TotalCost=TotalCost+InspectionCost*CountInspections+TOpportunisticInspectionNo*800+1000

;

 OptPolicy=InspectionScheme;

 SavedPoliciesInx=SavedPoliciesInx+1;

 InspectionSchemeString='';

 for i=1:length(InspectionScheme);

 InspectionSchemeString=strcat(InspectionSchemeString,num2str(InspectionScheme(i)));

 end;

 SavedPolicies{SavedPoliciesInx}=InspectionSchemeString;

 SavedCosts(SavedPoliciesInx)=TotalCost;

81

 end

end

%*****************

TotalTime=12;

Tau=1;

k=3;

InspectionCost=300;

if rem(TotalTime,Tau)==0

 MaxInspections=TotalTime/Tau-1;

else

 MaxInspections=floor(TotalTime/Tau);

end

Data = xlsread('c:\Data\Yassin\excel\data.xls');

RecordsNo=numel(Data(:,2));

rowindx=0;

while (rowindx < RecordsNo)

 rowindx=rowindx+1;

 CompParams(rowindx,1)=Data(rowindx,1); % beta %

82

 CompParams(rowindx,2)=Data(rowindx,2); % eta %

 CompParams(rowindx,3)=Data(rowindx,3);

 CompParams(rowindx,4)=Data(rowindx,4);

 CompParams(rowindx,5)=Data(rowindx,5); % cost of minimal repair%

 CompParams(rowindx,6)=Data(rowindx,6); % cost of replacement%

 CompParams(rowindx,7)=Data(rowindx,7);% cost of downtime%

end

CompNo=rowindx;

n=CompNo;

global SavedPolicies;

global SavedCosts;

global SavedPoliciesInx;

SavedPoliciesInx=0;

Policies=zeros(1,MaxInspections);

LowerBounds=zeros(1,MaxInspections);

UpperBounds=ones(1,MaxInspections);

IntegerVars=cumsum(ones(1,MaxInspections));

FitnessFunction = @(Policies)

SimulationNonPeriodic(k,n,Policies,TotalTime,Tau,CompParams,InspectionCost);

opts = gaoptimset('PlotFcns',{@gaplotbestf,@gaplotrange});

opts = gaoptimset(opts,'PopulationSize',60);

opts = gaoptimset(opts,'Generations',50,'StallGenLimit', 20);

opts = gaoptimset (opts, 'EliteCount' , 1);

opts = gaoptimset(opts,'TolFun', 1e-5);

global OptPolicy;

[OptimalPolicy,MinCost] =

ga(FitnessFunction,MaxInspections,[],[],[],[],LowerBounds,UpperBounds,[],IntegerVars,opts);

83

disp(OptPolicy);

disp(OptimalPolicy);

disp(MinCost);

disp(SavedPoliciesInx);

 end

84

References

[1] Taghipour S, Banjevic D, Jardine AK. Periodic inspection optimization model for a complex

repairable system. Reliability Engineering & System Safety. 2010 Sep 30;95(9):944-52.

[2] Moubray J. Reliability centered maintenance. Industrial Press;1997.

[3] Taghipour S. Reliability and maintenance of medical devices (Doctoral dissertation,

University of Toronto);2011.

[4] Taghipour S, Banjevic D, Jardine AK. Risk-based inspection and maintenance for medical

equipment. In IIE Annual Conference. Proceedings 2008 Jan 1: 104-9. Institute of Industrial

Engineers-Publisher.

[5] Meeker WQ, Escobar LA. Statistical methods for reliability data. John Wiley & Sons; 2014

Aug 21.

[6] Taghipour S, Banjevic D, Jardine AK. Reliability analysis of maintenance data for complex

medical devices. Quality and Reliability Engineering International. 2011 Feb 1;27(1):71-84.

[7] Taghipour S, Banjevic D. Periodic inspection optimization models for a repairable system

subject to hidden failures. Reliability, IEEE Transactions on. 2011 Mar;60(1):275-85.

[8] Wang H. A survey of maintenance policies of deteriorating systems. European journal of

operational research. 2002 Jun 16;139(3):469-89.

[9] Wang H, Pham H. Reliability and optimal maintenance. Springer Science & Business Media;

2006 Sep 27.

85

[10] Dekker R, Wildeman RE, Van der Duyn Schouten FA. A review of multi-component

maintenance models with economic dependence. Mathematical Methods of Operations

Research. 1997 Oct 1;45(3):411-35.

[11] Özekici S. Optimal periodic replacement of multicomponent reliability systems. Operations

Research. 1988 Aug;36(4):542-52.

[12] Wang KH, Kuo CC. Cost and probabilistic analysis of series systems with mixed standby

components. Applied Mathematical Modelling. 2000 Oct 31;24(12):957-67.

[13] Zhang YL, Wu S. Reliability analysis for ak/n (F) system with repairable repair-equipment.

Applied Mathematical Modelling. 2009 Jul 31;33(7):3052-67.

[14] Kassaei ML, Taghipour S. Inspection optimization model for a k-out-of-n load-sharing

system with dependent components. In IIE Annual Conference. Proceedings 2013 Jan 1: 3282-

90. Institute of Industrial Engineers-Publisher.

[15] Taghipour S, Kassaei ML. Periodic Inspection Optimization of a k-Out-of-n Load-Sharing

System. Reliability, IEEE Transactions on. 2015 Sep;64(3):1116-27.

[16] Taghipour S. Optimal inspection model for a load-sharing redundant system. In Reliability

and Maintainability Symposium (RAMS), 2014 Annual. 2014 Jan 27:1-5. IEEE.

[17] Cho DI, Parlar M. A survey of maintenance models for multi-unit systems. European Journal

of Operational Research. 1991 Mar 6;51(1):1-23.

[18] S Sheu SH, Griffith WS. Optimal age-replacement policy with age-dependent minimal-

repair and random-leadtime. Reliability, IEEE Transactions on. 2001 Sep;50(3):302-9.

[19] Chien YH, Sheu SH. Extended optimal age-replacement policy with minimal repair of a

system subject to shocks. European journal of operational research. 2006 Oct 1;174(1):169-81.

86

[20] Makis V, Jardine AK. Optimal replacement policy for a general model with imperfect repair.

Journal of the Operational Research Society. 1992 Feb 1;122(1):111-20.

[21] Wang GJ, Zhang YL. A bivariate mixed policy for a simple repairable system based on

preventive repair and failure repair. Applied Mathematical Modelling. 2009 Aug 31;33(8):3354-

9.

[22] Zhang YL, Wang GJ. A geometric process repair model for a series repairable system with k

dissimilar components. Applied Mathematical Modelling. 2007 Sep 30;31(9):1997-2007.

[23] Wu Q, Zhang J. A bivariate replacement policy for a cold standby system under poisson

shocks. American Journal of Mathematical and Management Sciences. 2013 Jul 3;32(3):145-77.

[24] Coria VH, Maximov S, Rivas-Dávalos F, Melchor CL, Guardado JL. Analytical method for

optimization of maintenance policy based on available system failure data. Reliability

Engineering & System Safety. 2015 Mar 31;135(1):55-63.

[25] Pan ES, Liao WZ, Zhuo ML. Periodic preventive maintenance policy with infinite time and

limit of reliability based on health index. Journal of Shanghai Jiaotong University (Science). 2010

Apr 1;15(1):231-5.

[26] Lienhardt B, Hugues E, Bes C, Noll D. Failure-finding frequency for a repairable system

subject to hidden failures. Journal of Aircraft. 2008 Sep 1;45(5):1804-9.

[27] Taghipour S, Banjevic D, Jardine AK. Periodic inspection optimization model for a complex

repairable system. Reliability Engineering & System Safety. 2010 Sep 30;95(9):944-52.

[28] Sheu SH, Li SH, Chang CC. A generalised maintenance policy with age-dependent minimal

repair cost for a system subject to shocks under periodic overhaul. International Journal of

Systems Science. 2012 Jun 1;43(6):1007-13.

87

[29] Baohe S. An optimal inspection and diagnosis policy for a multi-mode system. Reliability

Engineering & System Safety. 2002 May 31;76(2):181-8.

[30] Zhou XJ, Lu ZQ, Xi LF, Lee J. Opportunistic preventive maintenance optimization for multi-

unit series systems with combing multi-preventive maintenance techniques. Journal of

Shanghai Jiaotong University (Science). 2010 Oct 30;15(1):513-8.

[31] Dagpunar JS. A maintenance model with opportunities and interrupt replacement options.

Journal of the Operational Research Society. 1996 Nov 30;1(1):1406-9.

[32] Zhu W, Fouladirad M, Berenguer C. A reactive multi-component maintenance policy for

offshore wind turbines. In European Safety and Reliability Conference-ESREL 2013 2014:811-7).

Taylor & Francis (CRC Press/Balkema).

[33] Cui L, Li H. Opportunistic maintenance for multi-component shock models. Mathematical

Methods of Operations Research. 2006 Jul 1;63(3):493-511.

[34] Aven T, Dekker R. A useful framework for optimal replacement models. Reliability

Engineering & System Safety. 1997 Oct 31;58(1):61-7.

[35] S Taghipour S, Banjevic D. Optimum inspection interval for a system under periodic and

opportunistic inspections. Iie Transactions. 2012 Nov 1;44(11):932-48.

[36] Taghipour S, Banjevic D. Optimal inspection of a complex system subject to periodic and

opportunistic inspections and preventive replacements. European Journal of Operational

Research. 2012 Aug 1;220(3):649-60.

[37] Huynh KT, Barros A, Berenguer C, Castro IT. A periodic inspection and replacement policy

for systems subject to competing failure modes due to degradation and traumatic events.

Reliability Engineering & System Safety. 2011 Apr 30;96(4):497-508.

88

[38] Courtois PJ, Delsarte P. On the optimal scheduling of periodic tests and maintenance for

reliable redundant components. Reliability Engineering & System Safety. 2006 Jan 31;91(1):66-

72.

[39] Mohandas K, Chaudhuri D, Rao BV. Optimal periodic replacement for a deteriorating

production system with inspection and minimal repair. Reliability Engineering & System

Safety. 1992 Dec 31;37(1):73-7.

[40] Scarf PA, Wang W, Laycock PJ. A stochastic model of crack growth under periodic

inspections. Reliability Engineering & System Safety. 1996 Mar 31;51(3):331-9.

[41] Kapur PK, Butani NL. Optimum inspection policies for a computer system with hidden

failure. International journal of systems science. 1987 Jan 1;18(4):601-9.

[42] Zequeira RI, Berenguer C. An inspection & imperfect maintenance model for a system with

two competing failure modes. In Fault Detection, Supervision and Safety of Technical Processes

2006 Aug 29: 6(1):932-7.

[43] Zhao X, Al-Khalifa KN, Nakagawa T. Approximate methods for optimal replacement,

maintenance, and inspection policies. Reliability Engineering & System Safety. 2015 Dec

31;144(1):68-73.

[44] J Vaurio JK. Optimization of test and maintenance intervals based on risk and cost.

Reliability Engineering & System Safety. 1995 Dec 31;49(1):23-36.

[45] Rezaei E, Imani DM. Maintenance Risk Based Inspection Optimization Model in Multi-

Component Repairable System with Economic Failure Interaction. In Current Trends in

Reliability, Availability, Maintainability and Safety 2016 Jan 1:611-20. Springer International

Publishing.

89

[46] Wang W, Banjevic D, Pecht M. A multi-component and multi-failure mode inspection

model based on the delay time concept. Reliability Engineering & System Safety. 2010 Aug

31;95(8):912-20.

[47] Wang W. A joint spare part and maintenance inspection optimisation model using the

Delay-Time concept. Reliability Engineering & System Safety. 2011 Nov 30;96(11):1535-41.

[48] Golmakani HR, Moakedi H. Periodic inspection optimization model for a multi-component

repairable system with failure interaction. The International Journal of Advanced

Manufacturing Technology. 2012 Jul 1;61(1-4):295-302.

[49] Wang W. An inspection model for a process with two types of inspections and repairs.

Reliability Engineering & System Safety. 2009 Feb 28;94(2):526-33.

[50] Wang W, Zhao F, Peng R. A preventive maintenance model with a two-level inspection

policy based on a three-stage failure process. Reliability Engineering & System Safety. 2014 Jan

31;121(1):207-20.

[51] Mendes AA, Coit DW, Ribeiro JL. Establishment of the optimal time interval between

periodic inspections for redundant systems. Reliability Engineering & System Safety. 2014 Nov

30;131(1):148-65.

[52] Lin ZL, Huang YS, Fang CC. Non-periodic preventive maintenance with reliability thresholds

for complex repairable systems. Reliability Engineering & System Safety. 2015 Apr

30;136(1):145-56.

[53] Lapa CM, Pereira CM, e Melo PF. Surveillance test policy optimization through genetic

algorithms using non-periodic intervention frequencies and considering seasonal constraints.

Reliability Engineering & System Safety. 2003 Jul 31;81(1):103-9.

90

[54] Castanier B, Grall A, Bérenguer C. A condition-based maintenance policy with non-periodic

inspections for a two-unit series system. Reliability Engineering & System Safety. 2005 Jan

31;87(1):109-20.

[55] Wang W, Christer AH. Solution algorithms for a nonhomogeneous multi-component

inspection model. Computers & Operations Research. 2003 Jan 31;30(1):19-34.

[56] Golmakani HR, Moakedi H. Optimal non-periodic inspection scheme for a multi-component

repairable system using A search algorithm. Computers & Industrial Engineering. 2012 Dec

31;63(4):1038-47.

[57] Lam JY, Banjevic D. A myopic policy for optimal inspection scheduling for condition based

maintenance. Reliability Engineering & System Safety. 2015 Dec 31;144(1):1-1.

[58] Barker CT, Newby MJ. Optimal non-periodic inspection for a multivariate degradation

model. Reliability Engineering & System Safety. 2009 Jan 31;94(1):33-43.

[59] Zhao X, Fouladirad M, Berenguer C, Bordes L. Nonperiodic Inspection/Replacement Policy

for Monotone Deteriorating System with Covariates. In Fault Detection, Supervision and Safety

of Technical Processes 2009 Jun 30:1617-22.

[60] Ben-Dov Y. Optimal reliability design of k-out-of-n systems subject to two kinds of failure.

Journal of the Operational Research Society. 1980 Aug 1:192(1):743-8.

[61] Tian Z, Zuo MJ, Yam RC. Multi-state k-out-of-n systems and their performance evaluation.

IIE Transactions. 2008 Nov 7;41(1):32-44.

[62] Chen Z. Component reliability analysis of k-out-of-n systems with censored data. Journal of

statistical planning and inference. 2003 Sep 1;116(1):305-15.

91

[63] Coit DW, Chatwattanasiri N, Wattanapongsakorn N, Konak A. Dynamic k-out-of-n system

reliability with component partnership. Reliability Engineering & System Safety. 2015 Jun

30;138(1):82-92.

[64] Eryilmaz S. Capacity loss and residual capacity in weighted k-out-of-n: G systems. Reliability

Engineering & System Safety. 2015 Apr 30;136(1):140-4.

[65] Faghih-Roohi S, Xie M, Ng KM, Yam RC. Dynamic availability assessment and optimal

component design of multi-state weighted k-out-of-n systems. Reliability Engineering & System

Safety. 2014 Mar 31;123(1):57-62.

[66] Aboalkhair AM, Coolen FP, MacPhee IM. Nonparametric predictive inference for reliability

of a k-out-of-m: G system with multiple component types. Reliability Engineering & System

Safety. 2014 Nov 30;131(1):298-304.

[67] Moghaddass R, Zuo MJ, Wang W. Availability of a general k-out-of-n: G system with non-

identical components considering shut-off rules using quasi-birth–death process. Reliability

Engineering & System Safety. 2011 Apr 30;96(4):489-96.

[68] Bjarnason ET, Taghipour S, Banjevic D. Joint optimal inspection and inventory for a k-out-

of-n system. Reliability Engineering & System Safety. 2014 Nov 30;131(2):203-15.

[69] Bjarnason ET, Taghipour S. Periodic Inspection Frequency and Inventory Policies for a k-

out-of-n System. IIE Transactions. 2015 Dec 1(just-accepted):00-.

[70] Bjarnason ET, Taghipour S, Banjevic D, Jardine AK. Joint Optimization of Periodic Inspection

and Inventory for a k-out-of-n System. In IIE Annual Conference. Proceedings 2013 Jan 1: 3198-

207. Institute of Industrial Engineers-Publisher.

92

[71] Babishin V, Taghipour S. Joint optimal maintenance and inspection for a k-out-of-n system.

The International Journal of Advanced Manufacturing Technology. 2016 Mar 10:1-11.

[72] Bjarnason ET, Taghipour S. Optimizing simultaneously inspection interval and inventory

levels (s, S) for a k-out-of-n system. In Reliability and Maintainability Symposium (RAMS), 2014

Annual. 2014 Jan 27: 1-6. IEEE.

[73] Das Chagas Moura M, Lins ID, Droguett EL, Soares RF, Pascual R. A multi-objective genetic

algorithm for determining efficient risk-based inspection programs. Reliability Engineering &

System Safety. 2015 Jan 31;133(1):253-65.

[74] Gen M, Cheng R. Genetic algorithms and engineering optimization. John Wiley & Sons;

2000.

[75] Smith AE. A Review of “Genetic Algorithms and Engineering Optimization “Mitsuo Gen and

Runwei Cheng Wiley, 2000. IIE Transactions. 2001 Jun 1;33(6):531-2.

[76] Tavakkoli-Moghaddam R, Safari J, Sassani F. Reliability optimization of series-parallel

systems with a choice of redundancy strategies using a genetic algorithm. Reliability

Engineering & System Safety. 2008 Apr 30;93(4):550-6.

93

Glossary

NHPP Non-Homogeneous Poisson Process

SF Failure of Soft-Type Component

HF Failure of Hard-Type Component

CF Failure of Component (k-out-of-m)

SF System Failure (k-out-of-m)

OP Opportunistic Inspection

PI Potential Scheduled Inspection

 Inspection Cost

 Cost of Minimal Repairs

 Cost of Replacement

 Downtime Penalty Cost of a Failed Component

 Penalty Cost for System Failure

Expected Number of Minimal Repair of Component j over Cycle [0,]

Expected Number of Replacement of Component j over Cycle [0,]

Expected Down Time of Component j over Cycle [0,]

 Total Expected Cost Incurred over Cycle [0,] for Scheme

 Total Expected Cost Incurred over Cycle [0,] for Optimal Scheme

 Age of Component (Soft-Type, k-out-of-m)

 Age Vector of Hard-Type Component

94

 System’s Life-Cycle

 Minimum Possible Unit Time

 Maximum Number of Hard-Type Components in the System

 Maximum Number of Soft-Type Components in the System

 Maximum Number of Components in the System (k-out-of-m)

 Minimum Number of Components in the System Must be Up (k-out-of-m)

 Maximum Number of Potential Scheduled Inspection in Scheme

 Value of Potential Scheduled Inspection (Binary 0 or 1)

 Number of Scheduled Inspection in Scheme at any Time

 Number of Scheduled Inspection at End of Life-Cycle

 Interval between Two Consecutive Scheduled Inspections

 Interval of End of the Cycle Inspection

 Scheme, Binary Vector of Potential Scheduled Inspection

 Optimal Scheme

 , Component Parameters

 , Parameters of Power Law Intensity Function

 Probability of Minimal Repair (Soft-Type Components)

 Probability of Replacement (Soft-Type Components)

 Probability of Minimal Repair (Hard-Type Components)

 Probability of Replacement (Hard-Type Components)

 Possible Events in One Inspection Interval

 Intensity Function of Soft-Type Components

95

 Intensity Function of Hard-Type Components

 Intensity Function of the NHPP (k-out-of-m)

 Intensity Function of Hard-Type Subsystem

 Probability Density Failure Function of the Soft-Type Component

 Probability Density Failure Function of the Hard-Type Subsystem

 Reliability Function of the Soft-Type Component

 Reliability Function of the Hard-Type Subsystem

 Probability of the Failure of the Hard-Type Component

