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ABSTARCT 

NON-PERIODIC INSPECTION OPTIMIZATION OF REPAIRABLE SYSTEMS 

Yassin Hajipour 
Master of Applied Science 

Mechanical and Industrial Engineering, 2016 
Ryerson University, Toronto, ON, M5B 2K3, CANADA 

This study proposes models to find the optimal non-periodic inspection interval over a 

finite planning horizon for two types of multi-component repairable systems. The first system 

consists of hard-type and soft-type components, and the second system is a k-out-of-m system 

with m identical components. The failures of components in both systems follow a non-

homogeneous Poisson process. The failure of soft-type components and the failure of 

components in a k-out-of-m system when the number of failed components is still less than m-

k+1, are soft failures. Soft failures are revealed only at scheduled inspections or when an event 

of opportunistic inspection or a system failure occurs. The failures of hard-type components or 

the failure of (m-k+1)th failed component in a k-out-of-m system are hard failures, and cause 

the system to stop functioning. Hard failures are revealed immediately and the failed 

components are fixed. In this study, a failed component is either replaced or minimally repaired 

according to its age at failure time. To find the optimal inspection schedules for the systems, we 

minimize the total expected cost of the systems over a finite planning horizon. The total cost 

for the first type of system includes the costs of components’ minimal repairs, replacements, 

downtimes, and the scheduled inspections. The total cost of a k-out-of-m system has an 

additional penalty cost for system failures. We consider a binary variable for a possible 
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scheduled inspection’s time, in which 1 indicates performing a planned inspection at that time, 

and 0 shows no inspection to be performed. Thus, our goal is to find the optimal vector of 

binary decision variables which results in the minimum total cost of the system. A recursive 

formula is developed to calculate the expected number of minimal repairs, replacements and 

downtime of soft-type components. However since obtaining the expected values from the 

mathematical formula is cumbersome, we develop a simulation model to obtain the total 

expected cost for a given non-periodic inspection scheme. We then integrate the simulation 

model with a genetic algorithm to obtain the optimal inspection scheme. 
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Chapter 1 - Introduction and the Literature 
Review 

 

There are many multi-component systems in various fields of industry and human life. 

The significant part of capital equipment investment is usually represented by multi-component 

systems. They are one of the most important and complex categories of assets, in the sense 

that the availability and reliability of such equipment could impact the prosperity of business in 

different industry zones including manufacturing, services, and healthcare. Maintenance of 

multi-component systems is increasingly important, since the failure of a system may result in 

catastrophic consequences, incur huge costs and present threat to human life.   

The majority of multi-component systems is either designed, or assumed to be repairable, 

since it is usually not economical to replace failed components instead of repairing them [1]. 

Systems inspection is a common maintenance strategy that many organizations implement, 

particularly when their equipment is complex and is subject to hidden failures. Up to 40% of 

failures in industrial systems are hidden failures [2]. Inspection helps to retain the uptime and 

availability of systems as high as possible [3, 4]. For example, computer network servers, 

backup power generation systems, and medical devices are required to have a maximum 

possible availability and uptime to be able to minimize the excessive costs and undesirable 

consequences.  

Inspection policy could be categorized into periodic or non-periodic inspections. The 

components of multi-component systems are classified by type, or mode of failure. A complex 
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system consists of two types of components, soft-type and hard-type. Failure in these 

components are classified as soft (or hidden) and hard failures [5, 6]. A component which is 

subject to hard failures is called a hard-type component whereas a soft-type component is the 

one subject to soft failure. In certain systems, some components can be subject to both soft 

and hard failures, and therefore, they are treated as soft-type and hard-type components, 

separately.  

The entire system stops functioning in an event of hard failure. Hence, hard failures are 

self-announcing and the time of failure is known. An example of a hard-type components is 

central processing unit (CPU) in personal computers, since the failure of CPU results in 

immediate dysfunction of the computer. The power outage in a computer circuit is another 

example of hard-type components. 

Soft failures, however, are not self-announcing and are hidden. They can only be detected 

and rectified at inspections [1, 7]. Soft failures typically do not result in the failure of the entire 

system, but likely cause a decrease in the system’s reliability by eliminating redundancy and 

increasing the risk of breakdown or future damage. The time that soft failures occur are often 

unknown, since the system may continue to operate even in the presence of a soft failure. 

However, the performance and efficiency of the system may be decreased [6, 7]. Flaw in a 

computer CD-ROM is an example of a soft failure, as the computer can still operate, despite it is 

unable to read or write from the CD. Another example of soft-type components is liquid-level 

alarm in infusion pumps.  
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Some sort of dependency exists between the components of multi-component systems, 

which differentiates these systems from single-component systems [8]. This dependency could 

be a failure, functional, structural, or an economic dependency. 

The concept of components dependency is discussed in the literature. Wang and Pham 

[9] propose the optimal maintenance for systems consisting of several sub-systems. They 

assumed that the components are economically dependent. Dekker et al. [10] surveyed the 

economic dependency in multi-component systems. Ozekici [11] also studies the stochastic and 

economic dependencies and their influence on periodic replacement policies for a multi-

component system. The series systems with mixed (cold and warm) standby components using 

the mean time to failure (MTTF), long-term availability and cost over benefit ratio are 

compared by Wang and Kuo [12]. A k-out-of-m system with perfect component and repairable 

repair-equipment is studied by Zhang and Wu [13]. In their study, they proposed a model that 

minimizes the total expected costs, based on the number the components which are repaired. 

This model is the optimal replacement policy. Taghipour and L Kassaei [14, 15], and Taghipour 

[16] consider a k-out-of-m load-sharing system with some dependency between their 

components. In their model, the failure of each component increases the hazard level of the 

remaining operational components. They [14, 15] develop a model to find the optimal 

inspection interval minimizing the total expected cost over a finite life cycle. 

For optimal maintenance of multicomponent systems several models are proposed, and 

each of them is subject to multiple assumptions and structures, such as hidden failures, finite 

and infinite planning horizons, hard-component preventive replacements and opportunistic 

inspections. Some work is done to summarize research in optimal maintenance of 
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multicomponent systems. For example, Cho and Parlar [17] review the literature of the models 

developed over infinite time horizon. Wang [8] provides another review of different inspection 

and maintenance policies for both single-unit and multi-component systems; although his focus 

is more on single-unit component systems. However, the models in his surveys do not consider 

optimization of both inspection and maintenance over a finite time horizon. 

 Most of the maintenance optimization models assign different probability for each type 

of maintenance strategy. For example, age dependent probabilities for the type of maintenance 

such as replacement, minimal repair, or imperfect repair are considered by Sheu and Griffith 

[18]. Chien and Sheu [19] consider the system’s age and the number of shocks tolerated since 

last replacement to evaluate the probability of replacement. Makis and Jardine [20] propose a 

model with both imperfect and perfect repair. The probability of perfect maintenance is 

assumed to be dependent on the number and time of imperfect maintenance actions in a cycle.  

Most of the available maintenance optimization models are constructed considering the 

costs per unit time over infinite planning horizon. Wang and Zhang [21] develop an optimal 

mixed bi-variate policy model, based on the critical reliability level and the number of system 

failures for a simple system to find the minimum average cost rate. An optimal replacement 

policy model, based on the number of failures of each component for a series system with 

different components type, under a geometric process is proposed by Zhang and Wang [22]. 

Their model is able to optimize the system’s costs per unit time. Wu and Zhang [23] consider an 

infinite-horizon multi-variable maintenance policy model for a two-component cold-standby 

system subject to Poisson shocks. Their maintenance policy model depends on the number of 

failures of each component and the interval length between two consecutive preventive 
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replacements. Coria et al. [24] consider an imperfect preventive maintenance policy model over 

infinite planning horizon. According to a new hazard function, they provide an analytical 

optimization method to optimize the costs of the system per unit time. A preventive 

maintenance policy model by considering the improvement factor and infinite planning horizon 

is proposed by Pan et al. [25]. Taghipour and Banjevic [7] consider models to optimize the 

inspection interval for a multi-component system, which is subject to hidden failures over both 

finite and infinite planning horizons. 

Some systems contain components that are subject to hidden failures. Protective devices 

usually have the highest number of hidden failures. A hidden failure is defined as a failure 

which is not discovered during the normal operation of the system, and is rectified only at 

inspection [26, 27]. For example, the failures of computer CD-ROMs are only revealed either at 

inspection, or whenever the protective unit is required to function, but is unavailable due to 

failure. The only difference between soft failures and hidden failures is that the system is still 

able to function even with the presence of soft failures. 

Hidden failures in single-component systems have been investigated by Sheu et al. [28] 

They assume that the number of previous repairs, affects the probability of failure, and the 

maintenance policy is based on both the component’s age at failure and its number of previous 

repairs. 

The optimal inspection period which maximises the profit of a multi-mode system is 

determined by Baohe [29]. He considers a combination of hidden and self-announcing failures 

in his model, and uses the supplementary variable technique where the inspection period is a 

random variable. 
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Another topic receiving an extensive treatment in the literature is opportunistic 

maintenance policy. An optimisation model for opportunistic preventive maintenance of a 

multi-component system with a series configuration is proposed by Zhou et al. [30]. Their 

system is the same as a multi-component system subject to only hard failures, since a series 

system fails by the failure of any one of its components. Dagpunar [31] looks into opportunistic 

replacement of a component in a multi-component system, if the age of a failed component 

surpasses a specified control limit. However, in his model, he does not consider any constraints 

for the type of components. Zhu et al. [32] propose an opportunistic maintenance policy model 

for a multi-component system with hard-type and soft-type components.  

Cui and Li [33] consider opportunistic inspections and stochastic dependency between the 

components of a system. Aven and Dekker [34] develop a preventive opportunistic replacement 

model for components whose failures follow a Poisson process.  Moreover, they consider an 

age-based replacement action for their model. One of the models in Taghipour and Banjevic 

[35] only considers opportunistic inspections and minimal repairs of hard-type and soft-type 

components for a multi-component system over a finite planning horizon. Taghipour and 

Banjevic [36] consider optimal periodic inspection interval for complex multi-component 

systems with hard and soft failures. Their model considers two types of inspection – periodic 

and opportunistic. However, in their model, the maintenance action is chosen based on age 

dependency probabilities, and it is not subject to optimisation.  

While the literature considers inspection optimization of complex systems; the focus is 

generally more on periodic inspections [37-40]. Kapur and Butani [41] develop a model for 

optimal periodic inspection of a computer system with hidden and revealed failures. Zequeira 
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and Berenguer [42] propose a model to optimize a preventive maintenance policy for a system 

involving periodic inspections. They consider three types of maintenance actions for the 

system, including minimal repair, imperfect maintenance, and perfect replacement in their 

model. Zhao et al. [43] use cumulative hazard function and asymptotic mean time to failure, 

and propose approximate methods for estimating failure times and optimizing maintenance 

and inspections policies for a parallel system. Vaurio [44] considers the optimal periodic 

inspection interval for a multiple-component system.  His optimization model is based on the 

system risk and cost. 

Taghipour et al. [1] consider a model to optimize the periodic inspection for a complex 

repairable system involving hard and soft failures. Their model optimizes the expected total 

cost of the system over a finite planning horizon. Taghipour and Banjevic [35, 36] consider the 

possibility of both periodic and opportunistic inspections to extend their previous work in this 

area. The periodic inspections are scheduled in advance and opportunistic inspections occur at 

hard failure times. They also inspect the soft-type components in addition to the failed hard-

type component at the events of the opportunistic inspections. Rezaei and Imani [45] propose a 

model to obtain an optimal periodic inspection interval on a finite time horizon for a multi-

component repairable system. Since the components of the selected system assume to be 

economically dependent, grouping maintenance is preferred to individual maintenance. Rezaei 

and Imani [45] consider a combination of inspection, repair, and downtime penalty costs as the 

total expected cost in their model. 
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Wang et al. [46] study a multi-component system, in which they model the failure of each 

component separately and formulate a periodic inspection interval model for the entire the 

system.  

Wang [47] proposes a model for a joint optimization of inspection interval policy and 

inventory level of spare parts. He forms his optimization model based on three decision 

variables: “the ordering quantity”, “ordering interval” and “inspection interval”. Moreover, 

Wang [47] considers the delay time concept and a two-stage failure process to construct the 

model.  

Golmakani and Moakedi [48] consider a model for a two-component system in which one 

of the components is assumed to be a hard-type component, and another is a soft-type 

component. They [48] apply the same assumptions for soft-type and hard-type components as 

what Taghipour et al. [1] assume in their models to find the optimal interval for periodic 

inspections.  

Wang [49] considers a system for a production process with two types of failure. The first 

type of failure is a product quality shift due to minor process defects which is assumed to be 

identified and rectified by routine inspections. The other type of failure is the major defect 

caused by a mechanical or electrical problem which should be inspected and repaired 

immediately after its emergence. In the current thesis, similarly to Wang [49], we assume two 

failure types. Another similarity of this study to Wang [49] is the type of inspections which are 

applied to the systems. Wang [47] considers two types of inspection, including routine and 

opportunistic inspections, which are similar to scheduled and opportunistic inspections. On the 

other hand, one of the main modifications of our work to Wang [47] is that we inspect all 
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components and rectify and repair the failed hard-type component as well as failed soft-type 

components at opportunistic inspections. Another difference of our work is that we develop an 

optimization model for a system which is subject to non-periodic inspections, while Wang [47] 

considers periodic inspection. However, we both assume that the failure times of soft-type 

components are unknown. 

Wang et al. [50] propose a model for two-level inspection policy of a single component 

system based on a three-stage failure process. They [50] jointly optimize the minor and major 

inspection intervals, as well as a threshold level for the next planned maintenance by 

minimizing the expected cost per unit time. Mendes et al. [51] propose a model to analyze the 

reliability of active and standby redundant systems, and determine their optimal periodic 

inspection interval using Markov chain and search technique.  

Another research area related to inspection optimization of complex multi-component 

systems is non-periodic inspections, which have been studied in the literature [52, 53]. A model 

for a two-unit system, in which each unit is subject to systematic failure and is inspected by 

sequential non-periodic inspections is presented by Castanier et al. [54]. Castanier et al. [54] 

consider preventive and corrective replacements. They assume a parametric maintenance 

decision to control the inspection and replacement policy. However, minimal repair of the units 

is not considered as a possible maintenance option, which can affect the expected system cost 

value. 

Wang and Christer [55] study three solution algorithms for non-periodic inspection of a 

multi-component systems. The first algorithm is assigned to calculate the system replacement 

time when arrival process is non-homogeneous. The second algorithm is an extension of the 
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first one, in which non-constant optimal inspection intervals are considered. Finally, the third 

algorithm is a numerical algorithm for solving an integral equation to obtain the expected time 

of opportunistic inspections at the system failure times.  

Golmakani and Moakedi use dynamic programming and branch-and-bound methods [56] 

to optimize non-periodic inspections of a multi-component system. The    search algorithm, 

based on branch-and-bound method, is introduced by them [56]. The challenge of    search 

algorithm is to generate and evaluate fewer numbers of nodes by branching only the most 

capable nodes at each step of the examination. Computing a large number of nodes at each 

step is one of the most important weaknesses of     search algorithm. 

Lam and Banjevic [57] propose a model to decide at an inspection point whether a 

deteriorating system should be replaced immediately or the replacement should be postponed 

until later. They [57] also decide on when to schedule the next inspection. Barker and Newby 

[58] propose a model for a multi-variable stochastic process system. Their [58] model is 

designed to obtain non-periodic inspection and maintenance policy for a multi-component 

system in which the state of failure is modeled using a Markov stochastic process. Zhao et al. 

[59] develop another non-periodic inspection model for a complex multi-component system 

which is affected by a dynamic environment. They [59] use covariates process to define 

environment effects, and a stochastic univariate process is used to model the system’s failure. 

Zhao et al. [59] derive the optimal maintenance threshold to minimize the expected 

maintenance cost per time unit and find the optimal non-periodic inspection sequence.  

One of the most common types of multi-component complex systems which is used in 

industry for the last decade is a k-out-of-m system. A k-out-of-m system is an active redundant 
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system consisting of   components, in which a minimum of   components must be operational 

for the system to function [60-69].  

The optimization of inspection policies for a k-out-of-m system is the main focus of many 

publications. One of the research papers in this area is Taghipour and Kassaei [15], which offers 

a model to optimize the periodic inspection interval for a k-out-of-m system assuming load-

sharing between all identical components. In the current research, we also consider a k-out-of-

m system, but we do not consider the load concept for the components. The main difference of 

the current work with the work of Taghipour and Kassaei [15] is that we consider a non-periodic 

inspection strategy for the system. 

Bjarnason et al. [68 -71] propose a joint optimisation model for a k-out-of-m redundant 

system, and minimise the total costs of both maintenance and inventory policies. They consider 

hidden failures for the system. In another work, Bjarnason and Taghipour [72] find the optimal 

maintenance and (s, S) inventory policies for a k-out-of-m system subject to hidden failures. 

They search through a three-dimensional objective function by using genetic algorithm.   As all 

components of k-out-of-m systems are identical, the analysis is much easier than a system 

containing various hard-type and soft-type components, because each component in the latter 

may require a special treatment, which makes the analysis much harder. 

One of the models of our study is an extension of the models proposed by Taghipour and 

Banjevic [35, 36], but we develop an optimization model for non-periodic inspection of a 

system subject to soft and hard failures, and opportunistic inspections. Since the failure rates of 

the components are increasing as they get older, it is more reasonable to have less frequent 

inspections when the components are relatively new, and have more frequent inspections as 
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the probability of failure increases for the components. Our decision variables are binary 

variables indicating possible scheduled inspections’ times for the system. Thus, the optimal 

non-periodic inspection scheme is the vector of the binary variables which results in the 

minimum total expected cost of the system over a finite time. We develop a simulation model 

to obtain the total expected cost of the system for a non-periodic inspection scheme, and 

combine this model with the genetic algorithm to obtain the optimal scheme more efficiently. 

At the next stage, we apply the same model for a k-out of-m system with similar assumptions.  

For both models we assume minimal repair and replacement as possible maintenance 

actions for both hard-type and soft-type components and components of a k-out-of-m system. 

It is not generally possible to obtain an analytical solution for the optimal inspection interval, 

even in the simpler case of optimizing system availability regardless of the costs. For this 

reason, simulation is used to calculate the required expected values and to exhaustively search 

for the optimal solution in the case of a complex system. 

Overall, inspection optimization models can be used as valuable tools in providing the 

safe and reliable operation of various equipment. Such models can also have strong managerial 

implications, since in practice, it is usually important to justify and support managerial decisions 

with both qualitative and quantitative analysis in order to make them robust. Simulation 

models are particularly useful in this regard, as they can cover a great number of possible 

scenarios and provide the results both for a particular and the most general case. Using the 

proposed inspection optimization model, the decision-makers gain an opportunity to observe 

the outcomes of their managerial decisions and to find the combination of decisions that is 

most likely to result in the greatest cost savings without sacrificing the required reliability and 
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availability. For example, based on the model’s output for a given system with particular 

component parameters, it may not require as frequent inspection as previously thought 

because of the accounted effect of the additional opportunistic inspections. This would result in 

cost savings, which would be especially significant, if the costs of inspection were particularly 

high.  

Thus, the contributions of this thesis is two-fold: developing a model for non-periodic 

inspection of multi-component and k-out-of-m systems, and proposing a solution algorithm 

using Monte Carol simulation and genetic algorithm which can be efficiently applied in practice 

to obtain the optimal non-periodic inspection policy for industrial systems. The remaining 

chapters of this thesis are organized as follows: Chapter 2 presents the problem description and 

the models’ assumptions. Chapter 3 describes the system with soft-type and hard-type 

components. Chapter 4 presents a k-out-of-m system. Finally, Chapter 5 concludes this study 

and proposes some possible extensions of the work. In Appendix A, genetic algorithm and 

simulation Matlab code for both models are provided. 
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Chapter 2 - Problem Description and the 
Models Assumptions 

 

In this study, we consider two models, which there are similarity and differences between 

them. For the first model we assume a system consisting of hard-type and soft-type 

components. The number of hard-type components and soft-type components are shown by 

   and    , respectively. A repairable component can be a single part such as battery or line 

cord, or a subsystem, such as circuit breaker or charger in an infusion pump. The failures of 

both soft-type and hard-type components for the first two models follow a non-homogenous 

Poisson process with power law hazard rate       
  

  
 
 

  
 
    

 ,             ,where    

and    are the parameters of the power law intensity function. The second model considered is 

a k-out-of-m with   identical components. The failures of   components also follow a non-

homogenous Poisson process with power law hazard rate       
 

 
 
 

 
 
   

. 

The lifecycle length of all three systems is shown by  . The failure of soft-type 

components is revealed by inspecting the system non-periodically. Once a soft-type component 

fails, it stays in the same state until it gets fixed at the first approaching inspection, which could 

be a non-periodic scheduled inspection, or an opportunistic inspection assumed to be at a hard 

failure’s time. Alternatively for the k-out-of-m model, if the number of failed components is less 

than      , we consider them as soft failures; and if the number of failed components 

reaches      , we consider the        st failure as a hard failure, since the system 
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stops immediately, and the system failure provides an opportunity to inspect all the 

components.  

The maintenance action applies to failed components; depending on the age of the 

component at failure time, the component either requires a minimal repair or replacement. It is 

assumed that there is no dependency between the failures of a component to other 

components. It is also assumed that soft failures or the combination of soft failures cannot 

change to a hard failure and hard components cannot fail at the same time. Both types of 

inspection are considered to be perfect inspections with negligible time for inspection, 

replacement and minimal repair.   

In a k-out-of-m system, we also assume that when a component fails, it stays in the same 

condition until it gets fixed either at a system failure time, or at a scheduled inspection. We 

consider a penalty cost for the downtime of each component, as well as a penalty cost for each 

time the system fails.  

The minimum time unit is assumed to be  , which means a scheduled inspection can be 

only performed at              . In this way, the time interval between two uninterrupted 

scheduled inspections cannot be less than  . Each   can be measured as a day, a week, or a 

month. The objective of this model is to find the minimum total expected cost of the system 

over lifecycle length   , which is the result of the optimal non-periodic inspection scheme.  

Given  , the system potentially can be inspected at times              , where   

 

 
  , if   is divisible by    and     

 

 
 , otherwise. In other words, at each scheduled 

inspection time   , we should decide whether the system should be inspected or not. We also 
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assume that at the time of a hard failure, all the soft-type components and the failed hard-type 

component are inspected opportunistically (Figure 2.1).  

 

Figure 2.1. Sample soft and hard failures, and potential and opportunistic inspections over cycle 

T. 

 

Similarly, we assume that at the time of the system failure, all the failed components are 

inspected opportunistically (Figure 2.2). 

 

Figure 2.2. Sample of the failures of a k-out-of-m system, and potential and opportunistic 

inspections over cycle T. 

 

We assume at time   the last scheduled inspection is performed to prepare the system 

for the next cycle. The preparation could be the renewal of the entire system, or replacement 

of some of the components and minimal repairs of the others. In this case, the components will 
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start with different initial ages. Let us define                as a binary decision variable, 

which is 1 if inspection is performed at scheduled inspection time    , and is 0, otherwise. In this 

case,                construct the vector                , which describes a possible 

scheduled inspection scheme for the system. Moreover, we define x k


 and 

x
y

k
 as follows:                                                             

                                
     

 
                                                       (2.1) 

                                                         

            
        

  
   

    .                                       (2.2)                                                  

 

In fact,   
 

  is counting the number of scheduled inspections up to time    (including   ), 

and    
  is the interval between    

     and    
       inspections.  

For the last inspection at the end of cycle time    we have: 

                                                                    
      

  ,                                                          (2.3)                                                              

                                                            

              
  
 

    .                                                     (2.4)                                                        

 

Thus, the total expected cost of the system over   can be formulated as follows: 

         
         

      
   

 
                   

   
 
                   

      
 
                  

  
   ,      

 

(2.5) 

 

where at the beginning of cycle  , the soft-type component   has the initial age    . The 

initial ages of the hard-type components at the beginning of cycle   is given by vector 

                
 . The total number of scheduled inspections by the end of cycle   is 

provided by     
 . The expected number of minimal repairs and replacements, and the 

expected downtime of soft-type component    over cycle   are denoted by 
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              and   

 
            , respectively. The costs of a minimal repair, 

replacement, and the downtime penalty per unit time, respectively, for component   are 

  
 ,   

   and   
  .    is the cost of a scheduled inspection. Our objective is to find the optimal 

scheme     which minimizes the total expected cost of the system        
     

The costs of minimal repairs and replacements of hard-type components, and the 

opportunistic inspections have no impact on the optimal inspection scheme; thus, these costs 

are not included in        
  .  

The total expected cost of the k-out-of-m system over cycle length   for each scheme is 

shown by        
   and is calculated as follows: 

                                                 
                                              

                                                                                        

                                                                                                         

                                                                                                      

                                                                                                                  (2.6)                

 

where               and     denote the scheduled inspection cost, cost of minimal 

repair of a component, cost of replacement of a component, the penalty cost for the downtime 

of a components per unit time, and system failure cost, respectively. As shown, we consider the 

cost of system failures as being additional. 
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Chapter 3 – The System with Soft-Type and 
Hard-Type Components 

 

To calculate the expected cost of the system, we are required to obtain the expected 

number of minimal repairs, replacements, and expected downtime of each soft-type 

components stated in (2.5). First, we develop a recursive mathematical formula to calculate 

these expected values for a single soft-type component. The recursive formula is designed with 

a placeholder function to be able to calculate different required expected values. However, 

calculating the expected values from the recursive formula is computationally intensive, 

because it involves multi-dimensional integrals which must be obtained numerically by 

discretization and solving systems of equations.  

We assume all hard-type components are considered as a subsystem of the whole system 

in a series configuration. The intensity function of hard-type component   at time   is 

                                , where    is the initial age of the hard-type component. 

Thus, the intensity of the hard subsystem at time   is                  
  
      

            
 . 

Let us define the densities of the failure of the soft-type component and hard subsystem 

as follows: 

( ) ( | )

( | ) ( ) ,      ( | ) ( | ) .

t x z

t

s ds s ds
X Z

Hf x t t x e f z z e
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The reliability functions of the soft-type component and the hard subsystems are 

( | )XR x t and ( | ),ZR z  respectively. The probability of the failure of the hard-type component   

with initial age of     at time     is equal to: 

              
        

       
  

For the soft-type component, we have three possible events in one scheduled inspection 

interval. We use   to show all the possible cases. 

    

                                                                     
                                                                       
                                                                                     

  

To derive a formula that can be generally used to obtain the expected value of any 

random variable, we consider a placeholder function          , in which   represents the 

failure time of the soft-type component, and   represents the failure time of hard–type 

component  , and    represents the failure/survival/maintenance action on the soft-type 

component. Therefore, the general formula remains the same for all random variables, and 

only the place holder function changes accordingly as follows: 

For the number of minimal repairs of the soft-type component: 

1,  if 0 
( , , ) .

0,  otherwise 

X

X I
x I z

 
 


 

For the number of replacement of the soft-type component: 

1,  if 1 
( , , ) .

0,  otherwise 

X

X I
x I z
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For the downtime of the soft-type component: 

,  if  < z
( , , ) .

z,  otherwise 

X
x x

x I z


 


 

The probability of minimal repair of soft-type component with age   at failure is      , 

and                is the probability of replacement. The probability of minimal repair of 

hard-type component    with age   at failure is 
Z

jr , and 1Z Z

j jr r  is the probability of 

replacement. 

Let us assume there is only one scheduled inspection interval at the end of cycle length  , 

i.e.     or             . We derive a recursive formula to obtain the expected number of 

minimal repairs, replacements and downtime for a soft-type component over the inspection 

interval   . Let    denote the expected value of a random variable of interest at the end of the 

inspection interval   . Assuming the initial ages of the soft-type component and the hard 

subsystem at the beginning of the inspection interval are   and  , respectively, and by 

conditioning on the first failure time of the soft-type component, i.e.   and the first hard failure 

time, i.e.  ,          can be recursively obtained as follows: 


1 1

1 1
10 0

( , ) [ ( ,0, ) ( , )] ( )

y z m
X

y y z

j

G t x z G t x z r t x 



      
 


1

[ ( ,1, ) (0, )] ( ) ( )X Z

y z j jx z G z r t x r z      
1

(0 )
[ ( ,0, ) ( , ( ) ] ( )j X

y zx z G t x z r t x     
 

 
1

(0 )
[ ( ,1, ) (0, ( ) )] ( ) ( )j X Z

y z j jx z G z r t x r z      ( ) ( | , ) ( | )j X Zq z f x t z f z dxdz   
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1 1

1
10

{[ ( ,2, ) ( , )] ( )

y m
Z

y z j j

j

z z G t z z r z 



     

1

(0 )
[ ( ,2, ) ( , ( ) )] ( )}j Z

y z j jz z G t z z r z      ( ) ( | ) ( | )j X Zq z R z t f z dz 

 

1

1 1 1 1

0

{ ( ,0, ) ( ) ( ,1, ) ( )} ( | , ) ( | )

y

X X X Zx y r t x x y r t x f x t y dxR y     

1 1 1 1
( ,2, ) ( | ) ( | )X Zy y R y t R y  ,                                                                                                 (3.1)                                                                                                

 

where z  shows the addition of scalar   to the elements of vector  , and (0 )
( ) jz

indicates that the  th element of vector     is set to zero  

      In general, we develop a recursive formula to obtain the expected values for other 

inspection intervals 1,..., 2nl x

 :  

( , )
lyG t   

1

10 0

[ ( ,0, ) ( , )] ( )

y
l

l

z m
X

y z

j

x z G t x z r t x 



       

[ ( ,1, ) (0, )] ( ) ( )
l

X Z

y z j jx z G z r t x r z       (0 )
[ ( ,0, ) ( , ( ) )] ( )j

l

X

y zx z G t x z r t x       

 (0 )
[ ( ,1, ) (0, ( ) )] ( ) ( ) ( ) ( | , ) ( | )j

l

X Z j X Z

y z j jx z G z r t x r z q z f x t z f z dxdz       

 

1

10
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y m
Z

y z j j

j

z z G t z z r z 



     

(0 )
[ ( ,2, ) ( , ( ) )] ( )}j

l

Z

y z j jz z G t z z r z      ( ) ( | ) ( | )j X Zq z R z t f z dz 
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1
[ ( ,1, ) (0, )] ( )} ( | , ) ( | )

l l l l l

X X Z

yx y G y r t x f x t y dxR y


    

 

1
[ ( ,2, ) ( , )] ( | ) ( | )

l l l l l l l

X Z

yy y G t y y R y t R y


     .                                                                (3.2)                                                               

 

Since calculating the expected values from the recursive formula is computationally 

intensive, in the next section, we develop a simulation model to obtain the expected costs in 

equation (2.5) and equation (2.6) for a given non-periodic inspection scheme   . 
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3.1. Simulation model to obtain         
   

 

The inputs of the simulation model are an inspection scheme                  
    

    
     and 

    where              and the initial age    of soft-type components  ,         . The 

output of the simulation model is        
  . We also define the age-dependent function 

           
       , which specifies the probability of minimal repair for a component with age 

   .          is the probability of replacement of the component. We assume that    and    are 

given. We generate the first failure times for all components               , given their 

initial ages. The first failure time for component   is obtained from     
  

  
 
  

        

 

  

   , 

in which   is a random variable from a uniform distribution over (0, 1). 

We add an element 1 to the end of vector    to include the last scheduled inspection 

which is always performed at time   to prepare the system for the next cycle. Then, from (1) 

and (2), we obtain    
  for          , which are the time between two consecutive 

scheduled inspections. In the next step, we find the minimum of the first hard failure times and 

compare it with   . From this comparison, we have the following two possible cases: 

Case 1: If    is more than the minimum hard failure’s time, we experience an 

opportunistic inspection within   . We then compare the first failure time for each soft-type 

component   with the minimum hard failure’s time. As a result, the two following cases may 

happen: 

Case 1-1:  If the minimum hard failure’s time is greater than the first failure for soft-type 

component  , then the soft failure is detected at the opportunistic inspection’s time (i.e. hard 

failure’s time). At this time, we minimally repair or replace the soft-type and hard-type 
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components according to      , where   is the age of the component at the failure time. We 

update the variables which are keeping track of the number of minimal repairs, replacements 

and downtime of soft-type component    We then generate the time to the next failure for 

soft-type component  .  

Case 1-2:  If the minimum hard failure’s time is less than the first failure for soft-type 

component  , then at this time, we minimally repair or replace the hard-type component 

according to     , where   is the age of the component at the repair time.  

In both Cases 1-1 and 1-2, we move forward the simulation clock to the minimum hard 

failure’s time, and subtract the minimum hard failure’s time from   , and the first failure times 

of the survived components (soft-type and hard-type). We also generate the time to the next 

failure for the failed hard-type component with the minimum hard failure’s time.  

   Case 2: If    is less than the minimum hard failure’s time, the next inspection time is   . 

We then compare    with the first failure time of each soft-type component  . As the result, 

two possible cases may happen: 

Case 2-1:  If    is greater than the first failure of soft-type component  , the soft failure is 

detected at   . At this time, we minimally repair or replace soft-type component   according to 

    , where    is the age of the component at the failure time. We update the variables which 

are keeping track of the number of minimal repairs, replacements and downtime of soft-type 

component  . We then generate the time to the next failure for the soft-type component.  

Case 2-2:  If the first failure for soft-type component   is greater than   , we just follow 

the steps described below. 
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In both Case 2-1 and Case 2-2, we move forward the simulation clock to    , and reduce 

this time from the first failure times of the survived components (soft-type and hard-type). We 

then use      as the next scheduled inspection interval. 

We follow the steps described above, until the simulation clock reaches  . 

Each simulation run returns the estimates for the expected number of minimal repairs, 

replacements and downtime for each soft-type component  . The average of these estimates 

from multiple simulation runs is   
 
               

 
              and   

 
              We then 

obtain        
   based on equation (2.5). The simulation model should be run for all possible 

inspection schemes   , which are    cases, starting from               and ending to 

          . The minimum        
   among all possible inspection schemes returns the optimal 

inspection scheme        . 

It should be noted that     
  is always  , because even when we have the inspection 

scheme               as the input of the simulation model, we still perform one inspection at 

the end of lifecycle  . Thus, always        

The number of possible inspection schemes is increased significantly by increasing   (i.e. 

   schemes). In the case of large  , checking all possible schemes to find the optimal one is not 

efficient. To find the optimal inspection scheme more efficiently, we embed the simulation 

model described above in a Genetic Algorithm (GA).  
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3.2. Coupling the simulation model and the genetic algorithm (GA) 
 

The genetic algorithm is a heuristic search method, which is applied to the problems with 

large solutions space to find the optimal solution [73, 74]. The algorithm starts with a 

population of candidate solutions (called a generation), and iteratively evaluates the fitness of 

each solution in the generation. The next generation is constructed based on the solutions with 

the best fitness in the previous generation [75, 76].  

For the fitness value of the GA, we use the simulation model described previously. The GA 

randomly selects the initial generation consisting of multiple inspection schemes and evaluates 

each solution’s fitness using the simulation model. Since we need to have multiple simulation 

replications (the replication number in our numerical example is 5,000) to obtain        
   for 

each solution (i.e.   ), we save the value of        
   at the first time it is calculated by the 

simulation model. Thus, if a solution is repeated in the next generations, the simulation model 

just returns its corresponding        
    which had been previously stored. This can save a 

significant amount of time. 

For our problem, to construct a relationship between   (the number of possible 

scheduled inspections) and the population size to be used in the GA, we first obtain the optimal 

inspection scheme for different values of             using only the simulation model (i.e. 

all possible inspection schemes were examined for each  ). We then investigate the 

performance of the GA, to observe for which population size it results in the same optimal 

scheme which is obtained solely by the simulation model. After this investigation, we 

determined that the population size should be approximately                , so the GA can 
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obtain the global optimal solution (with the coefficient of determination        ). The 

results of this investigation are shown in Figure 3.5.  

To stop the GA, we consider the two following criteria: 

1) Fitness tolerance limit and stalls generation number: Fitness tolerance limit should be 

as small as possible to be able to distinguish between two possible solutions. If the fitness 

tolerance limit appears a certain number of times (equal to the stalls generation number), then 

the GA stops automatically.    

2) Maximum number of generations: It should be adequately large, but not larger than 

the maximum number of possible solutions, which is   .   

By coupling the genetic algorithm and the simulation model, we can find the optimal 

inspection scheme much faster while requiring significantly fewer simulation runs.  
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3.3. Flowcharts of the Simulation model and the GA code 
 

StartInitial population generator 

Stop?

End

Estimate the population size  Take the cycle-time from user  

Candidate = 1 

Calculate the expected 

cost of the candidate 

Candidate     population size

Section A

Candidate = Candidate + 1 

Evaluate the candidates 

with stopping conditions 

Select a subset of candidates base on 

pervious generations optimal cost
10%Mutation  

Apply mutation method 

no

yes

no

Return the optimal cost and 

optimal candidate 

yes

correspond scheme

to candidate captured 

yes
no

yes

Save the scheme and correspond 

expected cost in memory   

Use the saved  expected cost 

no

 

Figure 3.1. Genetic algorithm. 
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Start with initial ages ,t ,ѳ,a, b, intensity 

parameters, T, Schemes, and all costs.

Current  time = 0
Generate first failure times for  all soft-

type and hard-type components

Current time < T
Min Hard =minimum of 

hard failure times

Min Hard < Next inspection 

Add Next inspection to the age of all hard-type 

Current time = current time + next inspection

Hard failures time =Hard failures time –next inspection 
Opportunistic 

inspection

yes

Scheduled 

inspection 

Identify the first inspection times from the 

input scheme and call that as Next inspection 

Next inspection = next available inspection on scheme 

Replication number =1

Replication number =Replication number +1

Replicaition number   5000 

yes

Save the total number of minimal repair, 

replacement , and downtime of all soft-type 

components under the replication number  

no

Find the average number of minimal repair, 

replacement , and downtime of all soft-type 

components for 5000 replication 

no

Find the total expected soft-component cost, 

base on the average number of minimal 

repair, replacement , and downtime of all 

soft-component and input cost variable and 

total # of inspection on each scheme.

yes

no

End of simulition 

for a scheme 

Current time = current time + Min Hard 

Figure 3.2. Simulation algorithm for the system with hard-type and soft-type components. 
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Next soft failure

 time<Min Hard

Replacement of 

Soft component

#replacement = # replacement +1

Current age of soft component = 0

Uptime = Uptime + next soft failure time 

Generate the next soft failure time 

Uptime = Uptime + MinHard

Add MinHard to soft-type component current age 

next soft failure time =next soft failure time - MinHard

Opportunistic 

inspection

Check the Soft-type 

component (i) 

yes

yes

 i= i+1

i=1

i    total # soft-type 

components 

yes
no

#minimal repairs = # minimal repairs +1

Add next soft failure  time to the Current age of soft component

Uptime = Uptime + next soft failure time 

Generate the next soft failure time 

Current age of Hard component = 0

Uptime = Uptime + next soft failure time 

Generate the next hard failure time  for failed component

Next inspection = Next inspection –MinHard

Replacement of 

Hard component

Add MinHard to the age of the all hard-type component 

Hard failures time =Hard failures time –MinHard

Generate the next failure time for the component with MinHard

 Next inspection = Next inspection –MinHard

no

yes

no

no

END

START

Figure 3.3. Algorithm for an opportunistic inspection of the system with hard-type and soft-

type components.
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#replacement = # replacement +1

Current age of soft component = 0

Uptime = Uptime + next soft failure time 

Generate the next soft failure time 

#minimal repairs = # minimal repairs +1

Add next soft failure  time to the Current age of soft 

component

Uptime = Uptime + next soft failure time 

Generate the next soft failure time 

Uptime = Uptime + Next inspection

Add Next inspection to soft-type component 

current age 

next soft failure time =next soft failure time—

Next inspection

Next soft failure time 

< Next inspection

Replacement of

 Soft component

Scheduled 

inspection

Check the Soft-type component (i) 

i=1

i    total # soft-type components 

yes

yes

yes

no

 i= i+1

no

no

END

START

Figure 3.4. Algorithm for a scheduled inspection of the system with hard-type and soft-type 

components. 
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3.4. Numerical Example  
 

We consider a multi-component repairable system with the total of eight components. 

The system consists of three hard-type components, and five soft-type components with the 

failures following a NHPP with power law intensity function.   

The probability of minimal repairs for a component of age    is obtained from        

   
    . Minimal repair, replacement, and downtime costs for the soft-type and hard-type 

components are given in Table 3.1.  

 

Table 3.1.  Costs of maintenance and downtime for different components. 

Cost Soft type components Hard type components 
 1 2 3 4 5 1 2 3 

Minimal repair    
   $70 $45 $100 $75 $150 $100 $200 $150 

Replacement  (  
   $200 $150 $300 $450 $280 $240 $450 $600 

Downtime penalty (  
   $300 $350 $400 $250 $300 - - - 

 

The cost of inspection is $200 for each time we inspect the system. The parameters of the 

power law intensity function, and    and    are given in Table 3.2. The data for the numerical 

example is taken from Taghipour et al. [1].  
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Table 3.2. Parameters of the power law intensity function, and the probability function of 

minimal repair for all components. 

 Soft type components Hard type components 
 1 2 3 4 5 1 2 3 

   1.3 1.1 2.1 1.8 1.7 1.5 1.2 1.7 

   (month) 3.5 4.6 6 10 3.6 11 7.2 2.8 

   0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

   0.2317 0.1763 0.1352 0.0811 0.2253 0.06 0.02 0.28 

 

We are interested in finding the optimal non-periodic inspection scheme resulting in the 

minimum total cost incurred over life cycle  . We assume that all components are as-good-as 

new at the beginning of the cycle, so we set the initial ages for all components to zero. We also 

assume that     month is the minimum time unit at which a scheduled inspection can take 

place.  

To obtain the optimal inspection scheme (         ) for different cycle lengths  , we calculate 

       
   from the simulation model for different values of  . In the simulation model, we 

consider 5,000 replications. In Table 3.3, the results of the simulation model are presented, by 

which all the possible inspection schemes for different cycle lengths   are examined. In 

addition, the minimum expected cost, the optimal inspection scheme for each value of   and   

are presented. 
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Table 3.3. Simulation results for different cycle lengths T. 

Cycle 

length 

  (month) 

# of possible 

scheduled 

inspections 

    

# of possible 

inspection 

scheme/s      

Time to 

examine all 

the schemes 

(seconds) 

   
          
   

($) 

Optimal 

scheme         

5 

6 

7 

8 

9 

10 

11 

12 

13 

4 

5 

6 

7 

8 

9 

10 

11 

12 

16 

32 

64 

128 

256 

512 

1024 

2048 

4096 

379 

846 

2,017 

4,831 

10,378 

22,222 

50,388 

95,481 

198,774 

2,027.43 

2,553.35 

3,092.53 

3,648.99 

4,193.31 

4,756.09 

5,287.61 

5,854.56 

6,385.02 

01001 

001001 

0010101 

00010101 

001010101 

0010010101 

00100010101 

001010100101 

0001010010101 

 

For example, the optimal scheme for      is                        , which implies 

that we should inspect the system at the third, fifth, seventh and tenth months. This is a 

reasonable result, since at the beginning of the cycle, the components still are new and do not 

fail often, so we need fewer inspections. Similarly, by the middle of the lifecycle, more 

components have been replaced rather than minimally repaired. Therefore, we have less 

frequent inspections when the components are still new, and have more inspections as the 

components get older or they are subject to more minimal repairs.  

For different values of   and cycle lengths   provided in Table 3.3, we use the genetic 

algorithm to obtain the optimal schemes in shorter time. As the first step, we find the 

population size for the GA which results in the same optimal solutions given in Table 3.3.  In 

other words, we determine what population size makes the integration of the GA and 
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simulation model valid (i.e. provides the global optimal inspection policy). The conditions and 

criteria for running the genetic algorithm are presented in Table 3.4.  

 

Table 3.4. The conditions and criteria for running the genetic algorithm. 

Conditions and criteria Numerical value Description  

Simulation replication for each 

scheme  

5000 The simulation runs 5,000 times for 

each scheme 

Population size                  Depends on   

Maximum generation number  50 The GA stops after 50 generations  

Stall generation limit  20 If the tolerance fitness function 

appears 20 times in a row, the GA stops 

Tolerance of fitness function     The difference between two 

consecutive fitness values 

 

 

The results of the GA are shown in Table 3.5.  

       

Table 3.5. Minimum required population size for different cycle lengths T. 

Cycle length   (month) # of possible Scheduled inspection     Population size  

5 

6 

7 

                       8 

9 

10 

11 

12 

4 

5 

6 

7 

8 

9 

10 

11 

6 

10 

12 

20 

24 

25 

32 

50 

 

We determine a power relationship between   and the population size in the GA (Figure. 

3.5).  
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Figure 3.5. Minimum number of required population size vs. the number of possible scheduled 

inspections n. 

 

The GA starts with                  as the initial population size (which depends on  ),  

and generates random inspection schemes in the population and calculates the total expected 

cost for each of them using (5) and the simulation model. Then, the GA generates the second 

generation of population and obtains the total expected costs for them. Some of the individuals 

(schemes) may appear at different generations. In this case, the simulation algorithm uses the 

existent results for those individuals instead of obtaining their expected total costs again, which 

helps significantly decrease the execution time. 

In Table 3.6, the results of the GA for different values of    and   are presented. For cycle 

length     , the population size is derived from the power equation that we obtained in 

Figure. 3.5. For other cycle lengths, the population sizes are taken from Table 3.5. 
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Table 3.6. The GA’s results for different cycle lengths T. 

Cycle length 

  (month) 

Population 

size  

Actual # 

schemes  

checked by 

the GA 

Total time 

of running 

the GA 

(second) 

   
          
   

($) 

Optimal scheme 

        

5 6 8 11 2,027.43 01001 

6 

7 

8 

9 

10 

11 

12 

13 

10 

12 

20 

24 

25 

32 

50 

51 

16 

24 

35 

69 

79 

107 

121 

214 

244 

642 

1359 

2953 

3737 

4348 

5828 

12943 

2,553.35 

3,092.53 

3,648.99 

4,193.31 

4,756.09 

5,287.61 

5,854.56 

6,385.02 

001001 

0010101 

00010101 

001010101 

0010010101 

00100010101 

001010100101 

0001010010101 

 

To compare the performance of the GA coupled with the simulation model with the case 

of using only the simulation model (i.e. examining all possible inspection schemes), we consider 

the case of      and       and compare the optimal results as well as the total running 

time from the simulation model solely with the integration of the GA and simulation model. The 

results are presented in Table 3.7. 

 

Table 3.7. The results from the integration of the GA and the simulation model, and the 

simulation model solely. 

 Simulation model solely Integration of the GA and 

simulation model   

Total running time  

# of inspection schemes examined 

95,481 sec 

2048 

6,727 sec 

355 
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As it is shown in Table 3.7, the optimal cost, and the optimal scheme obtained from the 

simulation model solely, and the integration of the GA and simulation model are identical. The 

optimal cost of $5,854.56 is obtained for both methods. It should be noted that identical result 

is obtained if the population size in the GA is selected correctly. A too small population size may 

not result in the global optimal policy. The population size for our model depends on the 

number of possible inspections, which has been previously discussed. The genetic algorithm 

uses only 7.05% of the time required to run all the possible schemes. Moreover, instead of 

running the simulation for all possible inspection schemes (2,048 possibilities), the genetic 

algorithm can obtain the result by only checking 355 different schemes, which is just 17.3 % of 

the total possible inspection schemes. It is clearly shown that the GA reduces the number of 

inspection schemes that must be evaluated for obtaining the optimal scheme. In both methods, 

we should inspect the system at month third, fifth, seventh, and tenth.  

Figure 3.6, presents the average tolerance between the individuals. The GA stops when 

the average tolerance between the individuals is less than    . The distance between the 

expected costs of the best and worst inspection schemes in each generations decreases over 

time. The GA obtains the optimal solution after 12 generations. 
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Figure 3.6. The fitness value for the best and the worst inspection schemes at each generation 

of the GA. 

 

Figure 3.7. The best and average expected costs obtained by the GA at each generation. 
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    Figure 3.7, shows the best and the average    
          
   for each population at each 

generation. The GA is getting closer to the optimal solution, and the average expected costs of 

a generation is approaching the best fitness value in the generation, as the number of 

generation increases. 
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3.5. Sensitivity Analysis 
 

We conduct the sensitivity analysis of our model to investigate how the optimal solution 

varies by changing the inputs parameters. For the system of hard-type and soft-type 

components, our different cases are considered, in which, some of the input parameters, i.e. 

the shape parameter, downtime penalty cost or inspection cost have been changed from the 

base parameters given in Table 3.1 and  Table 3.2. The four cases (A to D) are presented in 

Table 3.8. In Case A, the downtime penalty cost of each component and the system inspection 

cost have been increased by $100. After these changes, the optimal inspection scheme 

(000010010101) with the expected cost of $7754.52 is obtained. Increasing the inspection cost 

results in fewer scheduled inspections as the optimal policy (3 inspections vs. 4 inspections in 

the numerical example given in 3.4). Moreover, since the components have now higher 

downtime penalty cost, they should be inspected every other month starting from month 8, 

when they are more likely to fail. In Case B, the shape parameter and the downtime penalty 

cost of each soft-type component have been increased by 1 and $100, respectively, and the 

inspection cost has been decreased by $50. This case results in the optimal scheme 

(001111111111), which implies that the system needs to be inspected every month starting 

from month 3, because the components are failing more frequently with a higher downtime 

penalty cost. In addition, the inspection cost is lower which justifies monthly inspection of the 

system. In Case C, there is no change in the downtime penalty cost of the components, but the 

inspection cost and the shape parameters are increased by 1 and $50, respectively. The optimal 

result of (000000100101) is obtained for this case. Comparing to the optimal scheme of the 
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numerical example in 3.4, i.e. (001010100101), the third and fifth inspections are eliminated in 

Case C due to higher inspection cost despite an increase in the shape parameters. Case D is 

identical to Case C, but the inspection cost is $30 higher in Case D. The optimal scheme 

(000000100011) is obtained for this case, which means the second inspection should be 

performed in month 11, although the total number of scheduled inspections is identical to Case 

C. 

Table 3.8. Changes in the parameters of the system of hard-type and soft-type components. 

Case   Downtime 

penalty (  
   

Scheduled Inspection 

Cost $ 

   
          
   ($) Optimal scheme        

A --- + 100 + 100 7734.52 000010010101 

B + 1 + 100 + 100 6613.85 001111111111 

C + 1 --- --- 6440.14 000000100101 

D + 1 --- --- 6480.46 000000100011 
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Chapter 4 – A k-out-of-m System 

4.1. Simulation algorithm for a k-out-of-m system 

Assume all   components of a k-out-of-m system follow a      with a power law 

intensity function, and the hazard rate of a component is      
 

 
 
 

 
 
   

, where   is the age 

of the component. The parameters of the power law      scheduled inspection time, and   are 

all known. We assume the system starts with   new components whose initial ages are zero. 

Moreover, we define the age-dependent function              for the simulation model 

which specifies the probability of minimal repair for a component with age  , and        is 

the probability of replacement. We assume that   and   are given. Thus, the inputs of the 

simulation model are                            and  , and            for all components, 

and the output of the simulation is        
  . To obtain the optimal inspection interval, we 

execute the simulation model for different inspection schemes and obtain their total expected 

costs. The optimal inspection scheme for the system is the one with the minimum total 

expected cost for the system. 

The simulation model generates the first failure times for all components. We then find 

the minimum failure time of all components, and compare it with the next inspection interval. If 

the minimum failure time is less than the next inspection interval, the first failure occurs within 

the inspection interval. We bring forward the simulation clock to the first failure time, add 1 to 

the number of failures in the inspection interval, and deduct the minimum failure time from all 
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the survived components. Once more, the minimum failure time is found and compared with 

the next inspection interval. We follow the same steps as described above. 

If the total number of failures in a scheduled inspection interval is less than      , all 

the failed components are rectified at the scheduled inspection time, and their downtimes from 

the failure moment to the inspection time are measured and added to the total downtime. The 

total number of failures in the next inspection interval is set to zero, and the next failure times 

are generated for the rectified components. The period between the last failure time and the 

inspection time is then deducted from the failure times of all the survived components, and the 

simulation clock is brought forward to the inspection time. 

If the total number of failures in a scheduled inspection interval reaches        the 

system fails and all the failures are detected and rectified. Thus, the total number of minimal 

repairs and replacements are updated accordingly, the current number of failures in the 

inspection interval is set to zero, and the next failure times are generated for the rectified 

components. The            failure time is then deducted from the survived components’ 

failure times, and the simulation clock is brought forward to the            failure time. 

Until the simulation clock reaches   , the same steps as described above are followed. 

Similarly to the system discussed in Chapter 3, to find the optimal non-periodic inspection 

scheme for a k-out-of-m system more efficiently, we integrate the simulation model proposed 

here with the genetic algorithm. 
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4.2. Flowcharts of the Simulation model for a k-out-of-m system   
 

Current time =< T

MinTime < Next inspection 

failureNo=m-k+1

failureNo=failureNo+1

Scheduled 

inspection 

failureNo = 0

Opportunistic 

inspection

no

System failure = System failure +1

yes

Current time = Current time +  MinTime

Current time = Current time +  Next inspection 

Current  time = 0 Generate first failure times for  components
Identify the first inspection times from the 

input scheme and call that as Next inspection 

Replication number =1

Replication number =Replication number +1

Replicaition number   5000 

yes

Save the total number of minimal repair, 

replacement , and downtime of all  

components under the replication number  

Start with initial ages ,t ,ѳ,a, b, intensity 

parameters, T, Schemes, k, m, and all costs.

no
MinTime =minimum failure times 

of componants
yes

For all components

Uptime = Uptime + MinTime

current ages = current  ages + MinTime

Current time = Current time +  MinTime

Next inspection = next inspection—MinTime

no

Set temperory large number for the failure 

time of component with MinTime 

Find the average number of minimal repair, 

replacement , and downtime of components 

for 5000 replication 

Find the total expected cost, base on the 

average number of minimal repair, 

replacement , and downtime of all 

component and input cost variable and total 

# of inspection on each scheme.

End of simulition 

for a scheme 

no

yes

Figure 4.1. Simulation algorithm for a k-out-of-m system. 
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Opportunistic 

inspection

Check the component (i) 

i=1

i    total #  components yes

Next failure of 

component (i)

 <Next inspection

Replacement 

#replacement = # replacement +1

Current age of component = 0

Uptime = Uptime + Next inspection 

Generate the next failure time 

#minimal repairs = # minimal repairs +1

Uptime = Uptime + Next inspection 

current ages = current  ages + Next inspection 

  Generate the next failure time 

current ages = current  ages + Next inspection

Uptime = Uptime + Next inspection

Next failure time = Next failure time -Next inspection

 i= i+1 

no

yes

no

yes

ENDno

Figure 4.2. Algorithm for the inspection at a system failure for the k-out-of-m system. 
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Check the component (i) 

i=1

i    total #  components noyes

Next failure of 

component (i)

 <Min Time

Replacement 

#replacement = # replacement +1

Current age of component = 0

Uptime = Uptime + MinTime

Generate the next failure time 

#minimal repairs = # minimal repairs +1

current ages = current  ages + MinTime

Uptime = Uptime + MinTime

Generate the next  failure time  

current ages = current  ages + MinTime

Uptime = Uptime + MinTime

 Next failure time = Next failure time -MinTime

 i= i+1 

yes

no

yes

no

END

Scheduled 

inspection 

 

Figure 4.3. Algorithm for a scheduled inspection of the k-out-of-m system. 
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4.3. Numerical Example  
 

We consider a k-out-of-m repairable system with the total of five identical components. 

We consider the failures of all components on this system also follow a      with the 

following power law intensity function.   

The probability of minimal repairs for all components of age   is calculated from 

         . The parameters of the power law process and parameters   and  , minimal 

repair, replacement, and downtime costs for the components are  given in Table 4.1. 

The cost of each scheduled inspection is $300, and the cost of each system failure 

including the inspection is $800. 

 

Table 4.1. Parameters of the power law intensity function, and the probability of minimal 

repair, and required costs. 

Minimal repair 
     

Replacement       Downtime 
penalty      

        

$70 $210 $200 1.3 3.5 0.9 0.2317 

 

We are interested in finding the optimal non-periodic inspection scheme that results in 

the minimum total cost incurred over the lifecycle   for the k-out-of-m system. Similarly to the 

pervious system, we assume that at the beginning of the cycle all components are as-good-as 

new, so we set their initial ages to zero. We also assume that the minimum time unit at which a 

scheduled inspection can take place is one month. We assume the k-out-of-m system is 3-out-

of-5, which implies the system is up while at least 3 components are up. The system will fail 

when three or more components are failed. 
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To obtain the optimal inspection scheme (         ) for cycle lengths     , we calculate 

       
   from the simulation model with 5,000 replications. We examine all possible inspection 

schemes for cycle length      with simulation model. The minimum expected cost calculated 

is $8,539.17, and its corresponding optimal inspection scheme is                       , which 

implies we should inspect the system at the second, forth, sixth, ninth, and eleventh months.  

The expected number of minimal repairs, replacements, the expected total uptime of all 5 

components, and the expected number of the system failures are given in Table 4.2. 

 

Table 4.2. The results of the simulation model for the k-out-of-m system with cycle length T=12. 

Optimal scheme 010101001011 Expected number of minimal repairs 7.5 
Optimal cost $8,539.17 Expected number of replacements 8.4 
System failure 3.1 Expected total uptime 50.0 

 

Over lifecycle length     , we expect to have approximately 3 system failures, and five 

scheduled inspections. The system failure more likely will happen around month seven, and this 

is the reason why we do not have a scheduled inspection at this time, and instead we will have 

an opportunistic inspection. We also expect to have 7.5 minimal repairs, and 8.4 replacements 

to be performed for the failed components. This implies that in total we should have 16 

component failures. The total expected uptime for this example is 50 months, which shows the 

components were up about 83.33% of the time. The optimal scheme (010101001011) results in 

the minimum total expected cost of the system.  

To obtain the results mentioned above, we have to run the simulation model for all 

possible schemes for       which is 2,048 different schemes. Similarly to the previous model, 
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we use the genetic algorithm to obtain the optimal inspection scheme in shorter time. First, we 

derive the population size for the GA from the power equation obtained in Figure 3.5. In the 

case of      and     , the population size is 50. 

The optimal cost and the optimal inspection scheme obtained from the simulation model 

solely, and the integration of the GA and simulation model are exactly the same. Instead of 

running the simulation model for all possible inspection schemes (i.e. 2,048 possibilities), the 

genetic algorithm obtains the result by checking only 280 different schemes, which is just 13.7 

% of the total possible inspection schemes. It is clearly shown that the GA reduces the number 

of inspection schemes that must be evaluated for obtaining the optimal scheme. 

Figure 4.4 shows the average tolerance between the individuals. The GA stops when the 

average tolerance between the individuals is less than    . The distance between the expected 

costs of the best and worst inspection schemes in each generations decreases over time. The 

GA obtains the optimal solution after 18 generations. 
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Figure 4.4. The fitness value for the best and the worst inspection schemes at each generation 

of the GA for the 3-out-of-5 system. 

 

Figure 4.5 presents the best and the average    
          
   for each population at each 

generation. The GA is getting closer to the optimal solution, and the average expected costs of 

a generation is approaching the best fitness value in the generation, as the number of 

generation increases. 
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Figure 4.5. The best and average expected costs obtained by the GA at each generation for the 

3-out-of-5 system. 
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4.4. Sensitivity analysis 
 

For the k-out-of-m system, we also conduct sensitivity analyses on  , downtime and 

inspection costs to investigate the changes in the optimal inspection scheme. Similarly, four 

different cases are considered here (Table 4.3) in Case E,   and downtime cost have been 

increased by 1 and $100, respectively, which results in (001111111111) as the optimal scheme 

due to higher number of failures and the components downtime. In Case F,   and downtime 

penalty cost have been increased by 1 and $200, respectively, but the inspection cost has been 

decreased by $80, which suggests more inspections to be done compared to Case E. In Case G, 

an increase of   by 2.2 and decrease of downtime penalty cost by $200 are considered. The 

optimal inspection scheme for this case is (000110110011), which suggests the inspections 

should be done less frequently around the mid-lifecycle of the system. In Case H, an increase of 

  and inspection cost by 2.2 and $50 are considered, respectively. The optimal scheme is 

(000101101011) in this case, which suggests no inspection in the first 3 months when the 

system is still new and inspection is more costly (compared to the inspection cost in the 

numerical example given in 4.2), but more inspections in the mid-life of the system when the 

components are more likely to be found failed. 
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Table 4.3. Changes in the parameters of the k-out-of-m system. 

Case   Downtime 

penalty (  
   

Scheduled Inspection 

Cost $ 
   

          
   ($) Optimal scheme        

E + 1 + 100 --- 10400.2 001111111111 

F + 1 + 200 - 80 10407.7 011111111111 

G + 2.2 - 200 --- 10520.9 000110110011 

H + 2.2 --- + 50 10557.5 000101101011 
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Chapter 5 – Conclusions and Future Work 

 

In this research, we first consider a multi-component system with soft-type and hard-type 

components and introduce a model to determine the optimal non-periodic inspection scheme 

for the system over a finite planning horizon. We then develop a model to find the optimal non-

periodic inspection interval for a k-out-of-m system. We assume that the failures of the 

components for both systems follow a non-homogenous Poisson process (NHPP). 

In the first system, the failures of hard-type components are detected and fixed 

instantaneously; however, the failures of soft-type components are only detected at 

opportunistic or at scheduled inspections. An opportunistic inspection occurs at a hard failure’s 

time, at which the failed hard-type component and all other soft-type components are 

inspected. Soft failures do not stop the functioning of the system, but they may affect the 

performance of the system, so for the downtime of the soft-type components a penalty cost is 

incurred. Hard-type components do not have downtime, because they are detected and fixed 

immediately after a failure. 

The proposed model considers minimal repair and replacement of a soft-type and a hard-

type component as repair actions. Moreover, it assumes that at a scheduled inspection only 

soft-type components are inspected for possible soft failures. We develop a simulation model 

to calculate the total expected cost of each possible inspection scheme, and then combine the 

simulation model with the GA to efficiently find the optimal scheme. 

For a k-out-of-m system, we assume that the system remains operational if the number of 

failed components is less than m −   + 1 in an inspection interval, and it fails, otherwise. The 
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system is inspected according to a non-periodic inspection scheme to detect the failed 

components. At a system failure, all the failed components are detected and rectified. We 

develop and use a simulation model to find the optimal non-periodic inspection scheme for the 

system to overcome the mathematical complexities of an analytical solution for the problem. 

In summary, less frequent inspections are required when the components are still new, 

and the system should be inspected more often as the components get older. Non-periodic 

inspection is more efficient and practical when the inspection of a system is challenging or 

costly. For examples, underground mining equipment such as scooptrams, scissor lifts, and low 

profile trucks are not easily assessable for inspection. For these systems, non-periodic 

inspection policy is more practical and cost-effective since it eliminates unnecessary inspections 

when the system is relatively new. On the other hand, periodic inspection is more practical for 

organizations, such as hospitals, which are dealing with many different devices. 

Another conclusion of this research is the integration of the simulation and the GA which 

significantly reduces the execution time for this kind of problem. The models proposed in this 

thesis can be extended to a more interesting and complicated case, where the combination of 

soft failures can be converted to a hard failure, if they left undetected. The optimal 

maintenance decisions can also be considered, in which we should also decide which 

components should be replaced or repaired if they fail. Our proposed models can also be 

extended for a load-sharing system [14, 16]. Another extension of the work is to compare the 

performance of other heuristic search algorithms, such as the simulated annealing with the GA.  

The joint optimization of a non-periodic inspection and inventory [69, 70] could be also an 

extension of this study.   
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Appendix A 

A.1 Genetic algorithm code for the hard-soft system  
 

function [Out1,Out2,Out3]=RunGA() 

%***************** 

function TotalCost = 

SimulationNonPeriodic(InspectionScheme,TotalTime,Tau,SoftParams,HardParams,InspectionCo

st) 

  

    function [Out1,Out2]=OneSimulationRun() 

     

        NextFailuresSoft=zeros(1,SoftCompNo); 

        CurrentAgesSoft=zeros(1,SoftCompNo); 

        NextFailuresHard=zeros(1,HardCompNo); 

        CurrentAgesHard=zeros(1,HardCompNo); 

        OutSoft=zeros(SoftCompNo,3);    

        OutHard=zeros(HardCompNo,2);    

  

        for i=1:SoftCompNo; 

             

            z= random('uniform',0,1); 

            

NextFailuresSoft(i)=SoftParams(i,2)*power(power(CurrentAgesSoft(i)/SoftParams(i,2),SoftPara

ms(i,1))-log(z),1/SoftParams(i,1))-CurrentAgesSoft(i); 

            i=i+1; 

         

        end;     

         

        for i=1:HardCompNo; 
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            z= random('uniform',0,1); 

            

NextFailuresHard(i)=HardParams(i,2)*power(power(CurrentAgesHard(i)/HardParams(i,2),HardP

arams(i,1))-log(z),1/HardParams(i,1))-CurrentAgesHard(i); 

            i=i+1; 

  

        end;   

  

        CurrentTime=0; 

        InspectSchemeTemp=InspectionScheme; 

        [NextInspect,NextInspectIdx]=max(InspectSchemeTemp);   

        NextInspection=NextInspectIdx*Tau*NextInspect; 

  

        while (CurrentTime < TotalTime) && (NextInspection>0) 

            [MinHard,MinIdx]=min(NextFailuresHard);    

     

            while MinHard < NextInspection 

        

                for i=1:SoftCompNo; 

           

                    if NextFailuresSoft(i) < MinHard 

                  

                        OutSoft(i,3)=OutSoft(i,3)+NextFailuresSoft(i); 

                        CurrentAgesSoft(i)=CurrentAgesSoft(i)+NextFailuresSoft(i); 

                        rf=SoftParams(i,3)*exp(-SoftParams(i,4)*CurrentAgesSoft(i)); 

                        repairz= random('uniform',0,1); 

                  

                        if repairz <= rf  % minimal repair 
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                            OutSoft(i,1)=OutSoft(i,1)+1;    

  

                        else  % replacement 

                     

                            OutSoft(i,2)=OutSoft(i,2)+1; 

                            CurrentAgesSoft(i)=0; 

                     

                        end     

                  

                        

NextFailuresSoft(i)=GenerateNextFailure(SoftParams(i,1),SoftParams(i,2),CurrentAgesSoft(i)); 

                 

                    else 

                         

                        OutSoft(i,3)=OutSoft(i,3)+MinHard; 

                        CurrentAgesSoft(i)=CurrentAgesSoft(i)+MinHard; 

                        NextFailuresSoft(i)=NextFailuresSoft(i)-MinHard; 

                     

                    end 

                     

                end 

                 

                CurrentTime=CurrentTime+MinHard; 

                CurrentAgesHard=CurrentAgesHard+MinHard;  

                rf=HardParams(MinIdx,3)*exp(-HardParams(MinIdx,4)*CurrentAgesHard(MinIdx)); 

                repairz= random('uniform',0,1); 

                        

                if repairz <= rf  % minimal repair 
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                    OutHard(MinIdx,1)=OutHard(MinIdx,1)+1;    

                    CurrentAgesHard(MinIdx)=CurrentAgesHard(MinIdx)+MinHard; 

                 

                else  % replacement 

                     

                    OutHard(MinIdx,2)=OutHard(MinIdx,2)+1; 

                    CurrentAgesHard(MinIdx)=0; 

        

                end 

                 

                

NextfailureofHardfailed=GenerateNextFailure(HardParams(MinIdx,1),HardParams(MinIdx,2),Cu

rrentAgesHard(MinIdx)); 

                NextFailuresHard=NextFailuresHard-MinHard; 

                NextFailuresHard(MinIdx)=NextfailureofHardfailed; 

                NextInspection=NextInspection-MinHard; 

                [MinHard,MinIdx]=min(NextFailuresHard); 

     

            end 

             

             

            for i=1:SoftCompNo; 

         

                if NextFailuresSoft(i) < NextInspection 

             

                    CurrentAgesSoft(i)=CurrentAgesSoft(i)+NextFailuresSoft(i); 

                    rf=SoftParams(i,3)*exp(-SoftParams(i,4)*CurrentAgesSoft(i)); 

                    repairz= random('uniform',0,1);             
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                    OutSoft(i,3)=OutSoft(i,3)+NextFailuresSoft(i); 

             

                    if repairz <= rf  % minimal repair 

                

                        OutSoft(i,1)=OutSoft(i,1)+1;    

                        CurrentAgesSoft(i)=CurrentAgesSoft(i)+NextFailuresSoft(i); 

           

                    else  % replacement 

                 

                        OutSoft(i,2)=OutSoft(i,2)+1; 

                        CurrentAgesSoft(i)=0; 

           

                    end 

                     

                    

NextFailuresSoft(i)=GenerateNextFailure(SoftParams(i,1),SoftParams(i,2),CurrentAgesSoft(i)); 

        

                else 

                     

                    OutSoft(i,3)=OutSoft(i,3)+NextInspection; 

                    CurrentAgesSoft(i)=CurrentAgesSoft(i)+NextInspection; 

                    NextFailuresSoft(i)=NextFailuresSoft(i)-NextInspection; 

        

                end 

                 

            end 

             

            CurrentAgesHard=CurrentAgesHard+NextInspection; 

            CurrentTime=CurrentTime+NextInspection; 
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            NextFailuresHard=NextFailuresHard-NextInspection; 

            InspectSchemeTemp(NextInspectIdx)=0; 

            PrevInspection=NextInspectIdx*Tau; 

            [NextInspect,NextInspectIdx]=max(InspectSchemeTemp);  

     

            if NextInspectIdx*Tau*NextInspect > 0 

             

                NextInspection=NextInspectIdx*Tau-PrevInspection; 

                ss=length(InspectionScheme); 

             

                if NextInspectIdx==length(InspectionScheme) 

                     

                    NextInspection=TotalTime-PrevInspection;  

             

                end;  

     

            else 

                 

                NextInspection=0; 

     

            end;     

   

        end 

         

        Out1=OutSoft; 

        Out2=OutHard;    

    

    end 
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    function nextfailure=GenerateNextFailure(beta,eta,CurrentAge) 

    

        z= random('uniform',0,1); 

        nextfailure=eta*power(power(CurrentAge/eta,beta)-log(z),1/beta)-CurrentAge; 

  

    end 

         

    InspectionScheme(length(InspectionScheme)+1)=1; 

    InspectionSchemeString=''; 

  

    for i=1:length(InspectionScheme); 

     

        InspectionSchemeString=strcat(InspectionSchemeString,num2str(InspectionScheme(i))); 

  

    end;     

  

    FoundInspection=0; 

  

    if ~isempty(SavedCosts > 0) 

     

        FoundInspection=find(ismember(SavedPolicies,InspectionSchemeString)); 

  

    end;     

  

    if FoundInspection > 0 

      

        disp(SavedCosts(FoundInspection)); 

        disp(SavedPolicies(FoundInspection)); 

        OptPolicy=InspectionScheme; 
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        TotalCost=SavedCosts(FoundInspection); 

  

    else 

         

        SoftCompNo=size(SoftParams,1); 

        HardCompNo=size(HardParams,1); 

        SimOutSoft=zeros(SoftCompNo,3); 

        SimOutHard=zeros(HardCompNo,2); 

        SimulationRuns=10; 

        MinimalMatrix=zeros(SimulationRuns,SoftCompNo); 

        ReplacementMatrix=zeros(SimulationRuns,SoftCompNo); 

        UpMatrix=zeros(SimulationRuns,SoftCompNo); 

        MinimalMatrixHard=zeros(SimulationRuns,HardCompNo); 

        ReplacementMatrixHard=zeros(SimulationRuns,HardCompNo); 

        s = RandStream('mt19937ar','Seed',0); 

        RandStream.setGlobalStream(s); 

  

        for iteration=1:SimulationRuns; 

     

            [out1,out2]=OneSimulationRun(); 

            MinimalMatrix(iteration,:)=out1(:,1)'; 

            ReplacementMatrix(iteration,:)=out1(:,2)'; 

            UpMatrix(iteration,:)=out1(:,3)'; 

            SimOutSoft=SimOutSoft+out1; 

            MinimalMatrixHard(iteration,:)=out2(:,1)'; 

            ReplacementMatrixHard(iteration,:)=out2(:,2)'; 

            SimOutHard=SimOutHard+out2; 

  

        end; 
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        for i=1:SoftCompNo; 

         

            AvgSTDMinimals(i,1)=mean(MinimalMatrix(:,i)); 

            AvgSTDMinimals(i,2)=std(MinimalMatrix(:,i)); 

            AvgSTDMinimals(i,3)=std(MinimalMatrix(:,i))/sqrt(SimulationRuns); 

            AvgSTDReplacement(i,1)=mean(ReplacementMatrix(:,i)); 

            AvgSTDReplacement(i,2)=std(ReplacementMatrix(:,i)); 

            AvgSTDReplacement(i,3)=std(ReplacementMatrix(:,i))/sqrt(SimulationRuns); 

            AvgSTDUp(i,1)=mean(UpMatrix(:,i)); 

            AvgSTDUp(i,2)=std(UpMatrix(:,i)); 

            AvgSTDUp(i,3)=std(UpMatrix(:,i))/sqrt(SimulationRuns); 

     

        end;     

  

        for i=1:HardCompNo; 

         

            AvgSTDMinimalsHard(i,1)=mean(MinimalMatrixHard(:,i)); 

            AvgSTDMinimalsHard(i,2)=std(MinimalMatrixHard(:,i)); 

            AvgSTDMinimalsHard(i,3)=std(MinimalMatrixHard(:,i))/sqrt(SimulationRuns); 

            AvgSTDReplacementHard(i,1)=mean(ReplacementMatrixHard(:,i)); 

            AvgSTDReplacementHard(i,2)=std(ReplacementMatrixHard(:,i)); 

            AvgSTDReplacementHard(i,3)=std(ReplacementMatrixHard(:,i))/sqrt(SimulationRuns); 

     

        end;     

  

        SimOutSoft=SimOutSoft/SimulationRuns; 

        Out1=AvgSTDMinimals; 

        Out2=AvgSTDReplacement; 
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        Out3=AvgSTDUp; 

        Out4=AvgSTDMinimalsHard; 

        Out5=AvgSTDReplacementHard; 

        CountInspections = sum(sum(InspectionScheme));  

        TotalCost=0; 

         

        for i=1:SoftCompNo; 

     

            

TotalCost=TotalCost+AvgSTDMinimals(i,1)*SoftParams(i,5)+AvgSTDReplacement(i,1)*SoftPara

ms(i,6)+SoftParams(i,7)*(TotalTime-AvgSTDUp(i,1)); 

     

        end;     

  

        TotalCost=TotalCost+InspectionCost*CountInspections+2850; 

        OptPolicy=InspectionScheme; 

        SavedPoliciesInx=SavedPoliciesInx+1; 

        InspectionSchemeString=''; 

        

        for i=1:length(InspectionScheme); 

         

            InspectionSchemeString=strcat(InspectionSchemeString,num2str(InspectionScheme(i))); 

        

        end;  

        

        SavedPolicies{SavedPoliciesInx}=InspectionSchemeString; 

        SavedCosts(SavedPoliciesInx)=TotalCost; 

   

    end 



68 

 

     

end 

  

%***************** 

  

TotalTime=12; 

Tau=1; 

CI=280; 

Data = xlsread('c:\Data\Yassin\excel\SoftComponents.xls'); 

RecordsNo=numel(Data(:,2)); 

rowindx=0; 

  

while (rowindx < RecordsNo) 

  

    rowindx=rowindx+1; 

    SoftParams(rowindx,1)=Data(rowindx,1); % beta % 

    SoftParams(rowindx,2)=Data(rowindx,2); % eta % 

    SoftParams(rowindx,3)=Data(rowindx,3);  

    SoftParams(rowindx,4)=Data(rowindx,4);   

    SoftParams(rowindx,5)=Data(rowindx,5);  % cost of minimal repair% 

    SoftParams(rowindx,6)=Data(rowindx,6); % cost of replacement% 

    SoftParams(rowindx,7)=Data(rowindx,7);% cost of downtime% 

     

end 

  

SoftCompNo=rowindx; 

Data = xlsread('c:\Data\Yassin\excel\HardComponents.xls'); 

RecordsNo=numel(Data(:,2)); 

rowindx=0; 
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while (rowindx < RecordsNo) 

  

    rowindx=rowindx+1; 

    HardParams(rowindx,1)=Data(rowindx,1); 

    HardParams(rowindx,2)=Data(rowindx,2); 

    HardParams(rowindx,3)=Data(rowindx,3);  

    HardParams(rowindx,4)=Data(rowindx,4);  

    HardParams(rowindx,5)=Data(rowindx,5); % cost of minimal repair%  

    HardParams(rowindx,6)=Data(rowindx,6); % cost of replacement%  

     

end 

  

HardCompNo=rowindx; 

  

if rem(TotalTime,Tau)==0 

  

    MaxInspections=TotalTime/Tau-1; 

     

else 

     

    MaxInspections=floor(TotalTime/Tau); 

     

end;     

  

global SavedPolicies;  

global SavedCosts; 

global SavedPoliciesInx; 

SavedPoliciesInx=0; 
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Policies=zeros(1,MaxInspections);  

LowerBounds=zeros(1,MaxInspections); 

UpperBounds=ones(1,MaxInspections); 

IntegerVars=cumsum(ones(1,MaxInspections)); 

FitnessFunction = @(Policies) 

SimulationNonPeriodic(Policies,TotalTime,Tau,SoftParams,HardParams,CI); 

opts = gaoptimset('PlotFcns',{@gaplotbestf,@gaplotrange}); 

opts = gaoptimset(opts,'PopulationSize',150); 

opts = gaoptimset(opts,'Generations',50,'StallGenLimit', 15); 

opts = gaoptimset (opts, 'EliteCount' , 1 ); 

opts = gaoptimset(opts,'TolFun', 1e-5); 

global OptPolicy; 

[OptimalPolicy,MinCost] = 

ga(FitnessFunction,MaxInspections,[],[],[],[],LowerBounds,UpperBounds,[],IntegerVars,opts); 

disp(OptPolicy); 

disp(OptimalPolicy); 

disp(MinCost); 

disp(SavedPoliciesInx); 

end 
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A.2 Genetic algorithm code for the k-out-of-m system 
 

function [Out1 ,Out2,Out3,out4]=RunknGA() 

%***************** 

function TotalCost = 

SimulationNonPeriodic(k,n,InspectionScheme,TotalTime,Tau,CompParams,InspectionCost) 

     

    function [Out1]=OneSimulationRun() 

         

        NextFailuresSoft=zeros(1,CompNo); 

        CurrentAgesSoft=zeros(1,CompNo); 

        OutSoft=zeros(CompNo,3);    

         

        for i=1:CompNo; 

         

            z= random('uniform',0,1); 

            

NextFailures(i)=CompParams(i,2)*power(power(CurrentAgesSoft(i)/CompParams(i,2),CompPar

ams(i,1))-log(z),1/CompParams(i,1))-CurrentAgesSoft(i); 

            i=i+1; 

         

        end;     

         

        CurrentTime=0; 

        InspectSchemeTemp=InspectionScheme; 

        [NextInspect,NextInspectIdx]=max(InspectSchemeTemp);   

        NextInspection=NextInspectIdx*Tau*NextInspect; 

        OpportunisticInspectionNo=0; 

        failureNo=0; 
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        while (CurrentTime < TotalTime) && (NextInspection>0)   

         

            [MinCompFailure,MinIdx]=min(NextFailures);      

         

            while (MinCompFailure ~= 10000) && (MinCompFailure < NextInspection) 

                failureNo=failureNo+1; 

             

                if failureNo >= n-k+1 

             

                    failureNo=0; 

                    OpportunisticInspectionNo=OpportunisticInspectionNo+1; 

                 

                    for i=1:CompNo; 

                     

                        if i== MinIdx   

                     

                            OutComp(i,3)=OutComp(i,3)+MinCompFailure; 

                            CurrentAgesSoft(i)=CurrentAgesSoft(i)+MinCompFailure; 

                            rf=CompParams(i,3)*exp(-CompParams(i,4)*CurrentAgesSoft(i)); 

                            repairz= random('uniform',0,1); 

                         

                            if repairz <= rf  % minimal repair 

                             

                                OutComp(i,1)=OutComp(i,1)+1;    

                             

                            else  % replacement 

                             

                                OutComp(i,2)=OutComp(i,2)+1; 

                                CurrentAgesComp(i)=0; 
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                            end 

                             

                            

NextFailures(i)=GenerateNextFailure(CompParams(i,1),CompParams(i,2),CurrentAgesComp(i)); 

                         

                        else 

                             

                            if NextFailures(i) ~= 10000 

                                 

                                OutComp(i,3)=OutComp(i,3)+MinCompFailure; 

                                CurrentAgesComp(i)=CurrentAgesComp(i)+MinCompFailure; 

                                NextFailures(i)=NextFailures(i)-MinCompFailure; 

                             

                            else 

                                 

                                rf=CompParams(i,3)*exp(-CompParams(i,4)*CurrentAgesComp(i)); 

                                repairz= random('uniform',0,1); 

                                 

                                if repairz <= rf  % minimal repair 

                                 

                                    OutComp(i,1)=OutComp(i,1)+1;    

                                 

                                else  % replacement 

                                 

                                    OutComp(i,2)=OutComp(i,2)+1; 

                                    CurrentAgesComp(i)=0; 

                                 

                                end 
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NextFailures(i)=GenerateNextFailure(CompParams(i,1),CompParams(i,2),CurrentAgesComp(i)); 

 end 

 end; 

 end; 

 else 

 for i=1:CompNo; 

 if i== MinIdx 

 OutComp(i,3)=OutComp(i,3)+MinCompFailure; 

 CurrentAgesComp(i)=CurrentAgesComp(i)+MinCompFailure; 

 NextFailures(i)=10000; 

 else 

 if NextFailures(i) ~= 10000 

 OutComp(i,3)=OutComp(i,3)+MinCompFailure; 

 CurrentAgesComp(i)=CurrentAgesComp(i)+MinCompFailure; 

 NextFailures(i)=NextFailures(i)-MinCompFailure; 

 end 
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                        end; 

                     

                    end;     

                

                end;      

                 

                CurrentTime=CurrentTime+MinCompFailure;  

                NextInspection=NextInspection-MinCompFailure;   

                [MinCompFailure,MinIdx]=min(NextFailures);  

             

            end;    

             

            for i=1:CompNo; 

             

                if NextFailures(i) ~= 10000  

                 

                    OutComp(i,3)=OutComp(i,3)+NextInspection; 

                    CurrentAgesComp(i)=CurrentAgesComp(i)+NextInspection; 

                    NextFailures(i)=NextFailures(i)-NextInspection; 

                 

                else 

                     

                    rf=CompParams(i,3)*exp(-CompParams(i,4)*CurrentAgesComp(i)); 

                    repairz= random('uniform',0,1); 

                     

                    if repairz <= rf  % minimal repair 

                     

                        OutComp(i,1)=OutComp(i,1)+1;    
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                    else  % replacement 

                     

                        OutComp(i,2)=OutComp(i,2)+1; 

                        CurrentAgesComp(i)=0; 

                     

                    end 

                     

                    

NextFailures(i)=GenerateNextFailure(CompParams(i,1),CompParams(i,2),CurrentAgesComp(i)); 

                 

                end 

                 

            end; 

             

            failureNo=0; 

            CurrentTime=CurrentTime+NextInspection; 

            InspectSchemeTemp(NextInspectIdx)=0; 

            PrevInspection=NextInspectIdx*Tau; 

            [NextInspect,NextInspectIdx]=max(InspectSchemeTemp);  

             

            if NextInspectIdx*Tau*NextInspect > 0 

             

                NextInspection=NextInspectIdx*Tau-PrevInspection; 

                 

                if NextInspectIdx==length(InspectionScheme) 

                 

                    NextInspection=TotalTime-PrevInspection;  

                

                end;  
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            else 

                 

                NextInspection=0; 

             

            end;     

         

        end;   

         

        Out1=OutComp;         

     

    end 

     

    function nextfailure=GenerateNextFailure(beta,eta,CurrentAge) 

     

        z= random('uniform',0,1); 

        nextfailure=eta*power(power(CurrentAge/eta,beta)-log(z),1/beta)-CurrentAge; 

     

    end 

     

    InspectionScheme(length(InspectionScheme)+1)=1; 

    InspectionSchemeString=''; 

     

    for i=1:length(InspectionScheme); 

     

        InspectionSchemeString=strcat(InspectionSchemeString,num2str(InspectionScheme(i))); 

     

    end;      
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    FoundInspection=0; 

     

    if ~isempty(SavedCosts > 0) 

     

        FoundInspection=find(ismember(SavedPolicies,InspectionSchemeString)); 

     

    end;     

     

    if FoundInspection > 0 

     

        disp(SavedCosts(FoundInspection)); 

        disp(SavedPolicies(FoundInspection)); 

        OptPolicy=InspectionScheme; 

        TotalCost=SavedCosts(FoundInspection); 

     

    else 

         

        CompNo=size(CompParams,1); 

        SimOut=zeros(CompNo,3); 

        TOpportunisticInspectionNo=0;  

        SimulationRuns=10000; 

        MinimalMatrix=zeros(SimulationRuns,CompNo); 

        ReplacementMatrix=zeros(SimulationRuns,CompNo); 

        UpMatrix=zeros(SimulationRuns,CompNo); 

        s = RandStream('mt19937ar','Seed',0); 

        RandStream.setGlobalStream(s); 

         

        for iteration=1:SimulationRuns; 
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            [out1]=OneSimulationRun(); 

            MinimalMatrix(iteration,:)=out1(:,1)'; 

            ReplacementMatrix(iteration,:)=out1(:,2)'; 

            UpMatrix(iteration,:)=out1(:,3)'; 

            SimOut=SimOut+out1; 

            TOpportunisticInspectionNo=OpportunisticInspectionNo+TOpportunisticInspectionNo;  

         

        end; 

         

        for i=1:CompNo; 

         

            AvgSTDMinimals(i,1)=mean(MinimalMatrix(:,i)); 

            AvgSTDMinimals(i,2)=std(MinimalMatrix(:,i)); 

            AvgSTDMinimals(i,3)=std(MinimalMatrix(:,i))/sqrt(SimulationRuns); 

            AvgSTDReplacement(i,1)=mean(ReplacementMatrix(:,i)); 

            AvgSTDReplacement(i,2)=std(ReplacementMatrix(:,i)); 

            AvgSTDReplacement(i,3)=std(ReplacementMatrix(:,i))/sqrt(SimulationRuns); 

            AvgSTDUp(i,1)=mean(UpMatrix(:,i)); 

            AvgSTDUp(i,2)=std(UpMatrix(:,i)); 

            AvgSTDUp(i,3)=std(UpMatrix(:,i))/sqrt(SimulationRuns); 

         

        end;     

         

        SimOut=SimOut/SimulationRuns; 

        Out1=AvgSTDMinimals; 

        Out2=AvgSTDReplacement; 

        Out3=AvgSTDUp; 

        Minimals=sum(AvgSTDMinimals(:,1)); 

        Replacement=sum(AvgSTDReplacement(:,1)); 
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 Up=sum(AvgSTDUp(:,1)); 

 TOpportunisticInspectionNo=TOpportunisticInspectionNo/SimulationRuns; 

 CountInspections = sum(sum(InspectionScheme));  

 TotalCost=0; 

 for i=1:CompNo; 

TotalCost=TotalCost+AvgSTDMinimals(i,1)*CompParams(i,5)+AvgSTDReplacement(i,1)*CompPa

rams(i,6)+CompParams(i,7)*(TotalTime-AvgSTDUp(i,1)); 

 end; 

TotalCost=TotalCost+InspectionCost*CountInspections+TOpportunisticInspectionNo*800+1000

; 

 OptPolicy=InspectionScheme; 

 SavedPoliciesInx=SavedPoliciesInx+1; 

 InspectionSchemeString=''; 

 for i=1:length(InspectionScheme); 

 InspectionSchemeString=strcat(InspectionSchemeString,num2str(InspectionScheme(i))); 

 end; 

 SavedPolicies{SavedPoliciesInx}=InspectionSchemeString; 

 SavedCosts(SavedPoliciesInx)=TotalCost; 
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    end 

     

end 

  

%***************** 

  

TotalTime=12; 

Tau=1; 

k=3; 

InspectionCost=300; 

  

if rem(TotalTime,Tau)==0 

  

    MaxInspections=TotalTime/Tau-1; 

  

else 

     

    MaxInspections=floor(TotalTime/Tau); 

  

end 

  

Data = xlsread('c:\Data\Yassin\excel\data.xls'); 

RecordsNo=numel(Data(:,2)); 

rowindx=0; 

  

while (rowindx < RecordsNo) 

  

    rowindx=rowindx+1; 

    CompParams(rowindx,1)=Data(rowindx,1); % beta % 
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    CompParams(rowindx,2)=Data(rowindx,2); % eta % 

    CompParams(rowindx,3)=Data(rowindx,3);  

    CompParams(rowindx,4)=Data(rowindx,4);   

    CompParams(rowindx,5)=Data(rowindx,5);  % cost of minimal repair% 

    CompParams(rowindx,6)=Data(rowindx,6); % cost of replacement% 

    CompParams(rowindx,7)=Data(rowindx,7);% cost of downtime% 

  

end 

  

CompNo=rowindx; 

n=CompNo;    

global SavedPolicies;  

global SavedCosts; 

global SavedPoliciesInx; 

SavedPoliciesInx=0; 

Policies=zeros(1,MaxInspections);  

LowerBounds=zeros(1,MaxInspections); 

UpperBounds=ones(1,MaxInspections); 

IntegerVars=cumsum(ones(1,MaxInspections)); 

FitnessFunction = @(Policies) 

SimulationNonPeriodic(k,n,Policies,TotalTime,Tau,CompParams,InspectionCost); 

opts = gaoptimset('PlotFcns',{@gaplotbestf,@gaplotrange}); 

opts = gaoptimset(opts,'PopulationSize',60); 

opts = gaoptimset(opts,'Generations',50,'StallGenLimit', 20); 

opts = gaoptimset (opts, 'EliteCount' , 1 ); 

opts = gaoptimset(opts,'TolFun', 1e-5); 

global OptPolicy; 

[OptimalPolicy,MinCost] = 

ga(FitnessFunction,MaxInspections,[],[],[],[],LowerBounds,UpperBounds,[],IntegerVars,opts); 
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disp(OptPolicy); 

disp(OptimalPolicy); 

disp(MinCost); 

disp(SavedPoliciesInx); 

 end 
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Glossary 

NHPP Non-Homogeneous Poisson Process 

SF Failure of Soft-Type Component 

HF Failure of Hard-Type Component 

CF Failure of Component (k-out-of-m) 

SF System Failure (k-out-of-m) 

OP Opportunistic Inspection 

PI Potential Scheduled Inspection 

  Inspection Cost 

  
 Cost of Minimal Repairs 

  
 Cost of Replacement 

  
 Downtime Penalty Cost of a Failed Component 

   Penalty Cost for System Failure 

  
 

Expected Number of Minimal Repair of Component j over Cycle [0,  ] 

  
 

Expected Number of Replacement of Component j over Cycle [0,  ] 

  
 

Expected Down Time of Component j over Cycle [0,  ] 

         
    Total Expected Cost Incurred over Cycle [0,  ] for Scheme    

   
          
   Total Expected Cost Incurred over Cycle [0,  ] for Optimal Scheme 

  Age of Component (Soft-Type, k-out-of-m )  

     Age Vector of Hard-Type Component 
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   System’s Life-Cycle 

   Minimum Possible Unit Time  

    Maximum Number of Hard-Type Components in the System 

    Maximum Number of Soft-Type Components in the System 

   Maximum Number of Components in the System (k-out-of-m) 

   Minimum Number of Components in the System Must be Up (k-out-of-m)  

   Maximum Number of Potential Scheduled Inspection in Scheme  

    Value of Potential Scheduled Inspection (Binary 0 or 1) 

  
   Number of Scheduled Inspection in Scheme at any Time   

    
   Number of Scheduled Inspection at End of Life-Cycle 

   
   Interval between Two Consecutive Scheduled Inspections 

        Interval of End of the Cycle Inspection  

      Scheme, Binary Vector of Potential Scheduled Inspection  

         Optimal Scheme  

  ,     Component Parameters 

  ,     Parameters of Power Law Intensity Function 

      Probability of Minimal Repair (Soft-Type Components) 

       Probability of Replacement (Soft-Type Components) 

  
   Probability of Minimal Repair (Hard-Type Components) 

   
   Probability of Replacement (Hard-Type Components) 

    Possible Events in One Inspection Interval 

       Intensity Function of Soft-Type Components 
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         Intensity Function of Hard-Type Components 

      Intensity Function of the NHPP (k-out-of-m) 

        Intensity Function of Hard-Type Subsystem 

        Probability Density Failure Function of the Soft-Type Component  

        Probability Density Failure Function of the Hard-Type Subsystem 

        Reliability Function of the Soft-Type Component  

        Reliability Function of the Hard-Type Subsystem 

       Probability of the Failure of the Hard-Type Component  

 

 

 

 

 

 

  

 




