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A BLOCK CIPHER DESIGN USING
RECURRENT NEURAL NETWORKS

ABSTRACT

As security has become a necessary component for business applications in many
areas, research of new cryptography technology is desirable, especially the highly
secure and efficient data encryption technique. A new block cipher designed
based on recurrent neural networks is proposed for first time in the project.
Recurrent neural networks have dynamics characteristics and can express
functions of time. By introducing recurrent neural networks to cryptography, the
proposed block cipher releases the constraint on the length of secret key. The
inherited high by parallel processing capability of neural networks can also
improve the encryption performance greatly. The recurrent neural networks make
the block cipher strong to resist different cryptanalysis attacks and to provide data
integrity and authentication service at the same time. The design of the proposed
block cipher is presented and analyzed in detail. Simulation results provide
illustrations. The proposed block cipher is flexible to be implemented either in

software or in hardware for efficient data encryption purpose.
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Chapter 1

INTRODUCTION

1. Introduction
1.1. Motivation

As security has become a necessary component for business applications in many
areas, research of new cryptography technology is valuable. The requirement of
the performance and security of data encryption keeps on increasing so that new

data encryption technology is always desirable.

The research of new cryptography technology is under pressure. The
~ development of both hardware and software of computer has entered an
accelerative period. Consequently, new cryptanalysis techniques keep on coming
up and the cost for cryptanalysis attack decreases dramatically. Previous
cryptography techniques find themselves no longer secure. How to increase the
security level without degrading the performance is an imperative problem that
needs to be solved. Innovative technique to improve the performance and

security of the data encryption will have very important practical significance.
1.2. Scenarios

There are several scenarios where a new cryptography technique needs to be
considered. The one most important is that strong ctyptography must ensure the
confidentiality of the data. To protect the privacy of the information, confidential

is the basic setvice of ctyptography technique.
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Besides confidentiality, data authentication is another factor. Nowadays, there are
more and more denial of service attacks happening. One important reason is that
many systems have no authentication mechanism. The identity of the other side
of network cannot be identified so that the system cannot ensure the service

request coming from legal customer.

Although the development of communication technology can help to remove the
noise of the data communication, it is still possible for the data to be changed
during transit by purpose. Cryptography technique needs to provide the data
integrity service to assure that no one can change messages without being

detected. Data integrity is the third scenatio to consider.

All of the above aspects need to be considered together so that the cryptography
technique can have the capability to resist different types of cryptanalysis attack.

1.3. Summary

In summary, cryptography research can bring up new tools to ensure the
confidentiality, authentication and integrity of the data. New cryptography
- technique has to find an innovative method to increase the level of security

without significant performance degrading of the system.

In the project, a review of cryptography and neural network will uncover that
neural network as a parallel computing technique can be used for possible
cryptography usages. Next my new block cipher design will be described in
detailed followed by modeling and analysis of the design. The simulation
expetiments are also presented to providc illustrations. Finally, in the conclusion
section, it will show that the project contributes to present a new block cipher

design for high secure and high performance data encryption.



Chapter 2

PRELIMINARIES

2. Preliminaries v

2.1. Cryptography

2.1.1.Cryptography Ovetrview

Cryptography is the art and science to protect a secret message from anyone who
does not know the secret key. As the importance of network security increases,
ctyptography becomes a critical technique for the secure communication.
Cryptology includes two aspects, ctyptography and ctyptanalysis. Cryptology is
. the study of cryptography and ctyptanalysis. These two aspects are so close to

each other just as the two surfaces of one coin.

Cryptography has a long and fascinating history. In the past, cryptography was
used mainly to secure the communications of the militaty and royalty. The
widespread use of computers has expanded the need for secure communications
around the globe. DES, the Data Encryption Standard, is the most well known
cryptographic mechanism in history. It remains the standard method for securing
electronic commerce for many financial institutions around the world. A lot of
cryptanalysis has been emphasized on this algorithm. The most striking
development in the history of cryptography is Diffie and Hellman published
“New Directions in Cryptography” in 1976 [16]. It introduced the revolutionary
concept of public-key cryptography and also provided a new and ingenious



method for key exchange, the secutity of which is based on the discrete logarithm
problem[16]. The public key cryptography is usually used for key distribution and
authentication. The key length of public key ctyptography is much larger than
symmetrical key cryptography so that the public key cryptography is not suitable
to encrypt actual data. Table 2.1 is a comparison of the key length between
symmetric and pui)]ic key [1].

Table 2.1 Symmetric and Public key lengths with similar resistances to Brute-

force attacks
Symmetric Key Length _ Public Key Length
56 bits _ 384 bits
64 bits ‘ 512 bits
80 bits 768 bits
112 bits 1792 Bits
128 bits 2304 bits

In this report, emphasis will be placed on those aspects that are most practical
and applied, the principles, techniques, and algorithms of interest in symméu:ical
key cryptographic practice, especially the block cipher design.

2.1.2.Symmetric-key Encryption

Consider an encryption scheme consisting of the sets of encryption and

dectyption transformations{E, :e€ K} and {D,:d e K}, where K is the key

4
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space. The encryption scheme is said to be symmetric-key if for each associated
encryption/decryption key pair (e, d), it is easy to determine d knowing only e,
and to determine e from d. Fig. 2.1 is the diagram illustrating the symmetrical-
key encryption scheme whete the secure channel may set up the technique such

as public-key encryption scheme for key exchange.

PRI NOREPPERL

.. Fig. 2.1 Symmetric-key Encryption Scheme

TR AR s

e Adversary
N \4 s
: s-key | e SECURE CHANNEL

: +e ; ‘. K
oo || cemoryption |1 e ¥ ___ .|| decryption

| Ee(m)=c | | UnsccUredcHaEL 7] Dy(c) = m:

- plaintext | . destination

SR source - : - . ¥ - -

There are two classes of symmetric-key encryption schemes: block ciphers and
stream ciphers. A block cipher is an encryption scheme that breaks up the

plaintext messages to be transmitted into strings (called blocks) of a fixed length,

and encrypts one block at a time. Most well-known symmetric-key encryption
techniques are block ciphers. Stream ciphers can be thought as the block ciphers
with block length equal to one.

Two important classes of block ciphers are substitution ciphers and transposition
ciphers. Product ciphers combine these two classes. Substitution ciphers are

block ciphers that replace symbols (or groups of symbols) by other symbols or

5
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groups of symbols. Transposition cipher simply permutes the symbols in a block.
Simple substitution and transposition ciphers individually do not provide a very
' high level of security. However, by combining these transformations it is possible
to obtain strong ciphers. The composition of a substitution and a transposition
~ will be called a round. A substitution in a round is said to add confusion to the
encryption process whereas a transposition is said to add diffusion. Most modern

block cipher systems apply a number of rounds to enctypt plaintext.

Diffusion can eliminate the statistical relationships between the ciphertext and the
underlying plaintext. ‘

Confusion can break the relationship between the ciphertext and the secret
encryption key to prevent the cryptanalyst from using the ciphertext and the -
known cipher method to figure out the encryption key. Confusion usually means
the cryptographer introduces a complex nonlinear substitution so that the
cryptanalyst cannot figure out the key but only some ciphertext patterns. An
example of confusion is the well-known S-boxes of the DES algorithm.

The Polybius cipher from ancient Greece is an example for the diffusion.

Suppose the shared secret is the following Table 2.2

Table 2.2 Shared Secret Key
1 2 3 4 5
1 A B C D E
2 F G H 1/] K
3 L M N - P
4 Q R S T U
5 \4 W X zZ




For example, the message “STEPHEN” will be encrypted as “43 44 15 35
23 15 33” (the blanks between numbers are not included in the actual
ciphertext). This step is the substitution. Since the most frequent character “E”
also has the most frequent appearance “15” in ciphertext, the statistical
relationship between the ciphertext and the plaintext is not totally hidden. Based
on the result of substitution, a step of transposition is introduced to add diffusion

to the ciphertext as following Fig. 2.2.

Split the ciphertext “43441535231533” as
Fig. 2.2 Ciphertext Split

4 4 1 3 2 1. 3

3 4 5 5 3 5 3

The result of the transposition will be “44132133455353”. Now the relationship
between statistical pattern of the ciphertext and the plaintext is broken. The

transformation can have the effect of diffusion.

Besides security, data integrity and authentication are also necessaty for secure
communication. Cipherte#t will usually be attached with a message authentication
code (MAC) for that purpose. MAC is a key-dependent ohe-way hash function.
MAC:s can be used to authenticate cipher text between users énd to determine
whether the ciphertext has been altered or replaced. Most of symmetric-key
algorithms prepare MAC by encrypting the hash value of ciphertext. When a

block cipher wotks in CBC (Cipher Block Chaining) modes as Fig. 2.3, where P,

are the plaintext blocks and C; are the cipher text blocks, a simplest way to make




MAC is to use the last encrypted block to be the MAC, and this is referred to as
“CBC-MAC”.

Fig. 2.3 CBC Mode

Co. _ G

Dk
Co G B S F
~CBC Encfypt_ioh L - CBC Decryption

In the following section, we will investigate two important block cipher designs in

detail.
2.1.3.Block Cipher DES and Rijndael

DES[17] and Rijndael[18] are the previous and current encryption standard
selected by National Institute of Standards and Technology (NIST). They ate the
most important symmetric-key block ciphers. The review of them will uncover

some design principles of the block cipher design.

DES is a block cipher encrypting data in 64-bit blocks with 56-bit key length.
Suppose that DES operates on a 64 bits block of plaintext M =m,...m,,, the



input key is £;...k,, and the ciphertext block will be C =c;...c,,, the algorithm can

be described as following:

1) An initial permutation( IP ) to break the block into a left half and a right
half (L, R,) according to Table 2.3;

Table 2.3 Initial Permutation

P
5850423426 18] 10
60 | 52 |44 [ 36 | 28 |20 [ 12
6254 [46 | 38 | 30 | 22 | 14
64 [ 56 |48 |40 | 32|24 | 16
57 | 49 | 41 |33 | 25 | 17| 9.
5951 |43 |35 |27 |19 11
61 |53 [45 37 |29 21| 13
63 | 55 | 47 [39 |31 |23 | 15

N nf ] =] oo o] |

After initial permutation, Ljwill be mgmis,...m;and R will be my,m,y...m,.

2) Computing 16 round keys K, from 64-bit input key K;
At first, the 64-bit input key K is reduced to a 56-bit key K2 that is divided into

two 28-bit halves ( C,, D, ) according to Table 2.4.

Table 2.4 Transfer 64-bit key to 56-bit key

57149 141 |:33 125117 | 9
- 1] 58150 (42]341]126] 18
10.]-2].59 | 51 | 43 ] 35| 27
19111 ] 3]60]52]441 36
63 |55 4713931123115
716254146 ]38]30]22
14] 6161 |53]45]37]29
20|13 S5)28]20) 12 4




After this step, the C, will be K,K,,...K;s and D, will be K,Kys...K, .

Next v,, 1<i<16is introduced as following v, =1 for i€ {l,2,9,16},
otherwise v,=2. For ifrom 1 to 16, C, «(C,_, <<V,), D, < (D_, <<vV,),

where << denotes left circulatly shift.

After the left circularly shift, the 48-bit round keys K| can be selected according

to Table 2.5. This step is called a compression permutation (CP).

Table 2.5 Compression Permutation

MMl ]24T 1 5]
3128 |15 6|21 |10
2| 1012 4|26 ] 8
16| 727|213 2
a1 | 52 | 311 37 | 47 [ 55
30 | 40 | 51 | 45 | 33 | 48
44 | 49 |39 | 56 | 34 | 53
46 | 42 | 50 | 36 | 29 | 32

3) For i from 1 to 16, computing L, and R, as following:

L=R,,
R=L,®f(R_ K)
At the final round (16" round), exchange block L and R.

The function fcan be denoted as f(R_,K,)=P(S(E(R_)®K,)) and

explained as following:

At first, R,_, is expending from 32 to 48 bits usiﬁg E according to Table 2.6:

10



Table 2.6 Expend 32-bit key to 48-bit key

B S A R

21 1. 21 3} 41 5
41 51 61 71 8] 9

g opi1ol 112413

121 13]14115])16] 17
16 {171 18 | 19 | 20.] 2]
2012112223124 25
124 125]26]27 28] 29
281291303132 ]

Let T« E(R_), compute T'«T®K,

character strings: (B,,...,B;).

and represent T'as eight G-bit

Next perform the S-Box Substitution S (I"): T? <= (S,(B,),S,(B,)s+-» S5 (By)),

where S,(B,) maps B, =bb,...b, to the 4-bit entry in row 7 and column cof S,

in Table 2.7, where r = 2¢b, + b, and b,b,b b, is the radix-2 representation of c.

11



Table 2.7 S-Box Substitution

row |l . LT column number

v S
BT 1 25| s 3[10] 6] 2] 5[ 9| o 7
7| afj14f 2|13 110 6] 12| 1l 9] 5| 3| 8
1l sffzf 6] 2fmnjj1sy12y 9| 7 3] w0} s| o
8] 2| 4] 9] 1| 7] s]u] 3] 14) w0] of 6| 13

: *Sa
s[1a e[ 1t 3T 4 o 7| 2] 3 12T o S| 10
4l 7|\ 15) 2| 8|wjj12| o] 1| 1w0)| 6| 9| 1| s
7o) af3) tff 51 8| 12 6 9| 3| 2| 15
10 1) 3]15] 4] 2) 11} 6] 7] 12 o] 5] 14| o

Ss3
o1 6] 3TIsT 5[ 1131 12T 7[ n[ 4] 2] 8
0| 9] 3| 4] 6]10ff-2]| 8- a2zl oas) 1
4 ofl sf1s| 3] offir| vf 2f 12]] 5| w0f 14| 7
13] off 6] 9] 8] 7| 4]15] 4] 3} 1} 5] 2] .12

o S1 .
o] [[ 7] 13T 14] 3] o 6] oJ1o]f 1] 2] 8] S[[ u[ 1z] 4] 15
3| sl sl e|ts| ol 3| 4] 7 2| 2ff 1| 10 14 9
2] |10 6| 9 offr2fu|-7p3ff1s| | 3| w4f 5| 2| 8| 4
3] )l3]15] o] 6ff10] 1]13 sL 9 4f s| nf 120 7] 2| 14
: : L . .55 .

OT - 2T12] 4] 1] 7JOTU[ 6] 8] 5[ 3] 3] 13] o[ 14 9
1] ll14fnn] 2 al 713 1|l s|-of 15| 0] 3] 9| 8| 6
2] || 4] 2 1|uffrola| 7| 8fj15s] o| 12| sl 6| 3| of 14
3] || 11| 8|12 1]14) 2f13)| 6]15 9l 10| 4| 5| 3

v . : 5
O] [T12T T[I0[ IS 9 2] 6] 8 o[ 13[ 3] 4[] 13 L
1| 1we|15] 4 2| 7]12] 9] 5| 6| 1] 13| 4] o] u| 3| 8
2] ||-o|1a)is| 5| 2| 82| 37| o] 4| o) 1] 3] 1| 6
34 4] 3] 2|12 o) sjisjweffuji4] 1| 7| 6] o] 8| 13
OI T a7 2Tia][i15[ o[ 813 3[12] 9 7J[ S| o] 6] 1
py w3 ofu] 7| 4] o] t{w]14] 3| 5| 12f| 2| 15] 8| 6
iR (BN iz 3| 7f4alftof1s] 6| 8| of 5| 9f 2
3]l s3] 8 1] 4jw] 7l-9] 5] o] 15)] 14| 2| 3] 12

-~ , Sz
OYN3T-2] & a[f e[ t5[ | 1[J1o] o 3 @[ 5[ of 12] 7
Ayl vjasf3]| sffro] 3] 7| 4|12 5| 6| njf of | 9| 2
R 7] al |l o214 2 of 6 tof w3Jf 15| 3| 5| 8
B 21|14l 7] 4]0 8p13ff1sf12] 9| off 3] s| 6 11

The final step of function f is the P-Box permutation P (7?) according to Table
2.8, which maps each bit of the 32-bit output of the S-box substitution to an
output position. |

12



Tablc‘.?_..'8 P-Box Permutation
=

16 -7 ]20] 21
2911228 17
115123 26

S| 1831} 10
21 8124114
321273 9
19 1.13.] 30 6
221 1 41 25

4) After the above 16 rounds operations, the final permutation (IP™) is
performed as the inverse of the initial permutation (IP) according to table

2.9.
Table 2.9 Final Permutation
Pt .
40| 8148 | 16| 56 |24 ] 64| 32
3917147 |15 155123 163 ] 31
138|646 |14 54 ]|22]62] 30
371514511353 121]61]) 29
36| 4|44 1121 52]120] 60| 28
353|143 11 ]51]19]59] 27
13412142 ]10]50]18]358] 26
3311 41]|-9149 |17 ] 57 25

The 64-bit ciphertext block will be C <~ IP™ (R L) .

The DES dectyption uses the same function as encryption with the same key but
using the key in the reversed order. The effect of P will be cancelled out by
IP so that (R, L) will be the output of /P in decryption. Next the round 16
of encryption procedure will be cancelled out by the round 1 in decryption as

following:

The round 1 in dectyption will be:

13



L'=R/=Ls=R;
Rx' =Lo' 69f(Ro"Kll) =R ® f(Lis, Kis) = Ls ® f(R5, Ki6)® f(Ris, Ki) = Lis
Thus the round 1 dectyption yields (Rjs,L;s). This is the inverse of round 16 in

encryption. The remaining 15 rounds will be cancelled out likewise one by one in

reversed order.

From the above review of DES, it shows that the S-box performs the
substitutions step for DES and is the only nonlinear operation in DES. This step
determines the security of DES. To resistant the linear and differential attack,
triple DES was proposed and effectively extending the DES key from 56 bits to
112 bits. The alternative of DES, Rijndael, releases this type of constraint on key

length.

Rijndael is a byte-otiented block cipher which symmetric and parallel structure is
derived from the square block cipher. In October 2000, Rijndael is announced as
Advance Enctyption Standard (AES). Rijndael supports variable key length: 128-
bit, 192-bit and 256-bit and variable block length: 128-bit, 192-bit and 256-bit.

The round transformation of Rijndael contains four different transformations

and can be expressed in the following pseudo C notation:

Round(State,RoundKey)
{

ByteSub(State);
ShiftRow(State);
MixColumn(State);

AddRoundKey(State,RoundKey);
}

14



The final round of the cipher is slightly different. It is defined by:

FinalRound(State,RoundKey)

ByteSub(State) ;
ShiftRow(State) ;

AddRoundKey(State,RoundKey);

Each step of the round function has its own particular character:
e ByteSub is nonlinear
e ShiftRow is inter-column diffusion
e MixColumn is inter-byte difﬁlsion within columns

e Round key addition is a simple EXOR operation of the round key to the

intermediate state.

From the above review of two important block ciphers we can see, although
different block cipher designs has different round operations, most of them
petforms a nonlinear transformation to provide the security protection, such as
the S-box of DES. The nonlinear transformation can make the cryptanalysis
much more difficult when it is combined with other linear permutation

operations. After the following review of neural networks, we can find out that
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neural networks and its learning procedure has this type of nonlinear dynamic

feature and can possibly be constructed for ctyptography purpose.
2.2. Neural networks
2.2.1.Neural networks Structure

Artificial neural networks, commonly referred to as “neural networks”, have been
motivated from its inception by the recognition that the brain computes in an
entitely different way from the conventional digital computer. The brain contains
billions of neurons with massive interconnections between them. Similarly, a
neural networks is a massively parallel-distributed processor that is made up of

neurons with interconnections between them.

A neuron is an information-processing unit of neural networks. A neuron k can

be modeled by writing the following pair of equations:

v, = i WX, (1.1)
J=1

and

Ve =0) 1.2
where X,,X,,...,X, are the input signals; Wy, W;,,..., Wy, are the synaptic weights

of neuron k; v, is the linear combiner output; @(e)is the activation function;

and y, is the output signal of the neuron.
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» Fig. 2.4¢N¢gr9n\‘M9del

v

Ve

" A neuron model can be illustrated as Fig. 2.4. The threshold 6, of neuron
k here is represented by a synaptic link with an input signal fixed at a value of —1.
Typically, the network consists of a set of sensory units that constitute the input
layer, one or more hidden layers and an output layer of neurons. A fully

connected feedforward Multiple Perceptrons networks (MLPs) with one hidden
layer and output layer can be illustrated as Fig. 2.5.
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The neurons of one or more hidden layers of MLPs are not part of the input or
output of the network. These hidden neurons enable the network to learn
complex tasks by extracting progressively more meaningful features from the
input patterns (vectors). This procedure is referred to as the learning procedure of

neural networks.

2.2.2.Error-cotrection Learning

Suppose that the learning procedure of neural networks selects (2.2.1) as the cost

function to minimize.
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J=-;—Z e | @2.1)

Let d, denote desired response for neuron k, y,denote the actual response of

this neuron when an input vector xis presented to the neuron. An error signal is
defined as the difference between the desited response and the actual response:

& =d,— ) : , (22.2)

The purpose of error-correction learning is to minimize the cost function (2.2.1)
by changing the weight values ¥ of neural networks so as to make the network
to approach the desired response.

If the steepest descent method is applied for this minimization procedure, we can
adjust the weight values as following:

W™ =W +nP | 2.2.3)

where 77 is the learning rate, which determines the length of the step,
P represents a search direction, which is determined by the gradient of cost
function value J evaluated at the old weight value #°“:

aJ
P:-W 224

According to the method of steepest descent, the adjustment of weight
Aw should be in a direction opposite to the gradient vector so that we have:

oJ
Aw=-n—-m- 2.2.5
W= ow 223)

This relationship is illustrated as Fig. 2.6.
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To compute ?for (2.2.5), let us consider a neural networks as Fig. 2.7.
w
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____Fig. 2.7 Neural networks Sample
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According (2.2.5), we set

oJ
AWU = —ﬂ-a"g

Using chain rule, we have

daJ _dJ dv, _dy, oJ v,

dw, v, Ow,  Ov, Oy, oW,

According to (1.1), we have

2.2.6)

@.2.7)

2.2.8)
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" According to (1.2), we have

§)l o
=P ) (229)

where ¢'(vk) is the detivation of @(°).

aJ .
To compute —, there are two cases to consider:
Vi

1) when the neuron £ is in the output layer of the network:

aJ '
—-=~(d =) (2.2.10)
Vi

then (2.2.6) has been solved as following:
Awy; = N9 (v )d, -, )%, - (2.2.11)
2) when the neuron k is not in the output layer of the network:

Suppose the right hand side layer of neuron k is the / th layer, then

& W o, aJ
Yy _ v L =y = 2.2.12
Iy T a_"l ) Zav, (aJ’k ZI:W,,J’,) Z v, i ( )
Then (2.2.6) will be
. oJ
Aw,, =-1¢ (v, )Za—w,kxj (2.2.13)
1 9V,

Now if we introduce &, as following, we can conclude the recursive computation

for the weight values update.
o, 9 ’ (2:2.14)
v,

Then _(2.2;7) can be rewritten:



Aw,, =-10,x, (2.2.15)

According to (2.2.11), when /th layer is the output layer, we can compute
6, directly:

8 == v )d,-y) (2.2.16)
Otherwise, ac{:ording to (2.2.13), calculate the J, recursively as following:

&=9 (7 )Z oWy ' (22.17)

So we back-propagate the sensitivity of etror signal layer by layer according to
(2.2.16) and (2.2.17) and update the weight values according to (2.2.15). This is
the standard back-propagation algorithm for the error-collection learning.

2.2.3.Recurrent Neural networks

In general, a network that has closed loops in its topological structure is
considered a recurrent network. A recurrent network is a network with feedback,
some of its outputs are connected to its inputs. There are many types of recurrent
neural networks that have attracted lots of research such as Hopfield network[19],
Elman network[9], real-time recurrent neural networks[2] etc. Characterized by
the use of nonlinear processing units and utilization of feedback, recurrent neural
networks are nonlinear dynamic systems. Because recurrent netwotks have
feedback paths, they can demonstrate temporal behaviour, that is, both spatial
and temporal patterns can be generated and stored in ‘the network. The use of

feedback connections in the recurrent network makes it less sensitive to noise and

permits it to learn faster.
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2.3. Summary

The review of the cryptography and neural networks uncovers that there are
several similarity between these two different fields. In fact there is research work
to apply neural networks for cryptography purpose recently. Su, S., Lin, A. and
Jui-Cheng Yen [3] propose to use the chaotic output of neural networks to
encrypt signal. Liew Pol Yee and Liyanage C. De Silva [4] propose to use neural
networks to design a block cipher. Their proposed block cipher is based on

complex bit operation.

According to the review, although there are many different cryptography
algorithms, the fundamental px:inciPle of block cipher does not change. The
combination of diffusion and confusion forms the round operation to provide
security for the data. Multiple round operationé tend to perform complex
nonlinear substitution and permutation over the plain text so as to make the
cryptanalysis extraordinary difficult. On the other hand, neural networks are a
nonlinear dynamic machine that expands the expression of input data as a linear
combiner of the inputs to the synapses, and then petform a nonlinear
transformation. While the data is calculated feedforward through the multilayer of
neural networks, it has the similar effect of multiple round operations in block
cipher. That is linear permutation followed by nonlinear transformation. Without
the knowledge of the weight matrix, the analysis of the data based only on the
output will be very difficult. If the learning procedure can be controlled, it is
possible to change neural networks to be an infinite state machine. As a result,
the pattern is revealed but never perfectly repeated and the neural system

becomes a complex system to generate complex variation.
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C/)apter 3

PROPOSED BLOCK CIPHER BY RECURRENT NEURAL NETWORKS

3. Proposed Block Cipher By Recutrent Neural networks
3.1. Block Cipher Design

The proposed block cipher is based on a recurrent multilayer neural networks.

The structure of the block cipher is presented in details as following.

Suppose that Alice and Bob are the users of the communication, both Alice and
Bob will have an identical multilayer perceptron neural networks (MLP) that is
known by public. One example is illustrated as Fig. 3.1.

Fig. 3.1 Block Cipher Structure

SR S R UG gt 2 SRR RN RS ) ” s S % 4 3 Ty 2§ "
AR S KR RS ML R AR SR IGIN S c b2 U AR LR RS RO DOSARTI RS E RO IV S (b ieeat

25



The neural networks is a multilayer neural networks with two constraints:

e The dimension of the input vector, n, is two times of the dimension of the
output vector, m ;

¢ The number of neuron is equal to one in one of the hidden layers and the
output of this neuron is notated as v.

" The weight and bias of the neural networks are initialized to one identical value,

which is also known to public.

Alice and Bob will exchange a secret key S’ by some public key or key exchange
algorithm such as Diffie-Hellman algorithm. There is no constraint of the secret

key length but the secret key S’ must contain three parts of information:

e Input vector X=[xl,x2,...,x,,]r;
e Training target ¥ =[3,, Vypsees V] 5
® A critical value of learning rate self-adaptive procedure .
The first two patts of the secret key S will be used to train the neural networks
for key extension purpose. The learning algorithm for key extension can simply
| adopt the standard back-propagation algorithm ( 2.2.11, 2.2.14, 2.2.15, 2.2.16 and

2.2.17) instead of recurrent learning.
3.1.1. Key Extension

The input vector X and the training target ¥ will be presented to the neural
networks for training. The neural networks will train for the same iterative times,
which will be referred to as “epoch”. The number of epoch is open and it will be
set to be a relatively large number even it will make the neural networks over-
trained. In fact, all of the learning parameters such as learning rate, training
function etc, can be known by public except for secret key S. The purpose of the

training process here is to make the neural networks detect and store or even
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“remember” the features information of the secret key S. After enough training,
the neural networks will initialize itself according to the secret key S'. Now the
feature information of the secret key S'is stored in the synaptic weights of the
hidden layers. Due to the feature of the standard Back-Propagation learning
aigorithm, it is commonly assumed the hidden layers of neural netwotks are
chaotic and unpredictable. This will help to keep the secret key S secret petfectly
by the synaptic weights of the hidden layers. The well-trained neural networks will
keep secret and become the extended secret key for the following encryption and
decryption procedures. The last actual output of the neural networks during the

key extension procedure will be the initial vector for the encryption procedure,

which is notated as M, .

3.1.2. Data Encryption

Basically the encryption procedure petforms three steps:

¢ Cipher text generation;

¢  One epoch training of neural networks;

e Learning rate Self-adaptation.
The one epoch training step keeps on updating the weight matrix of neural
netwotks. This makes the analysis of the weight matrix becomes difficult to
cryptanalyst without the knowledge of initial state of the network.

If the feed-forward operation of the neural networks is notated as function f,
S can be decomposed into two parts f; and f, according to the structure of

the block cipher. As mentioned before, the neural networks must contain one
hidden layer that has only one neuron the output of this neuron is notated as v.
If this hidden neuron is notated as neuron z, the feed-forward operation over

the weight and bias matrix on the left hand side of neuron z (from the input
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layer to neuron z) and the neuron z itself will be function f;. The feed-forward

operation over the weight and bias matrix on the right hand side of neuron

z (from neuron z to output layer) will be function f,. f; will be used for MAC
verification purpose. Both f; and f, will help to decrypt the cipher text and will

be described as followhg section.

3.1.2.1. Cipher text generation

A plaintext will be transformed to vectors M, =[m,,m2,...,m"]r,i=1,2,3,...
according to the dimension of input vectors. The first message vector M, will

combine with the initial vector from key extension procedure M, to build up the

M,| | M
first input vector X =I:M°] . I:Mo] means the two nby 1 vectors M and M,
1 1

concatenate with each other to form another 2nbyl vector X,. X, will present
to the neural networks to produce the intermediary neuron output ¥, in the
hidden layer and the output ¥ of the neural networks. Next error signal E, will
be calculated as E, = M, —Y,. Here the neural networks M, is the target of the
identity mapping. Finally E, and V] will be the first block of the cipher text
C, =V, E}.

3.1.2.2. One epoch training

After the cipher text block is constructed, the neural networks will be trained for

: M,
one epoch with X = M

:l as input vector and M, as the training target.
1

From the second plain text block on, the previous output of the neural networks

Y., will combine next plain text block M, to build up the current input vector
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Y,
X, =[ "']. The above two steps of the encryption procedure will repeat to

i

generate the values V,and Y, and train the neural networks for one epoch..

In summary, the cipher text blocks C, will be constructed as following:

V,=f(X,) (3.1.1)
Y,=£,(%) | (312)
E,=M,-7, ~ CEE)
C,={V,E} (3.1.4)

In fact, the above two-step encryption procedure makes the block cipher working
in CBC mode implicitly as Fig. 3.2.

Fig. 3.2 Implicit CBC Mode
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In 6rder to ensure the security of thé 'block ciph&, the learning rate need to be set
to a large value. The detailed analysis of the learning rate control will be provided
in the following analysis chapter. The following learning rate self-adaptive
algorithm is introduced as a necessary step after each one epoch training to adapt
the learning rate of the block cipher for arbitrary function. ‘
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3.1.2.3. Learning rate self-adaptation

At first the algorithm detects the trend of the learning procedure by monitoring
the mean square error (MSE) performance function, which is the average of the

sum of the square of the error E,. Accordingly, the learning procedure adjusts

the learning rate by a multiplicative-increase gradual-decrease (MIGD) method.

A low-pass filter for the MSE as following will perform the learning trend

detection:

T(k)=yT(k-1)+(1-y)MSE(k) (3.1.5)
Yis a coefficient that is between 0 and 1, for example ¥=0.5.T(k) is the
output of the low-pass filter of MSE at time k and the mmal state 7'(0)is set to

be zero . Let @ be the critical value of T'(k). If MSE*”is the learning stop
condition, the ieaming goal, then:

o> MSE**
(3.1.6)

The learning rate will adapt itself according to following MIGD method:

1) Tk)<a
The condition shows that the learning procedure tends to be convergent to the
learning goal. To avoid the stability of the learning and restore the chaotic
behaviour of the learning procedure, the learning rate is increased aggressively by

A times, for example A=2:

n=A4-n ' (3.1.7)

2) If (T(k) > @) and (T(k)> T(k-1))
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The condition shows that the learning procedure tends to be oscillating. To
maintain the learning rate close to the maximum allowable learning rate and
prevent the learning rate from being broken, the learning rate is decrease
gradually by @ times, for example 8 =0.9:

n=6-7 ’ (3.1.8)
3) If (T'(k)>a)and (T(k)<T(k-1))
The learning rate will keep the same value.

The above self-adaptive procedure can be petformed after each one-epoch
training step in both encryption and decryption procedure. The critical value o
can guarantee the learning procedure will not settle down to stable points. At the
same time, the learning rate self-adaptation helps to maintain the learning rate
close to the maximum allowable learning rate so that the learning trajectory is
closely related to different training data. It will make the learning trajectory
behave more random and the analysis of the learning procedure more difficult

without the knowledge of the initial state of the neural networks.
3.1.3. Data Decryption

The decryption procedure works in similar manner as the encryption procedure. |
When the block cipher is used to decrypt the received cipher text blocks C,, the
neural networks need to perform the identical key extension procedure so that its
weights and bias value will be initialized to be the same state as the encryption
prdcedure. According to the eﬁcrypﬁon procedure, the dectyption procedure will

perform three steps:

e Cipher text decryption;
¢ One epoch training of the neural networks;
e Learning rate Self-adaptation.

These two steps are described as following sections.
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3.1.3.1. Cipher text dectyption

After the block cipher receives cipher text C, ={V}, E,}, the message block can

be restored as following:

L=£40). , ' (319

M, =Y +E, (3.1.10)

3.1.3.2. One epoch training

After the plain text block M, has been restored, the neural networks can be

Y .
trained for one epoch with X, =|: ! ] as input vector and M, as the training

i
target.
The cipher text decryption is illustrated as following Fig. 3.3.

~ Fig. 3.3 Cipher Text Decryption
EASHR AERae o i 2

T A
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3.1.3.3. Learning rate self-adaptation

A learning rate self-adaptation will follow the above one epoch training and it is

the same as it is in the encryption procedure.
3.1.4. MAC Preparation

The final V,of the final block can be the MAC for the whole cipher text. The

MAC verification procedure and reason to use V; as MAC is presented as

following.

After the decryption procedute calculates Y, from V¥, it can produce the M,and

Y, ‘
construct X, = |:All ] again, then he can compute V as following:

i

Vi = f(X)

Next it can compare ¥, with ¥, to verify the data integrity and authentication.

Now suppose cipher text block C;, ={V},E,} has been modified to *C,, then
either E,or ¥, will be changed. Therefore the dectyption will produce *M, from
*C, according to (3.19) and (3.1.10), then the user will construct input vector
*X, and calculate *¥, according to (3.1.1). Because the value of */, and ¥, will

not match each other, the data corruption can be detected.

The following analysis of the block cipher will revisit the block cipher design to
find out how the block cipher can provide different cryptographic services.
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3.2. Block Cipher Analysis

Although the new block cipher can be constructed by a common MLP network,
it works as a real-time recurrent neural networks (RRNN). The encryption and
décryption procedure of the block cipher is the real-time temporal supervised
learning procedure of RRNN.

The new block cipher has at least following advantages by introducing RRNN:
e High performance;
¢ Ensure data integrity and authentication;
° High security.

The detailed analysis of the block cipher is divided into following corresponding

sections.
3.2.1. Performance Improvement

According to the technical review of neural networks structure, a neural network
is a mass parallel computing machine. Different neurons can work independently
and simultaneously. By increasing the dimension of the input vector, the block
cipher can handle large message blocks so as to increase the speed of encryption.
Furthermore the encryption and decryption are performed within one feed-
forward calculation without multiple iterative round operations. Due to this type
of parallel processing capability of neural networks, the block cipher can improve
the performance for encrypting and decrypting tasks greatly. If the block cipher is
implemented by software, it can make use of multiple processes or multiple
threads programming for parallel computing. If it is implemented by hardware,
the parallel computing advantage will be more obvious.
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3.2.2. Data Integrity and Authentication Service

The patterns that the input vector and output vector represent will have two
types of information, spatial and temporal. If the block cipher is expected to
provide MAC for the cipher text, the data integrity relationship between the two
message blocks needs to be detected. In other words, as these two message
blocks will be generated by the block cipher sequentially in time, both spatial and
temporal relationship between input and output data need to be detected.
Comparing to standard neural networks, RRNN and its recurrent learning
algorithm have this type of temporal processing capability. Its related learing
algorithm provides network dynamic properties and makes the network
responsive to time-varying signals. ‘

A sample of the block cipher is illustrated as Fig. 3.4.
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RRNN will have two typ;as of input data, external input x(n)and one-step
delayed output y(n). They will concatenate to each other to form the input
vector u(n) for the RRNN. Let A denote the set of index ifor external input

x,(n) and B denote the set of index i for which y,(n)is the output of a neuron,

the input vector for neuron i,u,(n), can be represented as following:

_|x@m) ified
u(n)= {}»}H ) if ic B (3.2.1)

If neuron iis in the input layer of RRNN, y,_,(n) denotes the output vector of
output layer of RRINN. If neuron iis in one of the hidden layers of RRNN, A set

will be an empty set and y,_,(n) will denote the output vector of the neuron that

is on the left-hand side of i th layer.

The internal neuron activity v,(n)is given by:

v;(n)= Z w;,(n)u,(n) | (322

i€eAUB

Let ¢()denote the nonlinear activation function, the output of the neuron will

be
y,(n+1)=9p(v,(n)) (3.2.3)

The above (3.2.2) and (3.2.3) constitutes the entire feed-forward dynamics of the
netwotk. According to the structure of the block cipher, the plain text will be the

external input x(n) and the error signal will be the second patt of the cipher text:

~ e(m)=x(n)—y(n) (3.24)
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The (3.2.4) can rewrite as following:
e;(n)=x,(n)—y;(n) (3.2.5)

At time 7, the instantaneous sum of squared error is:
15
&(n)= —2-2 e;(n) : (3.2.6)
]

The objective of the learning is to minimize the following cost function, the sum

£(n) over time n:

€iotal = Z g(n) (3.2.7)

n

To apply steepest descent method for the minimization task, the gradient matrix

. of g, with respect to the weight matrix ¥ need to be computed:
9€,,.,
Voo =0 (3.2.8)

In order to learn in real-time, we have to use an instantaneous estimate of the
gradient, the gradient of &£(n) with respect to the weight matrix W, namely,

V, &(n), to approximate the above gradient matrix as following:

aagp(;’) =};Vwe(n) (3.29)

VWgtolaI = Z
n

Now consider the incremental change Aw, (n)made at time 7 for a particular

weight w,(n) . Let 7] denote the learning rate, from (3.2.5) and (3.2.6), we have:
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oe(n) ay,(n)
Aw,(n)= 7] 9w, () = IIZ e,(n)——-awﬂ = (3.2.10)

To obtain M , we use the chain rule:
awji (m)
ay, (n+1) ay, (n+1) ov,(n) _ ov,(n) 3211
Ji ow,;(n) av () I( ) (VI @) awji (n) G210
According to (3.2.2), we have:
v, (n) - o(w,, (n)u,(n))
ow,(n) ow;,(n) .
‘ (3212)

_ du,(r) aw,,(n)
‘;[W’*” aw,(n) " ow,(n) ’(")]

As we know aw"(n) equals 1 only when /= jand k=i, otherwise, it is zero.

ji n)
We also note that
3 0 ified
”'(”) = ayk(n) 3y, (1) ific B (32.13)

M)\, ) ow,(m)

We may combine (3.2.11), (3.2.12)‘ and (3.2.13) to have:

Y, '
ag:f:: ;) ¢(V,(n))|:ZWu( ) yﬂ(( )) ﬂu,(n):| (3.2.14)

Here &, is a Kronecker delta equal to 1 when j =1/ and zero otherwise.
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We may introduce a triply indexed set of variables 72';, as following:

Eo_ dy, (n)
T ——-—awﬂ o (3.2.15)

The equation (3.2.14) can be simplified as:

T (n+1) =@ (v, (n)) [Z Wy (m)7h (n) + K, (n)] (3.2.16)
k

We can assume the initial state of the network at time 7= 01is zero because there

is no function dependence on the synaptic weights

7;(0)=0 : | (3.2.17)
So all the ﬂ';, (n) can be calculated recursively.

Therefore, we can calculate (3.2.10) as:

Aw,(n)=n Z, € (n)”_,u Q)] | (3.218)

Now we can repeat the computation to update weight W, in accordance with

w,(n+)=w,(n)+Aw;(n) (3.219)

According to the above analysis, the block cipher makes use of the forward
dynamics to generate cipher text and MAC. At the same time, the block cipher
keeps on updating the weight matrix by the backward dynamics described by
(3.2.18) and (3.2.19). According to s (3.2.16), (3.2.17), (3.2.18) and (3.2.19), it
shows that the backward dynamics is varying with time so that the learning
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procedure of RRNN has the capability to detect the temporal pattern of the
training data. As a result, the cipher text generated by the learning procedure will
represent both the spatial and temporal pattern of the training data. Every
modification of the cipher text during transmission will affect the following
cipher text block and will reflect different temporal pattetn comparing to the
original training data. So this modification can be detected during the decryption
process. Consequently, the block cipher can prepare MAC to maintain both the
data integrity and authentication if the weight matrix is considered as the secret

extended key.
3.2.3. Security Guarantee

According to the design of the new block cipher, it also can resist different
cryptanalysis attack and provide high security.

At first, the attack based on cipher text analysis is difficult. The cipher text
contains the intermediary output of hidden layer vand the error signal e. v is
the compress image of the plain text and eis the difference between network
output and the plain text. Without the knowledge of the initial weight matrix, he
cannot update the weight matrix recursively along with the leaming procedure.
Since he cannot analyze the backward dynamic of the block cipher, he will loose
hint of the feed-forward dynamic characters of the RRNN. If he has no
knowledge of the weight matrix and the output of neural networks, it is difficult
to obtain the plain text based only on cipher text and the encrypted data get

protected.

It is also infeasible for cryptanalyst to analyse the extended key, the weight matrix
of the neural networks itself, because it is commonly assumed that the weight
distribution of the hidden layefs are chaotic and unpredictable without the
knowledge of the training data, the original secret key. By changing the length of
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secret key and the dimension or the hierarchy of the hidden layers, user can
flexibly adjust the security level. This is another advantage of the proposed block

cipher that it can release the constraint on the secret key length.

Obviously, the encryption and dectyption of the block cipher is relied on the
feed-forward dynamics of RRNN. The encryption procedure can be a nonlinear
mapping function and the cipher text is the nonlinear transform result of the
plain text. If this nonlinear transform function is static, the nonlinear equations
are possible to be solved if the cryptanalyst has large volumes of plain text and its
corresponding cipher text available. So the nonlinear transform function should
be dynamic when it is applied for data encryption. Consequently, the feed-
forward dynamics of RRNN must keep vary with time to provide security
protection of the plain text. As the real-time recurrent learning procedure can
update the weight matrix while the feed-forward procedure is proceeding and this
change of weight is a type of feedback to the network, the learning procedure can
change the feed-forward dynamics of RRNN with the variety of time and help to

generate cipher text.
But there is a potential known-text attack. Consider the following attack.

Let G denote the set of plin text, let Z denote the set of local and global
minimum points and let L denote the largest invariant set in Z. L will contains all
of the possible points at which the solution might converge and the trajectory will
be trapped. Assume L contains only one fixed-point y, or the fixed points are
closed enough to be consider as one point, cryptanalyst will train the block cipher
with the known plain text repeatedly until the block cipher convergent to L. One
possible method for cryptanalyst to achieve this is to insert a large amount of
known plam text before the secret plain text as input. After the block cipher is
stable, all the secret plain text input that belongs to G will convergent to this fixed
point. Although cryptanalyst has no knowledge of the weight matrix and the
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initial state of the block cipher, he can get the convergent point y in L by the
known plain text. Then the cryptané.lyst can restore other following secret plain

text M by the error signale: M=y +e.

It shows that the stability of the neural networks will eventually help cryptanalyst
break the block cipher without the knowledge of the weight matrix. To resist this
attack,- the learning procedure needs to guarantee that it will not become
convergent to the invariant set L after the training of large volume of plain text.
This consideration is directly related to the stability problem of neural networks.

A lot of research has been carried out on the stability problem on nonlinear
dynamical systems. In fact, the RRNN can be modeled as nonlinear dynamical
system. Let us continue the above analysis of the RRNN as following.

We can write the (3.2.2) in another form:

0=—v,(n)+ Z w, (Mo, (m)+1, (3:220)

I, is the bias which weight value is always 1. We observe that (3.2.20) can be the

fixed points of an associated dynamical system and it can transfer to the widely

used additive model:

av,(n)
on

=—v,(n)+zllw,,¢('v,(n))+1, (3.2.21)

As the neural networks can be modeled as additive dynamical model, the stability
theory, known as the direct method of Liapunov, is directly applicable to the
stability analysis of neural networks. The key to apply the direct method of
Liapunov is to find out the Liapunox; function. In general, it is not possible to
construct a Lyapunov function for the recurrent back-propagation algorithm.
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However, the direct method of Liapunov will not help the security analysis of the
block cipher here because the inability to find a suitable Liapunov function does
not prove instability of the system. The existence of a Liapunov function is

sufficient but not necessary condition for stability.
Alternatively, a “local” stability analysis of the network is performed here.

Let the state vector Y (o) represent a fixed point of the recurrent network, the

J th element of Y (o) is defined by
Y;(22) = @(v;(=)) (3.2.22)
V;(c°) is the activation potential of neuron j at time 7 =rco, it can be

V()= w,y,()+1, (3.2.23)

If we perform a local stability analysis on the forward, we can express the state

variable y,(n)as:
y,(n)=y,(x)+Ay,(n) : (3.2.24)

Ay,(n) is a small deviation of the state varable y,(n)from the coordinate

¥,(°). Correspondingly, we have:
v,(n)=v,(=)+Av,(n) (3225

Next, we denote F(v,(n)) to stand for (3.2.21) and we have:
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ov,(n)

o =F(v;(n) | : (3.2.26)
and
FO,m)=-v,(m)+ 2 w,00,m)+1, (3:2.27)

Consider to use the Taylor series expansion of F(v;(n)) to approximate it by

retaining the first two terms in the Taylor series:
Fv,(m)=F(v,(=))+ AAv,(n) = AAv,(n) - (3.2.28)
where the matrix 4 is defined by:

d

A =WF(VJ(H))

VOB

= _Z K, +lew,,.qo'(v,.(°°)) (3.2.29)
==Y (k; —w,0 (v,(==)))

:hZ%

Here k,is a Kronecker delta equal to 1 when j=i and zero otherwise. Lis

defined as
L, =K,—w,@ (v,(=)) A (3.2.30)

According to (3.2.25), (3.2.26), (3.2.30) and the definition of v,(e0), we have the

following linear differential equations:



—Av ,(n) = ZL AV, (n) (3.2.31)

Using matrix notation, we may rewrite (3.2.31) as:

d

> Av(n)=—LAv(n) (3.2.32)
n

Next we consider backward dynamic. According to (3.2.14), (3.2.15) and (3.2.18),

we can rewrite (3.2.18) as following more general form:

() =3 e (), ()= e, ) |
Ow () (3.2.33)
We also have:
a.Vl(n) — aJ’l (n) avl(”)
ow, dv(n) dw,
. [ ow, du,
=@ (v, (n) Z(S‘;‘ul (n)+w, guf:))J
f () (3:2.39)
= () Z(x,,xuyk (n)+w, g:v” )J
=01 K+ Lo, ag*(”)}
The left hand side of (3.2.34) will be:
ayl(”) _Z . a}’k (n) (3.2.35)

Combine (3.2.34) and (3.2.35), we have:
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Z(’fu w0 (v (M) == y*( )—Kw v (m)y,(n) ' (3-2.36)
Wi

Compare to (3.2.29), we can define the elements of the state vector Y(eo) for the

fixed point as:

ZL L )—-Kyw'(v,(w))y,(oo) (3.2.37)

jl

If denote (L™ )y s the kj th element of the inverse matrix L~ ', we have:

(e -1y
35,, )= (1), 0 7, (=), (=) (3238)
so that (3.2.33) will be:
W (o) = ﬂz e,(co)(L" )y @ (v, (=), (=) (32.39)

We introduce z, (o) as following:
z;(=) =D g (=)L), (3.2.40)
1

To avoid the matrix inversion, rewrite (3.2.40) as following:

Y Lz (=)=¢ (3.2.41)

According to (3.2.30), rewrite (3.2.41) as following:



0=-3 Luz=)te
=2 Ky =Wl O =Nz () +e, (3.242)

=—z)()+ ; Wu(”'("k (>))z, (=) +e,

We observe that the solutions of (3.2.42) are indeed the fixed points of an
associated dynamical system defined by: ‘

B oo+ S Ga Dz )+ 6249

The backward propagation (3.2.43) can be expressed as following matrix form:

§EQ’)_ =-I"z(n)+e ‘ k3-2~44)
on

where L is the transpose of L.

From equation (3.2.32) we note that the local stability of the forward propagation
equation depends on the eigenvalues of L. Because L' has the same eigenvalues

of L, we can draw the following conclusion:

The local stability of the forward propagation (3.2.21) is a sufficient condition for
the local stability of the backward propagation (3.2.43), and vice versa[5].

Let us recall that the possible cryptanalysis attack before. If the block cipher will
convergent to an invariant set L that contains fixed point, cryptanalyst will
possible to break the security of the block cipher. According to the conclusion
we just got above, if we can guarantee the backward propagation equation
unstable, we can guarantee the forward propagation equation unstable so that we

can resist the above cryptanalysis attack.
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According to (3.2.39), the instability of the backward propagation equation is
related to both the error signal and the weight matrix. During the recurrent back-
propagation learning procedure, the learning keeps on moving the fixed points
toward the desired values and the Euclidean distance between the fixed point and
the desired pattern is diminished. As a result, the error signals will have smaller
values. That will cause the dynamic of the backward propagation decreased.
According to (3.2.39) and (3.2.40), the stability of the backward propagation will
cause the stability of the weight matrix and will allow the recurrent neural
networks settle down finally. But this type of convergence is not guaranteed for
RRNN because of two reasons. The first reason is that from (3.2.8) to (3.2.9),
we have used an instantaneous estimate of the gradient to approximate the above
gradient curve in order to perform real-time learning so that the learning is not
following the exact curve of the gradient. The other reason is the learning rate 77,
an artificial parameter, is introduced in (3.2.10) to calculate the update of the
weight matrix. Because the learning procedute is not following the true gradient
curve exactly, it will miss the true stable point and large error signals can be
injected into the back-propagation process. If the learning rate is large at the same
time, a near miss may have a dramatic effect on the weight update process and

possibly cause the forward propagation unstable.

Another reason to have to choose large learning rate is to hide the temporal
pattern of the input plain text. According to (3.2.10), the learning rate 77 defines
the time scale over which the weights of the network change. If the learning rate
7 is large, the weight is changing so rapidly that the procedure to minimize the
cost function (3.2.6) is no longer move along the leatning tr:ij.ectory in the weight
space that descends against the gradient vector of the error signal. Because the
weight changes produced by the learning can be viewed as another source of
feedback, large learning rate will make the time-varying change of the weight
dominate the phase state of the network so that the temporal structure of the
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plain text input can be hidden. This near chaotic oscillaton is by purpose

generated here and tends to provide security protection for the data.
3.3. Summary

In this chapter, the design of the new block cipher is desctibed in detail. The
‘analysis of the block cipher illustrates that the new design can provide high
performance, high security data encryption and decryption. At the same time the
block cipher can also ensure the data integrity and authentication with the help of
recurrent neural networks. The learning rate self-adaptation function of the block
cipher can help the block cipher work robustly and resist possible cryptanalysis
attack.
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Chapter 4

SIMULATION

4. Simulation
4.1. Simulation Set up

The block cipher sample used for simulation experiment is illustrated as Fig. 4.1.

,.Fig. 4.1 Block Cipher Sample for Simulation Experiments

Outputs

The block cipheﬁ is constructed by a common MLP network. In order to petform
the recurrent real-time learning, the output vector of the block cipher is fed back

as part of the input vector. The dimension of the input vector is 4 and the
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dimension of the output vector is 2. The hidden layer has only one neuron and its
output will be the first part of the cipher text.

Corresponding simulation software program is coded in Matlab. It contains the
encoder and decoder. The visual modeling of the encoder is illustrated as Fig. 4.2.

Fig. 4.2 Encoder model

. Function Interface Parse Parameter

Build NN . NNConfig

Key Extend Secret Key

l

; CIpHerlext Encryption Procedure Plaintext

The flowchart of the encoder is illustrated as Fig. 4.3.
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Flg 4.3 Encoder Flowchart

T R R u, @I* P N A I R R I T Y

' ‘ [Prepare Parameter Valuesl

‘IConstruct Neural Network]
T

| Perform Key Extension |

| Generate Cipher Text |

| One-epoch Training |

[Learning Rate Adaptation|

The visual modeling of the decoder is illustrated as Fig. 4.4.
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Fig. 4.4 Decoder model

S G Y

“Becypion Anaivsis Modsl

RTINS

Decryption Function Interface Parse_'Pérame_tér

__(from Encryptijn Realization)

Build NN
(trom Encryptipn Realization)

NN Config
(from Encryption Realization)

Key Extend
(trom Encaryption Realization)

Sedel Key - '
(from Encryption Realization)

- PlaintextAsOutput Decryption Procedure

The flowchart of the decoder is illustrated as Fig. 4.5

53

CiphertextAslnput



Fig. 4.5 Decoder Flowchart

2T RN INA N Y R S g e e FE TN A P S IR F R R SR S I T Y

|Prepare Parameter Values|

IConstruct Neural Network|
v

| Perform Key Extension |

| Restore Plain Text |

!

| One-epoch Training I

|Leaming Rate Adaptation|

There are also other programs for data scaling, analysis and plotting purpose.

The configuration of the block cipher is controlled by script file. The
configuration script file controls the parameters such as the dimension of the
input and output vector, the dimension of the hidden layer, the learning stop
condition and learning rate etc. The activation function is sigmoid function. The
plaint text and secret key input of the block cipher is common text file. The
weight and bias are all set to an identical initial value before training. At the same
time the input is represented in their ASCII form and scaled to between 0 and 1

so that the neural networks will be sensitive to the input pattern.

4.2. Simulation Experiments
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Simulation experiments are carried out to illustrate the effect of learning rate to

the learning procedure and how learning rate adaptation help to control the

proposed block cipher to generate chaotic cipher text.

The configuration parameters for the first expetiment are listed as Table 4.1

Table 4.1 Configuration Parameters for the first experiment

Weight Dimension | Dimension | Learning | Learning | Learning

Initial of Input of Output rate stop rate

Value - Vector Vector condition | adaptation
0.5 4 2 0.05 1e-50 Disabled

The first experiment is to try to perform the cryptanalysis attack mentioned
before. The plain text contains a long string of single character “a”, then followed
by a different character “z” and next followed by a long string of “a” again. For
plain  text will look like this:

22222222222222222222223372232322222333322233a”". The learning rate is set to be a

example, the “aaaaaaaaaaaa
small value, 0.5, and the learning rate self-adaptation function is disabled for the

first experiment. The result of the expetiment is illustrated as Fig. 4.6.

The experiment shows that after the network is convergent to a single point, new
input pattern cannot change the network output far enough from the stable point
because the learning rate is small. Consequently, the second part of the cipher
text will expose the temporal pattern of the plain text. The ctyptanalyst can

perform the attack mentioned in this paper to guess the new character “z”.
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AR A RS R

..., Fig. 4.6 Small Fixed Learning Rate Effect

OgfetedPatt

The same experiment environment as above is used for the second experiment
except that the learning rate is ch@ggd to a larger value. The result of the
experiment is illustrated as Fig. 4.7. The learning rate is set to be 35 in this
experiment. The result of the experiment illustrates that if the leatning rate is
changed to a larger value, the leamning procedure can be prevented from
convergence. The temporal structure of the plain text input can be protected

because the cipher text is chaotic.
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Fig. 4.7 Large Fixed Learning Rate Effect

o
»

o
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In the third expenment, the learmng rate self-adaptauon function is tumed on to

investigate its effect to the block cipher.

The configuration parameters for the third experiment are listed as Table 4.2

Table 4.2 Configuration Parameters for the third experiment

Critical

Weight | Dimension | Dimension | Learning | Learning Increase | Decrease
Initial | of Input | of Output rate stop value | factor | factor &
Value | Vector Vector initial | condition | A

value
0.5 4 2 1 1e-50 0.01 2 0.9
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The result of the experiment of the learning rate self-adaptive procedure is
illustrated as Fig. 4.8. The left-hand side of Fig. 4.8 is the signal of T'(k)and the
right-hand side is the leaming rate signal of 77. The corresponding signal of two

parts of cipher text is illustrated as Fig. 4.9.

The experiment results shows that every time the learning rate is set to a large
rate, the error signal will miss far away from the critical value and learning goal.
Consequently the parameter & can be used as knob to control the leaming to be
unp;:edictable and guarantee the learning procedure unstable. Large learning rate
help to hide the temporal structure of the plain text input data and force the

block cipher generate chaotic cipher text.

Fig. 4.8 Learning Rate Self Adaptation
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_Fig. 4.9 Chaotic Cipher Text
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4.3. Summary

The simulation experiments provide illustration to verify some conclusions of the
secutity analysis of the block cipher. The results of the simulation shows that
large learning rate will inject much noise to the learning procedure.and force the
network generating chaotic cipher text. The learning rate self-adaptation function
helps to guarantee the instability of the learning procedure so that the dynamics

- of the block cipher can be maintained to resist possible cryptanalysis attack.
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Chapter 5

CONCLUSION

In the project, the source of the problem is defined by considering different types
of security requirements. The review of both cryptography and neural network
illustrates the potential possibility to apply neural network for block cipher
design. The project contributes to propose a new block cipher design based on
recurrent neural networks. The analysis of the design shows that the hidden layers
of neural network can be used as the secret extended key, different services can
be provided through a integrity scheme and the learning procedure of the
recurrent neural network can be controlled to provide the secure protection for
the data by adapting the learning rate. Simulation experiments also help to verify

some of the analysis conclusions by examples.

In summary, the new block cipher design has several advantages by introducing
recurrent neural networks for symmetric-key block cipher design. First of all, the
proposed block cipher releases the limitation of the length of secret key and the
length of the message blocks. This breakthrough unbinds many limitations of the
implementation for the block cipher. The block cipher can flexibly adjust the
secret key and message length to accommodate different security and
- petformance requirements. Secondly it is capable to provide both high secure
data encryption and data integrity service. Different cryptographic services are
provided by an integrity scheme with relatively simple architecture. The simplified
design can make it possible to perform the analysis of the block cipher based on
the error-correction learning theory of the recurrent neural networks.
Furthermore, the inherent parallel computing capability of the block cipher can

accommodate high performance data encryption requirements such as secure
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point-to-point file transfer between gateways. In fact there are many applications
that will consider the proposed block cipher practical. Every time high efficient
secure data communication is desired, the proposed block cipher will be greatly
helpful.

Further research work about the knowledge representation of neural networks
and stability analysis of recutrent neural network will provide more valuable
information for the analysis of the block cipher. More pressuring cryptanalysis
against the proposed block cipher are also desirable to uncover the risk of
possible attacks. As cryptography is both a science and an elegant art, this type of
attack-and-defence attempts is the motivity of development of cryptology all
along.
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