
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2009

High Level FPGA Implementation Of Adaptive
Signal Segmentation And Autoregressive Modeling
Techniques
Beibei. Jiao
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Jiao, Beibei., "High Level FPGA Implementation Of Adaptive Signal Segmentation And Autoregressive Modeling Techniques" (2009).
Theses and dissertations. Paper 1136.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1136&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1136&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1136&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1136&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/1136?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1136&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

HIGH LEVEL FPGA IMPLEMENTATION OF
ADAPTIVE SIGNAL SEGMENTATION AND

AUTOREGRESSIVE MODELING TECHNIQUES

by

Beibei Jiao

B.Eng. , Wuhan University, P.R. China, 2004

A thesis
presented to Ryerson University

in partial fulfillment of the
requirement for the degree of

Master of Applied Science
in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2009

© Beibei Jiao, 2009

PROPE JY 0
RVER N ·r iv'ffi lTV UOOARV

Author's Declaration

I hereby declare that I am the sole author of this thesis.
I authorize Ryerson University to lend this thesis to other institutions or individuals for the
purpose of scholarly research.
Signature

I further authorize Ryerson University to reproduce this thesis by photocopying or by other
means, in total or in part, at the request of other institutions or individuals for the purpose
of scholarly research.
Signature

11

Abstract

HIGH LEVEL FPGA IMPLEMENTATION OF ADAPTIVE SIGNAL

SEGMENTATION AND AUTOREGRESSIVE MODELING TECHNIQUES

Beibei Jiao

Master of Applied Science

Department of Electrical and Computer Engineering

Ryerson University, 2009

This thesis contains new FPGA implementations of adaptive signal segmentation and

autoregressive modeling techniques. Both designs use Simulink-to-FPGA methodology and

have been successfully implemented onto Xilinx Virtex II Pro device. The implementation
V)

of adaptive signal segmentation is based on the conventional RLSL algorithm using double

precision floating point arithmetic for internal computation and is programmable for users

providing data length and order selection functions. The implemented RLSL design provides

very good performance of obtaining accurate conversion factor values with a mean correlation

of 99.93% and accurate boundary positions for both synthesized and biomedicaL signals.

The implementation of autoregressive (AR) modeling is based on the Burg-lattice algorithm

using fixed point arithmetic. The implemented Burg design with order of 3 provides good

performance of calculating AR coefficients of input biomedical signals.

111

Acknowledgments

I would like to express my deep gratitude to my supervisors Dr. Sridhar Krishnan and

Dr. Adnan Kabbani at Ryerson University for their knowledgeable guidance and constant

encouragement and support.

I also would like to greatly acknowledge those who have assisted me during my graduate

study at Ryerson University. Particularly, I would like to thank all the members in SAR

group and my friends for their kindness and encouragement.

Finally, I would like to especially thank my parents for their nonstop and warm support.

iv

Contents

1 Introduction

1.1 Motivation .

1.2 Research objectives

1.3 Original contributions

1.4 Thesis organization

2 Review

2.1 Adaptive segmentation

2.2 Parametric modeling

2.2.1 AR modeling

2.3 Review of hardware implementation of the two applications .

3 Adaptive segmentation with RLSL algorithm and hardware implementa-

1

1

3

4

5

6

6

12

13

15

tion 18

3.1 Theory of RLSL algorithm . 18

3.2 Implementation and verification of adaptive segmentation based on high-level

language . 21

3.3 Design tools and implementation environment 25

3.4 Implementation of block modules of RLSL using System Generator 27

3.4.1 Designing block modules for RLSL system 27

3.4.2 Simulation results and Comparison with high-level language

3.5 Implementation of RLSL on FPGA and result comparison

v

40

43

4 AR modeling with Burg algorithm and hardware implementation 52

4.1 The theory of Burg algorithm · 52

4.2 Simulink implementation and verification of Burg algorithm 59 ·

4.2.1 Simulink module design 59

4.2.2 Simulation results and comparison with high-level languages 67

4.3 FPGA implementation of Burg algorithm and conclusions. 69

5 Conclusion and Future work 72

5.1 Conclusions 72

5.2 Future work 7 4

vi

List of Tables

3.1 Corresponding coefficients of 2nd round 'Yc values from C and designed system

for group 1; order from 1 to 16 . 41

3.2 Corresponding coefficients of 2nd round 'Yc values from C and designed system

for group 2; order from 1 to 16 . 41

3.3 Device utilization summary of RLSL design; target device: xc2vp100-6-ff1704 43

3.4 Comparison of the last 'Yc value of the 2nd round obtained from C and FPGA

implementations . 46

3.5 Group 1: Boundaries obtained from C implementation, simulink block level

and FPGA implementation; N = 500, M == 5, threshold = 0.9985, min = 120 48

3.6 Group 2: Boundaries obtained from C implementation, simulink block level

and FPGA implementation; N = 500, M = 16, threshold= 0.9985, min = 120 48

3. 7 Group 3: Boundaries obtained from C implementation, simulink block level

and FPGA implementation; N = 600, M = 5, threshold = 0.95, min = 120 . 48
...

3.8 Device utilization summary of RLSL design with boundaries subsystem; target

device: xc2vp100-6-ff1704

4.1 the relationship between the range of values of the parameters, length of input

48

data and order for Burg algorithm . 59

4.2 Group1: calculating AR coefficients based on three methods; order = 3,

N _ 120. l t · = 10007 _ ISimulinkimplementation-Cimplementationl X 10007 69 - ' corre a zon 10 ICimplementationl 10 .

4.3 Group2: calculating AR coefficients based on three methods; order = 3,

N = 1000· l t · = 10007 _ ISimulinkimple~entation-CJ_implementationl X 10007 69 ' corre a zon 10 ICtmplementatwnl 10

Vll

3.19 Block diagram of refcoef f

3.20 Block diagram of F update .

3.21 Block diagram of gamma update

3.22 Block diagram of final gammas subsystem

3.23 plots of 'Yc values from C and designed system for group 1 with order of 16

3.24 plots of 'Yc values from C and designed system for group 2 with order of 16

3.25 plots of 'Yc values from C and designed system for group 3 with order of 16

3.26 Comparison of the device slice usage of RLSL algorithm with different orders ,

including testbench for each implementation

3.27 Monitoring signal using Chipscope

3.28 Diagram of RLSL with boundaries subsystem

3.29 Block diagram of boundaries subsystem

3.30 Block diagram of comparing 2nd 'Yc values with threshold value

4.1 Signal-flow diagram of AR model

4.2 lattice structure that performs the recursion equations for one stage of Burg

algorithm

4.3 Diagram of Burg algorithm.

4.4 Block diagram of Burg for 3 stages

4.5 Block diagram of stage1 for Burg algorithm

4.6 Block diagram of mem in stage1

4.7 Block diagram of sum in stagel

4.8 Block diagram of -gamma of stage1

4.9 Block diagram of mem rst of stage1

4.10 Block diagram of mem enable of stage1

4.11 Block diagram of delay of stage1 ...

4.12 Block diagram of f/b update in stage1

4.13 Block diagram of control in stage1 .

4.14 Block diagram of gam of stagel ..

X

38

39

39

39

41

42

42

44

46

50

51

51

52

54

60

61

61

63

64

65

65

66

66

67

67

67

4.15 Flow chart of Burg for C . 68

4.16 Output values of AR coefficients obtained from FPGA implementation; order =

3,N = 8000 . 71

xi

List of Acronyms

ACF- Autocorrelation function

AR- Autoregressive

ARMA - Autoregressive moving-average

ASIC - Application-specific integrated circuit

DSP - Digital signal processing

ECG - Electrocardiogram

EDA - Electronic design automation

EEG - Electroencephalogram

EGG - Electrogastrogram

EMG- Electromyogram

FFT - Fast Fourier transform

FPG A - Field programmable gate array

G LR - Generalized likelihood ratio .
...

HDL- Hardware description language)

IP - Intellectual property

LMS - Least-mean-square

LNS- Logarithmic numbers system

MA - Moving-average

MSE - Mean squared error

PCG - Phonocardiogram

QRD-LSL- QR-decomposition-based least-squares lattice

RAM - Random access memory

RLS - Recursive least-squares

RLSL - Recursive least-squares lattice

SEM - Spectral error measure

STFT - Short-time Fourier transform

Xll

TSE - Total squared error

VAG- Vibroarthrogram

VHDL- VHSIC hardware description language

VLSI- Very large scale integration

Xlll

I

Chapter 1

Introduction

1.1 Motivation

It is well known that , in the real physical world, there exist abundant kinds of signals. All

those signals carry lots of information that are of people's interests. People develop diverse

techniques to analyze, interpret , manipulate, and process those signals, trying to obtain the

information they are interested in.

Biomedical signals are one type of signals that have strong relationships with human

bodies or human organisms, such as ECG (electrocardiogram) related to the heart , EMG

(electromyogram) related to the skeletal muscle fibers, EEG (electroencephalogram) related

to the brain, EGG (electrogastrogram) related to the stomach, PCG (phonocardiogram)

related to the heart and blood, VAG (vibroarthrogram) related to the knee joint , speech

signals and so forth [1]. These signals are all generated by human organisms and thus,

they certainly carry significant information about these organisms. Having such information

can help people understand humans better and then for further purpose, can help improve

health care and the quality of life of individuals. Hence, biomedical signal analysis has

attracted abundant researchers' attention and has huge clinical significance. For example,

ECG is one of the simplest and fastest procedures used to evaluate the condition of heart.

The electrical activity of patient 's heart is measured, interpreted, and printed out for the

physician's information and further interpretation. The results can provide important clues

to the cardiologist about the need for further testing to assess for the possibility of either

1

structural or electrical abnormalities.

Biomedical signal processing covers many areas, including filtering; spectral analysis;

modeling for feature representation and parameterization; and quantitative or objective

analysis of physiological systems and phenomena [1]. It uses signal processing methods and

algorithms implemented on computers or in electric hardware to objectively analyze biomed

ical signals. Although with the help of computers,. some subjective errors caused by human

observers can be easily avoided, i.e. errors caused by fatigue, there are still many difficulties

in biomedical signal acquisition, processing and analysis, such as difficulties in accessibil

ity to the targets, dynamic nature of biological systems, interactions and inter-relationships

among physiological systems, physiological artifacts and interference, and energy limitations

[1]. However, people can still use specific methods to solve those problems. For instance, the

dynamic nature of biological systems is one main difficulty as it causes the signal to have

stochastical and nonstationary behavior. To conquer this issue, the parametric modeling

method can be used to solve the stochastic problem and segmentation method can be used

to solve nonstationary problem. Many researches have demonstrated that parametric mod

eling is a useful method when dealing with random time series [2] [3] [4] and segmentation

is an efficient approach to deal with nonstationary signals [1] [5] [6]. All of these researches

are achieved by using modern computers, which rely on softwares, such as Matlab.

Since 1970s, VLSI (Very Large Scale Integration) technology has dramatically changed

the world and human lives. Nowadays, one can not imagine a life without VLSI-chip de

pendent devices, like computers, digital cameras, cell phones, MP3 players, digital TV sets

and so forth. All those digital products are relying on VLSL chips, including both ASIC

(Application-Specific Integrated Circuit) and FPGA (Field Programmable Gate Array). In

most recent years, the FPGA technology has been significantly developed and gained people's

more and more preference due to its advantages of stronger functions of FPGA itself, shorter

time to market, ability to reprogram and lower non-recurring engineering costs. Many ap

plications have been achieved by using FPGA techniques in various areas, i.e. digital signal

processing, aerospace, medical imaging, computer vision, speech recognition, ASIC prototyp-

2

I

ing, bioinformatics. More importantly, with the recent EDA (Electronic design automation)

tools, more flexible and efficient high-level design methodology can be applied, such as C-to

FPGA [7], Stateflow diagram to VHDL (SF2VHD) [8], Matlab-to-FPGA (MATCH) [9] [10],

Simulink-to-FPGA [11] [12]. In this research, the Simulink-to-FPGA design flow has been

chosen to implement two biomedical algorithms for specific applications: adaptive segmenta

tion and AR (autoregressive) modeling. The reason for choosing Simulink-to-FPGA design

flow is that with the combination of Xilinx system generator and implementation tools, one

can implement designs in a graphical and flexible way.

1.2 Research objectives

The objective of this research is to develop high level FPGA implementations of popular

biomedical signal segmentation and modeling algorithms for further real-time processing pur

pose. The two algorithms are: RLSL (recursive least-squares lattice) algorithm for adaptive

segmentation and Burg-lattice algorithm for AR modeling. The overview of this research is

shown in Figure 1.1.

Recursive

Figure 1.1: Overview of the research work

The RLSL hardware system should be able to calculate the conversion factor gamma

values of each input sample for a pre-determined system order, which can be further used to

be compared with a threshold value for adaptive segmentation. The Burg-lattice hardware

system should be able to calculate the corresponding AR coefficients for the input data based

3

on a certain system order, which can be used for further AR modeling.

1.3 Original contributions

The main contributions of this research are described as follows:

Adaptive Segmentation

• Proposing a new system-level architecture for RLSL algorithm with a specific purpose

of adaptive segmentation, which could be used for further real-time processing objec

tive. The proposed design has an adjustable (programmable) order selection function

and data length selection function , which are up to 16 stages and 5000 samples, re

spectively.

• Implementing design of RLSL algorithm using double precision floating point arith

metic for internal computation and data storage. The input data and output data are

represented by using fixed point arithmetic type, which are easy to read and analyze.

• Implementing and verifying the RLSL design in Xilinx Virtex II Pro FPGA using

Xilinx implementation tools.

• Verifying functionality and performance of the RLSL system for adaptive segmentation

using synthetic and real knee signals. The simulation results are compared with the

implementation results provided by both high-level programming language and FPGA

implementation.

Autoregressive Modeling

• Designing the Burg-lattice algorithm on system-level with a specific purpose of calcu

lating model parameters . .

• Implementing and verifying the Burg-lattice design in Xilinx Virtex II Pro FPGA and

comparing the results with ones obtained by using high-level programming languages.

4

1.4 Thesis organization

This thesis consists of five chapters:

• Chapter 1 introduced the significance of biomedical signal analysis and the reason

why biomedical signal processing attracted researchers ' interests. It also states the

objectives of the project , the contribution of the author and the organization of this

thesis.

• Chapter 2 starts with a review of adaptive segmentation methods of biomedical signals

and presents the reasons why to choose the target algorithm: RLSL algorithm for hard

ware implementation. It provides an overview of parametric modeling, particularly AR

modeling and the reason for choosing Burg-lattice algorithm for hardware implemen

tation. It also presents a review of hardware implementation of the two applications

and algorithms.

• Chapter 3 presents the theory of the RLSL algorithm for adaptive segmentation. The

mathematical representation is described in details. It also presents the implementation

with high-level programming language and simulink block-models, and provides the

simulation results and comparisons. The verification of adaptive segmentation applying

RLSL method is stated by using synthesized signals. The FPGA implementation of

the designed RLSL system is presented and discussed, providing final test results and

comparisons.

• Chapter 4 presents the theory of the Burg-lattice algorithm for AR modeling. The

mathematical representation is provided in details as well as the advantages of the

algorithm. Implementations with high-level programming language and simulink block

models of Burg-lattice algorithm are followed. The simulation results and comparisons

are displayed, followed by the FPGA implementation details and testing results.

• Chapter 5 concludes the thesis and presents discussion for future work of this research.

5

Chapter 2

Review-

In this chapter, the reason why to choose adaptive segmentation rather than fixed seg

mentation and a review of adaptive segmentation techniques for biomedical signals will be

presented first. Then a brief introduction on parametric modeling, particularly AR (autore

gressive) modeling will be followed. At last, a review of VLSI implementations of the two

selected algorithms will be stated.

2.1 Adaptive segmentation

Biomedical signals are typical nonstationary random signals. They are non-stationary

as the statistical properties of such signals vary with time, i.e. the mean value varying

with time, or having time-varying frequency spectrum. This causes challenges when one

wants to use classical, well-developed spectrum analysis methods (i.e. Fourier transform)

to analyze such signals. Take the EEG analysis as an example. The description of EEG

in spectral domain can be used for feature extraction [13]. This requires the target signal

to be stationary. Unfortunately, during its long time of observation, the EEG signal is

non-stationary in nature. However, it can be considered to be locally stationary over short

time intervals [13] [14]. Hence, using segmentation technique to partition the signal into

stationary components is a straightforward and natural idea.

There are two categories of segmentation. One is fixed segmentation and the other is

adaptive segmentation. Fixed segmentation uses fixed-size window for segmentation and it

6

is usually used in specific applications, such as STFT (short-time Fourier transform) [1].

Although fixed segmentation is simple but its performance is not efficient enough. The

main problem for this method is the choice of the window size. Apparently, the window

length should be long enough for meaningful analysis and also short enough to make sure

that each segment is stationary. On one hand, selecting large fixed-size windows, the signal

may still have dynamics during the window duration chosen, which actually requires more

segments. On the other hand, selecting small fixed-size windows, the signal may still have

stationary status much longer than that window duration, which actually hopes to use larger

window size. In short, this method can not guarantee stationarity for each window and can

. not guarantee that the chosen window size is appropriate. Moreover, short-time analysis

could be computationally expensive [1]. For example, the Fourier transform needs to be

calculated for each segment of the signal in STFT method. Thus, if the window size is not

chosen appropriately, it may have lots of segments in total, which would make the whole

computation of using STFT method become very expensive and redundant. Therefore, it

is much desirable and reasonable to find a more efficient segmentation method for non

stationar:y signals.

Adaptive segmentation is an alternative based on a more efficient idea, compared with

fixed segmentation. It segments the signal when it is needed according to the dynamic

characteristics of the signal itself. This means that the analysis window is kept as long as

possible when the signal remains stationary, whereas set up a boundary and used a new

window when the signal changes its properties abruptly and dramatically.

There are several approaches that have been used for adaptive segmentation of synthe

sized and/or real biomedical signals. These approaches are listed and described below.

SEM (spectral error measure)

Bodenstein and Praetorius [13] used SEM for adaptive segmentation of EEG signal and

for further feature extraction. This method is based on AR modeling, using a fixed-length

reference window for calculation of AR parameters in the reference window. And those

AR parameters are used to model the samples in a test window and calculate the ACF

7

(autocorrelation function) of the test window, which is finally used to define a spectral error

measure (SEM). If the error measure is larger than a specific threshold, then a segment

boundary is set up and the procedure starts again. This SEM method was also applied by

Tavathia et al. [3] for knee joint vibroarthrography's (VAG) adaptive segmentation.

ACF (autocorrelation function)

Michael and Houchin [15] used ACF method for adaptive segmentation, which directly

estimated the values of short-time autocorrelation function of the signal to segment the

boundaries. This method is the most general in that it does not make use of any explicit

model, e.g. AR model. It uses a reference window with fixed-size at the beginning of each

segment, and calculates the ACF for the reference window. Then it uses a sliding window

(also called as test window) with equal length to the signal and calculates the ACF for the

test window. If the difference between the ACF in the sliding test window and the reference

window is significant, a segment boundary is set up and then repeats the procedure.

GLR (the generalized likelihood ratio)

Appel and Brandt (16] used GLR method for adaptive segmentation. The difference

between this method and the previous two is that it uses a continuously growing reference

window. The test window is a fixed-size sliding window like the previous two methods.

The advantage of using the growing reference window is that it contains the maximum of

information available from the beginning of each segment to the current instant, thus leading

a minimum variance of the estimation of the reference parameters.

Appel and Briandt also compared these three methods in (17] using both synthesized sig

nals and real EEG signals. They found that the G LR method provided the best performance

among the three but had the highest computational complexity.

RLS (recursive least-squares)

Moussavi et al [6] used the RLS filter for adaptive segmentation of VAG signals. The

advantage of this method, compared with SEM, ACF and GLR, is that it does not require

any reference and test windows, but calculates the filter tap-weight vector for each sample

of the input signal. It could provide good performance of adaptive segmentation of VAG

8

I

signals according to Moussavi 's tests. However, this RLS method has high computational

complexity and does not have the characteristic of modularity in nature for the convenience

of hardware implementation.

RLSL (recursive least-squares lattice)

S.Krishnan et al [18) directly used an adaptive filter based on RLSL algorithm for

adaptive segmentation of VAG signals. According to their research, this method could

provide very good performance for biomedical signal segmentation. They made the input

. data run into the filter two times, wherein the first running to make the filter converge. For

the second running, they compared the selected parameter to a predefined threshold value for

each sample. Once the parameter value fell down less than the threshold value, a boundary

was set up. S.Krishnan [19) also tested this method using synthesized signal and obtained

good results. This method is also a recursive method on a sample-by-sample basis and does

not use any short-time windows as the RLS method. More importantly, it is using the lattice

structure that makes it more attractive and suitable for hardware implementation.

RLSL algorithm belongs to the fast RLS category. It is based on lattice structure

that makes it work faster than the conventional RLS algorithm, since the computational

complexity increased linearly with the order M. It involves both time updates and order

updates, which makes it distinguishing from many other adaptive algorithms [20).

There are many advantages for RLSL algorithm [20) [21] [22) [23) [24).

• Fast rate of convergence, compared with those algorithms in LMS (least-mean-squares)

family.

• Good computational complexity, linear with M, not as square of M like the conven

tional RLS algorithm or QRD-LSL algorithm.

• High modularity on stage-by-stage, each complete iteration sharing exactly the same

structure; parallelism; concurrency.

• Good tracking capability.

9

• Order recursion, based on lattice structure, leading to computational efficiency and

modularity.

RLSL algorithm converges fast as it is derived from the least-squares family. This is

the fundamental advantage for consideration when compared with the stochastic gradient

approach family, whose most popular algorithm is known as LMS (least-mean-square) algo

rithm. Fast rate of convergence can make the filter adapt rapidly according to the signals '

statistical characteristics. RLSL has good computational complexity: its computational

complexity is linear with order M, referred to O(M) as the same as LMS algorithm but bet

ter than conventional RLS (recursive least-squares) algorithm. This advantage is due to the

order-recursion property of the algorithm: the information gathered from the previous com

putations for order M -1 is carried over to the next order M. By contrast, the conventional

RLS and square-root RLS algorithm (which is derived as to solve the issue of numerical insta

bility in conventional RLS) have a computational complexity linearly increasing with square

of M, referred to 0(M 2), which may become annoying from a hardware implementation

point of view, particularly when M is large. RLSL has very high stage-by-stage modularity

property. For each iteration, it is sharing exactly the same structure, which is convenient

and suitable for FPGA implementation. RLSL also has very good tracking ability that can

provide good performance on monitoring the statistical changes in the signal, which has

been proved by previous researchers [6], [18). It has not only time recursion but also order

recursion that is based on using a lattice structure. It is evident that the lattice structure

itself leads to good modularity and computational efficiency and possess better numerical

properties than direct structures [23).

There are also some limitations for this algorithm.

• Possible numerical instability, after hundreds of thousands of !iteration [20), [22), [23),

[25), [26).

• Dynamic range of parameters [21).

10

Any DSP algorithms implemented or applied in digital systems suffer from the finite

word length effects or also called finite-precision effects. In practical, one can not use infinite

precision to employ the design digitally. The finite-precision effects influence the perfor

mance of a digital implementation of the algorithm and make it deviate from its theoretical

value. The two main factors that influence the nature of the deviation are the details of the

algorithm itself and the form of numerical computation employed (fixed point or floating

point) [20].

For algorithm itself, the RLSL algorithm mentioned before in this chapter is referred as

conventional RLSL or indirect updating RLSL algorithm, which has been actually used in

many researches [6], [18] and [19] for adaptive segmentation of real biomedical signals. Ling

et al [23] proposed a RLSL algorithm with error-feedback, commonly known as the direct

updating RLSL. They pointed out that the direct version of RLSL has better numerical

accuracy and numerical stability based on their computer simulation results. Bunch et al

[25] gave the same conclusion but they also mentioned that both the RLSL algorithms had

the potential for large relative errors. Nonetheless, no explicit researches have been done

using the indirect RLSL algorithm for real signal 's adaptive segmentation. Moreover, the

direct updating RLSL has more computational complexity than the indirect one.

Paleologu et al in [21] mentioned that the conventional RLSL algorithm had a draw

back of large dynamics of parameters. However, they only focused on using a modified

cost function to reduce the dynamic range of parameters, nothing related to the hardware

implementation and any specific applications.

To sum up, the indirect RLSL algorithm has both advantages and disadvantages as

mentioned above. However, it has been already applied for adaptive segmentation of real

biomedical signals and achieved satisfactory performance with the use of softwares and pro

grams based on double precision floating point type arithmetic on general PCs. Thereby,

double precision floating point arithmetic is chosen to implement the indirect RLSL algo

rithm and the questions then would become: is this accessible and worthy to implement this

algorithm onto specific FPGA and is its perforn1ance acceptable? The answers to these two

11

questions and more details will be provided and discussed in Chapter 3.

2.2 Parametric modeling

Parametric modeling is a typical method in dealing with random signals, as long as

the signals are stationary. The basic idea for parametric modeling is that the present value

of model output is assumed to be the linear combination of several past values of model

output plus the linear combination of present and past values of model input, expressed in

the following equation [1].

p Q

y(n) =- :2: aky(n- k) + G :2: bzx(n -l) (2.1)
k=l l=O

where b0 = 1, x(n) is the model input, y(n) is the model output, and G is the gain factor.

Applying z-transform to the above equation, it is easy to obtain its transfer function as

H(z) = Y(z) = G 1 + 2:::~ 1 bzz-l
X(z) 1 + 2::::=1 akz-k

(2.2)

In most cases, the gain factor is not important [1], and thus the system is fully charac-

terized by ak and bz. ak and bz determine if the system is an all-pole system or an all-zero

system or a pole-zero system.

There are three main modeling methods: AR(Autoregressive) modeling, MA(Moving

average) modeling and ARMA(Autoregressive moving-average) modeling. AR models cor

respond to the situation that bz in Equation (2.2) is all equal to zero, whereas MA models

correspond to the situation that ak is all zero, and for ARMA models, ak and bz are both

not all equal to zero. Among these . three methods, AR modeling is a very popular one par

ticularly in dealing with biomedical signals for several reasons: 1) some biomedical signals

(i.e. speech signal) have an underlying autoregressive structure; 2) generally, any signal

(even if it is not necessarily AR in nature) can be modeled as an AR process as long as an

appropriate model order is selected; 3) estimation of model parameters is based o~ finding

out the solution of a linear system of equations and many efficient algorithms are available

12

to compute the solution [27] [28]. The following section briefly introduces the AR modeling

method.

2.2.1 AR modeling

AR modeling is such a widely used method in biomedical signal processing. For AR

modeling, the parameters of AR model are of interests and investigated for use in signal

analysis.

It has been demonstrated that in many cases, AR spectrum provides a better resolution

than traditional Fourier spectrum [I], which can ease the signal analysis. To obtain the

AR spectrum, one has to obtain the AR coefficients of the signal first [29]. Moreover, AR

coefficients can be easily used in pattern classification of biomedical signal [30], [3I] and data

compression application [32].

For an AR model, the output is modeled as the linear combination of P past values of

the model output and the present model input (no past values of the model input are used)

as [I]
p

y(n) = - L aky(n- k) + Gx(n) (2.3)
k=l

Again, applying the z-transform to the above equation, then the AR transfer function is

. G
H (z) = --P..,-----

I + I:k=l akz-k
(2.4)

Factorizing the denominator polynomials in Equation (2.4), the transfer function can be

expressed as

(2.5)

The parameters Pk, (k = I, 2, ... , P), are the poles of H(z) or the system. The AR

model only has system poles, no zeros and therefore, it is also called the all-pole model. The

purpose here is to obtain those AR parameters (also known as AR coefficients).

In many cases of biomedical signals, e.g. the EEG or the PCG, the input x(n) is

totally unknown. Hence, the output y(n) can be only approximately predicted as the linear

combination of past values of the output

I3

p

y(n) =- :E aky(n- k) (2.6)
k=l

Obviously, there exists an error as

p

e(n) = y(n)- y(n) = y(n) + :E aky(n- k) (2.7)
k=l

In the method of least-squares, which is derived in the time domain, the parameters

ak are obtained by minimizing the MSE (mean squared error) or TSE (total squared er

ror) with respect to each of the parameters [1], [33). There are several techniques that can

do the job of computing the model coefficients, directly or iteratively. Generally, iterative

methods cost more computation to achieve a desired degree of convergence than the direct

methods [33). There are some commonly used approaches for directly estimating predic

tion parameters: the autocorrelation method, the covariance method, the square-root or

Cholesky decomposition method, and the Burg method. All these methods are trying to

solve the normal equations, a set of p equations for the predictor coefficients ak, 1 ~ k ~ p.

Autocorrelation or covariance method requires large computational operations and storage

locations. Square-Toot or Cholesky decomposition method has less computations compared

with the previous two methods. Further reduction in computation and storage room can be

achieved by using Levinson-Durbin algorithm, which provides a recursive method to solve

the set of normal equations. This method has big savings in operations and storage locations

from the previous methods [33). The Burg algorithm is another most popular algorithm for

non-adaptive AR models such as the Levinson-Durbin algorithm, where non-adaptive means

that the model parameters are chosen to give the best fit of a sequence of data samples, not

like adaptive models that the values of parameters are updated on the arrival of each new

data sample (14). Figure 2.1 shows the methods of parametric modeling [14).

One main advantage for Burg algorithm compared with Levinson-Durbin algorithm is

that in obtaining the solution of AR parameters of order M, one just simply add one more

stage without affecting the earlier computations for the lower stages, whicP- is more suitable

for VLSI consideration, while for Levinson-Durbin algorithm, one actually computes the

14

adaptive

I
Kalman filter

autoregressive

Parametric modeling

Moving-average

non-adaptive

I

Autoregressive moving-average

Burg algorithm Levinson-Durbin algorithm

Figure 2.1: Methods for parametric modeling and algorithms for AR modeling

model parameters for all orders up to the desired order M. In addition, Levinson-Durbin

algorithm could be numerically relatively unstable [33]. Hence, it is reasonable to conclude

that using Burg algorithm to compute AR coefficients is a satisfactory choice and is more

attractive for hardware implementation. More details of Burg algorithm will be provided in

Chapter 4.

'2.3 Review of hardware implementation of the two ap
plications

To the best of the author's knowledge, there is no reported literature about hardware

implementation of direct adaptive segmentation, but there are few papers discuss the imple

mentation of RLSL algorithms (direct or indirect RLSL) for other applications.

Zdenek Pohl et al. [34] proposed an error-feedback RLSL filter (the direct RLSL) with

the estimation of an unknown order and forgetting factor of identified system as a PCO RE

coprocessor for Xilinx EDK. Their design used the LNS (logarithmic numbers system) arith

metic. The proposed FPGA coprocessor implementation was able to evaluate the direct

RLSL filter of order 504 at 12kHz input data sampling rate. The advantage and deficiency

of their design are .listed below:

• A hardware coprocessor rather than a standalone IP core. The PCORE coprocessor

contains a RLS lattice core, which is based on RLSL with error-feedback algorithm

(the direct RLSL algorithm as mention before). However, the coprocessor needs the

standard C programming and debugging to get accessed, which is still software-based.

15

• The PCORE corprocessor has order and forgetting factor estimation function using

the LNS arithmetic. It can evaluate the RLS lattice filter of order 504 at 12kHz. Nev

ertheless, no parameters of the algorithm were monitored, nor the range of parameter

values were observed as the system order grows.

• The aim of the work was to provide a versatile highly configurable hardware RLSL

(direct RLSL) core for DSP applications (34]. Hence, they did not have a specific ap

plication purpose of implementing RLSL algorithm, such as biomedical signal adaptive

segmentation, which uses the chosen parameter to monitor the significant changes in

the target biomedical signal and adaptively segment it.

Antonin Hermanek et al. (35] presented a FPG A implementation of a noise canceler with

an adaptive RLS-lattice filter in Xilinx devices. They used LNS for internal computation and

demonstrated that the noise canceler could run at the XSV800 prototyping board in real

time wit_h 16kHz sampling rate for the filter order of 160. They also provided the comparison

of the performance of FPGA echo canceler and their implementation on TI TMS320C6711

(IEEE 32-bit floating point device) of 100th order. The advantage and deficiency of their

design are listed below:

• Used 19-bit LNS arithmetic for computations, decreasing the computational complexity

of multiplications, divisions and square-root operations, but increasing the computa- ·

tional complexity of additions and subtractions. The detailed information of accuracy

of such LNS arithmetic system was not provided yet.

• Used four pipelined macros running in parallel and each macro used lattice structure in

sequential, hence providing up to 4nth order computation. But the information about

the usage of device area of their lattice noise cancellation design that could run 160

stages for real-time application was not provided.

F. Albu et al. (36] implemented the conventional RLSL and its normalized version on

Virtex XCV2000E-6 operating with 24-bit fixed point input/output signals. Their internal

16

computations are based on 32-bit logarithmic number system (LNS). The normalized and

un-normalized RLSL filters were analyzed using _8th order at 36.7 kHz compared to the

clock cycle counts with DSP solution based on 32-bit floating point TMS320C3x/4x 50Mhz

processors. Their algorithms were coded in Handel-C 2.1 and Celoxica DKl. They used

Synplify 5.3 Xilinx Alliance 3.3i to implement the designs onto Virtex XCV2000E-6. The

advantage and deficiency of their design are listed below:

• Used 32-bit LNS arithmetic for internal computations, decreasing the computational

complexity of multiplications, divisions and square-root operations, but increasing the

computational complexity of additions and subtractions.

• Analyzed designs on FPGA under 8th order at 36.7 kHz but they did not provided

information about their design performance for higher system order.

• Implemented the RLSL algorithm without monitoring any parameters or taking ad

vantage of using those parameters for specific applications, i.e. adaptive segmentation.

For AR modeling, one implementation can be found in [37]. They implemented the

Burg algorithm onto the AMD29500 microprogrammable byte slice DSP and NECj.tPD77230

single-chip DSP. The AMD DSP system can have a sixteenth-order modeling rate at 17kHz

while the NEC DSP system can have a sixteen-order model at 8kHz. The advantage and

disadvantage of their design are listed below:

• Implemented the Burg algorithm onto a series of DSP microprocessor systems, not

implementing on single VLSI chip, either FPGA or ASIC.

• Required DSP board and softwares for real application, e.g. processing medical images.

Summary

Adaptive segmentation using conventional RLSL method and AR modeling using Burg

lattice method are good choices for biomedical signal. segmentation and modeling. Moreover,

both methods have attractive properties to implement onto hardware. The next two chapters

will describe these two methods in more details and their specific FPGA implementations.

17

Chapter 3

Adaptive segmentation -with RLSL
algorithm and hard-ware
implementation

3.1 Theory of RLSL algorithm

The conventional RLSL (recursive least-squares lattice, sometimes regarding as RLS

lattice or recursive-LSL) algorithm inv.olves both order and time recursions as mentioned in

Chapter 2. It is first a time-recursive algorithm extended from the method of least-squares,

and then involves order-recursions using lattice structure to reduce the high computational

complexity for RLS algorithm.

The mathematical representations of the RLSL algorithm are expressed as follows [1].

Initialization:

• at n = 0, and for each order m = 1, 2, ... , M , set the cross-correlation ~m- 1 (0) = 0;

forward/backward prediction error power Fm_1 (0) = Bm_1 (0) = 8; the conversion

factor 'Yo,c (O) = 1, where the index n represents the number of samples, M is the order

of the system and 8 is a small positive constant , e.g. 8 = 0.001.

• at n 2:: 1,m = 0, set the forward/backward prediction error f 0 (n) = b0 (n) = u(n);

Fo(n) = Bo(n) = >..Fo(n- 1) + llu(n)ll 2
; 'Yo,c (n) = 1, where u(n) is the input data and

).. is the forgetting factor , e.g.>..= 1.

18

• for joint-process estimation, at n = 0, m = 0, 1, ... , M, set the scalar Pm(O) = 0; at

n 2: 1, m = 0, set a priori estimation error eo(n) = d(n), where d(n) is the desired

response.

Prediction

For n = 1, 2, ... , N 8 , m = 1, 2, ... , M, the parameters are computed as follows:

A () = , A (-·I) bm-1(n- I)fm-1(n)
L.lm-1 n /\L.lm-1 n + ()

. tm-1 ,c n- 1
(3.1)

~m-1 (n) is the cross-correlation between f m- 1 (n) and bm_1 (n - 1).

()
__ ~m-1(n)

{m,J n - B () m-1 n
(3.2)

()
~m-1 (n)

rm,b n =-Fm-1(n- 1) (3.3)

rm,J(n) and rm,b(n) are the forward and backward reflection coefficients. Generally,

{m,J (n) =/= rm,b (n) as Bm-1 (n) and F m-1 (n -I) are unequal. The reason to call this algorithm

as indirect RLSL is that it needs to calculate the cross-correlation first , and then to update

the forward/backward reflection coefficients, not directly updating the forward/backward

reflection coefficients.

fm(n) = fm-1(n) + {m,J(n)bm-1(n- 1) (3.4)

(3.5)

f m (n) and bm (n) are forward and backward prediction errors. They are updated based

on a lattice structure as Figure 3.1 shows.

(3.6)

(3.7) --

19

fm.-1 (n)

Figure 3.1: Lattice structure for one stage

Fm(n) and Bm(n) are the forward and backward prediction error powers.

The conversion factor rm,c(n) is updated as:

b~_1 (n)
!m,c(n) = !m-1,c(n) - B ()

Filtering

For n = 1, 2, ... , N 8 , m ·= 0, 1, ... , M:

Pm(n)
K,m(n) = Bm(n)

m-1 n
(3.8)

(3.9)

(3.10)

(3.11)

where Pm (n) is the scalar, K,m (n) is the regression coefficient and em (n) is the a posteriori

estimation error.

According to [18) [19), the conversion factor rc is a good choice for monitoring the

statistical changes in the target non-stationary signals. The input data is required to pass

20

I

the filter twice. The first pass is to make the filter converge, and the second pass is to

obtain the conversion factor 'Yc for each sample (the second round 'Yc), which is needed

for the further purpose: compare each 'Yc with a predefined threshold value to detect the

segment boundaries. After a few iterations at the beginning, 'Yc gets close to unity. If there

is a significant change in the target signal , there will be a dramatical drop of the 'Yc value.

Whether the drop of the 'Yc value can be considered as a dramatical drop is determined

by the threshold. If the 'Yc value falls down below the threshold, it is believed to have a

dramatical drop and should set up a boundary at that instant. Hence, the determination of

the threshold value is very important as well. However, this value is user-defined depending

on different applications and different kinds of signals. In [19) , the threshold value is chosen

as 0.9985 to segment VAG signals. In [1), the RLSL algorithm is used to segment PCG signals

using a threshold of 0.995. It is reasonable to conclude that to obtain good performance of

adaptive segmentation, high precision is certainly required to represent the conversion factor

values. For example, if using 0.9985 as the threshold, the RLSL system should be able to

distinguish the difference between 0.9985 and 0.9986. Undoubtedly, double precision floating

point arithmetic can meet this requirement.

3.2 Implementation and verification of adaptive seg
mentation based on high-level language

To test and verify the selected method of using RLSL algorithm ~or adaptive segmentation,

a C program has been created to implement the RLSL algorithm based on double precision

floating point on a general PC. Meanwhile , a synthesized nonstationary signal has been

generated for verifying the developed C program.

Figure 3.2 shows the flow chart of the RLSL algorithm. According to Figure 3.2, after ini

tialization, the parameters of the first sample, including cross-correlation, forward/backward

reflection coefficients, forward/backward prediction errors, forward/backward prediction er

ror powers and conversion factor, will be updated for each stage until reaching the last stage

(the system order). After the first sample finishes its update and obtains its conversion

21

factor value of the last stage, the second sample starts to update with the same procedure

until the last sample finishes its updates. Furthermore, the 2nd round conversion factor lc

of each sample is compared with a threshold to detect boundaries.

Figure 3.3 shows the plot of a synthesized nonstationary signal. It consists of three

segments: s1, s2 and s3. Each of them is a sequence of 200 samples, modeled and generated

by a 3rd AR model based on Equation (3.12). The adjacent segments are modeled differently

by means of changing one AR coefficient. Thus, the whole synthesized signal is obviously

non-stationary. Figure 3.4 shows the FFT-spectrum plots of the three segments in Figure

3.3. It is. evident that the adjacent segments have different spectra, which means that they

have different characteristics, leading the whole signal non-stationary. The reason of using

such a synthesized signal is that we know exactly where the boundaries are and it will be

appropriate to verify the segmentation algorithm with this synthetic signal before applying

it to real-world biomedical signals. In this case, the boundaries are at 201 and 401 time

samples .

. Each segment of the whole synthetic signal can be mathematically represented as follow:

(3.12)

where w(n) is the random white noise, a1 to a3 are the AR coefficients and the initial

values of s(n) are equal to zeros, which means s(-2), s(-1) and s(O) are equal to zero.

Figure 3.5 shows the second round conversion factor lm,c values of each sample obtained

by using order of 5 (m = 5) for RLSL. Apparently, there are two dramatical drops as shown

in the figure, which are at 203 and 402, quite close to the actual time positions (201 and 401).

If an appropriate threshold value has been chosen, e.g. 0.95, then, the two dramatical drops,

whose values are both below 0.95, will definitely be picked up , indicating two boundaries,

and then the segmentation into stationary segments would be done satisfactorily.

22

Data in

y(n),n=1, ... NJ

Initialization of tht! algorithm

F.,_1 (0) = B.,_1 (0) = 0 .001

r ... 1 (0) = r ... ~(O) = o
11.,_1(0) = o r0~(0)= 1

Initialization of parameters

fo (n) = b0 (n) = y(n)

F0 (n) = B0 (n) = JiF0 (n-1)+ ly(n)l~
r0~(n)=1, Ji=1

r .. ~(n) for 2nd round

Figure 3.2: Flow chart of RLSL algorithm

23

4~------~--------~------~---------.--------,--------.

~ -4
:e
a.
~ -6

-8

-10

-12

100 200 300
Time samples

400 500

Figure 3.3: synthesized nonstationary signal

10
5 s1

! 10:
10

0 50 100 150 . 200 250

10
1o s2

! 10"

10
-
10

o 50 100 150 200 250

s3

' :
50 100 150 200 250

frequency in Hz

600

l
300

l
300

l
300

Figure 3.4: Spectra of the three segments consisting of the synthesized non-stationary signal

24

1:l

§ 0.96
e
-g
8
Q)

~ 0.94
£;

~
(IJ

E

i 0.92

0.9

088oc__ __ ____,_10-0 ---2-'-00 ___ _j30L_O ---4--'-00 ____ 5J._OO __ ____j600

number of iterations

Figure 3.5: The 2nd round conversion factors of the synthesized nonstationary signal

3.3 Design tools and implementation environment

After tested on high-level language (C language), the RLSL algorithm for adaptive segmen- c

tation is implemented by using System generator provided by Xilinx company in Simulink

environment. After installing the system generator successfully, three Xilinx libraries em

bedded in Simulink were generated: Xilinx Blockset, Xilinx Reference Blockset and Xilinx

Xtren1eDSP Kit. The three libraries provide abundant basic and specified Xilinx blocks,

such as adder/subtracter, register , logic units for implementation. All the blocks in these

three libraries are based on Xilinx fixed point type and could be implemented onto Xilinx

FPGAs. With System Generator and other Xilinx implementation tools, i.e. Xilinx ISE,

CoreGenerator, ChipScope Pro, one can implement a full FPGA design flow from Simulink

modeling to hardware [11). For more details about system generator, ISE and other Xilinx

implementing tools, one can refer to [38) [39) [40).

In this research, the target FPGA chip is Xilinx Virtex II Pro xc2vp100-6ff1704. The

25

platform provided by CMC Microsystems (Canadian Microelectronics Corporation Microsys

tems) has the Amirix APlOOO development board installed inside a x86-based PC (32~bit

editions of Windows). Figure 3.6 shows the APlOOO board, and Figure 3.7 shows the location

of components on the APlOOO board.

Figure 3.6: The Amirix APlOOO development board with Virtex-II Pro FPGA installed in the
PC

Serial
Port

Ethernet
Port

Figure 3. 7: Location of components on the APlOOO board

26

3.4 Implementation of block modules of RLSL using
System Generator

3.4.1 Designing block modules for RLSL system

This section describes the implementation of RLSL method for adaptive segmentation

on simulink block level, using System generator from Xilinx company. One of the most

important advantage of using System Generator is that it is combined with Simulink that

makes the design procedure more friendly, straightforward and efficient, since one can always

run simulation and see the results in various ways, i.e. observing waveforms in scope, or

seeing data values in a text file.

As mentioned before, for adaptive segmentation that uses conventional RLSL algorithm,

all the input data are necessary to run into the system for two times, hence requiring control

subsystem to control the data in and out. Furthermore, all the samples are processed one by

one and according to the algorithm (mathematical equations), adjacent samples are inter

related with each other and adjacent stages for one sample are .inter-related as well, thereby

requiring memory subsystem to store useful values of different parameters. Additionally,

it is necessary to have a processing subsystem for calculating the parameters according to

Equations (3.1) to (3.8).

To acquire high accuracy as C implementation does, double precision floating point type

arithmetic has been used to implement the internal computation of RLSL algorithm. All the

data for computing and storing are in 64 bits in total, with 1 sign bit, 11 bits for exponent

and 52 bits for fraction. The remaining of this section depicts the models of RLSL system

with more details.

Figure 3.8 shows the conceptual diagram of the whole RLSL system. It consists of four

subsystems: data control subsystem, memory subsystem, processing subsystem and final

gammas subsystem. The data control subsystem has data communication with all other

subsystems. It collects the input data and controls the data flow into other subsystems

sample by sample. It also generates several logic control signals for the rest of subsystems

27

to make the whole system working correctly. memory subsystem has data communication

with the processing subsystem as for each sample, the values of parameters for each stage

are required to store in memories for further samples or further stages. The final gammas

subsystem stores the conversion factor values of the last stage for each sample. This final

gammas subsystem could be omitted when used for real-time processing. When used for

real-time adaptive segmentation, the threshold is supposed to be known to the user, hence,

each new updated final 'Yc value can be compared with the threshold immediately without

storing.

data out
2*64bits .. data parameter 10"'64bits ... parameter - out - in

*32bits addr t*5bits .. addr -~ datain ctrl -4---

ctrl signals 7*1bit ... ctrl -
1*14 its - 6*64bits

addrfor g parameter update in - parameter update out

data control subsystem memory subsystem processing subsystem

I *I bit .

l*lbit c.trl

... addr ..

----+ gamma

tina I gammas

Figure 3.8: Block diagram of RLSL system

Figure 3.9 shows the real top-level models of RLSL system built in Simulink block

level using System ge.nerator. Similar to the conceptual diagram of RLSL system, the real

RLSL system built in Simulink block level also has four subsystems: data control, memory,

· processing and for final gan1mas.

28

-

[212]

·~ If 0 ...

1 i1 t 0 ~
.. 3
2

~ Q.

1 g

i i

~ [! ~
~·

r~~ ~ ~ ~ ~

i ~
i ~

! i ~ ~ 3. ~ g. ~ ~ ~

1:
[c: [

I'
c: [[['t c:

;;;· ;;;· ;<

~ I"' ~ 1.,

'---I--
'----- 1--

~--,
,----

1 T I r + • • • + + ..
3. I I ;;· · ~ ;;· g. 5' ,. i- ~ I ~ ~ ~ ~ ~

'.il !
~·

~ [1 i ~ ~ [f ~ f
~~ Lc: r+llr Q !

c:

: it it
"' 1.,. I"' r.Q ~~~ I~

...

•
~·

-g. !f ;;· ;;· 3' g. 3' g: ,. ~

1 [f [i f
1."' lii'

c: l~ r~
~ ;;;· I;

1.:; f~ I! I! 1.,

I

Figure 3.9: Top-level model of RLSL system

29

As shown in Figure 3.9, data control subsystem has four input ports and eleven output

ports. Figure 3.10 shows the block diagram of data control subsystem. The four input ports,

named as data in, N -1, load, and M -1, respectively, are all connected with outside world

by using Gateway In xilinx blocks. The input data going through Gateway In has to be

converted into Xilinx fixed point type: Boolean, Unsigned, or Signed (2's camp). In this

design, the data in port is set up using signed (2's camp) type of total 32 bits with 16 bits in

fraction, marked as Fix_32_16. This can be used for larger range of input signals compared

with what has been used in [6] and [18]. They both recorded the VAG signal as integers

using 12 bits per sample. 'N - 1' and 'M - 1' ports are both chosen using unsigned type

with total number of bits 13 and 5, respectively. They are provided for users to determine

the length of the input data Nand the system order M. In this design, the input data length

for processing can be as long as 5000 and the order of the system may reach up to 32. The

'load' port is of Boolean type and is needed to give a stimulus to the counters inside data

control subsystem. The stimulus is a pulse with a duration less than or equal to one system

clock cycle.

The main functions of data control subsystem are:

1. collect input data and control them to be sent out for further processing one by one

from the first sample to the last sample looping for two times.

2. convert the input data stored in fixed point type to double precision floating point

type, i.e. converting Fix_32_16 to UFix_64_0.

3. calculate the initial values for forward/backward prediction error power and convert

them into double precision floating point type, i.e. converting Fix_63_32 to UFix_64_0.

4. generate several control signals that are needed for other subsystems.

Instead of describing each sub modules within data control subsystem one by one, it is

more efficient to show the simulation waveforms of the output ports of data control subsystem

and see their time-sequence relationships. To make it more clear and understandable, only

30

processing t ime
for one stage

(o01c7 generator)

·c7

1or dihl counter
ru nning 3 times

'-++------1--+ilogic singl• forc4

c__--~c6_1

addr for g
N· l

Subsystem

Figure 3.10: Diagram blocks of data control subsystem

d•b out1

small number of samples and stages are used for this purpose. Figure 3.12 shows the output

port waveforms of data control subsystem, using N = 10 samples in total and system order

M = 5 (5 stages in -total) as shown in Figure 3.11. The waveforms came from 'data out ',

'c1 ' 'c2lw/r' 'c4' 'c6 ' 'addr ' 'c5 ' 'c7' 'data out1' 'r/w' and 'addr for g' from bottom
' ' ' ' ' ' ' ' ' '

to top, respectively, as the same order as shown in Figure 3.11. Data out sends out the

stored input data to the memory subsystem sample by sample. It is clear that the input

sample sequence is running exactly two times as expected, indicated by the third dash line in

Figure 3.12. cl, c2lw/r, c4, c7 are the control signals provided for memory subsystem. c6 is

generated for the processing subsystem. c2lw/r, rjw, addr generate the read/write control

signals and addresses for the RAMs in memory subsystem. data outl sends out the initial

31

values of F0 (n) and B0 (n) calculated based on the input data values as mentioned before,

simultaneously with data out.

~ untitled* GJ[QJ[EJ
File Edit View Simulation Format Tools Help

D l ~~~ ~ db ~el<?r4- it I!::.?. r..::1 II • j?DOl 4 I Normal -=.1 1m m @l ~ I±!J 1 .,lEi m ®

di!laout ..
I ~

p

s di!la in

c1 ...
From p

Workspace
c21wlr -

&
c4 ..

p

N-1

c6 ..
Constant

addr ... -..
I §;] Signal 1 r- c5 -load

c7 p

Signa·! Builder

di!la out1 p

&
rlw

M-1

addr for g ..
Constant1

...
;

Scope

data control subsystem

[I:J
System

Generillor

Running 1100% II lr = 7068. ooo jode45 4

Figure 3.11: Simulation of data control subsystem

Figure 3.13 shows the block diagram of the memory subsystem. Since RLSL algorithm

involves both time and order updates, different parameters need different memory unit struc

tures to store their corresponding values. This could be explained as follows. By observing

the right-hand sides of Equation (3.1)-(3.8), it is easy to find out that all the parameters

can be divided into three categories as listed below. Those parameters that have the same

32

:
·5 I I I

l · · · · · · · ·! · · · ·!! · · · · · · · · · · · · ·i· · · · · · · · · · · · · · i · · · · · · ! ······I· , · · · · · · · · · · ·i· · · · · · · · · · · · · · !· · · · · · ·,·····I
5

.: J

~I j ti i · · i · j · i · · i · i I
l · · · · · · · · i · · · ·i i · · , · · · · · · · · ·!· · ·" · · ·, · · · · i · · · · · · i · · · · · · l · · · · · · · · · · · · · ·i· · · · · · · · · · · · · · f · · · · · · · ······I
5

I I I
I I I

~c .·.···.·.:·.·.·. ~ ·:· .. ·.:: J-1 ·-·_·_·_·_::·.·:::.·.:·.:.::::·.:··.·.·.:·. l :·.:··.::··_·_·_·· .. ·.·.:·.·.·.· .. ·.·.::·.·.:·.·.·. r·.· ·.·.· .. ·. j ·.·.·.:::··.::·.·.::· -t .·.·_·_·_·.:.· ... :·::··:· .. ·:···.:··.·.; ·.:::·· .. ·.:.::: .::::·:· .. ::·.:·.·.l :·.·.:··.:::.·.·.:·.·.··.·.·.:·.· .. :·.·.·.:::·~
I I I

;
I I I

~s·.···· 1 d·····•·t1 •. · ·d ·· ··dd ·d ··· 1 •..•••••..•.•.•. . d .. d .. d x · ·· ·····.·· t.d .. ··· .·.·_·_·.: ·· ·· ·d·· ·······d· ···· .· r· · · ... ··.·····-·.· ········· •. ··· dr d·.·. ····.· .. ······.·-··········3
0 1 2 3 • 5 6 7

oeoffset: 0

Figure 3.12: Waveforms of data control subsystem outputs

subscript and index are in the same category.

4
•10

1. bm_ 1 (n -1) , rm- l ,c(n -1) in Equation (3.1); Fm_ 1 (n -1) in (3.3); bm_1 (n -1) in (3.4)

and (3.5); Bm-l (n - 1) in (3. 7)

2. fm-l(n) in (3.1); Bm-l(n) in (3.2); fm-l(n) in (3.4) and .(3.5); Fm-l(n) In (3.6);

rm-l ,c(n), bm-l(n) , Bm-l(n) in (3.8)

3 . .6.m-l(n- 1) in (3.1)

Parameters in the same category share the same block structures in memory subsystem.

Figure 3.14 shows the memory unit for category 1, whereas Figure 3.15 shows the memory

33

RYrn

2 r:Bo:::::o:._l --.-----.lc1

6
UFix 5_0 c1

,_..,. addr
addr

5
UFix_64_0

Delin
3

c2!w'r

8 Bool

r/W

4
Bool

o4

g UFix_64_0

gin

7
Bcol

c7

Del in

ool
jl.c2

L.w/r

Delout UFix G4_0 - 1

De lout

-... rlw

mem for Del

+---~c1

c4

~--+---~c2

t-+--+---+--~addr

gin

~--+---~w/r

H-++-+-~----+lrlw

c7

gout UFix640_ 2

gout

r-r-i-i-~~m=e=m=o=r1=llg=am=m=a~----~~------t-~c4 >------+c1
10

UFix 64_0 _.. fin

~ +--l---+--+-~c4 fin tout UFix 64 0 ::: 3

bin

1
UFix_64 0

data

+---+--+-~c2

t-+--+---+-+---1-~addr

-bin

-data

1---+-+-~w/r

bout~
bout

--+data

r-----+-+-llo>ic7

memforf

~-+-----+-+--tolc4

.----+-+-~Bin B out UFix_64_0

.--+-+--~data1 ----+Lc7 ____ ...J

L_-11--H~-1-+-~~=~~··~~·~•ft•h==~-----i-~====11r=r-~~c7
!?' '-m-em-f-or-1/B--'

12
UFix_64_0

Fin 13
UFix_64_0

.
14

UFix_64_0

Bin

,______J ~ c4

+---+-+----'~ c2

t-+--+---+-+-~addr

,_..,.F in

+-+--+-+-+--i~ ~ da!a1

F out UFix_64 0 6

F out

_.. Fin
Fout UFix_64_0

+--+-+---~data1

~--++-+--+-+---llo>ic7

mem fer F ~H~;~
Lft-tt~~~~~~-·~~~~~=========t~t===~tt~-t-~·4

~ gin gout UFix 64 0

~--+-+-+!c4

~c2
addr

~--+-+~Bin

4data1

L---+--+lwtr

.. r/w

_._____. c

Bout UFix_64_D g

Bout

_. c7
mem for gamma

L--+--4--~--~~
r+--+-----+fbin bout UFix_64_0

c7

Figure 3.13: Block diagram of memory subsystem

foul

5

Bout

7

Fout

8

gout

10

bout

unit for category 2 and Figure 3.16 shows the memory unit for category 3. It is obvious

that the memory unit for category 2 is simpler than that of category 1. This is because

for the current sample, those parameters in category 2 just require the values of previous

stage of the same sample, not requiring the values of previous stage of the previous sample

as what is required in category 1. One should also notice that, although ~m-I(n- 1) in

Equation (3.1) has the same subscript and index as those parameters in category 1, it has

34

a little different memory structure unit shown in Figure 3.16. The reason is that the cross

correlation parameter ~m-1 (n - 1) is updated · for the current stage of the current sample

and the same stage of the next sample, while other parameters in category 1 are updated

for the next stage of the current sample and the next stage of the next sample. In addition,

both forward and backward reflection coefficients do not need specific memory units to store

values, as their updated values are only needed for the current stage of the current sample.

rlw Single Port RAM5

Figure 3.14: Blocks of mem for F

data

Figure 3.15: Blocks of mem for f

Figure 3.17 shows the block diagram of processing subsystem. It consists of eight subsys

tems calculating and updating the eight parameters as shown in the figure. The implemented

system achieves indirectly RLSL algorithm, since it calculates cross-correlation ~m-1 first

and then updates reflection coefficients. Hence, the modules of calculating ~m-1 and reflec-

35

Bool

wlr

6
Bool

rlw -Delta1

Figure 3.16: Blocks of mem for Delta

tion coefficients are in series. However, after calculating forward/backward reflection coef

ficients, the forward/backward prediction errors, forward/backward prediction error powers

and the conversion factor 'Yc are all calculated in parallel, all of which send out the updated

parameter values to the memory subsystem and store them into corresponding memories for

the demand of next stage and/or sample.

Recalling the mathematical equations of RLSL algorithm described earlier in this chap

ter, to save floating point operation blocks, substitute the sign of minus in Equation (3.2)

and (3.3) into Equation (3.4), (3.5) , (3.6) , and (3.7) , and thus obtain the new equations

for calculating forward/backward reflection coefficients, and for updating forward/backward

prediction errors, forward/backward prediction error powers as follows.

()
_ ~m-1(n)

'Ym,J n - B () m-1 n
(3.13)

()
~m-1(n)

'Ym,b n = Fm-1 (n- 1) (3.14)

fm(n) = fm- 1(n) -1'm,J(n)bm- 1(n- 1) (3.15)

(3.16)

36

I

UFix 64 0

gin

bin

UFix 64 0

1
UFix_64_0 -

De lin De lout l U Fix 64 0 ref co ef f

UFix 64_0
De lout

4
UFix 64_0

.,.. Delin

,... gin

~bin

... fin Del ~640
fin Bool ..

c6

~--~~~,...~~c6 ____ ~

Delta

UFix_64 0
Fin

Bin .-----
UFix 64 0 Fin

Fout UFix_64_0

Fin refb~64_0

UFix 6 0,... Fin

,...reff

r--+1 Del

r--f-+'c6

Foul

'--+---• Del
'---
refcoef b F update

I ""-g UFix 64 0
1 \....::....J ,... Bin

Bin
~+-----~-+-~ .,..refb

..._...Del

r----.c6

--.... fin

Bout UFix 64 0

Bout

:=.reff

--....bin

...-cO

fout UFix_64_0 ::: 4

foul

'--------'
f update

----+bin

... refb

~fin
bout UFix_64 0

... Lc6 ____ ___J

b update

10 UFix_64_0 ... gin

gin

11
UFix_64_0

bin

-.. Bin

bin

gout UFix_64_0

~c6

'--g.-m-ma-u-pd-atc-'e

bout

gout

Figure 3.17: Block diagram of processing subsystem

(3.17)

(3.18)

Figure 3.18 shows the block diagram of Delta for calculating ~m-l values. It has two

floating point multipliers, one floating point divider and one floating point adder as the same

number processing units in Equation 3.1. Another register is used to store the calculated

37

~m-1 values and wait for the control signal to let it send out the calculated ~m-1 value to

its corresponding memory.

Figure 3.18: Block diagram of Delta

2

Del

UFix_64_0

result UFix_64_0

reff

fp_divider

Figure 3.19: Block diagram of refcoef f

Figure 3.19 shows the block diagram of refcoef f for calculating forward reflection co

efficient as in Equation (3.13). It just has one floating point divider since (3.13) has just

one division operation. Similarly, the model of calculating backward reflection coefficient is

exactly the same as computing forward reflection coefficient: it also has only one floating

point divider. The only difference for these two models is their different input port connec

tions. For forward reflection model , the denominator of the divider is connected with Bin,

while for backward reflection model, it is connected with Fin. Apparently, the output ports

are different: one is reff and the other is refb, representing forward reflection coefficient and

backward reflection coefficient respectively.

Figure 3.20 shows the block diagram F update for updating forward prediction error

power. It consists of one floating point multiplier and one floating point subtracter. Simi

larly, one extra register is used to store the updated values. It holds the same function as

Equation (3.17) does. According to Equation (3.15)-(3.18) , the modules of updating back-

38

2 a

reff z-1 q
UFix_64_0

en Fout

fp_ mult Register

c6

Figure 3.20: Block diagram ofF update

ward prediction error power and updating forward/backward prediction error have exactly

the same blocks as F update module shown in Figure 3.20. The only difference for these

four models is their different input port connections.

z_1 q UFix_64_0

gout

8 in

Figure 3.21: Block diagram of gamma update

Figure 3.21 shows the block diagram of gamma update for updating conversion factor 'Yc

values. It consists of one floating point multiplier, one floating point divider and one floating

point subtracter as the same operations in Equation (3.8). Also, another register is used to

store the updated 'Yc values and wait for being sent out to its corresponding memory.

finalstage
gin

result UFix_64_0 Fix_64_48

fp_fixed_16_ 48 Single Port RAM

Figure 3.22: Block diagram of final gammas subsystem

Figure 3.22 shows the block diagram of for final gammas subsystem. In this subsystem,

39

the floating point data is converted back to fixed point Fix_16_48 first and then sent out and

stored in a single port RAM for the convenience of further application. The depth of this

single port RAM is double-sized as the length of the input samples. However, for real-time

purpose application, the threshold is supposed to be known, and then each final rc value

could be compared with the threshold instantaneously, and there is no need to have a RAM

for storing all the 'Yc values for all input data.

3.4.2 Simulation results and Comparison with high-level language

To test the functionality of the RLSL system built in the previous section, we compare the

simulation results obtained from simulink block level with the results obtained from the C

implementation. As mentioned before, the purpose of adaptive segmentation is to calculate

and obtain the second round conversion factor value 'Yc of each sample to be compared with

a threshold. Hence, the second round 'Yc values are more important and extracted-compared

with C implementation. In addition, the trend of the second round 'Yc values of the target

signal is more significant than the absolut~ values of 'Yc· Therefore, the corresponding coeffi

cient of the second round conversion factor values obtained from the C implementation and

the simulink block implementation have been calculated to evaluate the performance of the

designed system at simulink block level. The input data is the same for both implementa

tions, taken from a real VAG signal. The comparison is based on three groups of simulations.

The first group uses 84 samples from a normal VAG signal (novag27) running with the sys

tem order from 1 to 16 and the second one uses another 84 samples from an abnormal VAG

signal (abvag34) also running with the system order from 1 to 16. The third group uses 5000

samples from the same abnormal VAG signal abvag34, but it just runs for system order of

16. Tables 3.1 and 3.2 shows the result comparison of the first two groups. Figure 3.23 and

Figure 3.24 show the plots of the conversion factor 'Yc values of each sample obtained from

C implementation and the simulink block implementation running with system order of 16

in the first two groups. Figure 3.25 shows the 'Yc values of each sample in group 3.

In conclusion, according to Table 3.1 and 3.2, the corresponding coefficients for the second

40

system order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
corresponding coefficient 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 3.1: Corresponding coefficients of 2nd round 'Yc values from C and designed system for group
1; order from 1 to 16 ·

system order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
corresponding coefficient 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 3.2: Corresponding coefficients of 2nd round 'Yc values from C and designed system for group
2; order from 1 to 16

round 'Yc values obtained from both C implementation and simulink level implementation

are 100% correlated when running different system orders: from 1 to 16. Since the second

round rc values obtained from C implementation can be used for adaptive segmentation with

a good performance, the conversion factors obtained from the designed system at simulink

block level should be able to have the same performance for adaptive segmentation as well.

I :~tlllllllllllllfil~
0

·
8

20 40 60 80 100 120 140 160

I :~tll ll lllll l lllfi l~
0

·
8

20 40 60 80 100 120 140 160

I ;~tllllllllllfllfil~
0

·
8

20 40 60 80 100 120 140 160
number of iterations

Figure 3.23: plots of 'Yc values from C and designed system for group 1 with order of 16

Moreover, according to Figures 3.23, 3.24, and 3.25, the 2nd round rc values (from 85 to

168 in x axis of the first two an~ from 5001 to 10000 in x axis of the third one) obtained from

C implementation and the designed system at simulink block level match very well. Thus,

41

number of iterations

. Figure 3.24: plots of rc values from C and designed system for group 2 with order of 16

5000 samples from abvag34 1 order= 16

r::rrr~~-'lf'':'"""'""w:: ri/'"': ' l
0

·
85

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C program

i'::rr~ ·1r111
•

11

........ •• r1
..... : · l

0 .85~~~
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

number of iterations

Figure 3.25: plots of rc values from C and designed system for group 3 with order of 16

it is concluded that the RLSL system implemented on simulink block level works correctly

and satisfactory as C implementation does.

42

3.5 Implementation ofRLSL on FPGA and result com-. par1son

After building up the models in Simulink block level, the System generator tool can gener

ate the synthesizable VHDL or verilog code for the design, which can be imported into Xilinx

ISE for further design implementation. Xilinx ISE tool can do synthesis, implementation

(translate, map, place & route) and device programming for the target design. Behavioral

simulation is supported by Mentor Graphics ModelSim. After downloading the design to

FPGA successfully, the verification can be achieved by using Xilinx ChipScope Pro tool.

For the design of RLSL, VHDL code is chosen for system generator. The clock frequency

is selected as 20MHz. The maximum data length for processing according to the physical

design is 5000 samples. The maximum system order for processing according to the physical

design is 32. The target FPGA device is xc2vp100-6-ff1704.

Area Requirements

Table 3.3 shows the device utilization summary of the RLSL design, which is provided

. by ISE tool after it has been implemented successfully.

Number of Slice Flip Flops 54%
Number of 4 input LUTs 40%

Number of occupied Slices 61%
Number of bonded lOBs 11%
Number of Block RAMs 11%

Number of MULT18X18s 1%
Number of GCLKs 6%

Table 3.3: Device utilization summary of RLSL design; target device: xc2vp100-6-ff1704

Figure 3.26 shows the percentage of device slice usage of RLSL design running under dif

ferent system orders, including testbenches for each implementation. The system is running

under the order of 16, 20, 24, 28, 32, respectively, with a total of 4096 input data samples.

According to Table 3.3 and Figure 3.26, it is clear that the RLSL FPGA implementa

tion occupies around 61% source of the target device and more importantly, when running

different orders (from 16 to 32), the area of the occupied slices does not change much (in

43

If)

w
()
:::::i
(J)

0
(1,)
Ol
co
If)
::::J

0.7,----,.----.,----.---- --,------,------,

16 20 24 28 32

number of stages

Figure 3.26: Comparison of the device slice usage of RLSL algorithm with different orders,
including testbench for each implementation

that the testbench also occupies some source, hence it certainly has some difference, but not

much). This is what it is expected, as the whole RLSL design holds the same architecture

for each stage of each sample.

Clock and Timing

The system is a single rate system, one elk for all. The clock frequency is chosen as 20

MHz (period = 50 ns). For one sample running for one stage, the processing time is setup

as 200 clock cycles. The reason ·is that in the critical path for calculating those parameters,

there are two division in series, and each floating point divider has maximum latency of

56. All other floating point adder/subtracter and multipliers have their maximum latencies.

Hence, to make the circuits have enough time to obtain stable and correct results , 200 latency

is determined for the processing time of one stage, controlled by a counter in data control

subsystem. Then for processing 4096 samples of 16 stages to get the second round r values

· for each sample, the whole processing time is:

clock cycles = 200 x 16 x 4096 x 2 = 2.62144 x 107 (3.19)

44

The FPGA elk period is 50 ns, then the real time for processing 4096 samples with 16

stages is:

Time = 50 x 2.62144 x 107 ns = 1.31072 x I09ns = 1.31072s (3.20)

Limitations

As the RLSL algorithm is related with both time and order, the performance is dependent

upon these two factors. The length of the data and the chosen order influence the real

processing time. Take the implementation of running 4096 samples and choosing order of

16 as an example. According to the static timing report, the minimum period is 34.981 ns

(maximum frequency 28.587 MHz). Hence, for the whole 4096 samples for only one stage,

the processing time is

Time= 34.981 x 200 x 4096 x 2(ns) = 0.0573128704 x I09ns = 0.0573128704(s) (3.21)

Generally, the sampling rate of 2 kHz is typical for many biomedical signals' acquisition

[I] [6] [18]. Hence, to collect 4096 samples, it will take 2.048 seconds. Therefore, according

to Equation (3.21), the maximum order (the limitation) for processing 4096 samples is

order = 2.048 --;- 0.0573128704 = 35.733681 ~ 36 (3.22)

Performance

As mentioned in previous chapters, the main purpose of this RLSL design is to calculate

the 2nd round 'Yc values for each sample. Hence, the performance can be evaluated by

comparing the rc values with those obtained from high-level language, i.e. C implementation

and/or simulink block level implementation, to see whether the system works correctly or

not and whether the rc values are accurate enough or not.

After downloading the design to FPGA successfully, using chipscope one can see the

output port value captured by chipscope. Figure 3.27 shows one test example of processing

4096 samples running for 16 stages. The last 'Yc value of the second round is captured and

represented by the signed fixed point version Fix_l6_48 in Hexadecimal, which is equal to

45

II WlM!form - DEV:1 My()evice1 (XC2VP100) UNIT:O MyllAO (LA) :-:::.:: ·::::-·: :-:.:::,: :::,,· ·-:-: ·::. ·-:,:· :: , .. ,,,,. :-:,·. :-:: .•. ·:--:,:·: _:,.•·:::,.::::_ :-·:-:;::: • ,.·,-:,:·:,:::_"-:::;::: c" It' I

Bus/Signal X 0 1~ 15 16 17 18 19 20 21 22
I I I I I I I I

o- DataPort_4 2 2 2

DetaPOJ::t[114] 0 0

o- DataPort _ 3 000 000 0000000000000000111111111 011111 00011 0000111 01 001 01 000001 001 01 011

o- DataPort _ 2 OF OF OF

o- DataPort_l OFF OFF OFFF

o- DataPort 010 010 '/.... FFFEOOOO X 00020000 X 00030000 X 00020000 X ooo4oooo X ooo2oooo X
DetePo~::t[0] 0 0

DetePoi:t[1) 0 0

DetePoi:t[2] 0 0

~~~ VIO Console- DEV:1 Myl)evice1 (XC2VP100) UNIT:1 MyVI01 (VIO) 
: :-·::-:- ·-·-:-: c" It' I2SI 

Bus/Signal Value 

o- Syncin OOOOFFBE30E94128 

Figure 3.27: Monitoring signal using Chipscope 

0.9985 in decimal (calculated by Matlab). Taking the same input data to the C implemen

tation running 16 stages, the last rc value obtained is 0.9985. Two additional examples have 

also been implemented to test the RLSL design. One takes 4095 samples running 16 stages 

to compare the last rc value of the second round and the other takes 4094 samples running 

16 stages to compare the last rc value of the second round. The result comparison of the 

three examples mentioned above is shown in Table 3.4. It is clear that the rc value obtained 

from the FPGA implementation has very high accuracy with a mean correlation of 99.93%, 

which will certainly meet the requirement in real-time adaptive segmentation of biomedical 

signals. 

Example No. 1 2 3 
Parameters N=4096; M=16 N=4095; M=16 N=4094; M=16 

rc(2N) from C 0.9985 1.001 0.9977 
rc(2N) from FPGA 0.9985 1.003 0.9977 

correlation 100% 99.8% 100% 

Table 3.4: Comparison of the last "Yc value of the 2nd round obtained from C and FPGA imple
mentations 

In real applications, the second round rc values for all the input data will be compared 

with a threshold instantaneously. The procedure should be like this: whenever the first 2nd 

46 



round 'Yc value is available, it is then compared with the threshold value immediately. If the 

'Yc value is below the threshold, that means a boundary should be set up there. Meanwhile, 

due to [19] [20], one segment for VAG signal should contain at least 120 samples. The number 

of 120 is defined as the minimum desired segment length suitable for further modeling. If 

the distance between two boundaries is less than 120 samples, then, the second boundary 

of the two should be ignored. Based on this purpose of obtaining positions of boundaries, 

some modifications have been done to the design in simulink block level as explained below. 

Figure 3.28 shows the renewed RLSL system. It has one more subsystem: boundaries 

subsystem, which gives out the positions of the boundaries among the input data. Figure 

3.29 shows the block diagram of the boundaries subsystem. It sends out the numbers that 

represent the positions of boundaries, as long as the distance between adjacent boundaries 

is equal or greater than 120. Figure 3.30 shows the block diagram that compares the 2nd 

round 'Yc values with a user-defined threshold value and sends out the numbers representing 

the boundary positions. Since 'Yc values are . available as double precision floating point, a 

fixed point to floating point converter is used to convert the threshold value from Fix_64_32 

type to double precision floating point type. 

After building up the new RLSL system in simulink block level, re-generating the VHDL 

code, synthesizing, translating, mapping, placing & routing, and downloading design to 

FPGA, the chipscope is still used to see the output of the system and compare the result 

with the simulation results obtained from C implementation and simulink block level im

plementation. The new RLSL system has been tested for three groups: one is taking 500 

samples from the real knee signal novag27 with order of 5 and threshold value of 0.9985; the 

second one is taking the same 500 samples and the same threshold value 0.9985 but with 

order of 16; the third one is taking the synthesized signal of 600 samples (used before in this 

chapter for verification of adaptive segmentation) and threshold value of 0.95. The minimun1 

desired segment length is using 120 for all of the three. The results are shown in Tables 3.5, 

3.6 and 3.7. 

For FPGA implementation, only the last boundary can be captured and displayed by 

47 



c 122 244 364 484 
Simulink 120 240 363 483 
FPGA - - - 482 

Table 3.5: Group 1: Boundaries obtained from C implementation, simulink block level and FPGA 
implementation; N = 500, M = 5, threshold = 0.9985 , min = 120 

c 120 240 360 480 
Simulink 120 240 360 480 
FPGA - - - 480 

Table 3.6: Group 2: Boundaries obtained from C implementation, simulink block level and FPGA 
implementation; N = 500, M = 16, threshold = 0.9985 , min = 120 

c 203 402 
Simulink 202 401 
FPGA - 401 

Table 3. 7: Group 3: Boundaries obtained from C implementation, simulink block level and FPGA 
implementation; N = 600, M = 5, threshold= 0.95, min = 120 

chipscope. However, according to Tables 3.5, 3.6 and 3. 7, no matter using VAG signal or 

synthesized signal, no matter using low order or high order, the last boundary obtained by 

FPGA implementation is very similar to the C implementation and simulink block level im

plementation, which means the FPGA implementation of RLSL method does work correctly 

and provide very good performance of adaptive signal segmentation. Table 3.8 shows the 

device utilization summary of the new RLSL design with boundaries subsystem. 

Number of Slice Flip Flops 55% 
Number of 4 input L UTs 41% 

Number of occupied Slices 71% 
Number of bonded lOBs 11% 
Number of Block RAMs 12% 

Number of MULT18X18s 1% 
Number of GCLKs 6% 

Table 3.8: Device utilization summary of RLSL design with boundaries subsystem; target device: 
xc2vp100-6-ff1704 

48 



Summary 

The RLSL method for adaptive segmentation has been implemented for the first time 

onto FPGA with programmable functions and based on double precision floating point type 

that can provide high accuracy. After the target nonstationary biomedical signal has been 

adaptively segmented, AR modeling method can be used for each stationary segment for 

further application, i.e. using Burg-lattice algorithm to calculate AR parameters of the 

segment. In next Chapter, the Burg-lattice algorithm and its hardware implementation will 

be provided in details. 

49 



,-Jg,~~~~ 

i ! 
~· 

l f a r i I 
[0' [0' ., l~ ~~ T 
L~ f~ I~ I~ 

Ill 

lo 

Figure 3.28: Diagram of RLSL with boundaries subsystem 

50 



_..j Out L double ..._I d ... ...-, 
Gateway Out To File 

1 ~ d 

' l .. _ 1 
UFix 13 0 .. 

UFix 13 0 -:;;y- Boo I 
numin z: _, q !' a z:-G ~ .. en a+b 

UFix_14_0 • 
b ,... .. 

Register1 ~b Relational1 

AddSub 

I 120 1 UFix_13_0 
I 

Constant2 . 

Figure 3.29: Block diagram of boundaries subsystem 

c2in 

threshold Relational 

fixed_fp_32_32 

Register 

and 
z~ 

Logical1 

UFix_13_0 

ool 

num 

Figure 3.30: Block diagram of comparing 2nd 'Yc values with threshold value 

51 



Chapter 4 

AR modeling -with Burg algorithm 
and hardware implementation 

In this chapter, the theory of the Burg algorithm will be presented first mathematically, and 

then designing the algorithm in simulink block level will be described. The simulation and 

result comparisons with high-level languages will be followed. The FPGA implementation 

of Burg algorithm and conclusions will be presented at last. 

4.1 The theory of Burg algorithm 

As mentioned in Chapter 2, AR modeling is one of the most widely used methods in 
\ 

biomedical signal analysis. Figure 4.1 shows the general block diagram of an AR model. 

y(n) 

Figure 4.1: Signal-flow diagram of AR model 

52 



y( n) is the current sample of a stationary input signal with a certain length. y( n) is 

the approximate predicted value of the current sample and e( n) is the forward prediction 

error. a1 to am are the parameters of the AR model. Generally, the purpose of AR modeling 

is to compute the AR parameters (coefficients) a1 to am based on minimizing the forward 

prediction error e ( n). 

Among those existing techniques to implement AR modeling, Burg algorithm is one of 

the most popular approaches due to its important advantages: 

• uses lattice structure performing the recursive operations, which leads to modularity 

and less computational complexity. More importantly, the AR coefficients can be 

computed for any model order by simply adding one or more lattice stages without 

· affecting the earlier computations for lower orders. 

• guarantees a minimum-phase design for the lattice predictor. 

The Burg algorithm is based on minimizing the sum of the squared forward and backward 

prediction errors. The cost function is given as [1] 

N 

~m = L J:n(n) + b~(n) ( 4.1) 
n=m+I 

where fm(n) and bm(n) are forward and backward prediction error for order of m. N is 

the length of the input data. 

(4.2) 

(4.3) 

Equation ( 4.2) and ( 4.3) are the recursion equations for forward and backward prediction 

error updates. They use the lattice structure for computing forward/backward prediction 

errors as shown in Figure 4.2, similarly to the RLSL algorithm described in Chapter 3. The 

only difference is that for Burg algorithm, there is only one reflection coefficient ( 7m ( n)) 

53 



for forward/backward prediction error updates. However, for RLSL algorithm, there are 

two different reflection coefficients (forward/backward reflection coefficients: rm,J ( n) and 

lm,b(n)) for forward/backward prediction error updates, respectively. 

fm-l (n) fm(n) 

Figure 4.2: lattice structure that performs the recursion equations for one stage of Burg algorithm 

The reflection coefficient of Burg algorithm is calculated as 

_ 
2 

2:::~ fm - l(n)bm-l(n- 1) 

lm- 2:::~ [f~_ 1 (n) + b~_ 1 (n- 1)] 
( 4.4) 

It is easy to realize that the absolute value of reflection coefficient lrm I is always lesser 

than unity. This property can guarantee minimum-phase for the lattice predictor [1]. 

The AR model parameters can be computed from the reflection coefficient by using the 

relationship in Equation ( 4.5) 

(4.5) 

In addition, it is notified here that in many literatures (e.g. [1]) , the reflection coefficient 

is represented using the negative value of what is obtained in Equation (4.4), which means 

that the reflection coefficient value in Equation ( 4.4) will be multiplied by -1. Thereby, 

correspondingly, in Equations ( 4.2), ( 4.3) and ( 4.5), the subtraction will become addition. 

54 



In this thesis, the design of Burg algorithm is all based on Equations (4.2), (4.3), (4.4) and 

(4.5). 

The procedure of calculating AR coefficients am,k can be listed below. 

Initialization 

fo ( n) = b0 ( n) = x ( n), n = 0, 1, ... , N - 1 

ao = 1 

1st iteration: 

rth iteration: 

_ 
2 

2:::1
1 
x(n)x(n- 1) 

r1 - 2:::11 [x2(n) + x2(n- 1)] 

!1(n) = x(n)- ''flX(n- 1), n = 1, 2, ... , N- 1 

b1 ( n) = x ( n - 1) - r1 x ( n), n = 1, 2, ... , N - 1 

_ 
2 

2:::r
1 

fr-1 (n)br- 1(n- 1) 

rr- l:::r1 [J;_1(n) + b;_1(n- 1)] 

fr(n) = fr-1(n)- rrbr-1(n - 1), n = r, ... , N- 1 

br(n) = br-1(n- 1)- rrfr-1(n), n = r, ... , N- 1 

1 1 0 
ar,1 ar-1 ,1 ar-1,r-1 
ar,2 ar-1 ,2 ar-1,r-2 

- rr --* a1,1' ... 'ar,r 

ar,r-1 ar-1,r-1 ar-1,1 

ar,r 0 1 

55 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

( 4.11) 

(4.12) 

(4.13) 



where for each stage, ar,r = -{r· 

Compared with the conventional RLSL algorithm described in Chapter 3, the following 

conclusions can be made: 

• Burg algorithm is not as adaptive as RLSL, since it does not update parameters based 

on sample-by-sample manner but on block-by-block manner. According to ( 4.4), with 

the increase of the system order, the length of data required for calculating reflection 

coefficient decreases. Furthermore, with the increase of system order , the number of 

calculated AR coefficients increases as well. Hence for adjacent stages, their architec

tures are not exactly the same. Thus, the Burg system is hard to implement using the 

same architecture for all the stages. 

• The reflection coefficient of Burg algorithm, which is used to update parameters (for

ward/backward prediction errors), is always less than or equal to unity. Thus, if 

normalization is employed to the input data and the total length of the input data is 

known, then for each stage, the range of values of the parameters can be determined. 

This means that how many number of bits used to represent these parameters can be 

calculated, hence fixed point arithmetic could be a solution. This is discussed in details 

below. 

Normalization 

Normalization is applied to the input data, where the input data is given as x(n), n = 

0, ... , N -1. 

Generally, normalization is to do a division: x' (n) = i4x(n), where M is the maximum 

absolute value of x( n) and thus, I x' ( n) I ::; 1. For the first stage, the first step is to calculate 

the reflection coefficient. Then, according to Equation ( 4.6), the range of the values of 

numerator and denominator in Equation ( 4.6) for the first stage would become 

N-1 N-1 

L x' (n)x' (n- 1) < L ix'(n)iix'(n -1)1 (4.14) 
n=1 n=1 

N-1 

< L1·1=N-1 (4.15) 
n=1 

56 



N - 1 

2:: [ x'2 (n) + x'2 (n- 1) J 
n=1 

N-1 

2:: I [ x'2 (n) + x'2 (n- 1) J I 
n=1 
N-1 

- 2:: [lx'2(n) I + lx'2(n- 1) IJ 
n=1 . 
N-1 

< 2:: [1 + 1] = 2(N- 1) 
n=1 

(4.16) 

( 4.17) 

(4.18) 

Although normalization is used to the input data, the reflection coefficient updated in 

the first stage does not change its value as 

2 
~:;:11 x' (n)x' (n- 1) 

~:;:1
1 [x' 2 (n) + x' 2(n- 1)] 

(4.19) 

~N-1 .l...x(n) · .l...x(n- 1) 2 n=1 M M ( 4.20) 
~:=~1 

[ ( it x ( n)) 
2 

+ ( it x ( n - 1)) 
2 
J 

~2 • ~:::11 x(n)x(n- 1) 
2 N 1 ( 4.21) 

( 4.22) 

Then it comes to update forward and backward prediction errors. According to Equations 

( 4. 7) and ( 4.8) and the fact that the absolute value of reflection coefficient is always less than 

or equal to unity, it is easy to obtain 

I f~ ( n) I I x' ( n) - "(1 x' ( n - 1) I 
< lx' (n)l + 1-'Y1x' (n- 1)1 

< lx' (n)l + I-'Y11Ix' (n- 1)1 

< (1 + 1. 1) = 2 

57 

(4.23) 

( 4.24) 

( 4.25) 

( 4.26) 



~b~ (n) I - lx' (n- 1) - 11x' (n) I ( 4.27) 

< lx'(n -1)1 + 1-l'lx'(n)l ( 4.28) 

< lx' (n -1)1 + 1-11llx' (n)l ( 4.29) 

< (1 + 1. 1) = 2 ( 4.30) 

Accordingly, the relationships between new forward/backward prediction errors (with use 

of normalization) and original forward/backward prediction errors (without use of normal

ization) become as 

f~ ( n) x' ( n) - r~ x' ( n - 1) 
1 1 

Mx(n) -11 Mx(n- 1) 

1 
M · f 1(n) ,n = 1,2, ... ,N -1 

b~ (n) x' (n ~ 1)- r~X
1 

(n) 
1 1 

- Mx(n- 1) -11 Mx(n) 

1 . 
M · b1 ( n), n = 1, 2, ... , N - 1 

( 4.31) 

( 4.32) 

( 4.33) 

( 4.34) 

( 4.35) 

( 4.36) 

Finally, for AR coefficients updates, according to Equation ( 4.5) , calculating AR coeffi

cients just requires the values of the reflection coefficient of the current stage and the AR 

coefficients from the previous stages. Additionally, the reflection coefficient does not change 

its value if use normalization to the input data as presented above. Hence, it is easy to con

clude that the values of updated AR coefficients will not change with utilizing normalization 

to the input data: the roots of AR coefficients are always inside and or on the unit circle. 

The second stage and the successive stages are similar to the first stage and then one 

can easily obtain the relationships shown in Table 4.1, where N is the length of the input 

data and r is the order (the number of stages). 

Based on this relationship, once the data length Nand number of stages (system order) r 

have been determined, the range of the values of parameters are also specified. Therefore, the 

58 



Numerator of 'Yr ~ 4r-1(N- r) 
Denominator of 'Yr ~ 4r-1(N- r) 

'Yr ~1 

fr(n) ~ 2r-l 

br(n) ~ 2r~l 

ak ~1 

Table 4.1: the relationship between the range of values of the parameters, length of input data 
and order for Burg algorithm 

total number of bits used to represent these parameters can be calculated correspondingly. · 

For example, if the input data length is 8000 and system order is 3, Fix_40_20 fixed point 

(signed 2'comp) can be used for all internal computations. Using 20 bits in fraction could 

obtain good accuracy, which will be shown later. 

4.2 Simulink implementation and verification of Burg 
algorithm 

4.2.1 Simulink module design 

The implementation of Burg algorithm follows the same procedure as the implementa

tion of RLSL algorithm in Chapter 3. The first step is to implement Burg algorithm on 

simulink block level using System Generator. The second step is to generate the HDL code 

for the design and then download it onto FPGA. Similarly, before downloading the design 

onto FPGA, it is still necessary to test the implementation at simulink block level by com

paring the simulation result with the one provided by C implementation and with a Matlab 

command arburg that directly calculates AR coefficients of an input data based on Burg 

algorithm. The implementation of Burg algorithm at simulink block level is described below. 

Figure 4.3 shows the flow diagram of calculating the reflection coefficient and AR coeffi

cients for each stage. Two memories are needed for storing updated forward and backward 

prediction errors. The depth of these two memories is different for different stages, gradu

ally decreasing one for adjacent stages. Multiplications, additions, summations and division 

are required to calculate the reflection coefficient. After obtaining the reflection coefficient , 

59 



Figure 4.3: Diagram of Burg algorithm 

one path is to update forward/backward prediction errors for the next stage and the other 

is to calculate AR coefficients for the current stage. For each stage, the architecture and 

modules of calculating the reflection coefficient and updating forward/backward prediction 

errors are the same. However, for calculating AR coefficients, with the increase of the num

ber of stages, the number of desired AR coefficients also increases. Hence, compared with 

the current stage, the next stage will have one more module of computing AR coefficients, 

as all of the AR coefficients are calculated simultaneously in parallel. Thereby, the design 

of Burg algorithm, unlike the RLSL design, could just simply have one architecture suitable 

for all the stages. For adjacent stages, they are different. However, some components can 

share the same architecture and modules, i.e. the components of calculating the reflection 

coefficient and components for updating forward/backward prediction errors. 

Figure 4.4 shows the simulink block diagram of Burg algorithm implementing 3 stages. 

tid is the input data from Workspace of Matlab. The data is the normalized data from the 

same VAG signal novag27 used in Chapter 3 with length of 8000 samples. stagel is the first 

stage of Burg algorithm. It has one input port d that is connected with tid. It also has four 

output ports, named as fout, bout, ctrl, and aol. fout and bout send out updated forward 

and backward prediction errors to stage2. ctrl provides a control signal for stage2. aol 

sends out the only one AR coefficient a1,1 of stagel (which is also the reflection coefficient 

of stagel) to the next stage for the calculation of AR coefficients of stage2. 

stage2 is the second stage of Burg algorithm. It has four input ports, named as en, fin, 

60 



bin, and ainl, respectively. It also has five output ports, named as fout, bout, ctrl, ao2 and 

aol. 

stage3 is the third stage of Burg algorithm (the last stage in this implementation). It 

has five input ports, en, fin, bin, ainl, and ain2; ~nd three output ports, ao3, ao2, and aol. 

Because it is the last stage, there are no fout, bout, ctrl for further stage. 

From 

Workspace 

stage1 

System 
Generator 

fout 

bout 

ctr1 

ao1 

stage2 

fout 
ao3 

bout 

ctr1 ao2 

ao2 

ao1 
ao1 

stage3 

Figure 4.4: Block diagram of Burg for 3 stages 

sum 

gam 

double 

double 

double 

4 

Figure 4.5: Block diagram of stagel for Burg algorithm 

61 

0.053621 

Display2 

Display 

tout 



Figure 4.5 shows the block diagram of stagel that consists of 9 subsystems. 

• mem is to store input data and send out those data to sum for processing. 

• sum is to calculate the two summations of numerator and denominator in Equation 

(4.4). 

• -gamma is to divide the numerator by denominator and then times two according to 

4.4 an.d send out the result (named as temp) to delay subsystem. 

• mem rst is to generate a CR (counter reset) signal that resets the counter in mem 

during the reading memory period, i.e. CR signal is the READ memory reset signal. 

It also generates a control signal for delay, control and gam subsystems. 

• mem enable is to generate a CE (counter enable) signal that enables the counter in 

mem during the reading memory period. It also generates a rst signal that resets the 

accumulators in sum. 

• delay is to delay the temp value by waiting for an enable signal generated by mem 

rst. The purpose of this delay module is to make sure that the correct values of 

temp, fout and bout going into f/b update subsystem arrive at the same time. This 

then guarantees a correct calculation for updating forward/backward prediction errors. 

Noting that for the first stage, fout and bout values are both equal to the input data 

values. 

• f/b update is to update the forward/backward prediction errors according to Equations 

( 4.2) and ( 4.3) and send the updated values to stage2. 

• control is to generate a control signal ctrl for stage2's mem enable subsystem. 

• gam is to calculate a1,1 value of stagel and send it out for stage2. 

62 



not 

lnverter1 

Register1 Fix_40_20 

t 
UFix 13 0 ou - - dout 

a-b B I 
z-o 

Constant1 Relational1 lnverter3 

Logical2 

Figure 4.6: Block diagram of mem in stagel 

All these subsystems in stagel will be described in the following few paragraphs. The 

same subsystems also in stage2 and stage3 will not be described. 

Figure 4.6 shows the block diagram of mem in stagel. The main components in mem 

are the counter and the single port RAM. 

The RAM has three input ports: addr, data and we. addr is connected with the output 

port of the counter, which provides the address for the RAM. The counter works under 

counting-down mode, counting from N- 1 to 0 if the total input data length is N. data is 

connected with the Gateway In block. we controls the working mode of the RAM. When we 

is logical one, the RAM works under the WRITE mode, which means the data are written 

to the memory location indicated by the address input [38]. When we is logical zero, the 

RAM works under the READ mode. Furthermore, the single port RAM is setup as 'NO 

READ ON WRITE' mode, indicating that the output value remains unchanged irrespective 

of change of address if RAM is working under the WRITE mode. The initial value of the 

output of RAM is zero. The depth of the RAM is N (in this implementation N = 8000) and 

the RAM always has one clock latency. 

The counter counts from N- 1 down to 0. It has two control input ports: rst and en. 

When rst is logical one, the counter is reset to N - 1. When en is logical one, the counter 

63 



is enabled to start counting. 

The counter's output value is compared with zero. If it equals to zero, then the output 

port r is set high. That means the counter is already finished one loop. This r signal is 

needed to enable the we of RAM. During the first counting loop from N- 1 to 0, we is 

logical one. After the first loop finished , the counter is immediately reset to N- 1 and then 

starts to count down to 0 for the second loop, and we turns to logical zero correspondingly. 

At that time, the RAM changes to READ mode, and thus it sends out the stored data from 

the first sample to the last sample one by one. 

rand we signals are used to generate a control signal ctrl for sum and mem rst subsys

tems. 

Figure 4. 7 shows the block diagram of sum in stage1. sum is to calculate the two 

summations in ( 4.4). The results will not be sent out to the following parts until ctrl port 

receives logical one._ 

bin 

ctrl 

z;-a(lb) Fix_ 40_20 

Mult4 

Mult'5 

_, 
z 

b 
Fix 40 20 

a+ -

AddSub1 

Fix_ 41_20 

temp1 

Fix_ 41_20 

Figure 4. 7: Block diagram of sum in stagel 

Fix_41_20 

Register6 

2 

temp2 

The control signal ctrl is connected with the output port ctrl of mem. Combine the 

two subsystems mem and sum together to describe their behaviors: when the input data 

available, the counter starts to count, and the RAM is in WRITE mode. TheN input samples 

are written to RAM one by one. After all the data is written to RAM (the RAM is full at 

64 



that time), the counter is reset immediately and meanwhile the RAM changes to READ 

mode, sending out the stored N samples one by one. After finishing the computation of the 

two summations according to Equation ( 4.4), ctrl signal becomes logical one instantaneously, 

indicating that the two summation values (templ and temp2) are available for computing 

the reflection coefficient. One clock cycle later, templ and temp2 are sent out to -gamma 

subsystem to calculate reflection coefficient. 

Figure 4.8 shows the block diagram of -gamma in stagel. -gamma is to divide templ 

(the value of denominator of Equation (4.4)) by temp2 (the value of numerator of Equation 

( 4.4)) and then multiply the result by two. The output temp is the reflection coefficient in 

Equation ( 4.4). 

temp1 CMult1 

CORDIC DIVIDER1 

Figure 4.8: Block diagram of -gamma of stagel 

Figure 4.9 shows the block diagram of mem rst in stagel. mem rst generates two 

control signals: en signal for delay, control and gamma subsystems, and CR signal for mem 

subsystem. CR is the signal that resets the counter in mem. 

and 
z"" 

Logical4 

Boo I 

en 

or 
z~ 

Logical1 

Figure 4. 9: Block diagram of mem rst of stagel 

65 

CR 



Figure 4.10 shows the block diagram of mem enable in stagel. mem enable generates 

two control signals: CE for mem subsystem and rst for sum subsystem. It guarantees that 

CE holds logical one while the data is written to RAM. 

Boo I 

ctrl 

Regi:s:ter4 

or 
z-o 

Logica13 

Boo I 

lnverter2 

Figure 4.10: Block diagram of mem enable of stagel 

rst 

Figure 4.11 shows the block diagram ofdelay in stagel. It requires an enable signal by 

mem rst. 

Fix_40_ 

temp out 

Delay4 
en 

Figure 4.11: Block diagram of delay of stagel 

Figure 4.12 shows the block diagram of f/b update in stagel. It does exactly the same 

function as Equation ( 4.2) and ( 4.3) do. 

Figure 4.13 shows the block diagram of control in stagel. It generates a control signal 

ctrl for stage2 's mem enable subsystem. The function of this ctrl signal is to enable the 

counter, which provides addresses for RAMs in stage2 's mem subsystem, to start to count 

when the forward/backward prediction errors updated in stage1 are available. 

Figure 4.14 shows the block diagram of gam in stagel. It calculates the AR coefficient 

of stage1, keeps the value unchanged and sends it out for the next stage. 

66 



bin 

2 

en 

4.2.2 

Delay 

Boo I 

Fix_40_20 

fin 
Fix_40_20 

Mult1 

a_ b Fix_ 40_20 

tout 

Add Sub 

AddSub1 

Figure 4.12: Block diagram of f/b update in stagel 

Boo I q 

ctrl 

en 
Registel3 

Delay4 

Figure 4.13: Block diagram of control in stagel 

temp 

Register? 

x(-1) 

Negate1 

and 
£1 

Logical3 

Fix_40_20 

RegisterS 

Figure 4.14: Block diagram of gam of stagel 

Fix_40_2 

bout 

Fix_ 40_20 

gamma 

Simulation results and comparison with high-level languages 

The Burg algorithm has been implemented on C language first. Figure 4.15 shows the 

flow chart ofthe C implementation. Obviously, there is no time-update (no loop for N) in 

67 



the flow, which is different from RLSL in Chapter 3. The reason is that the Burg algorithm 

is on a basis of block-by-block manner, not a sample-by-sample manner as RLSL. For Burg 

algorithm, the intention is to obtain the AR coefficients of the last stage for the whole input 

data. 

Initialization 

fo (n) = b0 (n) = x(n) 

m = O,a0 = 1 

Figure 4.15: Flow chart of Burg for C 

The comparison of simulation results is based on three groups between Matlab command, 

C implementation and simulink block level implementation as shown in Tables 4.2 , 4.3 and 

4.4. The first group is taking 120 normalized samples from the VAG signal novag27 used 

in Chapter 3 and using the 3rd order AR model. The second one is taking 1000 normalized 

samples from the same VAG signal and using the 3rd order AR model. The third one is taking 

68 



8000 normalized samples from the same VAG signal and using the 3th order AR model. 

am,k 'arburg' in Matlab C implementation Simulink implementation correlation (%) 
a3,1 -0.4085 -0.4085 -0.4079 99.85 

a3,2 -0.1434 :.0.1434 -0.1448 99.02 

a3 ,3 -0.1700 -0.1700 -0.1677 98.65 

Table 4.2: Groupl: calculating AR coefficients based on three methods; order = 3, N = 120; 
z t · _ lOOo/c _ ISimulinkimplementation-Cimplementationl X lOOo/c 

corre a zon - 0 ICimplementationl 0 

am,k 'arburg' in Matlab C implementation Simulink implementation correlation (%) 
a3,1 -0.5004 -0.5004 -0.5002 99.96 

a3,2 -0.1114 -0.1114 -0.1115 99.91 

a3,3 -0.0746 -0.0746 -0.07407 99.29 

Table 4.3: Group2: calculating AR coefficients based on three methods; order = 3, N = 1000; 
l t · _ lOOo/c ISimulinkimplementation-Cimplementationl X 100o/c . 

corre a wn - 0 - ICimplementationl 0 

am,k 'arburg' in Matlab C implementation Simulink implementation correiation (%) 
a3,1 -0.8486 -0.8486 -0.8491 99.94 

a3,2 -0.0655 -0.0655 -0.0654 99.85 

a3,3 0.0530 0.0530 0.05362 98.83 

Table 4.4: Group3: calculating AR coefficients based on three methods; order = 3, N = 8000; 
l t . _ l0001 _ ISimulinkimplementation-Cimplementationl X 10001 

corre a wn- 10 ICimplementationl 10 

According to Tables 4.2, 4.3 and 4.4 above, it can be easily concluded that the designed 

system on simulink block level works correctly and can achieve good accuracy. 

4.3 FPGA implementation of Burg algorithm and con
clusions 

To implement Burg algorithm onto FPGA, we follow the same design methodology of 

implementing RLSL as explained in Chapter 3. 

Table 4.5 shows the device usage of Burg algorithm with order of 3. It does not occupy 

much resources of the target device, however, to implement more stages, more resources will 

be consumed. 

69 



Number of Slice Flip Flops 18% 
Number of 4 input LUTs 20% 

Number of occupied Slices 25% 
Number of bonded I 0 Bs 15% 
Number of Block RAMs 20% 
Number of MULT18X18s 32% 

Number of GCLKs 6% 

Table 4.5: Utilization summary of Burg algorithm implementing 3 stages; target device: xc2vpl00-
6-ff1704 

To evaluate the performance of the FPGA implementation of Burg algorithm, a test bench 

has been built to test the designed system. After re-implementing and downloading the Burg 

system and testbench onto FPGA successfully, chipscope is used to capture and display the 

output values. The order of Burg algorithm is 3 and the input data is using the same 

normalized 8000 ~amples from the knee signal novag27 used in group3 for simulink block 

implementation testing earlier in this chapter. Figure 4.16 shows output values captured by 

chipscope. The three output values are shown in binary (and hexadecimal). After converting 

binary values to decimal (calculated by Matlab ), the values are compared with the results 

obtained from C implementation and Matlab command arburg as shown in Table 4.6. 

am,k 'arburg' in Matlab C implementation FPGA implementation correlation (%) 

a3,1 -0.8486 -0.8486 -0.8493 99.92 

a3,2 -0.0655 -0.0655 -0.0652 99.54 

a3,3 0.0530 0.0530 0.0536 98.68 

Table 4.6: AR coefficients comparison for 3 stages; order = 3, N = 8000; correlation = 100% -
IFPGAimplementation-Cimplementationl X lOOo/c 

ICimplementationl 0 

Conclusions 

Burg algorithm has been implemented onto FPGA successfully with 3 stages processing 

input block data of 8000 samples. It uses fixed point arithmetic for internal computations. 

Compared with C implementation based on double precision floating point arithmetic , the 

implemented Burg design works correctly and has good accuracy, which demonstrates that 

using 20 bits in fractional part is satisfactory. To implement more stages (i.e. 6 stages) for 

70 

I 



i1 Waveform - DEV:1 Myl)evice1 (XC2VP100) UNIT:O My!LAO (ILA) ·.::::·: · ... :::: ·: ::::· <:>:: : .·. :::{:::::);' ··:::::::::::,,::: ::: \::/{? · :::::: ·: ::::: · ,:,:::::: · ,:, :- .:,/:':,::::: :'::::. a"' rf IBI 

Bus/Signal X 0 ,o, 6~0 12:W 19~0 25~ 32~0 38~0 44~ 51~0 57~0 64~0 7~ 76~0 

o- DataPort 2 

o- DataPort 1 

o- DataPort 

111 111 

111 111 

000 000 

DataPo~:t[ 0] 0 0 

DataPoi:t[1] 0 0 

o- Syncln 

11111111111111111111 001 0011 01 001 01 001 000 ) ~ 
~===============1=11=1=11=1=11=11=1=11=1=11=11=1=11=10~1=11~1~01~01~0~00~0~10=11================~) = 
~==============================~============~~ 00000000000000000000000011 011 011 011 00000 ) 

Bus/Signal Value 

0000000860 

II VIO Console- DEV:1 MyOevice1 (XC2VP100) UNIT:2 MWJ02 (VIO) : :::::: ::;::: ::::::: << :;:: }}: · {: :::;:;:.,,.:;:: ?? . :::: '/:::' ::::::::::::: a"' rf 1BJ 

Bus/Signal I Value 

o- S}'li.Cln I FFFFFEF508 

= 
Bus/Signal Value 

FFFFF26948 -
Figure 4.16: Output values of AR coefficients obtained from FPGA implementation; order 
3,N = 8000 

processing the same data of 8000 samples, more number of bits need to be used in integral 

part and more area and resources will be occupied, as one needs to add models to the design 

~o implement stage4 to stage6. However, one can find a solution to make the Burg system 

share exactly the same architecture for all the stages to save area and use more number of 

bits in fractional part, or consider using floating point arithmetic for internal calculations to 

achieve higher accuracy. 

71 



Chapter 5 

Conclusion and Future work 

5.1 Conclusions 

In this thesis, high-level module designs of RLSL algorithm for adaptive segmentation 

and Burg algorithm for AR modeling have been proposed and implemented onto Xilinx 

FPGA Virtex II Pro by using Simulink-to-FPGA design flow. The introduction explained 

the motivation of this project: why we need the adaptive segmentation and AR modeling 

techniques and the reasons why we are interested in implementing the selected algorithms 

onto hardware. Chapter 2 gave a review of the existing methods for adaptive segmentation, 

the techniques for AR modeling and VLSI implementation survey of these two applications 

and algorithms. Chapter 3 described the RLSL method for adaptive segmentation and pro

posed its FPGA implementation. Chapter 4 described the Burg algorithm for AR modeling 

and proposed its FPGA implementation. The summary of the research and the discussion 

of the future work are presented in this chapter. 

RLSL for adaptive segmentation 

A new system-level module design based on the conventional recursive least-squares 

lattice algorithm, which can calculate the conversion factor values of each input sample for 

adaptive segmentation and further provide segment boundaries, has been proposed and im

plemented onto FPGA in this thesis. The design uses an architecture with high flexibility 

that provides user-defined order selection port and data length selection port, which are up 

72 



to 32 stages and 5000 samples respectively. This is convenient for different applications re

quiring different system orders or different data length. Using IEEE double precision floating 

point arithmetic in this design, we can achieve very high accuracy and good performance of 

implementing RLSL for adaptive segmentation. Based on the simulation, implementation 

and produced results in Chapter 3, the following conclusions could be made: 

• The conventional RLSL algorithm is a good choice for adaptive segmentation of non

stationary signals. The proposed design of RLSL have the following functions as men

tioned in [18] [19]: make the input data run two times to the system and calculate 

conversion factor values for each sample. The second round conversion factor values 

of each sample then are compared with a threshold to detect the segment boundaries. 

It has been tested for both synthesized signal and real biomedical signal, i.e. VAG 

signal. The performance of t};le implemented system is satisfactory in that it is flexible , 

programmable and accurate with a mean correlatio~ of 99.93%. 

• Double precision floating point arithmetic can be used for implementing RLSL method, 

which achieved very high accuracy performance, not only providing accurate conversion 

factor values of each input sample, but also providing accurate boundary positions. 

• The proposed ~mplementation is programmable for both data length and system order 

selection. It provides data length selection port and order selection port for users, 

which can be used for different applications and/ or different input data. 

• The proposed implementation is both area-efficient and stable. It shares an architecture 

used for all the stages. No matter how many stages set up to run for the system, the 

area of the system does not change. Additionally, the total area of the implemented 

RLSL design does not occupy much of the target device. 

• The proposed implementation is speed-accessible for real-time processing purpose. It 

worked at 20MHz, which can be used for real-time processing, e.g. sampling rate at 

2kHz as used in [18]. 

73 



Burg algorithm for AR modeling 

A new FPGA design based on Burg algorithm that can directly calculate the AR coef

ficients is proposed in this thesis. The design takes advantage of Xilinx System generator 

implementing tool. Based on the simulation and result comparison, the following conclusions 

could be made: 

• Fixed-point type arithmetic representation is suitable for implementing Burg algo

rithm, since the system could not use an architecture for all the stages and if normal

ization is applied to the input data. The implemented Burg algorithm works correctly 

and can have good accuracy. 

• The more stages it is implemented, the more area it co~sumes, and the area require

ments would increase linearly according to system order based on the current design 

method: the adjacent stages do not share exactly the same architecture, but most of 

the models are the same. 

Simulink-to-FPGA design flow 

The two algorithms with specific applic~tion purposes are both implemented based on 

a simulink-to-FPGA design flow, which has salient features: 

• Friendly graphics interface. Using simulink, it is easy to organize input data and also 

observe the output in different ways. 

• Flexible modeling and ease of simulation. The design can be well organized into mod

ules in hierarchy manners and so it is convenient to run simulation and debug. 

5.2 Future work 

The future work of the research could be: 

• Find a solution to make the Burg algorithm share the same structure for each stage 

like RLSL that can save area. 

74 



• Use more number of bits in fractional part for Burg design or consider using floating 

point arithmetic for its internal calculations to achieve higher accuracy. 

75 



Bibliography 

[1) R. M. Rangayyan, Biomedical signal analysis: a case-study approach. New York, N.Y.: 

Wiley-lnterscience, 2002. 

[2) R. M. Rangayyan, S. Krishnan, G. D. Bell, C. B. Frank, and K. 0. Ladly, "Parametric 

representation and Screening of knee joint vibroarthrographic signals," IEEE Transac

tions on biomedical engineering, vol. 44, pp. 1068- 107 4, November 1997. 

[3) S. Tavathia, R. Rangayyan, C. Frank, G. Bell, K. Ladly, andY. Zhang, "Analysis of knee 

vibration signals using linear prediction," IEEE transactions on biomedical engineering, 

vol. 39, no. 9, pp. 959- 970, 1992. 

[4) M. Akay, J. L. Semmlow, W. Welkowitz, M. D. Bauer, and J. B. Kostis, "Detection 

of Coronary occlusions using autoregressive modeling of diastolic heart sounds," IEEE 

transactions on biomedical engineering, vol. 37, pp. 366- 373, April 1990. 

[5) B. Ahmadi, R. Aimrfattahi, E. Negahbani, M. Mansouri, and M. Taheri, "Comparison 

of adaptive and fixed segmentation in different calculation methods of electroencephalo

gram time-series entropy of estimating depth of anesthesia," 6th International special 

topic conference on !TAB, 2001, Tokyo, pp. 265- 268, 2008. 

[6) Z. M. K. Moussavi, R. M. Rangayyan, G. D. Bell, C. B. Frank, K. 0. Ladly, and Y.-T. 

Zhang, "Screening of vibroathrographic signals via adaptive segmentation and linear 

prediction modeling," IEEE transactions on biomedical engineering, vol. 43, pp. 15- 23, 

January 1996. 

76 



[7] M. Diaby, M. Tuna, J. Desbarbieux, and F. Wajsburt, "High level synthesis methodology 

from C to FPGA used for a network protocol communication," Proceedings of the 15th 

IEEE International Workshop on Rapid System Prototyping, 2004., pp. 103- 108, June 

2004. 

[8] K. Camera, "SF2VHD: A statefiow to VHDL translator," Master thesis, UC Berkeley, 

2001. 

[9] M. Haldar, A. Nayak, A. Chaudhary, and P. Banerjee, "A system for synthesizing 

optimized FPGA hardware from Matlab," IEEE/ACM International Conference on 

Computer Aided Design, 2001., pp. 314- 319, 2001. 

(10] M. Haldar, A. Nayak, A. Chaudhary, and P. Banerjee, "Automated synthesis of 

pipelined designs on FPGAs for signal and image processing applications described 

in MATLAB," Proceedings of the ASP-DAC 2001. Asia and South Pacific Design Au

tomation Conference, 2001., 'pp. 645- 648, Feb. 2001. 

(11] X. Li, F. Sun, and E. Wu, "A Simulink-to-FPGA Co-Design of encryption module," 

IEEE Asia Pacific Conference on Circuits and Systems, 2006, pp. 2008- 2011, Dec. 

2006. 

(12] M. A. Shanblatt and B. Fould, "A Simulink-to-FPGA implementation tool for enhanced 

design flow," Proceedings of the 2005 IEEE international conference on microelectronic 

systems education {MSE'OS ), pp. 89- 90, 2005. 

(13] G. Bodenstein and H. Praetorius, "Feature extraction from the electroencephalogram 

by adaptive segmentation," Proceedings of the IEEE, vol. 65, pp. 642- 652, May 1977. 

(14] J. Pardey, S. Roberts, and L. Tarassenko, "A review of parametric modelling techniques 

for EEG analysis," Med. Eng. Phys., vol. 18, pp. 2- 11, January 1996. 

(15] D. Michael and J. Houchin, "Automatic EEG analysis: A segmentation procedure based 

77 



on the autocorrelation function," Electroencephalography and Clinical Neurophysiology 

46, pp. 23~-235, 1979. 

[16] U. Appel and A. V. Brandt, "Adaptive sequential segmentation of piecewise stationary 

time series," Information Sciences, vol. 29, pp. 27- 56, 1983. 

[17] U. Appel and A. V. Brandt, "A comparative study of three sequental time series seg

mentation algorithms," Signal processing 6, pp. 45- 60, 1984. 

[18] S. Krishnan, R. M. Rangayyan, G. D. Bell, C. B. Frank, and K. 0. Ladly, "Recursive 

least-squares lattice-based adaptive segmentation and autoregressive modeling of knee 

joint vibroarthrographic signals," Canadian Conference on Electrical and Computer 

Engineering, 1996, vol. 1, pp. 339- 342, May 1996. 

[19] S. Krishnan, "Adaptive filtering, modeling, and classfication of knee joint vibroarthro

graphic signals," Master's thesis, Department of Electrical and Computer Engineering, 

University of Calgary, April 1996. 

[20] S. Haykin, Adaptive filter theory. Upper Saddle River, N.J.: Prentice Hall, 4th ed., 

2002. 

[21] C. Paleologu, S. Ciochina, and A. A. Enescu, "Low dynamics RLSL adaptive algorithm 

using a priori estimation errors," International Multi-Conference on Computing in the 

Global Information Technology, 2006, pp. 47- 47, Aug. 2006. 

[22] R. C. North, R. Zeidler, W. H. Ku, and T. R. Albert, "A floating-point arithmetic 

error analysis of direct and indirect coeffcient updating techniques for adaptive lattice 

filters," IEEE transactions on signal processing, vol. 41, pp. 1809- 1823, May 1993. 

[23] F. Ling, D. Manolakis, and J. G. Proakis, "Numerically robust least-squares lattice

ladder algorithms with direct updating of the reflection coeffcients," IEEE Transactions 

on acoustics, speech, and signal processing, vol. 34, pp. 837- 845, August 1986. 

78 



[24] B. Friedlander, "Lattice filters for adaptive processing," Proceedings of the IEEE, vol. 70, 

pp. 829- 867, August 1982. 

[25] J. R. Bunch, R. C. L. Borne, and I. K. Proudler, "Analysis of the direct and indirect a 

posteriori rlsl algorithm," Numerical linear algebra with applications, pp. 453- 466, 2001. 

[26) J. R. Bunch and R. C. LeBorne, "Error accumulation effects for the a posteriori RLSL 

prediction filter," IEEE transctions on signal proce~sing, vol. 43, pp. 150- 159, January 

1995. 

[27] M. Aboy, 0. W. Marques, J. McNames, R. Hornero, T. Trong, and B·. Goldstein, "Adap

tive modeling and spectral estimation of nonstationary biomedical signals based on 

Kalman filtering ," IEEE Transactions on Biomedical Engineering, vol. 52, pp. 1485-

1489, Aug. 2005. 

[28] D. Ge, N. Srinivasan, and S. M. Krishnan, "Cardiac arrhythmia classification using au

toregressive modeling," BioMedical Engineering Online {http.:/ /biomedical-engineering

online.comjcontent/1/1/5), Nov. 2002. 

[29) M. Akay, M. Bauer, J. L. Semmlow, W. Welkowitz , and J. Kostis , "Autoregressive 

modeling of diastolic heart sounds," IEEE engineering in medicine €3 biology society 

lOth annual international conference, 1988. 

[30) S. H. Kim, H. B. Han, K. R. Hong, M. H. Lee, and S. H. Park, "Pattern classification of 

AR model parameters of EMG signal for the diagnosis of TMJ dysfunction syndrome," 

Proceedings- TENCON 87: 1987 IEEE Region 10 Conference, 'Computers and Com

munications Technology Toward 2000 ', pp. 1317- 1321, 1987. 

[31) Z. Luo, F. Wang, and W. Ma, "Pattern classification of surface electromyography based 

on AR model and high-order neural network," 2006 IEEE/ ASME International Con

ference on Mechatronics and Embedded Systems and Applications, pp. 1- 6, Aug. 2006. 

79 



(32] A. Angelidou, M. Strintzis, S. Panas, and G. Anogianakis, "On AR modelling for MEG 

spectral estimation, data compression and classification," IEEE Transactions on Com

puters in Biology and Medicine, pp. 379- 87, Nov. 1992. 

(33] J. Makhoul, "Linear prediction: a tutorial review," Proceedings of the IEEE, vol. 63, 

pp. 561- 580, April 1975. 

(34] Z. Pohl, M. Tichy, and J. Kadlec, "Implementation of the least-squares lattice with 

order and forgetting factor estimation for FPGA," EURASIP Journal on advances in 

signal processing, vol. 2008, June 2008. 

(35] A. Hermanek, Z. Pohl, and J. Kadlec, "FPGA implementation of the adaptvie lattcie 

filter," Springer- Verlag Berlin Heidelberg 2003, pp. 1095- 1098, 2003. 

(36] F. Albu, L. Kadlec, and e. a. C. Softley, "Implementation of (normalised) RLSL lattice 

on Virtex," in proceedings of the 11th international conference on filed programmable 

logic and applications (FPL 01), Spring~r, Northern Ireland, UK, pp. 91- 100, August 

2001. 

(37] M. R. Smith, T. J. Smith, S. W. Nichols, S. T. Nichols, H. Orbay, and K. Campbell, 

"A hardware implementation of an autoregressive algorithm," Meas. Sci Technol, lOP 

Publishing Ltd, vol. 1, pp. 1000- 1006, 1990. 

(38] "Xilinx System Generator for DSP version 9.1.01 User's Guide," 

(http:/ jwww.xilinx. com/supportjsw_manualsjsysgen_ug. pdf), March 2007. 

(39] "ISE In-Depth tutorial," (http:// download.xilinx. com/ direct/ise9_tutorials/ise9tut.pdf), 

July 2007. 

(40] "ChipScope Pro software and cores user guide (ChipScope Pro software 9.2i)," May 

2007. 

80 


	Ryerson University
	Digital Commons @ Ryerson
	1-1-2009

	High Level FPGA Implementation Of Adaptive Signal Segmentation And Autoregressive Modeling Techniques
	Beibei. Jiao
	Recommended Citation





