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NATURAL LANGUAGE LEARNING 

A thesis by Michal Andrzej Krezolek, Master of Science in Computer Science, 2010 

Ryerson University 

Abstract 

This thesis is a small step towards automated learning of natural languages. With the use 

of a parser that incorporates machine-learning algorithms, our algorithm is able to learn mean-

ings of words representing relations in simple sentences, that describe relative positions of two 

points on a 2D plane. Our SentenceLearner program can create simple sentences describing rela-

tions between two points on another 2D plane using data, collected by a statistical parser from 

sentences given for training, based on n-grams of five words. 

 

In this thesis I show that association of simple relations expressed in training sentences 

with the positional relations of a corresponding pair of points on a 2D plane is possible without 

the use of any machine-learning algorithm in some circumstances. 
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Chapter 1: Introduction 

For a long time people have wanted computers to learn facts and even language itself 

without human-machine interaction [1]. One such attempt was by Zellig Harris, who in 1951 

published a paper on automated discovery of language structure [2]. The automated language 

structure discovery is done through the use of a parser. The parsers can either have knowledge of 

grammar encoded into them or try to discover the grammar rules automatically. 

Grammar dependent parsers have trouble distinguishing relations for languages for which 

no grammar exists as a computer algorithm or code. For this type of parser, people would need to 

input the grammar rules so that learning of relations would begin. If we say in Polish language 

“Kot nie jest na lewo od psa.” we mean to say “A/The cat is not to the left of 

a/the dog.” However, when we translate the sentence word for word, the sentence will be 

missing some descriptive words such as “the” for specific object, and “a” for an unknown or a 

general object, and will not be grammatical: “Cat not is left of dog.” Because of that, a 

parser with encoded rules for English language will fail when processing sentences translated 

word for word from another language such as Polish or German. Some languages called head-

last languages [3], like Japanese, also add another twist since the subject of the sentence is al-

ways at the very end of a sentence. In this thesis, we do not use grammar rules to design the par-

ser, but rather let the machine learn from the situation given. This is because we might not be 

able to distinguish between two languages if they have the same grammar structures. In addition, 

our approach is not interested in the sentence structures, but meaning of words and associating 

those meanings through learning to the pictured situation. 

Advanced versions of our algorithm will find uses in user interfaces, automatic transla-

tors for which translation is not easily achieved by current grammar or relation based translators, 

automated intelligent customer service, robotics, and many others. 

1.1. Approach 

In each of the experiments discussed in this thesis, the algorithm has access to a matrix of 

cells, each of which is labeled with the name of one or more points that it contains such as A or K. 

Associated with the matrix are sentences in a given language describing the Cartesian relation-

ships between pairs of points. The object of the experiment is to induce the structure and mean-

ing of each sentence based on the assumption that the sentences correctly and completely de-
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scribe the relations inherent in the matrix in the sense of having exactly one sentence per relation 

and ordered pair of points. Our algorithm is a statistical parser with limited determination of 

word functions. While some word functions can be determined automatically without using 

complicated algorithms, some of them need to be determined by the use of the algorithms dis-

cussed below. Finally, the data about words and sentence structure gleaned by the proposed par-

ser during training is subsequently used to build sentences that describe new matrix arrange-

ments. Any program attempting building sentences should stop building a sentence when one of 

the following occurs: there are no words that could fit on the ends of the sentence that is being 

created, or the words on the ends of the sentence that is being created are known to be terminat-

ing words of a sentence. The program that attempts to build a sentence will be successful if the 

sentence is grammatical and carries a meaning that is appropriate to a given situation. 

1.2. Contributions 

This research is a step towards making it possible for the computer to learn how to ex-

press in a natural language the physical relations between objects in two or three dimensional 

space. In particular, we work with a two dimensional grid of readily identified points. We then 

associate the meanings of words from training sentences to the appropriate relations between two 

points on a given grid. During this process, we collect the statistics about the possible word com-

binations, and the words, in the given training sentences. We then use those statistics together 

with the associated meanings to describe another grid. Possible real-world applications of this 

research are discussed below. 

Devices are needed that describe in the user’s own language the relative position of ob-

jects in viewing direction of a camera. For this approach, the system developed here would need 

to be extended to include training that associates names such as “cup” with the pictures of the 

corresponding object. After the most common objects have been learned by the visual part of the 

system, the algorithms proposed in this paper would learn the relations between objects based on 

situations and a set of sentences. The entire system would then be able to determine what it is 

looking at and describe the situation with sentences expressed in user’s own language. This 

could be helpful for a partially or totally blind person. 

This research is also a small step towards machine learning of natural language. Eventu-

ally it will be possible to build robots that are able to follow commands expressed in natural lan-

guage and to respond with sentences. 
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1.3. Overview of Thesis 

In this thesis, we will demonstrate that by intelligent algorithm design, there is the possi-

bility of creating sentences automatically. The learning of how to describe situations in the sim-

ple grid environment starts with examples that the algorithm analyzes word by word. The algo-

rithm compares what it “knows” about the grid with natural language sentences expressing rela-

tionships of points in the grid. Later the algorithm constructs sentences based on the situation 

shown in a grid. The source code is included with this thesis as a separate download since the 

implementation of the algorithm proposed in this thesis is too long to be included even in appen-

dixes. 

In Chapter 2 we discuss the work that was done before that is related to the proposed al-

gorithms. In Chapter 3 we propose our algorithms and we discuss how we approach the experi-

ments. In Chapter 4 we show the results of the experiments and discuss them. In Chapter 5, we 

conclude the thesis and propose directions for the future work. 



4 

Chapter 2: Background and Related Work 

Without the work described below, there would be no possibility for the proposed algo-

rithm to work. 

2.1. Natural Language Processing 

People always wanted to ask or say something to computers in their own language, also 

known as natural language, and have the computer “understand” ([2], [3]). Evidence of “under-

standing” would be that the computers intelligently respond to such sentences perhaps by per-

forming an assigned task [4], updating stored information [5] or discussing a situation. “Under-

standing” typically involves four steps. The first is lexical – breaking the sentence of input 

stream into tokens called words. The second step is syntactical parsing, attaching grammatical 

function to the words or phrases. Parsers have been developed. They can tell the structure of a 

given sentence ([3], [6], [7], [8], [9]). The third step is semantics – attaching meaning to words, 

phrases, and sentences as a whole. The fourth step, which is not addressed in this thesis, concerns 

semantics in context, where we decipher word meanings based on surrounding text ([3], [6], [9]). 

Parsers cannot create sentences by themselves. 

While it might be easy for people to communicate with other people, computers always 

had problems with understanding the meaning of words and phrases, or differentiating their func-

tions ([9], [10]). The ambiguities of words and phrases can confuse even the most carefully de-

signed parser. The classic example of this is the sentence “I saw a boy with a telescope.” 

which might mean either “A boy was in possession of a telescope when I saw him.” 

or “I used a telescope to see a boy.” The word “with” has different possible functions 

in the given example. The information for disambiguation can be a few sentences away from the 

currently processed sentence or not present at all. 

2.1.1. N-Grams 

N-grams were first used by Chomsky for prediction probability of sentences that can oc-

cur in a text [9]. N-grams can be created by parsers or tokenizers. An n-gram has n elements of 

the same type, called tokens, and those tokens must be any sequential pieces of data of the same 

type, usually words, a user would find useful. For example the elements can be single words, or 

letters. In this thesis, the elements are words. The main use of n-grams is to predict the likelihood 
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of some data occurring before or after the data that the user provided. For example, given a tri-

gram (        ) and knowing what the first two words are, we may be able to select the third 

word based on probability, as shown in Equation 1. 

           (  |     ) 
     

Equation 1. Most probable third word based on the two previous words. 

In  Equation 1 the   is vocalbruary, and   ,    are the first two words in the trigram. There are 

many practical applications for n-grams, such as machine learning, spelling and grammar correc-

tion, speech recognition ([9], [12], [13], [14]), character and text recognition ([9], [15]), machine 

translation ([9], [16], [17]), quality control of collected data [18], improvements in data compres-

sion searching for similar data sets, text creation, and even determination of encoding schemes or 

language [19]. N-grams with 2 tokens are usually called bigrams, or less commonly 2-grams. 

Similarly, the n-grams with 3 tokens are usually called trigrams, or less commonly 3-gram [9]. 

Figure 1 shows some n-grams from sentences in our experiments. N-grams often do not contain 

enough data to accomplish a given purpose, so researchers tend to supplement n-grams with oth-

er data, such as frequencies of occurrences of phrases or build probabilistic models for later use 

[9]. 

A)  B)  

Figure 1. Example of word level trigrams extracted from (A) English and (B) Polish language sentences. 

2.1.2. Grammar-Based Natural Language Processing 

Grammar based parsers have the knowledge of grammar structure of one of the natural 

languages encoded into them. These parsers usually use dictionaries of words and the possible 

functions which were discovered by linguists. There has been lots of work in implementing 

grammar based parsers, yet those parsers have downfalls such as no ability to dynamically 

change for new grammar ([6], [8], [9]). These parsers are language specific, that is if a parser 

worked well for English, it may not work at all for Polish, German, or Arabic, for example, pro-

ducing errors. Consider the sentence in Polish: “Kot nie jest na lewo od psa.” and the 

word-for-word translation of that sentence to English: “Cat not is on left of dog.” As you 

is above A 

is below B 

A is in 

A is not 

not above B 

jest na lewo 

jest na prawo 

nie jest powyżej 

A jest w 

powyżej od B 
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can see, the grammar forces a person to place the words in proper order for a given language. 

Thus, for each language a new parser has to be encoded. Even when a parser is written for a par-

ticular language, the parser must be updated to be able to parse a new grammatical structure of a 

language. A famous example is a work of William Shakespeare, which cannot be easily read 

right now since some of the grammar rules as well as word meanings have changed and/or dis-

appeared from the English language that we speak and write today. 

Some grammatical structures are very complex and encoding them correctly takes a long 

time. Linguists must discover the grammar rules first, and convey the rules in easy to understand 

detailed description. From those descriptions, programmers can then create grammar dependent 

parsers ([7] , [8], [9], [20]). 

2.1.3. Natural Language Processing 

Natural language processing has two inter-related processes. Sentences need to be parsed, 

and also often at the same time meaning of words needs to be determined automatically. Both of 

those processes benefit from each other because determination of a word meaning can indicate 

the word’s function in a sentence, and the sentence structure can also indicate a word’s meaning 

([8], [9]). 

Probabilistic Parser 

These inconveniences are removed when a grammarless parser is used. The grammarless 

parser, also called a probabilistic parser, uses a probabilistic approach to learn the structure of 

sentences from a large body of text ([3], [6], [8], [9]). Probabilistic parser does so by attaching 

probabilities to syntactic trees and selecting the most likely one. This requires solving ambigui-

ties of word functions in sentences. A probabilistic parser will not associate the meaning of the 

words to situations since it works only on text. 

Statistical natural language processing does not have grammar rules encoded at the be-

ginning of each run. It is designed to discover those rules automatically by learning from sen-

tences parsed previously. This fact enables the scientists to use the same code, such as statistical 

CKY algorithm [9], for finding grammar of languages that do not have a language-specific par-

ser implemented. The probabilistic parser collects data about each word and where in the sen-

tence the word is, and what is the frequency of a phrase in the text. The parser then uses those 

statistics to determine what words should have what functions. The discovery process can be dif-
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ficult, since many phrases such as “in same column as” should be treated as single words, and 

some phrases can be divided by a word or multiple words, such as in the sentence “A touches B 

on the corner,” the phrase is “touches on the corner” and the word “B” is inserted into the 

phrase to satisfy grammar rules. 

Also, the knowledge of where a sentence or possibly a multi word syntactic unit begins, 

and where it ends, can be difficult for an algorithm to determine because of characters such as 

periods, commas, hyphens, and quotation marks ([3], [6], [8], [9]). Often a corpora of text trans-

lated into another language provides clues. 

Discovery of Word’s Meanings 

The process of discovery of word meanings is hampered by the ambiguities of word 

meanings and functions ([3], [6], [8], [9], [14], [21]), such as “left” can mean that something 

has a particular position relative to another thing, that someone has exited a room or vehicle, or 

that something remains. In addition, there are idioms that are specific to the geographical region 

of the author of the text, and those idioms dictate the word functions in sentences. The accuracy 

of the parsing process can be greatly improved by the use of regional and language dependent 

dictionaries, thesaurus, and even corpora of text translated to another language. 

Many probabilistic parsers benefit greatly from machine-learning algorithms, since ma-

chine-learning algorithms discover some hidden rules of grammar and word meanings ([9], [22], 

[23]). This benefit is especially useful in discovering the meaning of an unknown word or 

phrase. However, some probabilistic parsers, such as Cooke-Kasami-Younger (CKY) algorithm, 

can do that without the use of a machine-learning algorithm [9]. 

2.2. Machine-Learning 

Machine-learning is a collection of algorithms that would allow a computer to discover 

automatically or semi-automatically the relation between input data and expected output. A ma-

chine-learning algorithm can be used to predict a value of output based on a given input. 

Machine-learning allows for learning of obvious and subtle relations among elements of 

given data [24]. The learned relations are called models, some of which are shown in Figure 9.D 

and E, and can be used to predict missing data, to group data in clusters, or to identify the class 

of an instance. A model has the ability to represent objects, properties of objects, and relations 

between objects [9]. This is especially useful in data-mining where people want to have models 
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of complex relations shown in easy to understand diagrams or sentence-like output of rules. The-

se models can be updated automatically whenever there is need for such updates [25]. 

This model creation is useful for our approach since in the algorithm proposed in this the-

sis, models are created during the process of learning of word meanings and are later used in the 

process of sentence creation. A similar process is used in GridLearner [26], discussed in 2.3, 

but in a more rudimentary way. 

Machine-learning algorithms are hard to optimize for speed while preserving the accura-

cy of the model creation [27]. To benchmark machine-learning algorithms, often a shallow par-

ser is used [22]. A shallow parser is a form of probabilistic parser, which only tags a limited set 

of word functions as well as limited number of meanings. 

2.2.1. Weka 

The algorithms proposed in this thesis use machine-learning algorithms from Weka. Weka 

is open-source software written in Java created for data mining applications [28]. The software is 

a collection of machine-learning algorithms that are presented with a graphical user interface 

(GUI) of the program according to the functions and machine-learning algorithm types. The 

Weka GUI allows for the visualization of the data and the output of a selected machine-learning 

algorithm. 

In our approach, we use a shallow parser with a machine-learning algorithm from Weka 

software to learn the meanings of words expressing relations, for later use in sentence creation 

algorithm. 

2.3. GridLearner 

Some of the ideas in this thesis extend relations in a program called GridLearner [26], 

that allows for teaching the computer positional relationships for two points in a grid. It does so 

by learning a model of a relation with the help of a machine-learning algorithm and then associ-

ating the model with a relation string that user inputs interactively using a GUI. The 

GridLearner program incorporates the Weka algorithms, that user is able to choose interactively, 

to learn relations directly from the grid. GridLearner does so by using the values similar to the 

simple relations, as discussed in 3.1.3, and the truth values entered by a user. Those values are 

then feed to a machine-learning algorithm, which user selects interactively, and the model is then 

associated with the relation string that a user enters. If the model classifies a relation string to be 
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applicable to the given point configuration, the string is then displayed in another part of a GUI. 

GridLearner, however, does not parse sentences describing relations. The GridLearner ap-

proach was investigated in our experiments and was found to be inadequate for sentence creation 

and similarity reasoning to the approach described in 3.3.2. 

2.4. Automatic Natural Language Learning 

There have been a few approaches to the problem of natural language learning without 

the help of humans [29]. This task is extremely difficult because of ambiguities, and grammar 

rules discussed above. 

Algorithms that learn a natural language must resolve these ambiguities and select the 

most correct meaning for a word or phrase in question in order to achieve at least some under-

standing of the language ([3], [6], [23]). This is just a first step, since language learning also in-

volves the creation of a sentence as a next step. 

2.4.1. Sentence Creation 

One of the constraints on sentence creation is not imposed by grammar itself, but by an 

ability of a human user to understand the relations conveyed in a sentence, and the attention span 

of the human user, because grammar of most if not all languages allows for creation of sentence 

of infinite size ([3], [6], [7]). In addition, the sentence creation process can go into an infinite 

loop where creation of infinite length sentences is attempted. Therefore, it is crucial to design an 

algorithm that avoids infinite loops, either limiting the number of words used or the overall time 

spent building a sentence. 

The sentence creation process can be supported either by using n-grams and statistics of 

frequency of occurrences of phrases extracted from corpora of text, or a dictionary of words and 

their functions and a set of grammar rules [30]. The grammar based approach has similar draw-

backs to the grammar based parsers: the grammar rules and the dictionary of words and their 

functions need to be adjusted for each language. They will not work for a different language 

without recoding the grammar rules and changing a language-specific dictionary. With statistical 

sentence generation, as in [30], the generated sentence quality depends on the data extracted by a 

probabilistic parser. In our approach, we opted to use a statistical sentence generation algorithm. 
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2.5. Counting by Insects 

Researchers have discovered that bees can count to four [31]. The experiments involved 

training bees to locate food in a tunnel with movable markers and identical feeders, only one of 

which had a food at any given time. The number of markers as well as the number of feeders re-

mained the same, but the location of food and/or the markers varied. 

If the researchers changed the shapes of the markers, the bees trained to go past a specific 

number of markers ignored the shape of a marker and generalized the markers in order to count 

them. In addition, the bees were presented with a tunnel with the markers and feeders in different 

locations than they had been trained. The bees always skipped a specific number of markers 

without regarding the distance flown. The only problem for bees was when the researchers 

trained bees to go to look for food near the fifth marker. The bees were confused during the ex-

periment phase as they checked all feeders for food. 

I deduced that if bees have the ability to count embedded in their primitive brains or 

nervous systems, it might also be that humans have the ability to count, innate concepts for sim-

ple shapes, basic colors, and simple directional relations embedded into their brains. In the thesis, 

we make use of innate concepts to determine the relational position for any two chosen points in 

a given grid. In the case of the computer, the “innate concepts,” called later simple relations, that 

we grant it are basic comparison and arithmetic operators that it has in the central processing 

unit. When relating the position of point A relative to point B in a grid, we program the computer 

to compare row and column positions and to set the corresponding values of simple relations. For 

example, if the column of point A is less than the column of point B, then we set the 

HorizontalRelation variable to the value LEFT. These simple relations are then used in con-

junction with a machine-learning algorithm to learn relations expressed in sentences. This is ex-

plained in more detail in later sections. 
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Chapter 3: Methodology and Implementation 

Humans have the ability to almost intuitively find subject and object of any sentence after 

many months of learning. By making certain assumptions in the implementation, the machine 

learning will determine the necessary relations from given data. These assumptions are discussed 

below. First we will discuss the grid, then we will describe the acceptable format of sentences, 

and finally we will discuss the simple relations. After discussing those, we will discuss the 

SentenceLearner approach, and why integration with Weka is important. Finally, we will de-

scribe the proposed algorithms and discuss the experiment set up. 

Figure 2 shows the schematic of information flow in the SentenceLearner program as it 

appears after the proposed parser and the proposed sentence creation algorithms. The program 

takes a grid, discussed in 3.1.1, and the training sentences, discussed in 3.1.2, produces augment-

ed n-grams and models for relation words, discussed in 3.3.3, waits for the user for either a 

command to generate a grid, or to load a grid from a file. The user then selects a point name, and 

the program uses augmented n-grams and appropriate model for a relation to generate sentence, 

as shown in 3.3.4, describing the selected point. 

Grid Sentences Parser

Grid

Augmented n-
grams

Models of 
relations

Sentence creation

Selected 
point

Sentence

 

Figure 2. Schematic of information flow in the SentenceLearner System. 

3.1. Assumptions and Necessary Data 

The algorithms developed in this thesis are based on a few assumptions. We assume that 

each training sentence has a subject, an object, and one relation. The sentences also might in-

clude a negation of a relation. To get the learning started, the algorithms must be able to distin-

guish subject and object words, have a set of simple relations described below, and be able to 
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reference the matrix of points called the grid. Although the program we have developed is inter-

active, allowing continuous change of the input, the input at any given time is comprised of a 

grid and a set of training sentences describing positional relations of points in the grid. These 

components of the input are described in detail below. 

3.1.1. The Grid (Input) 

The grid, shown as an external data source in Figure 2, is a collection of points in a ma-

trix that can be changed at any time by the human user. The points can be randomly distributed 

in the matrix. The dimensions of the matrix and the number of points can vary, but the matrix 

must be at least two by two in size and the number of points must be equal or greater than two. 

A)  
B)  

Figure 3. Example five by five grid (A) with five points: A, B, C, D, and E, and a file content (B) associated with the grid. 

The grid in Figure 3.A can be set up interactively using a mouse and a graphical user in-

terface (GUI), but it could also be specified by a simple text file shown in Figure 3.B as follows: 

the first number is the number of columns, then there is a comma, and then there is the number 

of rows. On the following lines, there are point coordinates such that the first number is the col-

umn number and the second number is the row number for the point. These numbers are separat-

ed by a comma. We start numbering rows from top to bottom and columns from left to right. The 

starting number for rows and columns is 0. Each point is described on a separate line. Thus given 

the grid input, the computer has the row and column coordinates of each point in the grid. For 

example, the point C in the grid in Figure 3.A is at row 1 and column 2 if we number rows from 

top to bottom and the columns from left to right starting at 0. We will refer to the row and col-

umn coordinates as Cartesian coordinates of a point, so a point C has the Cartesian coordinates 

(1, 2). 

5,5 

2,1 

2,3 

1,2 

1,0 

4,4 
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3.1.2. Training Sentences (Input) 

Each sentence in our experimental system states a positional relationship or the negation 

of positional relationship between two points, and the sentences are context-independent. That is 

the sentences do not depend for meaning on the other sentences. We will call the points the sub-

ject and the object where the subject is the main topic of a sentence and the object is the point 

needed to describe the position of the subject, for example in the English sentence “A is above 

B,” which applies to the grid in Figure 4, we identify A as a subject, and B as the object. In a 

head-last language [3], the sentence might take the form “Is above B A,” as shown in Figure 5, 

and again, A is the subject and B is the object. The detection of the subject and object could be 

difficult if we allow for either structure, and therefore, this complication will be a part of future 

work. Here we assume the language is head-first, as in Figure 4. 

A) A is above B. 
B)  

Figure 4. A) English sentence describing where the point A is in relation to point B. B) The grid to which the sentence 
applies. 

A) Is above B A. 
B)  

Figure 5. A) Example of a head-last sentence structure. B) The grid to which the sentence structure applies. 

We assume each sentence has a verb, which is either a “verb of being” or a “rela-

tional verb.” A “verb of being” is a verb that introduces the predicate relation. For exam-

ple, in the English sentence shown in Figure 4, the “verb of being” is the word “is,” which 

introduces the relation “above.” In the English sentence “A touches B,” shown in Figure 6, the 

verb is a “relational verb,” “touches,” which in itself states the positional relation between 

subject and object. 

A) A touches B. 
B)  

Figure 6. A) Example of a “relational verb” used in English sentence. B) The grid to which the sentence applies. 

There are languages, such as ancient Greek, Chinese, Japanese, and Persian [3], where 

the separation between words is not simply white spaces as in many modern languages. The de-
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tection of word boundaries in such languages is a difficult task, even if the grammar rules and a 

dictionary for those languages exist. This word boundary detection will therefore be part of the 

future work, and the words in the input to the proposed algorithm will have to be separated by 

white space characters. 

A)  

B)  

Figure 7. A) Grid. B) Some sentences describing the grid. 

The number of training sentences is typically  (   ) , where there are   points and   

relations. For example, if the training sentences for the grid in Figure 7.A cover the relations 

“above” and “below,” there would be  (   )     sentences, some of which are shown in 

Figure 7.B above. For the proposed parser, there must be     relations. 

The training sentences, shown as an external data source in Figure 2, include those sen-

tences that have logical consequences of the previous sentences since we assume the proposed 

algorithms have no previous knowledge of the language and word meanings. Knowledge is ei-

ther associated with or learned, with the help of a machine learning algorithm, from relations be-

tween ordered pairs of points. This is discussed further in this chapter. 

3.1.3. Simple Relations 

We assume the human brain has basic directional relations that are associated with words 

or symbols through learning process. We also assume the human brain has the ability to count 

embedded into it from birth, and then through learning, the brain associates words or symbols for 

numbers with the numbers themselves. We define the ability to count and the basic directional 

relations as the simple relations. 

Because the computer does not have those simple relations, we define RelationalData 

objects (described in this paragraph and in Figure 8 below) to represent the simple relations, and 

call the values of the fields of RelationalData objects as simple relations. Consider two points, 

A is not above B. 

B is not above C. 

C is in same row as D. 

D is above E. 

E is not above A. 

A is not below B. 

B is below C. 

C is not below D. 

D is not below E. 

E is below A. 
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A and B, in a grid, such that the coordinates for A are (     ) and the coordinates for B are 

(     ). The number of rows is   , and the number of columns is   . The SentenceLearner al-

gorithm receives these coordinates as input and constructs a RelationalData object for A rela-

tive to B as follows. There are seven fields to RelationalData object. The possible values for 

each field are shown in Figure 8 below. The reason for including the grid dimensions is that the 

distance relation from training sentences relies on distance measured between points and the di-

mensions of a grid, as shown in Equation 2 and Equation 3 below. These two equations define 

near and far. The value in the denominator is chosen arbitrarily. 

Field Value When 

HorizontalRelation 

LEFT       

RIGHT       

SAME_COLUMN       

HorizontalDistance   |     |    

VerticalRelation 

ABOVE       

BELOW       

SAME_ROW       

VerticalDistance   |     |    

IsTouching 

TRUE |     |    and |     |    

FALSE |     |    or |     |    

HorizontalGridDimention    
 

VerticalGridDimention    
 

Figure 8. Fields of RelationalData object and possible values for points A and B. 

√                  (   )                  (   ) 

 
√                                                

 
 

Equation 2. The inequality defining the relation “near to” between a pair of points A and B. If the inequality is true, 

the relation applies to the pair of points A and B. 
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The simple relations’ values are: LEFT, RIGHT, SAME_COLUMN, ABOVE, BELOW, SAME_ROW, 

IS_TOUCHING, as well as non-negative numeric values, such as 0, 1, 2. Those values are then 

used as attributes together with FALSE or TRUE class value to train a machine-learning algorithm. 

From there, the model is then associated with words or phrases that express ideas understandable 

to the user. 

√                  (   )                  (   ) 

 
 √                                                

 
 

Equation 3. The inequality defining the relation “far from” between a pair of points A and B. If the inequality is true, 

the relation applies to the pair of points A and B. 

Horizontal relations between two points in the grid as observed by the algorithm are 

LEFT, RIGHT, and SAME_COLUMN. Vertical relation between two points in the grid as observed by 

the algorithm are ABOVE, BELOW, and SAME_ROW. The simple relation IS_TOUCHING indicates if 

two points on a grid are touching each other on the sides, corners, or when the points occupy the 

same cell in the grid. The numerical simple relations are used for determining distance measured 

from one point to a second point or to determine the size of the grid. 

Our algorithms have a simple way to determine the truth values for relations correspond-

ing to simple relations based on data contained in a given grid. The algorithm just compares Car-

tesian coordinates of the points and produces the truth values for the simple relations. These rela-

tions are meant to simulate the human brain function on how the objects are located in the field 

of vision as well as touch senses. These simple relations are used to determine the positional re-

lationships in a given grid, and must be associated with a word or phrase to describe the posi-

tional relation between a pair of points in a grid. For this purpose, a machine-learning algorithm 

will determine whether a relation expressed in words applies to the observations from the grid. 

3.1.4. Subject and Object Words in a Sentence 

We assume the first point name is the subject and the second point name is the object. 

The point names must fall in the range of capital letters from A to Z. 

3.2. SentenceLearner 

SentenceLearner is an algorithm able to learn the meaning of words by parsing the sen-

tences and extracting information from sentences associated with a given matrix of points. It is 



17 

also an algorithm to build sentences based on the knowledge extracted during the parsing process 

and comparison of sentences with the situations between an ordered pair of points. The parts of 

the SentenceLearner program in the final form that appears in this thesis are described in sub-

sections 3.3.3 to 3.3.4. 

3.2.1. Integration with Weka 

The algorithms of the SentenceLearner program are integrated smoothly with the Java 

classes of the Weka software, so that machine-learning algorithms can be called directly. Those 

machine-learning algorithms can be selected interactively using GUI of the SentenceLearner 

program. In contrast, if the Weka software were used externally and interactively, one would 

manually set up input files called ARFF files (Attribute-Relation File Format) which hold the defi-

nitions of the attributes and their values and the class value for each training instance [28]. Alt-

hough the SentenceLearner program does not need to use ARFF files, it can. Figure 9.A shows 

an ARFF file for building a simple model for the relation “is above,” relational data for the grid 

shown in Figure 9.B, and sentences that convey the “above” relation are shown in Figure 9.C. 

The ARFF file starts with the header @relation after which the name of the relation is in-

troduced. In case of the name of relation containing more than one word separated by a white 

space character, quotation marks must be used around the name. The next lines starting with 

@attribute introduce attributes. Each attribute name is then followed by curly brackets in 

which the possible values of the attributes are separated by commas, or by the key word numeric 

which means the allowed values for the attribute are real numbers. Because the class is defined 

later by the user of Weka software as one of the attributes, the ARFF file format does not have a 

special key word to mark an attribute as a class. The @data key word tells that the following 

lines are the actual values, separated by commas, for the attributes in the order that they were 

declared. For example, the line LEFT,2,SAME_ROW,0,false,5,5,false, which corresponds to 

the sentence “A is not above B.” can be read from left as the point A is left of point B with 2 

spaces away in the horizontal direction, the point A is in same row as point B with no vertical 

separation, the points do not touch, the grid is 5x5 in size, and the class value of “is above” is 

false. Missing value for an attribute is represented by a question mark, but for this feature we do 

not have use in our algorithm as everything is determined from a grid and assigned class value. 

The values for each of these attributes are defined in section 3.1.3. 



18 

A)  

C)  

@relation "is above" 

@attribute horizontalConceptAttribute {LEFT,RIGHT,SAME_COLUMN} 

@attribute horizontalDistanceAttribute numeric 

@attribute verticalConceptAttribute {ABOVE,BELOW,SAME_ROW} 

@attribute verticalDistanceAttribute numeric 

@attribute isTouchingAttribute {true,false} 

@attribute horizontalGridDimentionAttribute numeric 

@attribute verticalGridDimentionAttribute numeric 

@attribute internalPhraseOrKeyWordIDAttribute numeric 

@attribute classAttribute {true,false} 

@data 

LEFT,2,SAME_ROW,0,false,5,5,false 

LEFT,1,BELOW,1,true,5,5,false 

RIGHT,1,BELOW,1,true,5,5,false 

RIGHT,3,ABOVE,2,false,5,5,true 

RIGHT,1,SAME_ROW,0,false,5,5,false 

RIGHT,1,BELOW,1,true,5,5,false 

RIGHT,3,BELOW,1,false,5,5,false 

LEFT,1,ABOVE,2,false,5,5,true 

RIGHT,1,ABOVE,1,true,5,5,true 

LEFT,1,ABOVE,1,true,5,5,true 

RIGHT,2,SAME_ROW,0,false,5,5,false 

LEFT,2,ABOVE,2,false,5,5,true 

LEFT,1,ABOVE,1,true,5,5,true 

LEFT,3,ABOVE,1,false,5,5,true 

LEFT,2, SAME_ROW,0,false,5,5,false 

LEFT,4,ABOVE,3,false,5,5,true 

RIGHT,3,BELOW,2,false,5,5,false 

RIGHT,1,BELOW,2,false,5,5,false 

RIGHT,2,BELOW,3,false,5,5,false 

RIGHT,4,BELOW,3,false,5,5,false 

A is not above B. 

A is not above C. 

A is not above D. 

A is above E. 

B is not above A. 

B is not above C. 

B is not above D. 

B is above E. 

C is above A. 

C is above B. 

C is not above D. 

C is above E. 

D is above A. 

D is above B. 

D is not above C. 

D is above E. 

E is not above A. 

E is not above B. 

E is not above C. 

E is not above D. 

B)  
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D)  

E)  

Figure 9. Example 5x5 grid (B) from which the ARFF file (A) was generated. C) Sentences that describe the relation 

“above.” D) Model
1
 created by J48 algorithm. E) Model

1
 created by Nearest Neighbour algorithm. Models in 

SentenceLearner program are stored in an internal database, as shown in Figure 2. 

The machine-learning algorithms also generate models that can be used to predict class 

values based on the values of simple relations. Figure 9.D and E show example models generated 

by the chosen machine-learning algorithms. 

3.3. Algorithm Design 

The general design of the algorithms in this thesis is described in this section. Since the 

program SentenceLearner program failed expectations in the initial experiments, the program 

was redesigned for improved results. In this section we describe algorithm designs at each stage 

                                                

1 In addition to a model, Weka also outputs statistics about class details, results, and confusion matrix. 
2 “X --> Y” means position of X relative to Y. 
3 Some of the words listed are just different version of the other words, as Polish language requires the form of the word to be 

------------------ 

J48 pruned tree 

------------------ 

 

verticalConceptAttribute = ABOVE: true (8.0) 

verticalConceptAttribute = BELOW: false (8.0) 

verticalConceptAttribute = SAME_ROW: false (4.0) 

 

Number of Leaves  :         3 

 

Size of the tree :         4 

------------------ 

 

NNGE classifier 

 

Rules generated : 

        class false IF : horizontalConceptAttribute in {LEFT,RIGHT} ^ 

0.0<=horizontalDistanceAttribute<=3.0 ^ verticalConceptAttribute in {BELOW,SAME_ROW} ^ 

1.0<=verticalDistanceAttribute<=4.0 ^ isTouchingAttribute in {false,true} ^ 

horizontalGridDimentionAttribute=5.0 ^ verticalGridDimentionAttribute=5.0  (12) 

        class true IF : horizontalConceptAttribute in {LEFT,RIGHT} ^ 

1.0<=horizontalDistanceAttribute<=3.0 ^ verticalConceptAttribute in {ABOVE} ^ 

1.0<=verticalDistanceAttribute<=4.0 ^ isTouchingAttribute in {false,true} ^ 

horizontalGridDimentionAttribute=5.0 ^ verticalGridDimentionAttribute=5.0  (8) 

 

Stat : 

        class false : 1 exemplar(s) including 1 Hyperrectangle(s) and 0 Single(s). 

        class true : 1 exemplar(s) including 1 Hyperrectangle(s) and 0 Single(s). 

 

        Total : 2 exemplars(s) including 2 Hyperrectangle(s) and 0 Single(s). 

 

        Feature weights : [0.2958073480446817 0.17095059445466854 0.9709505944546686 

0.07594386796016228 0.012750423385226917 0.0 0.0] 
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of the design process and in Chapter 4 we conduct experiments for each stage of the design pro-

cess to prove the proposed algorithms work as intended. 

3.3.1. Association between Simple Relations and Sentences 

The association between simple relations and some sentences can be done easily without 

the use of any machine-learning algorithm as discussed below. We need a structure called 

SentenceData, which will hold everything of interest from a given sentence, that is the unaltered 

sentence text, the relation from sentence, and the point names. The RelationText element in 

SentenceData holds the sentence text that remains after removing the point names. Each sen-

tence is processed into a corresponding SentenceData object. This is illustrated in Figure 10 be-

low. 

Sentence Text RelationText Left Point Name Right Point Name 

A is left of B. is left of A B 

Figure 10. Tabular representation of an example SentenceData data structure. 

The process of association of sentences to simple relations can now begin. First, the 

SentenceData objects need to be sorted according to RelationText. For each different 

RelationText, a set that will hold SentenceData objects is created. Each SentenceData object 

is then moved to the appropriate set that corresponds to RelationText. For example, if we have 

the sentences: “A is left of B,” “A is right of C,” “A is not right of B,” “A is not 

left of C,” “B is left of C,” and “B is not right of C,” then we have the sets: one for 

the RelationText “is left of” holding object representing sentences {“A is left of B.”, 

“B is left of C.”}, another for RelationText “is not right of” {“A is not right of 

B.”, “B is not right of C.”}, yet another for RelationText “is not left of” {“A is 

not left of C.”}, and a similar set for RelationText “is right of” holding sentence {“A 

is right of C.”}. Even if the sentences are seemingly the logical consequences of each other, 

they need to be included, since we assume the program has no prior knowledge of the languages, 

and if the sentences given for training include those expressing “in same column,” the logic 

becomes more complicated. 
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A)  

B)  

C)  

Figure 11. Example grid (A) with associated sentences (B) and the state of association of RelationText to simple 

relations (C). See text for detailed explanation. 

After partitioning SentenceData objects into sets, we can check for consistency of each 

set corresponding to a RelationText with each non-numeric simple relation and its negation. To 

do so we use a Boolean variable for each non-numeric simple relation and their negations. We 

start the consistency check by marking the chosen RelationText as consistent with all simple 

A is not above B. 

B is not above C. 

C is not above D. 

D is above E. 

E is not above A. 

A is not below B. 

B is below C. 

C is not below D. 

D is not below E. 

E is below A. 

Line 

number 

Sentence or state Value for Boolean variable 

associated with LEFT 

Value for Boolean variable 

associated with NOT LEFT 

1 Initial state for “is not above” TRUE TRUE 

2 A is not above B. TRUE FALSE 

3 B is not above C. FALSE FALSE 

4 Final state for “is not above” FALSE FALSE 

    

1 Initial state for “is above” TRUE TRUE 

2 D is above E. TRUE FALSE 

3 Final state for “is above” TRUE FALSE 

    

1 Initial state for “is not below” TRUE TRUE 

2 A is not below B. TRUE FALSE 

3 C is not below D. FALSE FALSE 

4 Final state for “is not below” FALSE FALSE 

    

1 Initial state for “is below” TRUE TRUE 

2 B is below C. FALSE TRUE 

3 E is below A. FALSE TRUE 

4 Final state for “is below” FALSE TRUE 
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relations and their negations. For each SentenceData object in a selected partition, we then 

check if the values from the corresponding RelationalData object have at least one non-

numeric simple relation value in common. If they do not match, we change appropriate Boolean 

variable’s value to FALSE for the simple relation whose value did not match. We repeat the 

checking of the values for each SentenceData object from the selected partition as shown in ex-

ample from Figure 11. If the value of a Boolean variable stays TRUE, there is no conflict, and we 

can say the set corresponding to a RelationText is at 100% consistent with a chosen simple re-

lation and associate the RelationText with that simple relation. We do this consistency check to 

distinguish between the meanings of the RelationTexts and whether we can say the same thing 

using different words. 

As you can see from the example in Figure 11 above, the sentences must describe the 

grid completely to avoid false associations, such as “is above” with LEFT and “is below” with 

negation of LEFT. We also can stop checking a partition the moment all values of Boolean varia-

bles become FALSE. For example, on line 1 of “is not above” we start with an assumed value 

TRUE for LEFT and NOT LEFT. On line 2, the value for NOT LEFT changes to FALSE because the 

point A is left of point B. Similarly, on line 3, the value for LEFT changes to FALSE because the 

point B is not left of point C. The final state of “is not above,” shown on line 4, means no asso-

ciation of “is not above” with LEFT or NOT LEFT has been made. 

Conversely, the initial state for “is above,” shown on line 1, starts with the assumed 

value TRUE for LEFT and NOT LEFT. The line 2 for the state “is above” has the value for NOT 

LEFT changed to FALSE since the point D is left of the point E on the grid. Line 3 shows the final 

state of “is above.” Since there were no more sentences for “is above” and the value for LEFT 

remained TRUE, association of the phrase “is above” to LEFT is made. 

Algorithm Simple Association 

Inputs:  Grid, Sentences describing the grid 

Outputs: Truth values and associated RelationText values 

Steps: 

1. Create SentenceData objects, and partition them according to 

RelationText values. 

2. For each partition. 

a. Sort SentenceData objects according to subject and object. 

b. Set values of Boolean variables corresponding to non-numeric 

simple relations and their negations to TRUE. 

c. For all ordered point name combinations. 
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i. If SentenceData object exist, proceed to step 2.c.i.1. 

Otherwise, if tere are SentenceData objects remaining in 

the selected partition, skip all steps before step 

2.c.i.2.b. 

1. Create RelationalData object for the selected 

SentenceData object. 

2. For each value of non-numeric simple relation and its 

negation. 

a. If the value of a corresponding simple relation 

from the RelationalData object differs from the 

selected simple relation value, change the 

value of the corresponding Boolean variable to 

FALSE. 

b. Proceed to step 2.c.i.2 if there are remaining 

values for simple relations and their 

negations. Otherwise, output the RelationText 

values for the simple relations or their 

negations whose Boolean variables remained 

TRUE. 

Figure 12. Simple association algorithm. 

3.3.2. Association of Machine-Learning Model with RelationText 

The algorithm discussed in the previous subsection had trouble distinguishing the con-

cepts “touches” and “touches on the corner” since the second concept is a special case of 

the first one. This is because the mentioned relation is associated with horizontal distance and 

vertical distance simple relations which are numeric and both have to be equal to 1. The numeric 

relations and the combinations of relations would need to be encoded into the algorithm from 

3.3.1, thus it is not possible to pre-code all possible relations, for example, that require using nat-

ural numbers. Instead, we can use an existing machine-learning algorithm to induce a model that 

represents the positional relationship described by a word or some phrase. For example, if the 

positional phrase is “is left of,” then the class name is also “is left of.” For each sentence 

of the type “X is left of Y,” the algorithm receives as input the numeric and non-numeric 

values of simple relations shown in Figure 8 along with the class value TRUE. For each pair of 

points X, Y for which there is not a sentence “X is left of Y,” the algorithm receives the sim-

ple relation values appropriate for the relative positions of X and Y, along with the class value 

FALSE. The algorithm discussed here is supposed to learn all the relations the previous algorithm 

failed to distinguish through association. 
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This approach is similar to the approach in 3.3.1, but it has a slight advantage since now 

all complex relations can be considered. The same algorithm to partition SentenceData objects 

into sets mentioned in 3.3.1 is used. 

To build a model of a class, whose name is RelationText, using a machine-learning al-

gorithm we need to either associate SentenceData objects with observed simple relations as 

mentioned in 3.3.1 or build RelationalData objects that store all the simple relation values for 

the appropriate ordered point name combinations as described in 3.1.3. 

We select one of the partitions of the set of training sentences and define a class with the 

name of that RelationText. Now we move the RelationalData objects corresponding to the 

SentenceData objects in the selected partition to a set which is associated with TRUE value of the 

class, and move the remaining RelationalData objects to a set which is associated with FALSE 

value of the class as we need a counter-example for the machine-learning to work. Otherwise, if 

there would not be any counter-example, the model produced during training would always 

choose TRUE as the result of later classification. We feed the values of elements of the 

RelationalData objects from both sets together with appropriate class value to a machine-

learning algorithm in order to get a model, as in example shown in Figure 9.D and E, corre-

sponding to the RelationText associated with the selected group. 

Now we can check if the model is 100% consistent with the data. To do so, we do the fol-

lowing with all partitions: we get the model and feed through it the RelationalData objects cor-

responding to a single partition. A partition of SentenceData objects is said to be 100% con-

sistent with the model created by the machine-learning algorithm if all the RelationalData ob-

jects from the tested partition are classified by the model as TRUE. Only then an association be-

tween sets of SentenceData objects that were deemed consistent with the model to the model 

can be made. The model can then be stored in memory and must not be used again in this algo-

rithm as to not affect the other RelationText consistency tests and associations as the process 

repeats for the remaining partitions associated with respective RelationTexts. 
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A)  

B)  

Figure 13. A tabular representation of an example RelationalData (A) where the subject, A, is located according to 

object, B, as shown in (B). Points A and B can be in any place in the above grid as long as they are placed in the proper 

distances from each other and on the proper sides of each other. 

Algorithm Model Association 

Inputs:  Grid, Sentences describing the grid 

Outputs: Models for relations and associated RelationText values 

Steps: 

1. Create SentenceData objects, and partition them according to 

RelationText values. 

2. For each partition. 

a. Sort SentenceData objects according to subject and object. 

b. For all ordered point name combinations. 

i. Create RelationalData object. 

ii. If SentenceData object exist, proceed to step 2.b.ii.1. 

Otherwise skip all steps before step 2.b.iii. 

1. Move the RelationalData object to the set associated 

with class value TRUE. 

2. If there are remaining ordered point name 

combinations, proceed to step 2.b. Otherwise skip all 

steps before step 2.c. 

iii. Move RelationalData object to the set associated with class 

value FALSE. 

iv. If there are remaining ordered point name combinations, 

proceed to step 2.b. Otherwise skip all steps before step 

2.c. 

Horizontal 
Relation 

Horizontal 
Distance 

Vertical 
Relation 

Vertical 
Distance 

Is_Touching 
Relation 

Horizontal 
Grid Di-
mension 

Vertical 
Grid Di-
mension 

LEFT 1 ABOVE 2 FALSE 5 10 
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c. Build machine-learning model using the values of RelationalData 

objects and appropriate class values. 

d. For each partition of SentenceData objects. 

i. For each SentenceData object. 

1. Create RelationalData object. 

2. Classify the RelationalData object using the model. 

3. If the RelationalData object is classified as FALSE, 

proceed to step 2.d. 

4. If there are SentenceData objects remaining, proceed 

to step 2.d.i. Otherwise, remember RelationText and 

associate it with the model. 

5. If there are more SentenceData partitions remaining 

after step 2.d, proceed to step 2.d. Otherwise 

proceed to step 2.e. 

e. If there are more partitions remaining after step 2, proceed to 

step 2. 

Figure 14. Model association algorithm. 

3.3.3. Parser 

We developed a simplistic parser algorithm defined below. Although complete parsers 

for various languages are available in the literature ([3], [6], [7] , [8], [9], [20], [21], [23]), we 

chose not to use them because they cannot associate a meaning of a word from sentences to a 

situation between objects in a given picture, or points in a given grid. The parser takes sentences 

as input together with the associated grid. The parser splits the sentences into words, determines 

subject, object, verb, negation, and relation in a given set of sentences. It does so by a statistical 

approach which extracts word combinations, and counts how many times they were used. This is 

discussed in detail in the next subsection. Each of the augmented n-grams discussed below needs 

to be stored in the memory for the sentence creation algorithm which is discussed further below. 

The reason for developing a new simplistic parser is the other parser algorithms cannot learn 

from a grid and a set of training sentences. The other simplistic parsers are usually context spe-

cific and require a large corpus of text for training, whereas the proposed parser learns from con-

text-independent sentences. There are a few key differences in the two versions of the proposed 

parser algorithm. Those differences are discussed below. 

Augmented N-Gram Based Approach 

Each augmented n-gram data structure in the proposed algorithm consists of one or more 

word level n-grams, numbers of occurrences of each word of the n-gram, and the types of the 

words in the n-gram. Word types are defined below. 
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Our augmented n-gram has either 3 or 5 spaces for words. The sliding window spaces 

which are empty are marked as NOTHING. This means, if we have a sliding window, pictured in 

Figure 15 below, we simply include an empty space instead of a word from previous or next sen-

tence. The main word is the word in the middle spot of the sliding window, and the sliding win-

dow must contain a word in the middle space. The sliding window is defined as a limit of the 

number of tokens from the input that can be processed at any given time even though the input 

might have more than n tokens. For example, if we have a sliding window of size n we can select 

up to n tokens from the input of size m. 

 

Figure 15. An example of three word sliding window in which the main word in augmented n-gram will be A. 

The main word is classified as one of the following types: RELATION, RELATION_VERB, 

NEGATION, POINT_NAME, VERB, or UNKNOWN. The UNKNOWN type is assigned by default to all words 

before they are classified as other types in the parser. 

As described further in this subsection, the type RELATION is assigned to words, such as 

“left,” that are determined to be relations. The type RELATION_VERB is assigned to words, such 

as “touches,” that are both relations and verbs. The type NEGATION is assigned to words, such as 

“not,” that negate the relation words. The type VERB is assigned to words, such as “is,” which 

are determined to be verbs as described further in this subsection. 

A special case of word type is POINT_NAME, since the parser just discards the word mean-

ing the point name, such as “B,” and just assigns a placeholder for the actual point name. Later 

the placeholder is replaced with a given point name when building sentences as described further 

in this subsection. 

The main word also needs to have the number of uses associated with it. The number of 

uses is the number of times a word occurs in the set of sentences given for training. 

There might or might not be words preceding or following the main word. The allowed 

word types for the words adjacent to the main word in the same sentence are NOTHING, 

POINT_NAME, or UNKNOWN, and in case of NOTHING, there is no word. We do not need to mark the 

adjacent words in the augmented n-gram with the remaining types since we can extract the in-

formation about those words from the augmented n-grams whose main word equals the adjacent 

word in question. 

 A touches 

 

B on the corner. 
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The words surrounding the main word also have to have the number of uses associated 

with them. For example, in Figure 16, the number in column 4 is the number of co-occurrences 

of “is” and “left” in the training sentences that the program has seen so far. The number in 

column 2 is the number of co-occurrences of POINT_NAME, “is,” and “left.” All point names are 

replaced by a placeholder called POINT_NAME, so they are all treated the same. Conversely, the 

same applies for the words on the right side of main word in an augmented n-gram. These num-

bers are not saved by the first parser algorithm. 

We give the words that are one position away from the main words the name inner 

words, and the words that are two spots away from the main word are outer words. 

Previous Outer 
Word 

# of 
Uses 

Previous 
Inner 
Word 

# of 
Uses 

Main 
Word 

Main Word 
Type 

# of 
Uses 

Following 
Inner 
Word 

# of 
Uses 

Following Outer 
Word 

# of 
Uses 

POINT_NAME 10 is 10 left NEGATION 10 of 10 POINT_NAME 10 

Figure 16. Example of an augmented n-gram whose main word was incorrectly classified as NEGATION. 

We define two augmented n-grams to be compatible if they share the same main word or 

if the type of the main word in both of the augmented n-grams is POINT_NAME. Each compatible 

augmented n-gram pair can be merged component-wise to form a new augmented n-gram. The 

merging does not affect the main word type if and only if both augmented n-grams have the 

same main word type. Otherwise, the main word type is set to the word type of the augmented n-

gram whose number of uses of main word is greatest in both augmented n-grams that were 

merged. For example, if we have augmented n-grams pictured in Figure 16 and Figure 17 below, 

we have the word type as shown in Figure 18 below. The reason for merging of the augmented 

n-grams is to avoid repeating the augmented n-grams for each identical augmented n-gram that is 

extracted from a sentence or assigning counters for each non-repeating augmented n-gram. Ex-

amples of such merged augmented n-grams are in Figure 18 and Figure 19. 

We define an augmented n-gram to be compatible with a word if the main word from the 

augmented n-gram is the same as the word. For example, if we have augmented n-gram shown in 

Figure 16 above, the augmented n-gram is compatible with the word “left”. 

All the augmented n-grams are then stored in internal database, as shown in Figure 2. 
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Previous Outer 
Word 

# of 
Uses 

Previous 
Inner 
Word 

# of 
Uses 

Main 
Word 

Main Word 
Type 

# of 
Uses 

Following 
Inner 
Word 

# of 
Uses 

Following Outer 
Word 

# of 
Uses 

is 20 not 20 left RELATION 20 of 20 POINT_NAME 20 

Figure 17. Example of an augmented n-gram whose main word was classified as RELATION. 

Previous Outer 
Word 

# of 
Uses 

Previous 
Inner 
Word 

# of 
Uses 

Main 
Word 

Main Word 
Type 

# of 
Uses 

Following 
Inner 
Word 

# of 
Uses 

Following Outer 
Word 

# of 
Uses 

POINT_NAME 10 is 10 left RELATION 30 of 30 POINT_NAME 30 

is 20 not 20 

Figure 18. A tabular representation of an example five word augmented n-gram collected for the word “left” that was 

classified in this example as RELATION. There were 30 sentences containing the word “left.” In this example there 

are 10 sentences saying “X is left of Y” and 20 sentences saying “X is not left of Y,” where X and Y 

are distinct point name pairs. 

Previous 
Outer 
Word 

# of 
Uses 

Previous Inner 
Word 

# of 
Uses 

Main 
Word  

Main 
Word 
Type 

# 
of 
Us
es 

Follow-
ing Inner 

Word 

# of 
Uses 

Following Outer 
Word 

# of 
Uses 

NOTHING 85 POINT_NAME 85 is VERB 85 left 30 of 30 

not 40 left 20 

right 5 

above 5 

above 5 POINT_NAME 5 

right 10 of 10 

Figure 19. A tabular representation of an example five word augmented n-gram collected for the word “is” that was 

classified in this example as VERB. Note the words following the word “is” as shown in columns Following Inner Word 

and the words in Following Outer Word following the words in Following Inner Words column. 

Determination of Subject and Object 

Determination of subject and object is relatively easy since we assume the point names 

have a strict format, are subject or object, and the subject comes near or on the beginning of a 

sentence whereas the object comes near or at the end of a sentence. The point names are one let-

ter words, made with capital letters from A to Z. Since of the assumption in 3.1.4, we do not need 

to mark the subject and object words as subject and object, respectively. The algorithm, de-

scribed in this section below, is given subject and object point names. This greatly simplifies the 

parsing of sentences but will be changed in future work as discussed in 5.1 to support more com-

plex sentences, such as head-last sentences. 
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Determination of Verb of Being 

The verb of being can be determined by using the ratio of the number of occurrences of a 

selected word in the bag of words obtained by tokenizing all the sentences given for training to 

the number of sentences that were given for training. Given the structure of sentences assumed in 

our experiments (see section 3.1.2), this ratio for verb of being must be less than or equal to 1, 

since we assume at most one verb of being per sentence. This is because training sentences con-

taining exactly three words consist of subject, object, and relation verb words. The ratio is also 

greater than certain value, which was found in the experimental phrase. Because we do not want 

to falsely classify a negation as a verb of being, an educated guess for the lowest value of the ra-

tio should be at least 0.5. 

Determination of Relations and Negations 

The algorithm needs to identify correctly words or phrases that represent relations and the 

negations in order to later build the sentences that accurately describe a situation. The template 

approach, which extracts predetermined key words or phrases and reacts accordingly by execut-

ing associated rules [7], would also work but it might produce more errors and will not be as 

flexible in learning the relations and negations accurately. This is because for each key word or 

phrase we would need to encode set of rules, and if a user enters a phrase or a key word that does 

not have associated rule, the template approach would ignore the input. We also avoid the tem-

plate approach since we assume the computer should not have any prior knowledge about a lan-

guage, and using the template approach would indirectly imply the knowledge about a language. 

In our experiments we have had two versions of the algorithm for determining the rela-

tions and negations. Since some of the relation words were not found using the simpler approach, 

we had to improve the algorithm to detect those relations. The results are discussed in detail in 

the experiments section. The algorithm for determination of relations and negations is executed 

after finding the verb of being, subject, and object words. The input is the grid and sentences de-

scribing it. The output is classification of words and the models associated with RELATION words. 

These models are set of rules that would tell whether a particular relation applies to a chosen re-

lation. Those models are later used in the sentence creation algorithm. 
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The First Algorithm 

When we have identified all the subjects, objects, and possible verbs of being as dis-

cussed previously in this subsection, the next step is to identify relations and negations. Relations 

in three word sentences, such as “A touches B,” in our experiment are easily spotted, since the 

relation is also a verb, and is the word that is left after deletion of subject and object words. 

Relations and negations in sentences longer than three words have to be determined using 

the parser that incorporates a machine-learning algorithm. First we tokenize the training sentenc-

es and create augmented n-grams for each of them. We merge all the compatible extracted aug-

mented n-grams and keep them in a computer memory. 

In this subsection, we define a word to be the main word and a word type to be the main 

word type from the same augmented n-gram. 

For each ordered pair of augmented n-grams, we select two different main words initially 

classified as UNKNOWN from the list of augmented n-grams. Then we assume one word is a 

NEGATION, and the other word is a RELATION, and because we do not know what types the words 

really are, we are going to test the assumption later in the parser algorithm. For example, we 

have words “left” and “not” we can assume that “left” is a RELATION and “not” is a 

NEGATION. Since the program has no prior knowledge about a language in the initial state, the 

assumed word functions might be incorrect. If there are wrong assumptions, the parser algorithm 

will correct the assumptions, as discussed below. 

Now we can partition the SentenceData objects into two sets. The first set contains all 

SentenceData objects with the assumed RELATION word and the assumed NEGATION word, and 

the second set contains SentenceData objects with the assumed RELATION word and not the as-

sumed NEGATION word. If we have two sets that are not empty, we can proceed, otherwise, we 

forget the assumptions and repeat word selections, and partitioning the SentenceData objects as 

described above. 

Now we can create a class whose name is the assumed RELATION word. We assign the 

class value FALSE with the set that has the assumed RELATION word and the assumed NEGATION 

word, and associate the class value to TRUE with the set that has the assumed RELATION word and 

not the assumed NEGATION word. For example we have sentence “A is left of B,” so we as-

sociate the corresponding RelationalData object to the class value TRUE, and for the sentence 
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“A is not left of C,” we associate the corresponding RelationalData object to the class 

value FALSE for the assumed relation “left.” 

We then generate RelationalData objects for the appropriate SentenceData objects 

and feed the RelationalData objects together with corresponding class value to a machine-

learning algorithm that is selected by the user prior to parsing. The user is allowed to select 

which machine-learning algorithm to use. 

Then a model for the assumed relation and negation words is built using a machine-

learning algorithm. After that, all the RelationalData objects in the FALSE set are checked if 

they are all classified using machine-learning algorithm as FALSE, and all the RelationalData 

objects in the TRUE set are checked to see if they are all classified as TRUE. If both of those condi-

tions are met, we change the main word types in appropriate augmented n-grams associated with 

selected words to NEGATION and RELATION respectively, and repeat the process for the remaining 

pairs of UNKNOWN words and assumed roles. This is because there might be more than one form of 

NEGATION word in a language, such as the phrase “is not” can be contracted to “isn’t” in Eng-

lish. 

The next step is to test our hypothesis of the assumed word types by checking if we can 

find more RELATIONS by using an assumed NEGATION word. We then select a word not assumed 

to be RELATION or NEGATION from the list of words classified as UNKNOWN. We then partition the 

SentenceData objects, build a model, test the assumptions, and mark the words as discussed 

above in the previous paragraph. We repeat this step for all the remaining words classified as 

UNKNOWN. 

If, after performing the step described in the previous paragraph we have more than one 

assumed RELATION the assumed RELATIONS are called actual RELATIONS and the assumed NEGA-

TION is called actual NEGATION. We remember the models associated with RELATIONS. Other-

wise, the assumed NEGATIONS are not NEGATIONS at all, so we set them to UNKNOWN, and the as-

sumed RELATION is actually a NEGATION. 

Now we can find the remaining RELATIONS by choosing a NEGATION word, constructing 

sets, building models, and testing as above if in fact the assumed RELATION is actually 100% re-

lation as described two paragraphs above. 

For all the actual RELATIONS we remember the models. The first parser is shown in Fig-

ure 20 below. 
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The proposed first parser algorithm is of the polynomial complexity shown by the func-

tion in Equation 4 where   is the average number of words in a sentence,   is the number of re-

lations for learning,   is the number of points in the associated grid,   is the number of occur-

rences of a negation word in the set of training sentences,  ( ) is the time required for learning   

instances, and  ( ) is the time required for classifying one instance based on learned   instances. 

The first proposed parser algorithm’s memory usage is of polynomial complexity, as shown in 

Equation 5, where  ́( ) is the memory required to learn from   instances, and  ́( ) is the 

memory required to classify an instance using a model created from   instances. The time of 

classification ( ( )) and learning ( ( )), and the memory required for learning ( ́( )) and classi-

fication ( ́( )), are all dependent on the machine-learning algorithm chosen to be used during 

parsing. Equation 6 shows maximum number of augmented n-grams returned by the proposed 

parser algorithms. 

 (       )   (                  (  )  (     )   (  )) 

Equation 4. Function depicting the complexity of the first proposed parser algorithm. 

 (     )   (      ́(    )   ́(  )) 

Equation 5. Memory requirement for the proposed parser algorithms. 

 (   )        

Equation 6. Maximum number of augmented n-grams returned by the proposed parser algorithms. 

Algorithm Parser I 

Input:  Sentences and associated grid 

Output: Augmented trigram, word classifications and models associated with 

RELATIONS 

Steps: 

1. Convert all sentences into SentenceData objects. 

a. Detect point names. 

b. Create RelationText by removing point names from sentence text. 

c. Store unaltered sentence text, RelationText and point names in 

SentenceData object. 

2. Create augmented n-gram objects from words in the sentences. 

3. Merge compatible augmented n-gram objects from all sentences. 

4. For all the augmented n-gram objects determine the ratio of use of the 

main word from the augmented n-gram object to the number of sentences. 

a. If the ratio is between 0.5 and 1 inclusively, the middle word 

from augmented n-gram is VERB. 
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i. Modify main word type to VERB in corresponding augmented n-

gram. 

5. For all SentenceData objects: 

a. If the sentence from a SentenceData object has 3 words, the word 

that is not POINT_NAME is RELATION_VERB. 

i. Modify main word type to RELATION_VERB in corresponding 

augmented n-gram object. 

6. For all the augmented n-grams which were previously not classified. 

a. Choose an augmented n-gram and assume it is a RELATION. 

i. Create a class whose name is the main word from chosen 

augmented n-gram. 

b. Choose a different augmented n-gram and assume it is a NEGATION. 

c. Pick SentenceData objects which was created from a sentence which 

contains assumed RELATION and the assumed NEGATION and generate 

RelationalData objects and move them to set associated with class 

value FALSE 

d. Pick SentenceData objects which correspond to sentence which 

contains assumed RELATION and does not contain the assumed 

NEGATION and generate RelationalData objects and move them to set 

associated with class value TRUE. 

e. Pick SentenceData objects which correspond to sentence which 

contains assumed RELATION and the assumed NEGATION and generate 

RelationalData objects and move them to set associated with class 

value FALSE. 

f. Train a machine-learning algorithm with the fields of the 

RelationalData objects and the associated class values. 

g. Use the model created by a machine-learning algorithm to check if 

all the RelationalData objects in the set associated with FALSE 

and TRUE values are classified as FALSE and TRUE values 

respectively. If so, remember the assumptions and models 

associated with assumed RELATIONS. Otherwise, forget the model 

associated with the chosen augmented n-gram, and the assumptions 

for the chosen augmented n-grams. 

7. For all the augmented n-grams: 

a. Pick one of the assumed NEGATION augmented n-gram. 

b. For all the n-grams which were previously not classified. 

i. Select augmented n-gram and assume the selected augmented 

n-gram to be a RELATION. 

ii. Create class whose name is the value of main word from the 

selected augmented n-gram. 

iii. Pick SentenceData objects which correspond to sentence 

which contains assumed RELATION and does not contain the 

assumed NEGATION, and generate RelationalData objects and 

move them to set associated with class value TRUE. 

iv. Pick SentenceData objects which correspond to sentence 

which contains assumed RELATION and the assumed NEGATION, 

and generate RelationalData objects and move them to set 

associated with class value FALSE. 



35 

v. Train a machine-learning algorithm with the fields of the 

RelationalData objects and the associated class values. 

vi. Use the model created by a machine-learning algorithm to 

check if all the RelationalData objects in the set 

associated with FALSE and TRUE values are classified as 

FALSE and TRUE values respectively. If so, remember the 

assumptions and models associated with assumed RELATIONS. 

Otherwise, forget the model associated with the assumed 

RELATION, and forget the assumption. 

8. If we have one assumed RELATION remembered after steps 6 and 7, set the 

assumed RELATION to NEGATION, and forget the assumed NEGATION and the 

model associated with assumed RELATION, and repeat step 7 once and then 

skip step 8. 

Figure 20. The first parser algorithm. 

The Improved Algorithm 

The first algorithm misses relations, such as “touching” in the sentences “X is touch-

ing Y.” and “X is not touching Y on the corner.” The failure occurs because the word 

“touching” occurs for the same pair of points in two different structures. In the first example the 

word “touching” should be treated as a single word, whereas in the second example the word 

“touching” should be treated as a part of a phrase that expresses a more complex relation. For 

that reason, there are two more steps to make after the execution of the first algorithm described 

above. 

The first step is to remove sentences from the set of sentences given for learning contain-

ing relations that have been already classified. 

The second step is the same as finding the remaining relations after finding true negation 

as described in the previous subsection but this time we use the reduced set of sentences. That 

means, we remove sentences containing known relations from the set of sentences given for 

training. 

For all the determined RELATIONS we need to remember the models or the RelationalData 

objects and appropriate class values used for finding the determined RELATIONS, as we will be 

constructing sentences based on a situation between two points as shown in a grid. The details of 

the improved parser algorithm are shown in Figure 21 below. 

The proposed improved parser algorithm is of the polynomial complexity shown by the 

function in Equation 7 where   is the average number of words in a sentence,   is the number of 

relations for learning,   is the number of points in the associated grid,   is the number of occur-
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rences of a negation word,  ( ) is the time required for learning   instances, and  ( ) is the time 

required for classifying one instance based on learning from   instances. The equations showing 

memory usage of the first proposed parser and the number of returned augmented n-grams by the 

first proposed parser apply as well to the proposed improved parser algorithm. 

 (       )   (                        (  )  (      )   (  )) 

Equation 7. Function depicting the complexity of the improved proposed parser algorithm. 

Algorithm Parser II 

Input:  Sentences and associated grid 

Output: Five word augmented n-grams, word classifications and models 

associated with RELATIONS 

Steps: 

1. Convert all sentences into SentenceData objects. 

a. Detect point names. 

b. Create RelationText by removing point names from sentence text. 

c. Store unaltered sentence text, RelationText and point names in 

SentenceData object. 

2. Create augmented n-gram objects from words in the sentences. 

3. Merge compatible augmented n-gram objects from all sentences. 

4. For all the augmented n-gram objects determine the ratio of use of the 

main word from the augmented n-gram object to the number of sentences. 

a. If the ratio is between 0.5 and 1 inclusively, the middle word 

from augmented n-gram is VERB. 

i. Modify main word type to VERB in corresponding augmented n-

gram. 

5. For all SentenceData objects: 

a. If the sentence from a SentenceData object has 3 words, the word 

that is not POINT_NAME is RELATION_VERB. 

i. Modify main word type to RELATION_VERB in corresponding 

augmented n-gram object. 

6. For all the augmented n-grams which were previously not classified. 

a. Choose an augmented n-gram and assume it is a RELATION. 

i. Create a class whose name is the main word from chosen 

augmented n-gram. 

b. Choose a different augmented n-gram and assume it is a NEGATION. 

c. Pick SentenceData objects which was created from a sentence which 

contains assumed RELATION and the assumed NEGATION and generate 

RelationalData objects and move them to set associated with class 

value FALSE 

d. Pick SentenceData objects which correspond to sentence which 

contains assumed RELATION and does not contain the assumed 

NEGATION and generate RelationalData objects and move them to set 

associated with class value TRUE 

e. Train a machine-learning algorithm with the fields of the 

RelationalData objects and the associated class values. 
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f. Use the model created by a machine-learning algorithm to check if 

all the RelationalData objects in the set associated with FALSE 

and TRUE values are classified as FALSE and TRUE values 

respectively. If so, remember the assumptions and models 

associated with assumed RELATIONS. Otherwise, forget the model 

associated with the chosen augmented n-gram, and the assumptions 

for the chosen augmented n-grams. 

7. For all the augmented n-grams: 

a. Pick one of the assumed NEGATION augmented n-gram. 

b. For all the n-grams which were previously not classified. 

i. Select augmented n-gram and assume the selected augmented 

n-gram to be a RELATION. 

ii. Create class whose name is the value of main word from the 

selected augmented n-gram. 

iii. Pick SentenceData objects which correspond to sentence 

which contains assumed RELATION and does not contain the 

assumed NEGATION, and generate RelationalData objects and 

move them to set associated with class value TRUE 

iv. Train a machine-learning algorithm with the fields of the 

RelationalData objects and the associated class values. 

v. Use the model created by a machine-learning algorithm to 

check if all the RelationalData objects in the set 

associated with FALSE and TRUE values are classified as 

FALSE and TRUE values respectively. If so, remember the 

assumptions and models associated with assumed RELATIONS. 

Otherwise, forget the model associated with the assumed 

RELATION, and forget the assumption. 

8. If we have one assumed RELATION remembered after steps 6 and 7, set the 

assumed RELATION to NEGATION, and forget the assumed NEGATION and the 

model associated with assumed RELATION, and repeat step 7 once and then 

skip step 8. 

9. Remove SentenceData for sentences that contain known RELATIONS from 

steps 6 and 7. 

10. Repeat step 7 once with the rest of SentenceData objects skipping 

steps 8, 9, and 10. 

Figure 21. The improved parser algorithm. 

3.3.4. Sentence Creation 

The sentence creation algorithm is used in our program to describe the learned relations. 

Sentences can at least in theory be created by reversing the function of a grammar dependent 

parser by using the grammar rules, a set of words and their functions in sentences. That would 

create sentences that are grammatically correct but might make no sense [7], for example “Green 

nails seldom make explanations.” With a statistical parser or approach such as ours using 

augmented n-grams, however, in place of grammar rules we have statistics regarding frequent 

usage patterns, and, in our case, information we have induced concerning word function and the 
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meaning of the expression for positional relations. Our proposed sentence generation algorithm 

creates sentences based on the data collected by the proposed parser algorithm. Those generated 

sentences are not just copies of the sentences from a training set. 

Both of the proposed sentence generation algorithms complete their tasks if they reach 

terminating tokens on both sides of the sentence being generated, and the sentence being gener-

ated includes given point names. The proposed sentence generation algorithms are successful if 

they create a grammatically correct sentence, and fail if the generated sentence is not grammati-

cal. These proposed sentence generation algorithms abort the process of generating a sentence if 

the sentence that is generated is not growing in size and the terminating words have not been in-

cluded, or one of the point names has not been included. 

After the sentences are created and deemed valid, the program outputs the sentences to 

the user via GUI, as shown in schematic from Figure 2. 

First Fits Augmented Trigram Approach 

We repeat the following process for the point name chosen by user and the other point 

names that are present in the grid. 

Since we need to describe a situation represented in a grid, we pick a RELATION word cor-

responding to an augmented n-gram as it was determined by the first parser algorithm. We test if 

the relation applies to the selected ordered pair of points with the help of a corresponding 

RelationalData object and the corresponding model associated with the selected relation word. 

This shows whether the relation word is true for the selected ordered pair of points. 

From the list of augmented n-grams we then pick the augmented n-gram which corre-

sponds to the NEGATION word. If the relation word was classified as FALSE for the situation be-

tween two selected points with the help of machine-learning algorithm, we need to include the 

negation in the sentence but in appropriate spot in sentence that is going to be created as de-

scribed below. 

Then we begin creating a sentence starting from the RELATION word. We need to have 

variables that would store a partial state of the sentence, and we call them left and right current 

augmented n-grams for the left and right, respectively, side of the sentence being created. The 

side of sentence is defined to be everything that is in sentence on the left or the right of a 

RELATION word. We then set the current left and the current right augmented n-gram to the aug-
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mented n-gram whose middle word is the RELATION word. Now we will discuss how to create 

the part of the sentence which is on the left side of the RELATION word. The creation of the right 

side of the sentence follows the same process as for the left side. 

We repeat the following steps until we encounter the current left augmented n-gram in 

which the middle word is preceded by NOTHING, which means we need to terminate the sentence 

on the left side. Otherwise, we proceed as described below. 

We choose augmented n-gram from the list of augmented n-grams that is compatible with 

the word on the left of the current left augmented n-gram as described in 3.3.3. If the word is a 

NEGATION, and we need to include a NEGATION, we do so by choosing a NEGATION instead of the 

selected word and remember that we already included a NEGATION, otherwise, we select an aug-

mented n-gram whose main word is not a NEGATION and is compatible with one of the words on 

the left of the main words of the current left augmented n-gram. We then include the main word 

from the selected augmented n-gram on the left side of the sentence and set the current left aug-

mented n-gram to the selected augmented n-gram. 

We do same thing, respectively, for the right side of the sentence being created as we did 

for the left side of the sentence. 

Since we do not know from the beginning where will be the left and right point names, 

we replace the right point name placeholder with the point name that represents the object, and 

then the left point name placeholder with the point name that represents the subject. 

Sometimes we create a sentence that could not be created, such as in case of the 

NEGATION was needed and was not included in sentence the sentence is invalid for output. In ad-

dition, the inclusion of only one point name makes the sentence invalid. These invalid sentences 

are discarded. 

Because we attempt to create sentences for all augmented n-grams whose main word type 

is RELATION, we need to remove some of the repeated sentences because the RELATION words 

might be a part of a phrase that would result in a duplicate sentence. Therefore, we include only 

one of such duplicating sentences in the answers. 

Without this algorithm, the SentenceLearner would not be expressing the learned lan-

guage, as it would only repeat the phrases given to it, therefore, this step is crucial in expressing 

observed relations. The entire first fits augmented trigram sentence creation algorithm is shown 

in Figure 22 below. 
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The algorithm is a greedy algorithm which tries a random word from a bag of words and 

takes the first word that fits at a given spot in the sentence. The algorithm has polynomial com-

plexity shown in function in Equation 8. On average, the algorithm’s average memory require-

ments are shown in Equation 9, where   is the average number of words in sentences given for 

training,   is the average size in bytes for an augmented n-gram, and   is the average size of a 

word in bytes from the training sentences. 

 (   )   (    ( )) 

Equation 8. Function showing the time needed for completion of a sentence by the proposed sentence creation algorithms. 

 (     )   (    ) 

Equation 9. Function showing the memory requirements of the proposed sentence creation algorithms. 

Algorithm SentenceCreation I 

Input: Augmented n-grams, point names, grid, models associated with 

RELATIONS, augmented n-gram whose main word type is RELATION. 

Output: Sentence and a flag for valid sentence 

Steps: 

1. Initialize variable isSentenceValid to TRUE. 

2. Store selected augmented n-gram whose main word type is RELATION to 

relationAugmentedNGram. 

3. For all augmented n-grams. 

a. If augmented n-gram main word type is NEGATION store value of 

main word into negationWord variable and proceed to step 4. 

Otherwise proceed to step 3.a. with another augmented n-gram that 

was not tested. 

4. From models for RELATIONS pick the one that corresponds to the value of 

main word from relationAugmentedNGram. 

5. Build RelationalData object for given point names. 

6. Classify the RelationalData object with the model corresponding to 

RELATION. 

7. Initialize variable isNegationNeeded to the class value that was 

obtained from the model after classifying RelationalData object. 

8. Initialize variables isNegationIncludedInSentence, 

isSentenceTerminatedOnLeft, and isSentenceTerminatedOnRight to FALSE. 

9. Initialize variable sentence to the value of main word from 

relationAugmentedNGram 

10. Initialize variables currentLeftAugmentedNGram and 

currentRightAugmentedNGram to the value of relationAugmentedNGram. 

11. For all augmented n-grams. 

a. Chose an augmented n-gram. 

b. If isSentenceTerminatedOnLeft = FALSE go to step 11.b.i. 

Otherwise skip all steps before step 11.c. 
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i. If main word from chosen augmented n-gram precedes main 

word from currentLeftAugmentedNGram proceed to step 

11.b.i.1. Otherwise skip all steps before step 11.c. 

1. If isNegationNeeded = TRUE and 

isNegationIncludedInSentence = FALSE proceed to step 

11.b.i.1.a. Otherwise skip all steps before step 

11.c. 

a. If main word from chosen augmented n-gram = 

negationWord proceed to step 11.b.i.1.a.i. 

Otherwise skip all steps before step 

11.b.i.1.b. 

i. Change value of sentence to negationWord 

+ “ “ + sentence. 

ii. Change the value of 

isNegationIncludedInSentence to TRUE. 

iii. Change the value of 

currentLeftAugmentedNGram to the value of 

the chosen augmented n-gram. 

iv. If main word from the chosen augmented n-

gram is preceded by NOTHING, change the 

value of isSentenceTerminatedOnLeft to 

TRUE. 

v. Skip all steps before step 11.c. 

b. If main word from currentLeftAugmentedNGram is 

not preceded by negationWord skip all steps 

before step 11.b.i.2.a. O therwise skip all 

steps before step 11.c. 

2. If isNegationNeeded = FALSE or 

isNegationIncludedInSentence = TRUE proceed to step 

11.b.i.2.a. Otherwise skip all steps before step 

11.c. 

a. Change value of sentence to value of main word 

from selected augmented n-gram + “ “ + 

sentence. 

b. Change the value of currentLeftAugmentedNGram 

to the value of the chosen augmented n-gram. 

c. If main word from the chosen augmented n-gram 

is preceded by NOTHING, change the value of 

isSentenceTerminatedOnLeft to TRUE. 

c. If isSentenceTerminatedOnRight = FALSE go to step 11.c.i. 

Otherwise skip all steps before step 11.d. 

i. If main word from chosen augmented n-gram follows main word 

from currentRightAugmentedNGram proceed to step 11.c.i.1. 

Otherwise skip all steps before step 11.d. 

1. If isNegationNeeded = TRUE and 

isNegationIncludedInSentence = FALSE proceed to step 

11.c.i.1.a. Otherwise skip all steps before step 

11.c.i.2. 
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a. If main word from chosen augmented n-gram = 

negationWord proceed to step 11.c.i.1.a.i. 

Otherwise skip all steps before step 

11.c.i.1.b. 

i. Change value of sentence to sentence + “ 

“ + negationWord. 

ii. Change the value of 

isNegationIncludedInSentence to TRUE. 

iii. Change the value of 

currentRightAugmentedNGram to the value 

of the chosen augmented n-gram. 

iv. If main word from the chosen augmented n-

gram is followed by NOTHING, change the 

value of isSentenceTerminatedOnRight to 

TRUE. 

v. Skip all steps before step 11.d. 

b. If main word from currentRightAugmentedNGram is 

not preceded by negationWord skip all steps 

before step 11.c.i.2.a. Otherwise skip all 

steps before step 11.d. 

2. If isNegationNeeded = FALSE or 

isNegationIncludedInSentence = TRUE. 

a. Change value of sentence to sentence + “ “ + 

value of main word from selected augmented n-

gram. 

b. Change the value of currentRightAugmentedNGram 

to the value of the chosen augmented n-gram. 

c. If main word from the chosen augmented n-gram 

is followed by NOTHING, change the value of 

isSentenceTerminatedOnRight to TRUE. 

d. Proceed to step 11.d. 

d. If there are more n-grams to choose from from step 11.a skip all 

steps before step 11.e. Otherwise proceed to step 11.d.i. 

i. If the sentence from step 11 has not been expanded by words 

from steps 11.b and 11.c set the value of isSentenceValid 

to FALSE and exit the algorithm. Otherwise jump to step 11. 

e. If isSentenceTerminatedOnLeft = TRUE and 

isSentenceTerminatedOnRight = TRUE go to step 12. Otherwise jump 

to step 11.a. 

12. If sentence has 2 placeholders for point names, replace them with 

respective point names, otherwise set the value of isSentenceValid to 

FALSE and skip all remaining steps. 

13. If IsNegationNeeded = TRUE and isNegationIncludedInSentence = 

FALSE, set the value of isSentenceValid to FALSE. 

Figure 22. First fits augmented n-gram algorithm for creating sentences. This algorithm is called inside two loops that 

choose point names, and augmented n-grams whose main word type is RELATION. If the value of the isSentenceValid 

variable remains TRUE after the run of the above algorithm, the sentence created by this algorithm is given to further 

processing in those loops. 
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Most Probable Five Word Augmented N-Gram Approach 

The most probable five word augmented n-gram approach was created since the previous 

approach created sentences that were incorrect grammatically, as shown in 4.3.1. Also the algo-

rithm discussed above would not build sentences for the relation “touches on the corner” as 

in the sentence “X touches Y on the corner,” since after building the part “Y on the 

corner,” the algorithm would mark the created sentence as terminated on both sides. We do not 

check if the algorithm has included a verb since some verbs in the training sentences are not de-

tected by the proposed parser. In addition, the algorithm discussed above would probably create 

more incorrect sentences if the training sentences contained grammar or spelling errors. 

We will describe how to create the left side of the sentence as the right side follows the 

same process. We proceed as discussed previously in this subsection above except we change 

three details. First, we find which word on the left side of the current left augmented n-gram is 

the most likely word. We then select the augmented n-gram that is compatible with the selected 

word and proceed as above with the NEGATION. For the second change, before the sentence vali-

dation if we have exactly one word on the left side of the sentence being created, we initialize a 

variable called previous left augmented n-gram to hold the state of the current left augmented n-

gram variable before it is replaced with the selected augmented n-gram value. For the third 

change, we choose the most probable word taking care of the fact that we need to look if the two 

leftmost words are preceded by the chosen word in the previous left augmented n-gram, and we 

need to include a NEGATION as previously in this subsection. 

The changes apply, similarly to the right side of the sentence as well. After we have 

reached end of the sentence creation process, we validate the sentence by the method described 

in previously in this subsection. The entire most probable five word augmented sentence creation 

algorithm is shown in Appendix A Figure 39. 

This algorithm also has a polynomial complexity shown in function in Equation 8 and 

Equation 9. 

3.4. Experimental Design 

The experiments were divided into four groups. The first group called the early stage ex-

periments were the starting point for our research, and involved association of the simple rela-

tions with the sentences partitioned by RelationText. The second group of experiments was 
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performed with the help of the parser algorithms described above. The object of those experi-

ments was to determine whether it is possible to associate a meaning to a word that is a relation 

or is a part of a relational phrase. The third part of the experiments was the attempts to create 

sentences using the data collected by one of the parser algorithms. The fourth phase of experi-

ments was to determine which machine-learning algorithms are most suitable for learning those 

meanings of relation words. 

3.4.1. Early stage experiments 

The first two experiments were conducted using grid shown in Figure 23 and a list of sen-

tences shown in Appendix A Figure 40. The sentences are automatically generated by an auxilia-

ry function in SentenceLearner, and they accurately describe relationships in Figure 23. 

The first experiment included association of one of the simple relations to the sets of sen-

tences. The second experiment involved sorting the sentences into sets that expressed the same 

relation, learning of relations expressed in sentences with the help of the J48 machine-learning 

algorithm, and then checking with the help of the same machine-learning algorithm whether the 

sets are consistent with the learned relations. 

As you will note, however, the set of sentences used for training could not contain the re-

lation “in same column” as in sentence “X is in same column as Y,” because there are no 

points that are aligned in the same column, which in turn causes problems that are discussed in 

4.1. 

 

Figure 23. The 5x5 grid for which sentences (Appendix A Figure 40) describing it were used in the first two experiments. 

3.4.2. Parser 

The parser was tested in the two phases. In both phases, the parser categorized the words 

in the given set of sentences shown in Appendix A Figure 41 describing a grid, which is shown 

in Figure 24. This grid has one or more points in every cell so, that includes all the possible rela-
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tions. All of the parser algorithms were tested on sentences shown in Appendix A Figure 41 and 

Figure 43. The first and the improved parser algorithms are described in 3.3.3. 

 

Figure 24. The 3x3 grid used for training of the parser. 

Each experiment of the parser performance started with the initial state in which the 

SentenceLearner had no prior knowledge of words and their functions in sentences, and the 

program used the J48 machine-learning algorithm. In each of the experiments, only one of the 

mentioned sets of sentences was used. The parser had to distinguish between RELATION, NEGA-

TION, POINT_NAME, and VERB. 

The first parser algorithm did not recognize all possible relations, so the second test was 

conducted using the improved parser, which recognized all the possible relations correctly. 

3.4.3. Sentence Building 

This part of experiments is divided into two parts. Once SentenceLearner learned all of 

the interesting word functions from the English sentence set, the program had to output Sentenc-

es associated with the grid shown in Figure 25. 

 

Figure 25. Grid that had to be described for a selectected point to all other point combinations. 

Since the first proposed sentence creation algorithm, described in 3.3.4, did not work cor-

rectly for the data extracted from grammatically correct English sentences, the test for the second 

approach, described in 3.3.4, was performed using the English and Polish language and the im-

proved algorithm. The program again used the J48 machine-learning algorithm to determine 

whether relations apply to selected pair of points. 
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3.4.4. Machine-Learning Algorithm and Its Role In Learning Relationships 

Since not all machine-learning algorithms are created equal in the terms of the accuracy 

and applicability of the model, the machine-learning algorithms had to be tested for learning var-

ious relations expressed in the set of sentences that were used in the experiments mentioned 

above. 

Each run of the test started with the initial state of the algorithm, that has no prior 

knowledge of the words and their functions in sentences. The SentenceLearner had to learn 

from sentences and then describe a selected point from grid shown in Figure 25 above. Some in-

teresting results are included in the experiments section. 

The list of sentences for training was generated, by the sentence generating module, that 

does not participate in the learning process. The structure of the sentences produced by the sen-

tence generating module was given by the programmer. The rules of sentence generation includ-

ed the words that need to go to each of the training sentences, and where the point names need to 

be inserted. The sentence generating module saved the grid information together with the set of 

sentences. 

With that information, the program was set to automatically read the lists of sentences, 

sort them out according to the wording, and then sort them out in accordance to the internal clas-

sification system, like simple relations, and their negations. 

The program then removes the sets of sentences which were not really meant to represent 

the simple relation, and then remove duplicates for all the sentence relations that are found to be 

included for the negations of the simple relations, for example, “A is above B.” represents the 

same information in different words as the combined two sentences: “A is not below B.” “A 

is not in the same column as B.” This would cause problems with repeated sets of sen-

tences as a machine-learning algorithm would over train for an answer. 

Another approach is to use the list of sentences using the same relation and pass the sen-

tences to a machine-learning algorithm thus the program will learn true for left for the ordered 

pair of points X and Y. The program will then use other sentences with different relation so that 

the point names will be substituted from the other sentences giving false for left for the or-

dered pair of points Y and X. For a machine-learning algorithm, the set of simple attributes also 

consist of numeric values because of discovery concerning counting by bees by M. Dacke [31]. 
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In addition, different machine-learning algorithms will be used to learn the meaning of 

words and their functions, so that the learning algorithm with the most accurate results will be 

the preferred one for future research. 



48 

Chapter 4: Results and Discussion 

The program is able to learn meaning of a set of sentences, and is able to learn correctly 

the relation words for simple relations, such as ABOVE vs. RIGHT, or RelationalDatas. 

4.1. Early Stage Experiments 

Since the sentences (see Appendix A Figure 40) did not contain the relation for “in same 

column as” as in the sentence “X is in same column as Y,” the algorithm did not associate 

the sentences with the right relation, whether it was a simple relation or whether it was a relation 

extracted from sentences as discussed in 3.3.1 and 0. 

4.1.1. Experiment 1: Association of Simple Relations with Relations Expressed 

in Sentences without Using Machine-Learning Algorithms 

The goal was to associate the sentences given for training with simple relations without 

the use of a machine-learning algorithm using Simple Association algorithm. First, the sen-

tences were sorted into sets according to RelationText, and then the associations were made. 

The inputs were the sentences from Appendix A Figure 41 and grid from Figure 26.B. The out-

put is sets of sentences that were associated with simple relations. 

The figure below shows the result of the quick association of sentences with simple rela-

tions. Some of the sentences were not associated with simple relations correctly because there 

was no representation of the simple relation SAME_COLUMN in the sentences from which the pro-

gram associated meanings. Out of 16 groups of sentences grouped by RelationText, 8 were as-

sociated correctly with simple relations as shown in Figure 27. However, some sentence groups 

were associated incorrectly with more than one simple relation or its negation because of poor 

quality of the training data. However, this should self-correct when there is a better quality train-

ing data provided. 

A)  

Sentences associated with simple relation SAME_ROW: 

[[A is in same row as B., B is in same row as A., C is in same row as 

D., D is in same row as C.]] 

 

Sentences associated with negation of simple relation SAME_ROW: 

[[A is below C., A is below D., B is below C., B is below D., E is below 

A., E is below B., E is below C., E is below D.]] 
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B)  

Figure 26. A) Some of the sentences associated with simple relations without the use of a machine-learning algorithm. For 

the full list of sentences see Appendix A Figure 44. B) Grid used for associations of RelationTexts to simple rela-

tions. 

RelationText Associated Simple Relation Correctness 

is left of LEFT Correct 

is not left of Negation of LEFT Correct 

is right of RIGHT Correct 

is not right of Negation of RIGHT Correct 

is not in same column as Negation of SAME_COLUMN Correct 

is not above Negation of SAME_COLUMN Incorrect 

is not below Negation of SAME_COLUMN Incorrect 

does not touch Negation of SAME_COLUMN Incorrect 

is not in same row as Negation of SAME_COLUMN Incorrect 

touches Negation of SAME_COLUMN Incorrect 

touches on the corner Negation of SAME_COLUMN Incorrect 

is above ABOVE Correct 

is below Negation of ABOVE Incorrect 

is below BELOW Correct 

is above Negation of BELOW Incorrect 

is in same row as SAME_ROW Correct 

is below Negation of SAME_ROW Incorrect 

is near to TOUCHING Incorrect 

is in same row as Negation of TOUCHING Incorrect 

Figure 27. Result of association of RelationText with simple relations. 

Since relations expressed in the sentences might be more complex than one of simple re-

lations, the approach to associate sentences with simple relations directly was abandoned. In-
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stead, the machine-learning algorithms were used, and the results of this approach are described 

in 4.1.2. 

4.1.2. Experiment 2: Association of Relations with Sentences 

The next logical step was to use a machine-learning algorithm to associate the relations 

expressed in sentences with models of the relations with the use of the Model Association al-

gorithm. This allowed for learning more complex relations that would have to be associated with 

more than one simple relation such as “touches on the corner,” which requires horizontal 

and vertical distances to be equal to 1. While this feature was working correctly, the training sen-

tences, shown in Appendix A Figure 40, that were used in the earlier experiment discussed in 

4.1.1 had caused some mix-ups as shown in Figure 28 below. It was eliminated when the grid 

with complete set of relations was used shown in Figure 26.B. 

As previously, the input was the same as in 4.1.1. This time, the algorithm had to learn to 

distinguish between the text in the RelationText field that could be expressed in different 

words. The algorithm had to eliminate the sentences without parsing them. The output was the 

result of association of the models created for the text in RelationText field with sets of sen-

tences with the help of a machine-learning algorithm. Out of 16 groups of sentences, 8 were cor-

rectly associated with model corresponding to RelationText as shown in Figure 29. When 

comparing the results of this experiment with the results of the experiment discussed in 4.1.1, 

there was no improvement in the quality of the recognized meanings. This is because of the poor 

quality of the training data given to the program. 

This experiment demonstrates that even without parsing, the meaning of sentences can be 

learned. However, in this experiment, we noticed that the quality of training data has influence 

on the understanding of a natural language. Due to this fact, the algorithm was not able to distin-

guish meanings of some sentences, however this should self-correct when a higher quality train-

ing data is supplied. 

Sets of sentences true for machine-learning model whose class name is "is 

left of:" 

[[A is left of B., A is left of C., A is left of E., B is left of E., C is 

left of B., C is left of E., D is left of A., D is left of B., D is left of 

C., D is left of E.]] 

 

Sets of sentences true for machine-learning model whose class name is "is not 

left of:" 
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[[A is right of D., B is right of A., B is right of C., B is right of D., C 

is right of A., C is right of D., E is right of A., E is right of B., E is 

right of C., E is right of D.]] 

Figure 28. The result of association of simple relations with some of the relations expressed in sentences with the use of a 
machine-learning algorithm. See Appendix A Figure 45 for full list of sentences. 

RelationText provided as a class name to the 

J48 machine-learning algorithm 

RelationText of sentences true for the model generated by 

the J48 machine-learning algorithm 

Correctness 

is left of is left of Correct 

is not left of is right of Incorrect 

is not right of is not right of Correct 

is not in same column as is not in same column as Correct 

is not above Incorrect 

is not in same row as Incorrect 

does not touch Incorrect 

is not left of Incorrect 

touches Incorrect 

touches on the corner Incorrect 

is not below Incorrect 

is not above is in same row as Incorrect 

is below is below Correct 

is not in same row as is below Incorrect 

does not touch is in same row as Incorrect 

is not left of is right of Incorrect 

is right of is right of Correct 

touches is near to Incorrect 

touches on the corner is near to Incorrect 

is near to is near to Correct 

is above is above Correct 

is not below is above Incorrect 

is in same row as is in same row as Correct 

Figure 29. Result of association of RelationText with models created for RelationTexts. 
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4.1.3. Experiment 3: Check of Learned Knowledge 

The goal of this experiment was to test the Model Association algorithm described in 0. 

The input was the set of sentences in Figure 40 along with the corresponding grid shown in Fig-

ure 30.B below. The algorithm then produced answers for the grid in Figure 30.C below. The 

result was 28 out of 28 correct answers. 

Each of the answers is grouped by the point to point relation expressed by an arrow that 

tells the first point is described in relative position to the second point. Then there are phrases 

captured in RelationText fields that describe those relations between the point names. 

The program was then queried with pair of points, such as C and A, and the program had 

to output the RelationText describing the relationships of these pair of points. 

The approach tested here was not good for building sentences associated with simple re-

lations since the parser did not save enough information about the sentence structure. 

The replacement of point names in each of the sentences used for training would not be 

considered language learning since if the sentences contained grammar or spelling errors, the al-

gorithm would not be able to correct those errors. 

This approach also suffers from another shortcoming. If there are not enough sentences 

describing a relation in a grid such as when number of sentences describing the grid is less than 

 (   )  sentences with   concepts for a grid with   points, a machine-learning algorithm 

might create a model that would classify everything as FALSE, thus preventing learning and asso-

ciation of a RelationText to the relational position of points. The parser approach does not have 

this problem as it will deduce the meaning of words given in training sentences. 
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A)  

B)  

C)  

Figure 30. Program’s answers
2
 (A) for grid (C) where answers were correct. B) The grid used for learning. 

                                                

2 “X --> Y” means position of X relative to Y. 
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4.2. Parser 

The program was not able to learn successfully if a negation of relation is missing from 

the list of sentences as is in case of sentences in Figure 40 associated with simple relations de-

scribing grid in Figure 26.B. 

With the machine learning approach to designing a relational model for a given phrase 

held in RelationText field, the program learned correctly every time, and did not discard rela-

tions that are more complex from the learning point of view. 

Yet with all of the mentioned methods for classification, the computer will not be able to 

learn successfully if there are not enough sentences that say the same thing for different points. 

With some sentences missing from the set, the computer will not discard the set, but the result of 

machine learning may not be perfect. 

4.2.1. Experiments 4, and 5: First Parser 

Experiment 4: English Sentences 

The goal was to classify word functions for sentences (see Appendix A Figure 41) that 

describe grid in Figure 31.B below. The output is the word classification by functions: NEGA-

TION, RELATION, RELATION_VERB, UNKNOWN, or VERB. Out of 20 word classifications, 16 were 

correct as shown in Figure 31. 

The algorithm would miss the relation “touching” if the training sentences were intro-

ducing noise for the word “touching” as in sentences “X is touching Y.” and “X is not 

touching Y on the corner.” for the same pair of points X and Y. This is due to the fact that 

the parser would not distinguish the RelationText “is touching” from “is not touching 

on the corner” because the parser only looks at individual words in all of the sentences. If the 

sentences used for training included “is touching” instead of “touches” and “is not touching” in-

stead of “does not touch,” the results of the word classifications would have been 15 correct of 

18. The improved parser would have classified 16 words correctly out of 18. 

Because there was no time for comparing the first proposed parser algorithm with a par-

ser that incorporates semantics, the results of such comparison will be included in a future work. 
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A)  

B)  

Figure 31. Quick classification of relation against negation (A) with rules from the first proposed parser algorithm, de-
scribed in 3.3.3. B) The grid used in this experiment. 

The only expected but not correct relation words are “on” and “the.” This was because 

training sentences did not include sentences saying, “X is on the left of Y” and “X is on 

the right of Y,” but only “X is left of Y” and “X is not left of Y” where these words 

do not exist. Thus the word “the” had no noise in the form of inconsistency of meaning in the 

training set. However, when the training sentences will include the word “the” as in the example 

given above, the word “the” will not be considered a RELATION. 

Word Classification Expected 

is VERB VERB 

not NEGATION NEGATION 

left RELATION RELATION 

right RELATION RELATION 

column RELATION RELATION 

above RELATION RELATION 

below RELATION RELATION 

row RELATION RELATION 

near UNKNOWN RELATION 

on RELATION UNKNOWN 

the RELATION UNKNOWN 

corner RELATION RELATION 

touches RELATION_VERB RELATION_VERB 

of UNKNOWN UNKNOWN 

in UNKNOWN UNKNOWN 

same UNKNOWN UNKNOWN 

as UNKNOWN UNKNOWN 

does UNKNOWN UNKNOWN 

touch UNKNOWN RELATION 

to UNKNOWN UNKNOWN 
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Another incorrect classification is the phrase “near to” since the learning algorithm had 

not enough data to learn this relation correctly, because we defined the relation as shown in 

Chapter 3. Equation 2, and such equation gave us only two sentences for TRUE for the ordered 

pairs of points (A, B) and (B, A), and as much as 87 sentences for FALSE class value. Therefore, 

the model created for that relation had always predicted FALSE value for the class, and such false 

negative values have stopped the parser from detecting the relation. 

This issue of detection can be addressed in such a way as to have a machine-learning al-

gorithm classify correctly at least 90% of the training instances so the parser can detect a rela-

tion, but this is a topic for future work. The issue of false negatives or false positives can be ad-

dressed by adding more examples that would make it easier for a learning algorithm to build a 

more accurate model for a relation. 

Experiment 5: Polish Sentences 

The object of this experiment was to check if the parser can process sentences in a lan-

guage other than English. The reason for this experiment is because the Polish language gram-

mar dictates different adjective forms for different noun genders. In addition, the adjectives that 

describe the subject can have different form than those that describe the object of a sentence. The 

inputs to the algorithm are sentences from Appendix A Figure 43 and the grid from Figure 32.B. 

The output is the word classification by functions: NEGATION, RELATION, RELA-

TION_VERB, UNKNOWN, or VERB. Out of 19 word classifications, 12 were correct as shown in Fig-

ure 32.A. Please note that since the parser does not recognize different word forms, such as the 

word “tej” and “tym,” and the word “samej” and “samym,” the result ratio of correct to total 

number of words is different than would be expected when the parser would recognize these 

word functions and forms. We plan to address the problem of word forms by comparing the dif-

ferent words letter by letter to see if they have similar form. If they are very similar, there is high 

likelihood that those word forms are the same word. 

Since the program has to learn from the set of sentences, it treats “X nie styka się z 

Y na rogu,” meaning “X does not touch Y on the corner,” as noise for the relation 

“styka się z,” meaning “touching,” in sentence “X styka się z Y,” meaning “X touches 

Y.” Because of that fact, the relation “styka się z” had too much noise in the input and thus 

model describing the phrase was discarded by the first parser algorithm. 
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A)  

B)  

Figure 32. A) Results of classification of word functions
3
 in Polish sentences using the first parser. B) The grid used in this 

experiment. 

4.2.2. Experiment 6: Improved Parser 

The object of this experiment was to check if the improved parser can classify more of 

the word functions from sentences in a language other than English. The inputs to the algorithm 

are sentences from Appendix A Figure 43 and the grid from Figure 33.B. The output is the word 

classification by functions: NEGATION, RELATION, RELATION_VERB, UNKNOWN, or VERB. Out of 19 

word classifications, 15 were correct. 

                                                

3 Some of the words listed are just different version of the other words, as Polish language requires the form of the word to be 
changed according to which words follow or precede a word and what gender is the object and subject of the sentence. 

Word Classification Expected 

nie NEGATION NEGATION 

jest VERB VERB 

lewo RELATION RELATION 

prawo RELATION RELATION 

tej RELATION UNKNOWN 

samej RELATION UNKNOWN 

kolumnie RELATION RELATION 

powyżej RELATION RELATION 

poniżej RELATION RELATION 

tym RELATION UNKNOWN 

samym RELATION UNKNOWN 

rzędzie RELATION RELATION 

rogu RELATION RELATION 

na UNKNOWN UNKNOWN 

w UNKNOWN UNKNOWN 

co UNKNOWN UNKNOWN 

styka UNKNOWN RELATION 

się UNKNOWN RELATION 

z UNKNOWN RELATION 
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Because of the drawbacks discovered in 4.2.1, the next logical step is to eliminate the 

sentences containing the known relations that were learned to facilitate recognition of other rela-

tions that would otherwise be missed. The improvement of the proposed improved parser over 

the proposed first parser is 20%. 

This improved parser also suffers from the same drawback for marking some words in-

correctly as relations as the first parser, but this should be corrected when more sentences will be 

introduced that clarify the word meanings or their functions in sentences.  

A)  

B)  

Figure 33. A) Note the improvement of recognition of relation words or words belonging to the relational phrase. B) Grid 
used in this experiment. 

Word Classification Expected 

nie NEGATION NEGATION 

jest VERB VERB 

lewo RELATION RELATION 

prawo RELATION RELATION 

tej RELATION UNKNOWN 

samej RELATION UNKNOWN 

kolumnie RELATION RELATION 

powyżej RELATION RELATION 

poniżej RELATION RELATION 

tym RELATION UNKNOWN 

samym RELATION UNKNOWN 

rzędzie RELATION RELATION 

rogu RELATION RELATION 

na UNKNOWN UNKNOWN 

w UNKNOWN UNKNOWN 

co UNKNOWN UNKNOWN 

styka RELATION RELATION 

się RELATION RELATION 

z RELATION RELATION 

 



59 

4.3. Building Sentences Using Augmented N-grams 

Reversing the parser to build a sentence proved to be a challenge. It was, however, done 

successfully for simple sentences that cannot be broken into smaller sentences. If we want to cre-

ate more advanced sentences, we need to improve the parser as well as the sentence building al-

gorithm, which will be a good topic for a future work. 

While it might seem that the sentences cannot be easily built just starting from the rela-

tion word to the outwards of the sentence, all of the sentences that were only one not breakable 

sentence were built correctly from the given starting point, which was the relation word. Howev-

er, we cannot assume that is the case with the language composition process in humans. If the 

sentence composition mechanisms will be discovered and will differ, for example, sentence will 

be built from the beginning and not the relation word, the sentence-building algorithm can be 

easily modified to incorporate such discovery. 

4.3.1. Experiment 7: Augmented Trigrams – Not a Good Sentence Building Ma-

terial 

The object of this experiment was to determine whether it is possible to make sentences 

by just looking one word ahead or backwards from the rightmost or leftmost word, respectively, 

in currently created sentence. The augmented trigrams were created by the first parser algorithm 

from sentences in Appendix A Figure 41 that describe grid in Figure 34.A above. In addition, the 

sentence creation algorithm had to describe grid shown in Figure 34.C. The output is shown in 

Figure 34.B. Out of 26 sentences only 10 were built correctly for the English grammar rules. 

In addition, the first fits algorithm described in 3.3.4 would not build sentences for the re-

lation “touches on the corner” as in the sentence “X touches Y on the corner,” since 

after building the part “Y on the corner,” the algorithm would mark the created sentence as 

terminated on both sides. This is because after the algorithm encountered the augmented trigram 

whose main word type was POINT_NAME had the space for preceding word marked as NOTHING 

which caused the algorithm to terminate the left side of the sentence prematurely. In addition, the 

first sentence creation algorithm does not consider probabilities of a word occurring in a sentence 

thus leading to incorrect sentences. 
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Therefore, five word n-grams are needed for correct grammar observations. In addition, 

the probabilistic word choice is needed for correcting the errors introduced by grammar errors 

from sentences that might show up in the training set. 

A)  

C)  

B)  

Figure 34. A) Grid used for training. Sentences (B) created by program using augmented tri-grams for point C to other 
points’ relations in grid (C). 

4.3.2. Experiments 8, and 9: Probabilistic Sentence Building Using Augmented 

Five Word N-grams 

The goal of these two following experiments was to see if there are improvements over 

the first fit augmented trigram approach in building sentences. 

Experiment 8: Probabilistic Sentence Building Using Augmented Five Word N-

grams Extracted from Grammatically Correct Sentences in English Language 

The object of this experiment was to determine whether it is possible to make sentences 

by probabilistically choosing a word ahead or backwards from the rightmost or leftmost word, 

respectively, in currently created sentence. The five word augmented n-grams were created by 
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the improved parser algorithm from sentences in Appendix A Figure 41 that describe grid in 

Figure 35.A below. 

A)  

C)  

B)  

Figure 35. A) Grid used for training. Sentences (B) created by program using five word augmented n-grams for point C to 
other points’ relations in grid (C). 

In addition, the sentence creation algorithm had to describe grid shown in Figure 35.C. 

The output is shown in Figure 35.B. Out of 30 sentences, all were built correctly for the English 

grammar rules. The improved sentence creation algorithm shows improvement of 61.5% over the 

first sentence generation algorithm when both sentence generation algorithms use the same data 

extracted from grammatically correct English sentences. 
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Experiment 9: Probabilistic Sentence Building Using Augmented Five Word N-

grams Extracted from Grammatically Correct and Incorrect Sentences in English Lan-

guage 

The object of this experiment was to determine whether it is possible to make grammati-

cally correct sentences from data learned from correct and incorrect sentences. The five word 

augmented n-grams were created by the improved parser algorithm from sentences in Appendix 

A Figure 41 and Figure 42 that describe grid in Figure 36.A below. In addition, the sentence cre-

ation algorithm had to describe grid shown in Figure 36.C. The output is shown in Figure 36.B. 

Out of 29 sentences, 23 were built correctly for the English grammar rules. That gives the im-

provement of 48.5% of the proposed improved sentence creation algorithm that created sentenc-

es from data extracted from grammatically correct and incorrect English sentences over the pro-

posed first sentence creation algorithm that created sentences from data extracted from the incor-

rect and correct English sentences. 

If errors in grammar structure are introduced in less than half of the sentences describing 

a relation, we predict the sentences will be built correctly. There is one exception to this rule as 

the sentence building algorithm is designed to include a negation word instead of a more likely 

word if the negation is needed in the sentence. 

However, more complex sentences made up from two or more sentences are not built 

correctly because there is possibility of infinite loop that would make grammatically correct sen-

tence of infinite size, which is of course not desirable side effect of the sentence-building algo-

rithm. The possible solution for this problem is to use a word counter in the algorithm’s loop that 

would stop the algorithm from including more words after the counter reaches a certain value. If 

the sentence is then terminated, then the sentence that is being created will be passed to the vali-

dation part of the algorithm, otherwise, the sentence will not be valid. Another way is to limit the 

overall time the algorithm spends building a sentence. If the algorithm exceeds the time limit, 

and the sentence being created is not valid, the sentence will be discarded. 

Even though the improved sentence creation algorithm uses probabilities of occurrences, 

the improved sentence creation algorithm did make mistakes, such as “C does not touches 

E.” even though there was no sentence saying “X does not touches Y.” The sentence crea-

tion algorithm had the word “touches” as a chosen relation, which is the starting point of a sen-

tence creation process. The second the program had seen the point name placeholder, and it was 
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the most probable word to the right of the relation word, the program included it. The next was 

check if the two words had been indeed observed as a pair that terminates a sentence. Since there 

was such observation in sentences, such as “A touches B,” the algorithm stopped the sentence 

creation process on the right side of the relation word. This is unavoidable mistake if we have 

similar observations for all other words. 

A)  

C)  

B)  

Figure 36. A) Grid used for training. Sentences (B) created by program using five word augmented n-grams for point C to 
other points’ relations in grid (C). 

4.4. Machine-Learning Algorithms 

The machine-learning algorithms have the ability to infer proper relations while ignoring 

errors called the noise. Our experiments contained sentences that were 100% consistent making 

the language learning faster, yet the experiments did not address the issue of noise to building 

models. This leaves room for changing experiments to include noise, so that the experiments are 

more resembling real world, but this is a topic for the doctorate thesis. 
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4.4.1. Experiment 10: Choice of Machine-Learning Algorithms Had Impact on 

Learning 

The object of this experiment was to deduce which machine-learning algorithms are suit-

able for learning relations. The input were sentences in Appendix A Figure 41 that describe grid 

in Figure 38.A below, which were parsed using the improved parser and then described with the 

help of the probabilistic sentence creation algorithm. The output were sentences that describe 

grid in Figure 38.C. Out of 26 machine-learning algorithms, 1 failed to learn all relations, and 6 

have failed to learn the relations “styka się” and “styka się na rogu” The successful learn-

ing algorithm names are shown in Figure 37 below. 

While many learning algorithms are quite good at distinguishing simple relations, more 

advanced relations pose problems for some of the learning algorithms, such as One Rule, no 

matter how large is the data set. In addition, some of the data mining algorithms, such as Naïve 

Bayes Simple, are not adequate for the learning process because the algorithm is not able to 

handle the data values, such as numeric values and named constants. Furthermore, some learning 

algorithms while they are slower than the other did not produce perfect models. 

In addition, the choice of learning algorithm at the learning phase where word functions 

in sentences are recognized the choice of learning algorithm seems to have an impact over future 

performance of the program in describing relations. 

Even with all the relations determined correctly, the program still might need more ex-

amples to learn a relation as it was in the case of the figure below and the Backpropagation algo-

rithm. This can only be eliminated by providing a bigger set of examples that the algorithm will 

learn from. 

LMT 

NBTree 

Random Forest 

Random Tree 

REPTree 

Bayes Net 

Naïve Bayes 

Naïve Bayes Updateable 

Conjunctive Rule 

Simple Decision Table 

RIPPER 

Nearest Neighbour 

Standard Logistic Regression 

Multilayer Perceptron 

Simple Logistic Regression 

IB1 

IBk 

Nearest Neighbour 

Hyper Pipes 

Figure 37. Machine-learning algorithms that succesfully learned all the relations expressed in sentences (see Appendix A 
Figure 41) that describe grid in Figure 38.A above. 
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A)  

B)  

C)  

Figure 38. A) The grid used for training. B) output of the algorithms J48, One Rule, Ripple Down, Radial Basis Function 

Network, Sequential Min Optimization, Locally Weighted Learning, which failed to learn “styka się” and “styka 

się na rogu” relations, whereas Zero Rule algorithm failed to learn even the simple relations. C) Grid that was de-

scribed. 
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Chapter 5: Conclusion and Future Work 

By intelligently combining a grammarless parser with relation learning, we are able to 

teach the computer the basic relations of direction, position, as well as distance in a 2D plane. 

The approach can be expanded to a real world product and it would require combining the pro-

posed algorithms with shape recognition as well as 3D distance measurements, but such is an 

excellent topic for a doctorate thesis. This can be done in a simple way. The program will learn 

first based on pictures and training sentences associated with those pictures, for example the pro-

gram will distinguish a cup from a pen. Then the program will enter a second phase of learning 

where it will use the proposed parser again to learn the positional relations between objects in 

pictures. For such learning, the program will need to detect the boundaries of various objects. 

In addition, by using the data collected by a statistical parser, our algorithm is able to 

produce simple sentences that describe situations in a grid. 

The algorithms demonstrated here have potential real world applications that can revolu-

tionize the world for the visually impaired as well, as for totally blind people who do not want 

implants to help them see or do not have visual cortex developed enough for processing of the 

signals from implants. 

In addition the algorithms that would be used for visually impaired people could be used 

to program intelligent robots that would respond to any sentence that would be directed as a re-

quest, or verbal instructions in the user’s own language. 

While the simple association of sentences to the simple relations works fine, more com-

plex relations need to be learned through machine-learning algorithms. In addition, the simplistic 

template which detects only point names is not useful in collecting information for building sen-

tences. A simplistic, yet intelligent parser, coupled together with sentence building algorithm is 

adequate in building simple sentences. Both parser and sentence building algorithm benefit 

greatly from machine-learning algorithms. 

The performance of the parser is therefore dependent on which machine-learning algo-

rithm is chosen, since some of the machine-learning algorithms are too simple to discover the 

complex relations between sentence meaning and the situation on an associated grid. 
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5.1. Future Work 

In the future, we would like to extend the program to include more complex relations, 

and a third dimension for the robotics application, as well as the relations for time of past and 

future tenses in the sentences. 

The proposed parser algorithm that learns word meanings will need to be developed fur-

ther to be useful for any commercial application, yet it does not require dictionaries or predefined 

grammar structures to extract relations and should be able to learn from most of sentences writ-

ten in many natural languages. 

The algorithm will need, however, to be updated to learn from languages that do not have 

clear distinction between words, or even word permutations as permitted by grammar and 

spelling rules of a language as it would be beneficial in creating smaller dictionaries and recogni-

tion of words, but that would be topic for a doctorate thesis. 

In addition, combining the shape recognition with learning of the meaning of words can 

be done with the help of these before-mentioned algorithms and this combination is an excellent 

topic for the doctorate thesis. 

We would like to implement changes that support head-last languages. Instead of relying 

on point names that fall into predetermined range, we would like to allow other words describing 

such as pen or apple. As an example, this implementation could be then used to describe where 

an apple is located in relation to a pen. 



68 

Appendix A: Additional Figures 

Figures in this appendix span across a few pages, and the descriptions of the figures are 

placed below them. 

Algorithm SentenceCreation II 

Input: Augmented n-grams, point names, grid, models associated with 

RELATIONS, augmented n-gram whose main word type is RELATION. 

Output: Sentence and a flag for valid sentence 

Steps: 

1. Initialize variable isSentenceValid to TRUE. 

2. Store selected augmented n-gram whose main word type is RELATION to 

relationAugmentedNGram. 

3. For all augmented n-grams. 

a. If augmented n-gram main word type is NEGATION store value of 

main word into negationWord variable and proceed to step 4. 

Otherwise proceed to step 3.a. with another augmented n-gram that 

was not tested. 

4. From models for RELATIONS pick the one that corresponds to the value of 

main word from relationAugmentedNGram. 

5. Build RelationalData object for given point names. 

6. Classify the RelationalData object with the model corresponding to 

RELATION. 

7. Initialize variable isNegationNeeded to the class value that was 

obtained from the model after classifying RelationalData object. 

8. Initialize variables isNegationIncludedInSentence, 

isSentenceTerminatedOnLeft, and isSentenceTerminatedOnRight to FALSE. 

9. Initialize variable sentence to the value of main word from 

relationAugmentedNGram 

10. Initialize variables currentLeftAugmentedNGram and 

currentRightAugmentedNGram to the value of relationAugmentedNGram. 

11. For all augmented n-grams. 

a. Chose an augmented n-gram. 

b. If isSentenceTerminatedOnLeft = FALSE go to step 11.b.i. 

Otherwise skip all steps before step 11.c. 

i. If variable previousLeftAugmentedNGram is not initialized 

go to step 11.b.i.1. Otherwise skip all steps before step 

11.b.i.2. 

1. If main word from chosen augmented n-gram precedes 

main word from currentLeftAugmentedNGram proceed to 

step 11.b.i.1.a. Otherwise skip all steps before step 

11.c. 

a. If isNegationNeeded = TRUE and 

isNegationIncludedInSentence = FALSE proceed to 

step 11.b.i.1.a.i. Otherwise skip all steps 

before step 11.c. 
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i. If main word from chosen augmented n-gram 

= negationWord proceed to step 

11.b.i.1.a.i.1. Otherwise skip all steps 

before step 11.b.i.1.a.ii. 

1. Change value of sentence to 

negationWord + “ “ + sentence. 

2. Change the value of 

isNegationIncludedInSentence to 

TRUE. 

3. Initialize the value of 

previousLeftAugmentedNGram to value 

of currentLeftAugmentedNGram. 

4. Change the value of 

currentLeftAugmentedNGram to the 

value of the chosen augmented n-

gram. 

5. If main word from 

previousLeftAugmentedNGram is 

preceded by NOTHING and main word 

from the currentLeftAugmentedNGram, 

change the value of 

isSentenceTerminatedOnLeft to TRUE. 

6. Skip all steps before step 11.c. 

ii. If main word from 

currentLeftAugmentedNGram is not preceded 

by negation word skip all steps before 

step 11.b.i.1.b.i. Otherwise skip all 

steps before step 11.c. 

b. If isNegationNeeded = FALSE or 

isNegationIncludedInSentence = TRUE proceed to 

step 11.b.i.1.b.i. Otherwise skip all steps 

before step 11.c. 

i. Initialize variable mostProbableWord to 

the value of most probable word preceding 

the main word from 

currentLeftAugmentedNGram. 

ii. If mostProbableWord = negationWord 

proceed to step 11.b.i.1.b.ii.1. 

Otherwise skip all steps before step 

11.c. 

1. Change the value of 

mostProbableWord to the most 

probable word that is not 

negationWord preceding main word 

from currentLeftAugmentedNGram. 

iii. If the main word from chosen augmented n-

gram = mostProbableWord proceed to step 

11.b.i.1.b.iii.1. Otherwise skip all 

steps before step 11.c. 
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1. Change value of sentence to value 

of main word from selected 

augmented n-gram + “ “ + sentence. 

2. Initialize variable 

previousLeftAugmentedNGram to the 

value of currentLeftAugmentedNGram. 

3. Change the value of 

currentLeftAugmentedNGram to the 

value of the chosen augmented n-

gram. 

4. If main word from 

previousAugmentedNGram is preceded 

by NOTHING and main word from the 

currentLeftAugmentedNGram, change 

the value of 

isSentenceTerminatedOnLeft to TRUE. 

5. Skip all steps before step 11.c. 

2. If main word from chosen augmented n-gram precedes 

main word from currentLeftAugmentedNGram and both of 

those words in the above mentioned order precede main 

word from previousLeftAugmentedNGram proceed to step 

11.b.i.2.a. Otherwise skip all steps before step 

11.c. 

a. If isNegationNeeded = TRUE and 

isNegationIncludedInSentence = FALSE proceed to 

step 11.b.i.2.a.i. Otherwise skip all steps 

before step 11.b.i.2.b. 

i. If main word from chosen augmented n-gram 

= negationWord proceed to step 

11.b.i.1.a.i. Otherwise skip all steps 

before step 11.c 

1. Change value of sentence to 

negationWord + “ “ + sentence. 

2. Change the value of 

isNegationIncludedInSentence to 

TRUE. 

3. Change the value of 

previousLeftAugmentedNGram to the 

value of currentLeftAugmentedNGram. 

4. Change the value of 

currentLeftAugmentedNGram to the 

value of the chosen augmented n-

gram. 

5. If main word from 

previousLeftAugmentedNGram is 

preceded by NOTHING and main word 

from the currentLeftAugmentedNGram, 

change the value of 

isSentenceTerminatedOnLeft to TRUE. 
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6. Skip all steps before step 11.c. 

ii. If main word from 

previousLeftAugmentedNGram is not 

preceded by negation word skip all steps 

before step 11.b.i.2.b.i. Otherwise skip 

all steps before step 11.c. 

b. If isNegationNeeded = FALSE or 

isNegationIncludedInSentence = TRUE proceed to 

step 11.b.i.2.b.i. Otherwise skip all steps 

before step 11.c. 

i. Initialize variable mostProbableWord to 

the value of most probable word preceding 

the main word from 

currentLeftAugmentedNGram and main word 

from previousLeftAugmentedNGram. 

ii. If mostProbableWord = negationWord proced 

to step 11.b.i.2.b.ii.1. Otherwise skip 

all steps before step 11.b.i.2.b.iii. 

1. Change the value of 

mostProbableWord to the most 

probable word that is not 

negationWord preceding the main 

word from currentLeftAugmentedNGram 

and main word from 

previousLeftAugmentedNGram. 

iii. If the main word from chosen augmented n-

gram = mostProbableWord proceed to step 

11.b.i.2.b.iii.1. Otherwise skip all 

steps before step 11.c. 

1. Change value of sentence to value 

of main word from selected 

augmented n-gram + “ “ + sentence. 

2. Change the value of 

previousLeftAugmentedNGram to the 

value of the 

currentLeftAugmentedNGram. 

3. Change the value of 

currentLeftAugmentedNGram to the 

value of the chosen augmented n-

gram. 

4. If main word from 

previousLeftAugmentedNGram is 

preceded by main word from 

currentLeftAugmentedNGram and 

NOTHING, change the value of 

isSentenceTerminatedOnLeft to TRUE. 

c. If isSentenceTerminatedOnRight = FALSE go to step 11.c.i. 

Otherwise skip all steps before step 11.d. 
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i. If variable previousRightAugmentedNGram is not initialized 

go to step 11.c.i.1. Otherwise skip all steps before step 

11.c.i.2. 

1. If main word from chosen augmented n-gram follows 

main word from currentRightAugmentedNGram proceed to 

step 11.c.i.1.a. Otherwise skip all steps before step 

11.d. 

a. If isNegationNeeded = TRUE and 

isNegationIncludedInSentence = FALSE proceed to 

step 11.c.i.1.a.i. Otherwise skip all steps 

before step 11.d. 

i. If main word from chosen augmented n-gram 

= negationWord proceed to step 

11.c.i.1.a.i.1. Otherwise skip all steps 

before step 11.c.i.1.a.ii. 

1. Change value of sentence to 

sentence + “ “ + negationWord. 

2. Change the value of 

isNegationIncludedInSentence to 

TRUE. 

3. Initialize the value of 

previousRightAugmentedNGram to 

value of 

currentRightAugmentedNGram. 

4. Change the value of 

currentRightAugmentedNGram to the 

value of the chosen augmented n-

gram. 

5. If main word from 

previousRightAugmentedNGram is 

followed by main word from the 

currentRightAugmentedNGram and 

NOTHING, change the value of 

isSentenceTerminatedOnRight to 

TRUE. 

6. Skip all steps before step 11.d. 

ii. If main word from 

currentRightAugmentedNGram is not 

followed by negation word skip all steps 

before step 11.c.i.1.b.i. Otherwise skip 

all steps before step 11.d. 

b. If isNegationNeeded = FALSE or 

isNegationIncludedInSentence = TRUE proceed to 

step 11.c.i.1.b.i. Otherwise skip all steps 

before step 11.d. 

i. Initialize variable mostProbableWord to 

the value of most probable word following 

the main word from 

currentRightAugmentedNGram. 
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ii. If mostProbableWord = negationWord 

proceed to step 11.c.i.1.b.ii.1. 

Otherwise skip all steps before step 

11.d. 

1. Change the value of 

mostProbableWord to the most 

probable word that is not 

negationWord following main word 

from currentRightAugmentedNGram. 

iii. If the main word from chosen augmented n-

gram = mostProbableWord proceed to step 

11.c.i.1.b.iii.1. Otherwise skip all 

steps before step 11.d. 

1. Change value of sentence to 

sentence + “ “ + value of main word 

from selected augmented n-gram. 

2. Initialize variable 

previousRightAugmentedNGram to the 

value of 

currentRightAugmentedNGram. 

3. Change the value of 

currentRightAugmentedNGram to the 

value of the chosen augmented n-

gram. 

4. If main word from 

previousRightAugmentedNGram is 

followed by main word from the 

currentLeftAugmentedNGram and 

NOTHING, change the value of 

isSentenceTerminatedOnRight to 

TRUE. 

5. Skip all steps before step 11.d. 

2. If main word from chosen augmented n-gram follows 

main word from currentRightAugmentedNGram and both of 

those words in the reverse of the above mentioned 

order follow main word from 

previousRightAugmentedNGram proceed to step 

11.c.i.2.a. Otherwise skip all steps before step 

11.d. 

a. If isNegationNeeded = TRUE and 

isNegationIncludedInSentence = FALSE proceed to 

step 11.c.i.2.a.i. Otherwise skip all steps 

before step 11.c.i.2.b. 

i. If main word from chosen augmented n-gram 

= negationWord proceed to step 

11.c.i.1.a.i.1. Otherwise skip all steps 

before step 11.d 

1. Change value of sentence to 

sentence + “ “ + negationWord. 
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2. Change the value of 

isNegationIncludedInSentence to 

TRUE. 

3. Change the value of 

previousRightAugmentedNGram to the 

value of 

currentRightAugmentedNGram. 

4. Change the value of 

currentRightAugmentedNGram to the 

value of the chosen augmented n-

gram. 

5. If main word from 

previousRightAugmentedNGram is 

followed by main word from the 

currentLeftAugmentedNGram and 

NOTHING, change the value of 

isSentenceTerminatedOnRight to 

TRUE. 

6. Skip all steps before step 11.d. 

ii. If main word from 

previousRightAugmentedNGram is not 

followed by negation word skip all steps 

before step 11.c.i.2.b.i. Otherwise skip 

all steps before step 11.d. 

b. If isNegationNeeded = FALSE or 

isNegationIncludedInSentence = TRUE proceed to 

step 11.c.i.2.b.i. Otherwise skip all steps 

before step 11.d. 

i. Initialize variable mostProbableWord to 

the value of most probable word following 

the main word from 

currentRightAugmentedNGram and main word 

from previousRightAugmentedNGram. 

ii. If mostProbableWord = negationWord proced 

to step 11.c.i.2.b.ii.1. Otherwise skip 

all steps before step 11.c.i.2.b.iii. 

1. Change the value of 

mostProbableWord to the most 

probable word that is not 

negationWord following the main 

word from 

previousRightAugmentedNGram and 

main word from 

currentRightAugmentedNGram. 

iii. If the main word from chosen augmented n-

gram = mostProbableWord proceed to step 

11.c.i.2.b.iii.1. Otherwise skip all 

steps before step 11.d. 
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1. Change value of sentence to value 

of sentence + “ “ + main word from 

selected augmented n-gram. 

2. Change the value of 

previousRightAugmentedNGram to the 

value of 

currentRightAugmentedNGram. 

3. Change the value of 

currentRightAugmentedNGram to the 

value of the chosen augmented n-

gram. 

4. If main word from 

previousRightAugmentedNGram is 

followed by main word from 

currentRightAugmentedNGram and 

NOTHING, change the value of 

isSentenceTerminatedOnRight to 

TRUE. 

d. If there are more n-grams to choose from from step 11.a skip all 

steps before step 11.e. Otherwise proceed to step 11.d.i. 

i. If the sentence from step 11 has not been expanded by words 

from steps 11.b and 11.c set the value of isSentenceValid 

to FALSE and exit the algorithm. Otherwise jump to step 11. 

e. If isSentenceTerminatedOnLeft = TRUE and 

isSentenceTerminatedOnRight = TRUE go to step 12. Otherwise skip 

all steps and jump to step 11.a. 

12. If sentence has 2 placeholders for point names, replace them with 

respective point names. Otherwise set the value of isSentenceValid to 

FALSE and skip all remaining steps. 

13. If IsNegationNeeded = TRUE and isNegationIncludedInSentence = 

FALSE, set the value of isSentenceValid to FALSE. 

Figure 39. Probabilistic augmented n-gram algorithm for creating sentences. This algorithm is run inside two loops that 

choose point names, and augmented n-grams whose main word type is RELATION. If the value of the isSentenceValid 

variable remains TRUE after the run of the above algorithm, the sentence is given to further processing in those loops. 

A is left of B. 

A is not right of B. 

A is not in same column as B. 

A is not above B. 

A is not below B. 

A is in same row as B. 

A does not touch B. 

A is not near to B. 

A is not far from B. 

A is left of C. 

A is not right of C. 

A is not in same column as C. 

A is not above C. 

A is below C. 

C is near to B. 

C is not far from B. 

C is not left of D. 

C is right of D. 

C is not in same column as D. 

C is not above D. 

C is not below D. 

C is in same row as D. 

C does not touch D. 

C is not near to D. 

C is not far from D. 

C is left of E. 

C is not right of E. 

C is not in same column as E. 
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A is not in same row as C. 

A touches C. 

A touches C on the corner. 

A is near to C. 

A is not far from C. 

A is not left of D. 

A is right of D. 

A is not in same column as D. 

A is not above D. 

A is below D. 

A is not in same row as D. 

A touches D. 

A touches D on the corner. 

A is near to D. 

A is not far from D. 

A is left of E. 

A is not right of E. 

A is not in same column as E. 

A is above E. 

A is not below E. 

A is not in same row as E. 

A does not touch E. 

A is not near to E. 

A is not far from E. 

B is not left of A. 

B is right of A. 

B is not in same column as A. 

B is not above A. 

B is not below A. 

B is in same row as A. 

B does not touch A. 

B is not near to A. 

B is not far from A. 

B is not left of C. 

B is right of C. 

B is not in same column as C. 

B is not above C. 

B is below C. 

B is not in same row as C. 

B touches C. 

B touches C on the corner. 

B is near to C. 

B is not far from C. 

B is not left of D. 

B is right of D. 

B is not in same column as D. 

B is not above D. 

B is below D. 

B is not in same row as D. 

C is above E. 

C is not below E. 

C is not in same row as E. 

C does not touch E. 

C is not near to E. 

C is not far from E. 

D is left of A. 

D is not right of A. 

D is not in same column as A. 

D is above A. 

D is not below A. 

D is not in same row as A. 

D touches A. 

D touches A on the corner. 

D is near to A. 

D is not far from A. 

D is left of B. 

D is not right of B. 

D is not in same column as B. 

D is above B. 

D is not below B. 

D is not in same row as B. 

D does not touch B. 

D is not near to B. 

D is not far from B. 

D is left of C. 

D is not right of C. 

D is not in same column as C. 

D is not above C. 

D is not below C. 

D is in same row as C. 

D does not touch C. 

D is not near to C. 

D is not far from C. 

D is left of E. 

D is not right of E. 

D is not in same column as E. 

D is above E. 

D is not below E. 

D is not in same row as E. 

D does not touch E. 

D is not near to E. 

D is not far from E. 

E is not left of A. 

E is right of A. 

E is not in same column as A. 

E is not above A. 

E is below A. 

E is not in same row as A. 
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B does not touch D. 

B is not near to D. 

B is not far from D. 

B is left of E. 

B is not right of E. 

B is not in same column as E. 

B is above E. 

B is not below E. 

B is not in same row as E. 

B does not touch E. 

B is not near to E. 

B is not far from E. 

C is not left of A. 

C is right of A. 

C is not in same column as A. 

C is above A. 

C is not below A. 

C is not in same row as A. 

C touches A. 

C touches A on the corner. 

C is near to A. 

C is not far from A. 

C is left of B. 

C is not right of B. 

C is not in same column as B. 

C is above B. 

C is not below B. 

C is not in same row as B. 

C touches B. 

C touches B on the corner. 

E does not touch A. 

E is not near to A. 

E is not far from A. 

E is not left of B. 

E is right of B. 

E is not in same column as B. 

E is not above B. 

E is below B. 

E is not in same row as B. 

E does not touch B. 

E is not near to B. 

E is not far from B. 

E is not left of C. 

E is right of C. 

E is not in same column as C. 

E is not above C. 

E is below C. 

E is not in same row as C. 

E does not touch C. 

E is not near to C. 

E is not far from C. 

E is not left of D. 

E is right of D. 

E is not in same column as D. 

E is not above D. 

E is below D. 

E is not in same row as D. 

E does not touch D. 

E is not near to D. 

E is not far from D. 

 

Figure 40. Sentences describing grid shown below sentences. In these above sentences there are 10 sentences for relation 

“left,” 10 for “not left,” 10 for “right,” 10 for “not right,” 0 for “in same column,” 20 for “not 

in same column,” 8 for “above,” 12 for “not above,” 8 for “below,” 12 for “not below,” 4 for “in 

same row,” 16 for “not in same row,” 6 for “touches,” 14 for “does not touch,” 6 for “touches 

on the corner,” 0 for “does not touch on the corner,” 6 for “near,” 14 for “not near,” 0 for 

“far,” and 20 for “not far.” 

A is not left of B. 

A is not right of B. 

A is in same column as B. 

A is not above B. 

E is below J. 

E is not in same row as J. 

E does not touch J. 

E is not near to J. 
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A is not below B. 

A is in same row as B. 

A does not touch B. 

A is near to B. 

A is left of C. 

A is not right of C. 

A is not in same column as C. 

A is not above C. 

A is not below C. 

A is in same row as C. 

A touches C. 

A does not touch C on the corner. 

A is not near to C. 

A is left of D. 

A is not right of D. 

A is not in same column as D. 

A is above D. 

A is not below D. 

A is not in same row as D. 

A touches D. 

A touches D on the corner. 

A is not near to D. 

A is not left of E. 

A is not right of E. 

A is in same column as E. 

A is above E. 

A is not below E. 

A is not in same row as E. 

A touches E. 

A does not touch E on the corner. 

A is not near to E. 

A is not left of F. 

A is right of F. 

A is not in same column as F. 

A is above F. 

A is not below F. 

A is not in same row as F. 

A touches F. 

A touches F on the corner. 

A is not near to F. 

A is not left of G. 

A is right of G. 

A is not in same column as G. 

A is not above G. 

A is not below G. 

A is in same row as G. 

A touches G. 

A does not touch G on the corner. 

A is not near to G. 

F is left of A. 

F is not right of A. 

F is not in same column as A. 

F is not above A. 

F is below A. 

F is not in same row as A. 

F touches A. 

F touches A on the corner. 

F is not near to A. 

F is left of B. 

F is not right of B. 

F is not in same column as B. 

F is not above B. 

F is below B. 

F is not in same row as B. 

F touches B. 

F touches B on the corner. 

F is not near to B. 

F is left of C. 

F is not right of C. 

F is not in same column as C. 

F is not above C. 

F is below C. 

F is not in same row as C. 

F does not touch C. 

F is not near to C. 

F is left of D. 

F is not right of D. 

F is not in same column as D. 

F is not above D. 

F is not below D. 

F is in same row as D. 

F does not touch D. 

F is not near to D. 

F is left of E. 

F is not right of E. 

F is not in same column as E. 

F is not above E. 

F is not below E. 

F is in same row as E. 

F touches E. 

F does not touch E on the corner. 

F is not near to E. 

F is not left of G. 

F is not right of G. 

F is in same column as G. 

F is not above G. 

F is below G. 

F is not in same row as G. 
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A is not left of H. 

A is right of H. 

A is not in same column as H. 

A is not above H. 

A is below H. 

A is not in same row as H. 

A touches H. 

A touches H on the corner. 

A is not near to H. 

A is not left of I. 

A is not right of I. 

A is in same column as I. 

A is not above I. 

A is below I. 

A is not in same row as I. 

A touches I. 

A does not touch I on the corner. 

A is not near to I. 

A is left of J. 

A is not right of J. 

A is not in same column as J. 

A is not above J. 

A is below J. 

A is not in same row as J. 

A touches J. 

A touches J on the corner. 

A is not near to J. 

B is not left of A. 

B is not right of A. 

B is in same column as A. 

B is not above A. 

B is not below A. 

B is in same row as A. 

B does not touch A. 

B is near to A. 

B is left of C. 

B is not right of C. 

B is not in same column as C. 

B is not above C. 

B is not below C. 

B is in same row as C. 

B touches C. 

B does not touch C on the corner. 

B is not near to C. 

B is left of D. 

B is not right of D. 

B is not in same column as D. 

B is above D. 

B is not below D. 

F touches G. 

F does not touch G on the corner. 

F is not near to G. 

F is not left of H. 

F is not right of H. 

F is in same column as H. 

F is not above H. 

F is below H. 

F is not in same row as H. 

F does not touch H. 

F is not near to H. 

F is left of I. 

F is not right of I. 

F is not in same column as I. 

F is not above I. 

F is below I. 

F is not in same row as I. 

F does not touch I. 

F is not near to I. 

F is left of J. 

F is not right of J. 

F is not in same column as J. 

F is not above J. 

F is below J. 

F is not in same row as J. 

F does not touch J. 

F is not near to J. 

G is left of A. 

G is not right of A. 

G is not in same column as A. 

G is not above A. 

G is not below A. 

G is in same row as A. 

G touches A. 

G does not touch A on the corner. 

G is not near to A. 

G is left of B. 

G is not right of B. 

G is not in same column as B. 

G is not above B. 

G is not below B. 

G is in same row as B. 

G touches B. 

G does not touch B on the corner. 

G is not near to B. 

G is left of C. 

G is not right of C. 

G is not in same column as C. 

G is not above C. 
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B is not in same row as D. 

B touches D. 

B touches D on the corner. 

B is not near to D. 

B is not left of E. 

B is not right of E. 

B is in same column as E. 

B is above E. 

B is not below E. 

B is not in same row as E. 

B touches E. 

B does not touch E on the corner. 

B is not near to E. 

B is not left of F. 

B is right of F. 

B is not in same column as F. 

B is above F. 

B is not below F. 

B is not in same row as F. 

B touches F. 

B touches F on the corner. 

B is not near to F. 

B is not left of G. 

B is right of G. 

B is not in same column as G. 

B is not above G. 

B is not below G. 

B is in same row as G. 

B touches G. 

B does not touch G on the corner. 

B is not near to G. 

B is not left of H. 

B is right of H. 

B is not in same column as H. 

B is not above H. 

B is below H. 

B is not in same row as H. 

B touches H. 

B touches H on the corner. 

B is not near to H. 

B is not left of I. 

B is not right of I. 

B is in same column as I. 

B is not above I. 

B is below I. 

B is not in same row as I. 

B touches I. 

B does not touch I on the corner. 

B is not near to I. 

G is not below C. 

G is in same row as C. 

G does not touch C. 

G is not near to C. 

G is left of D. 

G is not right of D. 

G is not in same column as D. 

G is above D. 

G is not below D. 

G is not in same row as D. 

G does not touch D. 

G is not near to D. 

G is left of E. 

G is not right of E. 

G is not in same column as E. 

G is above E. 

G is not below E. 

G is not in same row as E. 

G touches E. 

G touches E on the corner. 

G is not near to E. 

G is not left of F. 

G is not right of F. 

G is in same column as F. 

G is above F. 

G is not below F. 

G is not in same row as F. 

G touches F. 

G does not touch F on the corner. 

G is not near to F. 

G is not left of H. 

G is not right of H. 

G is in same column as H. 

G is not above H. 

G is below H. 

G is not in same row as H. 

G touches H. 

G does not touch H on the corner. 

G is not near to H. 

G is left of I. 

G is not right of I. 

G is not in same column as I. 

G is not above I. 

G is below I. 

G is not in same row as I. 

G touches I. 

G touches I on the corner. 

G is not near to I. 

G is left of J. 
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B is left of J. 

B is not right of J. 

B is not in same column as J. 

B is not above J. 

B is below J. 

B is not in same row as J. 

B touches J. 

B touches J on the corner. 

B is not near to J. 

C is not left of A. 

C is right of A. 

C is not in same column as A. 

C is not above A. 

C is not below A. 

C is in same row as A. 

C touches A. 

C does not touch A on the corner. 

C is not near to A. 

C is not left of B. 

C is right of B. 

C is not in same column as B. 

C is not above B. 

C is not below B. 

C is in same row as B. 

C touches B. 

C does not touch B on the corner. 

C is not near to B. 

C is not left of D. 

C is not right of D. 

C is in same column as D. 

C is above D. 

C is not below D. 

C is not in same row as D. 

C touches D. 

C does not touch D on the corner. 

C is not near to D. 

C is not left of E. 

C is right of E. 

C is not in same column as E. 

C is above E. 

C is not below E. 

C is not in same row as E. 

C touches E. 

C touches E on the corner. 

C is not near to E. 

C is not left of F. 

C is right of F. 

C is not in same column as F. 

C is above F. 

G is not right of J. 

G is not in same column as J. 

G is not above J. 

G is below J. 

G is not in same row as J. 

G does not touch J. 

G is not near to J. 

H is left of A. 

H is not right of A. 

H is not in same column as A. 

H is above A. 

H is not below A. 

H is not in same row as A. 

H touches A. 

H touches A on the corner. 

H is not near to A. 

H is left of B. 

H is not right of B. 

H is not in same column as B. 

H is above B. 

H is not below B. 

H is not in same row as B. 

H touches B. 

H touches B on the corner. 

H is not near to B. 

H is left of C. 

H is not right of C. 

H is not in same column as C. 

H is above C. 

H is not below C. 

H is not in same row as C. 

H does not touch C. 

H is left of D. 

H is not right of D. 

H is not in same column as D. 

H is above D. 

H is not below D. 

H is not in same row as D. 

H does not touch D. 

H is not near to D. 

H is left of E. 

H is not right of E. 

H is not in same column as E. 

H is above E. 

H is not below E. 

H is not in same row as E. 

H does not touch E. 

H is not near to E. 

H is not left of F. 
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C is not below F. 

C is not in same row as F. 

C does not touch F. 

C is not near to F. 

C is not left of G. 

C is right of G. 

C is not in same column as G. 

C is not above G. 

C is not below G. 

C is in same row as G. 

C does not touch G. 

C is not near to G. 

C is not left of H. 

C is right of H. 

C is not in same column as H. 

C is not above H. 

C is below H. 

C is not in same row as H. 

C does not touch H. 

C is not near to H. 

C is not left of I. 

C is right of I. 

C is not in same column as I. 

C is not above I. 

C is below I. 

C is not in same row as I. 

C touches I. 

C touches I on the corner. 

C is not near to I. 

C is not left of J. 

C is not right of J. 

C is in same column as J. 

C is not above J. 

C is below J. 

C is not in same row as J. 

C touches J. 

C does not touch J on the corner. 

C is not near to J. 

D is not left of A. 

D is right of A. 

D is not in same column as A. 

D is not above A. 

D is below A. 

D is not in same row as A. 

D touches A. 

D touches A on the corner. 

D is not near to A. 

D is not left of B. 

D is right of B. 

H is not right of F. 

H is in same column as F. 

H is above F. 

H is not below F. 

H is not in same row as F. 

H does not touch F. 

H is not near to F. 

H is not left of G. 

H is not right of G. 

H is in same column as G. 

H is above G. 

H is not below G. 

H is not in same row as G. 

H touches G. 

H does not touch G on the corner. 

H is not near to G. 

H is left of I. 

H is not right of I. 

H is not in same column as I. 

H is not above I. 

H is not below I. 

H is in same row as I. 

H touches I. 

H does not touch I on the corner. 

H is not near to I. 

H is left of J. 

H is not right of J. 

H is not in same column as J. 

H is not above J. 

H is not below J. 

H is in same row as J. 

H does not touch J. 

H is not near to J. 

I is not left of A. 

I is not right of A. 

I is in same column as A. 

I is above A. 

I is not below A. 

I is not in same row as A. 

I touches A. 

I does not touch A on the corner. 

I is not near to A. 

I is not left of B. 

I is not right of B. 

I is in same column as B. 

I is above B. 

I is not below B. 

I is not in same row as B. 

I touches B. 
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D is not in same column as B. 

D is not above B. 

D is below B. 

D is not in same row as B. 

D touches B. 

D touches B on the corner. 

D is not near to B. 

D is not left of C. 

D is not right of C. 

D is in same column as C. 

D is not above C. 

D is below C. 

D is not in same row as C. 

D touches C. 

D does not touch C on the corner. 

D is not near to C. 

D is not left of E. 

D is right of E. 

D is not in same column as E. 

D is not above E. 

D is not below E. 

D is in same row as E. 

D touches E. 

D does not touch E on the corner. 

D is not near to E. 

D is not left of F. 

D is right of F. 

D is not in same column as F. 

D is not above F. 

D is not below F. 

D is in same row as F. 

D does not touch F. 

D is not near to F. 

D is not left of G. 

D is right of G. 

D is not in same column as G. 

D is not above G. 

D is below G. 

D is not in same row as G. 

D does not touch G. 

D is not near to G. 

D is not left of H. 

D is right of H. 

D is not in same column as H. 

D is not above H. 

D is below H. 

D is not in same row as H. 

D does not touch H. 

D is not near to H. 

I does not touch B on the corner. 

I is not near to B. 

I is left of C. 

I is not right of C. 

I is not in same column as C. 

I is above C. 

I is not below C. 

I is not in same row as C. 

I touches C. 

I touches C on the corner. 

I is not near to C. 

I is left of D. 

I is not right of D. 

I is not in same column as D. 

I is above D. 

I is not below D. 

I is not in same row as D. 

I does not touch D. 

I is not near to D. 

I is not left of E. 

I is not right of E. 

I is in same column as E. 

I is above E. 

I is not below E. 

I is not in same row as E. 

I does not touch E. 

I is not near to E. 

I is not left of F. 

I is right of F. 

I is not in same column as F. 

I is above F. 

I is not below F. 

I is not in same row as F. 

I does not touch F. 

I is not near to F. 

I is not left of G. 

I is right of G. 

I is not in same column as G. 

I is above G. 

I is not below G. 

I is not in same row as G. 

I touches G. 

I touches G on the corner. 

I is not near to G. 

I is not left of H. 

I is right of H. 

I is not in same column as H. 

I is not above H. 

I is not below H. 
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D is not left of I. 

D is right of I. 

D is not in same column as I. 

D is not above I. 

D is below I. 

D is not in same row as I. 

D does not touch I. 

D is not near to I. 

D is not left of J. 

D is not right of J. 

D is in same column as J. 

D is not above J. 

D is below J. 

D is not in same row as J. 

D does not touch J. 

D is not near to J. 

E is not left of A. 

E is not right of A. 

E is in same column as A. 

E is not above A. 

E is below A. 

E is not in same row as A. 

E touches A. 

E does not touch A on the corner. 

E is not near to A. 

E is not left of B. 

E is not right of B. 

E is in same column as B. 

E is not above B. 

E is below B. 

E is not in same row as B. 

E touches B. 

E does not touch B on the corner. 

E is not near to B. 

E is left of C. 

E is not right of C. 

E is not in same column as C. 

E is not above C. 

E is below C. 

E is not in same row as C. 

E touches C. 

E touches C on the corner. 

E is not near to C. 

E is left of D. 

E is not right of D. 

E is not in same column as D. 

E is not above D. 

E is not below D. 

E is in same row as D. 

I is in same row as H. 

I touches H. 

I does not touch H on the corner. 

I is not near to H. 

I is left of J. 

I is not right of J. 

I is not in same column as J. 

I is not above J. 

I is not below J. 

I is in same row as J. 

I touches J. 

I does not touch J on the corner. 

I is not near to J. 

J is not left of A. 

J is right of A. 

J is not in same column as A. 

J is above A. 

J is not below A. 

J is not in same row as A. 

J touches A. 

J touches A on the corner. 

J is not near to A. 

J is not left of B. 

J is right of B. 

J is not in same column as B. 

J is above B. 

J is not below B. 

J is not in same row as B. 

J touches B. 

J touches B on the corner. 

J is not near to B. 

J is not left of C. 

J is not right of C. 

J is in same column as C. 

J is above C. 

J is not below C. 

J is not in same row as C. 

J touches C. 

J does not touch C on the corner. 

J is not near to C. 

J is not left of D. 

J is not right of D. 

J is in same column as D. 

J is above D. 

J is not below D. 

J is not in same row as D. 

J does not touch D. 

J is not near to D. 

J is not left of E. 
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E touches D. 

E does not touch D on the corner. 

E is not near to D. 

E is not left of F. 

E is right of F. 

E is not in same column as F. 

E is not above F. 

E is not below F. 

E is in same row as F. 

E touches F. 

E does not touch F on the corner. 

E is not near to F. 

E is not left of G. 

E is right of G. 

E is not in same column as G. 

E is not above G. 

E is below G. 

E is not in same row as G. 

E touches G. 

E touches G on the corner. 

E is not near to G. 

E is not left of H. 

E is right of H. 

E is not in same column as H. 

E is not above H. 

E is below H. 

E is not in same row as H. 

E does not touch H. 

E is not near to H. 

E is not left of I. 

E is not right of I. 

E is in same column as I. 

E is not above I. 

E is below I. 

E is not in same row as I. 

E does not touch I. 

E is not near to I. 

E is left of J. 

E is not right of J. 

E is not in same column as J. 

E is not above J. 

J is right of E. 

J is not in same column as E. 

J is above E. 

J is not below E. 

J is not in same row as E. 

J does not touch E. 

J is not near to E. 

J is not left of F. 

J is right of F. 

J is not in same column as F. 

J is above F. 

J is not below F. 

J is not in same row as F. 

J does not touch F. 

J is not near to F. 

J is not left of G. 

J is right of G. 

J is not in same column as G. 

J is above G. 

J is not below G. 

J is not in same row as G. 

J does not touch G. 

J is not near to G. 

J is not left of H. 

J is right of H. 

J is not in same column as H. 

J is not above H. 

J is not below H. 

J is in same row as H. 

J does not touch H. 

J is not near to H. 

J is not left of I. 

J is right of I. 

J is not in same column as I. 

J is not above I. 

J is not below I. 

J is in same row as I. 

J touches I. 

J does not touch I on the corner. 

J is not near to I. 

 

Figure 41. Sentences describing grid (shown below sentences). These sentences were used for almost all experiments for 

learning purposes only. In these above sentences there are 33 sentences for relation “left,” 57 for “not left,” 33 for 

“right,” 57 for “not right,” 24 for “in same column,” 66 for “not in same column,” 33 for 
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“above,” 57 for “not above,” 33 for “below,” 57 for “not below,” 24 for “in same row,” 66 for “not in 

same row,” 56 for “touches,” 34 for “does not touch,” 24 for “touches on the corner,” 32 for 

“does not touch on the corner,” 2 for “near,” and 87 for “not near.” 

A not left of B. 

A is not the below B. 

A does not touches C on the corner. 

A is not near to the G. 

A is not touch I on the corner. 

B does not above C. 

B does not in same row as E. 

B does above F. 

B does right of G. 

C is not touches B on the corner. 

C is not in the same column as E. 

C does not below F. 

Figure 42. Sentences that replace the respective sentences from Figure 41 to introduce incorrect grammar in the training 
set. These sentences from this figure should be used together with the sentences from Figure 41 that were not replaced. 

A nie jest na lewo od B. 

A nie jest na prawo od B. 

A jest w tej samej kolumnie co B. 

A nie jest powyżej od B. 

A nie jest poniżej od B. 

A jest w tym samym rzędzie co B. 

A styka się z B. 

A nie styka się z B na rogu. 

A jest na lewo od C. 

A nie jest na prawo od C. 

A nie jest w tej samej kolumnie co C. 

A nie jest powyżej od C. 

A nie jest poniżej od C. 

A jest w tym samym rzędzie co C. 

A styka się z C. 

A styka się z C na rogu. 

A jest na lewo od D. 

A nie jest na prawo od D. 

A nie jest w tej samej kolumnie co D. 

A jest powyżej od D. 

A nie jest poniżej od D. 

A nie jest w tym samym rzędzie co D. 

A styka się z D. 

A styka się z D na rogu. 

A nie jest na lewo od E. 

A nie jest na prawo od E. 

A jest w tej samej kolumnie co E. 

A jest powyżej od E. 

A nie jest poniżej od E. 

A nie jest w tym samym rzędzie co E. 

A styka się z E. 

A styka się z E na rogu. 

A nie jest na lewo od F. 

A jest na prawo od F. 

A nie jest w tej samej kolumnie co F. 

A jest powyżej od F. 

A nie jest poniżej od F. 

F jest na lewo od A. 

F nie jest na prawo od A. 

F nie jest w tej samej kolumnie co A. 

F nie jest powyżej od A. 

F jest poniżej od A. 

F nie jest w tym samym rzędzie co A. 

F styka się z A. 

F styka się z A na rogu. 

F jest na lewo od B. 

F nie jest na prawo od B. 

F nie jest w tej samej kolumnie co B. 

F nie jest powyżej od B. 

F jest poniżej od B. 

F nie jest w tym samym rzędzie co B. 

F styka się z B. 

F styka się z B na rogu. 

F jest na lewo od C. 

F nie jest na prawo od C. 

F nie jest w tej samej kolumnie co C. 

F nie jest powyżej od C. 

F jest poniżej od C. 

F nie jest w tym samym rzędzie co C. 

F nie styka się z C. 

F styka się z C na rogu. 

F jest na lewo od D. 

F nie jest na prawo od D. 

F nie jest w tej samej kolumnie co D. 

F nie jest powyżej od D. 

F nie jest poniżej od D. 

F jest w tym samym rzędzie co D. 

F nie styka się z D. 

F nie styka się z D na rogu. 

F jest na lewo od E. 

F nie jest na prawo od E. 

F nie jest w tej samej kolumnie co E. 

F nie jest powyżej od E. 

F nie jest poniżej od E. 
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A nie jest w tym samym rzędzie co F. 

A styka się z F. 

A styka się z F na rogu. 

A nie jest na lewo od G. 

A jest na prawo od G. 

A nie jest w tej samej kolumnie co G. 

A nie jest powyżej od G. 

A nie jest poniżej od G. 

A jest w tym samym rzędzie co G. 

A styka się z G. 

A styka się z G na rogu. 

A nie jest na lewo od H. 

A jest na prawo od H. 

A nie jest w tej samej kolumnie co H. 

A nie jest powyżej od H. 

A jest poniżej od H. 

A nie jest w tym samym rzędzie co H. 

A styka się z H. 

A styka się z H na rogu. 

A nie jest na lewo od I. 

A nie jest na prawo od I. 

A jest w tej samej kolumnie co I. 

A nie jest powyżej od I. 

A jest poniżej od I. 

A nie jest w tym samym rzędzie co I. 

A styka się z I. 

A styka się z I na rogu. 

A jest na lewo od J. 

A nie jest na prawo od J. 

A nie jest w tej samej kolumnie co J. 

A nie jest powyżej od J. 

A jest poniżej od J. 

A nie jest w tym samym rzędzie co J. 

A styka się z J. 

A styka się z J na rogu. 

B nie jest na lewo od A. 

B nie jest na prawo od A. 

B jest w tej samej kolumnie co A. 

B nie jest powyżej od A. 

B nie jest poniżej od A. 

B jest w tym samym rzędzie co A. 

B styka się z A. 

B nie styka się z A na rogu. 

B jest na lewo od C. 

B nie jest na prawo od C. 

B nie jest w tej samej kolumnie co C. 

B nie jest powyżej od C. 

B nie jest poniżej od C. 

B jest w tym samym rzędzie co C. 

F jest w tym samym rzędzie co E. 

F styka się z E. 

F styka się z E na rogu. 

F nie jest na lewo od G. 

F nie jest na prawo od G. 

F jest w tej samej kolumnie co G. 

F nie jest powyżej od G. 

F jest poniżej od G. 

F nie jest w tym samym rzędzie co G. 

F styka się z G. 

F styka się z G na rogu. 

F nie jest na lewo od H. 

F nie jest na prawo od H. 

F jest w tej samej kolumnie co H. 

F nie jest powyżej od H. 

F jest poniżej od H. 

F nie jest w tym samym rzędzie co H. 

F nie styka się z H. 

F nie styka się z H na rogu. 

F jest na lewo od I. 

F nie jest na prawo od I. 

F nie jest w tej samej kolumnie co I. 

F nie jest powyżej od I. 

F jest poniżej od I. 

F nie jest w tym samym rzędzie co I. 

F nie styka się z I. 

F styka się z I na rogu. 

F jest na lewo od J. 

F nie jest na prawo od J. 

F nie jest w tej samej kolumnie co J. 

F nie jest powyżej od J. 

F jest poniżej od J. 

F nie jest w tym samym rzędzie co J. 

F nie styka się z J. 

F nie styka się z J na rogu. 

G jest na lewo od A. 

G nie jest na prawo od A. 

G nie jest w tej samej kolumnie co A. 

G nie jest powyżej od A. 

G nie jest poniżej od A. 

G jest w tym samym rzędzie co A. 

G styka się z A. 

G styka się z A na rogu. 

G jest na lewo od B. 

G nie jest na prawo od B. 

G nie jest w tej samej kolumnie co B. 

G nie jest powyżej od B. 

G nie jest poniżej od B. 

G jest w tym samym rzędzie co B. 
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B styka się z C. 

B styka się z C na rogu. 

B jest na lewo od D. 

B nie jest na prawo od D. 

B nie jest w tej samej kolumnie co D. 

B jest powyżej od D. 

B nie jest poniżej od D. 

B nie jest w tym samym rzędzie co D. 

B styka się z D. 

B styka się z D na rogu. 

B nie jest na lewo od E. 

B nie jest na prawo od E. 

B jest w tej samej kolumnie co E. 

B jest powyżej od E. 

B nie jest poniżej od E. 

B nie jest w tym samym rzędzie co E. 

B styka się z E. 

B styka się z E na rogu. 

B nie jest na lewo od F. 

B jest na prawo od F. 

B nie jest w tej samej kolumnie co F. 

B jest powyżej od F. 

B nie jest poniżej od F. 

B nie jest w tym samym rzędzie co F. 

B styka się z F. 

B styka się z F na rogu. 

B nie jest na lewo od G. 

B jest na prawo od G. 

B nie jest w tej samej kolumnie co G. 

B nie jest powyżej od G. 

B nie jest poniżej od G. 

B jest w tym samym rzędzie co G. 

B styka się z G. 

B styka się z G na rogu. 

B nie jest na lewo od H. 

B jest na prawo od H. 

B nie jest w tej samej kolumnie co H. 

B nie jest powyżej od H. 

B jest poniżej od H. 

B nie jest w tym samym rzędzie co H. 

B styka się z H. 

B styka się z H na rogu. 

B nie jest na lewo od I. 

B nie jest na prawo od I. 

B jest w tej samej kolumnie co I. 

B nie jest powyżej od I. 

B jest poniżej od I. 

B nie jest w tym samym rzędzie co I. 

B styka się z I. 

G styka się z B. 

G styka się z B na rogu. 

G jest na lewo od C. 

G nie jest na prawo od C. 

G nie jest w tej samej kolumnie co C. 

G nie jest powyżej od C. 

G nie jest poniżej od C. 

G jest w tym samym rzędzie co C. 

G nie styka się z C. 

G nie styka się z C na rogu. 

G jest na lewo od D. 

G nie jest na prawo od D. 

G nie jest w tej samej kolumnie co D. 

G jest powyżej od D. 

G nie jest poniżej od D. 

G nie jest w tym samym rzędzie co D. 

G nie styka się z D. 

G styka się z D na rogu. 

G jest na lewo od E. 

G nie jest na prawo od E. 

G nie jest w tej samej kolumnie co E. 

G jest powyżej od E. 

G nie jest poniżej od E. 

G nie jest w tym samym rzędzie co E. 

G styka się z E. 

G styka się z E na rogu. 

G nie jest na lewo od F. 

G nie jest na prawo od F. 

G jest w tej samej kolumnie co F. 

G jest powyżej od F. 

G nie jest poniżej od F. 

G nie jest w tym samym rzędzie co F. 

G styka się z F. 

G styka się z F na rogu. 

G nie jest na lewo od H. 

G nie jest na prawo od H. 

G jest w tej samej kolumnie co H. 

G nie jest powyżej od H. 

G jest poniżej od H. 

G nie jest w tym samym rzędzie co H. 

G styka się z H. 

G styka się z H na rogu. 

G jest na lewo od I. 

G nie jest na prawo od I. 

G nie jest w tej samej kolumnie co I. 

G nie jest powyżej od I. 

G jest poniżej od I. 

G nie jest w tym samym rzędzie co I. 

G styka się z I. 
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B styka się z I na rogu. 

B jest na lewo od J. 

B nie jest na prawo od J. 

B nie jest w tej samej kolumnie co J. 

B nie jest powyżej od J. 

B jest poniżej od J. 

B nie jest w tym samym rzędzie co J. 

B styka się z J. 

B styka się z J na rogu. 

C nie jest na lewo od A. 

C jest na prawo od A. 

C nie jest w tej samej kolumnie co A. 

C nie jest powyżej od A. 

C nie jest poniżej od A. 

C jest w tym samym rzędzie co A. 

C styka się z A. 

C styka się z A na rogu. 

C nie jest na lewo od B. 

C jest na prawo od B. 

C nie jest w tej samej kolumnie co B. 

C nie jest powyżej od B. 

C nie jest poniżej od B. 

C jest w tym samym rzędzie co B. 

C styka się z B. 

C styka się z B na rogu. 

C nie jest na lewo od D. 

C nie jest na prawo od D. 

C jest w tej samej kolumnie co D. 

C jest powyżej od D. 

C nie jest poniżej od D. 

C nie jest w tym samym rzędzie co D. 

C styka się z D. 

C styka się z D na rogu. 

C nie jest na lewo od E. 

C jest na prawo od E. 

C nie jest w tej samej kolumnie co E. 

C jest powyżej od E. 

C nie jest poniżej od E. 

C nie jest w tym samym rzędzie co E. 

C styka się z E. 

C styka się z E na rogu. 

C nie jest na lewo od F. 

C jest na prawo od F. 

C nie jest w tej samej kolumnie co F. 

C jest powyżej od F. 

C nie jest poniżej od F. 

C nie jest w tym samym rzędzie co F. 

C nie styka się z F. 

C styka się z F na rogu. 

G styka się z I na rogu. 

G jest na lewo od J. 

G nie jest na prawo od J. 

G nie jest w tej samej kolumnie co J. 

G nie jest powyżej od J. 

G jest poniżej od J. 

G nie jest w tym samym rzędzie co J. 

G nie styka się z J. 

G styka się z J na rogu. 

H jest na lewo od A. 

H nie jest na prawo od A. 

H nie jest w tej samej kolumnie co A. 

H jest powyżej od A. 

H nie jest poniżej od A. 

H nie jest w tym samym rzędzie co A. 

H styka się z A. 

H styka się z A na rogu. 

H jest na lewo od B. 

H nie jest na prawo od B. 

H nie jest w tej samej kolumnie co B. 

H jest powyżej od B. 

H nie jest poniżej od B. 

H nie jest w tym samym rzędzie co B. 

H styka się z B. 

H styka się z B na rogu. 

H jest na lewo od C. 

H nie jest na prawo od C. 

H nie jest w tej samej kolumnie co C. 

H jest powyżej od C. 

H nie jest poniżej od C. 

H nie jest w tym samym rzędzie co C. 

H nie styka się z C. 

H styka się z C na rogu. 

H jest na lewo od D. 

H nie jest na prawo od D. 

H nie jest w tej samej kolumnie co D. 

H jest powyżej od D. 

H nie jest poniżej od D. 

H nie jest w tym samym rzędzie co D. 

H nie styka się z D. 

H nie styka się z D na rogu. 

H jest na lewo od E. 

H nie jest na prawo od E. 

H nie jest w tej samej kolumnie co E. 

H jest powyżej od E. 

H nie jest poniżej od E. 

H nie jest w tym samym rzędzie co E. 

H nie styka się z E. 

H styka się z E na rogu. 
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C nie jest na lewo od G. 

C jest na prawo od G. 

C nie jest w tej samej kolumnie co G. 

C nie jest powyżej od G. 

C nie jest poniżej od G. 

C jest w tym samym rzędzie co G. 

C nie styka się z G. 

C nie styka się z G na rogu. 

C nie jest na lewo od H. 

C jest na prawo od H. 

C nie jest w tej samej kolumnie co H. 

C nie jest powyżej od H. 

C jest poniżej od H. 

C nie jest w tym samym rzędzie co H. 

C nie styka się z H. 

C styka się z H na rogu. 

C nie jest na lewo od I. 

C jest na prawo od I. 

C nie jest w tej samej kolumnie co I. 

C nie jest powyżej od I. 

C jest poniżej od I. 

C nie jest w tym samym rzędzie co I. 

C styka się z I. 

C styka się z I na rogu. 

C nie jest na lewo od J. 

C nie jest na prawo od J. 

C jest w tej samej kolumnie co J. 

C nie jest powyżej od J. 

C jest poniżej od J. 

C nie jest w tym samym rzędzie co J. 

C styka się z J. 

C styka się z J na rogu. 

D nie jest na lewo od A. 

D jest na prawo od A. 

D nie jest w tej samej kolumnie co A. 

D nie jest powyżej od A. 

D jest poniżej od A. 

D nie jest w tym samym rzędzie co A. 

D styka się z A. 

D styka się z A na rogu. 

D nie jest na lewo od B. 

D jest na prawo od B. 

D nie jest w tej samej kolumnie co B. 

D nie jest powyżej od B. 

D jest poniżej od B. 

D nie jest w tym samym rzędzie co B. 

D styka się z B. 

D styka się z B na rogu. 

D nie jest na lewo od C. 

H nie jest na lewo od F. 

H nie jest na prawo od F. 

H jest w tej samej kolumnie co F. 

H jest powyżej od F. 

H nie jest poniżej od F. 

H nie jest w tym samym rzędzie co F. 

H nie styka się z F. 

H nie styka się z F na rogu. 

H nie jest na lewo od G. 

H nie jest na prawo od G. 

H jest w tej samej kolumnie co G. 

H jest powyżej od G. 

H nie jest poniżej od G. 

H nie jest w tym samym rzędzie co G. 

H styka się z G. 

H styka się z G na rogu. 

H jest na lewo od I. 

H nie jest na prawo od I. 

H nie jest w tej samej kolumnie co I. 

H nie jest powyżej od I. 

H nie jest poniżej od I. 

H jest w tym samym rzędzie co I. 

H styka się z I. 

H styka się z I na rogu. 

H jest na lewo od J. 

H nie jest na prawo od J. 

H nie jest w tej samej kolumnie co J. 

H nie jest powyżej od J. 

H nie jest poniżej od J. 

H jest w tym samym rzędzie co J. 

H nie styka się z J. 

H nie styka się z J na rogu. 

I nie jest na lewo od A. 

I nie jest na prawo od A. 

I jest w tej samej kolumnie co A. 

I jest powyżej od A. 

I nie jest poniżej od A. 

I nie jest w tym samym rzędzie co A. 

I styka się z A. 

I styka się z A na rogu. 

I nie jest na lewo od B. 

I nie jest na prawo od B. 

I jest w tej samej kolumnie co B. 

I jest powyżej od B. 

I nie jest poniżej od B. 

I nie jest w tym samym rzędzie co B. 

I styka się z B. 

I styka się z B na rogu. 

I jest na lewo od C. 
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D nie jest na prawo od C. 

D jest w tej samej kolumnie co C. 

D nie jest powyżej od C. 

D jest poniżej od C. 

D nie jest w tym samym rzędzie co C. 

D styka się z C. 

D styka się z C na rogu. 

D nie jest na lewo od E. 

D jest na prawo od E. 

D nie jest w tej samej kolumnie co E. 

D nie jest powyżej od E. 

D nie jest poniżej od E. 

D jest w tym samym rzędzie co E. 

D styka się z E. 

D styka się z E na rogu. 

D nie jest na lewo od F. 

D jest na prawo od F. 

D nie jest w tej samej kolumnie co F. 

D nie jest powyżej od F. 

D nie jest poniżej od F. 

D jest w tym samym rzędzie co F. 

D nie styka się z F. 

D nie styka się z F na rogu. 

D nie jest na lewo od G. 

D jest na prawo od G. 

D nie jest w tej samej kolumnie co G. 

D nie jest powyżej od G. 

D jest poniżej od G. 

D nie jest w tym samym rzędzie co G. 

D nie styka się z G. 

D styka się z G na rogu. 

D nie jest na lewo od H. 

D jest na prawo od H. 

D nie jest w tej samej kolumnie co H. 

D nie jest powyżej od H. 

D jest poniżej od H. 

D nie jest w tym samym rzędzie co H. 

D nie styka się z H. 

D nie styka się z H na rogu. 

D nie jest na lewo od I. 

D jest na prawo od I. 

D nie jest w tej samej kolumnie co I. 

D nie jest powyżej od I. 

D jest poniżej od I. 

D nie jest w tym samym rzędzie co I. 

D nie styka się z I. 

D styka się z I na rogu. 

D nie jest na lewo od J. 

D nie jest na prawo od J. 

I nie jest na prawo od C. 

I nie jest w tej samej kolumnie co C. 

I jest powyżej od C. 

I nie jest poniżej od C. 

I nie jest w tym samym rzędzie co C. 

I styka się z C. 

I styka się z C na rogu. 

I jest na lewo od D. 

I nie jest na prawo od D. 

I nie jest w tej samej kolumnie co D. 

I jest powyżej od D. 

I nie jest poniżej od D. 

I nie jest w tym samym rzędzie co D. 

I nie styka się z D. 

I styka się z D na rogu. 

I nie jest na lewo od E. 

I nie jest na prawo od E. 

I jest w tej samej kolumnie co E. 

I jest powyżej od E. 

I nie jest poniżej od E. 

I nie jest w tym samym rzędzie co E. 

I nie styka się z E. 

I nie styka się z E na rogu. 

I nie jest na lewo od F. 

I jest na prawo od F. 

I nie jest w tej samej kolumnie co F. 

I jest powyżej od F. 

I nie jest poniżej od F. 

I nie jest w tym samym rzędzie co F. 

I nie styka się z F. 

I styka się z F na rogu. 

I nie jest na lewo od G. 

I jest na prawo od G. 

I nie jest w tej samej kolumnie co G. 

I jest powyżej od G. 

I nie jest poniżej od G. 

I nie jest w tym samym rzędzie co G. 

I styka się z G. 

I styka się z G na rogu. 

I nie jest na lewo od H. 

I jest na prawo od H. 

I nie jest w tej samej kolumnie co H. 

I nie jest powyżej od H. 

I nie jest poniżej od H. 

I jest w tym samym rzędzie co H. 

I styka się z H. 

I styka się z H na rogu. 

I jest na lewo od J. 

I nie jest na prawo od J. 



92 

D jest w tej samej kolumnie co J. 

D nie jest powyżej od J. 

D jest poniżej od J. 

D nie jest w tym samym rzędzie co J. 

D nie styka się z J. 

D nie styka się z J na rogu. 

E nie jest na lewo od A. 

E nie jest na prawo od A. 

E jest w tej samej kolumnie co A. 

E nie jest powyżej od A. 

E jest poniżej od A. 

E nie jest w tym samym rzędzie co A. 

E styka się z A. 

E styka się z A na rogu. 

E nie jest na lewo od B. 

E nie jest na prawo od B. 

E jest w tej samej kolumnie co B. 

E nie jest powyżej od B. 

E jest poniżej od B. 

E nie jest w tym samym rzędzie co B. 

E styka się z B. 

E styka się z B na rogu. 

E jest na lewo od C. 

E nie jest na prawo od C. 

E nie jest w tej samej kolumnie co C. 

E nie jest powyżej od C. 

E jest poniżej od C. 

E nie jest w tym samym rzędzie co C. 

E styka się z C. 

E styka się z C na rogu. 

E jest na lewo od D. 

E nie jest na prawo od D. 

E nie jest w tej samej kolumnie co D. 

E nie jest powyżej od D. 

E nie jest poniżej od D. 

E jest w tym samym rzędzie co D. 

E styka się z D. 

E styka się z D na rogu. 

E nie jest na lewo od F. 

E jest na prawo od F. 

E nie jest w tej samej kolumnie co F. 

E nie jest powyżej od F. 

E nie jest poniżej od F. 

E jest w tym samym rzędzie co F. 

E styka się z F. 

E styka się z F na rogu. 

E nie jest na lewo od G. 

E jest na prawo od G. 

E nie jest w tej samej kolumnie co G. 

I nie jest w tej samej kolumnie co J. 

I nie jest powyżej od J. 

I nie jest poniżej od J. 

I jest w tym samym rzędzie co J. 

I styka się z J. 

I styka się z J na rogu. 

J nie jest na lewo od A. 

J jest na prawo od A. 

J nie jest w tej samej kolumnie co A. 

J jest powyżej od A. 

J nie jest poniżej od A. 

J nie jest w tym samym rzędzie co A. 

J styka się z A. 

J styka się z A na rogu. 

J nie jest na lewo od B. 

J jest na prawo od B. 

J nie jest w tej samej kolumnie co B. 

J jest powyżej od B. 

J nie jest poniżej od B. 

J nie jest w tym samym rzędzie co B. 

J styka się z B. 

J styka się z B na rogu. 

J nie jest na lewo od C. 

J nie jest na prawo od C. 

J jest w tej samej kolumnie co C. 

J jest powyżej od C. 

J nie jest poniżej od C. 

J nie jest w tym samym rzędzie co C. 

J styka się z C. 

J styka się z C na rogu. 

J nie jest na lewo od D. 

J nie jest na prawo od D. 

J jest w tej samej kolumnie co D. 

J jest powyżej od D. 

J nie jest poniżej od D. 

J nie jest w tym samym rzędzie co D. 

J nie styka się z D. 

J nie styka się z D na rogu. 

J nie jest na lewo od E. 

J jest na prawo od E. 

J nie jest w tej samej kolumnie co E. 

J jest powyżej od E. 

J nie jest poniżej od E. 

J nie jest w tym samym rzędzie co E. 

J nie styka się z E. 

J styka się z E na rogu. 

J nie jest na lewo od F. 

J jest na prawo od F. 

J nie jest w tej samej kolumnie co F. 
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E nie jest powyżej od G. 

E jest poniżej od G. 

E nie jest w tym samym rzędzie co G. 

E styka się z G. 

E styka się z G na rogu. 

E nie jest na lewo od H. 

E jest na prawo od H. 

E nie jest w tej samej kolumnie co H. 

E nie jest powyżej od H. 

E jest poniżej od H. 

E nie jest w tym samym rzędzie co H. 

E nie styka się z H. 

E styka się z H na rogu. 

E nie jest na lewo od I. 

E nie jest na prawo od I. 

E jest w tej samej kolumnie co I. 

E nie jest powyżej od I. 

E jest poniżej od I. 

E nie jest w tym samym rzędzie co I. 

E nie styka się z I. 

E nie styka się z I na rogu. 

E jest na lewo od J. 

E nie jest na prawo od J. 

E nie jest w tej samej kolumnie co J. 

E nie jest powyżej od J. 

E jest poniżej od J. 

E nie jest w tym samym rzędzie co J. 

E nie styka się z J. 

E styka się z J na rogu. 

J jest powyżej od F. 

J nie jest poniżej od F. 

J nie jest w tym samym rzędzie co F. 

J nie styka się z F. 

J nie styka się z F na rogu. 

J nie jest na lewo od G. 

J jest na prawo od G. 

J nie jest w tej samej kolumnie co G. 

J jest powyżej od G. 

J nie jest poniżej od G. 

J nie jest w tym samym rzędzie co G. 

J nie styka się z G. 

J styka się z G na rogu. 

J nie jest na lewo od H. 

J jest na prawo od H. 

J nie jest w tej samej kolumnie co H. 

J nie jest powyżej od H. 

J nie jest poniżej od H. 

J jest w tym samym rzędzie co H. 

J nie styka się z H. 

J nie styka się z H na rogu. 

J nie jest na lewo od I. 

J jest na prawo od I. 

J nie jest w tej samej kolumnie co I. 

J nie jest powyżej od I. 

J nie jest poniżej od I. 

J jest w tym samym rzędzie co I. 

J styka się z I. 

J styka się z I na rogu. 

 

Figure 43. Sentences describing grid (shown below sentences). These sentences were used for almost all experiments for 

learning purposes only. In these above sentences there are 33 sentences for relation “na lewo,” 57 for “nie na 

lewo,” 33 for “na prawo,” 57 for “nie na prawo,” 24 for “w tej samej kolumnie,” 66 for “nie w 

tej samej kolumnie,” 33 for “powyżej,” 57 for “nie powyżej,” 33 for “poniżej,” 57 for “nie 

poniżej,” 24 for “w tym samym rzędzie,” 66 for “nie w tym samym rzędzie,” 56 for “styka 

się,” 34 for “nie styka się,” 24 for “styka się na rogu,” and 32 for “nie styka się na rogu.” 

Sentences associated with simple relation LEFT: 

[[A is left of B., A is left of C., A is left of E., B is left of E., C is 

left of B., C is left of E., D is left of A., D is left of B., D is left of 

C., D is left of E.]] 
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Sentences associated with negation of simple relation LEFT: 

[[A is not left of D., B is not left of A., B is not left of C., B is not 

left of D., C is not left of A., C is not left of D., E is not left of A., E 

is not left of B., E is not left of C., E is not left of D.]] 

 

Sentences associated with simple relation RIGHT: 

[[A is right of D., B is right of A., B is right of C., B is right of D., C 

is right of A., C is right of D., E is right of A., E is right of B., E is 

right of C., E is right of D.]] 

 

Sentences associated with negation of simple relation RIGHT: 

[[A is not right of B., A is not right of C., A is not right of E., B is not 

right of E., C is not right of B., C is not right of E., D is not right of 

A., D is not right of B., D is not right of C., D is not right of E.]] 

 

Sentences associated with simple relation SAME_COLUMN: 

[] 

 

Sentences associated with negation of simple relation SAME_COLUMN: 

[[A is not in same column as B., A is not in same column as C., A is not in 

same column as D., A is not in same column as E., B is not in same column as 

A., B is not in same column as C., B is not in same column as D., B is not in 

same column as E., C is not in same column as A., C is not in same column as 

B., C is not in same column as D., C is not in same column as E., D is not in 

same column as A., D is not in same column as B., D is not in same column as 

C., D is not in same column as E., E is not in same column as A., E is not in 

same column as B., E is not in same column as C., E is not in same column as 

D.], [A is not above B., A is not above C., A is not above D., B is not above 

A., B is not above C., B is not above D., C is not above D., D is not above 

C., E is not above A., E is not above B., E is not above C., E is not above 

D.], [A is not below B., A is not below E., B is not below A., B is not below 

E., C is not below A., C is not below B., C is not below D., C is not below 

E., D is not below A., D is not below B., D is not below C., D is not below 

E.], [A does not touch B., A does not touch E., B does not touch A., B does 

not touch D., B does not touch E., C does not touch D., C does not touch E., 

D does not touch B., D does not touch C., D does not touch E., E does not 

touch A., E does not touch B., E does not touch C., E does not touch D.], [A 

is not in same row as C., A is not in same row as D., A is not in same row as 

E., B is not in same row as C., B is not in same row as D., B is not in same 

row as E., C is not in same row as A., C is not in same row as B., C is not 

in same row as E., D is not in same row as A., D is not in same row as B., D 

is not in same row as E., E is not in same row as A., E is not in same row as 

B., E is not in same row as C., E is not in same row as D.], [A touches C., A 

touches D., B touches C., C touches A., C touches B., D touches A.], [A 

touches C on the corner., A touches D on the corner., B touches C on the 

corner., C touches A on the corner., C touches B on the corner., D touches A 

on the corner.]] 
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Sentences associated with simple relation ABOVE: 

[[A is above E., B is above E., C is above A., C is above B., C is above E., 

D is above A., D is above B., D is above E.]] 

 

Sentences associated with negation of simple relation ABOVE: 

[[A is below C., A is below D., B is below C., B is below D., E is below A., 

E is below B., E is below C., E is below D.]] 

 

Sentences associated with simple relation BELOW: 

[[A is below C., A is below D., B is below C., B is below D., E is below A., 

E is below B., E is below C., E is below D.]] 

 

Sentences associated with negation of simple relation BELOW: 

[[A is above E., B is above E., C is above A., C is above B., C is above E., 

D is above A., D is above B., D is above E.]] 

 

Sentences associated with simple relation SAME_ROW: 

[[A is in same row as B., B is in same row as A., C is in same row as D., D 

is in same row as C.]] 

 

Sentences associated with negation of simple relation SAME_ROW: 

[[A is below C., A is below D., B is below C., B is below D., E is below A., 

E is below B., E is below C., E is below D.]] 

 

Sentences associated with simple relation TOUCHING: 

[[A is near to C., A is near to D., B is near to C., C is near to A., C is 

near to B., D is near to A.]] 

 

Sentences associated with negation of simple relation TOUCHING: 

[[A is in same row as B., B is in same row as A., C is in same row as D., D 

is in same row as C.]] 

 

Figure 44. Results of assigning sentences describing grid shown below sentences to simple relations when not all sentences 

are present in the set such as “in same column as.” 

Sets of sentences true for machine-learning model whose class name is "is 

left of:" 

[[A is left of B., A is left of C., A is left of E., B is left of E., C is 

left of B., C is left of E., D is left of A., D is left of B., D is left of 

C., D is left of E.]] 
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Sets of sentences true for machine-learning model whose class name is "is not 

left of:" 

[[A is right of D., B is right of A., B is right of C., B is right of D., C 

is right of A., C is right of D., E is right of A., E is right of B., E is 

right of C., E is right of D.]] 

 

Sets of sentences true for machine-learning model whose class name is "is not 

right of:" 

[[A is not right of B., A is not right of C., A is not right of E., B is not 

right of E., C is not right of B., C is not right of E., D is not right of 

A., D is not right of B., D is not right of C., D is not right of E.]] 

 

Sets of sentences true for machine-learning model whose class name is "is not 

in same column as:" 

[[A is not in same column as B., A is not in same column as C., A is not in 

same column as D., A is not in same column as E., B is not in same column as 

A., B is not in same column as C., B is not in same column as D., B is not in 

same column as E., C is not in same column as A., C is not in same column as 

B., C is not in same column as D., C is not in same column as E., D is not in 

same column as A., D is not in same column as B., D is not in same column as 

C., D is not in same column as E., E is not in same column as A., E is not in 

same column as B., E is not in same column as C., E is not in same column as 

D.], [A is not above B., A is not above C., A is not above D., B is not above 

A., B is not above C., B is not above D., C is not above D., D is not above 

C., E is not above A., E is not above B., E is not above C., E is not above 

D.], [A is not in same row as C., A is not in same row as D., A is not in 

same row as E., B is not in same row as C., B is not in same row as D., B is 

not in same row as E., C is not in same row as A., C is not in same row as 

B., C is not in same row as E., D is not in same row as A., D is not in same 

row as B., D is not in same row as E., E is not in same row as A., E is not 

in same row as B., E is not in same row as C., E is not in same row as D.], 

[A does not touch B., A does not touch E., B does not touch A., B does not 

touch D., B does not touch E., C does not touch D., C does not touch E., D 

does not touch B., D does not touch C., D does not touch E., E does not touch 

A., E does not touch B., E does not touch C., E does not touch D.], [A is not 

left of D., B is not left of A., B is not left of C., B is not left of D., C 

is not left of A., C is not left of D., E is not left of A., E is not left of 

B., E is not left of C., E is not left of D.], [A touches C., A touches D., B 

touches C., C touches A., C touches B., D touches A.], [A touches C on the 

corner., A touches D on the corner., B touches C on the corner., C touches A 

on the corner., C touches B on the corner., D touches A on the corner.], [A 

is not below B., A is not below E., B is not below A., B is not below E., C 

is not below A., C is not below B., C is not below D., C is not below E., D 

is not below A., D is not below B., D is not below C., D is not below E.]] 

 

Sets of sentences true for machine-learning model whose class name is "is not 

above:" 

[[A is in same row as B., B is in same row as A., C is in same row as D., D 

is in same row as C.]] 
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Sets of sentences true for machine-learning model whose class name is "is 

below:" 

[[A is below C., A is below D., B is below C., B is below D., E is below A., 

E is below B., E is below C., E is below D.]] 

 

Sets of sentences true for machine-learning model whose class name is "is not 

in same row as:" 

[[A is below C., A is below D., B is below C., B is below D., E is below A., 

E is below B., E is below C., E is below D.]] 

 

Sets of sentences true for machine-learning model whose class name is "does 

not touch:" 

[[A is in same row as B., B is in same row as A., C is in same row as D., D 

is in same row as C.]] 

 

Sets of sentences true for machine-learning model whose class name is "is not 

left of:" 

[[A is right of D., B is right of A., B is right of C., B is right of D., C 

is right of A., C is right of D., E is right of A., E is right of B., E is 

right of C., E is right of D.]] 

 

Sets of sentences true for machine-learning model whose class name is "is 

right of:" 

[[A is right of D., B is right of A., B is right of C., B is right of D., C 

is right of A., C is right of D., E is right of A., E is right of B., E is 

right of C., E is right of D.]] 

 

Sets of sentences true for machine-learning model whose class name is 

"touches:" 

[[A is near to C., A is near to D., B is near to C., C is near to A., C is 

near to B., D is near to A.]] 

 

Sets of sentences true for machine-learning model whose class name is 

"touches on the corner:" 

[[A is near to C., A is near to D., B is near to C., C is near to A., C is 

near to B., D is near to A.]] 

 

Sets of sentences true for machine-learning model whose class name is "is 

near to:" 

[[A is near to C., A is near to D., B is near to C., C is near to A., C is 

near to B., D is near to A.]] 

Sets of sentences true for machine-learning model whose class name is "is 

above:" 

[[A is above E., B is above E., C is above A., C is above B., C is above E., 

D is above A., D is above B., D is above E.]] 

 

Sets of sentences true for machine-learning model whose class name is "is not 

below:" 
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[[A is above E., B is above E., C is above A., C is above B., C is above E., 

D is above A., D is above B., D is above E.]] 

 

Sets of sentences true for machine-learning model whose class name is "is in 

same row as:" 

[[A is in same row as B., B is in same row as A., C is in same row as D., D 

is in same row as C.]] 

 

Figure 45. Sentences categorized by machine learning as true for a machine0learning model whose class name is relation 

text. The sentences for training are in Figure 40, and the grid below those sentences. Since the list of the sentences true for 
each machine learning model was too long, the output for each group was shortened automatically by the program. 
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Appendix B: License and Copyright 

This license governs works based on the algorithms mentioned in this thesis and any de-

rivatives of this thesis, and must appear on any derivatives of this thesis or with any fragments of 

this thesis. 

This license grants you non-exclusive non-transferable right to use or implement the al-

gorithms described in this thesis royalty-free if you use the algorithms or this work for non-

commercial or academic purposes, with the exception for business conducted by Ryerson Uni-

versity, Toronto, Ontario, Canada. 

It does not give you the permission to republish the work in any way, with the exception 

of publishing made by Ryerson University, Toronto, Ontario, Canada. 

Commercial use and implementation of the algorithms mentioned in this thesis is allowed 

after the license fee of 50% of the profits made from sale of products based on the algorithms 

described in this thesis is paid to the author(s) of this and any derivative works that were used in 

creating the product. 

The algorithms should be publicity available for viewing in electronic or paper format as 

part of the Ryerson University’s Library collection. 

The copyright of this or any derivative works is governed by the copyright laws of coun-

tries where the work or the derivatives are created or the algorithms are implemented and the 

copyright law of Canada. 

If any term of this license is violated, the author(s) and/or the copyright holder(s) have 

the right to prosecute the offender(s) to the full extent allowed by laws of the countries for which 

the license is in effect. 
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Glossary 

Augmented n-gram The data that is collected about a chosen word, it’s role in sentence, and up 

to n of the surrounding words, the number of occurrences of the chosen 

word, and the number of occurrences of the chosen word together with the 

number of occurrences of the surrounding words. It is used to build sen-

tences in SentenceLearner. 

Bigram An n-gram with 2 tokens. 

Grid Matrix of points that can be randomly distributed or edited by user to the 

required specifications. The algorithms have access to the grid to deter-

mine the simple relations. 

GridLearner Program that uses 19 by 19 grid with two points, and truth values to learn 

relation strings entered by user. The program does not parse the relation 

strings. 

GUI Graphical user interface. 

Inner word A word that is in the sequence: (main word, inner word) or (inner word, 

main word) in the augmented n-gram. 

Model A formal construct that stands for the state of affairs in the world that we 

are trying to represent. In this thesis, the world is a grid and sentences de-

scribing the grid. 

N-gram An n-token sequence of data of the same type. The tokens are usually 

words. 

N-gram model A way to predict the n
th
 token based on the previous     tokens by using 

a probabilistic model. 

Outer word A word that is in the sequence: (main word, inner word, outer word) or 

(outer word, inner word, main word) in the augmented n-gram. 

Probabilistic parser An algorithm that predicts the most probable grammatical structure of a 

given sentence. That algorithm uses statistics of grammatical structures 

that are obtained from hand parsed sentences. 

RelationalData The collection of not conflicting simple relations that apply to two given 

points in a given grid. This collection includes horizontal simple relations, 



104 

horizontal distance, vertical simple relations, vertical distance, is touching 

simple relation, and the dimensions of the given grid. RelationalData 

objects in our approach simulate innate concepts as they might be present 

in human brain. 

RelationText String that remains after the removal of point names from a sentence. 

Point name The one letter word representing point name. A capital letter from A to Z. 

Phrase Two or more words that must go together to convey a relation. 

Relational verb The verb which itself states a relation without the need for helper words. 

Examples are: touches, flies, barks. 

SentenceData Data structure that holds the original sentence text, the relation text, and 

the point names. 

SentenceLearner Combination of the parser and sentence creation algorithms used to de-

scribe a situation between two points. 

Shallow parser A probabilistic parser that does not extract complete information about 

grammatical structures of sentences from a given text. A shallow parser 

only identifies and extracts information from the words that are most likely 

to convey information. 

Situation The relation between pairs of points in a grid. 

Trigram An n-gram with 3 tokens. 

Verb of being The verb that introduces a relation. This verb by itself it does not state any 

relation. Example of the verb of being in English “is,” in Polish “jest.” 

The type for the verb of being is VERB. 

Word type The function that a word is having in the sentence. Valid types are NEGA-

TION, NOTHING, RELATION, RELATION_VERB, POINT_NAME, VERB, and UN-

KNOWN. A word cannot have more than one type assigned to it. Empty spot 

in sliding window is marked as NOTHING to indicate no word in that posi-

tion. 
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