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Abstract

This thesis examines the problem of pricing and hedging Spread options under mar-

ket models with jumps driven by a Compound Poisson Process. Extending the work of

Deng, Li and Zhou we derive the price approximation for Spread options in jump-di↵usion

framework. We find that the proposed model accurately approximates option prices and

exhibits reasonable behavior when tested for sensitivity to the model parameters. Ap-

plying the method of Lamberton and Lapeyre, we minimize the squared error between

the Spread option price and the hedge portfolio to arrive to an optimal hedging strategy

for discontinuous underlying price modes. Additionally, we propose an alternative aver-

age Delta-hedging hedging strategy that is derived by conditioning the underlying price

processes on the number of jumps and summing over all the possible jump combinations;

such an approach allows us to revert to a hedging problem in a Black-Scholes framework.

Although the average Delta-hedging strategy o↵ers a significantly simpler approach to

hedge Spread options, we conclude that the former strategy performs better by exam-



ining the Profit and Loss Probability Density Function of the two competing strategies.

Finally, we o↵er a model parameter calibration algorithm and test its performance using

the transitional Probability Density Functions.
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Chapter 1

Introduction

European options are a special class of derivative securities, that give the holder of an

option contract a right, but not an obligation to execute a trade and receive a payo↵ at

a specified time, called an option Maturity[20]. The payo↵ depends on the underlying

asset or a group of assets that an option contract is written on and contract-specific

terms (such as strike price, and a payo↵ function). Option contracts range from the most

basic Call and Put options on one underlying asset to multi-dimensional contracts, such

as Basket or Rainbow options that take a group of assets as their underlying. Option

contracts have many practical applications and are actively used for trading and hedging

purposes: these instruments can be used to speculate on or to hedge against the future

price movements of their underlying assets. As a result, an investor desires to know how

to price and hedge a European option contract.

The goal of our work is to combine and extend the option pricing, hedging and

parameter calibration strategies currently available in the scientific literature to price

and hedge the bivariate Spread options in a jump-di↵usion framework, as well as to o↵er

a parameter calibration strategy for the proposed model.

Black and Scholes[4] introduced a revolutionary option pricing formula, that is still

widely used nowadays. The original Black-Scholes pricing formula for Call and Put op-

tions written on one asset was derived under a simplistic assumption of the underlying

assets following the Geometric Brownian Motion process. Although being theoretically

and computationally easy, the Black-Scholes model failed to capture the three impor-

tant features of the financial markets: (1) the asymmetric leptokurtic features of return
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Chapter 1

distributions; (2) implied volatility smiles and smirks; and (3) large random fluctuations

in asset prices. Merton[26] extended the Black-Scholes pricing formula to allow for the

jumps in the underlying asset prices which allowed to capture large swings in the asset

prices. Since the works of Black, Scholes and Merton, a number of further extensions to

the option prices were introduced. Following the practical observation of implied volatil-

ity smiles and smirks, Heston[16] extended the Black-Scholes framework by introducing

stochastic volatility that follows a random process; Bates[11] presented a model including

both stochastic volatility and jumps.

Nowadays, the option market is not limited to only univariate Call and Put options;

there is a wide range of multi-dimensional options available to an investor, such as Cracks,

Sparks, Spikes, Rainbow options, etc. Such option contracts find application in the indus-

try as they represent a convenient tool for companies to hedge against the uncertainty in

the future prices and price spreads, and therefore, to protect their operational margins.

Being the simplest case of multi-dimensional options, Spread options gained the most

popularity in the academic literature. When pricing the European Call and Put options,

Black and Scholes derive and solve a partial di↵erential equation; although the equation

derivation is easily expandable to two dimensions, the two-dimensional PDE does not

have a closed-form solution. Alvarez, Escobar and Olivares[1] use the Taylor expansion

to price multidimensional options on underlyings with jumps and stochastic covariance

terms to allow a greater flexibility in modeling both shorter and longer term smiles.

Deng, Li and Zhou[22] propose the closed-form approximation to two dimensional option

prices in Black-Scholes framework by first deriving an integral pricing formula and then

providing a discrete Taylor approximation to it; they later extend their work to higher

dimensions[23]. While working well for some sets of parameters, Deng, Li and Zhou’s

model fails to produce feasible results across a range of the underlying volatility and cor-

relation combinations due to the option price approximation being derived in the vicinity

of a reference point with the model strength declining with increasing distance from the

point.

Spread options provide a unique challenge as analytical solutions are unavailable for

most market models, and the researchers are forced to rely on numerical methods to derive

multi-dimensional option price approximations. While using Taylor expansion method

for approximation might adversely impact the model accuracy, Fast Fourier Transform

o↵ers an alternative approximation method. Fourier transform methods, as outlined by

2
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Eberlein, Glau and Papapantoleon[12] provide an e�cient method for pricing options

under a variety of market models. Dempster and Hong[10] and Hurd and Zhou[19] price

Spread options by utilizing the Fast Fourier Transform (FFT) pioneered by Carr and

Madan[7]. The advantage of the FFT method is in its applicability to jump-di↵usion

set-ups in multiple dimensions. Hurd and Zhou[19], as well as Cane and Olivares[5]

apply the FFT for pricing Spread options under Merton processes. Additional Spread

option pricing approaches are proposed by Carmona and Durrleman[6], and Hikspoors

and Jaimungal[17]. Although being an e�cient method, FFT has drawbacks such as dif-

ficulty dealing with time-dependent parameters and challenges in developing computer

algorithms for FFT computations, as mentioned in Barua, Thulasiram and Thulasira-

man[2]; additionally, FFT method for option pricing is di�cult to implement in higher

dimensions.

In order to reduce the risks associated with the movements of the underlying assets,

investors utilize hedging strategies. In the Black-Scholes set-up, delta hedging, in the-

ory, allows to completely eliminate the risks associated with the underlying movements;

such a strategy is referred to as ”perfect hedging”. However, as one moves to more

complicated theoretical frameworks, such as jump-di↵usion, perfect hedging is no longer

available due to the market incompleteness. Moreover, the complexity of the Spread

option price approximations poses challenges in parameter calibration. Together, the

hedging and parameter calibration problems present the additional challenges in option

pricing. Lamberton and Lapeyre[21] employ sophisticated statistical methods to derive

an integral-form delta hedging strategy for univariate options under Merton models. Carr

and Wu[8] and He et al.[15] propose the semi-static hedging using a finite set of shorter-

term options; such an approach allows them to simplify the strategy and decrease the

hedging error. Similarly, Cont, Tankov and Voltchkova[9] use the shorter maturity op-

tions in quadratic hedging, showing that such an approach o↵ers an advantage over the

strategies relying solely on the underlying asset. Although o↵ering an advantage, the

aforementioned strategies require a larger amount of data to be readily available to the

investor; additionally, these strategies require a larger number of trades to be executed

that lead to high transaction costs.

An investor should calibrate the option parameters in order to build an e�cient hedge.

Due to the presence of the jump parameter for option prices in jump-di↵usion framework,

the calibration problem is ill-posed. He et al.[15] investigate the specific characteristics
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of the ill-posedness of the calibration problem for a univariate jump-di↵usion model with

a local volatility function and evaluate the impact of the calibration error on pricing and

hedging. They show that the problem becomes well-posed after imposing a condition

on the parameters governing the distribution of the jump amplitude. Moreover, they

conclude that in spite of the ill-posedness of the calibration problem, the model can

be calibrated to accurately price and hedge options. The ill-posedness property of the

parameter calibration problem means that one cannot arrive to a unique solution, Maribu,

Galli and Armstrong[24] look for methods to find a unique minimizing set of parameters

and propose a three-step procedure to fit the parameters to the Spark Spread option

price function; they employ the least-squares regression and a variogram and conclude

that most of the model parameters can be calibrated well using this procedure.

The contributions of our work include:

1. Proposal of the pricing method for bivariate Spread options in the jump-di↵usion

framework.

2. Extension to two dimensions of the hedging strategy proposed by Lamberton and

Lapeyre[21] for univariate options in the jump-di↵usion framework.

3. Proposal of the parameter calibration approach for bivariate Spread option pricing

and hedging in the jump-di↵usion framework.

4. Sensitivity analysis of the proposed bivariate Spread option prices in the jump-

di↵usion framework.

To achieve the goal of our work, we refer to the work of Deng, Li and Zhou[22] to

derive bivariate Spread option prices under discontinuous jump processes; we find that

the proposed model accurately approximates option prices and exhibits reasonable be-

havior when tested for sensitivity to the model parameters. Our conclusions are based

on the extensive numerical tests. Furthermore, we propose a three-step process to iter-

atively callibrate unique parameters in the derived Spread option pricing formula and

test its performance using the transitional Probability Density Functions. To develop an

optimal hedging strategy for the Spread options in the jump-di↵usion setting, we extend

the work of Lamberton and Lapeyre[21] that minimizes the squared error between the

Spread option price and the hedge portfolio. Additionally, we o↵er an alternative hedging
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strategy, that employs the average Delta-hedging to o↵er a simpler and faster hedging

strategy. Although the average Delta-hedging strategy o↵ers a significantly simpler ap-

proach to hedge Spread options, we conclude that the former strategy performs better

by examining the Profit and Loss Probability Density Function of the two competing

strategies.

The thesis consists of five chapters. Chapter 2 gives an overview of various multi-

dimensional options, their characteristics and applications. Chapter 3 discusses univari-

ate and bivariate option pricing and hedging in the Black-Scholes framework. Chapter 4

derives the two-dimensional option pricing in the jump-di↵usion setting, as well as o↵ers

two applicable hedging strategies. Chapter 5 concludes our work with the discussion of

the parameter calibration approach, model performance and the presentation of various

numerical experiments.
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Multi-Dimensional Option Contracts

Options are a special class of derivative securities, that give the holder of an option

contract a right, but not an obligation to execute a trade and receive a payo↵ at a

specified time, called an option Maturity[18]. The payo↵ depends on the underlying

asset or a group of assets that an option contract is written on and contract-specific

terms (such as strike price, and a payo↵ function). Option contracts range from the most

basic Call and Put options on one underlying asset to the multi-dimensional contracts,

such as basket or rainbow options that take a group of assets as their underlying.

Option contracts have many practical applications and are actively used by various

companies in order to hedge against the uncertainty in the future prices, as well as many

institutional and individual investors to speculate on the future movements of assets or

hedge their outstanding positions. For example, a inery company that uses crude oil

to produce its derivative products would purchase a Crack option to protect itself from

fluctuations in the crude oil prices and the prices of its derivative products.

In our work we are primarily concerned with pricing bivariate Spread options; how-

ever, our model is applicable to pricing any two-dimensional option contracts and can

be further extended to pricing the option contracts in higher dimensions. Chapter 2

provides an overview of the various option contracts to which our work is applicable.

7



2.1. Multi-Dimensional Options Chapter 2

2.1 Multi-Dimensional Options

2.1.1 Spread Options

Spread options are derivative instruments on two or more underlying assets. Their payo↵

at the time of maturity, denoted as h(x(i)
t

, T ) 2 C

1,2[0, T ) ⇥ (0,1), i = 1, .., n, depends

on the di↵erence in the spot prices of two (or more) underlying assets as well as on the

specified strike price, K [27]:

h(S(1)
t

, S

(2)
t

, T ) = (S(1)
T

� S

(2)
T

�K)+

Spread options are ubiquitous in the financial markets, being traded on equity, fixed

income, foreign exchange, commodities, and energy markets. Although Spread options

are popular instruments and some options can be purchased on large exchanges, the

majority of Spread options are traded Over-the-Counter(OTC-securities):

Commodity Spreads There is a wide range of spread options o↵ered in the commod-

ity markets: Location Spreads that are based on the di↵erence between the prices of

the same commodity at two di↵erent locations; Calendar Spreads that are based on the

di↵erence of the same commodity in two points in time; Processing Spread that are based

on the di↵erence of the prices of inputs to, and outputs from, a production process; or

Quality Spreads that are based on the di↵erence between the prices of di↵erent grades

of the same commodity[5].

Crack Spread Options The only two types of the spread options o↵ered on a large

exchange, the New York Mercantile Exchange (NYMEX), are energy market Spreads

between the heating oil/crude oil and gasoline/ heating oil, called Crack Spread options.

Crack Spread options are used by oil refineries that utilize crude oil to produce gaso-

line, heating oil, or other refined petroleum products. The options are purchased in

order to hedge against sharp fluctuations in refining margins. A Crack spread allows a

simultaneous purchase or sale of crude oil against sale or purchase of a refined petroleum

product[20].

1:1 Gasoline Crack Spread is constructed using one contract of crude oil and one

contract of unleaded gasoline, with a payo↵ function given as

8



Chapter 2 2.1. Multi-Dimensional Options

h(S(1)
t

, S

(2)
t

, T ) = (S(1)
T

� S

(2)
T

�K)+,

where S

(1)
t

and S

(2)
t

are time t � 0 futures prices of crude oil and unleaded gasoline

respectively.

Since crude oil prices are usually quoted in dollars per barrel, while unleaded gasoline

prices are quoted in dollars per gallon, a simple conversion needs to be applied to the

data using the fact that there are 42 gallons per barrel[20].

1:1 Heating Oil Crack Spread is constructed using one contract of crude oil and

one contract of heated oil, with a payo↵ function given as

h(S(1)
t

, S

(2)
t

, T ) = (S(1)
T

� S

(2)
T

�K)+,

where S(1)
t

and S

(2)
t

are time t � 0 futures prices of crude oil and heating oil respectively.

Similar to the gasoline crack spread, conversion needs to be applied to the heating oil

prices, using the fact that there are 42 gallons per barrel[20].

6:3:2:1 Crack Spread is an example of higher dimensional spread contract that is

constructed using six barrels of crude oil, three contracts of gasoline, two contracts of

heating oil and one contract of residual oil.

Spark Spread Options Spark Spread is the primary cross-commodity transaction in

the electricity market. It is used to hedge against the fluctuations in costs of converting

specific fuel (coal, natural gas, or petroleum, etc.) into electricity at a specific facility

[1]. The general definition of the most popular spark spreads underlying function is

S

t

= S

E

t

� r

h

S

G

t

,

where S

E

t

is a price of a futures contract on electricity at time t and S

G

t

is a price of

a futures contract on natural gas at time t, while r

h

is heat rate, or the e�ciency factor

of a power plant. Electricity future is often expressed in $/MWh (US dollar per Mega

Watt hour); in order to match it, the price of natural gas future, expressed in $/MMBtu,

is multiplied by heat rate, expressed in Btu/KWh and is divided by 1, 000 [1].

Currency Spreads Currency Spread options in foreign exchange markets often involve

interest or swap rates in di↵erent countries with closely related economies (for example,

French-German or Dutch-German bond spreads).

9



2.1. Multi-Dimensional Options Chapter 2

2.1.2 Basket Options

The payo↵ function of Basket options depends on the weighted average sum of the un-

derlying asset prices at the time of maturity:

h(S(1)
t

, S

(2)
t

, ..., S

(d)
t

, T ) = ((
dP

i=1
w

i

S

(i)
T

)�K)+,

where S(i)
t

is a price of an i

th asset at time t � 0, and w

i

is the weight of the ith, i = 1, ..., d

underlying as per the basket contract.

2.1.3 Rainbow Options

Rainbow options depend on more than one underlying asset. They usually pay a non-

equally weighted average of the assets according to their relative performance. The num-

ber of assets is called the number of colors of the rainbow[28]. Rainbow options allow a

greater exposure to the market and are a cheaper alternative to portfolio diversification

and hedging. There is a wide range of di↵erent rainbows available on the market; the

most typical examples include:

1. Best of Assets or Cash with a general payo↵ function given as:

h(S(1)
t

, S

(2)
t

, ..., S

(d)
t

, T ) = max(S(1)
T

, S

(2)
T

, ..., S

(d)
T

, K)

2. Multi-strike Rainbow Option with a general payo↵ function given as:

h(S(1)
t

, S

(2)
t

, ..., S

(d)
t

, T ) = max(S(1)
T

�K,S

(2)
T

�K, ..., S

(d)
T

�K)+

3. Pyramid Rainbow Option with a general payo↵ function given as:

h(S(1)
t

, S

(2)
t

, ..., S

(d)
t

, T ) = (|S(1)
T

�K|+|S

(2)
T

�K|+|S

(d)
T

�K|�K)+

4. Call on Max with a general payo↵ function given as:

h(S(1)
t

, S

(2)
t

, ..., S

(d)
t

, T ) = (max(S(1)
T

, S

(2)
T

, ..., S

(d)
T

)�K, 0)+
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Option Pricing in Black-Scholes

Framework

An e�cient hedging strategy must be developed in order for an investor to minimize the

risk of his position on the market. Black-Scholes model explores the relationship between

the prices of options and the underlying assets. Following this model, it is possible to

construct a self-financing portfolio that replicates a derivative security and leads to an

e�cient hedging strategy.

In §3.1, we discuss the Black-Scholes framework setup. We review pricing and hedging

of one-dimensional European option contracts under the Black-Scholes framework in §3.2.

The pricing and hedging model extension to two dimensions is presented in §3.3.

3.1 Black-Scholes Framework Setup

Black-Scholes framework is built upon the following assumptions on the market[4]:

a) A self-financing strategy for an option is possible if there exists a market for the

underlying assets or, if former condition in not satisfied, there exists a reasonable

approximation for the price of the underlying assets;

b) Investors are allowed to trade continuously and operate in complete arbitrage-free

frictionless markets (i.e. the trade is instantaneous and there are no transaction

cost or taxes associated with it) with an unlimited number of the product shares

11



3.1. Black-Scholes Framework Setup Chapter 3

freely available on the market;

c) Investors are allowed to borrow or sell any fraction of the price of the security at

a risk-free interest rate that is assumed to be known and constant throughout the

time of the strategy implementation.

d) There is no penalty associated with short-selling. A seller is assumed to accept the

market asset price and agree to settle with the buyer on the specified future date by

paying him an amount equal to the market price of the security on the settlement

date;

Before proceeding to underlying process definition, we introduce some notation. Let

the price process (S
t

, t � 0) be defined in the filtered probability space {⌦,F ,F

t�0,P}
with filtration F

t�0 := �(S
l

, 0  l  t) defined as a sigma algebra generated by a

set of random variables {S

l

, 0  l  t} satisfying the ”usual conditions” (i.e. it is

right-continuous and contains few null events). We denote the equivalent risk-neutral

martingale measure as Q with an expectation under this measure denoted by EQ.

Definition 1. Let ⌦ be an open set of Rn. A Lebesgue-measurable function f : ⌦ ! C,

where C is a set of complex numbers, is said to be locally integrable if, for every compact

subset K of ⌦ the following is true[13]:

Z

K

|f |dx < +1

Definition 2. A multi-variate Itô’s drift-di↵usion process is a stochastic process of the

form[2]:

dX

i

t

= µ

i

t

dt+
dX

j=1

�

ij

t

dW

j

t

, i = 1, ..., N ; t 2 [0, T ]

where X0 is an F0 � measurable random variable; µ

t

and �

ij

t�0 are locally integrable

functions of orders one and two respectively.

Black-Scholes framework assumes that the rate of return on the riskless asset (risk-free

rate, r) is constant, the underlying stock pays no dividends, and that the price process

follows Geometric Brownian Motion (GBM), in which an asset return, dS

t

dt

, consists of two

components: deterministic and random [4]. We will use the common notation with the

12



Chapter 3 3.2. Black-Scholes Model for One-Dimensional Contracts and Their Hedging

deterministic component µdt, where µ is the mean rate of change of an asset price, and the

random component �dW

t

, where � � 0 is an asset constant volatility that determines

how much e↵ect the noise term has on the asset return, and dW

t

is an increment of

a Wiener process. Additionally, increments of a Wiener process are independent with

dW

t

⇠ N(0, dt). The following stochastic di↵erential equation defines the GBM price

process:

dS

t

= µS

t

dt+ �S

t

dW

t

(3.1.1)

The initial Black-Scholes set-up for pricing of European options of one asset can be

extended to two dimensions. In the case of the two dimensional options, the underlying

asset prices are assumed to follow the correlated GBM process in which their price paths

can be described by 3.1.1, with correlation ⇢ between their random components:

dS

1
t

= µ1S
1
t

dt+ �1S
1
t

dW

1
t

,

dS

2
t

= µ2S
2
t

dt+ �2S
2
t

dW

2
t

, corr(W 1
t

,W

2
t

) = ⇢, (3.1.2)

with Wiener process having the following properties:

a) The quadratic variance of a Wiener process W
t

is hW i

t

= t;

b) Covariance of two correlated Wiener process, such that corr(W (1)
t

,W

(2)
t

) = ⇢ is

hW,W i

1,2
t

= ⇢t.

3.2 Black-Scholes Model for One-Dimensional Con-

tracts and Their Hedging

It is of interest to an investor to minimize the risks of his position on the market. This

can be done by employing a proper hedging strategy. Typically, the hedging strategy

consists of some amount of an underlying asset and a risk-free asset, where their respective

amounts depend on the current underlying asset price; additionally, the strategy does not

require any further cash inflows or outflows and can be approximated by simple strategies

using finite number of trading dates[3]. Such a hedging strategy is called an admissible

strategy whose value at time t > 0 will be denoted by F

t�0, while F̃

t�0 will denote the

time t � 0 discounted portfolio value under the risk-neutral measure EQ, i.e. F̃t

= e

�rt

F

t

.

13



3.2. Black-Scholes Model for One-Dimensional Contracts and Their Hedging Chapter 3

Definition 3. A strategy {↵

i

t

}, i = 1, 2, ..., d with portfolio value F

t

=
nP

i=1
↵

i

t

S

i

t

, t � 0 is

said to be self-financing if

dF

t

=
nX

i=1

↵

i

t

dS

i

t

, t � 0

In order for an investor to be able to execute the strategy {↵

i

t

}, i = 1, 2, ..., d,

Definition 4. A self-financing strategy {↵

i

t

}, i = 1, 2, ..., d with the discounted (under

the risk-neutral measure EQ) portfolio value F̃

t�0 defined on the filtered probability space

{⌦,F ,F

t�0,P} with filtration F

t�0 is said to be admissible if

F̃

t�0 � 0 P � a.s (3.1)

Definition 5. In the filtered probability space {⌦,F ,F

t>0,P}, a ”non-anticipating”, or

adapted stochastic process (S
t

) is said to posses the Markov property if for every bounded

measurable function f(x) and 0  t  T :

E[f(S
T

)|F
t

] = E[f(S
T

)|S
t

]

Definition 6. A strategy (↵
t

, �

t

) that possesses Markov property is said to be Markovian

if:

↵

t

= ↵(t, S
t

)

and �

t

= �(t, S
t

),↵, � 2 C

1,2[0, T )⇥ (0,1)

Theorem 1 (9). Let S
t

, t � 0 be a GBM process on a filtered probability space {⌦,F ,F

t�0,P}
with ⇥

t

, t � 0 being the augmented filtration generated by S

t

, t � 0. For a square-

integrable random variable X measurable with respect to ⇥1, there exists a predictable

process �

t

, t � 0, adapted to filtration ⇥
t

, t � 0, such that:

S = E

Q(S|F0) +

Z 1

0

�

l

dS

l

Q� a.s. (3.2.1)

The Black-Scholes framework insures a complete and arbitrage-free market in which

a European options contract with a payo↵ h(t, S
t

) and a value V (T, S
t

) = V at time T

14



Chapter 3 3.2. Black-Scholes Model for One-Dimensional Contracts and Their Hedging

are replicable in a unique way. Theorem 1 states that there exists a replicating strategy

�

t

= {↵

t

, t � 0} for an option payo↵. In order to replicate a European contract, an

investor follows a self-financing Markovian strategy and typically holds some shares ↵

t

of the underlying asset S
t

˙, t�0andsomeamount�˙t, t �0ofarisk� freeasset(B˙t)˙, t�0

= eˆ-rt.

By the definition of a self-financing portfolio (↵
t

, �

t

), the following equations have to

be satisfied:

F

↵

t

,�

t

t

= ↵

t

S

t

+ �

t

B

t

,

dF

↵,�

t

= ↵

t

dS

t

+ �

t

dB

t

(3.2.2)

Theorem 2. Let X
t

be an Itô’s process and f = f(t, x) 2 C

1,2[0, T )⇥R

d. Then

df = @

t

fdt+5fdS

t

+
1

2

NX

i,j=1

@

s

i

s

j

fdhS

i

, S

j

i

t

, (3.2.3)

with f = f(t, S
t

) and 5f = (@
s1f, ..., @s

N

f) [28].

Itô’s formula is one dimension for f(t, S) = f has the following form:

df = @

t

fdt+ @

S

fdS +
1

2
@

SS

fdhSi

t

(3.2.4)

We now introduce Theorem 3 that can be proved using eq. 3.2.2 and 3.2.4; the proof

is not presented in our work due to its broad availability in the option pricing literature,

see for example [28].

Theorem 3. For a Markovian strategy �

t

= (↵
t

, �

t

) with portfolio value f = f(t, S) =

F

t

, t � 0, the following two statements are equivalent:

a) (↵
t

, �

t

) is a self-financing replicating strategy defined in 3.2.2

b) f is the solution to
�

2
S

2

2
@

SS

f + rS@

S

f + @

t

f = rf, (3.2.5)

where r is the risk-free interest rate with dB

t

= rB

t

= re

rt; f 2 C

1,2[0, T ) ⇥ R+

and ↵

t

= @

S

f [28].

15



3.2. Black-Scholes Model for One-Dimensional Contracts and Their Hedging Chapter 3

Using Theorem 3 and the fact that a self-financing strategy (↵
t

, �

t

) uniquely replicates

a European option contract, option pricing problem can be formulated and solved.

Pricing Statement 1. For a European one-dimensional options contract with a payo↵

h(t, S
t

), replicating strategy f = f(t, S) = F

t

, t � 0 and a value V (T, S
t

) there exists a

unique strategy (↵
t

, �

t

) given by

↵

t

= @

S

f, �

t

= e

�rt(f � ↵

t

S

t

)

where f is the solution to eq. 3.2.5 with f(T, S
t

) = V (T, S
t

) [28].

The pricing statement can be used to yield prices for a European call and put:

a) For a European call contract bought at time t with strike price K, expiration time

T , and a pay-o↵ h(T, S
t

) = max(S
T

�K, 0):

V (S
t

, T ) = S

t

N(d1)�Ke

�r(T�t)
N(d2) (3.2.6)

b) For a European put contract bought at time t with strike price K, expiration time

T , and a pay-o↵ h(T, S
t

) = max(K � S

T

, 0):

V (S
t

, T ) = Ke

�r(T�t)
N(�d2)� S

t

N(�d1) (3.2.7)

where d1 =
ln(St

K

)+(r+�

2

2 )T

�

p
T

and d2 =
ln(St

K

)+(r��

2

2 )T

�

p
T

; N(x) denotes the cumulative standard

Normal distribution.

Hedging is the reduction of the sensitivity of a portfolio to the movement of an

underlying asset by taking opposite positions in di↵erent financial instruments[29]. A

hedging strategy that eliminates any sensitivity of a portfolio to the movement of an

underlying asset is called perfect hedging.

The hedging strategy for a European call or a put follows from the Pricing State-

ment 1. The self-financing strategy (↵
t

, �

t

) replicates an option price at each point in

time, as stated in theorem 1. At time t � 0, an investor can hedge the long option

position by selling ↵

t

= @

S

f shares of an underlying asset at price S

t

and �

t

= V

t

�↵

t

S

t

B

t

units of a risk-free asset. Such strategy eliminates all market risk from the position,
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leading to ”perfect hedging”. The values of ↵
t

and �

t

can be obtained by di↵erentiating

3.2.6 and 3.2.7 with respect to S

t

:

a) For a European call contract:

↵

t

= N(d1)and �

t

= �Ke

�rT

N(d2) (3.2.8)

b) For a European put contract:

↵

t

= �N(�d1)and �

t

= �Ke

�rT

N(�d2) (3.2.9)

3.3 Black-Scholes Model for Two-Dimensional Con-

tracts and Their Hedging

In order to replicate a European Spread option with a payo↵ h(S(1)
t

, S

(2)
t

, T ) = (S(1)
T

�

S

(2)
T

�K)+, where K is a strike price, and a time T value V (S(1)
t

, S

(2)
t

, T ) = V , an investor

employs an admissible self-financing strategy and holds some shares ↵(1)
t

and ↵

(2)
t

of the

underlying assets S

(1)
t,t�0 and S

(2)
t,t�0 respectively, and some amount �

t

of a risk-free asset

(B
t

)
,t�0. As in case of a univariate options’ pricing, the strategy �

0
t

= {↵

(1)
t

,↵

(2)
t

, �

t

}, t � 0

uniquely replicates the option payo↵. Therefore, in order to price and hedge a European

Spread option we derive an equation that describes the aforementioned hedging strategy,

similar to Theorem 3.

We begin by presenting quadratic variance and covariance for the two assets, S(1)
t

and

S

(2)
t

, that follow a correlated GBM given by eq. 3.1.2:

dhSi

(1)
t

= hµ1S
(1)
t

dt+ �1S
(1)
t

dW

(1)
t

i = (�1S
(1)
t

)2hdW i

(1)
t

= (�1S
(1)
t

)2dt

dhSi

2
t

= (�2S
(2)
t

)2dt (3.3.1)

dhS

(1)
, S

(2)
i

t

= hµ1S
(1)
t

dt+ �1S
(1)
t

dW

(1)
t

, µ2S
(2)
t

dt+ �2S
(2)
t

dW

(2)
t

i = ⇢�1�2S
(1)
t

S

(2)
t

dt

(3.3.2)

Using eq. 3.2.3, 3.3.1 and 3.3.2 we obtain Itô’s formula for a bivariate option contract,

with the time t � 0 value of a hedging strategy given by F

t

= f(S1, S2, t) = f :
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df = @

t

fdt+ @

S1fdS1 + @

S2fdS2 +
1

2
@

S1S1fdhSi(1) +
1

2
@

S2S2fdhSi2 +
1

2
@

S1S2fdhSi1,2

= @

t

fdt+ @

S1fdS1 + @

S2fdS1 +
1

2
(�1S1)

2
@

S1S1fdt+
1

2
(�2S2)

2
@

S2S2fdt+
1

2
⇢�1�2S1S2@S1S2fdt

(3.3.3)

For a self-financing strategy {↵

(1)
t

,↵

(2)
t

, �

t

}, t � 0 the following holds:

F

t

= ↵

(1)
t

S

(1)
t

+ ↵

(2)
t

S

(2)
t

+ �

t

B

t

,

dF

t

= ↵

(1)
t

dS

(1)
t

+ ↵

(2)
t

dS

(2)
t

+ �

t

dB

t

(3.3.4)

Using eq. 3.3.3 and 3.3.4, we extend Theorem 2 to two dimensions:

Theorem 4. For an admissible strategy �

0
t

= (↵(1)
t

,↵

(2)
t

, �

t

) with portfolio value f =

f(t, S1, S2) = F

t

, t � 0, the following two statements are equivalent:

a) (↵(1)
t

,↵

(2)
t

, �

t

) is a self-financing strategy defined in [3.3.4]

b) f is the solution to

�

2
1(S1)2

2
@

S1S1f +
�

2
2(S2)2

2
@

S2S2f + �1�2⇢1,2S1S2@S1S2f

+ r(S1@S1 + S2@S2)f + @

t

f = rf, (3.3.5)

where r is the risk-free interest rate with dB

t

= rB

t

= re

rt; (t, S1
t

, S

2
t

) 2 C

1,2[0, T )⇥

R+ and ↵

1
t

= @

S1f,↵
2
t

= @

S2f .

Proof. a ! b Let (↵1
t

,↵

2
t

, �

t

) be a self-financing strategy. For a portfolio consisting of

↵

(1)
t

shares of asset S(1)
t

, ↵(2)
t

shares of asset S(2)
t

and �

t

shares of a risk-free asset B
t

, such

that dB
t

= rB

t

dt, eq. 3.3.4 holds:

df = ↵

1
t

dS

1
t

+ ↵

2
t

dS

2
t

+ �

t

dB

t

,
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Using eq. 3.3.4 and 3.1.2, df can be expressed as:

df = (↵(1)
t

µ1S
(1)
t

+ ↵

(2)
t

µ2S
(2)
t

+ r�

t

B

t

)dt+ (↵(1)
t

�1S
(1)
t

dW

(1)
t

+ ↵

(2)
t

�2S
(2)
t

dW

(2)
t

) (3.3.6)

Itô’s formula 3.3.3 for a bivariate contract allows another expression for the self-

financing strategy F

t

; since Itô’s process has a unique representation, expressions 3.3.3

and 3.3.6 can be matched to yield:

i ↵

1
t

= @

S1f a.s.

ii ↵

2
t

= @

S2f a.s.

iii

↵

(1)
t

µ1S1+↵

(2)
t

µ2S2+r�B

t

= (@
t

+µ1S1@S1+µ2S2@S2+
1

2
(�1S1)

2
@

S1S1+
1

2
(�2S2)

2
@

S2S2

+
1

2
�1�2⇢1,2S1S2@S1S2)f, a.s.

where ↵

(1)
t

= @

S1f and ↵

(2)
t

µ2S2 = µ2S2@S2f , or equivalently:

(�1S1)2

2
@

S1S1f+
(�2S2)2

2
@

S2S2f+�1�2⇢1,2S1S2@S1S2f+r(S1@S1+S2@S2)f+@

t

f = rf, a.s.

b ! a Let f be a solution to 3.3.6. Eq. 3.3.6 can be re-written in the following form:

(�1S1)2

2
@

S1S1f+
(�2S2)2

2
@

S2S2f+�1�2⇢1,2S1S2@S1S2f+@

t

f = r(1�S1@S1�S2@S2)f (3.3.7)

Itô’s formula 3.3.3 for a Spread option can be re-written using 3.3.7:

df = @

S1fdS1 + @

S2fdS1 + r(1� S1@S1 � S2@S2)f

, df = ↵

(1)
t

dS1 + ↵

(2)
t

dS2 + r(f � ↵

(1)
t

S1 + ↵

(2)
t

S2)dt (3.3.8)
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The strategy f = F

t

was constructed in such a way that F
t

= ↵

(1)
t

S

(1)
t

+↵

(2)
t

S

(2)
t

+�

t

B

t

;

therefore:

�

t

B

t

= F

t

� ↵

(1)
t

S

(1)
t

� ↵

(2)
t

S

(2)
t

We then write 3.3.8 as

dF

t

= ↵

(1)
t

dS

(1)
t

+ ↵

(2)
t

dS

(1)
t

+ r�

t

B

t

dt , dF

t

= ↵

(1)
t

dS

(1)
t

+ ↵

(2)
t

dS

(1)
t

+ �

t

dB

t

Hence, the strategy (↵(1)
t

,↵

(2)
t

, �

t

) is self-financing by definition of a self-financing

strategy.

Based on Theorem 3, it can be concluded that a perfect hedging strategy for a Euro-

pean two-dimensional Spread contract consists of ↵(i)
t

= @

S

i

f shares of each underlying

asset S
i

= S

(i)
t

, i = 1, 2 and �

t

= e

�rT (f �↵

(1)
t

S

(1)
t

�↵

(2)
t

S

(2)
t

) shares of the risk-free asset.

The pricing statement for the two-dimensional European Spread option contract can be

formulated:

Pricing Statement 2. For a European two-dimensional Spread options contract with a

payo↵ h(S(1)
t

, S

(2)
t

, t) and a value V (S(1)
t

, S

(2)
t

, T ) there exists a unique strategy (↵(1)
t

,↵

(2)
t

, �

t

)

given by

↵

(i)
t

= @

S

i

f, i = 1, 2 and �

t

= e

�rT (f � ↵

(1)
t

S1 � ↵

(2)
t

S2)

where f is the solution to eq. 3.3.6 with f = f(S(1)
t

, S

(2)
t

, T ) = F (S1
t

, S

2
t

, T ).

In order to obtain numerical expression for the hedging strategy {↵

(1)
t

,↵

(2)
t

, �

t

} using

the parameters calibrated from publicly available data, such as expected return and

variance, the Pricing Statement 2 must be solved for f ; however, eq. 3.3.6 does not have

a closed form solution. An alternative expression for an option price is required to derive

the hedging strategy for it.

In their paper, Deng, Li and Zhou[22] introduce an alternative pricing formula for

Spread options, when the underlying assets follow GBM process 3.1.2:
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Theorem 5. Under the jointly-normal setup, the price of the Spread option is given by

V

t

= e

⌫

2
1/2+µ̃1�rT

I1 � e

⌫

2
2/2+µ̃2�rT

I2 �Ke

�rT

I3,

where n(x) and N(x) are the standard normal density and the cumulative normal density

functions and

I1 =

Z 1

�1
N(A(y + ⇢⌫1) +

p
1� ⇢

2
⌫1)n(y)dy,

I2 =

Z 1

�1
N(A(y + ⌫2))n(y)dy,

I3 =

Z 1

�1
N(A(y))n(y)dy,

A(y) =
⇢y � x(y)p

1� ⇢

2
,

µ̃

i

= log(Si

0) + (r � �

2
i

/2)T,

⌫

i

= �

i

p

T , i = 1, 2[22] (3.3.9)

Additionally, Deng, Li and Zhou[22] o↵er an approximation to 3.3.9:

Theorem 6. Let K � 0 and |⇢|< 1. Let y0 be a real number close to 0. The spread
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3.3. Black-Scholes Model for Two-Dimensional Contracts and Their HedgingChapter 3

option price V

t

under the general jointly-normal returns setup 3.1.2 is given by

V

t

= e

⌫

2
1/2+µ̃1�rT

I1 � e

⌫

2
2/2+µ̃2�rT

I2 �Ke

�rT

I3,

I

i

= J0(C
i

, D

i) + J1(C
i

, D

i)✏+
1

2
J2(C

i

, D

i)✏2,

J

i

’s are defined as

J0(u, v) = N(
u

p

1 + v

2
),

J1(u, v) =
1 + (1 + u

2)v2

(1 + v

2)5/2
n(

u

p

1 + v

2
),

J2(u, v) =
(6� 6u2)v2 + (21� 2u2

� u

4)v4 + 4(3 + u

2)v6 � 3

(1 + v

2)11/2
· n(

u

p

1 + v

2
)

and C

i

, D

i

, and ✏ are defined as

C

1 = C

3 +D

3
⇢�1 + ✏⇢

2
�

2
1 +

p
1� ⇢

2
�1,

D

1 = D

3 + 2✏⇢�1,

C

2 = C

3 +D

3
�2 + ✏�

2
2,

D

2 = D

3 + 2✏�2,

C

3 =
1

�1

p
1� ⇢

2
(µ1 � log(R +K) +

�2R

R +K

y0 �
1

2

�

2
2RK

(R +K)2
y

2
0),

D

3 =
1

�1

p
1� ⇢

2
(⇢�1 �

�2R

R +K

+
�

2
2RK

(R +K)2
y0),

✏ =
1

2�1

p
1� ⇢

2

�

2
2RK

(R +K)2
,

R = e

�2y0+µ2 (3.3.10)

where y0 is any real number close to zero, generally chosen as y0 = 0 [22].

In our work we will rely on Theorem 5, omitting Theorem 6 due to the reasons

discussed in Chapter 5. Theorem 5 allows us to derive the hedging strategy {↵(1)
t

,↵

(2)
t

, �

t

}

(reference 4):
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↵

(1)
t

= @

S1ft = @

S1(e
⌫

2
1/2+µ̃1�rT

I1 � e

⌫

2
2/2+µ̃2�rT

I2 �Ke

�rT ) = I1,

↵

(2)
t

= @

S2ft = @

S2(e
⌫

2
1/2+µ̃1�rT

I1 � e

⌫

2
2/2+µ̃2�rT

I2 �Ke

�rT ) = �I2,

�

t

= e

�rT (f
t

� ↵

1
t

S

1
t

� ↵

2
t

S

2
t

) = (e⌫
2
1/2+µ̃1�2rT

� 1)I1 � (e⌫
2
2/2+µ̃2�2rT + 1)I2 �Ke

�2rT

(3.3.11)

23



Chapter 4

Option Pricing In a Jump-Di↵usion

Framework

The Black-Scholes framework is built upon the assumption that the underlying prices

follow a path-continuous processes; however, stock prices often exhibit large unexpected

jumps over a small interval of time. This violates the assumption of a price path conti-

nuity. In order to improve approximation of option prices and allow for larger random

price fluctuations, a jump term can be introduced into the underlying price equation.

The jump term will be aimed at modelling events such as arrival of important infor-

mation that may cause an underlying crush or upsurge. The jumps may occur on the

company, industry or market level. While a jump cause is not important, its time and

magnitude are. Our goal is to model the time of a jump occurrence and its magnitude.

In §4.1, we discuss the jump-di↵usion process setup. We review pricing and hedging

of one-dimensional European option contracts under the jump-di↵usion process in §4.2.

The pricing and hedging model extension to two dimensions is presented in §4.3.

4.1 Jump-Di↵usion Process Setup

The jumps in asset prices may be caused by a number of unrelated reasons, such as

political issues, weather catastrophes, seasonal operation process changes, etc.; moreover,

the underlying assets may experience positive as well as negative jumps which requires

us to operate under an assumption of a jump independence. For simplification purposes,
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4.1. Jump-Di↵usion Process Setup Chapter 4

it is assumed that the jumps are instantaneous. Therefore, it is reasonable to let the

jump process to be defined by a compound Poisson process; in this process the jump

times will be modelled by a Poisson process (N
t

), t � 0, while the jump sizes will follow a

log-normal process. Such an approach to introduce jumps in the underlying price process

was proposed by Merton[26].

Definition 7. Let (T
i

)
i�1 be a sequence of independent, identically exponentially dis-

tributed random variables with parameter � > 0. We set ⌧

n

=
P

n

i=1 Ti

. We call a

Poisson process with intensity � the process N

t

that counts the number of jumps in the

time interval [0, t] is defined by[21]:

N

t

=
X

n�1

1
⌧

n

t

The number, N
t

, of Poisson events is proportional to a small time interval dt in which

it occurs, with a coe�cient of proportionality �, called jump intensity. Poisson process

has the following properties:

a) N0 = 0, N
t

2 N for t � 0

b) N

s

 N

t

, s < t a.s.

c) N

t

�N

s

, t > s, is independent of N
s

d) N(s+t) �N

s

d

⇠ N

t

, t > s

Definition 8. Let N
t

be a Poisson process with intensity �. Then the process X
t,t�0 is a

compound Poisson process if it satisfies the following equality:

X

t

=
N

tX

i=0

Y

t

where Y

i

, i = 0, 1, 2, ... are i.i.d. random variables[14].

The price of an underlying asset with jumps is a right-continuous process. It can be

written as a combination of a continuous price process before an instantaneous jump at
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Chapter 4 4.1. Jump-Di↵usion Process Setup

time t and the price change due to the jump at time t:

S

t

= S

t

� +�S

t

,where S

t

� = lim
s"t

S

s

(4.1.1)

The absolute magnitude of a jump at time t will be denoted by J

t,t�0. The price

change at the time of a jump is determined by the size of a jump. The relative price

change at time t � 0 is negative when J

t

< 1 and positive when J

t

> 1 and can be

written as:

dS

t

S

t

=
J

t

S

t

�
� S

t

�

S

t

�
= J

t

� 1

Merton[26] models the jump sizes as independent non-negative log-normal random

variables with mean µ̃ and variance �

2:

log(J
t

) ⇠ i.i.d.N(µ̃, �2) (4.1.2)

The mean and variance for the relative jump size (J
t

� 1) can be derived as follows:

E(J
t

� 1) = e

µ̃+ 1
2 �

2
� 1 ⌘ ,

V ar(J
t

� 1) = e

2µ̃+�

2
(e�

2
� 1) ⌘ �̃ (4.1.3)

Additionally, the expectation of a compound Poisson process over a time interval

[0, t], t � 0 is given by:

E(
N

tX

i=0

lnJ

T

i

) = �t (4.1.4)

where T

i

, i = 0...N
t

are the jump arrival times.

We now extend the underlying price dynamics in eq. 3.1.1 by adding a jump term:

dS

t

= µS

t

dt+ �S

t

dW

t

+ (J
t

� 1)S
t

dN

t

,

S

t

= S0 +

Z
t

0

µS

s

ds+

Z
t

0

�S

s

dW

s

+
N

tX

i=0

(J
T

i

� 1)S
T

�
i

(4.1.5)
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An expression for a price process with jumps can be derived using Itô’s formula for a

jump-di↵usion process (version with discontinuity).

Theorem 7. For a jump-di↵usion process X
t

, t � 0 with evolution given by

X

t

= X0 +

Z
t

0

a

s

ds+

Z
t

0

b

s

dW

s

+
N

tX

i=1

�X

i

,

where a

t

is a drift term, b
t

is a volatility term, �X

t

is a jump and N

t

is a jump-driving

Poisson process, then for a function f(X
t

, t) 2 C

2,1[0, T )⇥ R+ the following is true:

df(X
t

, t) =
@f(X

t

, t)

@t

dt+a

t

@f(X
t

, t)

@X

t

dt+
b

2
t

2

@f(X
t

, t)

@X

2
t

dt+b

t

@f(X
t

, t)

@X

t

dW

t

+[f(X
t

�+�X

t

)�f(X
t

�)][9]

(4.1.6)

Theorem 7 can be applied to the logarithmic function of underlying price process 4.1.5

to obtain:

d(logS
t

) = (µ�

�

2

2
)dt+ �dW

t

+ logJ

t

(4.1.7)

Using eq. 4.1.7, we obtain the expression for an underlying price:

log(S
t

) = logS0 + (µ�

�

2

2
)t+ �W

t

+
N

tX

i=0

logJ

i

,

S

t

= S0e
(µ��

2

2 )t+�W

t

N

tY

i=1

J

i

(4.1.8)

Due to the introduction of a jump term, an underlying price process is no longer

a martingale under the risk-neutral measure EQ (EMM). While a compound Poisson

process, Y
t

=
N

tP
i=0

log(J
T

i

), is not a martingale, a compensated compound Poisson process,

Y

c

t

=
N

tP
i=0

log(J
T

i

)��t is. Hence, the compound Poisson process 4.1.3 should be replaced

with compensated compound Poisson process to insure that the underlying price process

is a martingale:
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dS

t

= (µ� �)S
t

dt+ �S

t

dW

t

+ (J
T

i

� 1)S
T

�
i

dN

t

,

log(S
t

) = log(S0) + (µ� ��

�

2

2
)t+ �W

t

+
N

tX

i=0

log(J
T

i

),

S

t

= S0e
(µ����

2

2 )t+�W

t

N

tY

i=0

J

T

i

(4.1.9)

The jump-di↵usion set-up for pricing of univariate European options can be extended

to two dimensions. In case of multi-dimensional option contracts, such as Spread op-

tions, an investor expects the underlying price jumps to be partially correlated. Such an

expectation is due to the fact that the options are often underwritten on the assets from

the same or related industries (for example, Spark and Crack options); hence, an event

driving the jumps of one asset will at least partially influence the jumps of other. In

order to allow for the partially correlated jump components between the two underlying

assets, we let their jumps to be driven by the pairs of Poisson processes, with one Poisson

process being shared among the two assets:

N

(1)
t

= n

(1)
t

+ n

(3)
t

,

N

(2)
t

= n

(2)
t

+ n

(3)
t

(4.1.10)

where N

(i)
t

, i = 1, 2 are the Poisson processes driving price jumps in the two underly-

ing assets; and n

(1)
t

⇠ Poiss(�1), n
(2)
t

⇠ Poiss(�2) and n

(3)
t

⇠ Poiss(�3) are the three

independent Poisson processes.

For generality, we additionally incorporate dividends q

i

, i = 1, 2 into the asset price

equations. Following the procedure outlined above, eq. 4.1.9 can be extended to become:

29



4.2. One-Dimensional Option Pricing and Their Hedging Chapter 4

dS

(i)
t

= (µ
i

� q

i

� �

i



i

� �33)S
(i)
t

dt+ �

i

S

(i)
t

dW

(i)
t

+ (J (i)
T

i

� 1)S(i)

T

�
i

dn

(i)
t

+ (J (3)
T

i

� 1)S(i)

T

�
i

dn

(3)
t

,

S

(i)
t

= S

(i)
0 e

(µ
i

�q

i

��

i



i

��33)t+�

i

W

(i)
t

+
n

(i)
tQ

k=0
J

(i)
T

k

+
n

(3)
tQ

l=0
J

(3)
T

l

, T

k

= 0...n(i)
t

, T

l

= 0...n(3)
t

, i = 1, 2

S

(i)
t

= S

(i)
0 e

(µ
i

�q

i

��

i



i

��33)t+�

i

W

(i)
t

+
n

(i)
tP

k=0
J

(i)
T

k

+
n

(3)
tP

l=0
J

(3)
T

l

, T

k

= 0...n(i)
t

, T

l

= 0...n(3)
t

, i = 1, 2

(4.1.11)

where Wiener processes W

1
t

and W

2
t

are correlated with correlation ⇢1,2; µi

and �

i

are the constant mean and variance of the GBM price component of the i

th asset and 

i

is the mean of the i

0
s jump process log(J (i)

t

) ⇠ i.i.d.N(µ̃
i

, �

2
i

) driven by the i

th Poisson

process N (i)
t

.

4.2 One-Dimensional Option Pricing and Their Hedg-

ing

Due to the presence of a discontinuous jump term in the process 4.1.5, a martingale

with respect to the filtration F cannot be represented in the form 3.2.1. This leads

not only to market incompleteness but also to the impossibility of producing a perfect

hedging strategy for an option that would consist of some shares of the underlying asset

and some amount of a risk-free asset[9]. Since the jump sizes in 4.1.9 are represented

by i.i.d. log-normal variables, the compound Poisson process becomes a combination of

a finite number of independent log-normal variables when conditioned on the number of

jumps. For a number of jumps N
t

= j, the jump process in 4.1.9 is given by N(jµ̃, j�2).

Hence, if conditioned on the number of jumps, the underlying price process becomes a

combination of log-normal processes and can be written as in [26]:

(S
t

|N

t

= j) = S0e
(r����

2

2 )t+jµ̃+
q

�

2+j

�

2

t

W

t = S0e
(r��+j

2µ̃+�

2

2t �
�̃

2
j

2 )t+�̃

2
j

W

t

,

(S
t

|N

t

= j) = S0e
(r�q

j

�
�̃

2
j

2 )t+�̃

2
j

W

t

, �̃

j

=

r
�

2 + j

�

2

t

, q

j

= �� j

2µ̃+ �

2

2t
(4.2.1)
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Additionally, the Black-Scholes pricing formulae 3.2.5 and 3.2.6 can be extended to

incorporate dividends, q:

a) For a European call contract bought at time t with strike price K, expiration time

T , and a pay-o↵ max(S
T

�K, 0):

V (S
t

, T ) ⌘ Ṽ (S
t

, T, �, q) = e

�r(T�t)(F
t

N(d1)�KN(d2)) (4.2.2)

The hedge in this case is given as ↵
t

= @

s

V (S
t

, t) ⌘ a

t

(S
t

, t, �, q) = e

�q(T�t)
N(d1)

and �

t

= e

�rt(V (S
t

, t)� ↵

t

S

t

) ⌘ b

t

(S
t

, t, �, q) = �Ke

�r(T�t)
N(d2)

b) For a European put contract bought at time t with strike price K, expiration time

T , and a pay-o↵ max(K � S

T

, 0):

V (S
t

, T ) ⌘ Ṽ (S
t

, T, �, q) = e

�r(T�t)(KN(�d2)� F

t

N(�d1)) (4.2.3)

The hedge in this case is given as ↵
t

= @

s

V (S
t

, t) ⌘ a

t

(S
t

, t, �, q) = �e

�q(T�t)
N(�d1)

and �

t

= e

�rt(V (S
t

, t)� ↵

t

S

t

) ⌘ b

t

(S
t

, t, �, q) = Ke

�r(T�t)
N(�d2)

where F

t

= S

t

e

(r�q)(T�t), d1 =
log(Ft

K

)+�

2(T�t)
2

�

p
T�t

and d2 =
log(Ft

K

)��

2(T�t)
2

�

p
T�t

; N(x) denotes the

cumulative standard Normal distribution.

The option pricing formulae 4.2.2 and 4.2.3 can be applied to the conditional price

process 4.2.1. Thus, option pricing statement in jump-di↵usion setup is reduced to an

option pricing statement in Black-Scholes framework. Summing over the probabilities of

the number of jumps we obtain the formula for an option price in jump-di↵usion setting:

V (S
t

, T ) =
1X

j=0

e

��(T�t) (�(T � t))j

j!
Ṽ (S

t

, T, �̃

j

, q

j

) (4.2.4)

where Ṽ (S
t

, T, �̃

j

, q

j

) is given by eq. 4.2.2 or 4.2.3.

We propose an average Delta-hedging technique which is derived using an already

familiar approach of conditioning on the number of jumps. Once the underlying price

process is conditioned on the number of jumps, we can apply the hedging strategy for

a univariate option in Black-Scholes framework. Summing over all the possible number

of jumps the underlying asset can experience and multiplying by the probability of each

jump event, we derive the average Delta-hedging strategy �

(3)
t

= (↵(3)
t

, �

(3)
t

).
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↵

(3)
t

=
1X

j=0

e

��(T�t) (�(T � t))j

j!
a

t

(S
t

, t, �̃

j

, q

j

),

�

(3)
t

=
1X

j=0

e

��(T�t) (�(T � t))j

j!
b

t

(S
t

, t, �̃

j

, q

j

) (4.2.5)

Lamberton and Lapeyre[21] propose an alternative hedging strategy that is derived

by minimizing the risk at maturity, discounted under the specific risk-neutral measure

Q = e

�rT . The risk is given as:

R

T

0 = EQ((e
�r(T�t)(F (S

t

, T )� V (T, S
t

))2) (4.2.6)

The minimizing exercise with an underlying following the jump-di↵usion process leads

to the following hedging strategy, �(4)
t

= (↵(4)
t

, �

(4)
t

):

↵

(4)
t

=
1

�

2 + �(�̃2 � )
(�2

↵

t

+ �

Z 1

�1
⌫(dz)

V (t, S
t

(z + 1))� F (t, S
t

)

S

t

),

�

(4)
t

= V (t, S
t

)� ↵

(4)
t

S

t

(4.2.7)

where ⌫(z) is a probability density function of (J
t

� 1).

4.3 Two-Dimensional Option Pricing and Their Hedg-

ing

We start by extending the two-dimensional option pricing formula 3.3.9 proposed by

Deng, Li and Zhou[22] to incorporate dividends. Deng, Li and Zhou[22] introduce the

following variables:
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X =
logS

1
t

� (µ1 � q1)

�1
,

Y =
logS

2
t

� (µ2 � q2)

�2
(4.3.1)

A two-dimensional spread option pays a non-zero amount at the time of maturity T

if it expires at the money:

S

1
t

� S

2
t

�K � 0

Using eq. 4.3.1:

X �

log(e�2Y+(µ2�q2) +K)� (µ1 � q1)

�1
(4.3.2)

Conditioning on Y = y, the option is at the money if X � x(y), where the exercise

boundary x(y) is given by

x(y) = ln(e�2Y +(µ2�q2)+K)�(µ1�q1)
�1

We also let A(y) = ⇢y�x(y)p
1�⇢

2
. Theorem 8 presents an extension (conserving dividends)

to the Deng, Li and Zhou[22] pricing formula.

Theorem 8. Under the jointly-normal returns setup 3.1.2, the price of the spread option

is given by

V (T, S
t

) ⌘ Ṽ (T, S(1)
t

, S

(2)
t

, �1, �2, q1, q2) = e

⌫

2
1/2+(µ̃1�q1)�rT

I1�e

⌫

2
2/2+(µ̃2�q2)�rT

I2�Ke

�rT

I3,

where n(x) and N(x) are the standard normal density and the cumulative normal density
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functions and

I1 =

Z 1

�1
N(A(y + ⇢⌫1) +

p
1� ⇢

2
⌫1)n(y)dy,

I2 =

Z 1

�1
N(A(y + ⌫2))n(y)dy,

I3 =

Z 1

�1
N(A(y))n(y)dy,

A(y) =
⇢y � x(y)p

1� ⇢

2
,

µ

i

= log(Si

0) + (r � �

2
i

/2)T,

⌫

i

= �

i

p

T , i = 1, 2 (4.3.3)

Proof. Since the random variables X and Y are jointly normally distributed, the con-

ditional density function of X given Y = y is n(x; ⇢y, 1 � ⇢

2). The two-dimensional

European Spread option contract with a payo↵ h(T, S1
t

, S

2
t

) = max(S1
T

� S

2
T

�K, 0) can

be priced by discounting under the risk-neutral measure Q:

V (S1
T

, S

2
T

, t) = EQ[h(T, S1
t

, S

2
t

)] = e

�rT

Z 1

�1

Z 1

�1
(e⌫1x+(µ̃1�q1)

�e

⌫2y+(µ̃2�q2)
�K)+n(x, y; ⇢)dxdy

= e

�rT

Z 1

�1
n(y)dy

Z 1

x

(e⌫1x+(µ̃1�q1)
� e

⌫2y+(µ̃2�q2)
�K)n(x; ⇢y, 1� ⇢

2)dx

Using the identity

Z 1

x0

e

tx

n(x;µ, �2)dx = e

µt+�

2
t

2
/2
N(

µ� x0

�

+ �t)

the following can be obtained:
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V (S1
t

, S

2
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I3

We repeat the approach undertaken for pricing univariate options with jumps in the

underlying asset to reduce the bivariate pricing in the jump-di↵usion framework to the

pricing in the Black-Scholes framework. We condition the underlying price processes

4.1.11 on the number of jumps, n(i)
t

= l

i

, i = 1, 2 and n

(3)
t

= k, 0  k  l

i

to reduce the

pricing problem to the Black-Scholes framework:

(S(i)
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2
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2
i

W

i

t

, i = 1, 2 (4.3.4)

where �̃

i

=
q

�

2
i

+ (l
i

� k)
�

2
i

t

+ k

�

2
3
t

, q

i

= �

i



i

+ �33 � (l
i

� k)2µ̃i

+�

2
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2t � k

2µ̃3+�

2
3

2t .

The joint probability function for N

(1)
t

= n

(1)
t

+ n

(3)
t

= i jumps experienced by the

asset S1
t

and N

2
t

= n

(2)
t

+ n

(3)
t

= j jumps experienced by the asset S2
t

over time t � 0 is:

P (N (1)
t

= i, N

(2)
t

= j) =
min(i,j)X

k=0

e

�(�1+�2+�3)t
(�1t)i�k(�2t)j�k(�3t)k

(i� k)! (j � k)! k!
[25] (4.3.5)

Additionally, the correlation between the two assets in the jump-di↵usion setup 4.1.11

is no longer uniquely defined by the correlation ⇢1,2 between their respective GBM com-
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ponents due to the additional correlation caused by the jump components. We follow

Martin[25] to obtain the expression for the correlation between the two underlying assets

in the jump-di↵usion setup:

⇢ = Corr(
dS

(1)
t

S

(1)
t

,

dS

(2)
t

S

(2)
t

) =
�1�2⇢1,2 + 

2
3�3p

�

2
1 + 

2
1�1 + 

2
3�3

p
�

2
2 + 

2
2�2 + 

2
3�3

(4.3.6)

We now combine the eq. 4.3.3- 4.3.6 and the arguments outlined above to arrive to a

price expression for a two-dimensional spread option in the jump-di↵usion framework:

Theorem 9. The price of a bivariate spread option in jump-di↵usion framework can be

approximated by the following expression:

V

T

=
1X

i=0

1X

j=0

P (N (1)
t

= i, N

(2)
t

= j)Ṽ (T, S(1)
t

, S

(2)
t

, �̃1, �̃2, q1, q2), (4.3.7)

where Ṽ (T, S(1)
t

, S

(2)
t

, �̃1, �̃2, q1, q2) is given by eq. 4.3.3 and P (N (1)
t

= i, N

(2)
t

= j) is given

by 4.3.5.

As in the case of the one-dimensional European option hedging in the jump-di↵usion

setting, we propose two hedging strategies: a simplistic average hedging approach and

the extension of the Lamberton and Lapeyre’s[21] hedging strategy initially derived for

one-asset options with discontinuous jumps. We begin with presenting the average hedg-

ing strategy that is obtained by applying the delta-hedging strategy from Deng, Li and

Zhou[22], conditional on the number of jumps and with an appropriate parameter change.

Referring to the derivation of (4.3.7) and (3.3.11), we write:

↵

(1)
t

=
1X

i=0

1X

j=0

P (N (1)
t

= i, N

(2)
t

= j)I1,

↵

(2)
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=
1X

i=0

1X

j=0

P (N (1)
t

= i, N

(2)
t

= j)(�I2) (4.3.8)

where I1 and I2 are given in 3.3.9; P (N (1)
t

= i, N

(2)
t

= j) is given in 4.3.5; with the

parameters given in 4.3.4 and 4.3.6.
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In order to derive an extension to the Lamberton and Lapeyre’s hedging strategy[21],

we extend one of the propositions presented by the authors.

Theorem 10. Let (↵(1)
t

,↵

(2)
t

)0tT

be an adapted, left-continuous process such that
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t
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value of this strategy is given by

F̃

t

= F0 +

Z
t

0

�1↵
(1)
u

S̃

(1)
u

dW

(1)
u

+

N

(1)
tX

j=1

↵

(1)
⌧

j

U

(1)
j

S̃

(1)

⌧

�
j

� �11

Z
t

0

S̃

(1)
u

↵

(1)
u

du+

Z
t

0

�2↵
(2)
u

S̃

(2)
u

dW

(2)
u

+

N

(2)
tX

j=1

↵

(2)
⌧

j

U

(2)
j

S̃

(2)

⌧

�
j

� �22

Z
t

0

S̃

(2)
u

↵

(2)
u

du (4.3.9)

where U

j

= are the logarithms of the jump sizes with a j

th jump occurring at a time ⌧

j

Let (↵(1)
t

,↵

(2)
t

, �

t

)0tT

be an admissible strategy with the initial portfolio value given

by:

F0 = ↵

(1)
0 S

(1)
0 + ↵

(2)
0 S

(2)
0 + �0

The strategy value at time t can be written as:
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+ Y
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, i = 1, 2.

The discounted value of the strategy at time t is, therefore:

37



4.3. Two-Dimensional Option Pricing and Their Hedging Chapter 4
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(4.3.10)

As in [21], the product e�rt

Z
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, i = 1, 2 can be expressed as follows:
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Additionally, we re-write
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(4.3.12)

Combining eq. 4.3.11 and 4.3.12 into 4.3.10, we obtain:
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(4.3.13)
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The price processes S(1)
t

and S

(2)
t

are driven by a compensated Poisson process as in

4.1.9, having µ

i

= r � �
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i

, i = 1, 2; 4.3.13 yields:
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Theorem 11. Let V
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be a time t value of a European two-dimensional Spread option

and F
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(4.3.14)

where �̃

2
i

= V ar(J
i

� 1) is the variance of a jump size; I1 and I2 are given in (4.3.3);

⌫(dz) is the probability density function of the log-normal jump sizes.

Proof. The initial value of the strategy is F0 = ↵

(1)
0 S

(1)
0 + ↵

(2)
0 S

(2)
0 + �0; its discounted

value at time t > 0 is given by Theorem 10:
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As in [21], we introduce the discounted option price h̃(t, S(1)
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Lamberton and Lapeyre[21] show that each of the M1 and M2 in 4.3.16 are square-

integrable martingales, where
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We conclude that h̃ � (M1 + M2) is a martingale as it is represented as a linear

combination of martingales. h̃ � (M1 + M2) can be written in the following form, as

shown in [21]:
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where S̃

(i)
t

= e

(�rt)
S

(i)
t

, i = 1, 2 and f(0, X(1)
0 , X

(2)
0 ) = F0. The latter is due to the fact

that the hedge portfolio is equal to the initial option price at time t = 0.

We now combine 4.3.15 and 4.3.17 to write:
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The squared error between the hedge portfolio F

t

and the discounted option price h̃

t

at time t is, therefore:
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Lamberton and Lapeyre[21] show that E(M (i)
t
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Lastly, we extend eq. 4.3.20, following [21]:
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To find the optimal delta-hedging strategy, it su�ces to minimize the squared error

given by eq. 4.3.21 with respect to the underlying assets S(1)
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where �̃

2
i

= V ar(J
i

� 1) is the variance of a jump size; I1 and I2 are given in (4.3.3);

⌫(dz) is the probability density function of the log-normal jump sizes.
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Chapter 5

Pricing and Hedging

Implementation

In order to implement and validate the theoretical results presented in this thesis, nu-

merical tests and approximations ought to be executed. In §5.1, we examine and discuss

dependencies of the European one- and two-dimensional Spread option prices on vari-

ous parameters in both Black-Scholes and Jump-Di↵usion frameworks. We present the

parameter calibration techniques and the results of their application in §5.2. In §5.3 we

proceed with the hedging experiments, using the parameter values calibrated in §5.2.

5.1 Option Price Computations and Monte-Carlo Sim-

ulations

For the purpose of our investigation, we implement option pricing formulae 4.2.4 and

4.3.7 in MATLAB R2014a. We cap the infinite discrete summations in 4.2.4 and 4.3.7

in order to increase the computational e�ciency and due to the fact that the summation

terms become negligible at higher orders. The altered formulae used for option price

computations are:
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a) For a univariate European option contract the pricing equation 4.2.4 becomes:
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j

, q

j

) is given by eq. 4.2.2 or 4.2.3.

b) For a bivariate European Spread option contract the pricing equation 4.3.7 be-

comes:

V
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where Ṽ (T, S(1)
t

, S

(2)
t

, �̃1, �̃2, q1, q2) is given by eq. 4.3.3 and P (N (1)
t

= i, N

(2)
t

= j)

is given by 4.3.5.

One of the objectives of this work is to propose a parameter calibration algorithm.

Such an algorithm will allow to find an optimal set of parameters that calibrates the

market Spread option prices and can be used for the purposes of option hedging and

pricing. In order to verify the accuracy of the proposed algorithm, we use a selected set

of parameters to simulate the prices of the two assets, European Call options written

on each of the assets and Spread options written on the spread between the two assets.

We use Monte-Carlo approach to simulate Call and Spread option prices for across a

range of Strikes and Maturities: Strikes range from $0 to $30 with $2.5 intervals and

Maturities range from 0.5 year to 3 years with half-a-year intervals. The parameters

used for Monte-Carlo simulation are presented in table 5.1. Additionally, the following

assumptions are made:

a) Underlying dynamics follow jump-di↵usion process 4.1.5.

b) Risk-free rate stays constant over time.

c) No arbitrage is possible on the market. To arrive to an option price at time t,

option payo↵s can be discounted using a risk-neutral measure e

�r(T�t), where T is

an option maturity time.
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Parameter Parameter Value

Initial price, S(1)
0 122.00

Initial price, S(2)
0 105.97

Risk-free rate, r 0.03
GBM volatility, �1 0.20
GBM volatility, �2 0.15

GBM correlation, ⇢1,2 -0.0696
Jump-di↵usion volatility, �1 0.425
Jump-di↵usion volatility, �2 0.361
Jump-di↵usion volatility, �3 0.05

Jump-di↵usion expected value, µ̃1 -0.15
Jump-di↵usion expected value, µ̃2 -0.15
Jump-di↵usion expected value, µ̃3 -0.15

Jump-di↵usion intensity, �1 0.30
Jump-di↵usion intensity, �2 0.20
Jump-di↵usion intensity, �3 0.05

Table 5.1: Parameters used in Monte-Carlo simulation

The number N > 1 of Monte-Carlo simulations to carry out is selected such that:

a) The Call option prices V

(1)
N

and V

(1)
N�1 on the first underlying asset di↵er by less

than 0.10 cents for the two consecutive Monte-Carlo runs.

b) The Call option prices V (2)
N

and V

(2)
N�1 on the second underlying asset di↵er by less

than 0.10 cents for the two consecutive Monte-Carlo runs.

c) The Spread option prices V

N

and V

N�1 di↵er by less than 0.10 cents for the two

consecutive Monte-Carlo runs.

To arrive to an option price at time t = 0 for each maturity-strike combination,

an average of option payo↵s for 100, 000 Monte-Carlo simulations discounted under the

risk-natural measure e

�r(T�t) is calculated. Tables 5.2- 5.4 presents a sample set of the

simulated option prices.

We additionally compare the option prices computed using 5.1.1 and 5.1.2 with the

prices simulated using the aforementioned Monte-Carlo methods. The computational

e�ciency and the prices are presented in Tables 5.5 and 5.6 for Strikes of $100 and $10
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Maturity/Strike 95 97.5 100 102.5 105
0.5 29.54 27.28 25.02 22.91 21.06
1 32.26 30.42 28.50 26.70 24.69
1.5 35.59 33.47 31.61 30.06 28.53
2 38.49 36.68 35.19 33.49 32.14
2.5 41.97 39.51 38.44 36.99 35.52
3 44.68 42.85 41.71 40.80 39.73

Table 5.2: Simulated time t = 0 prices of a Call option on the first asset

Maturity/Strike 95 97.5 100 102.5 105
0.5 13.90 11.92 10.06 8.33 6.87
1 16.78 14.96 13.34 11.73 10.25
1.5 19.36 17.78 16.15 14.53 13.17
2 21.65 20.10 18.51 17.13 15.81
2.5 23.64 22.37 20.90 19.56 18.23
3 25.99 24.27 23.13 21.78 20.44

Table 5.3: Simulated time t = 0 prices of a Call option on the second asset

Maturity/Strike 15 17.5 20 22.5 25
0.5 12.04 10.76 9.60 8.77 7.82
1 17.67 16.65 15.42 14.51 13.32
1.5 22.91 21.34 20.17 19.23 18.28
2 27.14 25.87 25.00 23.72 22.82
2.5 31.83 29.73 29.06 28.10 27.04
3 35.34 34.18 33.04 32.64 31.97

Table 5.4: Simulated time t = 0 prices of a Spread option
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Option Type Option Price Computational Time, s
European Call on Asset 1 28.50 101.01
European Call on Asset 2 13.34 100.02
European bivariate Spread 24.31 226.61

Table 5.5: Option prices at time t = 0 were simulated using Monte-Carlo methods as well
as computed with the proposed pricing formula [4.3.7]

Option Type Option Price Computational Time, s
European Call on Asset 1 28.46 0.02
European Call on Asset 2 13.37 0.02
European bivariate Spread 24.36 0.70

Table 5.6: Option prices at time t = 0 were computed using 5.1.1 and 5.1.2

for the European Call and bivariate Spread options respectively and maturities of one

year for the both option types. We note that while the absolute di↵erences between the

relative option prices computed using the two methods stay within $0.05 for the tested

set of prices, 5.1.1 and 5.1.2 o↵er a significant computational time reduction.

5.2 Parameter Dependencies

In previous chapters, we presented four European-style option pricing formulas: two

of them were attributed to univariate options and two to bivariate options; the prices

were derived in both the Black-Scholes and Jump-Di↵usion frameworks. It is natural to

expect that comparable one- and two-dimensional European Spread option prices will

have similar behaviour with respect to their various underlying parameters, independent

of the framework.

In order to test the validity of the option pricing formulae 3.3.9, 4.2.4, 4.3.7 presented

in our work, we examine their responses to the changes in various model parameters

such as time to maturity, strike price, risk-free rate, underlying volatility, etc. The

dependencies are produced using MATLAB R2014a and are compared to the benchmark

model 3.2.6. We use the Black-Scholes model as a benchmark since it has already been

extensively tested and is theoretically sound. At all times, we only change one model
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Parameter Parameter Value

Initial price, S(1)
0 122.00

Initial price, S(2)
0 105.97

Maturity, T 0.5
Strike price, K 10
Risk-free rate, r 0.03

GBM volatility, �1 0.20
GBM volatility, �2 0.15

GBM correlation, ⇢1,2 -0.0696
Jump-di↵usion volatility, �1 0.425
Jump-di↵usion volatility, �2 0.361
Jump-di↵usion volatility, �3 0.050

Jump-di↵usion expected value, µ̃1 -0.15
Jump-di↵usion expected value, µ̃2 -0.15
Jump-di↵usion expected value, µ̃3 -0.15

Jump-di↵usion intensity, �1 2.5
Jump-di↵usion intensity, �2 1.9
Jump-di↵usion intensity, �3 0.8

Table 5.7: Reference model parameters. To explore a parameter dependance, the param-
eter was varied while the rest of parameters remaining unchanged, as per the reference
model

parameter, keeping the rest of the parameters constant. The original model parameters

are presented in Table 5.7. The initial underlying asset prices and their correlation are

selected based on the real market data for Sweet Crude Oil and WTI from 2011-05-13

to 2013-05-13 obtained from Datastream. We keep the jump parameters high in as our

primary objective is to test the option pricing models in presence of discontinuous jumps.

Fig. 5.1 presents the option price dependencies on the time to maturity. In all the

scenarios, option price grows with the Time to Maturity. The relationship exhibits more

curvature for a univariate option with jumps compared to its counterpart without jumps.

This relationship is anticipated because with longer time to maturity an option has more

opportunity to move deeper into the money. Noteworthy, the jump-di↵usion framework

bivariate option price evolution with respect to the Time to Maturity is only shown for

Maturities of up to 1.5 years. With increasing Time to Maturity T , the probability

of a jump in eq. 4.3.7 becomes small, or equivalently a larger number of jumps occurs
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Figure 5.1: Univariate and bivariate Spread option prices increases with maturity in both
Black-Scholes and jump-di↵usion frameworks

on [0, T ]; therefore, we have to increase the infinite series truncation level in eq. 5.1.2.

Fig. 5.2 supports our claim. The top half of Fig. 5.2 shows that the option price does not

behave as expected for the Maturities above 1.5 years, however, it changes its behaviour

for lower jump intensities; lower jump intensities lead to higher jump probabilities in

eq. 4.3.7 that avoids the necessity of higher truncation levels in eq. 5.1.2. The bottom

half of the Fig. 5.2 shows that the option price exhibits expected behaviour with larger

Times to Maturity for the same set of parameters (Table 5.7) if we increase the truncation

level in eq. 5.1.2.

Fig. 5.3 shows the option price changes with respect to volatility attributed to the

GBM component. All the four suggested pricing formulas react to the volatility changes in

a similar fashion. Two-dimensional option prices grow faster with volatility, specifically,

with increase in the volatility of the first underlying asset. This is due to their payo↵

function being dependent on the spread between the two underlying assets: the more

volatile they are, the higher the chance of an increasing spread; moreover, if the volatility

of the first asset increases while that of the second is kept constant, the option has higher

chances to move out of the money. Noteworthy, with changing GBM component of
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Figure 5.2: Bivariate Spread option dependency on the time to maturity in jump-di↵usion
framework. As jump intensities are decreased, Spread options exhibit behaviour more
close to the univariate Call options
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Figure 5.3: European univariate and bivariate Spread option price dependencies on the
GBM volatility component. Option prices increase with the volatility attributed to the
GBM component in both Black-Scholes and jump-di↵usion frameworks

the volatility, Spread option price increases faster in the Black-Scholes framework. This

phenomena is explained by the fact that in the jump-di↵usion framework the impact

of the changes in the GBM component of the volatility are reduced by the unchanging

jump components of the volatility; in the Black-Scholes framework, however, the GBM

component is the sole driver of the volatility and impacts the option price more.

Option price evolution with respect to the changes in the strike price can be seen on

fig. 5.4. As expected, an option price decreases with increase in strike.

Fig. 5.5 presents the option prices variation with the risk-free interest rate. Since the

risk-free interest rate is not e↵ected by the underlying asset jumps, there is not di↵erence

observed between the option price change in each of the frameworks.

We now proceed to the investigation of the Spread option dependencies on the correla-

tion between the two underlying assets. Fig. 5.6 shows that the relationship between the

bivariate option price in Black-Scholes framework and the correlation attributed to the

GBM component has slightly more curvature compared to its jump-di↵usion counterpart.

This is due to the overall correlation of the two underlying assets in the jump-di↵usion

framework being a function of the GBM correlation and the jump correlation; the corre-

53



5.2. Parameter Dependencies Chapter 5

Figure 5.4: European univariate and bivariate Spread option price dependencies on the
Strike price. Option prices decrease with the increasing Strike in both Black-Scholes and
jump-di↵usion frameworks

Figure 5.5: European univariate and bivariate Spread option price dependencies on the
Risk-Free Rate. Option prices increase with the Risk-Free Rate in both Black-Scholes
and jump-di↵usion frameworks.
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Figure 5.6: European bivariate Spread option price dependencies on the correlation.
Spread option prices increase with the Risk-Free Rate in both Black-Scholes and jump-
di↵usion frameworks

lation components attributed to the jump parameters reduce the impact of the changes

in the GBM components of the underlying correlation as presented in table 5.8.

The price dependencies on the jump parameters such as jump size volatility and jump

expected value are displayed in fig. 5.7. We note the shared jump parameters (”Jump

3”) have the least e↵ect on the option price due to the low jump intensity relative to the

other jumps.

Lastly, we repeat our numerical experiment for the pricing equation 3.3.10 proposed

by Deng, Li and Zhou [22]. We are able to find a set of parameters (table 5.9) such, that

the option price does not exist when the first underlying assets price is kept constant

(volatility is zero), or when the underlying assets are perfectly correlated or perfectly

negatively correlated. Additionally, the option price does not behave as expected with

respect to the underlying asset correlation and takes on negative values for strikes above

20. The results are presented on fig. 5.8.
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GBM Correlation Overall Correlation
-1.0000 -0.7761
-0.5000 -0.3672
0.0000 0.0417
0.5000 0.4505
1.0000 0.8594

Table 5.8: GBM correlation and the corresponding overall correlation of the two under-
lying assets.

Figure 5.7: European univariate and bivariate Spread option price dependencies on the
jump size and jump volatility. Option prices in jump-di↵usion framework increase with
increasing jump sizes and volatility

Parameter Parameter Value

Initial price, S(1)
0 122.00

Initial price, S(2)
0 105.97

Maturity, T 0.5
Strike price, K 10
Risk-free rate, r 0.03

GBM volatility, �1 0.0198
GBM volatility, �2 0.0156

GBM correlation, ⇢1,2 -0.0696

Table 5.9: Parameters used for a numerical experiment of Deng, Li and Zhou option
pricing.
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Figure 5.8: Bivariate Spread option price dependencies on various parameters in Black-
Scholes framework. The option price is calculated using the Deng, Li and Zhou’s pricing
formula. It can be seen that the prices do not exist when the underlying assets are
perfectly positively or negatively correlated, or for low volatility values; the price take
on negative values for higher Strike prices and exhibits an unexpected behaviour with
respect to the underlying asset volatility
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5.3 Parameter Calibration

For a set of options with various strikes and maturities the parameter calibration problem

can be defined as follows:

min
y

nX

i=1

(Ṽ (y)� V

i

)2 (5.2.1)

where V
i

are the Spread option market prices, y is a set of parameters to be calibrated

and Ṽ (y) is the calculated option price for a set of parameters y.

The set of parameters to be calibrated contains 12 values. The problem 5.2.1 does not

have a unique solution due to the presence of the jump parameters[15] as well as a large

set of unknowns to be calibrated. In order to simplify the calibration procedure and arrive

to a unique set of calibrated parameters, we propose to additionally use the European

Call option prices and calibrate the unknown parameters in steps. We break-down the

calibration problem into three sub-problems:

a) Use historical prices V

(1)
i

, i = 1, ..., n of one-dimensional European options on the

first underlying asset to approximate �1 - the volatility of the first underlying at-

tributed to the GBM component; µ̃1 - the mean of the log-normally distributed

jump sizes attributed to the first underlying asset; �1 - the variance of the log-

normally distributed jump sizes to the first underlying asset; �1 - the jump intensity

of the log-normally distributed jumps to the first underlying asset:

min
y2R4

nX

i=1

(Ṽ (y)� V

(1)
i

)2 (5.2.2)

b) Use historical prices V (2)
i

, i = 1, ..., n of one-dimensional European options on the

first underlying asset to approximate �2 - the volatility of the first underlying at-

tributed to the GBM component; µ̃2 - the mean of the log-normally distributed

jump sizes attributed to the first underlying asset; �2 - the variance of the log-

normally distributed jump sizes to the first underlying asset; �2 - the jump intensity
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of the log-normally distributed jumps to the first underlying asset.

min
y2R4

nX

i=1

(Ṽ (y)� V

(2)
i

)2 (5.2.3)

c) Conditional on all the prior calibrated parameter values, use historical prices of the

two-dimensional European Spread options, V
i

, i = 1, ..., n to approximate ⇢1,2 - the

correlation between the two underlying assets attributed to their Brownian motion

components; µ̃3 - the mean of the log-normally distributed jump sizes attributed to

both underlying assets; �3 - the variance of the log-normally distributed jump sizes

attributed to both underlying assets; �3 - the jump intensity of the log-normally

distributed jumps attributed to both underlying assets:

min
y2R4

nX

i=1

(Ṽ (y)� V

i

)2 (5.2.4)

As discussed in [15], the problems 5.2.2 - 5.2.3 are ill-posed. To show the ill-posedness

of the simplified problem 5.2.2, with the calibration done only on the two parameters,

µ̃1 and �1, while keeping �1 = 0.20 and �1 = 0.3 constant, fig. 5.9 plots the calibration

error function 1
2 k V � Ṽ k

2. Fig. 5.9 displays a large nearly flat region, suggesting that

the problem is ill-posed.

Although the calibration problem is ill-posed, we claim that it has several acceptable

solutions. He et al.[15] note that any European option price depends only on the risk-

adjusted transition density function from the current stock price to the stock price in

time T � 0. Hence, our task is to show that the probability density function (PDF) for

the calibrated set of parameters follows closely the true PDF for each set of options. The

calibration problems 5.2.2 - 5.2.4 are solved in MATLAB R2014a by minimizing the

objective function with a set of constraints using a trust-region-reflective algorithm; the

minimization procedure is applied multiple times from a set of random and user-defined

start points in attempt to find the best minimum point. The transition PDF for the log

asset prices is as follows:
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Figure 5.9: Minimization problem objective function plotted for a varying jump intensity
and GBM volatility component

p(x) =
e
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The transition PDF 5.2.5 can be used to assess the goodness of fit for the parameters

calibrated in 5.2.2 - 5.2.3. Table 5.10 shows the calibration results for problems 5.2.2 -

5.2.3 with the PDF functions presented in fig. 5.10 - 5.11, while the calibration results for

problem 5.2.4 are presented in Table 5.11. We additionally note that the true parameters

fall within the 95% Confidence Intervals(CIs) of all the calibrated values, except the jump

size; as an example, we present the 95% CIs for each calibrated parameter for Asset 1 in

Table 5.12. After the parameters were calibrated, a set of option prices was computed

using the calibrated parameters and computed against the corresponding out-of-sample

prices. The set contained 50 options with out-of-sample prices calculated using the

Monte-Carlo simulations for the set of parameters as in 5.1 for the Strikes ranging
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Figure 5.10: Transition Probability Density Function for the calibrated set of parame-
ters attributed to the first underlying asset in the one-dimensional parameter calibration
problem. The transitional Probability Density Function for the calibrated set of pa-
rameters follows closely the transitional Probability Density Function for the true set of
parameters

from $7.5 to $30 with $2.5 intervals and Maturities ranging from 1 year to 2.5 years with

half-a-year intervals; using the out-of-sample testing, the square root error was calibrated

to be $0.12. Table 5.13 presents some option prices computed for the calibrated set of

parameters and the true set of parameters.

Asset True Parameters (�, µ̃, �, �) Calibrated Parameters (�0
, µ̃

0
, �

0
, �

0)
Asset 1 (0.30,�0.15, 0.43, 0.20) (0.34,�0.0064, 0.4500, 0.1912)
Asset 2 (0.20,�0.15, 0.36, 0.15) (0.58,�0.1042, 0.2537, 0.1300)

Table 5.10: Calibrated and true model parameters for the European Call options under-
written on Asset 1 and Asset 2
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Figure 5.11: Transition Probability Density Function for the calibrated set of parameters
attributed to the second underlying asset in the one-dimensional parameter calibration
problem. The transitional Probability Density Function for the calibrated set of pa-
rameters follows closely the transitional Probability Density Function for the true set of
parameters

True Parameters (⇢1,2, µ̃3, �3,�3) Calibrated Parameters (⇢01,2, µ̃
0
3, �

0
3,�

0
3)

(�0.0696,�0.15, 0.05, 0.05) (�0.072,�0.012, 0.06, 0.04)

Table 5.11: Calibrated and true model parameters for the bivariate Spread option

Parameter Calibrated Parameter Value 95% CI of the Calibrated Parameter
� 0.34 [0.296, 0.371]

-0.0064 [�0.0135, 0.0031]
� 0.45 [0.412, 0.469]
� 0.191 [0.173, 0.211]

Table 5.12: Confidence Intervals for the parameters calibrated for a European Call option
on Asset 1. The true parameters fall within the 95% CIs of all the calibrated values,
except the jump size
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Strike and Maturity Combination Calibrated Option Price True Option Price
1year, $7.5 21.54 21.61
1year, $10 20.11 20.18

1.5years, $7.5 26.01 26.08
1.5years, $10 24.91 24.82

Table 5.13: Calibrated and true model parameters.

5.4 Hedging Evaluation Using Simulation

It is a theoretical expectation that a Delta-Hedging strategy o↵ers a perfect hedge for

a Call option in Black-Scholes framework. We perform a simple numerical experiment

to verify this expectation. The experiment calculates the Profit and Loss(P&L) of the

hedging strategy with a half-year hedging and re-balance horizon. The P&L is calculated

for 1,000,000 simulated asset prices with option parameters given in table 5.14 and allows

us to derive the P&L PDF for the hedging strategy. We employ Monte-Carlo method to

simulate the asset price in Black-Scholes and jump-di↵usion frameworks over a six months

horizon with daily frequency. Generally, the strategy proceeds through the following

steps:

a) Calculate the initial hedge (↵(1)
0 ,↵

(2)
0 , �0), with (↵(1)

0 ,↵

(2)
0 ) obtained according to

the applicable formulas and �0 = V0 � (S(1)
0 ↵

(1)
0 + S

(2)
0 ↵

(2)
0 ); where V0 is the initial

option price.

b) At each re-balance time t

i

, re-calculate the asset portions (↵(1)
t

i

,↵

(2)
t

i

) of the hedge

and the amount of a risk-free asset as �
t

i

= e

r�t

�

t

i�1�(S(1)
t

i

(↵(1)
t

i

�↵

(1)
t

i�1
)+S

(2)
t

i

(↵(2)
t

i

)�

↵

(2)
t

i�1
); where V

t

i

is the time t

i

option price.

c) At the end of the hedging period T

h

� 0, calculate the hedging strategy relative

profit and loss (P&L)[13]:

rPL(T ) =
�V

T

� (S(1)
T

↵

(1)
T

+ S

(2)
T

↵

(2)
T

+ �

T

)

V0
(5.2.6)

Fig. 5.12 supports the theoretical expectation of the perfect Delta-hedging strategy

for the Call options in Black-Scholes framework calculated using 3.2.8 as the PDF is
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Figure 5.12: P&L PDF of Delta-Hedging strategy for a European Call option in Black-
Scholes framework. The PDF is centered around zero showing that the strategy yields a
perfect hedge in majority of the scenarios

centered around zero. Due to the incompleteness of a market that accepts an infinite

number of possible jumps sizes, hedging of a contingent claim under the jump di↵usion

process poses a great challenge. Although the di↵usion risk can still be nearly eliminated

by imposing delta neutrality, the presence of jumps governed by the compound Poisson

process precludes the complete removal of all the price fluctuation risk due to the presence

of the jump risk[15]. Fig. 5.13 shows that the Delta-hedging experiment repeated for

asset priced in jump-di↵usion framework almost always leads to a loss as the P&L PDF

is centered around �2. The parameters used in the latter experiment are presented in

table 5.15.

We now illustrate the results of the hedging experiments for the two hedging strategies

under the consideration for a Spread option in the jump-di↵usion framework. The option

parameters used in the experiments are presented in table 5.16; as before, the experiment

calculates P&L of the hedging strategy with a half-year hedging horizon. The P&L is

calculated for 10,000 simulated asset prices. Fig. 5.14 shows the P&L PDF for an average

Delta-hedging strategy given by 4.3.8. The P&L PDF is centered close to zero and peaks

very high; although the strategy 4.3.8 does not o↵er a nearly perfect hedge, the error from
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Figure 5.13: P&L PDF of Delta-Hedging strategy for a European Call option in jump-
di↵usion framework. The PDF is not centered around zero showing that the strategy
leads to a portfolio loss in majority of the scenarios

Parameter Parameter Value

Initial price, S(1)
0 122.00

Strike price, K 122.00
Maturity, T 1

Risk-free rate, r 0.03
GBM volatility, � 0.20

Table 5.14: Parameters used for Delta-Hedging experiment for a Call option in Black-
Scholes framework.
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Parameter Parameter Value

Initial price, S(1)
0 122.00

Strike price, K 122.00
Maturity, T 1

Risk-free rate, r 0.03
GBM volatility, � 0.20

Jump-di↵usion volatility, � 0.425
Jump-di↵usion expected value, µ̃ -0.15

Jump-di↵usion intensity, � 0.30

Table 5.15: Parameters used for Delta-Hedging experiment for a Call option in jump-
di↵usion framework.

the strategy is generally very low. Fig. 5.15 shows the P&L PDF for the Delta-hedging

strategy given by 4.3.14. The P&L PDF is centered around zero leading us to conclude

that it o↵ers a nearly perfect hedge in majority of the cases. Lastly, we present 95%

Value-at-Risk (VAR), for every dollar invested, of various hedging strategies in Table 5.17

and we note that although the P&L PDF for the hedging strategy given by 4.3.14 is

centered around zero, the curve is wider signifying a more volatile hedge; that is, indeed,

shown by the higher 95% VAR as compared to the average Delta-hedging strategy. The

average Delta-hedging strategy sums over the products of the Delta-hedges for all the

possible combinations of the jumps in the underlying assets and the probabilities of the

corresponding jump combinations. For each simulated set of the underlying asset prices,

the average hedging strategy will contain a Delta-hedge for the observed combination

of the jumps experienced by the underlying assets as one of its terms; the remaining

terms of the average Delta-hedging strategy will lead to either gain or loss. When added

together, all the gains and losses resulting from the application of each of the hedge terms

in the average Delta-hedging strategy will lead to a small gain or loss that, on average,

will always stay close to the gain and loss of the previous simulation due to the large

number of terms being added. This phenomena explains shorter 95% VAR intervals of

the average Delta-hedging strategy compared to the hedging strategy given by 4.3.14.
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Parameter Parameter Value

Initial price, S(1)
0 122.00

Initial price, S(2)
0 105.97

Strike price, K 16.00
Maturity, T 1

Risk-free rate, r 0.03
GBM volatility, �1 0.20
GBM volatility, �2 0.15

GBM correlation, ⇢1,2 -0.0696
Jump-di↵usion volatility, �1 0.425
Jump-di↵usion volatility, �2 0.361
Jump-di↵usion volatility, �3 0.05

Jump-di↵usion expected value, µ̃1 -0.15
Jump-di↵usion expected value, µ̃2 -0.15
Jump-di↵usion expected value, µ̃3 -0.15

Jump-di↵usion intensity, �1 0.30
Jump-di↵usion intensity, �2 0.20
Jump-di↵usion intensity, �3 0.05

Table 5.16: Parameters used in the hedging experiments for bivariate Spread options

Strategy 95% VAR
Average Delta-hedge strategy 0.35

Lamberton and Lapeyre’s Delta-hedging extension 7.15

Table 5.17: 95% VAR of various hedging strategies
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Figure 5.14: P&L PDF of Delta-hedging strategy for a bivariate Spread option in jump-
di↵usion framework. The PDF is centered close to zero, with a high peak, showing that
the strategy leads to a slight portfolio gain almost always

Figure 5.15: P&L PDF of extended Delta-hedging strategy for a bivariate Spread option
in jump-di↵usion framework. The PDF is centered around zero showing that the strategy
leads to a perfect hedge in majority of the case
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Conclusions

This thesis has extended the work of Deng, Li and Zhou[22] to o↵er a pricing formula

for a bivariate Spread options in jump-di↵usion framework. Having a jump component

in our model allows us to better reflect certain characteristics observed in financial mar-

kets such as unexpected jumps in the underlying assets that may have adverse e↵ects

on option prices. The proposed pricing method yielded prices within $0.01 of the corre-

sponding option prices obtained using Monte-Carlo techniques and allowed a significant

computational time reduction. In most cases, the bivariate Spread option pricing formula

exhibited the expected behaviour with respect to its various parameters.

We extended the work of Lamberton and Lapeyre[21] to arrive to an optimal hedging

strategy for bivariate Spread options in jump-di↵usion framework. The proposed strategy

was shown to minimize the squared di↵erence between the option price and the hedging

portfolio and o↵ered an invaluable risk-control tool for an investor. Additionally, we

suggested a simplistic ”average” Delta-hedging strategy for bivariate Spread options in

jump-di↵usion framework. Although the latter strategy lead to a slightly higher hedging

error than the former, it required less computational time and was easier to utilize for a

general investor.

In order to allow an investor to approximate option prices and derive a hedging

strategy, a parameter calibration algorithm was o↵ered. The algorithm was unique in

its utilization of both univariate and bivariate option prices to calibrated the necessary

parameters. It was shown that although the parameter calibration problem was ill-posed,

an acceptable parameter set was produced by the proposed algorithm.
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As many commodity market prices possess a mean-reverting property, further work

is needed to allow this property in the underlying process; such an extension can, for

example, be useful in pricing Crack and Spark spreads. Moreover, it is of interest to

investigate the e↵ects of adding jumps to the volatility processes, and the e↵ects of

stochastic correlation as they may allow us to better reflect volatility and correlation

smiles and smirks observed in financial markets. Other area of investigation should

include improvement of the bivariate option hedging strategies to further reduce the

hedging error and to simplify the hedging strategy. Finally, it is of a value to extend

the model to the more general d-dimensional case and to a wider variety of derivatives,

as methods in these areas are often limited to Monte-Carlo simulation, which can be

extremely slow to converge particularly in the presence of jumps.
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Appendix 1

MATLAB Codes

1.1 Monte-Carlo Simulation

%% Parallel Computing

myCluster = parcluster(’local’);

myCluster.NumWorkers = 4; % ’Modified’ property now TRUE

saveProfile(myCluster); % ’local’ profile now updated,

% ’Modified’ property now FALSE

matlabpool(’open’,4);

%%read in the data

filename = ’Simulated Data v3.xlsx’;

sheet = 1;

xlRange = ’B1:N1’;

Strikes˙1D = xlsread(filename, sheet, xlRange);

n˙strikes = length(Strikes˙1D);

xlRange = ’B2:N2’;

Strikes˙2D = xlsread(filename, sheet, xlRange);

xlRange = ’B3:G3’;

Maturities = xlsread(filename, sheet, xlRange);

n˙maturity = length(Maturities);
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% holders for the future simulated rices

Price1D1S = zeros(n˙maturity, n˙strikes);

Price1D2S = zeros(n˙maturity, n˙strikes);

Price2D = zeros(n˙maturity, n˙strikes);

Price˙1D1S = zeros(1,100000);

Price˙1D2S = zeros(1,100000);

Price˙2D = zeros(1,100000);

J = 3; % Number of Poisson processes to simulate

S0 = [122 105.97]; % Initial stock prices

r = .03; % Risk-free interest rate

sigma = [0.2 0.15]; % Stock return volatility

mu = [-0.1591 -0.1697]; % Stock return mean

sigma˙tilde = [0.425 0.361 0.05]; % Std. of jumps

mu˙tilde = [-0.15 -0.15 -0.15]; % Mean of jumps

lambda = [.3 .2 .05]; % Jump intensity

K = [exp(mu˙tilde(1) + .5*sigma˙tilde(1)ˆ2)-1 ...

exp(mu˙tilde(2) + .5*sigma˙tilde(2)ˆ2)-1 ...

exp(mu˙tilde(3) + .5*sigma˙tilde(3)ˆ2)-1]; % jump means

correlation = [1.0000 -0.0696; -0.0696 1.0000]; % asset correlation (BM part)

rho = [1 0; correlation(1,2) sqrt(1-correlation(1,2)ˆ2)]; % matrix used to derive the cor-

related BMs

Dt=1/252;

mmu1 = (r - lambda(1)*K(1) - lambda(3)*K(3))*Dt;

mmu2 = (r - lambda(2)*K(2) - lambda(3)*K(3))*Dt;

ssg1 = sigma(1)*sqrt(Dt);

ssg2 = sigma(2)*sqrt(Dt);

%%
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for i˙maturities = 1:n˙maturity

ts = [1/252 : 1/252 :Maturities(i˙maturities)]; % Simulation frequency: daily

T=ts(end); % Simulation time horizon

% Jump intensity over the simulation horizon

t1 = lambda(1)*T;

t2 = lambda(2)*T;

t3 = lambda(3)*T;

maturity = Maturities(i˙maturities);

for i˙strikes = 1:n˙strikes

Strike˙1D = Strikes˙1D(i˙strikes);

Strike˙2D = Strikes˙2D(i˙strikes);

tic

% parallel computing improves the computation time

parfor i˙runs = 1:100000

% Simulate number of jumps

N = [poissrnd(t1) poissrnd(t2) poissrnd(t3)];

L=length(ts);

Jumps˙ts = zeros(L,3);

dN = zeros(L,3);

for j=1:J

% simulate jump arrival time

t = T*rand(N(j),1);

t = sort(t);

% simulate jump size

Jj = mu˙tilde(j) + sigma˙tilde(j)*randn(N(j),1);

% add the jumps

73



1.1. Monte-Carlo Simulation Chapter 1

CumS = cumsum(Jj);

Events˙prev = 0;

% Zero the jump simulator for the new simulation

Jumps˙ts(:,j)=0;

dN(:,j) = 0;

% order the jump arrival times

if isempty(t)

for n=1:L

if t(1)¡=ts(n)

Events = sum(t¡=ts(n));

Jumps˙ts(n,j) = CumS(Events);

dN(n,j) = Events - Events˙prev;

Events˙prev = Events;

end

end

end

end

% calculate the price dynamics using the simulated parameters

Dt = ts(1);

S = ones(2, length(ts));

D˙Di↵ = zeros(2, length(ts));

BM = rho*randn(2,1);

D˙Di↵(1,1) = (r - lambda(1)*K(1) - lambda(3)*K(3))*ts(1) +...

sigma(1)*sqrt(ts(1))*BM(1)...

+ (Jumps˙ts(1,1)*dN(1,1) + Jumps˙ts(1,3)*dN(1,3));

D˙Di↵(2,1) = (r - lambda(2)*K(2) - lambda(3)*K(3))*ts(1) +...

sigma(2)*sqrt(ts(1))*BM(2)...

+ (Jumps˙ts(1,2)*dN(1,2) + Jumps˙ts(1,3)*dN(1,3));

S(:,1) = S0(:).*(1 + D˙Di↵(:,1));
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for l = 2:L

BM = rho*randn(2,1);

D˙Di↵(1,l) = mmu1 + ssg1*BM(1) +...

(Jumps˙ts(l,1)*dN(l,1) + Jumps˙ts(l,3)*dN(l,3));

D˙Di↵(2,l) = mmu2 + ssg2*BM(2) +...

(Jumps˙ts(l,2)*dN(l,2) + Jumps˙ts(l,3)*dN(l,3));

S(:,l) = S(:,l-1).*(1 + D˙Di↵(:,l));

end

% calculate option payo↵s at expiry and discount them to the

% present

Sf = [S0’ S];

Price˙1D1S(i˙runs) = max(Sf(1,length(ts)+1) - Strike˙1D,0)*exp(-r*T);

Price˙1D2S(i˙runs) = max(Sf(2,length(ts)+1) - Strike˙1D,0)*exp(-r*T);

Price˙2D(i˙runs) = max(Sf(1,length(ts)+1) - Sf(2,length(ts)+1) - Strike˙2D,0)*exp(-r*T);

end

% store the simulated prices

Price1D1S(i˙maturities, i˙strikes) = mean(Price˙1D1S);

Price1D2S(i˙maturities, i˙strikes) = mean(Price˙1D2S);

Price2D(i˙maturities, i˙strikes) = mean(Price˙2D);

toc

end

end

% record the simulated prices in the file

xlswrite(’Simulated Data v5.xlsx’, Price1D1S, ’1D Option Prices S1’, ’B2’);

xlswrite(’Simulated Data v5.xlsx’, Price1D2S, ’1D Option Prices S2’, ’B2’);

xlswrite(’Simulated Data v5.xlsx’, Price2D, ’2D Option Prices’, ’B2’);

%% terminate the parallel computing
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matlabpool(’close’);

1.2 Univariate Call Option Pricing Formula in Jump-

Di↵usion Framework

% this function computed univariate option price in jump-di↵usion

% framework

function price1D = Price˙1D˙JD(S0, K, T, sigma, sigma˙tilde, mu˙tilde,...

lambda, r)

% holder for the formula parameters

factors = zeros(1,172);

call = zeros(1,172);

% initial price is set to zero (first element in the

% infinite sum)

price = 0;

% dividends will be later used for the price computations

q = 0;

% compute the jump expected value

K˙g = exp(mu˙tilde + .5*sigma˙tildeˆ2);

% the summation is capped at 171

for j = 0:171

% calculate the jump probability

factors(j+1) = exp(-lambda*T)*(lambda*T)ˆj/factorial(j);

end

for i = 0:171
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% calculate the parameter changes

sigma˙i = sqrt(sigmaˆ2 + (i*sigma˙tildeˆ2)/T);

q˙i = q + lambda*(K˙g - 1) - i*(mu˙tilde + (sigma˙tildeˆ2)/2)/T;

% the new price is computed using the Black-Scholes formula for a

% Call option with dividends

call(i+1) = BS˙with˙Dividends(S0,K,r,q˙i,sigma˙i,T);

end

% perform the summation

for k = 1:172

price = price + factors(k)*call(k);

end

price1D = price;

end

1.3 Bivariate Spread Option Pricing Formula in Jump-

Di↵usion Framework

% this function computed univariate option price in jump-di↵usion

% framework

function call = Price˙2D˙JD(S, K, T, sigma, sigma˙tilde, mu˙tilde,...

lambda, corr, r)

% dividends will be used later to change the parameters

q = zeros(2,1);

% holders for the parameters using in pricing

sigma˙i = zeros(2,1); q˙i = zeros(2,1);

% compute the jump expected value
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K˙g = [exp(mu˙tilde(1) + .5*sigma˙tilde(1)ˆ2)-1 ...

exp(mu˙tilde(2) + .5*sigma˙tilde(2)ˆ2)-1 ...

exp(mu˙tilde(3) + .5*sigma˙tilde(3)ˆ2)-1];

% compute the correlation between two underlying assets

% this correlation

rho =(sigma(1)*sigma(2)*corr + K˙g(3)ˆ2*lambda(3))/...

(sqrt(sigma(1)ˆ2 + K˙g(1)ˆ2*lambda(1) + K˙g(3)ˆ2*lambda(3))*...

sqrt(sigma(2)ˆ2 + K˙g(2)ˆ2*lambda(2) + K˙g(3)ˆ2*lambda(3)));

sum˙lam = sum(lambda);

call = 0;

% the summation is capped at 6

for i = 0:6

for j = 0:6

for k = 0:min(i,j)

% calculate the jump probability

prob = exp(-sum˙lam*T)*((lambda(1)*T)ˆ(i-k))*...

((lambda(2)*T)ˆ(j-k))*((lambda(3)*T)ˆk)/...

(factorial(i-k)*factorial(j-k)*factorial(k));

ii(1) = i; ii(2) = j;

for l = 1:2

% calculate the parameter changes

sigma˙i(l) = sqrt(sigma(l)ˆ2 + (ii(l) - k)*(sigma˙tilde(l)ˆ2)/T +...

+ k*(sigma˙tilde(3)ˆ2)/T);

q˙i(l) = q(l) + lambda(l)*K˙g(l) + lambda(3)*K˙g(3) - ...

(ii(l) - k)*(mu˙tilde(l) + (sigma˙tilde(l)ˆ2/2))/T -...

- k*(mu˙tilde(3) + (sigma˙tilde(3)ˆ2/2))/T;

end

% the new price is computed using the formula in Deng, Li and
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% Zhou[17]

sum1 = prob*TwoDimenssional˙CallPrice˙Int(K, S(1), S(2), r, rho,...

q˙i(1), q˙i(2), sigma˙i(1), sigma˙i(2), T);

% perform the summation

call = call + sum1;

end

end

end

end

% this function computed the option price according to Deng, Li and Zhou

% [17]

function C˙Int = TwoDimenssional˙CallPrice˙Int(K, S˙1, S˙2, r, rho,...

q˙1, q˙2, sigma˙return˙1, sigma˙return˙2, T)

% compute the model variables

mu˙1 = log(S˙1) + (r - q˙1 - sigma˙return˙1ˆ2/2)*T;

mu˙2 = log(S˙2) + (r - q˙2 - sigma˙return˙2ˆ2/2)*T;

sigma˙1 = sigma˙return˙1*sqrt(T);

sigma˙2 = sigma˙return˙2*sqrt(T);

sigma = [sigma˙1 sigma˙2];

mu = [mu˙1 mu˙2];

q = [q˙1 q˙2];

% compute the model infinite integrals

I(1) = integral(@(y) integral1(y, sigma(1), sigma(2), mu(1), mu(2), K, rho),-inf,inf,’Ab-

sTol’, 1e-1, ’RelTol’, 1e-1);

I(2) = integral(@(y) integral22(y, sigma(1), sigma(2), mu(1), mu(2), K, rho),-inf,inf,’Ab-

sTol’, 1e-1, ’RelTol’, 1e-1);

I(3) = integral(@(y) integral33(y, sigma(1), sigma(2), mu(1), mu(2), K, rho),-inf,inf,’Ab-

sTol’, 1e-1, ’RelTol’, 1e-1);
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% arrive to the option price

C˙Int = exp((sigma(1)ˆ2)/2 + mu(1) - r*T - q(1)*T)*I(1) -...

exp((sigma(2)ˆ2)/2 + mu(2) - r*T - q(2)*T)*I(2) - K*exp(-r*T)*I(3);

end

% first integral in the pricing formula

function int1 = integral1(y, sigma1, sigma2, mu1, mu2, K, rho)

x = y + rho*sigma1;

x˙bar = (log(exp(sigma2.*x + mu2) + K) - mu1)./sigma1;

A = (rho*x - x˙bar)/sqrt(1-rhoˆ2);

int1 = normcdf(A + sqrt(1-rhoˆ2)*sigma1).*normpdf(y);

end

% second integral in the pricing formula

function int2 = integral22(y, sigma1, sigma2, mu1, mu2, K, rho)

x = y + sigma2;

x˙bar = (log(exp(sigma2*x + mu2) + K) - mu1)/sigma1;

A = (rho*x - x˙bar)/sqrt(1-rhoˆ2);

int2 = normcdf(A).*normpdf(y);

end

% third integral in the pricing formula

function int3 = integral33(y, sigma1, sigma2, mu1, mu2, K, rho)

x = y;

x˙bar = (log(exp(sigma2*x + mu2) + K) - mu1)/sigma1;

A = (rho*x - x˙bar)/sqrt(1-rhoˆ2);

int3 = normcdf(A).*normpdf(y);
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end

1.4 Hedging in Jump-Di↵usion Framework

%% two dimensional extension of Lamberton and Lapeyre’s hedging strategy in one di-

mension

% initialize parameters

dt = 1 252; % time increment = 1 day = 1/252 years

t = 0.5; % rebalancing time

T = 1; % time to maturity

K = 16;

S0 = [122 105.97]; % Initial stock prices

r = .03; % Risk-free interest rate

sigma = [0.2 0.15]; % Stock return volatility

mu = [-0.1591 -0.1697]; % Stock return mean

sigma˙tilde = [0.215 0.161 0.05]; % Std. of jumps

mu˙tilde = [0.15 0.15 0.15]; % Mean of jumps

lambda = [1.2 .8 0.1]; % Jump intensity

% sigma˙tilde = [0.215 0.161 0.05]; % Std. of jumps

% mu˙tilde = [0.15 0.15 0.15]; % Mean of jumps

% lambda = [1.2 .8 .1]; % Jump intensity

corr = -0.0696; % asset correlation (BM part)

%% calculate the hedge

PL˙error = zeros(1,10000);

% the initial hedge

option˙price˙0 = Price˙2D˙JD(S0, K, T, sigma, sigma˙tilde, mu˙tilde,...

lambda, corr, r);

delta1˙0, delta2˙0
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= Deng˙Hedge(S0, K, T, sigma, sigma˙tilde, mu˙tilde,...

lambda, corr, r);

% holders for intermediate hedge values

delta˙t˙1 = zeros(1,2);

delta˙t˙2 = zeros(1,2);

delta˙t˙1(1) = delta1˙0;

delta˙t˙2(1) = delta2˙0;

% initial value of a risk-free asset

B˙0 = option˙price˙0 - delta1˙0*S0(1) - delta2˙0*S0(2);

B˙t = zeros(1,2);

B˙t(1) = B˙0;

% the next period hedge

for i = 1:10000

for j = 1:1

S˙t˙1 = Sf(j*126+1,1,i);

S˙t˙2 = Sf(j*126+1,2,i);

tt = j*126/252;

% new delta hedge
delta˙t˙1(j+1), delta˙t˙2(j+1)

= Deng˙Hedge([S˙t˙1 S˙t˙2], K, T-tt,...

sigma, sigma˙tilde, mu˙tilde,lambda, corr, r);

% new value of a risk-free asset

B˙t(j+1) = B˙t(j)*exp(r*tt) - S˙t˙1*(delta˙t˙1(j+1) - delta˙t˙1(j))...

- S˙t˙2*(delta˙t˙2(j+1) - delta˙t˙2(j));

end

% time t option price

option˙price = Price˙2D˙JD([S˙t˙1 S˙t˙2], K, T-t, sigma, sigma˙tilde, mu˙tilde,...

lambda, corr, r);

% calculate the loss

PL = (delta˙t˙1(j+1)*S˙t˙1 + delta˙t˙2(j+1)*S˙t˙2 + B˙t(j+1)) - option˙price;

PL˙error(i) = exp(-r*.5)*PL/option˙price˙0;

end
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% calculate the PDF function

edges = -20:0.1:20;

PDF = histc(PL˙error,edges)10000;
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